P. Le and . Est, Le récipient est placé dans une clocheà vide pendant une vingtaine de minutes pour retirer les bulles d'air introduites pendant le mélange. Le PDMS encore liquide est spin-coaté sur un waferà une vitesse de 2000 rpm pendant 30 secondes. Une fois cetteétape réalisée, préparé de la même manière que pour les puces microfluidiques. On mélange du PDMS et son réticulant dans les proportions, vol.10, p.65

. ?-c-afin-d'accélérer-la-réticulation, Après un délai minimal d'une heure, le wafer est prêtàêtre utilisé

, Ce protocole permet de déposer une couche de PDMS d'environ 15 µm sur les wafers

, Cette valeur aété déterminéeà l'aide d'un profilomètre mécanique (Dektak)

, Du scotch a aussiété utilisé pour retirer les poussières ou les dépôts formés par le séchage des gouttes. Son utilisation aété limitée aux expériences du chapitre 2. Les expériences de mesures de contraintes dans les chapitres 3 et 4étaient en effet affectées par l, Les poussières adhèrent fortement au PDMS qui se salit rapidement

, En s'évaporant, le solvant laisse un film fin et transparent. Ce film a de bonnes propriétés hydrophobes. La solution est peu différentes, notammentà hautes concentrations, car dans ce régime

, Il est intéressant de noter que même pour des fractions vos ? 0.3) : c'est l'exclusion de Donnan. Les nanoparticules sont si chargées qu'elles excluent la majorité des contre-ions ajoutés dans le réservoir. C'est une différence majeure avec les cas expérimentaux traités dans le manuscrit (goutte vs. micropervaporateur), voir discussions dans la conclusion des chapitres 1 et 2, La figure C.2 (c) montre quantà elle la concentration moyenne en sels dans la dispersion (voiréquation C.4), pp.53-84

A. Bouchaudy, C. Loussert, and J. Salmon, Steady microfluidic measurements of mutual diffusion coefficients of liquid binary mixtures, AIChE Journal, vol.64, issue.1, pp.358-366, 2017.

C. Loussert, A. Bouchaudy, and J. Salmon, Drying dynamics of a charged colloidal dispersion in a confined drop, Phys. Rev. Fluids, vol.1, p.84201, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01424882

J. Leng, B. Lonetti, P. Tabeling, M. Joanicot, and A. Ajdari, Microevaporators for kinetic exploration of phase diagrams, Phys. Rev. Lett, vol.96, pp.84503-084506, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00016965

L. Goehring, J. Li, and P. Kiatkirakajorn, Drying paint : from micro-scale dynamics to mechanical instabilities, Philosophical Transactions of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.375, 2017.

C. Iliescu, H. Taylor, M. Avram, J. Miao, and S. Franssila, A practical guide for the fabrication of microfluidic devices using glass and silicon, Biomicrofluidics, vol.6, issue.1, pp.16505-16521, 2012.

C. Tsao, Polymer microfluidics : Simple, low-cost fabrication process bridging academic lab research to commercialized production, vol.7, 2016.

K. F. Jensen, Microchemical systems : Status, challenges, and opportunities. AIChE, vol.45, pp.2051-2054, 1999.

A. W. Chow, Lab-on-a-chip : Opportunities for chemical engineering, AIChE, vol.48, p.1590, 2002.

H. A. Stone, A. D. Stroock, and A. Ajdari, Engineering flows in small devices : Microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech, vol.36, p.381, 2004.

T. M. Squires and S. R. Quake, Microfluidics : fluid physics at the nanoliter scale, Rev. Mod. Phys, vol.77, p.977, 2005.

J. Garvey, D. Newport, F. Lakestani, M. Whelan, and S. Joseph, Full field measurement at the micro-scale using micro-interferometry, Microfluidics and Nanofluidics, vol.5, issue.1, pp.77-87, 2008.

J. Dambrine, B. Géraud, and J. Salmon, Interdiffusion of liquids of different viscosities in a microchannel, New Journal of Physics, vol.11, p.75015, 2009.

Y. Lin, X. Yu, Z. Wang, S. Tu, and Z. Wang, Measurement of temperaturedependent diffusion coefficients using a confocal raman microscope with microfluidic chips considering laser-induced heating effect, Analytica Chimica Acta, vol.667, issue.1, pp.103-112, 2010.

D. Broboana, C. M. Balan, T. Wohland, and C. Balan, Investigations of the unsteady diffusion process in microchannels, Chemical Engineering Science, vol.66, issue.9, pp.1962-1972, 2011.

H. Yamashita, N. Kakuta, D. Kawashima, and Y. Yamada, Measurement of temperature-dependent diffusion coefficients of aqueous solutions by near-infrared simultaneous imaging of temperature and concentration, Biomedical Physics & Engineering Express, vol.4, issue.3, p.35030, 2018.

S. Cheng, S. Heilman, M. Wasserman, S. Archer, M. L. Shuler et al., A hydrogel-based microfluidic device for the studies of directed cell migration, Lab Chip, vol.7, pp.763-769, 2007.

J. J. Vandersarl, A. M. Xu, and N. A. Melosh, Rapid spatial and temporal controlled signal delivery over large cell culture areas, Lab Chip, vol.11, pp.3057-3063, 2011.

E. Choi, I. Jun, H. Chang, K. Park, H. Shin et al., Quantitatively controlled in situ formation of hydrogel membranes in microchannels for generation of stable chemical gradients, Lab Chip, vol.12, pp.302-308, 2012.

J. S. Paustian, R. Nery-azevedo, S. T. Lundin, M. J. Gilkey, and T. M. Squires, Microfluidic microdialysis : Spatiotemporal control over solution microenvironments using integrated hydrogel membrane microwindows, Phys. Rev. X, vol.3, p.41010, 2013.

D. R. Vogus, V. Mansard, M. V. Rapp, and T. M. Squires, Measuring concentration fields in microfluidic channels in situ with a fabry-perot interferometer, Lab Chip, vol.15, p.1689, 2015.

E. Favre, P. Schaetzel, Q. T. Nguygen, R. Clément, and J. Néel, Sorption, diffusion and vapour permeation of various penetrants through dense poly(dimethylsiloxane membranes : a transport analysis, Journal of membrane science, vol.92, p.169, 1994.

J. M. Watson and M. G. Baron, The behaviour of water in poly(dimethylsiloxane), Journal of Membrane Science, vol.110, pp.47-57, 1996.

X. Noblin, L. Mahadevan, I. A. Coomaraswamy, D. A. Weitz, N. M. Holbrook et al., Optimal vein density in artificial and real leaves, Proc. Natl. Acad. Sci. U. S. A, vol.105, issue.27, pp.9140-9144, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00856512

G. C. Randall and P. S. Doyle, Permeation-driven flow in poly(dimethylsiloxane) microfluidic devices, Proc. Natl. Acad. Sci. USA, vol.102, pp.10813-10818, 2005.

E. L. Cussler, Diffusion : Mass Transfer in Fluid Systems, 1997.

E. Verneuil, A. Buguin, and P. Silberzan, Permeation-induced flows : Consequences for silicone-based microfluidics, Europhys. Lett, vol.68, pp.412-418, 2004.

T. D. Wheeler and A. D. Stroock, The transpiration of water at negative pressures in a synthetic tree, Nature, vol.455, p.208, 2009.

P. Moreau, J. Dehmoune, J. Salmon, and J. Leng, Microevaporators with accumulators for the screening of phase diagrams of aqueous solutions, Appl. Phys. Lett, vol.95, pp.33108-033110, 2009.

J. Leng, M. Joanicot, and A. Ajdari, Microfluidic exploration of the phase diagram of a surfactant/water binary system, Langmuir, vol.23, pp.2315-2317, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00110623

A. Merlin, J. Salmon, and J. Leng, Microfluidic-assisted growth of colloidal crystals, Soft Matter, vol.8, pp.3526-3537, 2012.

A. Merlin, J. Angly, L. Daubersies, C. Madeira, S. Schöder et al., Time-resolved microfocused small-angle x-ray scattering investigation of the microfluidic concentration of charged nanoparticles, Eur. Phys. J. E, vol.34, pp.58-64, 2011.

J. Angly, A. Iazzolino, J. Salmon, J. Leng, S. P. Chandran et al.,

, Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles, ACS Nano, vol.7, pp.6465-6477, 2013.

C. Laval, P. Poulin, and J. Salmon, Investigation of the dynamics of growth of polymer materials obtained by combined pervaporation and micro-moulding, Soft Matter, vol.12, p.1810, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01305597

C. Laval, A. Bouchaudy, and J. Salmon, Fabrication of microscale materials with programmable composition gradients, Lab Chip, vol.16, p.1234, 2016.

N. Ziane, M. Guirardel, J. Leng, and J. Salmon, Drying with no concentration gradient in large microfluidic droplets, Soft Matter, vol.11, pp.3637-3642, 2015.

L. Daubersies, J. Leng, and J. Salmon, Steady and out-of-equilibrium phase diagram of a complex fluid at the nanolitre scale : combining microevaporation, confocal raman imaging and small angle x-ray scattering, Lab Chip, vol.13, pp.910-919, 2013.

M. Schindler and A. Ajdari, Modeling phase behavior for quantifying micropervaporation experiments, Eur. Phys. J E, vol.28, pp.27-45, 2009.

A. Merlin, Cinétiques de concentration de suspensions colloïdales parévaporation microfluidique : de la solution diluée aux cristaux colloïdaux, 2010.

J. Salmon and J. Leng, Application of microevaporators to dynamic exploration of the phase diagram, J. Appl. Phys, vol.107, pp.84905-084914, 2010.

D. D. Joseph, A. Huang, and H. Hu, Non-solenoidal velocity effects and korteweg stresses in simple mixtures of incompressible liquids, Physica D, vol.97, p.104, 1996.

L. Daubersies, Séchage de fluides complexes en géométrie confinée, 2012.

L. Daubersies and J. Salmon, Evaporation of solutions and colloidal dispersions in confined droplets, Phys. Rev. E, vol.84, p.31406, 2011.

W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal dispersions, 1989.

Y. Nishijima and G. Oster, Diffusion in glycerol-water mixture, Bull. Chem. Soc. Jpn, vol.33, pp.1649-1651, 1960.

G. Ternström, A. Sjöstrand, G. Aly, and . Jernqvist, Mutual diffusion coefficients of water + ethylene glycol and water + glycerol mixtures, J. Chem. Eng. Data, vol.41, p.876, 1996.

G. Errico, O. Ortona, F. Capuano, and V. Vitagliano, Diffusion coefficients for the binary system glycerol + water at 25 ? c. a velocity correlation study, J. Chem

. Eng and . Data, , vol.49, p.1665, 2004.

N. Rashidnia and R. Balasubramaniam, Measurement of the mass diffusivity of miscible liquids as a function of concentration using a common path shearing interferometer, Experiments in Fluids, vol.36, p.619, 2004.

L. Ninni, M. S. Camargo, and A. J. Meirelles, Water activity in polyol systems, J. Chem. Eng. Data, vol.45, p.654, 2000.

C. Marcolli and T. Peter, Water activity in polyol/water systems : new unifac parameterization, Atmos. Chem. Phys, vol.5, p.1545, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00301063

A. N. Kirgintsev and A. V. Luk'yanov, Water vapor pressure in a water-glycerin system at 25

?. , Russian Chemical Bulletin, vol.11, p.1393, 1962.

M. Zaoui-djelloul-daouadji, A. Negadi, I. Mokbel, and L. Negadi, vapor-liquid) equilibria and excess gibbs free energy functions of (ethanol + glycerol), or (water + glycerol) binary mixtures at several temperatures, J. Chem. Thermodynamics, vol.69, p.165, 2014.

, Glycerine Producers' Association, editor. Physical properties of glycerine and its solutions, 1963.

N. J. Everall, Confocal raman microscopy : common errors and artefacts, Analyst, vol.135, pp.2512-2522, 2010.

D. Blair and E. Dufresne, The Matlab Particle Tracking Code Repository

H. Bruus, Theoretical Microfluidics, 2007.

, Technical Information Grace Davison Engineered Materials

, Informations sur les produits et mode d'emploi

F. G. Donnan, Theorie der membrangleichgewichte und membranpotentiale bei vorhandensein von nicht dialysierenden elektrolyten. ein beitrag zur physikalischchemischen physiologie, vol.17, pp.572-581, 1911.

C. Bonnet-gonnet, L. Belloni, and B. Cabane, Osmotic pressure of latex dispersions, Langmuir, vol.10, issue.11, pp.4012-4021, 1994.

A. Mourchid, A. Delville, J. Lambard, E. Lecolier, and P. Levitz, Phase diagram of colloidal dispersions of anisotropic charged particles : Equilibrium properties, structure, and rheology of laponite suspensions, Langmuir, vol.11, issue.6, pp.1942-1950, 1995.

A. Mourchid, E. Lecolier, H. Van-damme, and P. Levitz, On viscoelastic, birefringent, and swelling properties of laponite clay suspensions : Revisited phase diagram, Langmuir, vol.14, issue.17, pp.4718-4723, 1998.

S. Hachisu and Y. Kobayashi, Kirkwood-alder transition in monodisperse latexes. ii. aqueous latexes of high electrolyte concentration, Journal of Colloid and Interface Science, vol.46, issue.3, pp.470-476, 1974.

V. A. Parsegian, N. Fuller, and R. Rand, Measured work of deformation and repulsion of lecithin bilayers, Proceedings of the National Academy of Sciences of the United States of America, vol.6, pp.2750-2754, 1979.

V. A. Parsegian, R. P. Rand, N. L. Fuller, and D. C. Rau, Osmotic stress for the direct measurement of intermolecular forces, Methods in Enzymology, vol.127, pp.400-416, 1986.

J. W. Goodwin, R. H. Ottewill, and A. Parentich, Compression studies on aqueous polystyrene latices, Colloid and Polymer Science, vol.268, issue.12, pp.1131-1140, 1990.

J. Chang, P. Lesieur, M. Delsanti, L. Belloni, C. Bonnet-gonnet et al., Structural and thermodynamic properties of charged silica dispersions, J. Phys. Chem, vol.99, pp.15993-16001, 1995.

W. R. Bowen and P. M. Williams, The osmotic pressure of electrostatically stabilized colloidal dispersions, Journal of Colloid and Interface Science, vol.184, issue.1, pp.241-250, 1996.

B. Jonsson, J. Persello, J. Li, and B. Cabane, Equation of state of colloidal dispersions, Langmuir, vol.27, p.6606, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00849474

Y. Hallez and M. Meireles, Fast, robust evaluation of the equation of state of suspensions of charge-stabilized colloidal spheres, Langmuir, vol.33, issue.38, pp.10051-10060, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01635453

J. S. Diatta, Modélisation et simulation des interactionsélectrostatiques dans les dispersions colloïdales, 2014.

B. E. Michel, Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes, Plant Physiology, vol.72, issue.1, pp.66-70, 1983.

J. Williams and C. F. Shaykewich, 20,000 in the osmotic control of soil water matic potential, Canadian Journal of Soil Science, vol.49, issue.3, pp.397-401, 1969.

A. A. Steuter, A. Mozafar, and J. R. Goodin, Water potential of aqueous polyethylene glycol, Plant physiology, vol.67, pp.64-67, 1981.
DOI : 10.1104/pp.67.1.64

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC425622/pdf

J. V. Lagerwerff, G. Ogata, and H. E. Eagle, Control of osmotic pressure of culture solutions with polyethylene glycol, Science, vol.133, issue.3463, pp.1486-1487, 1961.

L. R. Schiller, M. Emmett, C. A. Santa-ana, and J. S. Fordtran, Osmotic effects of polyethylene glycol, Gastroenterology, vol.94, issue.4, pp.933-941, 1988.
DOI : 10.1016/0016-5085(88)90550-1

N. P. Money, Osmotic pressure of aqueous polyethylene glycols, Plant Physiology, vol.91, issue.2, pp.766-769, 1989.

C. Großmann, R. Tintinger, J. Zhu, and G. Maurer, Aqueous two-phase systems of poly(ethylene glycol) and dextran -experimental results and modeling of thermodynamic properties, Fluid Phase Equilibria, vol.106, issue.1, pp.111-138, 1995.

A. Bouchoux, P. Cayemitte, J. Jardin, G. Gésan-guiziou, and B. Cabane, Casein micelle dispersions under osmotic stress, Biophysical Journal, vol.96, issue.2, pp.693-706, 2009.
DOI : 10.1016/j.bpj.2008.10.006

URL : https://hal.archives-ouvertes.fr/hal-01454090

M. Rami, M. Meireles, B. Cabane, and C. Guizard, Colloidal stability for concentrated zirconia aqueous suspensions, Journal of the American Ceramic Society, vol.92, issue.1, pp.50-56
DOI : 10.1111/j.1551-2916.2008.02681.x

URL : https://hal.archives-ouvertes.fr/hal-00903952

A. S. Robbes, F. Cousin, and G. Mériguet, Osmotic stress on concentrated colloidal suspensions : a path towards equilibrium ?, Brazilian Journal of Physics, vol.39, pp.156-162, 2009.
DOI : 10.1590/s0103-97332009000200006

URL : http://www.scielo.br/pdf/bjp/v39n1a/a06v391a.pdf

A. Grattoni, G. Canavese, F. M. Montevecchi, and M. Ferrari, Fast membrane osmometer as alternative to freezing point and vapor pressure osmometry, Analytical Chemistry, vol.80, issue.7, pp.2617-2622, 2008.
DOI : 10.1021/ac7023987

J. Li, M. Turesson, C. Haglund, B. Cabane, and M. Skepö, Equation of state of peg/peo in good solvent. comparison between a one-parameter eos and experiments, Polymer, vol.80, pp.205-213, 2015.

J. A. Cohen, R. Podgornik, P. L. Hansen, and V. A. Parsegian, A phenomenological one-parameter equation of state for osmotic pressures of peg and other neutral flexible polymers in good solvents, The Journal of Physical Chemistry B, vol.113, issue.12, pp.3709-3714, 2009.

, Operating instructions Micro-Osmometer Löser Type 6

K. Kiyosawa, Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions, Biophysical Chemistry, vol.104, issue.1, pp.171-188, 2003.

X. Ge and X. Wang, Estimation of freezing point depression, boiling point elevation, and vaporization enthalpies of electrolyte solutions, Industrial & Engineering Chemistry Research, vol.48, issue.4, pp.2229-2235, 2009.

J. B. Madeline, M. Meireiles, J. Persello, C. Martin, R. Botet et al., From colloidal dispersions to colloidal pastes through solid-liquid separation processes, Pure Appl.Chem, vol.77, p.1369, 2005.
DOI : 10.1351/pac200577081369

URL : https://hal.archives-ouvertes.fr/hal-00014519

H. Bodiguel and J. Leng, Imaging the drying of a colloidal suspension, Soft Matter, vol.6, p.5451, 2010.

N. Ziane and J. Salmon, Solidification of a charged colloidal dispersion investigated using microfluidic pervaporation, Langmuir, vol.31, pp.7943-7952, 2015.
DOI : 10.1021/acs.langmuir.5b01563

F. Boulogne, L. Pauchard, F. Giorgiutti-dauphiné, R. Botet, R. Schweins et al., Structural anisotropy of directionally dried colloids, Europhys. Lett, vol.105, pp.38005-38010, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01873295

E. Di-giuseppe, A. Davaille, E. Mittelstaedt, and M. François, Rheological and mechanical properties of silica colloids : from newtonian liquid to brittle behaviour, Rheol. Acta, vol.51, p.451, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00984370

A. Alessi, S. Agnello, G. Buscarino, and F. M. Gelardi, Structural properties of core and surface of silica nanoparticles investigated by raman spectroscopy, J. Raman Spectrosc, p.810, 2013.

N. Ziane, Outils microfluidiques pour l'exploration de diagrammes de phase : de la pervaporationà la microdialyse, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01262782

K. Piroird, V. Lazarus, G. Gauthier, A. Lesaine, D. Bonamy et al., Role of evaporation rate on the particle organization and crack patterns obtained by drying a colloidal layer, Europhys. Lett, vol.113, p.38002, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01279544

A. Diaspro, F. Federici, and M. Robello, Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy, Appl. Opt, vol.41, issue.4, pp.685-690, 2002.

P. N. Pusey and R. J. Tough, Dynamic light scattering, a probe of brownian particle dynamics, Advances in Colloid and Interface Science, vol.16, issue.1, pp.143-159, 1982.

P. N. Pusey, H. M. Fijnaut, and A. Vrij, Mode amplitudes in dynamic light scattering by concentrated liquid suspensions of polydisperse hard spheres, The Journal of Chemical Physics, vol.77, issue.9, pp.4270-4281, 1982.

D. N. Petsev and N. D. Denkov, Diffusion of charged colloidal particles at low volume fraction : Theoretical model and light scattering experiments, J. Colloid Interface Sci, vol.149, p.329, 1992.

J. Appell, G. Porte, and E. Buhler, Self-diffusion and collective diffusion of charged colloids studied by dynamic light scattering, The Journal of Physical Chemistry B, vol.109, issue.27, pp.13186-13194, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00005578

A. Oron, S. H. Davis, and S. G. Bankoff, Long-scale evolution of thin liquid films, Rev. Mod. Phys, vol.69, p.931, 1997.

R. V. Craster and O. K. Matar, Dynamics and stability of thin liquid films, Rev. Mod. Phys, vol.81, pp.1131-1198, 2009.

A. F. Routh, Drying of thin colloidal films, Rep. Prog. Phys, vol.76, pp.46603-046633, 2013.

R. D. Deegan, M. Balkanski, T. F. Dupont, G. Huber, S. R. Nagel et al., Capillary flow as the cause of ring stains from dried liquid drops, Nature, vol.389, p.827, 1997.

M. Cachile, O. Bénichou, and A. M. Cazabat, Evaporating droplets of completely wetting liquids, Langmuir, vol.18, issue.21, pp.7985-7990, 2002.

F. Giorgiutti-dauphiné and L. Pauchard, Drying drops, The European Physical Journal E, vol.41, issue.3, p.32, 2018.

M. Parsa, S. Harmand, and K. Sefiane, Mechanisms of pattern formation from dried sessile drops, Advances in Colloid and Interface Science, vol.254, pp.22-47, 2018.

F. Giorgiutti-dauphiné and L. Pauchard, Elapsed time for crack formation during drying, Eur. Phys. J. E, vol.37, pp.1-7, 2014.

L. Pauchard and C. Allain, Buckling instability induced by polymer solution drying, Europhys. Lett, vol.62, pp.897-903, 2003.
DOI : 10.1209/epl/i2003-00457-7

F. Clément and J. Leng, Evaporation of liquids and solutions in confined geometry, Langmuir, vol.20, p.6538, 2004.

F. P. Incropera, D. D. Dewitt, T. D. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 2007.

J. Leng, Drying of a colloidal suspension in confined geometry, Phys. Rev. E, vol.82, p.21405, 2010.

L. Daubersies, J. Leng, and J. Salmon, Confined drying of a complex fluid drop : phase diagram, activity, and mutual diffusion coefficient, Soft Matter, vol.8, p.5923, 2012.

P. J. Yunker, M. Gratale, M. A. Lohr, T. Still, T. C. Lubensky et al., Influence of particle shape on bending rigidity of colloidal monolayer membranes and particle deposition during droplet evaporation in confined geometries, Phys. Rev. Lett, vol.108, p.228303, 2012.

L. Pauchard, M. Mermet-guyennet, and F. Giorgiutti-dauphiné, Invagination process induced by 2d desiccation of colloidal solutions, Chemical Engineering and Processing, vol.50, p.483, 2011.
DOI : 10.1016/j.cep.2010.07.013

F. Boulogne, F. Giorgiutti-dauphiné, and L. Pauchard, The buckling and invagination process during consolidation of colloidal droplets, Soft Matter, vol.9, p.750, 2013.
DOI : 10.1039/c2sm26530c

URL : https://hal.archives-ouvertes.fr/hal-01873269

B. Selva, L. Daubersies, and J. Salmon, Solutal convection in confined geometries : enhancement of colloidal transport, Phys. Rev. Lett, vol.108, 2012.

S. J. Lee, J. Hong, and Y. Choi, Evaporation-induced flows inside a confined droplet of diluted saline solution, Langmuir, vol.30, pp.7710-7715, 2014.
DOI : 10.1021/la501401y

H. Bodiguel, F. Doumenc, and B. Guerrier, Stick-slip patterning at low capillary numbers for an evaporating colloidal suspension, Langmuir, vol.26, pp.10758-10763, 2010.
DOI : 10.1021/la204234t

C. W. Macminn, E. R. Dufresne, and J. S. Wettlaufer, Large deformations of a soft porous material, Phys. Rev. Applied, vol.5, p.44020, 2016.

M. Maya, Mécanique des milieux continus. Cours du centre d'Ensiegnement et de recherche de CLUNY,École Nationale Supérieure d'Arts et Métiers, 2010.

T. Bertrand, J. Peixinho, S. Mukhopadhyay, and C. W. Macminn, Dynamics of swelling and drying in a spherical gel, Phys. Rev. Applied, vol.6, p.64010, 2016.

G. Nägele, The Physics of Colloidal Soft Matter. Polish Academy of Sciences publication, 2004.

S. Walrand, L. Belloni, and M. Drifford, Diffusion in concentrated micellar and hard sphere solutions, J. Phys. France, vol.47, p.1565, 1986.
DOI : 10.1051/jphys:019860047090156500

URL : https://hal.archives-ouvertes.fr/jpa-00210356

J. Gapinski, A. Patkowski, A. J. Banchio, P. Holmqvist, G. Meier et al., Collective diffusion in charge-stabilized suspensions : concentration and salt effects, J. Chem. Phys, vol.126, p.104905, 2007.
DOI : 10.1063/1.2538891

S. S. Peppin, J. A. Elliott, and M. G. Worster, Solidification of colloidal suspensions, J. Fluid Mech, vol.554, p.147, 2006.

R. W. Style and S. S. Peppin, Crust formation in drying colloidal suspensions, Proc. R. Soc. A, vol.467, pp.174-193, 2011.
DOI : 10.1098/rspa.2010.0039

S. L. Bucklow, A stylometric analysis of craquelure, Computers and the Humanities, vol.31, issue.6, pp.503-521, 1997.

F. Giorgiutti-dauphiné and L. Pauchard, Painting cracks : A way to investigate the pictorial matter, Journal of Applied Physics, vol.120, issue.6, p.65107, 2016.

A. Aydin and J. M. Degraff, Evolution of polygonal fracture patterns in lava flows, Science, vol.239, pp.471-476, 1988.

G. Müller, Experimental simulation of basalt columns, Journal of Volcanology and Geothermal Research, vol.86, issue.1, pp.93-96, 1998.

E. A. Jagla and A. G. Rojo, Sequential fragmentation : The origin of columnar quasihexagonal patterns, Phys. Rev. E, vol.65, p.26203, 2002.

L. Goehring, L. Mahadevan, and S. W. Morris, Nonequilibrium scale selection mechanism for columnar jointing, Proceedings of the National Academy of Sciences, vol.106, issue.2, pp.387-392, 2009.
DOI : 10.1073/pnas.0805132106

URL : http://www.pnas.org/content/106/2/387.full.pdf

B. Kattouf, C. Warwar, I. Balla, H. Shasha, D. Sherman et al., Hexagonal patterns in thin films : Experiments and modeling, Extreme Mechanics Letters, vol.2, pp.65-71, 2015.

F. Giorgiutti-dauphiné and L. Pauchard, Dynamic delamination of drying colloidal films : Warping and creep behavior, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.466, issue.C, pp.203-209, 2015.

B. Sobac and D. Brutin, Structural and evaporative evolutions in desiccating sessile drops of blood, Phys. Rev. E, vol.84, p.11603, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01460104

D. Brutin, B. Sobac, and C. Nicloux, Influence of substrate nature on the evaporation of a sessile drop of blood, J. Heat Transfer, vol.134, p.61101, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01459504

F. Giorgiutti-dauphiné and L. Pauchard, Direct observation of concentration profiles induced by drying of a 2d colloidal dispersion drop, J. Colloid Interface Sci, vol.395, pp.263-268, 2013.

E. Lintingre, G. Ducouret, F. Lequeux, L. Olanier, T. Périé et al., Controlling the buckling instability of drying droplet of suspensions through colloidal interactions, Soft Matter, vol.11, p.3660, 2015.

A. Sarkar and M. S. Tirumkudulu, Delamination of drying nanoparticle suspensions, Soft Matter, vol.7, pp.8816-8822, 2011.

K. J. Wallenstein and W. B. Russel, The theory of delamination during drying of confined colloidal suspensions, J. Phys. : Condens. Matter, vol.23, pp.194104-194109, 2011.

P. Kiatkirakajorn and L. Goehring, Formation of shear bands in drying colloidal dispersions, Phys. Rev. Lett, vol.115, p.88302, 2015.

B. Yang, J. S. Sharp, and M. I. Smith, Shear banding in drying films of colloidal nanoparticles, ACS Nano, vol.9, issue.4, pp.4077-4084, 2015.

F. Juillerat, P. Bowen, and H. Hofmann, Formation and drying of colloidal crystals using nanosized silica particles, Langmuir, vol.22, issue.5, pp.2249-2257, 2006.

J. G. Mcgrath, R. D. Bock, J. M. Cathcart, and L. A. Lyon, Self-assembly of "paint-on" colloidal crystals using poly(styrene-co-n-isopropylacrylamide) spheres, Chemistry of Materials, vol.19, issue.7, pp.1584-1591, 2007.

J. Zhang, Z. Sun, and B. Yang, Self-assembly of photonic crystals from polymer colloids, Current Opinion in Colloid & Interface Science, vol.14, issue.2, pp.103-114, 2009.

A. J. Ryan and P. R. Christensen, Coils and polygonal crust in the athabasca valles region, mars, as evidence for a volcanic history, Science, vol.336, issue.6080, pp.449-452, 2012.

W. B. Zeid and D. Brutin, Influence of relative humidity on spreading, pattern formation and adhesion of a drying drop of whole blood, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.430, pp.1-7, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01459445

M. C. Milinkovitch, L. Manukyan, A. Debry, N. Di-poï, S. Martin et al., Crocodile head scales are not developmental units but emerge from physical cracking, Science, vol.339, issue.6115, pp.78-81, 2013.

Z. Qin, N. M. Pugno, and M. J. Buehler, Mechanics of fragmentation of crocodile skin and other thin films, Scientific Reports, issue.4, p.4966, 2014.

R. J. Jaccodine and W. A. Schlegel, Measurement of strains at si-sio2 interface, Journal of Applied Physics, vol.37, issue.6, pp.2429-2434, 1966.

E. M. Corcoran, Determining stresses in organic coatings using plate beam deflection, J. Paint. Technol, vol.41, pp.635-640, 1969.

A. K. Sinha, H. J. Levinstein, and T. E. Smith, Thermal stresses and cracking resistance of dielectric films (sin, si3n4, and sio2) on si substrates, Journal of Applied Physics, vol.49, issue.4, pp.2423-2426, 1978.

J. T. Pan and I. Blech, In situ stress measurement of refractory metal silicides during sintering, Journal of Applied Physics, vol.55, issue.8, pp.2874-2880, 1984.

C. Chiu, Determination of the elastic modulus and residual stresses in ceramic coatings using a strain gage, Journal of the American Ceramic Society, vol.73, issue.7, pp.1999-2005, 1990.

J. H. Voncken, C. Lijzenga, K. P. Kumar, K. Keizer, A. J. Burggraaf et al., New method for the measurement of stress in thin drying gel layers, produced during the formation of ceramic membranes, Journal of Materials Science, vol.27, issue.2, pp.472-478, 1992.

C. Petersen, C. Heldmann, and D. Johannsmann, Internal stresses during film formation of polymer latices, Langmuir, vol.15, issue.22, pp.7745-7751, 1999.

M. S. Tirumkudulu and W. B. Russel, Role of capillary stresses in film formation, Langmuir, vol.20, issue.7, pp.2947-2961, 2004.

M. S. Tirumkudulu and W. B. Russel, Cracking in drying latex films, Langmuir, vol.21, pp.4938-4948, 2005.
DOI : 10.1021/la048298k

H. N. Yow, M. Goikoetxea, L. Goehring, and A. F. Routh, Effect of film thickness and particle size on cracking stresses in drying latex films, Journal of Colloid and Interface Science, vol.352, issue.2, pp.542-548, 2010.

M. Chekchaki, J. Frelat, and V. Lazarus, Analytical and 3d finite element study of the deflection of an elastic cantilever bilayer plate, J. Appl. Mech, vol.78, issue.1, p.11008, 2011.

M. I. Smith and J. S. Sharp, Effects of substrate constraint on crack pattern formation in thin films of colloidal polystyrene particles, Langmuir, vol.27, pp.8009-8017, 2011.

K. K. Price, Y. Wu, A. V. Mccormick, and L. F. Francis, Stress development in hard particle coatings in the absence of lateral drying, Journal of the American Ceramic Society, vol.98, issue.7, pp.2214-2222, 2015.

G. G. Stoney, The tension of metallic films deposited by electrolysis, Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.82, issue.553, pp.172-175, 1909.

L. F. Francis, A. V. Mccormick, D. M. Vaessen, and J. A. Payne, Development and measurement of stress in polymer coatings, Journal of Materials Science, vol.37, issue.22, pp.4717-4731, 2002.

R. C. Chiu and M. J. Cima, Drying of granular ceramic films : Ii, drying stress and saturation uniformity, Journal of the American Ceramic Society, vol.76, issue.11, pp.2769-2777

J. J. Guo and J. A. Lewis, Aggregation effects on the compressive flow properties and drying behavior of colloidal silica suspensions, Journal of the American Ceramic Society, vol.82, issue.9, pp.2345-2358

H. Sahsah, S. Djendli, and J. Monin, A new method of birefringence measurements using a faraday modulator. application to measurements of stress-optical coefficients, Measurement Science and Technology, vol.11, issue.3, p.46, 2000.

G. B. Raju, D. J. Green, and O. Guillon, Evaluation of drying stresses in coatings using an optical method, Measurement Science and Technology, vol.23, issue.8, p.85609, 2012.

O. Lourie, H. D. Wagner, and N. Levin, Effective width of interface in a stressed model polymer composite measured by micro-fti.r, Polymer, vol.38, issue.22, pp.5699-5702, 1997.

H. Windischmann and K. J. Gray, Stress measurement of cvd diamond films, Diamond and Related Materials, vol.4, issue.5, pp.837-842, 1995.

Y. Xu, W. Engl, E. R. Jerison, K. J. Wallenstein, C. Hyland et al., Imaging in-plane and normal stresses near an interface crack using traction force microscopy, Proc. Natl. Acad. Sci. USA, vol.107, pp.14964-14967, 2010.

B. Mueller, Measuring shear stress in microfluidics using traction force microscopy, In Experimental and Applied Mechanics, vol.6, pp.135-136, 2011.

Y. Xu, G. K. German, A. F. Mertz, and E. R. Dufresne, Imaging stress and strain in the fracture of drying colloidal films, Soft Matter, vol.9, pp.3735-3740, 2013.

R. W. Style, R. Boltyanskiy, G. K. German, C. Hyland, C. W. Macminn et al., Traction force microscopy in physics and biology, Soft Matter, vol.10, p.4047, 2014.

U. S. Schwarz and J. R. Soiné, Traction force microscopy on soft elastic substrates : A guide to recent computational advances, Biochimica et Biophysica Acta (BBA) -Molecular Cell Research, issue.11, pp.3095-3104, 2015.

F. Boulogne, Y. L. Kong, J. K. Nunes, and H. A. Stone, Effect of the polydispersity of a colloidal drop on drying induced stress as measured by the buckling of a floating sheet, Phys. Rev. Lett, vol.116, p.238001, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01704129

W. B. Russel, N. Wu, and W. Man, Generalized hertzian model for the deformation and cracking of colloidal packings saturated with liquid, Langmuir, vol.24, p.1721, 2008.

M. Chekchaki and V. Lazarus, Mechanical stresses induced by evaporation in consolidated colloidal suspensions of hard particles. poroelasticity theory versus experiments, Transp Porous Med, vol.100, p.143, 2013.

L. Goehring, A. Nakahara, T. Dutta, S. Kitsunezaki, and S. Tarafdar, Desiccation Cracks and their Patterns : Formation and Modelling in Science and Nature, 2015.

S. Roy and M. S. Tirumkudulu, Drying and consolidation in drying colloidal dispersions, Procedia IUTAM, vol.15, pp.57-63, 2015.

M. Léang, F. Giorgiutti-dauphiné, L. Leeb, and L. Pauchard, Crack opening : from colloidal systems to paintings, Soft Matter, vol.34, pp.5802-5808, 2017.

L. Greenspan, Humidity fixed points of binary saturated aqueous solutions, J. of Research National Bureau of Standards, vol.81, pp.89-96, 1977.

P. Lambert, A. Chau, A. Delchambre, and S. Régnier, Comparison between two capillary forces models, Langmuir, vol.24, issue.7, pp.3157-3163, 2008.

Y. Sasaki, H. Kim, and M. Iguchi, Repulsive capillary force between two plates linked by a concave molten slag bridge, ISIJ International, vol.49, issue.11, pp.1814-1815, 2009.

S. Cheng and M. O. Robbins, Nanocapillary adhesion between parallel plates. Langmuir, vol.32, pp.7788-7795, 2016.

T. Trantidou, Y. Elani, E. Parsons, and O. Ces, Hydrophilic surface modification of pdms for droplet microfluidics using a simple, quick, and robust method via pva deposition, Microsystems & Nanoengineering, vol.3, p.16091, 2017.

N. Bodin-thomazo, F. Malloggi, and P. Guenoun, Marker patterning : a spatially resolved method for tuning the wettability of pdms, RSC Adv, vol.7, pp.46514-46519, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01599520

C. J. Brinker and G. W. Scherer, Sol-Gel Science : The Physics and Chemistry of Sol-Gel Processing, 1990.

K. B. Singh and M. S. Tirumkudulu, Cracking in drying colloidal films, Phys. Rev. Lett, vol.98, p.218302, 2007.

L. Goehring, W. J. Clegg, and A. F. Routh, Plasticity and fracture in drying colloidal films, Phys. Rev. Lett, vol.110, p.24301, 2013.

Z. Ha and C. K. Chan, The water activities of mgcl2, mg(no3)2, mgso4, and their mixtures, Aerosol Science and Technology, vol.31, issue.2-3, pp.154-169, 1999.

D. Mckenzie, The generation and compaction of partially molten rock, Journal of Petrology, vol.25, pp.713-765, 1984.

M. A. Hesse, A. R. Schiemenz, Y. Liang, and E. M. Parmentier, Compactiondissolution waves in an upwelling mantle column, Geophysical Journal International, vol.187, pp.1057-1075, 2011.
DOI : 10.1111/j.1365-246x.2011.05177.x

URL : https://academic.oup.com/gji/article-pdf/187/3/1057/1677198/187-3-1057.pdf

A. H. Cheng and . Poroelasticity, , 2016.

J. Bear and M. Y. Corapcioglu, Mathematical model for regional land subsidence due to pumping : 1. integrated aquifer subsidence equations based on vertical displacement only, Water Resources Research, vol.17, pp.937-946, 1981.

H. F. Wang, Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology, 2000.

M. L. Szulczewski, C. W. Macminn, H. J. Herzog, and R. Juanes, Lifetime of carbon capture and storage as a climate-change mitigation technology, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.5185-5189, 2012.

V. C. Mow, S. C. Kuei, W. M. Lai, and C. G. Armstrong, Biphasic creep and stress relaxation of articular cartilage in compression : Theory and experiments, Journal of Biomechanical Engineering, vol.102, pp.73-84, 1980.

M. Yang and L. A. Taber, The possible role of poroelasticity in the apparent viscoelastic behavior of passive cardiac muscle, Journal of Biomechanics, vol.24, pp.587-597, 1991.

S. C. Cowin, Bone poroelasticity, Journal of Biomechanics, vol.32, pp.217-238, 1999.
DOI : 10.1016/s0021-9290(98)00161-4

J. Dumais and Y. Forterre, Vegetable dynamicks' : The role of water in plant movements, Annual Review of Fluid Mechanics, vol.44, pp.453-478, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01432073

L. Dormieux, D. Kondo, and F. , , 2006.

K. Terzaghi, Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen, Sitz. Akad. Wissen., Wien Math. Naturwiss. Kl, vol.IIa, pp.105-124, 1923.

L. Rendulic, Porenziffer und porenwasserdrunk in tonen, vol.17, pp.559-564, 1936.

M. A. Biot, General theory of three-dimensional consolidation, Journal of Applied Physics, vol.12, issue.2, pp.155-164, 1941.
DOI : 10.1063/1.1712886

URL : https://hal.archives-ouvertes.fr/hal-01368635

M. A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid, Journal of Applied Physics, vol.26, pp.182-185, 1955.
URL : https://hal.archives-ouvertes.fr/hal-01368659

M. A. Biot, General solutions of the equations of elasticity and consolidation for a porous material, J. Appl. Mech, vol.78, pp.91-96, 1956.
URL : https://hal.archives-ouvertes.fr/hal-01368662

A. Verruijt, Elastic storage of aquifers. Flow Through Porous Media, 1969.

J. R. Rice and M. P. Cleary, Some basic stress-diffusion solutions for fluid saturated elastic porous media with compressible constituents, Rev. Geophys. Space Phys, vol.14, pp.227-241, 1976.
DOI : 10.1029/rg014i002p00227

O. Coussy and . Poromechanics, , 2004.

W. Hong, X. Zhao, J. Zhou, and Z. Suo, A theory of coupled diffusion and large deformation in polymeric gels, Journal of the Mechanics and Physics of Solids, vol.56, pp.1779-1793, 2008.

S. A. Chester and L. Anand, A coupled theory of fluid permeation and large deformations for elastomeric materials, Journal of the Mechanics and Physics of Solids, vol.58, pp.1879-1906, 2010.

A. Lesaine, D. Bonamy, G. Gauthier, C. L. Rountree, and V. Lazarus, Highly porous layers of silica nanospheres sintered by drying : scaling up of the elastic properties of the beads to the macroscopic mechanical properties, Soft Matter, vol.14, pp.3987-3997, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01904335

O. Glatter, G. Scherf, K. Schillén, and W. Brown, Characterization of a poly(ethylene oxide)-poly(propylene oxide) triblock copolymer (eo27-po39-eo27) in aqueous solution, Macromolecules, vol.27, pp.6046-6054, 1994.

A. V. Kabanov, E. V. Batrakova, and V. Y. Alakhov, Pluronic -block copolymers as novel polymer therapeutics for drug and gene delivery, J. Control. Release, vol.82, p.189, 2002.

I. R. Schmolka, A review of block polymer surfactants, J. Am. Oil Chem. Soc, vol.54, p.110, 1977.

P. Alexandridis and T. A. Hatton, Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces : thermodynamics, structure, dynamics, and modeling, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.96, issue.1, pp.1-46, 1995.

G. Wanka, H. Hoffmann, and W. Ulbricht, Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions, Macromolecules, vol.27, p.4145, 1994.

M. Malmsten and B. Lindman, Self-assembly in aqueous block copolymer solutions, Macromolecules, vol.25, issue.20, pp.5440-5445, 1992.

P. Alexandridis, J. F. Holzwarth, and T. A. Hatton, Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions : Thermodynamics of copolymer association, Macromolecules, vol.27, issue.9, pp.2414-2425, 1994.

R. K. Prud'homme, G. Wu, and D. K. Schneider, Structure and rheology studies of poly(oxyethylene-oxypropylene-oxyethylene) aqueous solution, Langmuir, vol.12, issue.20, pp.4651-4659, 1996.

J. J. Escobar-chávez, M. López-cervantes, A. Naïk, Y. N. Kalia, D. Quintanarguerrero et al., Applications of thermoreversible pluronic f-127 gels in pharmaceutical formulations, J. Pharm. Pharmaceut. Sci, vol.9, issue.3, pp.339-358, 2006.

A. A. Barba, M. Amore, M. Grassi, S. Chirico, G. Lamberti et al., Investigation of pluronic f127-water solutions phase transitions by dsc and dielectric spectroscopy, Journal of Applied Polymer Science, vol.114, issue.2, pp.688-695, 2009.

E. Gioffredi, M. Boffito, S. Calzone, S. M. Giannitelli, A. Rainer et al., Pluronic f127 hydrogel characterization and biofabrication in cellularized constructs for tissue engineering applications, Procedia CIRP, vol.49, pp.125-132, 2016.

M. Jalaal, G. Cottrell, N. Balmforth, and B. Stoeber, On the rheology of pluronic f127 aqueous solutions, Journal of Rheology, vol.61, issue.1, pp.139-146, 2017.

L. Yap and M. Yang, Evaluation of hydrogel composing of pluronic f127 and carboxymethyl hexanoyl chitosan as injectable scaffold for tissue engineering applications, Colloids and Surfaces B : Biointerfaces, vol.146, pp.204-211, 2016.

R. S. Lenk, Polymer Rheology, 1978.

C. W. Macosko, Rheology : Principles, Measurements, and Applications, 1994.

P. Coussot and J. Grossiard, Comprendre la rhéologie, de la circulation du sangà la prise du béton, 2002.

A. P. Deshpande, J. M. Krishnan, and S. Kumar, Rheology of Complex Fluids, 2010.

A. Y. Malkin and A. I. Isayev, Rheology Concepts, Methods, and Applications, 2012.

T. G. Mezger, The Rheology Handbook. Vincentz Network, 2014.

D. A. Weitz and M. Oliveria, Fractal structures formed by kinetic aggregation of aqueous gold colloids, Phys. Rev. Lett, vol.52, pp.1433-1436, 1984.

A. L. Sibrant and L. Pauchard, Effect of the particle interactions on the structuration and mechanical strength of particulate materials, EPL, vol.116, issue.4, p.49002, 2016.

P. C. Møller, S. Rodts, M. A. Michels, and D. Bonn, Shear banding and yield stress in soft glassy materials, Phys. Rev. E, vol.77, p.41507

J. Thiery, E. Keita, S. Rodts, D. Murias, T. Kodger et al., Drying kinetics of deformable and cracking nano-porous gels, The European Physical Journal E, vol.39, issue.12, p.117, 2016.

S. Aime, L. Cipelletti, and L. Ramos, Power law viscoelasticity of a fractal colloidal gel. Soft Condensed Matter, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01889803

S. Dehaeck, A. Rednikov, and P. Colinet, Vapor-based interferometric measurement of local evaporation rate and interfacial temperature of evaporating droplets, Langmuir, vol.30, issue.8, pp.2002-2008, 2014.

Y. Tsoumpas, S. Dehaeck, A. Rednikov, and P. Colinet, Effect of marangoni flows on the shape of thin sessile droplets evaporating into air, Langmuir, vol.31, issue.49, pp.13334-13340, 2015.

L. Mekhitarian, B. Sobac, S. Dehaeck, B. Haut, and P. Colinet, Evaporation dynamics of completely wetting drops on geometrically textured surfaces, EPL, vol.120, issue.1, p.16001, 2017.

M. A. Van-limbeek, M. H. Klein-schaarsberg, B. Sobac, A. Rednikov, C. Sun et al., Leidenfrost drops cooling surfaces : theory and interferometric measurement, Journal of Fluid Mechanics, vol.827, pp.614-639, 2017.

M. Takeda, H. Ina, and S. Kobayashi, Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry, J. Opt. Soc. Am, vol.72, issue.1, pp.156-160, 1982.

W. W. Macy, Two-dimensional fringe-pattern analysis, Appl. Opt, vol.22, issue.23, pp.3898-3901, 1983.

T. Kreis, Digital holographic interference-phase measurement using the fouriertransform method, J. Opt. Soc. Am. A, vol.3, issue.6, pp.847-855, 1986.

S. Dehaeck, Y. Tsoumpas, and P. Colinet, Analyzing closed-fringe images using two-dimensional fan wavelets, Appl. Opt, vol.54, issue.10, pp.2939-2952, 2015.

S. Dehaeck and P. Colinet, Improving speed and precision of local frequency analysis using gaussian ridge interpolation for wavelet and windowed fourier ridge algorithms, Optics and Lasers in Engineering, vol.77, pp.54-63, 2016.

I. H. Jaafar, C. E. Leblon, M. Wei, D. Ou-yang, J. P. Coulter et al., Improving fluorescence imaging of biological cells on biomedical polymers, Acta Biomaterialia, vol.7, issue.4, pp.1588-1598, 2011.

Y. Hu, X. Cheng, and H. D. Ou-yang, Enumerating virus-like particles in an optically concentrated suspension by fluorescence correlation spectroscopy, Biomed. Opt. Express, vol.4, issue.9, pp.1646-1653, 2013.

Y. Xu, M. Wei, H. D. Ou-yang, S. G. Walker, H. Z. Wang et al., Exposure to tio2 nanoparticles increases staphylococcus aureus infection of hela cells, Journal of Nanobiotechnology, vol.14, issue.1, p.34, 2016.

H. Huang and H. D. Ou-yang, A novel dielectrophoresis potential spectroscopy for colloidal nanoparticles, Eectrophoresis, vol.38, issue.12, pp.1609-1616, 2017.

H. Huang, Y. Huang, W. Lau, H. D. Ou-yang, C. Zhou et al., Integrating optical coherence tomography with gravimetric and video analysis (octgravimetry-video method) for studying the drying process of polystyrene latex system, Scientific Reports, vol.8, p.12962, 2018.

J. Decock, M. Schlenk, and J. Salmon, In situ photo-patterning of pressureresistant hydrogel membranes with controlled permeabilities in pegda microfluidic channels, Lab Chip, vol.18, pp.1075-1083, 2018.

Y. Xia and G. M. Whitesides, Soft lithography, Annual Review of Materials Science, vol.28, pp.153-184, 1998.

W. F. Murphy and H. J. Bernstein, Raman spectra and an assignment of the vibrational stretching region of water, The Journal of Physical Chemistry, vol.76, issue.8, pp.1147-1152, 1972.

R. Roa, D. Menne, J. Riest, P. Buzatu, E. K. Zholkovskiy et al., Ultrafiltration of charge-stabilized dispersions at low salinity, Soft Matter, vol.12, p.4638, 2016.

P. Lidon and J. Salmon, Dynamics of unidirectional drying of colloidal dispersions, Soft Matter, vol.10, pp.4151-4161, 2014.