, Un domaine transmembranaire (TM, acides aminés 1039-1059) relie la région extracellulaire à la région juxtamembranaire (JM, 1060-1115) du domaine intracellulaire (1060-1620). Le domaine tyrosine kinase (TKD) s'étend des acides aminés 1116 à 1383 et est suivi d, La région N-terminale de ALK humain comprend deux domaines MAM (Meprin

S. Gilles, . Les, H. Malins, . Et, and . Hodgkiniens, , 2011.

H. Stein, The expression of the Hodgkin's disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells, Blood, vol.66, pp.848-58, 1985.

G. Delsol, Classification OMS 2008 des lymphomes, Ann. Pathol, vol.28, pp.20-24, 2008.
DOI : 10.1016/j.annpat.2008.09.002

E. Campo, The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications, Blood, vol.117, pp.5019-5051, 2011.

L. Lamant, Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes, Blood, vol.109, pp.2156-64, 2007.

P. P. Carbone, H. S. Kaplan, K. Musshoff, D. W. Smithers, and M. Tubiana, Report of the Committee on Hodgkin's Disease Staging Classification, Cancer Res, vol.31, pp.1860-1861, 1971.

S. B. Murphy, Classification, staging and end results of treatment of childhood non-Hodgkin's lymphomas: dissimilarities from lymphomas in adults, Semin. Oncol, vol.7, pp.332-341, 1980.

M. S. Cairo, E. Raetz, and S. Perkins, Clinical Presentation and Staging, 2003.

K. J. Savage, ALK-anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project, Blood, vol.111, pp.5496-504, 2008.

D. Wright, P. Mckeever, and R. Carter, Childhood non-Hodgkin lymphomas in the United Kingdom: findings from the UK Children's Cancer Study Group, J. Clin. Pathol, vol.50, pp.128-162, 1997.

J. Hochberg, I. M. Waxman, K. M. Kelly, E. Morris, and M. S. Cairo, Adolescent non-Hodgkin lymphoma and Hodgkin lymphoma: state of the science, Br. J. Haematol, vol.144, pp.24-40, 2009.

,. Le-deley, Prognostic factors in childhood anaplastic large cell lymphoma: results of a large European intergroup study, Blood, vol.111, pp.1560-1566, 2008.

B. Falini, ALK+ lymphoma: clinico-pathological findings and outcome, Blood, vol.93, pp.2697-706, 1999.

L. Lamant, Cutaneous presentation of ALK-positive anaplastic large cell lymphoma following insect bites: evidence for an association in five cases, Haematologica, vol.95, pp.449-55, 2010.

L. Vecchia, C. Negri, E. D'avanzo, B. Franceschi, and S. , Occupation and lymphoid neoplasms, Br. J. Cancer, vol.60, pp.385-393, 1989.

M. Fraga, Bone marrow involvement in anaplastic large cell lymphoma. Immunohistochemical detection of minimal disease and its prognostic significance, Am. J. Clin. Pathol, vol.103, pp.82-91, 1995.

I. Bonzheim, J. Steinhilber, F. Fend, L. Lamant, and L. Quintanilla-martinez, ALK-positive anaplastic large cell lymphoma: an evolving story, Front. Biosci. (Schol. Ed), vol.7, pp.248-59, 2015.

I. Bonzheim, J. Steinhilber, F. Fend, L. Lamant, and L. Quintanilla-martinez, ALK-positive anaplastic large cell lymphoma: an evolving story, Front. Biosci. (Schol. Ed), vol.7, pp.248-59, 2015.

H. Stein, CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features, Blood, vol.96, pp.3681-95, 2000.

D. Benharroch, ALK-positive lymphoma: a single disease with a broad spectrum of morphology, Blood, vol.91, pp.2076-84, 1998.

S. H. Serdlow, E. Campo, N. L. Harris, E. S. Jaffe, S. A. Pileri et al.,

, WHO Classification of Tumors of Haematopoietic and Lympoid Tissues, 2008.

L. Lamant, Prognostic impact of morphologic and phenotypic features of childhood ALKpositive anaplastic large-cell lymphoma: results of the ALCL99 study, J. Clin. Oncol, vol.29, pp.4669-76, 2011.

S. Pileri, Lymphohistiocytic T-cell lymphoma (anaplastic large cell lymphoma CD30+

, + with a high content of reactive histiocytes), Histopathology, vol.16, pp.383-91, 1990.

J. Vassallo, ALK-positive anaplastic large cell lymphoma mimicking nodular sclerosis Hodgkin's lymphoma: report of 10 cases, Am. J. Surg. Pathol, vol.30, pp.223-232, 2006.

M. C. Kinney, A small-cell-predominant variant of primary Ki-1 (CD30)+ T-cell lymphoma, Am. J. Surg. Pathol, vol.17, pp.859-68, 1993.

H. Matsuyama, miR-135b mediates NPM-ALK-driven oncogenicity and renders IL-17-producing immunophenotype to anaplastic large cell lymphoma, Blood, vol.118, pp.6881-92, 2011.

S. D. Turner, L. Lamant, L. Kenner, and L. Brugières, Anaplastic large cell lymphoma in paediatric and young adult patients, Br. J. Haematol, vol.173, pp.560-72, 2016.

H. D. Foss, Anaplastic large-cell lymphomas of T-cell and null-cell phenotype express cytotoxic molecules, Blood, vol.88, pp.4005-4016, 1996.

D. Abramov, Intratumoral heterogeneity in anaplastic large cell lymphoma of noncommon subtype, J. Hematop, vol.5, pp.109-116, 2012.

R. L. Ten-berge, MUC1 (EMA) is preferentially expressed by ALK positive anaplastic large cell lymphoma, in the normally glycosylated or only partly hypoglycosylated form, J. Clin. Pathol, vol.54, pp.933-942, 2001.

A. Wellmann, Detection of differentially expressed genes in lymphomas using cDNA arrays: identification of clusterin as a new diagnostic marker for anaplastic large-cell lymphomas, Blood, vol.96, pp.398-404, 2000.

L. Quintanilla-martinez, NPM-ALK-dependent expression of the transcription factor CCAAT/enhancer binding protein beta in ALK-positive anaplastic large cell lymphoma, Blood, vol.108, pp.2029-2065, 2006.

Q. Zhang, The potent oncogene NPM-ALK mediates malignant transformation of normal human CD4(+) T lymphocytes, Am. J. Pathol, vol.183, pp.1971-80, 2013.

S. Newrzela, T-cell receptor diversity prevents T-cell lymphoma development, Leukemia, vol.26, pp.2499-507, 2012.

N. Moti, Anaplastic large cell lymphoma-propagating cells are detectable by side population analysis and possess an expression profile reflective of a primitive origin, Oncogene, vol.34, pp.1843-52, 2015.

C. Laurent, Circulating t(2;5)-positive cells can be detected in cord blood of healthy newborns, Leukemia, vol.26, pp.188-190, 2012.

L. Trümper, M. Pfreundschuh, F. Bonin, and H. Daus, Detection of the t(2;5)-associated NPM/ALK fusion cDNA in peripheral blood cells of healthy individuals, Br. J. Haematol, vol.103, pp.1138-1182, 1998.

T. I. Malcolm, Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress, Nat. Commun, vol.7, p.10087, 2016.

S. W. Morris, Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in nonHodgkin's lymphoma, Science, vol.263, pp.1281-1285, 1994.

T. Iwahara, Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system, Oncogene, vol.14, pp.439-488, 1997.

S. W. Morris, ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin's lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK), Oncogene, vol.14, pp.2175-88, 1997.

E. H. Liao, W. Hung, B. Abrams, and M. Zhen, An SCF-like ubiquitin ligase complex that controls presynaptic differentiation, Nature, vol.430, pp.345-50, 2004.
DOI : 10.1038/nature02647

L. Shen, Y. Wang, and D. Wang, Involvement of genes required for synaptic function in aging control in C. elegans, Neurosci. Bull, vol.23, pp.21-30, 2007.

J. B. Weiss, K. L. Suyama, H. H. Lee, and M. P. Scott, Jelly belly: a Drosophila LDL receptor repeat-containing signal required for mesoderm migration and differentiation, Cell, vol.107, pp.387-98, 2001.

L. Y. Cheng, Anaplastic lymphoma kinase spares organ growth during nutrient restriction in Drosophila, Cell, vol.146, pp.435-482, 2011.

S. S. Lopes, Leukocyte tyrosine kinase functions in pigment cell development, PLoS Genet, vol.4, p.1000026, 2008.

R. Roskoski, Anaplastic lymphoma kinase (ALK): structure, oncogenic activation, and pharmacological inhibition, Pharmacol. Res, vol.68, pp.68-94, 2013.
DOI : 10.1016/j.phrs.2012.11.007

B. Hallberg and R. H. Palmer, Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology, Nat. Rev. Cancer, vol.13, pp.685-700, 2013.

J. G. Bilsland, Behavioral and neurochemical alterations in mice deficient in anaplastic lymphoma kinase suggest therapeutic potential for psychiatric indications, Neuropsychopharmacology, vol.33, pp.685-700, 2008.

G. Beckmann and P. Bork, An adhesive domain detected in functionally diverse receptors, Trends Biochem. Sci, vol.18, pp.40-41, 1993.

J. Guan, FAM150A and FAM150B are activating ligands for anaplastic lymphoma kinase, Elife, vol.4, p.9811, 2015.
DOI : 10.7554/elife.09811

URL : https://doi.org/10.7554/elife.09811

Q. Wang, J. A. Zorn, and . Kuriyan, J. in Methods Enzymol, vol.548, pp.23-67, 2014.

C. J. Tartari, Characterization of some molecular mechanisms governing autoactivation of the catalytic domain of the anaplastic lymphoma kinase, J. Biol. Chem, vol.283, pp.3743-50, 2008.

A. Donella-deana, Unique substrate specificity of anaplastic lymphoma kinase (ALK): development of phosphoacceptor peptides for the assay of ALK activity, Biochemistry, vol.44, pp.8533-8575, 2005.

J. Duyster, R. Y. Bai, and S. W. Morris, Translocations involving anaplastic lymphoma kinase (ALK), Oncogene, vol.20, pp.5623-5660, 2001.
DOI : 10.1038/sj.onc.1204594

URL : https://www.nature.com/articles/1204594.pdf

T. G. Karabencheva, C. C. Lee, G. W. Black, R. Donev, and C. Z. Christov, How does conformational flexibility influence key structural features involved in activation of anaplastic lymphoma kinase?, Mol. Biosyst, vol.10, pp.1490-1495, 2014.

T. R. Webb, Anaplastic lymphoma kinase: role in cancer pathogenesis and smallmolecule inhibitor development for therapy, Expert Rev. Anticancer Ther, vol.9, pp.331-56, 2009.
DOI : 10.1586/14737140.9.3.331

URL : http://europepmc.org/articles/pmc2780428?pdf=render

H. Lee, A. Norris, J. B. Weiss, and M. Frasch, Jelly belly protein activates the receptor tyrosine kinase Alk to specify visceral muscle pioneers, Nature, vol.425, pp.507-512, 2003.

T. Ishihara, HEN-1, a secretory protein with an LDL receptor motif, regulates sensory integration and learning in Caenorhabditis elegans, Cell, vol.109, pp.639-688, 2002.

H. Zhang, Deorphanization of the human leukocyte tyrosine kinase (LTK) receptor by a signaling screen of the extracellular proteome, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.15741-15746, 2014.

R. H. Palmer, E. Vernersson, C. Grabbe, and B. Hallberg, Anaplastic lymphoma kinase: signalling in development and disease, Biochem. J, vol.420, pp.345-61, 2009.
DOI : 10.1042/bj20090387

URL : http://www.biochemj.org/content/420/3/345.full.pdf

P. B. Murray, Heparin is an activating ligand of the orphan receptor tyrosine kinase ALK, Sci. Signal, vol.8, p.6, 2015.

G. Lemke and E. D. Lew, A ligand for ALK. Sci. Signal, vol.8, p.2, 2015.

M. Allouche, ALK is a novel dependence receptor: potential implications in development and cancer, Cell Cycle, vol.6, pp.1533-1541, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00166091

J. Mourali, Anaplastic lymphoma kinase is a dependence receptor whose proapoptotic functions are activated by caspase cleavage, Mol. Cell. Biol, vol.26, pp.6209-6231, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00111959

J. Fujimoto, Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5), Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.4181-4187, 1996.

M. Okuwaki, The structure and functions of NPM1/Nucleophsmin/B23, a multifunctional nucleolar acidic protein, J. Biochem, vol.143, pp.441-449, 2008.

S. Grisendi, Role of nucleophosmin in embryonic development and tumorigenesis, Nature, vol.437, pp.147-53, 2005.

P. Sportoletti, Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse, Blood, vol.111, pp.3859-62, 2008.

F. K. Mcduff, Determining the contribution of NPM1 heterozygosity to NPM-ALKinduced lymphomagenesis, Lab. Investig, vol.91, pp.1298-1303, 2011.

D. Bischof, K. Pulford, D. Y. Mason, and S. W. Morris, Role of the nucleophosmin (NPM) portion of the non-Hodgkin's lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis, Mol. Cell. Biol, vol.17, pp.2312-2337, 1997.

M. Ceccon, Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency, Oncogene, vol.35, pp.3854-65, 2016.

F. Armstrong, TPM3-ALK expression induces changes in cytoskeleton organisation and confers higher metastatic capacities than other ALK fusion proteins, Eur. J. Cancer, vol.43, pp.640-646, 2007.
DOI : 10.1016/j.ejca.2006.12.005

F. Armstrong, Differential effects of X-ALK fusion proteins on proliferation, transformation, and invasion properties of NIH3T3 cells, Oncogene, vol.23, pp.6071-82, 2004.

S. Giuriato, Conditional TPM3-ALK and NPM-ALK transgenic mice develop reversible ALKpositive early B-cell lymphoma / leukemia, vol.115, pp.4061-4070, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00502987

V. Roukos and S. Mathas, The origins of ALK translocations, Front. Biosci. (Schol. Ed), vol.7, pp.260-268, 2015.

V. Roukos, B. Burman, and T. Misteli, The cellular etiology of chromosome translocations, Curr. Opin. Cell Biol, vol.25, pp.357-64, 2013.

S. Mathas, Gene deregulation and spatial genome reorganization near breakpoints prior to formation of translocations in anaplastic large cell lymphoma, Proc. Natl. Acad. Sci, vol.106, pp.5831-5836, 2009.

M. Shiota, Hyperphosphorylation of a novel 80 kDa protein-tyrosine kinase similar to Ltk in a human Ki-1 lymphoma cell line, AMS3, Oncogene, vol.9, pp.1567-74, 1994.

L. Wei, S. R. Hubbard, W. A. Hendrickson, and L. Ellis, Expression, Characterization, and Crystallization of the Catalytic Core of the Human Insulin Receptor Protein-tyrosine Kinase Domain, J. Biol. Chem, vol.270, pp.8122-8130, 1995.

C. Daugrois, Lymphomes Anaplasiques à Grandes Cellules ALK positifs : signature pronostique des rechutes précoces, These Dr, vol.1, 2015.

J. D. Pearson, J. K. Lee, J. T. Bacani, R. Lai, R. J. Ingham et al., The Prototypic Member of a Family of Oncogenic Fusion Tyrosine Kinases, J. Signal Transduct, p.123253, 2012.

R. Chiarle, C. Voena, C. Ambrogio, R. Piva, and G. Inghirami, The anaplastic lymphoma kinase in the pathogenesis of cancer, Nat. Rev. Cancer, vol.8, pp.11-23, 2008.

R. Chiarle, NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors, Blood, vol.101, pp.1919-1946, 2003.

Q. Zhang, Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinasepositive T/null-cell lymphoma, J. Immunol, vol.168, pp.466-74, 2002.

A. Zamo, Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death, Oncogene, vol.21, pp.1038-1085, 2002.

J. D. Khoury, Differential expression and clinical significance of tyrosine-phosphorylated STAT3 in ALK+ and ALK-anaplastic large cell lymphoma, Clin. Cancer Res, vol.9, pp.3692-3701, 2003.

M. Marzec, Inhibition of ALK enzymatic activity in T-cell lymphoma cells induces apoptosis and suppresses proliferation and STAT3 phosphorylation independently of Jak3, Lab. Invest, vol.85, pp.1544-54, 2005.

H. M. Amin, Inhibition of JAK3 induces apoptosis and decreases anaplastic lymphoma kinase activity in anaplastic large cell lymphoma, Oncogene, vol.22, pp.5399-407, 2003.

C. Wu, STAT1 is phosphorylated and downregulated by the oncogenic tyrosine kinase NPM-ALK in ALK-positive anaplastic large-cell lymphoma, Blood, vol.126, pp.336-381, 2015.

R. Lai, Jak3 activation is significantly associated with ALK expression in anaplastic large cell lymphoma, Hum. Pathol, vol.36, pp.939-983, 2005.

B. Groner, P. Lucks, and C. Borghouts, The function of Stat3 in tumor cells and their microenvironment, Semin. Cell Dev. Biol, vol.19, pp.341-350, 2008.

R. Chiarle, Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target, Nat. Med, vol.11, pp.623-632, 2005.

H. M. Amin, Selective inhibition of STAT3 induces apoptosis and G(1) cell cycle arrest in ALK-positive anaplastic large cell lymphoma, Oncogene, vol.23, pp.5426-5460, 2004.

Q. Zhang, STAT3 induces transcription of the DNA methyltransferase 1 gene (DNMT1) in malignant T lymphocytes, Blood, vol.108, pp.1058-64, 2006.

H. Lee, Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.7765-7774, 2012.

Q. Zhang, H. Y. Wang, X. Liu, and M. A. Wasik, STAT5A is epigenetically silenced by the tyrosine kinase NPM1-ALK and acts as a tumor suppressor by reciprocally inhibiting NPM1-ALK expression, Nat. Med, vol.13, pp.1341-1349, 2007.

C. Hoareau-aveilla, Reversal of microRNA-150 silencing disadvantages crizotinibresistant NPM-ALK(+) cell growth, J. Clin. Invest, vol.125, pp.3505-3523, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01614947

M. Watanabe, JunB induced by constitutive CD30-extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase signaling activates the CD30 promoter in anaplastic large cell lymphoma and reed-sternberg cells of Hodgkin lymphoma, Cancer Res, vol.65, pp.7628-7662, 2005.

P. B. Staber, The oncoprotein NPM-ALK of anaplastic large-cell lymphoma induces JUNB transcription via ERK1/2 and JunB translation via mTOR signaling, Blood, vol.110, pp.3374-83, 2007.

M. Marzec, Oncogenic tyrosine kinase NPM/ALK induces activation of the MEK/ERK signaling pathway independently of c-Raf, Oncogene, vol.26, pp.813-834, 2007.

M. C. Kinney, R. A. Higgins, and E. A. Medina, Anaplastic large cell lymphoma: twenty-five years of discovery, Arch. Pathol. Lab. Med, vol.135, pp.19-43, 2011.

V. Leventaki, NPM-ALK oncogenic kinase promotes cell-cycle progression through activation of JNK/cJun signaling in anaplastic large-cell lymphoma, Blood, vol.110, pp.1621-1651, 2007.

J. D. Pearson, J. K. Lee, J. T. Bacani, R. Lai, and R. J. Ingham, NPM-ALK and the JunB transcription factor regulate the expression of cytotoxic molecules in ALK-positive, anaplastic large cell lymphoma, Int. J. Clin. Exp. Pathol, vol.4, pp.124-157, 2011.

D. Noh, S. H. Shin, and S. G. Rhee, Phosphoinositide-specific phospholipase C and mitogenic signaling, Biochim. Biophys. Acta -Rev. Cancer, vol.1242, pp.99-113, 1995.

R. Y. Bai, P. Dieter, C. Peschel, S. W. Morris, and J. Duyster, Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-gamma to mediate its mitogenicity, Mol. Cell. Biol, vol.18, pp.6951-61, 1998.

D. Cussac, Nucleophosmin-anaplastic lymphoma kinase of anaplastic large-cell lymphoma recruits, activates, and uses pp60c-src to mediate its mitogenicity, Blood, vol.103, pp.1464-71, 2004.

D. S. Hirsch, Y. Shen, M. Dokmanovic, and W. J. Wu, pp60c-Src phosphorylates and activates vacuolar protein sorting 34 to mediate cellular transformation, Cancer Res, vol.70, pp.5974-83, 2010.

R. Y. Bai, Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic largecell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway, Blood, vol.96, pp.4319-4346, 2000.

A. Slupianek, Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis, Cancer Res, vol.61, pp.2194-2203, 2001.

A. Khwaja, Apoptosis: Akt is more than just a Bad kinase, Nature, vol.401, pp.33-34, 1999.

S. R. Mcdonnell, NPM-ALK signals through glycogen synthase kinase 3? to promote oncogenesis, Oncogene, vol.31, pp.3733-3773, 2012.

T. Gu, NPM-ALK fusion kinase of anaplastic large-cell lymphoma regulates survival and proliferative signaling through modulation of FOXO3a, Blood, vol.103, pp.4622-4631, 2004.

F. Y. Hsu, .. Johnston, P. B. Burke, K. A. Zhao, and Y. , The expression of CD30 in anaplastic large cell lymphoma is regulated by nucleophosmin-anaplastic lymphoma kinase-mediated JunB level in a cell type-specific manner, Cancer Res, vol.66, pp.9002-9010, 2006.

H. J. Gruss and S. K. Dower, Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas, Blood, vol.85, pp.3378-404, 1995.

C. W. Wright, J. M. Rumble, and C. S. Duckett, CD30 activates both the canonical and alternative NF-kappaB pathways in anaplastic large cell lymphoma cells, J. Biol. Chem, vol.282, pp.10252-62, 2007.

H. Ohno, M. Nishikori, Y. Maesako, and H. Haga, Reappraisal of BCL3 as a molecular marker of anaplastic large cell lymphoma, Int. J. Hematol, vol.82, pp.397-405, 2005.

V. Atsaves, The oncogenic JUNB/CD30 axis contributes to cell cycle deregulation in ALK+ anaplastic large cell lymphoma, Br. J. Haematol, vol.167, pp.514-537, 2014.

A. R. Macalalad, The epidemiology and targeted therapies for relapsed and refractory CD30+ lymphomas, Curr. Med. Res. Opin, vol.31, pp.537-582, 2015.

R. C. Lee, R. L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, vol.75, pp.843-54, 1993.
URL : https://hal.archives-ouvertes.fr/in2p3-00597159

Z. Li and T. M. Rana, Therapeutic targeting of microRNAs: current status and future challenges, Nat. Rev. Drug Discov, vol.13, pp.622-660, 2014.

S. Vasudevan, Y. Tong, and J. A. Steitz, Switching from repression to activation: microRNAs can up-regulate translation, Science, vol.318, pp.1931-1935, 2007.

S. Vasudevan, Y. Tong, and J. A. Steitz, Cell-cycle control of microRNA-mediated translation regulation, Cell Cycle, vol.7, pp.1545-1554, 2008.

U. A. Ørom, F. C. Nielsen, and A. H. Lund, MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation, Mol. Cell, vol.30, pp.460-71, 2008.

Y. Lee, MicroRNA genes are transcribed by RNA polymerase II, EMBO J, vol.23, pp.4051-60, 2004.

X. Cai, C. H. Hagedorn, and B. R. Cullen, Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs, RNA, vol.10, pp.1957-66, 2004.

D. Bartel, . Micrornasgenomics, M. Biogenesis, and F. , Cell, vol.116, pp.281-297, 2004.

V. N. Kim, J. Han, and M. C. Siomi, Biogenesis of small RNAs in animals, Nat. Rev. Mol. Cell Biol, vol.10, pp.126-165, 2009.

R. Yi, Y. Qin, I. G. Macara, and B. R. Cullen, Exportin-5 mediates the nuclear export of premicroRNAs and short hairpin RNAs, Genes Dev, vol.17, pp.3011-3017, 2003.

E. Bernstein, A. A. Caudy, S. M. Hammond, and G. J. Hannon, Role for a bidentate ribonuclease in the initiation step of RNA interference, Nature, vol.409, pp.363-369, 2001.

J. E. Braun, E. Huntzinger, and E. Izaurralde, The role of GW182 proteins in miRNA-mediated gene silencing, Adv. Exp. Med. Biol, vol.768, pp.147-63, 2013.

B. Czech and G. J. Hannon, Small RNA sorting: matchmaking for Argonautes, Nat. Rev. Genet, vol.12, pp.19-31, 2011.

X. Wang, Composition of seed sequence is a major determinant of microRNA targeting patterns, Bioinformatics, vol.30, pp.1377-83, 2014.

P. Brodersen and O. Voinnet, Revisiting the principles of microRNA target recognition and mode of action, Nat. Rev. Mol. Cell Biol, vol.10, pp.141-149, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00370008

B. P. Lewis, C. B. Burge, and D. P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets, Cell, vol.120, pp.15-20, 2005.

A. Valinezhad-orang, R. Safaralizadeh, and M. Kazemzadeh-bavili, Mechanisms of miRNAMediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation, Int. J. Genomics, p.970607, 2014.

I. Lee, New class of microRNA targets containing simultaneous 5'-UTR and 3'-UTR interaction sites, Genome Res, vol.19, pp.1175-83, 2009.

A. Brümmer and J. Hausser, MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation, Bioessays, vol.36, pp.617-643, 2014.

E. J. Finnegan and M. A. Matzke, The small RNA world, J. Cell Sci, vol.116, pp.4689-93, 2003.

S. I. Grewal and S. C. Elgin, Transcription and RNA interference in the formation of heterochromatin, Nature, vol.447, pp.399-406, 2007.

M. A. Valencia-sanchez, J. Liu, G. J. Hannon, and R. Parker, Control of translation and mRNA degradation by miRNAs and siRNAs, Genes Dev, vol.20, pp.515-539, 2006.

M. Wakiyama, K. Takimoto, O. Ohara, and S. Yokoyama, Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system, Genes &amp

. Dev, , vol.21, pp.1857-1862, 2007.

T. P. Chendrimada, MicroRNA silencing through RISC recruitment of eIF6, Nature, vol.447, pp.823-831, 2007.

G. Mathonnet, MicroRNA inhibition of translation initiation in vitro by targeting the capbinding complex eIF4F, Science, vol.317, pp.1764-1771, 2007.

P. H. Olsen and V. Ambros, The lin-4 Regulatory RNA Controls Developmental Timing in Caenorhabditis elegans by Blocking LIN-14 Protein Synthesis after the Initiation of Translation, Dev. Biol, vol.216, pp.671-680, 1999.

T. Eystathioy, The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies, RNA, vol.9, pp.1171-1174, 2003.

G. L. Sen and H. M. Blau, Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies, Nat. Cell Biol, vol.7, pp.633-639, 2005.

D. Vasilatou, S. Papageorgiou, V. Pappa, E. Papageorgiou, and J. Dervenoulas, The role of microRNAs in normal and malignant hematopoiesis, Eur. J. Haematol, vol.84, pp.1-16, 2010.

E. Dejean, Hypoxia-microRNA-16 downregulation induces VEGF expression in anaplastic lymphoma kinase (ALK)-positive anaplastic large-cell lymphomas, Leukemia, vol.25, pp.1882-90, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00611903

C. Desjobert, MiR-29a down-regulation in ALK-positive anaplastic large cell lymphomas contributes to apoptosis blockade through MCL-1 overexpression, Blood, vol.117, pp.6627-6664, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00611908

C. Liu, MicroRNA expression profiling identifies molecular signatures associated with anaplastic large cell lymphoma, Blood, vol.122, pp.2083-92, 2013.

O. Merkel, Identification of differential and functionally active miRNAs in both anaplastic lymphoma kinase (ALK)+ and ALK-anaplastic large-cell lymphoma, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.16228-16261, 2010.

E. Spaccarotella, STAT3-mediated activation of microRNA cluster 17~92 promotes proliferation and survival of ALK-positive anaplastic large cell lymphoma, Haematologica, vol.99, pp.116-140, 2014.

D. Vishwamitra, MicroRNA 96 is a post-transcriptional suppressor of anaplastic lymphoma kinase expression, Am. J. Pathol, vol.180, pp.1772-80, 2012.

G. De-tullio, Challenges and opportunities of microRNAs in lymphomas, Molecules, vol.19, pp.14723-81, 2014.

O. Merkel, Identification of differential and functionally active miRNAs in both anaplastic lymphoma kinase ( ALK ) + and ALK ? anaplastic large-cell lymphoma, 2010.

C. Liu, MicroRNA expression profiling identifies molecular signatures associated with anaplastic large cell lymphoma, Blood, vol.122, pp.2083-92, 2013.

J. Steinhilber, Next-Generation Sequencing Identifies Deregulation of MicroRNAs Involved in Both Innate and Adaptive Immune Response in ALK+ ALCL, PLoS One, vol.10, p.117780, 2015.

C. Khuu, The Three Paralogous MicroRNA Clusters in Development and Disease, Cairo), vol.2016, pp.1-10, 2016.

J. Steinhilber, Next-Generation Sequencing Identifies Deregulation of MicroRNAs Involved in Both Innate and Adaptive Immune Response in ALK+ ALCL, PLoS One, vol.10, p.117780, 2015.

L. He, A microRNA polycistron as a potential human oncogene, Nature, vol.435, pp.828-861, 2005.

J. T. Mendell, miRiad roles for the miR-17-92 cluster in development and disease, Cell, vol.133, pp.217-239, 2008.

M. Brock, Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway, Circ. Res, vol.104, pp.1184-91, 2009.

C. Ambrogio, NPM-ALK oncogenic tyrosine kinase controls T-cell identity by transcriptional regulation and epigenetic silencing in lymphoma cells, Cancer Res, vol.69, pp.8611-8620, 2009.

S. I. Rothschild, MicroRNA-106a targets autophagy and enhances sensitivity of lung cancer cells to Src inhibitors, Lung Cancer, 2016.

H. Wu, MiR-20a and miR-106b negatively regulate autophagy induced by leucine deprivation via suppression of ULK1 expression in C2C12 myoblasts, Cell. Signal, vol.24, pp.2179-86, 2012.

C. Hoareau-aveilla, O. Merkel, and F. Meggetto, MicroRNA and ALK-positive anaplastic large cell lymphoma, Front. Biosci. (Schol. Ed), vol.7, pp.217-242, 2015.

O. Merkel, Oncogenic role of miR-155 in anaplastic large cell lymphoma lacking the t(2;5) translocation, J. Pathol, vol.236, pp.445-456, 2015.

C. H. Lawrie, MicroRNA expression in lymphocyte development and malignancy, Leukemia, vol.22, pp.1440-1446, 2008.

J. Gao, MiR-26a Inhibits Proliferation and Migration of Breast Cancer through Repression of MCL-1, PLoS One, vol.8, p.65138, 2013.

H. Zhu, NPM-ALK up-regulates iNOS expression through a STAT3/microRNA-26a-dependent mechanism, J. Pathol, vol.230, pp.82-94, 2013.

M. Ito, MicroRNA-150 inhibits tumor invasion and metastasis by targeting the chemokine receptor CCR6, in advanced cutaneous T-cell lymphoma, Blood, vol.123, pp.1499-511, 2014.

M. R. Hassler, Antineoplastic activity of the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine in anaplastic large cell lymphoma, Biochimie, vol.94, pp.2297-307, 2012.

N. S. Thomas, The STAT3-DNMT1 connection, JAK-STAT, vol.1, pp.257-60, 2012.

Q. Zhang, IL-2R common gamma-chain is epigenetically silenced by nucleophosphinanaplastic lymphoma kinase (NPM-ALK) and acts as a tumor suppressor by targeting NPM-ALK, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.11977-82, 2011.

Q. Zhang, Oncogenic tyrosine kinase NPM-ALK induces expression of the growthpromoting receptor ICOS, Blood, vol.118, pp.3062-71, 2011.

C. Gambacorti-passerini, C. Messa, and E. M. Pogliani, Crizotinib in Anaplastic Large-Cell Lymphoma, N. Engl. J. Med, vol.364, pp.775-776, 2011.

F. Cachin, A. Kelly, and J. Maublant,

, Bull. Cancer, vol.93, pp.1191-1200, 2006.

R. I. Fisher, Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin's lymphoma, N. Engl. J. Med, vol.328, pp.1002-1008, 1993.

. Chups-jussieu, Antinéoplasiques Immunomodulateurs, 2007.

N. Schmitz, Treatment and prognosis of mature T-cell and NK-cell lymphoma: an analysis of patients with T-cell lymphoma treated in studies of the German High-Grade Non-Hodgkin Lymphoma Study Group, Blood, vol.116, pp.3418-3443, 2010.

D. Sibon, Long-term outcome of adults with systemic anaplastic large-cell lymphoma treated within the Groupe d'Etude des Lymphomes de l'Adulte trials, J. Clin. Oncol, vol.30, pp.3939-3985, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00766851

E. R. Parrilla-castellar, ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes, Blood, vol.124, pp.1473-80, 2014.

A. Simon, Upfront VIP-reinforced-ABVD (VIP-rABVD) is not superior to CHOP/21 in newly diagnosed peripheral T cell lymphoma. Results of the randomized phase III trial GOELAMS-LTP95, Br. J. Haematol, vol.151, pp.159-66, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00569409

P. Corradini, Long-term follow-up of patients with peripheral T-cell lymphomas treated up-front with high-dose chemotherapy followed by autologous stem cell transplantation, Leukemia, vol.20, pp.1533-1541, 2006.

L. Brugières, Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: results of a randomized trial of the EICNHL Group, J. Clin. Oncol, vol.27, pp.897-903, 2009.

,. Le-deley, Vinblastine in children and adolescents with high-risk anaplastic largecell lymphoma: results of the randomized ALCL99-vinblastine trial, J. Clin. Oncol, vol.28, pp.3987-93, 2010.

W. Woessmann, Relapsed or refractory anaplastic large-cell lymphoma in children and adolescents after Berlin-Frankfurt-Muenster (BFM)-type first-line therapy: a BFM-group study, J. Clin. Oncol, vol.29, pp.3065-71, 2011.

M. Gkotzamanidou, Peripheral T-cell lymphoma: the role of hematopoietic stem cell transplantation, Crit. Rev. Oncol. Hematol, vol.89, pp.248-61, 2014.

S. M. Smith, Hematopoietic cell transplantation for systemic mature T-cell non-Hodgkin lymphoma, J. Clin. Oncol, vol.31, pp.3100-3109, 2013.

K. W. Song, P. Mollee, A. Keating, and M. Crump, Autologous stem cell transplant for relapsed and refractory peripheral T-cell lymphoma: variable outcome according to pathological subtype, Br. J. Haematol, vol.120, pp.978-85, 2003.

P. Corradini, Graft-versus-lymphoma effect in relapsed peripheral T-cell non-Hodgkin's lymphomas after reduced-intensity conditioning followed by allogeneic transplantation of hematopoietic cells, J. Clin. Oncol, vol.22, pp.2172-2178, 2004.

V. Mak, Survival of patients with peripheral T-cell lymphoma after first relapse or progression: spectrum of disease and rare long-term survivors, J. Clin. Oncol, vol.31, pp.1970-1976, 2013.

L. Brugières, Single-drug vinblastine as salvage treatment for refractory or relapsed anaplastic large-cell lymphoma: a report from the French Society of Pediatric Oncology, J. Clin. Oncol, vol.27, pp.5056-61, 2009.

M. Strullu, Hematopoietic stem cell transplantation in relapsed ALK+ anaplastic large cell lymphoma in children and adolescents: a study on behalf of the SFCE and SFGM-TC, Bone Marrow Transplant, vol.50, pp.795-801, 2015.

J. J. Cui, Structure Based Drug Design of Crizotinib (PF-02341066), a Potent and Selective Dual Inhibitor of Mesenchymal-Epithelial Transition Factor (c-MET) Kinase and Anaplastic Lymphoma Kinase (ALK), 2011.

T. G. Karabencheva, C. C. Lee, G. W. Black, R. Donev, and C. Z. Christov, How does conformational flexibility influence key structural features involved in activation of anaplastic lymphoma kinase?, Mol. BioSyst. Mol. BioSyst, vol.10, pp.1490-1495, 2014.

J. G. Christensen, Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma, Mol. Cancer Ther, vol.6, pp.3314-3336, 2007.

U. Mcdermott, Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors, Cancer Res, vol.68, pp.3389-95, 2008.

S. Peters, Metastatic non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann. Oncol, vol.23, issue.7, pp.56-64, 2012.

B. J. Solomon, First-Line Crizotinib versus Chemotherapy in ALK -Positive Lung Cancer, N. Engl. J. Med, vol.371, pp.2167-2177, 2014.

C. B. Gambacorti-passerini, Chemoresistant ALK+ Lymphoma Patients. Blood, vol.116, pp.2877-2877, 2010.

J. M. Cleary, Crizotinib as salvage and maintenance with allogeneic stem cell transplantation for refractory anaplastic large cell lymphoma, J. Natl. Compr. Canc. Netw, vol.12, p.326, 2014.

R. Conyers, A. Rao, B. Solomon, and J. F. Seymour, Editor in Chief: Response to Eyre et al. "ALK-positive anaplastic large cell lymphoma: current and future perspectives in adult and paediatric disease&quot, Eur. J. Haematol, vol.94, pp.86-93, 2015.

C. Gambacorti-passerini, Crizotinib in advanced, chemoresistant anaplastic lymphoma kinase-positive lymphoma patients, J. Natl. Cancer Inst, vol.106, p.378, 2014.

Y. P. Mossé, Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children's Oncology Group phase 1 consortium study, Lancet. Oncol, vol.14, pp.472-80, 2013.

C. B. Gambacorti-passerini, L. Mussolin, and L. Brugieres, Abrupt Relapse of ALK-Positive Lymphoma after Discontinuation of Crizotinib, n engl j med Proc Natl Acad Sci U S A, vol.3741, pp.2657-64, 2016.

R. C. Doebele, Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer, Clin. Cancer Res, vol.18, pp.1472-82, 2012.

A. Shaw and B. Solomon, Anaplastic lymphoma kinase (ALK) fusion oncogene positive non-small cell lung cancer, 2016.

J. Wu, J. Savooji, and D. Liu, Second-and third-generation ALK inhibitors for non-small cell lung cancer, J. Hematol. Oncol, vol.9, p.19, 2016.

I. Sullivan and D. Planchard, ALK inhibitors in non-small cell lung cancer: the latest evidence and developments, Ther. Adv. Med. Oncol, vol.8, pp.32-47, 2016.

A. D. Amin, Evidence Suggesting That Discontinuous Dosing of ALK Kinase Inhibitors May Prolong Control of ALK+ Tumors, Cancer Res, vol.75, pp.2916-2943, 2015.

A. Sahu, K. Prabhash, V. Noronha, A. Joshi, and S. Desai, Crizotinib: A comprehensive review, South Asian J. cancer, vol.2, pp.91-98, 2013.

R. Katayama, Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers, Sci. Transl. Med, vol.4, pp.120-137, 2012.

T. Sasaki, A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors, Cancer Res, vol.71, pp.6051-60, 2011.

Y. L. Choi, EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors, N. Engl. J. Med, vol.363, pp.1734-1743, 2010.

S. Kim, Heterogeneity of Genetic Changes Associated with Acquired Crizotinib Resistance in ALK-Rearranged Lung Cancer, J. Thorac. Oncol, vol.8, pp.415-422, 2013.

M. Ceccon, L. Mologni, W. Bisson, L. Scapozza, and C. Gambacorti-passerini, Crizotinibresistant NPM-ALK mutants confer differential sensitivity to unrelated Alk inhibitors, Mol. Cancer Res, vol.11, pp.122-154, 2013.

D. Zdzalik, Activating mutations in ALK kinase domain confer resistance to structurally unrelated ALK inhibitors in NPM-ALK-positive anaplastic large-cell lymphoma, J. Cancer Res. Clin. Oncol, vol.140, pp.589-98, 2014.

E. Iwama, I. Okamoto, T. Harada, K. Takayama, and Y. Nakanishi, Development of anaplastic lymphoma kinase (ALK) inhibitors and molecular diagnosis in ALK rearrangement-positive lung cancer, Onco. Targets. Ther, vol.7, pp.375-85, 2014.

N. P. Shah, Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia, Cancer Cell, vol.2, pp.117-125, 2002.

S. Kobayashi, EGFR mutation and resistance of non-small-cell lung cancer to gefitinib, N. Engl. J. Med, vol.352, pp.786-92, 2005.

F. Lovisa, ALK Kinase Domain Mutations in Primary Anaplastic Large Cell Lymphoma: Consequences on NPM-ALK Activity and Sensitivity to Tyrosine Kinase Inhibitors, PLoS One, vol.10, 2015.

D. R. Camidge and R. C. Doebele, Treating ALK-positive lung cancer-early successes and future challenges, Nat. Rev. Clin. Oncol, vol.9, pp.268-277, 2012.

M. Ceccon, Treatment Efficacy and Resistance Mechanisms Using the SecondGeneration ALK Inhibitor AP26113 in Human NPM-ALK-Positive Anaplastic Large Cell Lymphoma, Mol. Cancer Res, vol.13, pp.775-83, 2015.

J. Wangari-talbot and E. Hopper-borge, Drug Resistance Mechanisms in Non-Small Cell Lung Carcinoma, J. Can. Res. Updates, vol.2, pp.265-282, 2013.

K. Kinoshita, Design and synthesis of a highly selective, orally active and potent anaplastic lymphoma kinase inhibitor (CH5424802), Bioorg. Med. Chem, vol.20, pp.1271-1280, 2012.

H. Sakamoto, CH5424802, a Selective ALK Inhibitor Capable of Blocking the Resistant Gatekeeper Mutant, Cancer Cell, vol.19, pp.679-690, 2011.

T. Seto, CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-smallcell lung cancer (AF-001JP study): a single-arm, open-label, phase 1-2 study, Lancet Oncol, vol.14, pp.590-598, 2013.

G. Toyokawa, T. Seto, M. Takenoyama, and Y. Ichinose, Insights into brain metastasis in patients with ALK+ lung cancer: is the brain truly a sanctuary?, Cancer Metastasis Rev, vol.34, pp.797-805, 2015.

S. Dhillon and M. Clark, Ceritinib: first global approval, Drugs, vol.74, pp.1285-91, 2014.

L. Friboulet, The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer, Cancer Discov, vol.4, pp.662-73, 2014.

T. H. Marsilje, Synthesis, Structure-Activity Relationships, and in Vivo Efficacy of the Novel Potent and Selective Anaplastic Lymphoma Kinase (ALK) Inhibitor 5-Chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulf onyl)phenyl)pyrimidine-2,4-dia, J Med Chem, vol.56, pp.5675-5690, 2013.

A. Shaw, CERITINIB (LDK378) FOR TREATMENT OF PATIENTS WITH ALK-REARRANGED (ALK+) NON-SMALL CELL LUNG CANCER (NSCLC) AND BRAIN METASTASES (BM) IN THE ASCEND-1 TRIAL, Neuro. Oncol, vol.16, pp.39-39, 2014.

S. Zhang, AP26113, a potent ALK inhibitor, overcomes mutations in EML4-ALK that confer resistance to PF-02341066 (PF1066): Cancer Res, vol.70, 2010.

R. M. Squillace, AP26113 possesses pan-inhibitory activity versus crizotinib-resistant ALK mutants and oncogenic ROS1 fusions, Cancer Res, vol.73, pp.5655-5655, 2013.

V. M. Rivera, AP26113 is a dual ALK/EGFR inhibitor: Characterization against EGFR T790M in cell and mouse models of NSCLC, Cancer Res, vol.72, pp.1794-1794, 2012.

D. R. Camidge, Safety and efficacy of brigatinib (AP26113) in advanced malignancies, including ALK+ non-small cell lung cancer (NSCLC), ASCO Meet. Abstr, vol.33, p.8062, 2015.

A. T. Shaw, Resensitization to Crizotinib by the Lorlatinib ALK Resistance Mutation L1198F, 2016.

S. K. George, D. Vishwamitra, R. Manshouri, P. Shi, and H. M. Amin, The ALK inhibitor ASP3026 eradicates NPM-ALK + T-cell anaplastic large-cell lymphoma in vitro and in a systemic xenograft lymphoma model, Oncotarget, vol.5, pp.5750-63, 2014.

K. Ait-tahar, M. C. Barnardo, and K. Pulford, CD4 T-helper responses to the anaplastic lymphoma kinase (ALK) protein in patients with ALK-positive anaplastic large-cell lymphoma, Cancer Res, vol.67, pp.1898-901, 2007.

K. Ait-tahar, B and CTL responses to the ALK protein in patients with ALK-positive ALCL, Int. J. cancer, vol.118, pp.688-95, 2006.

K. Pulford, Immune response to the ALK oncogenic tyrosine kinase in patients with anaplastic large-cell lymphoma, Blood, vol.96, pp.1605-1612, 2000.

K. Ait-tahar, Correlation of the autoantibody response to the ALK oncoantigen in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with tumor dissemination and relapse risk, Blood, vol.115, pp.3314-3323, 2010.

L. Mussolin, Use of minimal disseminated disease and immunity to NPM-ALK antigen to stratify ALK-positive ALCL patients with different prognosis, Leukemia, vol.27, pp.416-438, 2013.

L. Mussolin, Kinetics of humoral response to ALK and its relationship with minimal residual disease in pediatric ALCL, Leukemia, vol.23, pp.400-402, 2009.

L. Passoni, ALK as a novel lymphoma-associated tumor antigen: identification of 2 HLA-A2.1-restricted CD8+ T-cell epitopes, Blood, vol.99, pp.2100-2106, 2002.

R. Chiarle, The anaplastic lymphoma kinase is an effective oncoantigen for lymphoma vaccination, Nat. Med, vol.14, pp.676-680, 2008.

S. M. Ansell, Phase I/II study of an anti-CD30 monoclonal antibody (MDX-060) in Hodgkin's lymphoma and anaplastic large-cell lymphoma, J. Clin. Oncol, vol.25, pp.2764-2773, 2007.

A. Forero-torres, A Phase II study of SGN-30 (anti-CD30 mAb) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma, Br. J. Haematol, vol.146, pp.171-180, 2009.

J. Katz, J. E. Janik, and A. Younes, Brentuximab Vedotin (SGN-35), Clin. Cancer Res, vol.17, pp.6428-6464, 2011.
DOI : 10.1158/1078-0432.ccr-11-0488

URL : http://clincancerres.aacrjournals.org/content/17/20/6428.full.pdf

P. D. Senter and E. L. Sievers, The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma, Nat. Biotechnol, vol.30, pp.631-637, 2012.

J. A. Francisco, cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity, Blood, vol.102, pp.1458-65, 2003.

K. J. Hamblett, Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate, Clin. Cancer Res, vol.10, pp.7063-70, 2004.

A. Younes, Brentuximab Vedotin (SGN-35) for Relapsed CD30-Positive Lymphomas, 2010.

B. Pro, Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study, J. Clin. Oncol, vol.30, pp.2190-2196, 2012.

S. E. Jackson, Hsp90: structure and function, Top. Curr. Chem, vol.328, pp.155-240, 2013.

P. Bonvini, T. Gastaldi, B. Falini, and A. Rosolen, Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17-allylamino,17-demethoxygeldanamycin, Cancer Res, vol.62, pp.1559-66, 2002.

P. Bonvini, H. Dalla-rosa, N. Vignes, and A. Rosolen, Ubiquitination and proteasomal degradation of nucleophosmin-anaplastic lymphoma kinase induced by 17-allylaminodemethoxygeldanamycin: role of the co-chaperone carboxyl heat shock protein 70-interacting protein, Cancer Res, vol.64, pp.3256-64, 2004.

G. V. Georgakis, Y. Li, G. Z. Rassidakis, L. J. Medeiros, and A. Younes, The HSP90 inhibitor 17-AAG synergizes with doxorubicin and U0126 in anaplastic large cell lymphoma irrespective of ALK expression, Exp. Hematol, vol.34, pp.1670-1679, 2006.

J. Sang, Targeted inhibition of the molecular chaperone Hsp90 overcomes ALK inhibitor resistance in non-small cell lung cancer, Cancer Discov, vol.3, pp.430-473, 2013.

N. Bennani-baiti, S. Ansell, and A. L. Feldman, Adult systemic anaplastic large-cell lymphoma: recommendations for diagnosis and management, Expert Rev. Hematol, vol.9, pp.137-50, 2016.

P. Boya, F. Reggiori, and P. Codogno, Emerging regulation and functions of autophagy, Nat. Cell Biol, vol.15, pp.713-720, 2013.

R. L. Deter, P. Baudhuin, and C. De-duve, Participation of lysosomes in cellular autophagy induced in rat liver by glucagon, J. Cell Biol, vol.35, pp.11-17, 1967.

R. L. Deter and C. De-duve, Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes, J. Cell Biol, vol.33, pp.437-486, 1967.

N. Mizushima, Autophagy: process and function, Genes Dev, vol.21, pp.2861-2873, 2007.

M. Badadani and M. Badadani, Autophagy Mechanism, Regulation, Functions, and Disorders, ISRN Cell Biol, vol.2012, pp.1-11, 2012.

A. M. Choi, S. W. Ryter, and B. Levine, Autophagy in Human Health and Disease, N. Engl. J. Med, vol.368, pp.651-662, 2013.

P. Jiang and N. Mizushima, Autophagy and human diseases, Cell Res, vol.24, pp.69-79, 2014.

W. Li, J. Li, and J. Bao, Microautophagy: lesser-known self-eating, Cell. Mol. Life Sci, vol.69, pp.1125-1161, 2012.

G. E. Mortimore, N. J. Hutson, and C. A. Surmacz, Quantitative correlation between proteolysis and macro-and microautophagy in mouse hepatocytes during starvation and refeeding, Proc. Natl. Acad. Sci. U. S. A, vol.80, pp.2179-83, 1983.

D. Mijaljica, M. Prescott, and R. J. Devenish, Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum, Autophagy, vol.7, pp.673-682, 2011.

S. Kaushik and A. M. Cuervo, Chaperone-mediated autophagy: a unique way to enter the lysosome world, Trends Cell Biol, vol.22, pp.407-424, 2012.
DOI : 10.1016/j.tcb.2012.05.006

URL : http://europepmc.org/articles/pmc3408550?pdf=render

E. Bejarano and A. M. Cuervo, Chaperone-mediated autophagy, Proc. Am. Thorac. Soc, vol.7, pp.29-39, 2010.

J. F. Dice, Peptide sequences that target cytosolic proteins for lysosomal proteolysis, Trends Biochem. Sci, vol.15, pp.305-314, 1990.

A. M. Cuervo and J. F. Dice, A Receptor for the Selective Uptake and Degradation of Proteins by Lysosomes. Science (80-. ), vol.273, pp.501-503, 1996.

A. M. Cuervo, E. Knecht, S. R. Terlecky, and J. F. Dice, Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation, Am. J. Physiol, vol.269, pp.1200-1208, 1995.

R. Kiffin, C. Christian, E. Knecht, and A. M. Cuervo, Activation of chaperone-mediated autophagy during oxidative stress, Mol. Biol. Cell, vol.15, pp.4829-4869, 2004.
DOI : 10.1091/mbc.e04-06-0477

URL : http://europepmc.org/articles/pmc524731?pdf=render

F. Wang and S. Muller, Manipulating autophagic processes in autoimmune diseases: a special focus on modulating chaperone-mediated autophagy, an emerging therapeutic target, Front. Immunol, vol.6, 2015.

J. Zhou, Chaperone-mediated autophagy regulates proliferation by targeting RND3 in gastric cancer, Autophagy, vol.12, pp.515-543, 2016.
DOI : 10.1080/15548627.2015.1136770

URL : http://europepmc.org/articles/pmc4836009?pdf=render

M. Kon, Chaperone-mediated autophagy is required for tumor growth, Sci. Transl. Med, vol.3, pp.109-117, 2011.
DOI : 10.1126/scitranslmed.3003182

URL : http://europepmc.org/articles/pmc4000261?pdf=render

L. Lv, Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth, Mol. Cell, vol.42, pp.719-749, 2011.

T. Saha, LAMP2A overexpression in breast tumors promotes cancer cell survival via chaperone-mediated autophagy, Autophagy, vol.8, pp.1643-56, 2012.

L. A. Knodler and J. Celli, Eating the strangers within: host control of intracellular bacteria via xenophagy, Cell. Microbiol, vol.13, pp.1319-1346, 2011.

N. Mizushima, T. Yoshimori, and B. Levine, Methods in mammalian autophagy research, Cell, vol.140, pp.313-326, 2010.

Y. Chen and L. Yu, Autophagic lysosome reformation, Exp. Cell Res, vol.319, pp.142-146, 2013.
DOI : 10.1016/j.yexcr.2012.09.004

L. Yu, Termination of autophagy and reformation of lysosomes regulated by mTOR, Nature, vol.465, pp.942-946, 2010.

G. Bjørkøy, p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death, J. Cell Biol, vol.171, pp.603-617, 2005.

A. Trocoli, Etude de la régulation de l ' autophagie au cours de la différenciation des cellules de leucémie aiguë promyélocytaire : rôles dans la survie et la différenciation cellulaire, 2013.

K. Okamoto, Organellophagy: eliminating cellular building blocks via selective autophagy, J. Cell Biol, vol.205, pp.435-480, 2014.

S. Svenning and T. Johansen, Selective autophagy. Essays Biochem, vol.55, pp.79-92, 2013.

R. Roberts, Omegasomes: PI3P platforms that manufacture autophagosomes, Essays Biochem, vol.55, pp.17-27, 2013.

G. Bjørkøy, T. Lamark, and T. Johansen, p62/SQSTM1: a missing link between protein aggregates and the autophagy machinery, Autophagy, vol.2, pp.138-147

M. Lippai and P. L?w, The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy, Biomed Res. Int, p.832704, 2014.

D. J. Goussetis, Autophagic degradation of the BCR-ABL oncoprotein and generation of antileukemic responses by arsenic trioxide, Blood, vol.120, pp.3555-62, 2012.

I. Orhon, N. Dupont, O. Pampliega, A. M. Cuervo, and P. Codogno, Autophagy and regulation of cilia function and assembly, Cell Death Differ, vol.22, pp.389-397, 2015.

J. Hasegawa, I. Maejima, R. Iwamoto, and T. Yoshimori, Selective autophagy: Lysophagy. Methods, vol.75, pp.128-132, 2015.

M. Tsukada and Y. Ohsumi, Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae, FEBS Lett, vol.333, pp.169-74, 1993.

C. A. Lamb, T. Yoshimori, and S. A. Tooze, The autophagosome: origins unknown, biogenesis complex, Nat. Rev. Mol. Cell Biol, vol.14, pp.759-774, 2013.

T. Proikas-cezanne, WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome, J. Cell Sci, vol.128, pp.207-224, 2015.

S. R. Carlsson and A. Simonsen, Membrane dynamics in autophagosome biogenesis, J. Cell Sci, vol.128, pp.193-205, 2015.

S. Böckler and B. Westermann, ER-mitochondria contacts as sites of mitophagosome formation, Autophagy, vol.10, pp.1346-1353, 2014.

M. Graef, J. R. Friedman, C. Graham, M. Babu, and J. Nunnari, ER exit sites are physical and functional core autophagosome biogenesis components, Mol. Biol. Cell, vol.24, pp.2918-2949, 2013.

C. Appenzeller-herzog, The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function, J. Cell Sci, vol.119, pp.2173-2183, 2006.

A. Van-der-vaart, J. Griffith, and F. Reggiori, Exit from the Golgi Is Required for the Expansion of the Autophagosomal Phagophore in Yeast Saccharomyces cerevisiae, Mol. Biol. Cell, vol.21, pp.2270-2284, 2010.

B. Ravikumar, K. Moreau, L. Jahreiss, C. Puri, and D. C. Rubinsztein, Plasma membrane contributes to the formation of pre-autophagosomal structures, Nat. Cell Biol, vol.12, pp.747-57, 2010.

C. Puri, M. Renna, C. F. Bento, K. Moreau, and D. C. Rubinsztein, Diverse autophagosome membrane sources coalesce in recycling endosomes, Cell, vol.154, pp.1285-99, 2013.

J. Biazik, P. Ylä-anttila, H. Vihinen, E. Jokitalo, and E. Eskelinen, Ultrastructural relationship of the phagophore with surrounding organelles, Autophagy, vol.11, pp.439-51, 2015.

E. Karanasios, Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles, Nat. Commun, vol.7, p.12420, 2016.

E. Lee and C. Tournier, The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy, Autophagy, vol.7, pp.689-95, 2011.

P. Wong, C. Puente, I. G. Ganley, and X. Jiang, The ULK1 complex: sensing nutrient signals for autophagy activation, Autophagy, vol.9, pp.124-161, 2013.

I. G. Ganley, ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy, J. Biol. Chem, vol.284, pp.12297-305, 2009.

J. Kim, M. Kundu, B. Viollet, and K. Guan, AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1, Nat. Cell Biol, vol.13, pp.132-173, 2011.

S. F. Funderburk, Q. J. Wang, and Z. Yue, The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond, Trends Cell Biol, vol.20, pp.355-62, 2010.

N. N. Noda and Y. Fujioka, Atg1 family kinases in autophagy initiation, Cell. Mol. Life Sci, vol.72, pp.3083-96, 2015.

R. C. Russell, ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase, Nat. Cell Biol, vol.15, pp.741-750, 2013.

C. Burman and N. T. Ktistakis, Regulation of autophagy by phosphatidylinositol 3-phosphate, FEBS Lett, vol.584, pp.1302-1314, 2010.

Q. Sun, Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.19211-19217, 2008.

K. Matsunaga, Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages, Nat. Cell Biol, vol.11, pp.385-396, 2009.

E. Itakura, C. Kishi, K. Inoue, and N. Mizushima, Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG, Mol. Biol. Cell, vol.19, pp.5360-72, 2008.

Y. Takahashi, Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis, Nat. Cell Biol, vol.9, pp.1142-51, 2007.

D. H. Morris, C. K. Yip, Y. Shi, B. T. Chait, and Q. J. Wang, BECLIN 1-VPS34 COMPLEX ARCHITECTURE: UNDERSTANDING THE NUTS AND BOLTS OF THERAPEUTIC TARGETS, Front. Biol. (Beijing), vol.10, pp.398-426, 2015.

S. Pattingre, Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy, Cell, vol.122, pp.927-966, 2005.

N. Mizushima, T. Yoshimori, and Y. Ohsumi, Role of the Apg12 conjugation system in mammalian autophagy, Int. J. Biochem. Cell Biol, vol.35, pp.553-61, 2003.

J. Geng and D. J. Klionsky, The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy, EMBO Rep, vol.9, pp.859-64, 2008.

I. Tanida, T. Ueno, and E. Kominami, Human light chain 3/MAP1LC3B is cleaved at its carboxylterminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes, J. Biol. Chem, vol.279, pp.47704-47714, 2004.

I. Tanida, T. Ueno, and E. Kominami, LC3 conjugation system in mammalian autophagy, Int. J. Biochem. Cell Biol, vol.36, pp.2503-2521, 2004.

Y. Kabeya, LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing, EMBO J, vol.19, pp.5720-5728, 2000.

D. J. Klionsky, Guidelines for the use and interpretation of assays for monitoring autophagy, Autophagy, vol.12, pp.1-222, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00735751

L. Jahreiss, F. M. Menzies, and D. C. Rubinsztein, The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes, Traffic, vol.9, pp.574-87, 2008.

J. M. Hyttinen, M. Niittykoski, A. Salminen, and K. Kaarniranta, Maturation of autophagosomes and endosomes: A key role for Rab7, Biochim. Biophys. Acta -Mol. Cell Res, vol.1833, pp.503-510, 2013.

D. Metcalf and A. M. Isaacs, The role of ESCRT proteins in fusion events involving lysosomes, endosomes and autophagosomes, Biochem. Soc. Trans, vol.38, pp.1469-73, 2010.

K. Moreau, M. Renna, and D. C. Rubinsztein, Connections between SNAREs and autophagy. Trends Biochem. Sci, vol.38, pp.57-63, 2013.

E. Eskelinen, Role of LAMP-2 in lysosome biogenesis and autophagy, Mol. Biol. Cell, vol.13, pp.3355-68, 2002.

Z. Yu, Dual roles of Atg8-PE deconjugation by Atg4 in autophagy, Autophagy, vol.8, pp.883-92, 2012.

Y. Chen and L. Yu, Autophagic lysosome reformation, Exp. Cell Res, vol.319, pp.142-148, 2013.

P. Codogno, M. Mehrpour, and T. Proikas-cezanne, Canonical and non-canonical autophagy: variations on a common theme of self-eating?, Nat. Rev. Mol. Cell Biol, vol.13, pp.7-12, 2012.

F. Scarlatti, R. Maffei, I. Beau, P. Codogno, and R. Ghidoni, Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells, Cell Death Differ, vol.15, pp.1318-1347, 2008.

C. De-duve and R. Wattiaux, Functions of lysosomes, Annu. Rev. Physiol, vol.28, pp.435-92, 1966.

T. Torisu, Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor, Nat. Med, vol.19, pp.1281-1288, 2013.

P. Ylä-anttila, H. Vihinen, E. Jokitalo, and E. Eskelinen, Monitoring autophagy by electron microscopy in Mammalian cells, Methods Enzymol, vol.452, pp.143-64, 2009.

C. Bauvy, A. J. Meijer, and P. Codogno, Chapter 4 Assaying of Autophagic Protein Degradation, Methods Enzymol, vol.451, 2009.

J. M. Gump and A. Thorburn, Sorting cells for basal and induced autophagic flux by quantitative ratiometric flow cytometry, Autophagy, vol.10, pp.1327-1361, 2014.

S. Pankiv, p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy, J. Biol. Chem, vol.282, pp.24131-24145, 2007.

H. Ni, Dissecting the dynamic turnover of GFP-LC3 in the autolysosome, Autophagy, vol.7, pp.188-204, 2011.

A. Biederbick, H. F. Kern, and H. P. Elsässer, Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles, Eur. J. Cell Biol, vol.66, pp.3-14, 1995.

S. Paglin, A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles, Cancer Res, vol.61, pp.439-483, 2001.

R. C. Scott, O. Schuldiner, and T. P. Neufeld, Role and regulation of starvation-induced autophagy in the Drosophila fat body, Dev. Cell, vol.7, pp.167-78, 2004.

J. Füllgrabe, D. J. Klionsky, and B. Joseph, The return of the nucleus: transcriptional and epigenetic control of autophagy, Nat. Rev. Mol. Cell Biol, vol.15, pp.65-74, 2014.

H. Li, S. Qiu, X. Li, M. Li, and Y. Peng, Autophagy biomarkers in CSF correlates with infarct size, clinical severity and neurological outcome in AIS patients, J. Transl. Med, vol.13, p.359, 2015.

K. Rothe, The core autophagy protein ATG4B is a potential biomarker and therapeutic target in CML stem/progenitor cells, Blood, vol.123, pp.3622-3656, 2014.

S. Ladoire, Immunohistochemical detection of cytoplasmic LC3 puncta in human cancer specimens, Autophagy, vol.8, pp.1175-84, 2012.

A. M. Schläfli, S. Berezowska, O. Adams, R. Langer, and M. P. Tschan, Reliable LC3 and p62 autophagy marker detection in formalin fixed paraffin embedded human tissue by immunohistochemistry, Eur. J. Histochem, vol.59, p.2481, 2015.

A. A. Kraya, Identification of secreted proteins that reflect autophagy dynamics within tumor cells, Autophagy, vol.11, pp.60-74, 2015.
DOI : 10.4161/15548627.2014.984273

URL : https://www.tandfonline.com/doi/pdf/10.4161/15548627.2014.984273?needAccess=true

W. Lin and H. Kuang, Oxidative stress induces autophagy in response to multiple noxious stimuli in retinal ganglion cells, Autophagy, vol.10, pp.1692-701, 2014.

G. Kroemer, G. Mariño, and B. Levine, Autophagy and the integrated stress response, Mol. Cell, vol.40, pp.280-93, 2010.
DOI : 10.1016/j.molcel.2010.09.023

URL : https://doi.org/10.1016/j.molcel.2010.09.023

Z. Huang, L. Zhou, Z. Chen, E. C. Nice, and C. Huang, Stress management by autophagy: Implications for chemoresistance, Int. J. Cancer, vol.139, pp.23-32, 2016.
DOI : 10.1002/ijc.29990

L. B. Frankel and A. H. Lund, MicroRNA regulation of autophagy, Carcinogenesis, vol.33, pp.2018-2043, 2012.
DOI : 10.1093/carcin/bgs266

URL : https://academic.oup.com/carcin/article-pdf/33/11/2018/7461325/bgs266.pdf

C. Kim, The RNA-binding protein HuD regulates autophagosome formation in pancreatic ? cells by promoting autophagy-related gene 5 expression, J. Biol. Chem, vol.289, pp.112-133, 2014.

Z. Su, Overexpression of RBM5 induces autophagy in human lung adenocarcinoma cells, World J. Surg. Oncol, vol.14, p.57, 2016.

M. Laplante and D. M. Sabatini, mTOR signaling in growth control and disease, Cell, vol.149, pp.274-93, 2012.
DOI : 10.1016/j.cell.2012.03.017

URL : https://doi.org/10.1016/j.cell.2012.03.017

C. H. Jung, S. Ro, J. Cao, N. M. Otto, and D. Kim, mTOR regulation of autophagy. FEBS Lett, vol.584, pp.1287-95, 2010.

Y. C. Kim and K. Guan, mTOR: a pharmacologic target for autophagy regulation, J. Clin. Invest, vol.125, pp.25-32, 2015.
DOI : 10.1172/jci73939

URL : http://www.jci.org/articles/view/73939/files/pdf

D. M. Sabatini, mTOR and cancer: insights into a complex relationship, Nat. Rev. Cancer, vol.6, pp.729-734, 2006.
DOI : 10.1038/nrc1974

M. Laplante and D. M. Sabatini, mTOR signaling at a glance, J. Cell Sci, vol.122, pp.3589-94, 2009.
DOI : 10.1242/jcs.051011

URL : http://jcs.biologists.org/content/122/20/3589.full.pdf

S. Sengupta, T. R. Peterson, and D. M. Sabatini, Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress, Mol. Cell, vol.40, pp.310-332, 2010.

A. J. Giaccia, M. C. Simon, and R. Johnson, The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease, Genes Dev, vol.18, pp.2183-2194, 2004.

P. B. Dennis, Mammalian TOR: a homeostatic ATP sensor, Science, vol.294, pp.1102-1107, 2001.
DOI : 10.1126/science.1063518

E. Kim, Mechanisms of amino acid sensing in mTOR signaling pathway, Nutr. Res. Pract, vol.3, pp.64-71, 2009.

K. A. Orlova and P. B. Crino, The tuberous sclerosis complex, Ann. N. Y. Acad. Sci, vol.1184, pp.87-105, 2010.
DOI : 10.1111/j.1749-6632.2009.05117.x

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892799

X. Long, Y. Lin, S. Ortiz-vega, K. Yonezawa, and J. Avruch, Rheb binds and regulates the mTOR kinase, Curr. Biol, vol.15, pp.702-715, 2005.
DOI : 10.1016/j.cub.2005.02.053

URL : https://doi.org/10.1016/j.cub.2005.02.053

Y. Sancak, PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase, Mol. Cell, vol.25, pp.903-918, 2007.

K. Inoki, T. Zhu, and K. Guan, TSC2 mediates cellular energy response to control cell growth and survival, Cell, vol.115, pp.577-90, 2003.

A. R. Tee, B. D. Manning, P. P. Roux, L. C. Cantley, and J. Blenis, Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb, Curr. Biol, vol.13, pp.1259-68, 2003.

K. Inoki, Y. Li, T. Zhu, J. Wu, and K. Guan, TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling, Nat. Cell Biol, vol.4, pp.648-57, 2002.

X. M. Ma and J. Blenis, Molecular mechanisms of mTOR-mediated translational control, Nat. Rev. Mol. Cell Biol, vol.10, pp.307-325, 2009.

L. Wang, T. E. Harris, R. A. Roth, and J. C. Lawrence, PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding, J. Biol. Chem, vol.282, pp.20036-20080, 2007.

D. G. Hardie, AMPK--sensing energy while talking to other signaling pathways, Cell Metab, vol.20, pp.939-52, 2014.

D. M. Gwinn, AMPK phosphorylation of raptor mediates a metabolic checkpoint, Mol. Cell, vol.30, pp.214-240, 2008.

J. Brugarolas, Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex, Genes Dev, vol.18, pp.2893-904, 2004.

T. Nobukuni, Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.14238-14281, 2005.

E. M. Smith, S. G. Finn, A. R. Tee, G. J. Browne, and C. G. Proud, The Tuberous Sclerosis Protein TSC2 Is Not Required for the Regulation of the Mammalian Target of Rapamycin by Amino Acids and Certain Cellular Stresses, J. Biol. Chem, vol.280, pp.18717-18727, 2005.

Y. Sancak, Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids, Cell, vol.141, pp.290-303, 2010.

Y. Sancak, The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1, Science, vol.320, pp.1496-501, 2008.

N. Hosokawa, Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy, Mol. Biol. Cell, vol.20, pp.1981-91, 2009.

J. Kim, M. Kundu, B. Viollet, and K. Guan, AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1, Nat. Cell Biol, vol.13, pp.132-173, 2011.

C. H. Jung, ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery, Mol. Biol. Cell, vol.20, 1992.

H. Yuan, R. C. Russell, and K. Guan, Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy, Autophagy, vol.9, pp.1983-95, 2013.

J. A. Martina, Y. Chen, M. Gucek, and R. Puertollano, MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB, Autophagy, vol.8, pp.903-917, 2012.

E. Zhao and M. J. , TFEB: A Central Regulator of both the Autophagosome and Lysosome, Hepatology, vol.55, p.1632, 2012.

A. Roczniak-ferguson, The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis, Sci. Signal, vol.5, p.42, 2012.

R. Puertollano, mTOR and lysosome regulation. F1000Prime Rep, vol.6, p.52, 2014.

J. D. Richter and N. Sonenberg, Regulation of cap-dependent translation by eIF4E inhibitory proteins, Nature, vol.433, pp.477-480, 2005.

D. W. Lamming and D. M. Sabatini, A Central role for mTOR in lipid homeostasis, Cell Metab, vol.18, pp.465-474, 2013.

Q. Sun, Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth, Proc. Natl. Acad. Sci, vol.108, pp.4129-4134, 2011.

M. Morita, mTORC1 Controls Mitochondrial Activity and Biogenesis through 4E-BPDependent Translational Regulation, Cell Metab, vol.18, pp.698-711, 2013.

H. Zhu, Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells, Autophagy, vol.5, pp.816-839, 2009.

Z. Zou, MicroRNA-30a sensitizes tumor cells to cis-platinum via suppressing beclin 1-mediated autophagy, J. Biol. Chem, vol.287, pp.4148-56, 2012.

Y. Yu, Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells, Leukemia, vol.26, pp.1752-60, 2012.

B. Zheng, MiRNA-30a-mediated autophagy inhibition sensitizes renal cell carcinoma cells to sorafenib, Biochem. Biophys. Res. Commun, vol.459, pp.234-243, 2015.

J. Huang, C. Huang, Y. Luo, S. Liu, and X. Chen, Role of MiR-30a in cardiomyocyte autophagy induced by Angiotensin II, J. Renin. Angiotensin. Aldosterone. Syst, vol.16, pp.1-5, 2015.

P. Wang, Down-regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing beclin 1-mediated autophagy, Neurochem. Res, vol.39, pp.1279-91, 2014.

Z. Chen, Inhibition of Autophagy by MiR-30A Induced by Mycobacteria tuberculosis as a Possible Mechanism of Immune Escape in Human Macrophages, Jpn. J. Infect. Dis, vol.68, pp.420-424, 2015.

L. B. Frankel and A. H. Lund, MicroRNA regulation of autophagy, Carcinogenesis, vol.33, pp.2018-2043, 2012.

Y. Chen, Oncogenic and tumor suppressive roles of microRNAs in apoptosis and autophagy, Apoptosis, vol.19, pp.1177-89, 2014.

H. Zhai, A. Fesler, and J. Ju, MicroRNA: a third dimension in autophagy, Cell Cycle, vol.12, pp.246-50, 2013.

Z. Su, Z. Yang, Y. Xu, Y. Chen, and Q. Yu, MicroRNAs in apoptosis, autophagy and necroptosis, Oncotarget, 2015.

L. B. Frankel, microRNA-101 is a potent inhibitor of autophagy, EMBO J, vol.30, pp.4628-4669, 2011.

Y. Xu, miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells, Oncol. Rep, vol.29, pp.2019-2043, 2013.

S. Lin, Effect of microRNA-101 on proliferation and apoptosis of human osteosarcoma cells by targeting mTOR, J. Huazhong Univ. Sci. Technolog. Med. Sci, vol.34, pp.889-95, 2014.

I. Riquelme, miR-101-2, miR-125b-2 and miR-451a act as potential tumor suppressors in gastric cancer through regulation of the PI3K/AKT/mTOR pathway, Cell. Oncol. (Dordr), vol.39, pp.23-33, 2016.

K. Kojima, Y. Fujita, Y. Nozawa, T. Deguchi, and M. Ito, MiR-34a attenuates paclitaxelresistance of hormone-refractory prostate cancer PC3 cells through direct and indirect mechanisms, Prostate, vol.70, pp.1501-1513, 2010.

J. Huang, miR-34a modulates angiotensin II-induced myocardial hypertrophy by direct inhibition of ATG9A expression and autophagic activity, PLoS One, vol.9, p.94382, 2014.

G. Misso, Mir-34: a new weapon against cancer?, Mol. Ther. Nucleic Acids, vol.3, p.194, 2014.

H. Tazawa, Genetically engineered oncolytic adenovirus induces autophagic cell death through an E2F1-microRNA-7-epidermal growth factor receptor axis, Int. J. cancer, vol.131, pp.2939-50, 2012.

B. Kefas, microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma, Cancer Res, vol.68, pp.3566-72, 2008.

Y. Wei, EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance, Cell, vol.154, pp.1269-84, 2013.

M. Scaltriti and J. Baselga, The epidermal growth factor receptor pathway: a model for targeted therapy, Clin. Cancer Res, vol.12, pp.5268-72, 2006.

A. Kozomara and S. Griffiths-jones, miRBase: annotating high confidence microRNAs using deep sequencing data, Nucleic Acids Res, vol.42, pp.68-73, 2014.

D. Türei, Autophagy Regulatory Network -a systems-level bioinformatics resource for studying the mechanism and regulation of autophagy, Autophagy, vol.11, pp.155-65, 2015.

N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, Autophagy fights disease through cellular self-digestion, Nature, vol.451, pp.1069-75, 2008.

E. White and R. S. Dipaola, The double-edged sword of autophagy modulation in cancer, Clin. Cancer Res, vol.15, pp.5308-5324, 2009.

X. H. Liang, Induction of autophagy and inhibition of tumorigenesis by beclin 1, Nature, vol.402, pp.672-678, 1999.

V. M. Aita, Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21, Genomics, vol.59, pp.59-65, 1999.

X. Qu, Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene, J. Clin. Invest, vol.112, pp.1809-1829, 2003.

A. Takamura, Autophagy-deficient mice develop multiple liver tumors, Genes Dev, vol.25, pp.795-800, 2011.

G. Mariño, Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3, J. Biol. Chem, vol.282, pp.18573-83, 2007.

M. Mortensen, The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance, J. Exp. Med, vol.208, pp.455-67, 2011.

S. M. Park, U2AF35(S34F) Promotes Transformation by Directing Aberrant ATG7 PremRNA 3? End Formation, Mol. Cell, vol.62, pp.479-490, 2016.

L. Galluzzi, Autophagy in malignant transformation and cancer progression, EMBO J, vol.34, pp.856-880, 2015.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, vol.144, pp.646-674, 2011.

K. W. Yip and J. C. Reed, Bcl-2 family proteins and cancer, Oncogene, vol.27, pp.6398-6406, 2008.
DOI : 10.1038/onc.2008.307

Z. Shen, Genomic instability and cancer: an introduction, J. Mol. Cell Biol, vol.3, pp.1-3, 2011.
DOI : 10.1093/jmcb/mjq057

URL : https://academic.oup.com/jmcb/article-pdf/3/1/1/2700914/mjq057.pdf

R. Mathew, Autophagy suppresses tumor progression by limiting chromosomal instability, Genes Dev, vol.21, pp.1367-1381, 2007.
DOI : 10.1101/gad.1545107

URL : http://genesdev.cshlp.org/content/21/11/1367.full.pdf

A. Duran, The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis, Cancer Cell, vol.13, pp.343-54, 2008.

M. P. Murphy, How mitochondria produce reactive oxygen species, Biochem. J, vol.417, pp.1-13, 2009.
DOI : 10.1042/bj20081386

URL : http://www.biochemj.org/content/417/1/1.full.pdf

S. I. Grivennikov, F. R. Greten, and M. Karin, Immunity, inflammation, and cancer. Cell, vol.140, pp.883-99, 2010.

V. Deretic, T. Saitoh, and S. Akira, Autophagy in infection, inflammation and immunity, Nat. Rev. Immunol, vol.13, pp.722-737, 2013.
DOI : 10.1038/nri3532

URL : http://europepmc.org/articles/pmc5340150?pdf=render

K. Degenhardt, Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis, Cancer Cell, vol.10, pp.51-64, 2006.
DOI : 10.1016/j.ccr.2006.06.001

URL : https://doi.org/10.1016/j.ccr.2006.06.001

H. Kono and K. L. Rock, How dying cells alert the immune system to danger, Nat. Rev. Immunol, vol.8, pp.279-89, 2008.
DOI : 10.1038/nri2215

URL : http://europepmc.org/articles/pmc2763408?pdf=render

L. Zitvogel, O. Kepp, L. Galluzzi, and G. Kroemer, Inflammasomes in carcinogenesis and anticancer immune responses, Nat. Immunol, vol.13, pp.343-51, 2012.
DOI : 10.1038/ni.2224

K. Nakahira, Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome, Nat. Immunol, vol.12, pp.222-252, 2011.

A. De-luca, IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.3526-3557, 2014.

B. Levine, N. Mizushima, and H. W. Virgin, Autophagy in immunity and inflammation, Nature, vol.469, pp.323-358, 2011.

L. Zhang, Xenophagy in Helicobacter pylori-and Epstein-Barr virus-induced gastric cancer, J. Pathol, vol.233, pp.103-115, 2014.

M. G. Vander-heiden, L. C. Cantley, and C. B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science, vol.324, pp.1029-1062, 2009.

D. Hanahan and R. A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, pp.646-674, 2011.

L. Galluzzi, O. Kepp, M. G. Heiden, and G. Vander-&-kroemer, Metabolic targets for cancer therapy, Nat. Rev. Drug Discov, vol.12, pp.829-846, 2013.

D. R. Green, L. Galluzzi, and G. Kroemer, Cell biology. Metabolic control of cell death, Science, vol.345, p.1250256, 2014.

Y. Tsujimoto and S. Shimizu, Another way to die: autophagic programmed cell death, Cell Death Differ, vol.12, pp.1528-1534, 2005.
DOI : 10.1038/sj.cdd.4401777

URL : https://www.nature.com/articles/4401777.pdf

H. Shen and P. Codogno, Autophagic cell death: Loch Ness monster or endangered species, Autophagy, vol.7, pp.457-65, 2011.
DOI : 10.4161/auto.7.5.14226

G. Kroemer and B. Levine, Autophagic cell death: the story of a misnomer, Nat. Rev. Mol. Cell Biol, vol.9, pp.1004-1014, 2008.

S. Fulda and D. Kögel, Cell death by autophagy: emerging molecular mechanisms and implications for cancer therapy, Oncogene, vol.34, pp.5105-5113, 2015.
DOI : 10.1038/onc.2014.458

S. Shen, O. Kepp, and G. Kroemer, The end of autophagic cell death?, Autophagy, vol.8, pp.1-3, 2012.

A. Belaid, Autophagy and SQSTM1 on the RHOA(d) again, 2013.
DOI : 10.4161/auto.27198

URL : http://europepmc.org/articles/pmc5396087?pdf=render

Z. Dou, Autophagy mediates degradation of nuclear lamina, Nature, vol.527, pp.105-109, 2015.
DOI : 10.1038/nature15548

URL : http://europepmc.org/articles/pmc4824414?pdf=render

S. Courtois-cox, S. L. Jones, and K. Cichowski, Many roads lead to oncogene-induced senescence, Oncogene, vol.27, pp.2801-2809, 2008.
DOI : 10.1038/sj.onc.1210950

URL : https://www.nature.com/articles/1210950.pdf

R. Mathew and E. White, Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night, Curr. Opin. Genet. Dev, vol.21, pp.113-119, 2011.
DOI : 10.1016/j.gde.2010.12.008

URL : http://europepmc.org/articles/pmc3039840?pdf=render

E. White and S. W. Lowe, Eating to exit: autophagy-enabled senescence revealed
DOI : 10.1101/gad.1795309

URL : http://genesdev.cshlp.org/content/23/7/784.full.pdf

L. Galluzzi, . Bravo-san, J. M. Pedro, and G. Kroemer, Autophagy Mediates Tumor Suppression via Cellular Senescence, Trends Cell Biol, vol.26, pp.1-3, 2016.
DOI : 10.1016/j.tcb.2015.11.001

D. A. Gewirtz, Autophagy and senescence in cancer therapy, J. Cell. Physiol, vol.229, pp.6-9, 2014.
DOI : 10.1002/jcp.24420

L. García-prat, Autophagy maintains stemness by preventing senescence, Nature, vol.529, pp.37-42, 2016.

D. Inoue, Accumulation of p62/SQSTM1 is associated with poor prognosis in patients with lung adenocarcinoma, Cancer Sci, vol.103, pp.760-766, 2012.

H. G. Thompson, J. W. Harris, B. J. Wold, F. Lin, and J. P. Brody, p62 overexpression in breast tumors and regulation by prostate-derived Ets factor in breast cancer cells, Oncogene, vol.22, pp.2322-2355, 2003.
DOI : 10.1038/sj.onc.1206325

URL : https://www.nature.com/articles/1206325.pdf

P. Rolland, The ubiquitin-binding protein p62 is expressed in breast cancers showing features of aggressive disease, Endocr. Relat. Cancer, vol.14, pp.73-80, 2007.

A. Puissant, N. Fenouille, and P. Auberger, When autophagy meets cancer through p62/SQSTM1, Am. J. Cancer Res, vol.2, pp.397-413, 2012.

P. Isakson, M. Bjørås, S. O. Bøe, and A. Simonsen, Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein, Blood, vol.116, pp.2324-2355, 2010.

I. B. Weinstein, A. Joe, and D. Felsher, Oncogene Addiction. Cancer Res, vol.68, pp.3077-3080, 2008.

O. C. Rodriguez, Dietary downregulation of mutant p53 levels via glucose restriction: mechanisms and implications for tumor therapy, Cell Cycle, vol.11, pp.4436-4482, 2012.

S. Choudhury, V. K. Kolukula, A. Preet, C. Albanese, and M. L. Avantaggiati, Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy, Cell Cycle, vol.12, pp.1022-1031, 2013.

K. Schlie, When Cells Suffocate: Autophagy in Cancer and Immune Cells under Low Oxygen, Int. J. Cell Biol, p.470597, 2011.
DOI : 10.1155/2011/470597

URL : http://downloads.hindawi.com/journals/ijcb/2011/470597.pdf

Y. Ma, Autophagy and Cellular Immune Responses, Immunity, vol.39, pp.211-227, 2013.

M. Chemali, K. Radtke, M. Desjardins, and L. English, Alternative pathways for MHC class I presentation: a new function for autophagy, Cell. Mol. Life Sci, vol.68, pp.1533-1574, 2011.

D. Schmid, M. Pypaert, and C. Münz, Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes, Immunity, vol.26, pp.79-92, 2007.

W. Jia and Y. He, Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy, J. Immunol, vol.186, pp.5313-5335, 2011.

J. R. Kovacs, Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery, Cell Death Differ, vol.19, pp.144-52, 2012.

S. Rao, H. Yang, J. M. Penninger, and G. Kroemer, Autophagy in non-small cell lung carcinogenesis: A positive regulator of antitumor immunosurveillance, Autophagy, vol.10, pp.529-560, 2014.

M. Kim, Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation, J. Biol. Chem, vol.286, pp.12924-12956, 2011.

A. Parkhitko, Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.12455-60, 2011.

D. A. Nelson, Hypoxia and defective apoptosis drive genomic instability and tumorigenesis, Genes Dev, vol.18, pp.2095-107, 2004.

S. Yang, Pancreatic cancers require autophagy for tumor growth, Genes Dev, vol.25, pp.717-746, 2011.

C. D. Gonzalez, Autophagy, Warburg, and Warburg reverse effects in human cancer, Biomed Res. Int, p.926729, 2014.

J. Y. Guo, Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis, Genes Dev, vol.25, pp.460-70, 2011.

S. Pavlides, Warburg Meets Autophagy: Cancer-Associated Fibroblasts Accelerate Tumor Growth and Metastasis via Oxidative Stress, Mitophagy, and Aerobic Glycolysis, 2012.

L. Poillet-perez, G. Despouy, R. Delage-mourroux, and M. Boyer-guittaut, Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy, Redox Biol, vol.4, pp.184-192, 2015.

R. K. Amaravadi, Autophagy-induced tumor dormancy in ovarian cancer, J. Clin. Invest, vol.118, pp.3837-3877, 2008.

C. M. Kenific, A. Thorburn, and J. Debnath, Autophagy and metastasis: another double-edged sword, Curr. Opin. Cell Biol, vol.22, pp.241-246, 2010.

A. Viale, Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function, Nature, vol.514, pp.628-660, 2014.

W. Yue, Inhibition of the autophagic flux by salinomycin in breast cancer stemlike/progenitor cells interferes with their maintenance, Autophagy, vol.9, pp.714-743, 2013.

R. Ojha, V. Jha, S. K. Singh, and S. Bhattacharyya, Autophagy inhibition suppresses the tumorigenic potential of cancer stem cell enriched side population in bladder cancer, Biochim. Biophys. Acta -Mol. Basis Dis, vol.1842, pp.2073-2086, 2014.

Y. Song, Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment, Cancer Lett, vol.339, pp.70-81, 2013.

M. S. Sosa, P. Bragado, and J. A. Aguirre-ghiso, Mechanisms of disseminated cancer cell dormancy: an awakening field, Nat. Rev. Cancer, vol.14, pp.611-633, 2014.

D. Gewirtz, Autophagy, senescence and tumor dormancy in cancer therapy, Autophagy, vol.5, pp.1232-1236, 2009.

A. F. Chambers, A. C. Groom, and I. C. Macdonald, Dissemination and growth of cancer cells in metastatic sites, Nat. Rev. Cancer, vol.2, pp.563-72, 2002.

J. Thorburn, Autophagy regulates selective HMGB1 release in tumor cells that are destined to die, Cell Death Differ, vol.16, pp.175-83, 2009.

J. Han, Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells, J. Biol. Chem, vol.283, pp.19665-77, 2008.

M. S. Shin, Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers, Cancer Res, vol.61, pp.4942-4948, 2001.

C. Fung, R. Lock, S. Gao, E. Salas, and J. Debnath, Induction of autophagy during extracellular matrix detachment promotes cell survival, Mol. Biol. Cell, vol.19, pp.797-806, 2008.

Y. H. Kim, Uncoordinated 51-like kinase 2 signaling pathway regulates epithelialmesenchymal transition in A549 lung cancer cells, FEBS Lett, vol.590, pp.1365-74, 2016.

T. Nitta, Autophagy may promote carcinoma cell invasion and correlate with poor prognosis in cholangiocarcinoma, Int. J. Clin. Exp. Pathol, vol.7, pp.4913-4934, 2014.

M. Catalano, Autophagy induction impairs migration and invasion by reversing EMT in glioblastoma cells, Mol. Oncol, vol.9, pp.1612-1625, 2015.

G. Grassi, Autophagy regulates hepatocyte identity and epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions promoting Snail degradation, Cell Death Dis, vol.6, p.1880, 2015.

H. Chen and E. White, Role of autophagy in cancer prevention, Cancer Prev. Res. (Phila), vol.4, pp.973-83, 2011.

A. C. Kimmelman, The dynamic nature of autophagy in cancer, Genes Dev, vol.25, 1999.

D. A. Gewirtz, The four faces of autophagy: implications for cancer therapy, Cancer Res, vol.74, pp.647-51, 2014.

D. Gewirtz, When cytoprotective autophagy isn't? and even when it is, Autophagy, vol.10, pp.391-393, 2014.

B. Ozpolat and D. M. Benbrook, Targeting autophagy in cancer management -strategies and developments, Cancer Manag. Res, vol.7, pp.291-300, 2015.

C. Bellodi, Targeting autophagy potentiates tyrosine kinase inhibitor -induced cell death in Philadelphia chromosome -positive cells , including primary CML stem cells

M. L. Torgersen, N. Engedal, S. O. Bøe, P. Hokland, and A. Simonsen, Targeting autophagy potentiates the apoptotic effect of histone deacetylase inhibitors in t(8;21) AML cells, Blood, vol.122, pp.2467-2476, 2013.

M. L. Bristol, Dual functions of autophagy in the response of breast tumor cells to radiation: cytoprotective autophagy with radiation alone and cytotoxic autophagy in radiosensitization by vitamin D 3, Autophagy, vol.8, pp.739-53, 2012.

D. Hashimoto, Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs, Eur. J. Cancer, vol.50, pp.1382-90, 2014.

E. Hahm, K. Sakao, and S. V. Singh, Honokiol activates reactive oxygen species-mediated cytoprotective autophagy in human prostate cancer cells, Prostate, vol.74, pp.1209-1230, 2014.

J. He, Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatin-induced apoptosis by inhibiting cyto-protective autophagy, Autophagy, vol.11, pp.373-84, 2015.

W. Han, EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells, PLoS One, vol.6, p.18691, 2011.

Y. Yan, Targeting autophagy to sensitive glioma to temozolomide treatment, J. Exp. Clin. Cancer Res, vol.35, p.23, 2016.

N. Gammoh, Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.6561-6566, 2012.

A. Gupta, Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST), Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.14333-14338, 2010.

S. Fulda and D. Kögel, Cell death by autophagy: emerging molecular mechanisms and implications for cancer therapy, Oncogene, vol.34, pp.5105-5113, 2015.

U. Akar, Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells, Autophagy, vol.4, pp.669-679, 2008.

P. Peng, W. Kuo, H. Tseng, and F. Chou, Synergistic Tumor-Killing Effect of Radiation and Berberine Combined Treatment in Lung Cancer: The Contribution of Autophagic Cell Death, Int. J. Radiat. Oncol, vol.70, pp.529-542, 2008.

J. Shin, Aerosol delivery of beclin1 enhanced the anti-tumor effect of radiation in the lungs of K-rasLA1 mice, J. Radiat. Res, vol.53, pp.506-521, 2012.

Y. Yin, Clozapine induces autophagic cell death in non-small cell lung cancer cells, Cell. Physiol. Biochem, vol.35, pp.945-56, 2015.

C. Li, Impact of autophagy inhibition at different stages on cytotoxic effect of autophagy inducer in glioblastoma cells, Cell. Physiol. Biochem, vol.35, pp.1303-1319, 2015.

H. Takeuchi, Synergistic Augmentation of Rapamycin-Induced Autophagy in Malignant Glioma Cells by Phosphatidylinositol 3-Kinase/Protein Kinase B Inhibitors, Cancer Res, vol.65, pp.3336-3346, 2005.

M. Lorente, Stimulation of ALK by the growth factor midkine renders glioma cells resistant to autophagy-mediated cell death, Autophagy, vol.7, pp.1071-1073, 2011.

E. Laane, Cell death induced by dexamethasone in lymphoid leukemia is mediated through initiation of autophagy, Cell Death Differ, vol.16, pp.1018-1047, 2009.

D. Grandér, P. Kharaziha, E. Laane, K. Pokrovskaja, and T. Panaretakis, Autophagy as the main means of cytotoxicity by glucocorticoids in hematological malignancies, Autophagy, vol.5, pp.1198-200, 2009.

A. Puissant, Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation, Cancer Res, vol.70, pp.1042-52, 2010.

K. Sharma, A novel cytostatic form of autophagy in sensitization of non-small cell lung cancer cells to radiation by vitamin D and the vitamin D analog, EB 1089, Autophagy, vol.10, pp.2346-61, 2014.

Q. Dou, Ivermectin induces cytostatic autophagy by blocking PAK1/Akt axis in breast cancer, Cancer Res. canres.2887, p.2015, 2016.

M. L. Bristol, Autophagy Inhibition for Chemosensitization and Radiosensitization in Cancer: Do the Preclinical Data Support This Therapeutic Strategy?, J. Pharmacol. Exp. Ther, vol.344, pp.544-552, 2013.

S. Chakradeo, Yet Another Function of p53--The Switch That Determines Whether Radiation-Induced Autophagy Will Be Cytoprotective or Nonprotective: Implications for Autophagy Inhibition as a Therapeutic Strategy, Mol. Pharmacol, vol.87, pp.803-814, 2015.

E. N. Wilson, A switch between cytoprotective and cytotoxic autophagy in the radiosensitization of breast tumor cells by chloroquine and vitamin D, Horm. Cancer, vol.2, pp.272-85, 2011.

R. J. Youle and A. Strasser, The BCL-2 protein family: opposing activities that mediate cell death, Nat. Rev. Mol. Cell Biol, vol.9, pp.47-59, 2008.

D. Li, The inhibition of autophagy sensitises colon cancer cells with wild-type p53 but not mutant p53 to topotecan treatment, PLoS One, vol.7, p.45058, 2012.

M. G. Hollomon, Knockdown of autophagy-related protein 5, ATG5, decreases oxidative stress and has an opposing effect on camptothecin-induced cytotoxicity in osteosarcoma cells, BMC Cancer, vol.13, p.500, 2013.

D. Dupéré-richer, Vorinostat-induced autophagy switches from a death-promoting to a cytoprotective signal to drive acquired resistance, Cell Death Dis, vol.4, p.486, 2013.

Y. Tsujimoto, J. Cossman, E. Jaffe, and C. M. Croce, Involvement of the bcl-2 gene in human follicular lymphoma, Science, vol.228, pp.1440-1443, 1985.

E. Lomonosova and G. Chinnadurai, BH3-only proteins in apoptosis and beyond: an overview, Oncogene, vol.27, issue.1, pp.2-19, 2008.

S. Elmore, Apoptosis: a review of programmed cell death, Toxicol. Pathol, vol.35, pp.495-516, 2007.

S. Fulda and K. Debatin, Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy, Oncogene, vol.25, pp.4798-4811, 2006.

G. J. Rautureau, C. L. Day, and M. G. Hinds, Intrinsically disordered proteins in bcl-2 regulated apoptosis, Int. J. Mol. Sci, vol.11, pp.1808-1832, 2010.

X. H. Liang, Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein, J. Virol, vol.72, pp.8586-96, 1998.

A. Oberstein, P. D. Jeffrey, and Y. Shi, Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein, J. Biol. Chem, vol.282, pp.13123-13155, 2007.

M. C. Maiuri, E. Zalckvar, A. Kimchi, and G. Kroemer, Self-eating and self-killing: crosstalk between autophagy and apoptosis, Nat. Rev. Mol. Cell Biol, vol.8, pp.741-52, 2007.
DOI : 10.1038/nrm2239

B. E. Fitzwalter and A. Thorburn, Recent insights into cell death and autophagy, FEBS J, vol.282, pp.4279-4288, 2015.
DOI : 10.1111/febs.13515

URL : https://febs.onlinelibrary.wiley.com/doi/pdf/10.1111/febs.13515

G. Mariño, M. Niso-santano, E. H. Baehrecke, and G. Kroemer, Self-consumption: the interplay of autophagy and apoptosis, Nat. Rev. Mol. Cell Biol, vol.15, pp.81-94, 2014.

H. Xu, The pro-survival role of autophagy depends on Bcl-2 under nutrition stress conditions, PLoS One, vol.8, p.63232, 2013.

L. Lamy, Control of autophagic cell death by caspase-10 in multiple myeloma, Cancer Cell, vol.23, pp.435-484, 2013.

V. Pileczki, R. Cojocneanu-petric, M. Maralani, I. B. Neagoe, and R. Sandulescu, MicroRNAs as regulators of apoptosis mechanisms in cancer, Clujul Med, vol.89, pp.50-55, 2016.

J. Xu, Y. Wang, X. Tan, and H. Jing, MicroRNAs in autophagy and their emerging roles in crosstalk with apoptosis, Autophagy, vol.8, pp.873-82, 2012.
DOI : 10.4161/auto.19629

URL : http://europepmc.org/articles/pmc3427253?pdf=render

B. Pasquier, Autophagy inhibitors. Cell. Mol. Life Sci, vol.73, pp.985-1001, 2016.

S. Pascolo, Time to use a dose of Chloroquine as an adjuvant to anti-cancer chemotherapies, Eur. J. Pharmacol, vol.771, pp.139-183, 2016.

E. L. Kim, Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells, Neuro. Oncol, vol.12, pp.389-400, 2010.

E. J. Park, Chloroquine enhances TRAIL-mediated apoptosis through up-regulation of DR5 by stabilization of mRNA and protein in cancer cells, Sci. Rep, vol.6, pp.611-620, 2016.

H. Maes, Tumor vessel normalization by chloroquine independent of autophagy, Cancer Cell, vol.26, pp.190-206, 2014.
DOI : 10.1016/j.ccr.2014.06.025

URL : https://doi.org/10.1016/j.ccr.2014.06.025

T. Kimura, Chloroquine in cancer therapy: a double-edged sword of autophagy, Cancer Res, vol.73, pp.3-7, 2013.

M. Nishimura, N. Hidaka, T. Akaza, K. Tadokoro, and T. Juji, Immunosuppressive effects of chloroquine: potential effectiveness for treatment of post-transfusion graft-versus-host disease, Transfus. Med, vol.8, pp.209-223, 1998.

R. K. Amaravadi, Autophagy inhibition enhances therapy-induced apoptosis in a Mycinduced model of lymphoma, J. Clin. Invest, vol.117, pp.326-336, 2007.

P. Pellegrini, Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies, Autophagy, vol.10, pp.562-71, 2014.

B. Levine, Development of autophagy inducers in clinical medicine, J. Clin. Invest, vol.125, pp.14-24, 2015.

Q. Mcafee, Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency, Proc. Natl. Acad. Sci, vol.109, pp.8253-8258, 2012.

S. Miller, Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34, Science, vol.327, pp.1638-1680, 2010.

D. A. Fruman and C. Rommel, PI3K and cancer: lessons, challenges and opportunities, Nat. Rev. Drug Discov, vol.13, pp.140-56, 2014.
DOI : 10.1038/nrd4204

URL : http://europepmc.org/articles/pmc3994981?pdf=render

J. Liu, Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13, Cell, vol.147, pp.223-257, 2011.

S. Shao, Spautin-1, a novel autophagy inhibitor, enhances imatinib-induced apoptosis in chronic myeloid leukemia, Int. J. Oncol, vol.44, pp.1661-1668, 2014.

D. F. Egan, Small Molecule Inhibition of the Autophagy Kinase ULK1 and Identification of ULK1 Substrates, Mol. Cell, 2015.

K. J. Petherick, Pharmacological Inhibition of ULK1 Blocks mTOR-Dependent Autophagy, J. Biol. Chem, vol.290, pp.11376-83, 2015.
DOI : 10.1074/jbc.c114.627778

URL : http://www.jbc.org/content/290/18/11376.full.pdf

C. Kung, A. Budina, G. Balaburski, M. K. Bergenstock, and M. Murphy, Autophagy in tumor suppression and cancer therapy, Crit. Rev. Eukaryot. Gene Expr, vol.21, pp.71-100, 2011.
DOI : 10.1615/critreveukargeneexpr.v21.i1.50

URL : http://europepmc.org/articles/pmc3187613?pdf=render

F. Jundt, A rapamycin derivative (everolimus) controls proliferation through downregulation of truncated CCAAT enhancer binding protein {beta} and NF-{kappa}B activity in Hodgkin and anaplastic large cell lymphomas, Blood, vol.106, pp.1801-1808, 2005.

M. Pichler and G. A. Calin, MicroRNAs in cancer: from developmental genes in worms to their clinical application in patients, Br. J. Cancer, vol.113, pp.569-573, 2015.

F. Montani, miR-Test: a blood test for lung cancer early detection, J. Natl. Cancer Inst, vol.107, p.63, 2015.

H. Ling, The clinical and biological significance of MIR-224 expression in colorectal cancer metastasis, Gut, vol.65, pp.977-89, 2016.

M. Pichler, MiR-200a regulates epithelial to mesenchymal transition-related gene expression and determines prognosis in colorectal cancer patients, Br. J. Cancer, vol.110, pp.1614-1635, 2014.

J. Iqbal, Global microRNA expression profiling uncovers molecular markers for classification and prognosis in aggressive B-cell lymphoma, Blood, vol.125, pp.1137-1182, 2015.

P. Hydbring and G. Badalian-very, Clinical applications of microRNAs, vol.2, p.136, 2013.

Y. Mishima, Autophagy and autophagic cell death are next targets for elimination of the resistance to tyrosine kinase inhibitors, Cancer Sci, vol.99, pp.2200-2208, 2008.

T. Chou, Drug combination studies and their synergy quantification using the Chou-Talalay method, Cancer Res, vol.70, pp.440-446, 2010.

X. Li, J. J. Cassidy, C. A. Reinke, S. Fischboeck, and R. W. Carthew, A microRNA imparts robustness against environmental fluctuation during development, Cell, vol.137, pp.273-82, 2009.

S. E. Prochnik, D. S. Rokhsar, and A. A. Aboobaker, Evidence for a microRNA expansion in the bilaterian ancestor, Dev. Genes Evol, vol.217, pp.73-80, 2007.

J. Horsham, Clinical Potential of microRNA-7 in Cancer, J. Clin. Med, vol.4, pp.1668-1687, 2015.

P. Landgraf, A mammalian microRNA expression atlas based on small RNA library sequencing, Cell, vol.129, pp.1401-1415, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00159802

K. K. Farh and .. , The widespread impact of mammalian MicroRNAs on mRNA repression and evolution, Science, vol.310, pp.1817-1838, 2005.

M. Correa-medina, MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas, Gene Expr. Patterns, vol.9, pp.193-202, 2009.

T. Chang, Widespread microRNA repression by Myc contributes to tumorigenesis, Nat. Genet, vol.40, pp.43-50, 2008.

S. Lebedeva, Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR, Mol. Cell, vol.43, pp.340-52, 2011.

Y. Li, TLR9 signaling repressed tumor suppressor miR-7 expression through upregulation of HuR in human lung cancer cells, Cancer Cell Int, vol.13, p.90, 2013.

A. Weilemann, Essential role of IRF4 and MYC signaling for survival of anaplastic large cell lymphoma, Blood, vol.125, pp.124-156, 2015.

J. Bergalet, HuR-mediated control of C/EBPbeta mRNA stability and translation in ALKpositive anaplastic large cell lymphomas, Mol. Cancer Res, vol.9, pp.485-96, 2011.

J. Zhao, MicroRNA-7: a promising new target in cancer therapy, Cancer Cell Int, vol.15, p.103, 2015.

Y. Nakagawa, Relationship between expression of onco-related miRNAs and the endoscopic appearance of colorectal tumors, Int. J. Mol. Sci, vol.16, pp.1526-1569, 2015.

K. F. Meza-sosa, MiR-7 promotes epithelial cell transformation by targeting the tumor suppressor KLF4, PLoS One, vol.9, p.103987, 2014.

A. Gallo, The Majority of MicroRNAs Detectable in Serum and Saliva Is Concentrated in Exosomes, PLoS One, vol.7, p.30679, 2012.

L. Lv, Isolation and Quantification of MicroRNAs from Urinary Exosomes/Microvesicles for Biomarker Discovery, Int. J. Biol. Sci, vol.9, pp.1021-1031, 2013.

S. Wang, A plasma microRNA panel for early detection of colorectal cancer, Int. J. cancer, vol.136, pp.152-61, 2015.

N. Babae, Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma, Oncotarget, vol.5, pp.6687-700, 2014.

W. Wang, Regulation of epidermal growth factor receptor signaling by plasmid-based microRNA-7 inhibits human malignant gliomas growth and metastasis in vivo, Neoplasma, vol.60, pp.274-83, 2013.

C. Tu, Trichostatin A Suppresses EGFR Expression through Induction of MicroRNA-7 in an HDAC-Independent Manner in Lapatinib-Treated Cells, Biomed Res. Int, pp.1-11, 2014.

F. C. Kalinowski, Regulation of Epidermal Growth Factor Receptor Signaling and Erlotinib Sensitivity in Head and Neck Cancer Cells by miR-7, PLoS One, vol.7, p.47067, 2012.

R. Liu, MicroRNA-7 sensitizes non-small cell lung cancer cells to paclitaxel, Oncol. Lett, vol.8, pp.2193-2200, 2014.

J. Zhao, W. Men, and J. Tang, MicroRNA-7 enhances cytotoxicity induced by gefitinib in non-small cell lung cancer via inhibiting the EGFR and IGF1R signalling pathways, Contemp. Oncol, vol.19, pp.201-207, 2015.

L. You, Crizotinib induces autophagy through inhibition of the STAT3 pathway in multiple lung cancer cell lines, Oncotarget, vol.5, 2015.

C. Villalva, F. Bougrine, G. Delsol, and P. Brousset, Bcl-2 expression in anaplastic large cell lymphoma, Am. J. Pathol, vol.158, pp.1889-90, 2001.

C. Ji, Induction of autophagy contributes to crizotinib resistance in ALK-positive lung cancer, vol.15, pp.570-577, 2014.

S. Aveic, Combating autophagy is a strategy to increase cytotoxic effects of novel ALK inhibitor entrectinib in neuroblastoma cells, Oncotarget, vol.7, pp.5646-63, 2016.

Y. Wang, Novel ALK inhibitor AZD3463 inhibits neuroblastoma growth by overcoming crizotinib resistance and inducing apoptosis, Sci. Rep, vol.6, p.19423, 2016.

A. J. Dirks-naylor, The role of autophagy in doxorubicin-induced cardiotoxicity, Life Sci, vol.93, pp.913-916, 2013.

I. Manov, Y. Pollak, R. Broneshter, and T. C. Iancu, Inhibition of doxorubicin-induced autophagy in hepatocellular carcinoma Hep3B cells by sorafenib--the role of extracellular signalregulated kinase counteraction, FEBS J, vol.278, pp.3494-507, 2011.

A. Oehadian, Differential expression of autophagy in Hodgkin lymphoma cells treated with various anti-cancer drugs, Acta Med. Indones, vol.39, pp.153-159

R. Mackeh, D. Perdiz, S. Lorin, P. Codogno, and C. Poüs, Autophagy and microtubules -new story, old players, J. Cell Sci, vol.126, pp.1071-80, 2013.

Y. Kondo, T. Kanzawa, R. Sawaya, and S. Kondo, The role of autophagy in cancer development and response to therapy, Nat Rev Cancer, vol.5, pp.726-734, 2005.

R. Köchl, X. W. Hu, E. Y. Chan, and S. A. Tooze, Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes, Traffic, vol.7, pp.129-174, 2006.

E. Fass, E. Shvets, I. Degani, K. Hirschberg, and Z. Elazar, Microtubules Support Production of Starvation-induced Autophagosomes but Not Their Targeting and Fusion with Lysosomes, J. Biol. Chem, vol.281, pp.36303-36316, 2006.

B. J. Altman and J. C. Rathmell, Metabolic Stress in Autophagy and Cell Death Pathways, Cold Spring Harb. Perspect. Biol, vol.4, pp.8763-008763, 2012.

S. V. Sharma and J. Settleman, Oncogene addiction: setting the stage for molecularly targeted cancer therapy, Genes Dev, vol.21, pp.3214-3231, 2007.

C. Bellodi, Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells, J. Clin. Invest, vol.119, pp.1109-1123, 2009.

Y. Liu, Inhibition of c-Met promoted apoptosis, autophagy and loss of the mitochondrial transmembrane potential in oridonin-induced A549 lung cancer cells, J. Pharm. Pharmacol, vol.65, pp.1622-1664, 2013.

M. J. Morgan and A. Thorburn, Measuring Autophagy in the Context of Cancer, Adv. Exp. Med. Biol, vol.899, pp.121-164, 2016.

C. Casas, TRANSAUTOPHAGY: European network for multidisciplinary research and translation of autophagy knowledge, Autophagy, vol.12, pp.614-617, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01911119

W. Martinet, D. M. Schrijvers, J. Timmermans, H. Bult, G. R. Meyer et al., Immunohistochemical analysis of macroautophagy : Recommendations and limitations, pp.1-17, 2013.

S. Barth, D. Glick, and K. F. Macleod, Autophagy: Assays and artifacts, J. Pathol, vol.221, pp.117-124, 2010.

E. Dejean, ALK+ALCLs induce cutaneous, HMGB-1-dependent IL-8/CXCL8 production by keratinocytes through NF-?B activation, Blood, vol.119, pp.4698-707, 2012.

V. I. Korolchuk, A. Mansilla, F. M. Menzies, and D. C. Rubinsztein, Autophagy Inhibition Compromises Degradation of Ubiquitin-Proteasome Pathway Substrates, Mol. Cell, vol.33, pp.517-527, 2009.

Z. Jin, Cullin3-Based Polyubiquitination and p62-Dependent Aggregation of Caspase-8

, Mediate Extrinsic Apoptosis Signaling. Cell, vol.137, pp.721-735, 2009.

J. Pursiheimo, K. Rantanen, P. T. Heikkinen, T. Johansen, and P. M. Jaakkola, Hypoxiaactivated autophagy accelerates degradation of SQSTM1/p62, Oncogene, vol.28, pp.334-378, 2009.

S. M. Kessler, IMP2/p62 induces genomic instability and an aggressive hepatocellular carcinoma phenotype, Cell Death Dis, vol.6, p.1894, 2015.

W. Hou, J. Han, C. Lu, L. A. Goldstein, and H. Rabinowich, Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis, Autophagy, vol.6, pp.891-900, 2010.

J. Thorburn, Autophagy Controls the Kinetics and Extent of Mitochondrial Apoptosis by Regulating PUMA Levels, 2014.

N. Martinez-lopez, D. Athonvarangkul, P. Mishall, S. Sahu, and R. Singh, Autophagy proteins regulate ERK phosphorylation, Nat. Commun, vol.4, p.2799, 2013.

P. Mirandola, Activated human NK and CD8+ T cells express both TNF-related apoptosisinducing ligand (TRAIL) and TRAIL receptors but are resistant to TRAIL-mediated cytotoxicity, Blood, vol.104, pp.2418-2442, 2004.

B. Ravikumar, Z. Berger, C. Vacher, C. J. O'kane, and D. C. Rubinsztein, Rapamycin pretreatment protects against apoptosis, Hum. Mol. Genet, vol.15, pp.1209-1216, 2006.

Y. J. Shin, Rapamycin reduces reactive oxygen species in cultured human corneal endothelial cells, Curr. Eye Res, vol.36, pp.1116-1138, 2011.

F. Vega, Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma, Cancer Res, vol.66, pp.6589-97, 2006.

J. Gao, Prognostic significance and therapeutic potential of the activation of anaplastic lymphoma kinase/protein kinase B/mammalian target of rapamycin signaling pathway in anaplastic large cell lymphoma, BMC Cancer, vol.13, p.471, 2013.

D. Colecchia, MAPK15 mediates BCR-ABL1-induced autophagy and regulates oncogenedependent cell proliferation and tumor formation, Autophagy, vol.11, pp.1790-1802, 2015.

R. Barrow-mcgee, Beta 1-integrin-c-Met cooperation reveals an inside-in survival signalling on autophagy-related endomembranes, Nat. Commun, vol.7, p.11942, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02153698

M. M. Young, Autophagosomal membrane serves as platform for intracellular deathinducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis, J. Biol. Chem, vol.287, pp.12455-68, 2012.

Y. Chen, UNC51-like kinase 1, autophagic regulator and cancer therapeutic target, Cell Prolif, vol.47, pp.494-505, 2014.

R. J. Webster, Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7, J. Biol. Chem, vol.284, pp.5731-5772, 2009.

Z. Liu, miR-7 inhibits glioblastoma growth by simultaneously interfering with the PI3K/ATK and Raf/MEK/ERK pathways, Int. J. Oncol, vol.44, pp.1571-1580, 2014.

Y. Fang, J. Xue, Q. Shen, J. Chen, and L. Tian, MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma, Hepatology, vol.55, pp.1852-1862, 2012.

P. E. Czabotar, G. Lessene, A. Strasser, and J. Adams, Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy, Nat. Rev. Mol. Cell Biol, vol.15, pp.49-63, 2013.

R. T. Marquez and L. Xu, Bcl-2:Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch, Am. J. Cancer Res, vol.2, pp.214-235, 2012.

S. Xiong, MicroRNA-7 Inhibits the Growth of Human Non-Small Cell Lung Cancer A549 Cells through Targeting BCL-2, Int. J. Biol. Sci, pp.805-814, 2011.

S. Cory, D. C. Huang, and J. M. Adams, The Bcl-2 family: roles in cell survival and oncogenesis, Oncogene, vol.22, pp.8590-8607, 2003.

H. Xu, The Pro-Survival Role of Autophagy Depends on Bcl-2 Under Nutrition Stress Conditions, PLoS One, vol.8, p.63232, 2013.

Z. Qi, Bcl-2 Phosphorylation Triggers Autophagy Switch and Reduces Mitochondrial Damage in Limb Remote Ischemic Conditioned Rats After Ischemic Stroke, Transl. Stroke Res, vol.6, pp.198-206, 2015.

S. Pattingre, Bcl-2 Antiapoptotic Proteins Inhibit Beclin 1-Dependent Autophagy, Cell, vol.122, pp.927-939, 2005.

M. Marzec, Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycinsensitive mTOR signaling pathway, Oncogene, vol.26, pp.5606-5620, 2007.

S. Pattingre, C. Bauvy, and P. Codogno, Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells, J. Biol. Chem, vol.278, pp.16667-74, 2003.

Y. Zhang, Y. Wu, S. Tashiro, S. Onodera, and T. Ikejima, Involvement of PKC signal pathways in oridonin-induced autophagy in HeLa cells: a protective mechanism against apoptosis, Biochem. Biophys. Res. Commun, vol.378, pp.273-281, 2009.

K. Eum and M. Lee, Crosstalk between autophagy and apoptosis in the regulation of paclitaxel-induced cell death in v-Ha-ras-transformed fibroblasts, Mol. Cell. Biochem, vol.348, pp.61-68, 2011.

F. Ceteci, Conditional expression of oncogenic C-RAF in mouse pulmonary epithelial cells reveals differential tumorigenesis and induction of autophagy leading to tumor regression, Neoplasia, vol.13, pp.1005-1023, 2011.

D. Matallanas, Raf family kinases: old dogs have learned new tricks, Genes Cancer, vol.2, pp.232-60, 2011.
DOI : 10.1177/1947601911407323

URL : http://europepmc.org/articles/pmc3128629?pdf=render

S. Wu, Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation, Neoplasia, vol.13, pp.1171-82, 2011.

S. Xiong, MicroRNA-7 inhibits the growth of human non-small cell lung cancer A549 cells through targeting BCL-2, Int. J. Biol. Sci, vol.7, pp.805-819, 2011.

E. Duncavage, B. Goodgame, A. Sezhiyan, R. Govindan, and J. Pfeifer, Use of MicroRNA Expression Levels to Predict Outcomes in Resected Stage I Non-small Cell Lung Cancer, J. Thorac. Oncol, vol.5, pp.1755-1763, 2010.

S. Bäumer, Antibody-mediated delivery of anti-KRAS-siRNA in vivo overcomes therapy resistance in colon cancer, Clin. Cancer Res, vol.21, pp.1383-94, 2015.

N. Bäumer, Antibody-coupled siRNA as an efficient method for in vivo mRNA