B. Dans-le, identifier de potentiels sites d'interaction avec les GAG sur la Sema3A, nous avons d'abord analysé la séquence primaire d'a.a de la Sema3A, Nous avons identifié quatre sites potentiels, riches en acides aminés basiques: KRRTRR

, Ce genre de séquences est souvent retrouvé dans les sites d'interaction des protéines avec les GAG. Pour confirmer leur interaction avec les GAG, nous avons utilisé une méthode basée sur des billes liées d, RRNEDRK

, Nous avons analysée l'interaction de la Sema3A et l'héparine. Les résultats montrent que deux des sites identifiés par l'analyse de la séquence primaire (les deux localisées au niveau de la queue C-ter)

, Puisque le but était de trouver les sites interagissant avec la CS, nous avons mutés individuellement les quatre sites potentiels par mutagenèse dirigée. Quatre mutants appelés, Mut 1, Mut 2, Mut 3 et Mut 4, respectivement, sont obtenus (Figure 49). Mut 1 et Mut 2, comme le WT, sont purifiés à partir de la surface cellulaire. Alors que

, Analyse de l'interaction Sema3A WT et ses mutants -chondroitine sulfate en SPR Nous avons analysé l'interaction de la Sema3A purifiée

, avec les chaines de CS enrichie d'unités disulfatés

, Par contre, elle n'interagit pas avec la CS-D (Figure 52 A et B). Cela indique que l'interaction de la Sema3A-90 avec la CS serait dépendante de la sulfatation. La Sema3A-65 n'interagit avec aucune CS (Figure 55). Cela confirme l'importance du domaine C-ter dans l'interaction avec les CS. Nous avons également analysé l'interaction des mutants, CS-E avec une très haute affinité de l'ordre du pM

C. Avec-la and . Spr, Les résultats obtenus montrent que Mut 1 et Mut 2 interagissent fortement avec la CS-E, comme ce qui a été vu avec le WT. Alors que, vol.56

, Nous avons analysé leur composition disaccharidique en RPIP-HPLC References 1. Reichardt and Prokop. Introduction: The Role of Extracellular Matrix in Nervous System Development and Maintenance, Nous avons extrait des CS des différents compartiments de l'ECM, 2011.

K. A. Piez, History of extracellular matrix: A personal view, Matrix Biol, vol.16, pp.85-92, 1997.

L. Robert, Éditorial Matrix biology: past, present and future, Pathol Biol, vol.49, pp.279-83, 2001.

J. P. Borel, F. X. Maquart, A. M. Robert, J. Labat-robert, and L. Robert, Celebration of the 50th anniversary of the foundation of the French society for connective tissue research. Its short history in the frame of the origin and development of this discipline, Pathol. Biol, vol.60, pp.2-6, 2011.

E. Tani and T. Ametani, Extracellular distribution of ruthenium red-positive substance in the cerebral cortex, J. Ultrasructure Res, vol.34, pp.1-14, 1971.

A. Dityatev, C. I. Seidenbecher, and M. Schachner, Compartmentalization from the outside: The extracellular matrix and functional microdomains in the brain, Trends in Neurosciences, vol.33, pp.503-512, 2010.

D. Bonneh-barkay and C. A. Wiley, Brain extracellular matrix in neurodegeneration, Brain Pathology, vol.19, pp.573-585, 2009.

L. W. Lau, R. Cua, M. B. Keough, S. Haylock-jacobs, and V. W. Yong, Pathophysiology of the brain extracellular matrix: A new target for remyelination, Nature Reviews Neuroscience, vol.14, pp.722-729, 2013.

E. E. Benarroch, Extracellular matrix in the CNS, Neurology, vol.85, pp.1417-1427, 2015.

E. Ruoslahti, Brain extracellular matrix. Glycobiology, vol.6, pp.489-192, 1996.

D. Sood, Fetal brain extracellular matrix boosts neuronal network formation in 3D bioengineered model of cortical brain tissue, ACS Biomater Sci Eng, vol.2, pp.131-140, 2016.

C. M. Galtrey and J. W. Fawcett, The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system, Brain Res. Rev, vol.54, pp.1-18, 2007.

C. S. Barros, S. J. Franco, and U. Müller, Extracellular matrix: functions in the nervous system, Cold Spring Harb. Perspect. Biol, vol.3, p.5108, 2011.

K. Meyer, A. Linker, and M. M. Rapport, The production of monosaccharides from hyaluronic acid by, J. Biol. Chem, vol.192, pp.275-281, 1951.

B. P. Toole, Hyaluronan is not just a goo, Journal of Clinical Investigation, vol.106, pp.335-336, 2000.

B. P. Toole, Hyaluronan: from extracellular glue to pericellular cue, Nat. Rev. Cancer, vol.4, pp.528-539, 2004.

J. C. Kwok, G. Dick, D. Wang, and J. W. Fawcett, Extracellular matrix and perineuronal nets in CNS repair, Dev. Neurobiol, vol.71, pp.1073-1089, 2011.

M. I. Tammi, A. J. Day, and E. A. Turley, Hyaluronan and homeostasis: A balancing act, Journal of Biological Chemistry, vol.277, pp.4581-4584, 2002.

R. P. Richter, N. S. Baranova, A. J. Day, and J. C. Kwok, Glycosaminoglycans in extracellular matrix organisation: are concepts from soft matter physics key to understanding the formation of perineuronal nets?, Curr. Opin. Struct. Biol, vol.50, pp.65-74, 2018.

D. D. Allison, K. J. Grande-allen, and . Review, Hyaluronan: A Powerful Tissue Engineering Tool, Tissue Eng, vol.12, pp.2131-2140, 2006.
DOI : 10.1089/ten.2006.12.ft-153

D. Escudero, Atlas of genetics and cytogenetics in oncology and Haematology, p.25, 2009.

A. C. Rapraeger and V. L. Ott, Molecular interactions of the syndecan core proteins, Current Opinion in Cell Biology, vol.10, pp.620-628, 1998.

U. Rauch, Isolation and characterization of developmentally regulated chondroitin sulfate and chondroitin/keratan sulfate proteoglycans of brain identified with monoclonal antibodies, J. Biol. Chem, vol.266, pp.14785-14801, 1991.

G. J. Cole and C. F. Mccabe, Identification of a Developmentally Regulated Keratan Sulfate Proteoglycan That Inhibits Cell Adhesion and Neurite Outgrowth, Neuron, vol.7, pp.1007-1018, 1991.

M. M. Klinger, R. U. Margolis, and R. K. Margolis, Isolation and characterization of the heparan sulfate proteoglycans of brain, J. Biol. Chem, vol.260, pp.4082-4090, 1985.

A. D. Lander, Proteoglycans in the nervous system, Curr. Opin. Neurobiol, vol.3, pp.71-723, 1993.

M. E. Herndon and . Lander, A diverse set of developmentally regulated proteoglycans is expressed in the rat central nervous system, Neuron, vol.4, pp.949-61, 1990.

H. Cui, C. Freeman, G. A. Jacobson, and D. H. Small, Proteoglycans in the Central Nervous System: Role in Development, Neural Repair, and Alzheimer's Disease. Int. Union Biochem, Mol. Biol, vol.65, pp.108-120, 2013.

P. Maurel, U. Rauch, M. Fladt, R. K. Margolist, and R. U. Margolis, Phosphacan, a chondroitin sulfate proteoglycan of brain that interacts with neurons and neural cell-adhesion molecules, is an extracellular variant of a receptor-type protein tyrosine phosphatase, Biochemistry, vol.91, pp.2512-2516, 1994.

Y. Yamaguchi, Lecticans: organizers of the brain extracellular matrix, C. Cell. Mol. Life Sci, vol.57, pp.276-289, 2000.

A. M. Hocking, T. Shinomura, and D. J. Mcquillan, Leucine-rich repeat glycoproteins of the extracellular matrix, Matrix Biology, vol.17, pp.1-19, 1998.

E. Staub, B. Hinzmann, and A. Rosenthal, A novel repeat in the melanoma-associated chondroitin sulfate proteoglycan defines a new protein family, FEBS Lett, vol.527, pp.114-122, 2002.

K. Elenius and M. Jalkanen, Function of the syndecans -a family of cell surface proteoglycans, J. Cell Sci, vol.107, pp.2975-2982, 1994.

M. Kim, A. M. Saunders, B. Y. Hamaoka, P. A. Beachy, and D. J. Leahy, Structure of the protein core of the glypican Dally-like and localization of a region important for hedgehog signaling, PNAS, vol.108, pp.13112-13117, 2011.

J. Filmus, M. Capurro, J. Rast, and . Glypicans, Genome Biol, vol.9, 2008.

M. D. Victor-nurcombe, J. A. Ford, and P. F. Wildschut, Developmental Regulation of Neural Response to FGF-1 and FGF-2 by Heparan Sulfate Proteoglycan, Science, vol.260, p.80, 1993.

R. J. Mckeon, M. J. Jurynec, and C. R. Buck, The Chondroitin Sulfate Proteoglycans Neurocan and Phosphacan Are Expressed by Reactive Astrocytes in the Chronic CNS Glial Scar, J. Neurosci, vol.19, pp.10778-10788, 1999.

K. Sango, Phosphacan and neurocan are repulsive substrata for adhesion and neurite extension of adult rat dorsal root ganglion neurons in vitro, Exp. Neurol, vol.182, pp.1-11, 2003.

M. Schmalfeldt, C. E. Bandtlow, T. María, K. H. Dours-zimmermann, and D. R. , Brain derived versican V2 is a potent inhibitor of axonal growth, J. Cell Sci, vol.113, pp.807-816, 2000.

H. Yamada, The Brain Chondroitin Sulfate Proteoglycan Brevican Associates with Astrocytes Ensheathing Cerebellar Glomeruli and Inhibits Neurite Outgrowth from Granule Neurons, J. Neurosci, vol.20, pp.7784-7795, 1997.

D. Kurihara and T. Yamashita, Chondroitin sulfate proteoglycans down-regulate spine formation in cortical neurons by targeting tropomyosin-related kinase B (TrkB) protein, J. Biol. Chem, vol.287, pp.13822-13828, 2012.

A. Oohira, F. Matsui, Y. Tokita, S. Yamauchi, and S. Aono, Molecular interactions of neural chondroitin sulfate proteoglycans in the brain development, Arch. Biochem. Biophys, vol.374, pp.24-34, 2000.

A. Joester and A. Faissner, The structure and function of tenascins in the nervous system, Matrix Biol, vol.20, pp.13-22, 2001.

I. Jakovcevski, D. Miljkovic, M. Schachner, and P. R. Andjus, Tenascins and inflammation in disorders of the nervous system, Amino Acids, vol.44, pp.1115-1127, 2013.

R. A. Kammerer, Tenascin-C hexabrachion assembly is a sequential two-step process initiated by coiled-coil ?-helices, J. Biol. Chem, vol.273, pp.10602-10608, 1998.

P. L. Jones and F. S. Jones, Mini review Tenascin-C in development and disease: gene regulation and cell function, Matrix Biol, vol.19, p.581596, 2000.

E. Garcion, A. Halilagic, A. Faissner, and C. Ffrench-constant, Generation of an environmental niche for neural stem cell development bythe extracellular matrix molecule tenascin C, Development, vol.131, pp.3423-3432, 2004.

T. Strekalova, Fibronectin domains of extracellular matrix molecule tenascin-C modulate hippocampal learning and synaptic plasticity, Mol. Cell. Neurosci, vol.21, pp.173-187, 2002.
DOI : 10.1006/mcne.2002.1172

J. Reinhard, L. Roll, and A. Faissner, Tenascins in Retinal and Optic Nerve Neurodegeneration, Front. Integr. Neurosci, vol.11, p.30, 2017.
DOI : 10.3389/fnint.2017.00030

URL : https://www.frontiersin.org/articles/10.3389/fnint.2017.00030/pdf

A. Woodworth, P. Pesheva, D. Fiete, and J. U. Baenziger, Neuronal-specific Synthesis and Glycosylation of Tenascin-R, J. Biol. Chem, vol.279, pp.10413-10421, 2004.

B. Anlar and A. Gunel-ozcan, Tenascin-R: Role in the central nervous system, Int. J. Biochem. Cell Biol, vol.44, pp.1385-1389, 2012.

H. Liao, W. Huang, R. Niu, L. Sun, and L. Zhang, Cross-talk between the epidermal growth factor-like repeats/fibronectin 6-8 repeats domains of Tenascin-R and microglia modulates neural stem/progenitor cell proliferation and differentiation, J. Neurosci. Res, vol.86, pp.27-34, 2008.

H. Liao, W. Y. Bu, T. H. Wang, S. Ahmed, and Z. C. Xiao, Tenascin-R plays a role in neuroprotection via its distinct domains that coordinate to modulate the microglia function, J. Biol. Chem, vol.280, pp.8316-8323, 2005.

A. P. Spicer, A. Joo, and R. A. Bowling, A Hyaluronan Binding Link Protein Gene Family Whose Members Are Physically Linked Adjacent to Chrondroitin Sulfate Proteoglycan Core Protein Genes, J. Biol. Chem, vol.278, pp.21083-21091, 2003.

D. Carulli, Animals lacking link protein have attenuated perineuronal nets and persistent plasticity, Brain a J. Neurol. J. Neurol, vol.133, pp.2331-2347, 2010.
DOI : 10.1093/brain/awq145

URL : https://academic.oup.com/brain/article-pdf/133/8/2331/16696088/awq145.pdf

Y. Bekku, Bral2 is Indispensable for the Proper Localization of Brevican and the Structural Integrity of the Perineuronal Net in the Brainstem and Cerebellum, J. Comp. Neurol, vol.520, pp.1721-1736, 2012.

A. Oohira, F. Matsui, M. Matsuda, and R. Shoji, Developmental Change in the Glycosaminoglycan Composition of the Rat Brain, J. Neurochem, vol.47, pp.588-593, 1986.

Z. Mészár, Hyaluronan accumulates around differentiating neurons in spinal cord of chicken embryos, Brain Res. Bull, vol.75, pp.414-418, 2008.

J. R. Fraser, T. C. Laurent, and U. B. Laurent, Hyaluronan: its nature, distribution, functions and turnover, J. Intern. Med, vol.242, pp.27-33, 1997.
DOI : 10.1046/j.1365-2796.1997.00170.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-2796.1997.00170.x

A. Bignami and R. Asher, Some observations on the localization of hyaluronic acid in adult, newborn and embryonal rat brain, Int. J. Dev. Neurosci, vol.10, pp.45-57, 1992.

B. A. Sorg, Casting a Wide Net: Role of Perineuronal Nets in Neural Plasticity, J. Neurosci, vol.36, pp.11459-11468, 2016.

A. Faissner, Isolation of a neural chondroitin sulfate proteoglycan with neurite outgrowth promoting properties, J. Cell Biol, vol.126, pp.783-799, 1994.

M. Schmalfeldt, M. T. Dours-zimmermann, K. H. Winterhalter, and D. R. Zimmermann, Versican V2is a major extracellular matrix component of the mature bovine brain, J. Biol. Chem, vol.273, pp.15758-15764, 1998.

X. Zhou, Neurocan Is Dispensable for Brain Development, Mol. Cell. Biol, vol.21, pp.5970-5978, 2001.
DOI : 10.1128/mcb.21.17.5970-5978.2001

URL : https://mcb.asm.org/content/21/17/5970.full.pdf

K. Niisato, Age-Dependent Enhancement of Hippocampal Long-Term Potentiation and Impairment of Spatial Learning through the Rho-Associated Kinase Pathway in Protein Tyrosine Phosphatase Receptor Type Z-Deficient Mice, J. Neurosci, vol.25, pp.1081-1088, 2005.

O. Saksela and D. B. Rifkin, Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity, J. Cell Biol, vol.110, pp.767-775, 1990.
DOI : 10.1016/0268-9499(89)90172-0

. Rusnati and M. Presta, Interaction of angiogenic basic fibroblast growth factor with endothelial cell heparan sulfate proteoglycans Biological implications in neovascularization, Int. J. Clin. Lab. Res, vol.26, pp.15-23, 1996.

K. Brachel, L. E. Okolicsanyi, C. Oikari, L. R. Yu, and L. M. , Heparan Sulfate Proteoglycans as Drivers of Neural Progenitors Derived From Human Mesenchymal Stem Cells, Front. Neurosci, vol.11, 2018.

G. Condomitti and J. De-wit, Heparan Sulfate Proteoglycans as Emerging Players in Synaptic Specificity, Front. Mol. Neurosci, vol.11, 2018.
DOI : 10.3389/fnmol.2018.00014

URL : https://www.frontiersin.org/articles/10.3389/fnmol.2018.00014/pdf

Y. P. Hsueh and M. Sheng, Regulated expression and subcellular localization of syndecan heparan sulfate proteoglycans and the syndecan-binding protein CASK/LIN-2 during rat brain development, J. Neurosci, vol.19, pp.7415-7440, 1999.

N. Luo, Syndecan-4 modulates the proliferation of neural cells and the formation of CaP axons during zebrafish embryonic neurogenesis, Sci. Rep, vol.6, 2016.

U. Bartsch, P. Pesheva, M. Raff, and M. Schachner, Expression of janusin (J1-160/180) in the retina and optic nerve of the developing and adult mouse, Glia, vol.9, pp.57-69, 1993.

L. S. David, M. Schachner, and A. Saghatelyan, The Extracellular Matrix Glycoprotein Tenascin-R Affects Adult But Not Developmental Neurogenesis in the Olfactory Bulb, J. Neurosci, vol.33, pp.10324-10339, 2013.

R. Probstmeier, J. Rg-nellen, S. Gloor, A. Wernig, and P. Pesheva, Tenascin-R is Expressed by Schwann Cells in the Peripheral Nervous System, J. Neurosci. Res, vol.64, pp.70-78, 2001.
DOI : 10.1002/jnr.1055

U. Rauch, Review Extracellular matrix components associated with remodeling processes in brain, C. Cell. Mol. Life Sci, vol.61, pp.2031-2045, 2004.
DOI : 10.1007/s00018-004-4043-x

A. Von-holst, Tenascin C in Stem Cell Niches: Redundant, Permissive or Instructive?, Cells Tissues Organs, vol.188, pp.170-177, 2008.

P. O'keefe, K. Westgate, and B. Wisner, Taking the naturalness out of natural disasters, Nature, vol.260, pp.566-567, 1976.

E. G. Coles, L. S. Gammill, J. H. Miner, and M. Bronner-fraser, Abnormalities in neural crest cell migration in laminin ?5 mutant mice, Dev. Biol, vol.289, pp.218-228, 2006.
DOI : 10.1016/j.ydbio.2005.10.031

URL : https://doi.org/10.1016/j.ydbio.2005.10.031

K. Loulier, ?1 integrin maintains integrity of the embryonic neocortical stem cell niche, PLoS Biol, vol.7, p.1000176, 2009.

T. Pietri1, *. , O. Eder1, M. A. Breau1, P. Topilko2 et al., Conditional ?1-integrin gene deletion in neural crest cells causes severe developmental alterations of the peripheral nervous system, Development, vol.131, pp.3871-3883, 2004.

J. L. Salzer1, B. Zalc, and J. L. Myelination, Current Biology, vol.26, 2016.

J. L. Podratz, E. Rodriguez, and A. J. Windebank, Role of the extracellular matrix in myelination of peripheral nerve, Glia, vol.35, pp.35-40, 2001.

M. A. Chernousov, W. Yu, Z. Chen, D. J. Carey, and S. Strickland, Regulation of Schwann cell function by the extracellular matrix, Glia, vol.56, pp.1498-1507, 2008.

C. S. Barros, 1 integrins are required for normal CNS myelination and promote AKT-dependent myelin outgrowth, Development, vol.136, pp.2717-2724, 2009.

J. C. Pendleton, Chondroitin sulfate proteoglycans inhibit oligodendrocyte myelination through PTP?, Exp. Neurol, vol.247, pp.113-121, 2013.

R. Stern, A. A. Asari, and K. N. Sugahara, Hyaluronan fragments: An information-rich system, Eur. J. Cell Biol, vol.85, pp.699-715, 2006.

A. Dobbertin, Analysis of combinatorial variability reveals selective accumulation of the fibronectin type III domains B and D of tenascin-C in injured brain, Exp. Neurol, vol.225, pp.60-73, 2010.

F. Properzi, Chondroitin 6-sulphate synthesis is up-regulated in injured CNS, induced by injuryrelated cytokines and enhanced in axon-growth inhibitory glia, Eur. J. Neurosci, vol.21, pp.378-390, 2005.

N. George and H. M. Geller, Extracellular matrix and traumatic brain injury, J. Neurosci. Res, vol.96, pp.573-588, 2018.

B. H. Choi, Role of the basement membrane in neurogenesis and repair of injury in the central nervous system, Microsc. Res. Tech, vol.28, pp.193-203, 1994.

R. Mjg, B. García-medrano, and J. Bravo, The Role of the Basal Lamina in Nerve Regeneration, J Cytol Histol, vol.7, p.438, 2016.

B. Engelhardt, Development of the blood-brain barrier The blood-brain barrier from a historical perspective, Cell Tissue Res, vol.314, pp.119-129, 2003.

S. S. Deepa, Composition of perineuronal net extracellular matrix in rat brain: A different disaccharide composition for the net-associated proteoglycans, J. Biol. Chem, vol.281, pp.17789-17800, 2006.

M. R. Celio, R. Spreafico, S. De-biasi, and L. Vitellaro-zuccarello, Perineuronal nets: past and present, Trends Neurosci, vol.21, pp.510-515, 1998.

R. Spreafico, S. De-biasi, and L. Vitellaro-zuccarello, The Perineuronal Net: A Weapon for a Challenge, J. Hist. Neurosci, vol.8, pp.179-185, 1999.

Y. Atoji, Y. Hori, M. Sugimura, and Y. Suzuki, Extracellular matrix of the superior olivary nuclei in the dog, J. Neurocytol, vol.18, pp.599-610, 1989.

A. Bignami, R. Asher, G. Perides, and F. Rahemtulla, The extracellular matrix of cerebral gray matter: Golgi's pericellular net and nissl's nervösen Grau revisited, Int. J. Dev. Neurosci, vol.10, pp.291-299, 1992.

G. Perides, H. P. Erickson, F. Rahemtulla, and A. Bignami, Colocalization of tenascin with versican, a hyaluronate-binding chondroitin sulfate proteoglycan, Anat. Embryol. (Berl), vol.188, pp.467-79, 1993.

M. R. Celio and I. Blümcke, Perineuronal nets--a specialized form of extracellular matrix in the adult nervous system, Brain Res. Brain Res. Rev, vol.19, pp.128-173, 1994.

L. Vitellaro-zuccarello, P. Bosisio, S. Mazzetti, C. Monti, and S. De-biasi, Differential expression of several molecules of the extracellular matrix in functionally and developmentally distinct regions of rat spinal cord, Cell Tissue Res, vol.327, pp.433-447, 2007.

D. Carulli, Composition of Perineuronal Nets in the Adult Rat Cerebellum and the Cellular Origin of Their Components, J. Comp. Neurol, vol.494, pp.559-577, 2006.

C. M. Galtrey, J. C. Kwok, D. Carulli, K. E. Rhodes, and J. W. Fawcett, Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord, Eur. J. Neurosci, vol.27, pp.1373-1390, 2008.

Y. Bekku, Molecular cloning of Bral2, a novel brain-specific link protein, and immunohistochemical colocalization with brevican in perineuronal nets, Mol. Cell. Neurosci, vol.24, pp.148-159, 2003.

T. Müller, Methylene blue supravital staining: an evaluation of its applicability to the mammalian brain and pineal gland, Histol. Histopathol, vol.13, pp.1019-1045, 1998.

W. Härtig, K. Brauer, and G. Brückner, Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons, Neuroreport, vol.3, pp.869-72, 1992.

G. Seeger, K. Brauer, W. Härtig, and G. Brückner, Mapping of perineuronal nets in the rat brain stained by colloidal iron hydroxide histochemistry and lectin cytochemistry, Neuroscience, vol.58, pp.371-388, 1994.

D. Wang and J. Fawcett, The perineuronal net and the control of CNS plasticity, Cell Tissue Res, vol.349, pp.147-160, 2012.

S. F. Irvine and J. C. Kwok, Perineuronal nets in spinal motoneurones: Chondroitin sulphate proteoglycan around alpha motoneurones, Int. J. Mol. Sci, vol.19, 2018.

G. Brückner, J. Kacza, and J. Grosche, Perineuronal nets characterized by vital labelling, confocal and electron microscopy in organotypic slice cultures of rat parietal cortex and hippocampus, J. Mol. Histol, vol.35, pp.115-137, 2004.

H. Pantazopoulos, A Sweet Talk: The Molecular Systems of Perineuronal Nets in Controlling Neuronal Communication, Front. Integr. Neurosci, vol.11, p.33, 2017.

T. Kosaka and C. W. Heizmann, Selective staining of a population of parvalbumin-containing GABAergic neurons in the rat cerebral cortex by lectins with specific affinity for terminal Nacetylgalactosamine, Brain Res, vol.483, pp.158-163, 1989.

S. Baig, G. K. Wilcock, and S. Love, Loss of perineuronal net N-acetylgalactosamine in Alzheimer's disease, Acta Neuropathol, vol.110, pp.393-401, 2005.

, National Academy of Sciences. Perineuronal nets and recall of distant fear memories, PNA, vol.115, pp.433-434, 2018.

S. Morikawa, Y. Ikegaya, M. Narita, and H. Tamura, Activation of perineuronal net-expressing excitatory neurons during associative memory encoding and retrieval, Sci. Rep, vol.7, 2017.

K. E. Carstens, M. L. Phillips, L. Pozzo-miller, R. J. Weinberg, and S. M. Dudek, Perineuronal Nets Suppress Plasticity of Excitatory Synapses on CA2 Pyramidal Neurons, J. Neurosci, vol.36, pp.6312-6320, 2016.

C. C. Smith, Differential regulation of perineuronal nets in the brain and spinal cord with exercise training, Brain Res. Bull, vol.111, pp.20-26, 2015.

T. Pizzorusso, Reactivation of ocular dominance plasticity in the adult visual cortex, Science, vol.298, pp.1248-51, 2002.

D. Cabulli, K. E. Rhodes, and J. W. Fawcett, Upregulation of aggrecan, link protein 1, and hyaluronan synthases during formation of perineuronal nets in the rat cerebellum, J. Comp. Neurol, vol.501, pp.83-94, 2007.

K. Brauer, L. Werner, and L. Leibnitz, Perineuronal nets of glia, J. Hirnforsch, vol.23, pp.701-709, 1982.

B. A. Sorg, Casting a Wide Net : Role of Perineuronal Nets in Neural Plasticity, J. Neurosci, vol.36, pp.11459-11468, 2016.

T. Pizzorusso, P. Medini, N. Berardi, S. Chierzi, J. W. Fawcett et al., Reactivation of Ocular Dominance Plasticity in the Adult Visual Cortex. Science, vol.298, p.80, 2002.

A. W. Barritt, Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury Europe PMC Funders Group, J Neurosci, vol.26, pp.10856-10867, 2006.

J. W. Fawcett and R. Asher, The glial scar and central nervous system repair, Brain Res. Bull, vol.49, pp.377-391, 1999.
DOI : 10.1016/s0361-9230(99)00072-6

M. R. Celio and I. Blumcke, Perineuronal nets -a specialized form of extracellular matrix in the adult nervous system, Brain Res. Rev, vol.19, pp.128-145, 1994.

S. Miyata, Y. Nishimura, and T. Nakashima, Perineuronal nets protect against amyloid ?-protein neurotoxicity in cultured cortical neurons, Brain Res, vol.1150, pp.200-206, 2007.
DOI : 10.1016/j.brainres.2007.02.066

M. Morawski, Ion exchanger in the brain: Quantitative analysis of perineuronally fixed anionic binding sites suggests diffusion barriers with ion sorting properties, Sci. Rep, vol.5, p.16471, 2015.

G. Brückner, Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts of the rat brain, Glia, vol.8, pp.183-200, 1993.

A. Suttkus, Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress, 2014.

R. Frischknecht, Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity, 2009.
DOI : 10.1038/nn.2338

D. Winter and F. , The Chemorepulsive Protein Semaphorin 3A and Perineuronal Net-Mediated Plasticity, Neural Plasticity, 2016.

C. Bernard and A. Prochiantz, Otx2-PNN Interaction to Regulate Cortical Plasticity, Neural Plast, p.7931693, 2016.
DOI : 10.1155/2016/7931693

URL : http://downloads.hindawi.com/journals/np/2016/7931693.pdf

S. Sugiyama, Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity, Cell, vol.134, pp.508-528, 2008.

M. C. Chang, Narp regulates homeostatic scaling of excitatory synapses on Parvalbumin interneurons, Nat. Neurosci, vol.13, pp.1090-1097, 2010.

H. Gao and J. Hong, Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression, Trends Immunol, vol.29, pp.357-65, 2008.
DOI : 10.1016/j.it.2008.05.002

URL : http://europepmc.org/articles/pmc4794280?pdf=render

A. Suttkus, M. Holzer, M. Morawski, and T. Arendt, The neuronal extracellular matrix restricts distribution and internalization of aggregated Tau-protein, Neuroscience, vol.313, pp.225-235, 2016.

G. Brückner, Cortical areas abundant in extracellular matrix chondroitin sulphate proteoglycans are less affected by cytoskeletal changes in Alzheimer's disease, Neuroscience, vol.92, pp.791-805, 1999.

A. Suttkus, M. Morawski, and T. Arendt, Protective Properties of Neural Extracellular Matrix, Mol. Neurobiol, vol.53, pp.73-82, 2016.

M. Okamoto, S. Mori, M. Ichimura, and H. Endo, Chondroitin sulfate proteoglycans protect cultured rat's cortical and hippocampal neurons from delayed cell death induced by excitatory amino acids, Neurosci. Lett, vol.172, pp.51-54, 1994.
DOI : 10.1016/0304-3940(94)90660-2

D. Lendvai, Neurochemical mapping of the human hippocampus reveals perisynaptic matrix around functional synapses in Alzheimer's disease, Acta Neuropathol, vol.125, pp.215-229, 2013.

M. Morawski, M. K. Brückner, P. Riederer, G. Brückner, and T. Arendt, Perineuronal nets potentially protect against oxidative stress, Exp. Neurol, vol.188, pp.309-315, 2004.

M. J. Végh, Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer's disease, Acta Neuropathol. Commun, vol.2, p.76, 2014.

S. Yang, Perineuronal net digestion with chondroitinase restores memory in mice with tau pathology, Exp. Neurol, vol.265, pp.48-58, 2015.

C. Romberg, Depletion of perineuronal nets enhances recognition memory and long-term depression in the perirhinal cortex, J. Neurosci, vol.33, pp.7057-7065, 2013.

G. Perry, Association of heparan sulfate proteoglycan with the neurofibrillary tangles of Alzheimer's disease, J. Neurosci, vol.11, pp.3679-83, 1991.

G. M. Castillo, C. Ngo, J. Cummings, T. N. Wight, and A. D. Snow, Perlecan Binds to the ?-Amyloid Proteins (A?) of Alzheimer's Disease, Accelerates A? Fibril Formation, and Maintains A? Fibril Stability, J. Neurochem, vol.69, pp.2452-2465, 2002.

T. Kanekiyo, Heparan Sulphate Proteoglycan and the Low-Density Lipoprotein Receptor-Related Protein 1 Constitute Major Pathways for Neuronal Amyloid-Uptake, J. Neurosci, vol.31, pp.1644-1651, 2011.

B. Kwon, W. Tetzlaff, J. N. Grauer, J. Beiner, and A. R. Vaccaro, Pathophysiology and pharmacologic treatment of acute spinal cord injury, Spine J, vol.4, pp.451-464, 2004.

R. J. Hurlbert, Strategies of Medical Intervention in the Management of Acute Spinal Cord Injury. Spine (Phila. Pa. 1976), vol.31, pp.16-21, 2006.

S. R. Cajal, Degeneration & Regeneration of the Nervous System, vol.2, 1928.

B. K. Mueller, R. Mueller, and H. Schoemaker, Stimulating neuroregeneration as a therapeutic drug approach for traumatic brain injury, Br. J. Pharmacol, vol.157, pp.675-85, 2009.

P. S. Fidler, Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2, J. Neurosci, vol.19, pp.8778-8788, 1999.

L. L. Jones, R. U. Margolis, and M. H. Tuszynski, The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury, Exp. Neurol, vol.182, pp.399-411, 2003.

X. Tang, J. E. Davies, and S. J. Davies, Changes in distribution, cell associations, and protein expression levels of NG2, neurocan, phosphacan, brevican, versican V2, and tenascin-C during acute to chronic maturation of spinal cord scar tissue, J. Neurosci. Res, vol.71, pp.427-471, 2003.

L. D. Moon, R. A. Asher, K. E. Rhodes, and J. W. Fawcett, Regeneration of CNS axons backto their target following treatment of adult rat brain with chondroitinase ABC, Nature neuroscience, vol.4, pp.465-466, 2001.

E. J. Bradbury, Chondroitinase ABC promotes functional recovery after spinal cord injury, Nature, vol.416, pp.636-640, 2002.

M. Karetko and J. Skangiel-kramska, Diverse functions of perineuronal nets, Acta Neurobiol. Exp. (Wars), vol.69, pp.564-77, 2009.

D. Wang, R. M. Ichiyama, R. Zhao, M. R. Andrews, and J. W. Fawcett, Chondroitinase Combined with Rehabilitation Promotes Recovery of Forelimb Function in Rats with Chronic Spinal Cord Injury, J. Neurosci, vol.31, pp.9332-9344, 2011.

K. Fox and B. Caterson, Neuroscience: Freeing the brain from the perineuronal net, Science, vol.298, pp.1187-1189, 2002.

M. Beurdeley, Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex, J. Neurosci, vol.32, pp.9429-9466, 2012.
DOI : 10.1523/jneurosci.0394-12.2012

URL : http://www.jneurosci.org/content/32/27/9429.full.pdf

B. Y. Bray, J. E. Gregory, and M. Stacey, chemistry of tissues, Biochem. J, vol.38, pp.142-146, 1944.
DOI : 10.1042/bj0400124

B. Y. Levene, P. A. On chondroitin, 1913.

S. Roseman, Reflections on Glycobiology * 1. J. Biol. Chem, vol.276, pp.41527-41542, 2001.

U. Lindahl and L. Rodén, The chondroitin 4-sulfate-protein linkage, J. Biol. Chem, vol.241, pp.2113-2119, 1966.

W. T. Winter, S. Arnott, D. H. Isaac, and E. D. Atkins, Chondroitin 4-sulfate: The structure of a sulfated glycosaminoglycan, J. Mol. Biol, vol.125, pp.1-19, 1978.

B. J. Connell and H. Lortat-jacob, Human Immunodeficiency Virus and Heparan Sulfate: From Attachment to Entry Inhibition, Front. Immunol, vol.4, p.385, 2013.
DOI : 10.3389/fimmu.2013.00385

URL : https://hal.archives-ouvertes.fr/hal-00924124

D. Soares-da-costa, R. L. Reis, and I. Pashkuleva, Sulfation of Glycosaminoglycans and Its Implications in Human Health and Disorders, Annu. Rev. Biomed. Eng, vol.19, 2017.

I. Capila, R. J. Linhardt, and *. , Heparin-Protein Interactions, Angew. Chem. Int, vol.41, p.1, 2002.

M. Maccarana, Y. Sakura, A. Tawada, K. Yoshida, and U. Lindahl, Domain structure of heparan sulfates from bovine organs, J. Biol. Chem, vol.271, pp.17804-17810, 1996.
DOI : 10.1074/jbc.271.30.17804

URL : http://www.jbc.org/content/271/30/17804.full.pdf

N. Maeda, M. Ishii, K. Nishimura, and K. Kamimura, Functions of chondroitin sulfate and heparan sulfate in the developing brain, Neurochem. Res, vol.36, pp.1228-1240, 2011.

C. C. Liu, Neuronal heparan sulfates promote amyloid pathology by modulating brain amyloid-? clearance and aggregation in Alzheimer's disease, Sci. Transl. Med, vol.8, pp.332-376, 2016.
DOI : 10.1126/scitranslmed.aad3650

URL : https://stm.sciencemag.org/content/scitransmed/8/332/332ra44.full.pdf

J. L. Funderburgh, Keratan sulfate biosynthesis, IUBMB Life, vol.54, pp.187-194, 2002.
DOI : 10.1080/15216540214932

URL : https://iubmb.onlinelibrary.wiley.com/doi/pdf/10.1080/15216540214932

J. T. August, D. Granner, F. C. Murad, and . Sulfate, Structure, Role and Pharmacological Activity, 2006.

J. E. Silbert and A. C. Reppucci, Biosynthesis of chondroitin sulfate. Independent addition of glucuronic acid and N acetylgalactosamine to oligosaccharides, J. Biol. Chem, vol.251, pp.3942-3947, 1976.

J. E. Silbert and G. Sugumaran, Biosynthesis of Chondroitin/Dermatan Sulfate. IUBMB Life (International Union Biochem, Mol. Biol. Life), vol.54, pp.177-186, 2002.
DOI : 10.1080/15216540214923

T. Mikami and H. Kitagawa, Biosynthesis and function of chondroitin sulfate, Biochim. Biophys. Acta, vol.1830, pp.4719-4752, 2013.

A. E. Kearns, B. M. Vertel, and N. B. Schwartz, Topography of glycosylation and UDP-xylose production, J. Biol. Chem, vol.268, pp.11097-11104, 1993.

K. Sugahara and H. Kitagawa, Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans, Curr. Opin. Struct. Biol, vol.10, pp.518-527, 2000.

B. Pacheco, A. Malmström, and M. Maccarana, Two dermatan sulfate epimerases form iduronic acid domains in dermatan sulfate, J. Biol. Chem, vol.284, pp.9788-9795, 2009.
DOI : 10.1074/jbc.m809339200

URL : http://europepmc.org/articles/pmc2665100?pdf=render

R. J. Midura, A. Calabro, M. Yanagishita, and V. C. Hascall, Nonreducing end structures of chondroitin sulfate chains on aggrecan isolated from swarm rat chondrosarcoma cultures, J. Biol. Chem, vol.270, pp.8009-8015, 1995.

S. Ohtake-niimi, Mice deficient in N-acetylgalactosamine 4-sulfate 6-o-sulfotransferase are unable to synthesize chondroitin/dermatan sulfate containing N-acetylgalactosamine 4,6-bissulfate residues and exhibit decreased protease activity in bone marrow-derived mast cells, J. Biol. Chem, vol.285, pp.20793-805, 2010.

C. I. Gama, Sulfation patterns of glycosaminoglycans encode molecular recognition and activity, Nat. Chem. Biol, vol.2, pp.467-473, 2006.
DOI : 10.1038/nchembio810

URL : https://authors.library.caltech.edu/56473/3/nchembio810-S2.pdf

V. Prabhakar and R. Sasisekharan, The Biosynthesis and Catabolism of Galactosaminoglycans, Adv. Pharmacol, vol.53, pp.69-115, 2006.

T. Kaneiwa, S. Mizumoto, K. Sugahara, and S. Yamada, Identification of human hyaluronidase-4 as a novel chondroitin sulfate hydrolase that preferentially cleaves the galactosaminidic linkage in the trisulfated tetrasaccharide sequence, Glycobiology, vol.20, pp.300-309, 2010.

Y. Tachi, Expression of hyaluronidase-4 in a rat spinal cord hemisection model, Asian Spine J, vol.9, pp.7-13, 2015.

S. S. Deepa, Composition of Perineuronal Net Extracellular Matrix in Rat Brain, J. Biol. Chem, vol.281, pp.17789-17800, 2006.

H. Kitagawa, K. Tsutsumi, Y. Tone, and K. Sugahara, Developmental regulation of the sulfation profile of chondroitin sulfate chains in the chicken embryo brain, J. Biol. Chem, vol.272, pp.31377-31381, 1997.

N. Maeda, Structural variation of chondroitin sulfate and its roles in the central nervous system, Cent. Nerv. Syst. Agents Med. Chem, vol.10, pp.22-31, 2010.

M. Ishii and N. Maeda, Spatiotemporal expression of chondroitin sulfate sulfotransferases in the postnatal developing mouse cerebellum, Glycobiology, vol.18, pp.602-614, 2008.

S. Foscarin, R. Raha-chowdhury, J. W. Fawcett, and J. C. Kwok, Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory, Aging, vol.9, pp.1607-1622, 2017.
DOI : 10.18632/aging.101256

URL : http://europepmc.org/articles/pmc5509459?pdf=render

S. Miyata, Y. Komatsu, Y. Yoshimura, C. Taya, and H. Kitagawa, Persistent cortical plasticity by upregulation of chondroitin 6-sulfation, Nat. Neurosci, vol.15, pp.414-422, 2012.
DOI : 10.1038/nn.3023

R. J. Gilbert, CS-4,6 is differentially upregulated in glial scar and is a potent inhibitor of neurite extension, Mol. Cell. Neurosci, vol.29, pp.545-558, 2005.

J. M. Brown, A sulfated carbohydrate epitope inhibits axon regeneration after injury, Proc. Natl. Acad. Sci, vol.109, pp.4768-4773, 2012.
DOI : 10.1073/pnas.1121318109

URL : https://www.pnas.org/content/pnas/109/13/4768.full.pdf

M. Hikino, Oversulfated Dermatan Sulfate Exhibits Neurite Outgrowth-promoting Activity toward Embryonic Mouse Hippocampal Neurons, J. Biol. Chem, vol.278, pp.43744-43754, 2003.
DOI : 10.1074/jbc.m308169200

URL : http://www.jbc.org/content/278/44/43744.full.pdf

T. Mikami, D. Yasunaga, and H. Kitagawa, Contactin-1 Is a Functional Receptor for Neuroregulatory Chondroitin Sulfate-E, J. Biol. Chem, vol.284, pp.4494-4499, 2009.

M. Ida, Identification and functions of chondroitin sulfate in the milieu of neural stem cells, J. Biol. Chem, vol.281, pp.5982-5991, 2006.

A. Takeda, M. Shuto, and K. Funakoshi, Chondroitin Sulfate Expression in Perineuronal Nets After Goldfish Spinal Cord Lesion, Front. Cell. Neurosci, vol.12, p.63, 2018.

N. Maeda, Heterogeneity of the chondroitin sulfate portion of phosphacan/6B4 proteoglycan regulates its binding affinity for pleiotrophin/heparin binding growth-associated molecule, J. Biol. Chem, vol.278, pp.35805-35811, 2003.

E. J. Bradbury, Chondroitinase ABC promotes functional recovery after spinal cord injury, Nature, vol.416, pp.636-640, 2002.
DOI : 10.1038/416636a

K. Y. Chung, J. S. Taylor, D. K. Shum, and S. O. Chan, Axon routing at the optic chiasm after enzymatic removal of chondroitin sulfate in mouse embryos, Development, vol.127, pp.2673-2683, 2000.

V. P. Swarup, Exploiting Differential Surface Display of Chondroitin Sulfate Variants for Directing Neuronal Outgrowth NIH Public Access, J Am Chem Soc, vol.135, pp.13488-13494, 2013.

Y. Shimazaki, Developmental change and function of chondroitin sulfate deposited around cerebellar Purkinje cells, J. Neurosci. Res, vol.82, pp.172-183, 2005.
DOI : 10.1002/jnr.20639

N. Sotogaku, Activation of phospholipase C pathways by a synthetic chondroitin sulfate-E tetrasaccharide promotes neurite outgrowth of dopaminergic neurons, J. Neurochem, vol.103, pp.749-60, 2007.

B. Grimpe and J. Silver, A novel DNA enzyme reduces glycosaminoglycan chains in the glial scar and allows microtransplanted dorsal root ganglia axons to regenerate beyond lesions in the spinal cord, J. Neurosci, vol.24, pp.1393-1400, 2004.

G. Dick, Semaphorin 3A binds to the perineuronal nets via chondroitin sulfate type E motifs in rodent brains, J. Biol. Chem, vol.288, pp.27384-27395, 2013.

L. Djerbal, H. Lortat-jacob, and J. Kwok, Chondroitin sulfates and their binding molecules in the central nervous system, Glycoconjugate Journal, vol.34, pp.363-376, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01461474

U. Yazdani and J. R. Terman, The semaphorins, Genome Biol, vol.7, p.211, 2006.

A. L. Kolodkin, Fasciclin IV: Sequence, expression, and function during growth cone guidance in the grasshopper embryo, Neuron, vol.9, pp.831-845, 1992.

Y. Luo, D. Raible, and J. A. Raper, Collapsin: A Protein in Brain That Induces the Collapse and Paralysis of Neuronal Growth Cones, Cell, vol.75, pp.217-227, 1993.

A. L. Kolodkin, D. J. Matthes, and C. S. Goodman, The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules, Cell, vol.75, pp.1389-1399, 1993.

A. W. Püschel, R. H. Adams, and H. Betz, Murine semaphorin D/collapsin is a member of a diverse gene family and creates domains inhibitory for axonal extension, Neuron, vol.14, pp.941-948, 1995.

R. H. Adams, H. Betz, and A. W. Püschel, A novel class of murine semaphorins with homology to thrombospondin is differentially expressed during early embryogenesis, Mech. Dev, vol.57, pp.33-45, 1996.

L. Zhu, Regulated surface expression and shedding support a dual role for semaphorin 4D in platelet responses to vascular injury, Proc. Natl. Acad. Sci, vol.104, pp.1621-1626, 2007.

K. Browne, W. Wang, R. Q. Liu, M. Piva, and T. P. O'connor, Transmembrane semaphorin5B is proteolytically processed into a repulsive neural guidance cue, J. Neurochem, vol.123, pp.135-146, 2012.
DOI : 10.1111/j.1471-4159.2012.07885.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1471-4159.2012.07885.x

S. Holmes, Sema7A is a potent monocyte stimulator, Scand. J. Immunol, vol.56, pp.270-275, 2002.

A. Antipenko, Structure of the Semaphorin-3A Receptor Binding Module, Neuron, vol.39, pp.589-598, 2003.

C. A. Love, The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D, Nat. Struct. Biol, vol.10, pp.843-848, 2003.

B. J. Janssen, Neuropilins lock secreted semaphorins onto plexins in a ternary signaling complex, Nat. Struct. Mol. Biol, vol.19, pp.1293-1299, 2012.

B. J. Janssen, Structural basis of semaphorin-plexin signalling, Nature, vol.467, 2010.

H. Liu, Structural Basis of Semaphorin-Plexin Recognition and Viral Mimicry from Sema7A and A39R Complexes with PlexinC1, Cell, vol.142, pp.749-761, 2010.

L. T. Alto and J. R. Terman, Semaphorins and their Signaling Mechanisms, Methods Mol Biol, vol.1493, pp.1-25, 2017.

U. Yazdani and J. R. Terman, The semaphorins, Genome Biol, vol.7, p.211, 2006.

C. Siebold and E. Y. Jones, Structural insights into semaphorins and their receptors, Semin. Cell Dev. Biol, vol.24, pp.139-145, 2013.

T. Nogi, Structural basis for semaphorin signalling through the plexin receptor, Nature, vol.467, 2010.

Y. Wang, Plexins Are GTPase-Activating Proteins for Rap and Are Activated by Induced Dimerization, 2012.

C. H. Bell, A. R. Aricescu, E. Y. Jones, and C. Siebold, Dual Binding Mode for RhoGTPases in Plexin Signalling, PLoS Biol, vol.9, p.1001134, 2011.

J. R. Terman, T. Mao, R. J. Pasterkamp, H. Yu, and A. L. Kolodkin, MICALs, a family of conserved flavoprotein oxidoreductases, function in plexin-mediated axonal repulsion, Cell, vol.109, pp.887-900, 2002.

A. L. Kolodkin, Neuropilin Is a Semaphorin III Receptor. Cell, vol.90, pp.753-762, 1997.

L. Feiner and A. M. Koppel, Secreted Chick Semaphorins Bind Recombinant Neuropilin with Similar Affinities but Bind Different Subsets of Neurons In Situ, Neuron, vol.19, pp.539-545, 1997.

B. A. Appleton, Structural studies of neuropilin/antibody complexes provide insights into semaphorin and VEGF binding, EMBO J, vol.26, pp.4902-4912, 2007.

T. Yelland and S. Djordjevic, Crystal Structure of the Neuropilin-1 MAM Domain: Completing the Neuropilin-1 Ectodomain Picture. Structure, vol.24, 2008.

H. Chen, Z. He, A. Bagri, and M. Tessier-lavigne, Semaphorin-neuropilin interactions underlying sympathetic axon responses to class III semaphorins, Neuron, pp.80648-80648, 1998.

L. Roth, Transmembrane Domain Interactions Control Biological Functions of Neuropilin-1, Mol. Biol. Cell, vol.19, pp.646-654, 2008.

F. Nakamura, R. G. Kalb, and S. M. Strittmatter, Molecular basis of semaphorin-mediated axon guidance, J. Neurobiol, vol.44, pp.219-248, 2000.

P. Nasarre, R. M. Gemmill, and H. A. Drabkin, The emerging role of class-3 semaphorins and their neuropilin receptors in oncology, OncoTargets and Therapy, vol.7, pp.1663-1687, 2014.

T. Kitsukawa, Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice, Neuron, vol.19, pp.995-1005, 1997.

C. C. Lee, A. Kreusch, D. Mcmullan, K. Ng, and G. Spraggon, Crystal Structure of the Human Neuropilin-1 b1 Domain Neuropilins and Axon Guidance Neuropilin-1 is one of two family members initially identi-fied as high-affinity cell surface receptors for secreted, Structure, vol.11, pp.99-108, 2003.

C. Ruiz-de-almodovar, VEGF mediates commissural axon chemoattraction through its receptor Flk1, Neuron, vol.70, pp.966-78, 2011.

R. Mamluk, Neuropilin-1 binds vascular endothelial growth factor 165, placenta growth factor-2, and heparin via its b1b2 domain, J. Biol. Chem, vol.277, pp.24818-24825, 2002.

C. Gu, Characterization of neuropilin-1 structural features that confer binding to semaphorin 3A and vascular endothelial growth factor 165, J. Biol. Chem, vol.277, pp.18069-18076, 2002.

M. L. Gagnon, Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor: In vivo expression and antitumor activity, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.2573-2581, 2000.

Y. Shintani, Glycosaminoglycan modification of neuropilin-1 modulates VEGFR2 signaling, EMBO J, vol.25, pp.3045-55, 2006.

G. Ö. Elpek, Neuropilins and liver, World J. Gastroenterol, vol.21, pp.7065-7073, 2015.
DOI : 10.3748/wjg.v21.i23.7065

URL : https://doi.org/10.3748/wjg.v21.i23.7065

J. Dodd and T. M. Jessell, Axon guidance and the patterning of neuronal projections in vertebrates, Science, vol.242, pp.692-699, 1988.

A. A. Nugent, A. L. Kolpak, and E. C. Engle, Human disorders of axon guidance, Curr. Opin. Neurobiol, vol.22, pp.837-880, 2012.

E. T. Stoeckli, Understanding axon guidance: are we nearly there yet?, Development, vol.145, p.151415, 2018.
DOI : 10.1242/dev.151415

URL : http://dev.biologists.org/content/develop/145/10/dev151415.full.pdf

G. De-ramon-francàs, N. R. Zuñiga, and E. T. Stoeckli, The spinal cord shows the way -How axons navigate intermediate targets, Dev. Biol, vol.432, pp.43-52, 2017.

N. T. Gamboa, Neurovascular patterning cues and implications for central and peripheral neurological disease, Surg. Neurol. Int, vol.8, p.208, 2017.

S. C. Landis, Neuronal growth cones, Ann.Rev.Physiol, vol.45, pp.567-580, 1983.

S. Chauvet, Gating of Sema3E/PlexinD1 Signaling by Neuropilin-1 Switches Axonal Repulsion to Attraction during Brain Development, Neuron, vol.56, pp.807-822, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00302587

S. M. Kolk, Semaphorin 3F is a bifunctional guidance cue for dopaminergic axons and controls their fasciculation, channeling, rostral growth, and intracortical targeting, J. Neurosci, vol.29, pp.12542-57, 2009.

D. B. Kantor, Semaphorin 5A Is a Bifunctional Axon Guidance Cue Regulated by Heparan and Chondroitin Sulfate Proteoglycans, Neuron, vol.44, pp.961-975, 2004.

R. L. Matsuoka, Class5 transmembrane semaphorins control selective mammalian retinal lamination and function, Neuron, vol.71, pp.460-473, 2011.
DOI : 10.1016/j.neuron.2011.06.009

URL : https://doi.org/10.1016/j.neuron.2011.06.009

R. L. Matsuoka, Transmembrane semaphorin signalling controls laminar stratification in the mammalian retina, Nature, vol.470, pp.259-264, 2011.

M. Baudet, miR-124 acts through CoREST to control onset of Sema3A sensitivity in navigating retinal growth cones, Nat. Neurosci, vol.15, pp.29-38, 2012.

T. Matsuo, D. A. Rossier, C. Kan, and I. Rodriguez, The wiring of Grueneberg ganglion axons is dependent on neuropilin 1, Development, vol.139, pp.2783-2791, 2012.

E. K. Messersmith, Semaphorin III Can Function as a Selective Chemorepellent to Pattern Sensory Projections in the Spinal Cord, Neuron, vol.14, 1995.

J. N. Reza, I. Gavazzi, and J. Cohen, Neuropilin-1 Is Expressed on Adult Mammalian Dorsal Root Ganglion Neurons and Mediates Semaphorin3a/Collapsin-1-Induced Growth Cone Collapse by Small Diameter Sensory Afferents, Mol. Cell. Neurosci, vol.14, pp.317-326, 1999.

X. Tang, Semaphorin3A Inhibits Nerve Growth Factor-Induced Sprouting of Nociceptive Afferents in Adult Rat Spinal Cord, J. Neurosci, vol.24, pp.819-827, 2004.

F. Moret, C. Renaudot, M. Bozon, and V. Castellani, Semaphorin and neuropilin co-expression in motoneurons sets axon sensitivity to environmental semaphorin sources during motor axon pathfinding, Development, vol.134, pp.4491-4501, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00195307

G. Chen, Semaphorin-3A guides radial migration of cortical neurons during development, Nat. Neurosci, vol.11, pp.36-44, 2008.

P. Giacobini, Semaphorin 4D regulates gonadotropin hormonereleasing hormone-1 neuronal migration through PlexinBl-Met complex, J. Cell Biol, vol.183, pp.555-566, 2008.

A. Kumanogoh, Semaphorins a diversity of emerging physiological and pathological activities, 2015.

H. Takamatsu, T. Okuno, and A. Kumanogoh, Regulation of immune cell responses by semaphorins and their receptors, Cell. Mol. Immunol, vol.7, pp.83-91, 2010.

J. A. Sterling, The Role of Semaphorin 4D in Bone Remodeling and Cancer Metastasis, vol.9, p.1, 2018.

R. Xu, Semaphorin 3A a new player in bone remodeling, Cell Adhesion and Migration, vol.8, pp.5-10, 2014.

A. Sakurai, C. Doci, and J. S. Gutkind, Semaphorin signaling in angiogenesis, lymphangiogenesis and cancer, Cell Res, vol.22, pp.23-32, 2011.

B. Palodetto, SEMA3A partially reverses VEGF effects through binding to neuropilin-1, Stem Cell Res, vol.22, pp.70-78, 2017.

G. Neufeld, A. D. Sabag, N. Rabinovicz, and O. Kessler, Semaphorins in angiogenesis and tumor progression. Cold Spring Harb, Perspect. Med, vol.2, p.6718, 2012.

R. H. Adams, M. Lohrum, A. Klostermann, H. Betz, and A. W. Püschel, The chemorepulsive activity of secreted semaphorins is regulated by furin-dependent proteolytic processing, EMBO J, vol.16, pp.6077-6086, 1997.

D. A. Bravo, J. B. Gleason, R. I. Sanchez, R. A. Roth, and R. S. Fuller, Accurate and efficient cleavage of the human insulin proreceptor by the human proprotein-processing protease furin. Characterization and kinetic parameters using the purified, secreted soluble protease expressed by a recombinant baculovirus, J. Biol. Chem, vol.269, pp.25830-25837, 1994.

K. Nakayama, Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins, Biochem. J, vol.327, pp.625-660, 1997.

S. S. Molloy, L. Thomas, J. K. Vanslyke, P. E. Stenberg, and G. Thomas, Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface, EMBO J, vol.13, pp.18-33, 1994.

A. Klostermann, M. Lohrum, R. H. Adams, and A. W. Püschel, The chemorepulsive activity of the axonal guidance signal semaphorin D requires dimerization, J. Biol. Chem, vol.273, pp.7326-7357, 1998.

F. Nakamura, M. Tanaka, T. Takahashi, R. G. Kalb, and S. M. Strittmatter, NNeuropilin-1 Extracellular Domains Mediate Semaphorin D/III-Induced Growth Cone Collapse, Neuron, vol.21, 1998.

M. R. Comeau, A poxvirus-encoded semaphorin induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor, VESPR. Immunity, vol.8, pp.473-482, 1998.

M. L. Winberg, Plexin A is a neuronal semaphorin receptor that controls axon guidance, Cell, vol.95, pp.903-916, 1998.

, Plexin-Neuropilin-1 Complexes Form Functional Semaphorin-3A Receptors, Cell, vol.99, pp.59-69, 1999.

T. Takahashi and S. M. Strittmatter, PlexinA1 autoinhibition by the Plexin sema domain, Neuron, vol.29, pp.429-439, 2001.

A. D. Sabag, The role of the plexin-A2 receptor in Sema3A and Sema3B signal transduction, J. Cell Sci, vol.127, pp.5240-5252, 2014.

A. Yaron, P. Huang, H. Cheng, and M. Tessier-lavigne, Differential Requirement for Plexin-A3 and -A4 in Mediating Responses of Sensory and Sympathetic Neurons to Distinct Class 3 Semaphorins, Neuron, vol.45, pp.513-523, 2005.

H. Wen, Y. Lei, S. Eun, J. P. Ting, and .. , Plexin-A4-semaphorin 3A signaling is required for Tolllike receptor-and sepsis-induced cytokine storm, J. Exp. Med, vol.207, pp.2943-57, 2010.

T. Zygmunt, Semaphorin-PlexinD1 Signaling Limits Angiogenic Potential via the VEGF Decoy Receptor sFlt1, Dev. Cell, vol.21, pp.301-314, 2011.

G. Neufeld and O. Kessler, The semaphorins: Versatile regulators of tumour progression and tumour angiogenesis, Nature Reviews Cancer, vol.8, pp.632-645, 2008.

Y. Goshima, F. Nakamura, P. Strittmatter, and S. M. Strittmatter, Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33, Nature, vol.376, pp.509-514, 1995.

N. Mitsui, Involvement of Fes / Fps tyrosine kinase in semaphorin3A signaling, EMBO J, vol.21, 2002.

R. Inatome, Identification of CRAM, a novel unc-33 gene family protien that associates with CRMP3 and protein-tyrosine kinase(s) in the developing rat brain, J. Biol. Chem, vol.275, pp.27291-27302, 2000.

Y. Fukata, CRMP-2 binds to tubulin heterodimers to promote microtubule assembly, Nat. Cell Biol, vol.4, pp.583-591, 2002.

Z. Jin and S. M. Strittmatter, Rac1 mediates collapsin-1-induced growth cone collapse, J. Neurosci, vol.17, pp.6256-6263, 1997.
DOI : 10.1523/jneurosci.17-16-06256.1997

URL : http://www.jneurosci.org/content/17/16/6256.full.pdf

Y. Sasaki, Fyn and Cdk5 mediate semaphorin-3A signaling, which is involved in regulation of dendrite orientation in cerebral cortex, Neuron, vol.35, pp.907-927, 2002.

J. Fan, S. G. Mansfield, T. Redmond, P. R. Gordon-weeks, and J. A. Raper, The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor, J. Cell Biol, vol.121, pp.867-878, 1993.

N. H. Chadborn, PTEN couples Sema3A signalling to growth cone collapse, J. Cell Sci, vol.119, pp.951-957, 2006.
DOI : 10.1242/jcs.02801

URL : http://jcs.biologists.org/content/119/5/951.full.pdf

J. A. Brown, R. B. Wysolmerski, and P. C. Bridgman, Dorsal Root Ganglion Neurons React to Semaphorin 3A Application through a Biphasic Response that Requires Multiple Myosin II Isoforms, Mol. Biol. Cell, vol.20, pp.1167-1179, 2009.

T. Vo, The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain, Mol. Cell. Neurosci, vol.56, pp.186-200, 2013.

J. De-wit, R. F. Toonen, J. Verhaagen, and M. Verhage, Vesicular trafficking of semaphorin 3A is activity-dependent and differs between axons and dendrites, Traffic, vol.7, pp.1060-77, 2006.

J. De-wit, F. De-winter, J. Klooster, and J. Verhaagen, Semaphorin 3A displays a punctate distribution on the surface of neuronal cells and interacts with proteoglycans in the extracellular matrix, Mol. Cell. Neurosci, vol.29, pp.40-55, 2005.

L. Treps, Extracellular vesicle-transported Semaphorin3A promotes vascular permeability in glioblastoma, Oncogene, vol.35, pp.2615-2623, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01406334

V. Mecollari, B. Nieuwenhuis, and J. Verhaagen, A perspective on the role of class III semaphorin signaling in central nervous system trauma, Front. Cell. Neurosci, vol.8, p.328, 2014.

R. J. Pasterkamp and J. Verhaagen, Semaphorins in axon regeneration: Developmental guidance molecules gone wrong?, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.361, pp.1499-1511, 2006.
DOI : 10.1098/rstb.2006.1892

URL : http://europepmc.org/articles/pmc1664670?pdf=render

K. H. Minor, J. C. Bournat, N. Toscano, R. J. Giger, and S. J. Davies, Decorin, erythroblastic leukaemia viral oncogene homologue B4 and signal transducer and activator of transcription 3 regulation of semaphorin 3A in central nervous system scar tissue, Brain, vol.134, pp.1140-1155, 2011.

Y. A. Syed, Inhibition of CNS Remyelination by the Presence of Semaphorin 3A, J. Neurosci, vol.31, pp.3719-3728, 2011.

G. Zimmer, Chondroitin Sulfate Acts in Concert with Semaphorin 3A to Guide Tangential Migration of Cortical Interneurons in the Ventral Telencephalon, Cereb. Cortex Oct, vol.20, pp.2411-2422, 2010.

M. Montolio, A Semaphorin 3A Inhibitor Blocks Axonal Chemorepulsion and Enhances Axon Regeneration, Chem. Biol, vol.16, pp.691-701, 2009.

M. Corredor, Cationic Peptides and Peptidomimetics Bind Glycosaminoglycans as Potential Sema3A Pathway Inhibitors, Biophys. J, vol.110, pp.1291-303, 2016.

R. R. Vives, A Novel Strategy for Defining Critical Amino Acid Residues Involved in Protein/Glycosaminoglycan Interactions, J. Biol. Chem, vol.279, pp.54327-54333, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00314023

J. C. Kwok, S. Foscarin, and J. W. Fawcett, Extracellular Matrix, Neuromethods, vol.93, 2015.

E. Saesen, Insights into the Mechanism by Which Interferon-? Basic Amino Acid Clusters Mediate Protein Binding to Heparan Sulfate, J. Am. Chem. Soc, vol.135, pp.9384-9390, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00847973

J. Jacquinet, C. Lopin-bon, A. ;. Vibert, C. , D. et al., From polymer to size-defined oligomers: a highly divergent and stereocontrolled construction of chondroitin sulfate A, Chem. A Eur. J, vol.15, issue.2, pp.9579-9595, 2009.

J. Jacquinet and C. Lopin-bon, Stereocontrolled preparation of biotinylated chondroitin sulfate E di-, tetra-, and hexasaccharide conjugates, Carbohydr. Res, vol.402, pp.35-43, 2015.

E. Migliorini, Well-defined biomimetic surfaces to characterize glycosaminoglycan-mediated interactions on the molecular, supramolecular and cellular levels, Biomaterials, vol.35, pp.8903-8915, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01056357

A. D. Cardin and H. J. Weintraub, Molecular modeling of protein-glycosaminoglycan interactions, Arteriosclerosis, vol.9, pp.21-32, 1989.

M. Sobel, D. F. Soler, J. C. Kermode, and R. B. Harris, Localization and characterization of a heparin binding domain peptide of human von Willebrand factor, J. Biol. Chem, vol.267, pp.8857-62, 1992.

A. Van-der-merwe and P. ,

G. Dubacheva, Controlling Multivalent Binding through Surface Chemistry: Model Study on Streptavidin, J. Am. Chem. Soc, vol.139, pp.4157-4167, 2017.

Y. Shintani, Glycosaminoglycan modification of neuropilin-1 modulates VEGFR2 signaling, EMBO J, vol.25, pp.3045-55, 2006.

J. D. Esko and R. J. Linhardt, Proteins that Bind Sulfated Glycosaminoglycans. Essentials of Glycobiology, pp.1-13, 2009.

C. J. Rogers, Elucidating glycosaminoglycan-protein-protein interactions using carbohydrate microarray and computational approaches, Proc. Natl. Acad. Sci, vol.108, pp.9747-9752, 2011.

S. Ashikari-hada, Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library, J. Biol. Chem, vol.279, pp.12346-54, 2004.

H. Lortat-jacob, The molecular basis and functional implications of chemokine interactions with heparan sulphate, Curr. Opin. Struct. Biol, vol.19, pp.543-548, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00455247

Y. Monneau, F. Arenzana-seisdedos, and H. Lortat-jacob, The sweet spot: how GAGs help chemokines guide migrating cells, J. Leukoc. Biol, vol.99, pp.935-953, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01352726

U. Lindahl, J. Li, and . Ping, Interactions Between Heparan Sulfate and Proteins-Design and Functional Implications, International Review of Cell and Molecular Biology, vol.276, pp.105-159, 2009.

W. G. Liang, Structural basis for oligomerization and glycosaminoglycan binding of CCL5 and CCL3, Proc. Natl. Acad. Sci, vol.113, pp.5000-5005, 2016.

S. Yang, An Approach to Synthesize Chondroitin Sulfate-E (CS-E) Oligosaccharide Precursors, J. Org. Chem, vol.83, pp.5897-5908, 2018.

A. Pasquato, Heparin enhances the furin cleavage of HIV-1 gp160 peptides, FEBS Lett, vol.581, pp.5807-5813, 2007.

P. M. Day, D. R. Lowy, and J. T. Schiller, Heparan Sulfate-Independent Cell Binding and Infection with Furin-Precleaved Papillomavirus Capsids, J. Virol, vol.82, pp.12565-12568, 2008.

J. Rawling, O. Cano, D. Garcin, D. Kolakofsky, and J. A. Melero, Recombinant Sendai Viruses Expressing Fusion Proteins with Two Furin Cleavage Sites Mimic the Syncytial and ReceptorIndependent Infection Properties of Respiratory Syncytial Virus, J. Virol, vol.85, pp.2771-2780, 2011.

W. B. Klimstra, H. W. Heidner, and R. E. Johnston, The furin protease cleavage recognition sequence of Sindbis virus PE2 can mediate virion attachment to cell surface heparan sulfate, J. Virol, vol.73, pp.6299-6306, 1999.

Y. Henrotin, M. Mathy, C. Sanchez, and C. Lambert, Chondroitin sulfate in the treatment of osteoarthritis: From in vitro studies to clinical recommendations, Therapeutic Advances in Musculoskeletal Disease, vol.2, pp.335-348, 2010.

M. Nishimura, N. Miyamoto, and J. Nishihira, Daily Oral Chondroitin Sulfate Oligosaccharides for Knee Joint Pain in Healthy Subjects: A Randomized, Blinded, Placebo-Controlled Study, Open Nutr. J, vol.12, 2018.

G. Williams, A complementary peptide approach applied to the design of novel semaphorin/neuropilin antagonists, J. Neurochem, vol.92, pp.1180-90, 2005.

E. B. Moloney, V. Mecollari, B. Blits, F. De-winter, and J. Verhaagen, Neuropilin-derived scavenger molecules with specificity for semaphorin 3A

K. L. Guan and Y. Rao, Signalling mechanisms mediating neuronal responses to guidance cues, Nature Reviews Neuroscience, vol.4, pp.941-956, 2003.