D. J. Cram, The design of molecular hosts, guests, and their complexes (nobel lecture, Angewandte Chemie International Edition in English, vol.27, issue.8, pp.1009-1020, 1988.

J. Lehn, Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (nobel lecture, Angewandte Chemie International Edition in English, vol.27, issue.1, pp.89-112, 1988.
DOI : 10.1002/anie.198800891

C. J. Pedersen, The discovery of crown ethers (noble lecture, Angewandte Chemie International Edition in English, vol.27, issue.8, pp.1021-1027, 1988.

B. A. Parviz, D. Ryan, and G. M. Whitesides, Using self-assembly for the fabrication of nano-scale electronic and photonic devices, IEEE transactions on advanced packaging, vol.26, pp.233-241, 2003.

P. A. Dirac, The principles of quantum mechanics, vol.27, 1981.

A. Stone, The theory of intermolecular forces, 2013.

J. Lehn, From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry, Chemical Society Reviews, vol.36, issue.2, pp.151-160, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00680548

T. L. Hill, Cooperativity theory in biochemistry: steadystate and equilibrium systems, 1985.

T. L. Hill, An introduction to statistical thermodynamics. Courier Corporation, 2012.
DOI : 10.1063/1.3057470

A. Levitzki and D. Koshland, Negative cooperativity in regulatory enzymes, Proceedings of the National Academy of Sciences, vol.62, pp.1121-1128, 1969.

D. Chatterji, Basics of molecular recognition, 2016.

K. Ariga, H. Ito, J. P. Hill, and H. Tsukube, Molecular recognition: from solution science to nano/-materials technology, Chemical Society Reviews, vol.41, issue.17, pp.5800-5835, 2012.

N. Homeyer, F. Stoll, A. Hillisch, and H. Gohlke, Binding free energy calculations for lead optimization: assessment of their accuracy in an industrial drug design context, Journal of chemical theory and computation, vol.10, issue.8, pp.3331-3344, 2014.

W. L. Jorgensen, J. K. Buckner, S. Boudon, and J. Tirado-rives, Efficient computation of absolute free energies of binding by computer simulations. application to the methane dimer in water, The Journal of chemical physics, vol.89, issue.6, pp.3742-3746, 1988.

J. Hermans and L. Wang, Inclusion of loss of translational and rotational freedom in theoretical estimates of free energies of binding. application to a complex of benzene and mutant t4 lysozyme, Journal of the American Chemical Society, vol.119, issue.11, pp.2707-2714, 1997.

S. Boresch, F. Tettinger, M. Leitgeb, and M. Karplus, Absolute binding free energies: a quantitative approach for their calculation, The Journal of Physical Chemistry B, vol.107, issue.35, pp.9535-9551, 2003.

M. K. Gilson, J. A. Given, B. L. Bush, and J. A. Mccammon, The statistical-thermodynamic basis for computation of binding affinities: a critical review, Biophysical journal, vol.72, issue.3, p.1047, 1997.

W. L. Jorgensen, Free energy calculations: a breakthrough for modeling organic chemistry in solution, Accounts of Chemical Research, vol.22, issue.5, pp.184-189, 1989.

H. Woo and B. Roux, Calculation of absolute protein-ligand binding free energy from computer simulations, Proceedings of the National Academy of Sciences of the United States of America, vol.102, pp.6825-6830, 2005.

M. S. Lee and M. A. Olson, Calculation of absolute protein-ligand binding affinity using path and endpoint approaches, Biophysical journal, vol.90, issue.3, pp.864-877, 2006.

G. Rastelli, A. D. Rio, G. Degliesposti, and M. Sgobba, Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA", Journal of computational chemistry, vol.31, issue.4, pp.797-810, 2010.

M. Ikeguchi, J. Ueno, M. Sato, and A. Kidera, Protein structural change upon ligand binding: linear response theory, Physical review letters, vol.94, issue.7, p.78102, 2005.
DOI : 10.1103/physrevlett.94.078102

P. A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo et al., Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models, Accounts of Chemical Research, vol.33, issue.12, pp.889-897, 2000.

J. Srinivasan, T. E. Cheatham, P. Cieplak, P. A. Kollman, and D. A. Case, Continuum solvent studies of the stability of dna, rna, and phosphoramidatedna helices, Journal of the American Chemical Society, vol.120, issue.37, pp.9401-9409, 1998.

J. Åqvist, C. Medina, and J. Samuelsson, A new method for predicting binding affinity in computer-aided drug design, Protein engineering, vol.7, issue.3, pp.385-391, 1994.

H. Gutiérrez-de-terán and J. Åqvist, Linear interaction energy: method and applications in drug design, Computational Drug Discovery and Design, pp.305-323, 2012.

D. B. Kitchen, H. Decornez, J. R. Furr, and J. Bajorath, Docking and scoring in virtual screening for drug discovery: methods and applications, Nature reviews Drug discovery, vol.3, issue.11, pp.935-949, 2004.

H. Liu, I. D. Kuntz, and X. Zou, Pairwise GB/SA scoring function for structure-based drug design, The Journal of Physical Chemistry B, vol.108, issue.17, pp.5453-5462, 2004.
DOI : 10.1021/jp0312518

J. Esque and M. Cecchini, Accurate calculation of conformational free energy differences in explicit water: The confinement-solvation free energy approach, The Journal of Physical Chemistry B, vol.119, issue.16, pp.5194-5207, 2015.

T. Simonson, G. Archontis, and M. Karplus, Free energy simulations come of age: protein-ligand recognition, Accounts of chemical research, vol.35, issue.6, pp.430-437, 2002.

A. Pohorille, C. Jarzynski, and C. Chipot, Good practices in free-energy calculations, The Journal of Physical Chemistry B, vol.114, issue.32, pp.10235-10253, 2010.

J. C. Gumbart, B. Roux, and C. Chipot, Standard binding free energies from computer simulations: What is the best strategy?, Journal of chemical theory and computation, vol.9, issue.1, pp.794-802, 2012.

J. Wang, Y. Deng, and B. Roux, Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials, Biophysical journal, vol.91, issue.8, pp.2798-2814, 2006.

A. Y. Lau and B. Roux, The hidden energetics of ligand binding and activation in a glutamate receptor, Nature structural & molecular biology, vol.18, issue.3, pp.283-287, 2011.

J. C. Gumbart, B. Roux, and C. Chipot, Efficient determination of protein-protein standard binding free energies from first principles, Journal of chemical theory and computation, vol.9, issue.8, pp.3789-3798, 2013.

L. Wang, Y. Wu, Y. Deng, B. Kim, L. Pierce et al., Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern freeenergy calculation protocol and force field, vol.137, pp.2695-2703, 2015.

B. Brooks and M. Karplus, Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor, Proceedings of the National Academy of Sciences, vol.80, pp.6571-6575, 1983.

M. Cecchini, Quantum corrections to the free energy difference between peptides and proteins conformers, Journal of chemical theory and computation, vol.11, issue.9, pp.4011-4022, 2015.

R. M. Levy, M. Karplus, J. Kushick, and D. Perahia, Evaluation of the configurational entropy for proteins: application to molecular dynamics simulations of an ?-helix, Macromolecules, vol.17, issue.7, pp.1370-1374, 1984.

M. Karplus and J. Kushick, Method for estimating the configurational entropy of macromolecules, Macromolecules, vol.14, issue.2, pp.325-332, 1981.

H. Gohlke and D. A. Case, Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex ras-raf, Journal of computational chemistry, vol.25, issue.2, pp.238-250, 2004.

S. Genheden and U. Ryde, Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies, Proteins: Structure, Function, and Bioinformatics, vol.80, pp.1326-1342, 2012.

T. Hou, J. Wang, Y. Li, and W. Wang, Assessing the performance of the MM/PBSA and MM/G-BSA methods. 1. the accuracy of binding free energy calculations based on molecular dynamics simulations, Journal of chemical information and modeling, vol.51, issue.1, pp.69-82, 2010.

T. Hou, J. Wang, Y. Li, and W. Wang, Assessing the performance of the MM/PBSA and MM/G-BSA methods: Ii. the accuracy of ranking poses generated from docking, Journal of computational chemistry, vol.32, issue.5, p.866, 2011.

H. Sun, Y. Li, S. Tian, L. Xu, and T. Hou, Assessing the performance of MM/PBSA and MM/G-BSA methods. 4. accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using pdbbind data set, Physical Chemistry Chemical Physics, vol.16, issue.31, pp.16719-16729, 2014.

S. Genheden, T. Luchko, S. Gusarov, A. Kovalenko, and U. Ryde, An MM/3D-RISM approach for ligand binding affinities, The Journal of Physical Chemistry B, vol.114, issue.25, pp.8505-8516, 2010.

L. Xu, H. Sun, Y. Li, J. Wang, and T. Hou, Assessing the performance of MM/PBSA and MM/G-BSA methods. 3. the impact of force fields and ligand charge models, The Journal of Physical Chemistry B, vol.117, issue.28, pp.8408-8421, 2013.

C. Gao, M. Park, and H. A. Stern, Accounting for ligand conformational restriction in calculations of protein-ligand binding affinities, Biophysical journal, vol.98, issue.5, pp.901-910, 2010.

S. Genheden, O. Kuhn, P. Mikulskis, D. Hoffmann, and U. Ryde, The normal-mode entropy in the MM/GBSA method: effect of system truncation, buffer region, and dielectric constant, Journal of chemical information and modeling, vol.52, issue.8, pp.2079-2088, 2012.

M. Kaukonen, P. Soderhjelm, J. Heimdal, and U. Ryde, QM/MM-PBSA method to estimate free energies for reactions in proteins, The Journal of Physical Chemistry B, vol.112, issue.39, pp.12537-12548, 2008.

F. S. Lee, Z. Chu, M. B. Bolger, and A. Warshel, Calculations of antibody-antigen interactions: microscopic and semi-microscopic evaluation of the free energies of binding of phosphorylcholine analogs to mcpc603, Protein Engineering, vol.5, issue.3, pp.215-228, 1992.

R. Marcus, Chemical and electrochemical electron-transfer theory, Annual Review of Physical Chemistry, vol.15, issue.1, pp.155-196, 1964.
DOI : 10.1146/annurev.pc.15.100164.001103

A. Ben-naim and Y. Marcus, Solvation thermodynamics of nonionic solutes, The Journal of chemical physics, vol.81, issue.4, pp.2016-2027, 1984.

M. Almlöf, J. Carlsson, and J. Åqvist, Improving the accuracy of the linear interaction energy method for solvation free energies, Journal of chemical theory and computation, vol.3, issue.6, pp.2162-2175, 2007.

J. Åqvist and J. Marelius, The linear interaction energy method for predicting ligand binding free energies, Combinatorial chemistry & high throughput screening, vol.4, pp.613-626, 2001.

J. Åqvist and T. Hansson, On the validity of electrostatic linear response in polar solvents, The Journal of Physical Chemistry, vol.100, issue.22, pp.9512-9521, 1996.

D. Huang and A. Caflisch, Efficient evaluation of binding free energy using continuum electrostatics solvation, Journal of medicinal chemistry, vol.47, issue.23, pp.5791-5797, 2004.
DOI : 10.1021/jm049726m

D. Huang and A. Caflisch, Library screening by fragment-based docking, Journal of Molecular Recognition, vol.23, issue.2, pp.183-193, 2010.
DOI : 10.1002/jmr.981

URL : http://www.zora.uzh.ch/id/eprint/23623/2/Huang_J_Mol_Recognit_2009.pdf

T. Zhou, D. Huang, and A. Caflisch, Is quantum mechanics necessary for predicting binding free energy?, Journal of medicinal chemistry, vol.51, issue.14, pp.4280-4288, 2008.
DOI : 10.1021/jm800242q

T. Zhou, D. Huang, and A. Caflisch, Quantum mechanical methods for drug design, Current topics in medicinal chemistry, vol.10, pp.33-45, 2010.
DOI : 10.2174/156802610790232242

URL : http://www.zora.uzh.ch/id/eprint/25391/1/Zhou_Curr_Top_Med_2009_V.pdf

A. Breda, L. A. Basso, D. S. Santos, J. D. Azevedo, and F. Walter, Virtual screening of drugs: score functions, docking, and drug design, Current Computer-Aided Drug Design, vol.4, issue.4, pp.265-272, 2008.

S. Huang, S. Z. Grinter, and X. Zou, Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions, Physical Chemistry Chemical Physics, vol.12, issue.40, pp.12899-12908, 2010.
DOI : 10.1039/c0cp00151a

H. Böhm, Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3d database search programs, Journal of computeraided molecular design, vol.12, issue.4, pp.309-309, 1998.

D. Rognan, S. L. Lauemøller, A. Holm, S. Buus, and V. Tschinke, Predicting binding affinities of protein ligands from three-dimensional models: application to peptide binding to class i major histocompatibility proteins, Journal of medicinal chemistry, vol.42, issue.22, pp.4650-4658, 1999.

E. C. Meng, B. K. Shoichet, and I. D. Kuntz, Automated docking with grid-based energy evaluation, Journal of computational chemistry, vol.13, issue.4, pp.505-524, 1992.
DOI : 10.1002/jcc.540130412

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew et al., Autodock4 and autodocktools4: Automated docking with selective receptor flexibility, Journal of computational chemistry, vol.30, issue.16, pp.2785-2791, 2009.
DOI : 10.1002/jcc.21256

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.21256

J. Stoddart, host-guest chemistry". Annual Reports Section" B, vol.85, pp.353-386, 1988.

J. W. Lee, S. Samal, N. Selvapalam, H. Kim, and K. Kim, Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry, Accounts of chemical research, vol.36, issue.8, pp.621-630, 2003.

S. Grimme, Supramolecular binding thermodynamics by dispersion-corrected density functional theory, Chemistry-A European Journal, vol.18, issue.32, pp.9955-9964, 2012.
DOI : 10.1002/chem.201200497

F. Biedermann, V. D. Uzunova, O. A. Scherman, W. M. Nau, and A. Simone, Release of highenergy water as an essential driving force for the high-affinity binding of cucurbit [n] urils", Journal of the American Chemical Society, vol.134, issue.37, pp.15318-15323, 2012.

J. Lehn, Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and selforganization, Angewandte Chemie International Edition in English, vol.29, issue.11, pp.1304-1319, 1990.

Y. Furusho, I. M. Rahman, H. Hasegawa, and N. E. Izatt, Application of molecular recognition technology to green chemistry: Analytical determinations of metals in metallurgical, environmental, waste, and radiochemical samples, Metal Sustainability: Global Challenges, Consequences, and Prospects, p.271, 2016.

W. Liu, S. K. Samanta, B. D. Smith, and L. Isaacs, Synthetic mimics of biotin/(strept) avidin, Chemical Society Reviews, vol.46, issue.9, pp.2391-2403, 2017.

T. Ogoshi, T. Yamagishi, and Y. Nakamoto, Pillar-shaped macrocyclic hosts pillar [n] arenes: new key players for supramolecular chemistry, Chem. Rev, issue.14, pp.7937-8002, 2016.
DOI : 10.1021/acs.chemrev.5b00765

J. H. Jensen, Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods, Physical Chemistry Chemical Physics, vol.17, issue.19, pp.12441-12451, 2015.

J. J. Montalvo-acosta and M. Cecchini, Computational approaches to the chemical equilibrium constant in proteinligand binding, Molecular Informatics, vol.35, pp.555-567, 2016.

B. Roux and T. Simonson, Implicit solvent models, Biophysical chemistry, vol.78, issue.1-2, pp.1-20, 1999.
DOI : 10.1201/9780203903827.ch7

K. I. Assaf and W. M. Nau, Cucurbiturils: from synthesis to high-affinity binding and catalysis, Chemical Society Reviews, vol.44, issue.2, pp.394-418, 2015.
DOI : 10.1039/c4cs00273c

URL : https://pubs.rsc.org/en/content/articlepdf/2015/cs/c4cs00273c

J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, Development and testing of a general amber force field, Journal of computational chemistry, vol.25, issue.9, pp.1157-1174, 2004.

T. Loftsson and D. Duchene, Cyclodextrins and their pharmaceutical applications, International journal of pharmaceutics, vol.329, issue.1, pp.1-11, 2007.

K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong et al., Charmm general force field: A force field for druglike molecules compatible with the charmm allatom additive biological force fields, Journal of Computational Chemistry, vol.31, issue.4, pp.671-690, 2010.

A. I. Lazar, F. Biedermann, K. R. Mustafina, K. I. Assaf, A. Hennig et al., Nanomolar binding of steroids to cucurbit [n] urils: selectivity and applications, Journal of the American Chemical Society, vol.138, issue.39, pp.13022-13029, 2016.
DOI : 10.1021/jacs.6b07655

H. S. Muddana and M. K. Gilson, Calculation of host-guest binding affinities using a quantummechanical energy model, Journal of chemical theory and computation, vol.8, issue.6, pp.2023-2033, 2012.

C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward, The cambridge structural database, Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol.72, issue.2, pp.171-179, 2016.

. Chemaxon, Marvinsketch, 2014.

O. Korb, T. Stützle, and T. E. Exner, Plants: Application of ant colony optimization to structurebased drug design, pp.247-258, 2006.

A. Jakalian, B. L. Bush, D. B. Jack, and C. I. Bayly, Fast, efficient generation of high-quality atomic charges. am1-bcc model: I. method, Journal of Computational Chemistry, vol.21, issue.2, pp.132-146, 2000.

M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith et al., Gromacs: High performance molecular simulations through multilevel parallelism from laptops to supercomputers, pp.19-25, 2015.

G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, The Journal of chemical physics, vol.126, p.14101, 2007.
DOI : 10.1063/1.2408420

URL : http://arxiv.org/pdf/0803.4060

G. J. Martyna, D. J. Tobias, and M. L. Klein, Constant pressure molecular dynamics algorithms, The Journal of Chemical Physics, vol.101, issue.5, pp.4177-4189, 1994.
DOI : 10.1063/1.467468

M. Parrinello and A. Rahman, Strain fluctuations and elastic constants, The Journal of Chemical Physics, vol.76, issue.5, pp.2662-2666, 1982.
DOI : 10.1063/1.443248

C. L. Wennberg, T. Murtola, S. Pall, M. J. Abraham, B. Hess et al., Direct-space corrections enable fast and accurate lorentz-berthelot combination rule lennard-jones lattice summation, Journal of chemical theory and computation, vol.11, issue.12, pp.5737-5746, 2015.

R. Baron, Computational drug discovery and design, 2012.

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo et al., The amber biomolecular simulation programs, Journal of computational chemistry, vol.26, issue.16, pp.1668-1688, 2005.
DOI : 10.1002/jcc.20290

URL : http://europepmc.org/articles/pmc1989667?pdf=render

D. Case, D. Cerutti, T. Cheatham, and T. Darden, , 2017.

G. D. Hawkins, C. J. Cramer, and D. G. Truhlar, Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium, The Journal of Physical Chemistry, vol.100, issue.51, pp.19824-19839, 1996.

P. M. Pihko, Hydrogen bonding in organic synthesis, 2009.

M. Eigen, Proton transfer, acid-base catalysis, and enzymatic hydrolysis. part i: Elementary processes, Angewandte Chemie International Edition in English, vol.3, issue.1, pp.1-19, 1964.
DOI : 10.1002/anie.196400011

H. Yamamoto and K. Futatsugi, designer acids": combined acid catalysis for asymmetric synthesis
DOI : 10.1002/anie.200460394

, Angewandte Chemie International Edition, vol.44, issue.13, pp.1924-1942, 2005.

Z. Tian, A. Fattahi, L. Lis, and S. R. Kass, Single-centered hydrogen-bonded enhanced acidity (shea) acids: a new class of brønsted acids, Journal of the American Chemical Society, vol.131, issue.46, pp.16984-16988, 2009.

Y. Pocker, Kinetics and mechanisms of addition of acids to olefins. part i. the addition of hydrogen chloride to isobutene in nitromethane, Journal of the Chemical Society, pp.1292-1297, 1960.

Y. Pocker, K. D. Stevens, and J. Champoux, Kinetics and mechanism of addition of acids to olefins. iii. addition of hydrogen chloride to 2-methyl-1-butene, 2-methyl-2-butene, and isoprene in nitromethane, Journal of the American Chemical Society, vol.91, issue.15, pp.4199-4205, 1969.

Y. Pocker and K. D. Stevens, Kinetics and mechanism of addition of acids to olefins. iv. addition of hydrogen and deuterium chloride to 3-methyl-1-butene, 3, 3-dimethyl-1-butene, 1-methylcyclopentene, and 1-methylcyclopentene-2, 5, 5-d3, Journal of the American Chemical Society, vol.91, issue.15, pp.4205-4210, 1969.

M. Dryzhakov, M. Hellal, E. Wolf, F. C. Falk, and J. Moran, Nitro-assisted brønsted acid catalysis: Application to a challenging catalytic azidation, Journal of the American Chemical Society, vol.137, issue.30, pp.9555-9558, 2015.
DOI : 10.1021/jacs.5b06055

J. Chai and M. Head-gordon, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections, Physical Chemistry Chemical Physics, vol.10, issue.44, pp.6615-6620, 2008.
DOI : 10.1039/b810189b

URL : https://digital.library.unt.edu/ark:/67531/metadc929924/m2/1/high_res_d/949212.pdf

M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek et al., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, Journal of cheminformatics, vol.4, issue.1, p.17, 2012.
DOI : 10.1186/1758-2946-4-17

URL : https://doi.org/10.1186/1758-2946-4-17

J. G. Brandenburg, M. Hochheim, T. Bredow, and S. Grimme, Low-cost quantum chemical methods for noncovalent interactions, The journal of physical chemistry letters, vol.5, issue.24, pp.4275-4284, 2014.
DOI : 10.1021/jz5021313

URL : https://doi.org/10.1021/jz5021313

F. Neese, The orca program system, Wiley Interdisciplinary Reviews: Computational Molecular Science, vol.2, issue.1, pp.73-78, 2012.

M. Frisch, G. Trucks, H. B. Schlegel, G. Scuseria, M. Robb et al., Gaussian, vol.09, 2009.

P. Gramatica, Principles of qsar models validation: internal and external, QSAR & combinatorial science, vol.26, issue.5, pp.694-701, 2007.