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Résumé

La première partie de ma thèse est consacrée à l’étude de l’auto-organisation de sou-

ches génétiquement modifiées de bactéries Escherichia coli. Ce projet, réalisé en col-

laboration avec des biologistes synthétiques de l’Université de Hong Kong, a pour ob-

jectif l’exploration et le décryptage d’un nouveau mécanisme d’auto-organisation dans

des colonies bactériennes multi-espèces. Cela a été inspiré par la question fascinante de

comment les écosystèmes bactériens comprenant plusieurs espèces de bactéries peuvent

s’auto-organiser dans l’espace. En considérant des systèmes dans lesquels deux souches

de bactéries régulent mutuellement leurs motilités, j’ai pu montrer que le contrôle de

densité réciproque est une voie générique de formation de motifs: si deux souches ten-

dent à faire augmenter mutuellement leur motilité (la souche A se déplace plus vite quand

la souche B est présent, et vice versa), ils subissent un processus de formation de mo-

tifs conduisant à la démixtion entre les deux souches. Inversement, l’inhibition mutuelle

de la motilité conduit à la formation de motifs avec colocalisation. Ces résultats ont été

validés expérimentalement par nos collaborateurs biologistes. Par la suite, j’ai étendu

mon étude à des systèmes composés de plus de deux espèces en interaction, trouvant

des règles simples permettant de prédire l’auto-organisation spatiale d’un nombre arbi-

traire d’espèces dont la motilité est sous contrôle mutuel. Cette partie de ma thèse ouvre

une nouvelle voie pour comprendre l’auto-organisation des colonies bactériennes avec

des souches concurrentes, ce qui est une question importante pour comprendre la dy-

namique des biofilms ou des écosystèmes bactériens dans les sols.

Le deuxième problème traité dans ma thèse est inspiré par le comportement collec-

tif des moteurs moléculaires se déplaçant le long des microtubules dans le cytoplasme

des cellules eucaryotes. Un modèle pertinent pour le mouvement des moteurs molécu-

laires est donné par un système paradigmatique de non-équilibre appelé Processus Asym-

metrique d’Exclusion Simple, en anglais Asymmetric Simple Exclusion Process (ASEP).

Dans ce modèle sur réseau unidimensionnel, les particules se déplacent dans les sites

voisins vides à des taux constants, avec un biais gauche-droite qui déséquilibre le sys-

tème. Lors-qu’il est connecté à ses extrémités à des réservoirs de particules, l’ASEP est un
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exemple prototypique de transitions de phase unidimensionnelles guidées par les condi-

tions aux limites. Les exemples réalistes, cependant, impliquent rarement une seule voie:

les microtubules sont constitués de plusieurs pistes de tubuline auxquelles les moteurs

peuvent s’attacher. Dans ma thèse, j’explique comment on peut théoriquement prédire

le comportement de phase de systèmes à plusieurs voies complexes, dans lesquels les

particules peuvent également sauter entre des voies parallèles. En particulier, je mon-

tre que la transition de phase unidimensionnelle vue dans l’ASEP survit cette complex-

ité supplémentaire mais implique de nouvelles caractéristiques telles que des courants

transversaux stables non-nulles et une localisation de cisaillement.

Mots cléfs:

1. systèmes hors-équilibre

2. matière vivante

3. morphogenèse

4. transitions de phase

5. formation des motifs

6. colonies de bactéries

7. moteurs moléculaires

8. particules auto-propulsées
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Abstract

The first part of my thesis is devoted to studying the self-organization of engineered

strains of run-and-tumble bacteria Escherichia coli. This project, carried out in collab-

oration with synthetic biologists at Hong Kong University, has as its objective the explo-

ration and decipherment of a novel self-organization mechanism in multi-species bacte-

rial colonies. This was inspired by the fascinating question of how bacterial ecosystems

comprising several species of bacteria can self-organize in space. By considering systems

in which two strains of bacteria mutually regulate their motilities, I was able to show that

reciprocal density control is a generic pattern-formation pathway: if two strains tend to

mutually enhance their motility (strain A moves faster when strain B is present, and con-

versely), they undergo a pattern formation process leading to demixing between the two

strains. Conversely, mutual inhibition of motility leads to pattern formation with colo-

calization. These results were validated experimentally by our biologist collaborators.

Subsequently, I extended my study to systems composed of more than two interacting

species, finding simple rules that can predict the spatial self-organization of an arbitrary

number of species whose motility is under mutual control. This part of my thesis opens

up a new route to understand the self-organization of bacterial colonies with competing

strains, which is an important question to understand the dynamics of biofilms or bacte-

rial ecosystems in soils.

The second problem treated in my thesis is inspired by the collective behaviour of

molecular motors moving along microtubules in the cytoplasm of eukaryotic cells. A rele-

vant model for the molecular motors’ motion is given by a paradigmatic non-equilibrium

system called Asymmetric Simple Exclusion Process (ASEP). In this one-dimensional lat-

tice-based model, particles hop on empty neighboring sites at constant rates, with a left-

right bias that drives the system out of equilibrium. When connected at its ends to particle

reservoirs, the ASEP is a prototypical example of one-dimensional boundary driven phase

transitions. Realistic examples, however, seldom involve only one lane: microtubules are

made of several tubulin tracks to which the motors can attach. In my thesis, I explained

how one can theoretically predict the phase behaviour of complex multilane systems, in
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which particles can also hop between parallel lanes. In particular, I showed that the one-

dimensional phase transition seen in the ASEP survives this additional complexity but

involves new features such as non-zero steady transverse currents and shear localization.

Key words:

1. non-equilibrium systems

2. living matter

3. morphogenesis

4. phase transitions

5. pattern formation

6. bacterial colonies

7. molecular motors

8. self-propelled particles
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1

Introduction

Living systems belong to a world which is governed by the laws of biology, but, at the

same time, they must obey the rules of physics. The efforts to decipher biological prob-

lems by the means of physical tools often clash with several complications that typically

arise when dealing with living organisms: very noisy environments, large number of de-

grees of freedom, large temporal and spatial scale separations, are common situations

that biophysicists have to cope with. Such situations, in fact, are not peculiar to the liv-

ing world: indeed, solving the dynamics of systems of many interacting units and finding

connections between microscopic and macroscopic properties are typical problems that

can be treated by using the tools of statistical physics.

Living systems are, by definition, out of equilibrium. At all scales, from the replica-

tion of DNA inside cells, to the growth of multicellular systems, to the collective motion

of groups of animals, energy is taken from the environment to supply all different kinds

of chemical reactions, leading to the many and varied functions of the organism. The di-

rect consequence of this “non-equilibriumness” is that there are no general approaches

to analyse biological processes and one needs to resort to the study of case-specific dy-

namics, different for every system or problem. Moreover, even the identification of the

relevant variables and degrees of freedom – necessary to establish a mathematical de-

scription of the dynamics – is often a very difficult task. Here lies the great challenge for

statistical biophysics: it is first necessary to construct a model that describes the dynam-

ics at a given scale and with a given degree of detail, and only then one can use the tools

of non-equilibrium statistical physics to study the dynamics.

Despite the great variability of biological situations and the absence of general bio-

physical theories, it is possible to define some classes of problems that present concep-

tual similarities. One of these classes comprises systems composed of many motile units

– which could be molecules, cells, animals, etc. . . – that, by interacting in various ways,

exhibit collective behaviours at scales much larger than the size of the single unit. Inde-

pendently of the internal mechanism – different for each system and that distinguishes

these motile units from passive diffusing Brownian particles – each unit can be modeled

as a self-propelled particle. These particles consume energy taken from the environment



2 Contents

in order to attain directed motion. Then, each particle carries an internal degree of free-

dom that corresponds to the state of its internal motor.

This class often goes under the name of “active matter”, although the field of active

matter actually expands beyond the borders of biology: experimentally, systems of syn-

thetic self-propelled particles can be realized, for instance by combining mechanical or

chemical energy sources with spatial anisotropy. Theoretically, active matter has attracted

a lot of attention in recent years: thanks to the fact that active systems do not in general

obey the laws of equilibrium thermodynamics, simple models can entail a very rich and

new phenomenology.

This thesis lies within this framework of statistical physics of active matter. We inves-

tigate emergent collective behaviours of two different systems: first, at the cellular level,

we study pattern formation in bacterial colonies; then, at the sub-cellular level, we con-

sider molecular motors moving along the cytoskeleton filaments. For both systems, we

show how it is possible to obtain hydrodynamic descriptions of the collective dynam-

ics, starting from microscopic models, i.e., considering the dynamics of each single bac-

terium or motor. In particular, at the many-body level, we investigate how intrinsically

non-equilibrium microscopic interactions can give rise to phase transitions at the popu-

lation scale.

The thesis is divided into two parts: part I is dedicated to the study of pattern forma-

tion and spatial organization of populations of motile bacteria. This project is the result

of a collaboration with a team of synthetic biologists from the university of Hong Kong.

Chapter 1 is an introduction to the field of pattern formation in biology. Chapter 2 focuses

on pattern formation in single-species bacterial colonies. We first recap some existing ex-

perimental results and a phenomenological theory to account for them. We then show

how to build a bottom-up approach to establish a more faithful model and a more direct

connection with the experiments. In chapter 3 we describe the multispecies experiments

that we designed with our biologist collaborators and show that in this case it is possible

to observe a richer phenomenology. We extend the single-species model to a multispecies

case, and show the good agreement between experimental results and such model by per-

forming numerical simulations. We then discuss in detail the underlying pattern forma-

tion mechanism in the case of two-species colonies. Finally, in chapter 4 we extend our

analysis to systems comprising a larger number of species of self-propelled particles.

This part of my thesis will be published in three articles which are currently in prepa-

ration: a letter on the two-species project including both the experiments and their theo-

retical modelling, which should be submitted shortly; a technical account on the coarse-

graining procedure in the one-species case, focusing on the role of finite tumble duration;

and a last article on the phase-separation of N interacting species.
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The work presented in part II of the thesis is published in [34] and was selected for the

Journal of Physics A Highlights of 2016 collection. This project was inspired by the trans-

port processes that take place in the cytoplasm of eukaryotic cells. We consider driven

diffusive systems as a model for the motion of molecular motors and study their phase

diagram in the general case of multilane systems. In chapter 5 we introduce the field

of driven diffusive systems and we illustrate the importance of considering of multilane

problems. In chapter 6 we present the general framework we used to describe multilane

systems, at the level of continuum mean-field equations. We perform a linear analysis

of these equations and in chapter 7 we use the results to formulate a general method for

constructing phase diagrams. We then turn to concrete examples and present numerical

simulations of microscopic models.

http://iopscience.iop.org/journal/1751-8121/page/Highlights-of-2016
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Part I

Spatial organization in multispecies

bacterial systems
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Chapter 1

Pattern formation in biology: a

physicist’s perspective

The formation of patterns in the living world is a phenomenon that occurs in the most

varied scales and contexts: the dots and stripes on the coats of many animals, the spirals

of plant organs along the stem, or our fingerprints are common examples of the emer-

gence of ordered structures in living organisms. Understanding how patterns are formed

is a major challenge. The variety of situations in which they arise suggests that a large

number of different mechanisms could be responsible for their formation, despite the

fact that often, due to symmetry arguments, the emergent structures look very similar

(see Fig. 1.1). In addition, these mechanisms are usually very complicated, involving

mechanical as well as chemical interactions, at different scales and at different grades

of complexity: an event, that could be a chemical reaction, the expression of a gene or

a change in physical conditions, produces physical and biochemical signals that trigger

the occurrence of other intermediate events, and the formation of the patterns is just the

result of a long, layered, and in general overwhelmingly complicated process. Another

challenge that one faces is the need of increasingly innovative technologies to observe a

specific behaviour, identify the signals that induced it, and quantify them. The techno-

logical progress achieved in the past fifty years is rather astonishing. For instance, in the

sixty years since the discovery of DNA, scientists have learnt to decipher and manipulate

genes so as to control some pattern formation processes using the tools of synthetic biol-

ogy, something that cells learned to do in billions of years of evolution. And yet it is still a

long way for technology to match the ability of living organisms in recognizing the “right”

signals and respond to them in an organized way.

In the context of experimental investigation, the exchange of knowledge between bi-

ology and physics has undeniably been very successful. Many modern experiments in bi-

ology partly rely on techniques based on physical properties of light and matter. In turn,
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Figure 1.1 – Different systems exhibit similar patterns. Top: Stripes. Left:
sand ripples. Right: zebra coat. Bottom: Venations. Left: dragonfly wing
(courtesy of Massimo Demma). Right: leaf.

this has motivated new developments in experimental physics [96]. In the field of theo-

retical biology and biophysics, the two communities’ occasions and reasons to interact

have unfortunately been more scarce. This could stem from the questions and the ways

to answer them being usually quite different in biology and physics [14]. While biologists’

questions are usually problem specific, physicists are more interested in knowing if some

general principles and mechanisms are at play. Consequently, biologists’ answers are of-

ten based on observation and aimed at providing quantitative results, while physicists try

to be more predictive, at the cost of often being only qualitative.

In the field of pattern formation and more generally that of developmental biology

(the branch of biology that studies the growth and development of multicellular organ-

isms) biology and physics often stand far apart from each other [73]. It is useful to briefly

review the steps that led to the present situation to understand why the interactions be-

tween biology on one side and physics and mathematics on the other are so important in

the study of morphogenesis and pattern formation.
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1.1 A brief history of developmental biology

Until the beginning of the 20th century, the limited understanding of how a single cell

leads to a fully developed animal or plant still led some scientists to believe in the exis-

tence of a vital force (see, e.g., [42] and [8] for a short review), which would set a clear bar-

rier between living and non-living matter. This philosophy of vitalism was not accepted

by another part of the scientific community (see, e.g., [4]) which was convinced that no

such forces existed and that the origins of morphogenesis (the formation of shapes and

structures), and development in general, were to be found in purely physical and chemi-

cal forces, those same forces that apply to inorganic matter. Among the most fervent sup-

porters of the physico-chemical origin of morphogenesis was Stéphane Leduc (see [30]

for an overview of his work), who not only claimed that life could originate spontaneously

from the inanimate world [85], but even performed experiments, described in his book

“La biologie synthétique” [86]. By using simple inorganic setup, (e.g. adding salts in a

colloidal medium) he was able to reproduce, thanks to the simple effects of diffusion and

osmosis, shapes and structures very reminiscent of plants, fungi and even cellular tissues.

Even though some of his theories have since been proven wrong – like for example that

of spontaneous generation – the idea that physical and chemical forces alone are respon-

sible for the spatial self-organization of cells were shared by many, as for example D’arcy

Thompson and Julian Huxley who tackled the problems of growth and development with

mathematical modelling [142, 65]. These are few examples of the first attempts to change

the original observational and descriptive nature of developmental biology and make it a

more formal science with a stronger predictive power. The underlying suggestion of the

use of mathematics and physics to build theories for the development of living organisms

is that these processes are governed by general rather than case-specific principles.

The discovery of the structure of DNA in 1953 [151] and the consequent rapid devel-

opment of the field of genetics and molecular biology provided new tools for the study

of development and morphogenesis. It seemed then that it was just a matter of time be-

fore the genome of different organisms – and in particular the human genome – would

be completely sequenced and the understanding of many biological problems – such as

the origin of some deseases, the theory of evolution and of course developmental biol-

ogy – finally clarified. Indeed, genetics and molecular biology allowed scientist to make

huge steps forward in identifying the origin of genetic diseases such as albinism or color

blindness, caused by the malfunctioning of specific genes. It is however unlikely that ge-

netic instructions alone are able to control the formation and development of multicel-

lular structures [153, 100]: there must exist various flexible feedback mechanisms which

make the interacting cells orchestrate their motion and spatial organization in response
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to external mechanical and chemical stimuli. Molecular biology and physical models can

then be used together in order to study these processes: the identification of the different

genes, the proteins they express, and their function, which could in principle give us an

a priori information of how the cell grows and differentiates, must be complemented by

the analysis of the shapes and structures and the a posteriori postulation of the most likely

mechanisms that lead to them.

1.2 From mathematics to biology and physics

The standard physics approach to the study of patterns is to look for the mechanism or the

change in the system’s properties that cause a symmetry breaking in an initially homoge-

neous condition [33, 64]. The paradigmatic example of pattern formation in physics is the

Rayleigh-Bénard convection where a temperature gradient between two flat horizontal

plates may cause the fluid between them, initially at rest, to start moving and form spatial

patterns, known as stripes or convection rolls. This symmetry breaking (the appearance

of stripes in an initially homogeneous fluid) occurs when the control parameter (the tem-

perature gradient) is such that the initial condition becomes unstable to small random

fluctuations (linear instability). In this regime all unstable modes grow exponentially and

the most unstable mode (the one that grows fastest) selects the initial wavelength of the

pattern. The direction of the stripes, or the shape of the more complex patterns that the

fluid can form (hexagons and squares), is determined by both the geometry of the con-

tainer and by successive symmetry breaking events (nonlinear instabilities).

Similarly, patterns in biological systems often emerge from the breaking of an underly-

ing symmetry. While the Rayleigh-Bénard stripes are controlled by an external parameter

(the temperature gradient), in a developing organism it is not at all clear what causes the

linear instability. Even before starting to wonder what kind of patterns a system can form

(if stripes, dots or more complicated structures), it is first necessary to identify the mech-

anisms that initiate the pattern formation process.

1.2.1 Turing patterns

One of the most well-known mechanisms was proposed by Alan Turing in 1952 [144],

when he postulated that patterns could be formed in a developing embryo as a conse-

quence of the interaction between two diffusing and reacting chemical substances, which

he called morphogens. In his simplified model of the developing embryo, Turing describes

the initial homogeneous state of the system (an idealized blastula) as a ring of cells or as

a continuous ring of tissue. Two – or more – morphogens can react with one another
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and diffuse along the ring. If the diffusion constants and the reaction rates vary in such

a way that the homogeneous ring becomes unstable, then small fluctuations – due, e.g.,

to Brownian movement or irregularities of the form – cause the morphogens to rearrange

spatially to form concentration gradients, whence breaking the symmetry. As in Rayleigh-

Bénard convection, the pattern can appear in any direction, depending on the random

fluctuations that caused the instability to set in: the differentiation between the dorsal

and ventral regions of the embryo can occur in any direction, as long as the two regions are

opposed to each other. Once the morphogens prepattern is established, cells can grow,

differentiate and move accordingly.

Typical reaction-diffusion equations for the dynamics of the concentration fields of

two chemicals X (r, t ) and Y (r, t ) are of the form

Ẋ = f (X ,Y )+DX∆X

Ẏ = g (X ,Y )+DY ∆Y ,
(1.1)

where DX and DY are the two diffusivities and f (X ,Y ) and g (X ,Y ) are nonlinear func-

tions describing the rates at which X and Y increase, respectively. The nonlinearities of

the reacting terms are required to saturate the exponential growth of the unstable modes.

Eqs. (1.1) are very general and allow for different families of solutions (stationary or os-

cillatory) depending on the functions f (X ,Y ) and g (X ,Y ) [87]. These functions can be

obtained either from the exact chemical reactions or by phenomenological considera-

tions. In his original paper, Turing considers “imaginary reactions which give rise to the

required functions by the law of mass action” [144, p. 43], where the “required function”

is simply to make the system linearly unstable.

This function is summarized in the simple principle of local self-enhancement and

long-range inhibition [52, 77]: in a two-chemical-species reaction-diffusion system, one

species is an activator, while the other is an inhibitor. The activator enhances both the

inhibitor and its own production, while the inhibitor suppresses the activator. If the in-

hibitor diffuses much faster than the activator, a small unbalance in the relative concen-

tration of the two chemicals is sufficient to cause their segregation.

Following this principle, Turing showed that it is possible to obtain several different

solutions of Eqs. (1.1) at the linear level by simply exploring the parameter space in the

unstable region. Since then, the practice of classifying the spatio-temporal patterns ac-

cording to the linear instability has become commonly accepted in the community of

non-equilibrium physicists [33].

Although the author himself wrote that “this model will be a simplification and an ide-

alization, therefore a falsification” [144, p. 37], Turing’s mechanism of reactive-diffusive
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chemicals has been observed in several and rather different experimental systems, for

example in coupled chemical reactions where the system presented periodic oscillations

[9, 157, 71]. The question remains as to whether the mechanism can be found in biolog-

ical systems and, in particular, if it is responsible for the formation of patterns in organ-

isms. Early investigations came from the study of the developing embryo of Drosophila

melanogaster [43], a model system in embryogenesis, in which a protein (bicoid) has been

identified as a good candidate for a prepatterning morphogen. More recent studies in

mice hair follicles [127], periodic barbs of bird feathers [58], and ridges of the mammalian

palette [45] investigated the role of other pairs of proteins acting as Turing’s activators and

inhibitors. It is however not clear if the prepatterns observed in experiments originates

from Turing’s mechanism of local self-enhancement and long-range inhibition [80, 63].

Moreover, the model does not give any explanation of how the cells responsible of mor-

phogenesis actually sense the morphogens and are able to respond to them in the “cor-

rect” way.

Turing’s contribution to the theory of pattern formation and morphogenesis is pre-

cious for at least two reasons: it inspired a lot of research in reaction-diffusion mech-

anisms in both theoretical and experimental systems in biology and chemistry and it

emphasized the usefulness of mathematical formalism of partial differential equations

(PDEs) in the investigation of patterns in biology. This has become very common in the

field of mathematical biology, whose main approach is to find appropriate phenomeno-

logical equations to describe some observed processes. A great help comes from simu-

lations of reaction-diffusion equation, whose solutions indeed resemble patterns found

in nature, e.g. on the coat of animals like leopards or fish [100, 79]. However, one must

be careful not to consider the similarities between the observed natural phenomena and

the results of simulations of phenomenological PDEs as a proof of the correctness of the

underlying model. As the same type of patterns can emerge due to very different micro-

scopic mechanisms, the practice of “pattern matching” is a dangerous strategy.

More realistic models to explain pattern formation, i.e. based on more precise bio-

logical observations, have been formulated in other contexts. In particular, chemotaxis

and quorum sensing are two biological mechanisms which are known to cause cells to

collectively move and interact. It is thus natural to explore the collective behaviours they

allow and look for possible pattern-forming processes. Note that chemotaxis and quo-

rum sensing are mechanisms that influence the cells’ behaviour at single cell level. Since

we are interested in collective behaviours, our goal is to show what are the consequences

of these mechanisms at macroscopic scales and how this scale separation can be treated

using the tools of statistical physics.
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Figure 1.2 – A capillary assay invented by W. Pfeffer in the 1880’s. The test
chemical diffuses from the capillary mouth, establishing a steep gradient
that attracts bacteria to the entrance.

From now on we consider the formation of patterns in a specific subset of living sys-

tem: bacterial colonies. Bacteria are among the simplest cells, which makes them paradig-

matic organisms to investigate problems in the field of molecular biology and genetics.

They can show very complex collective behaviours, from the formation of biofilms to

fractal shapes in growing colonies [10, 72]. Although very different from multicellular or-

ganisms, bacterial colonies undergo growth, differentiation and spatial self-organization

[126, 149]. The formation of bacterial aggregates, observed in many different species

(such as Pseudomonas aeruginosa [37], Bacillus subtilis [17], or Escherichia coli [112]) and

environments (such as oceans, soil, or the human body [31, 36]), is caused by a plethora

of different processes and mechanisms. As in the case of morphogenesis in multicellu-

lar organisms, structures and forms in bacterial colonies can emerge naturally as a con-

sequence of complicated interactions and identifying underlying mechanisms is, once

again, a major challenge.

In the next two sections we discuss some widely investigated mechanisms that can

give rise to collective behaviour in bacterial colonies. The first is chemotaxis, the ability

of cells to respond to a chemical gradient, and the second is quorum sensing, the ability

of single cells to coordinate their gene regulation according to population density.

1.2.2 Chemotaxis

Chemotaxis is a biological function which allows organisms to move towards or away from

chemicals. It has been observed in many different living systems and in particular bacte-

ria. It has received a lot of interest in the past fifty years not only to explain cells spatial
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organization, but also as a paradigm for sensory system1.

It is known that bacteria are able to accumulate in the vicinity or away from a chemical

source (see fig. 1.2). They can also form patterns and structures, as observed for instance

in the pioneering experiments by Adler [1], in the form of macroscopic bands inside a

capillary tube or concentric rings in an agar plate: for instance bacteria can create gra-

dients in the nutrient and then move preferentially in the direction of higher nutrient

concentration, hence generating swarming rings. How do these extremely simple cells

achieve directed motion? Bacteria2 swim by performing a series of runs, persistent mo-

tion in a specific direction, separated by events called tumbles, during which the direction

of motion changes abruptly. Berg and Brown [13] found that the durations of the runs

and of the tumbles follow an exponential distribution and that the mean tumbling rate

decreases when cells are swimming in the direction of increasing attractant concentra-

tion. The longer steps made by the bacteria when they swim up-gradients then generate

a mean drift towards chemoattractants.

Following the experimental observations, a semi-phenomenological model was intro-

duced in the 70’s to explain the peculiar collective behaviour of chemotactic bacteria [75].

In the model, motile bacteria of density b undergo diffusion and chemotactically respond

to a substrate of density s. The equations governing the dynamics are of the form

ṡ =−k(s)b +D∆s

ḃ =−∇(bχ(s)∇s)+∇(µ(s)∇b).
(1.2)

The first of equations (1.2) is purely phenomenological: it takes into account the diffusion

of the substrate (D∆s) and the rate at which the substrate is consumed by the bacteria

(k(s)b). The second equation is derived from a simple model of Brownian motion with

chemotaxis [74]: the last term on the right side represents the diffusion while the first term

is the chemotactic response of the bacteria to the gradient of the substrate concentration.

By choosing appropriate initial and boundary conditions, the authors were able to find a

rather good agreement between their theoretical results and the experimental ones (e.g.

regarding the speed of the bands).

1It is indeed remarkable how such small organisms can be sensitive to gradients of chemicals on much
larger scales and scientists are putting a lot of effort in trying to understand in depth the underlying mech-
anism(s) [136, 38, 29, 69, 26].

2Here we consider the motion of bacteria such as E. coli, which can self-propel in liquid or semisolid (e.g.
soft agar gel) environments thanks to their flagella [12]. More details on E. coli motion are given in the next
chapter.
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Formation of diverse patterns has been observed in several experiments on Salmo-

nella typhimurium and Escherichia coli in different environmental conditions. Conse-

quently, phenomenological variations of chemotactic models have been formulated, us-

ing a combination of ad hoc parameters – and functions – and experimentally measured

ones [145, 146, 20, 154]. Once again linear analysis is the tool used to predict the type of

instability and indeed the striking similarities between the patterns simulated and experi-

mentally observed suggest that the models could capture at least some important features

of the underlying mechanism. However, we stress the fact that pattern matching should

be considered more as a proof of concept than as an actual identification of the correct

model.

To study how general or system-dependent these mechanisms are, more rigorous de-

rivations of the macroscopic equations of chemotactic bacteria have been obtained [123,

122] using the tools of statistical physics. Statistical physics indeed plays a major role

in trying to fill the gap between the micro and the macro worlds: understanding how

the cells collectively move involves understanding how they individually respond to the

environment and its fluctuations and how they interact with each other.

Constructing more rigorous mesoscopic models is possible in situations in which we

have access to (some of) the microscopic details. Turing patterns are very difficult to ob-

serve in biological systems because the potential morphogens responsible for their emer-

gence are molecules and chemicals which are not easy to track and observe. Moreover,

this model is based on reasonable but rather arbitrary assumptions and it was formulated

without any real biological proof. In the case of chemotactic bacteria, instead, theory and

experiments have gone along since the beginning and one has inspired and completed

the other.

1.2.3 Quorum sensing

Bacteria can perform tasks other than detecting gradients of nutrients, for example they

are able to detect3 concentrations of chemicals. In particular, they can synthesize, release,

and detect small molecules – called autoinducers – whose concentration (“quorum”) acts

as a signal for an individual cell to communicate with the whole population, allowing

the cell to coordinate its gene expression according to the population density [95, 56].

Collective behaviour can then be attained.

3We stress that the processes we indicate with the term “detection” must not be thought of as active pro-
cesses: it merely indicates the passive absorption of some molecules by the cell and the integration of such
molecules into the cell’s biochemical machinery. The probability of “detecting” a molecule is proportional
to the concentration of these molecules in the environment.
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A well-known example of bacteria collective self-organization is the formation of bio-

films, i.e. dynamical heterogeneous structures that grow near surfaces4 (see fig. 1.3-Left).

Compared to morphogenesis and developmental biology, the study of biofilm formation

is a more recent field, due to the fact that bacteria have historically been regarded as in-

dividual cells not capable of interesting social behaviours [32].

Despite a simpler context, it remains very difficult to understand what are the main

factors that influence the formation and the structure of biofilms. Quorum sensing in

particular seems to be a relevant communication mechanisms (see [105] and references

therein). It is often not clear, however, what are the relative contributions of genetics,

physics, and chemistry, for instance in the investigation of biofilm development [125].

Once again, theoretical models are very useful to decipher – and one day maybe design

– biofilms. However, due to the complexity and the large range of scales present in the

problem, full-scale biofilm models are still missing [148, 62].

Another example of bacterial patterns and structure formation, where quorum sens-

ing plays an important role, is their ability to organize into macroscopic motile structures

(see [35] and references therein): among the other molecules, bacteria can produce sur-

factants (substances that lower the surface tension) which can allow them to move as a

macroscopic organism and colonize a surface much more rapidly than they could do as

individual cells (see fig. 1.3-Right). A phenomenological model involving partial differ-

ential reaction-diffusion equations describing the dynamics of the density of the bacte-

ria, of the nutrients, and of other substances produced by the cells was proposed in [93]

that qualitatively reproduces the dendritic patterns observed. However, the model is very

system-specific and many important details are not taken into account, such as wetting

phenomena or the motion of single bacteria.

1.3 Inducing patterns with synthetic biology

Collective behaviours in vivo and natural pattern formation are the result of the inter-

play of many different factors: biological factors (the struggle to survive, the search for

nutrients and the colony growth), chemical factors (the interaction and communication

via chemical substances), and physical ones (steric or hydrodynamic interactions, envi-

ronment properties). Moreover, we have seen in the previous sections the importance of

bridging the gap between experimental observations and theory to make progress. Nev-

ertheless, because of their complexity, modelling these processes is very hard and often

incomplete.

4Biofilms are usually described in opposition to planktonic cultures, where instead of sticking to a sur-
face, bacteria float freely in the environment.
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Figure 1.3 – Left: Pseudomonas aeruginosa biofilm, picture by Scott Chimi-
leski and Roberto Kolter, Harvard Medical School, Boston. Right: Dendritic
profiles for Bacillus subtilis, reprinted from [93].

To better understand which underlying mechanisms can trigger pattern formation,

an alternative strategy is to work in well controlled environments, where interactions can

be carefully designed and tuned. Synthetic biology provides the tools to implement this

strategy (see [89, 99] for reviews on the different implementations and applications): by

introducing synthetically designed plasmids5 inside the cells, or by integrating designed

DNA sequences directly into chromosomal DNA, it is possible to actively manipulate the

genetic circuit of bacteria in order to obtain the desired effect or behaviour. The main

advantage of working with genetically engineered cells is the possibility to control many

different aspects of bacterial behaviour such as the mechanisms for intracellular commu-

nication or the role of the presence of specific genes and molecules both at microscopic

and macroscopic scales.

In the study of pattern formation, different approaches are possible. First, synthetic

biology can be used to try and generate patterning systems: bacteria can be engineered in

such a way that they respond to specific and well controlled stimuli. The external stimuli

act as a prepattern6: it can be a morphogen gradient [7, 81] or, e.g., light [138] at which

bacteria adapt. The ability to program cellular patterns has the potential application of

designing new techniques to control spatial organization of biomaterials [81]. A second

approach, more investigative and less applied, is to use synthetic biology to try to decode

design principles of pattern formation: in these case the manipulation does not aim at

creating the pattern directly, but rather at testing mechanisms that could underlie them

and which would be too hard to observe in in vivo conditions [106, 118, 21].

5Plasmids are small DNA molecules, separated from the chromosomal DNA, that are replicated and
whose genes can be expressed independently.

6Here the term prepattern indicated a pattern formed by some molecules or chemicals. Cells are then
stimulated by these chemicals to move or differentiate following the spatial organization of the prepattern.
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Quorum sensing systems provide a very useful tool to engineer interactions in bacte-

rial colonies. Coupling the sensory system to the regulation of the desired gene expression

gives rise to density-dependent effects. The next two chapters are dedicated to the study

of bacterial colonies with density-dependent motility. We will show how this particular

type of interactions, together with the competition for nutrient resources, can lead to the

formation of robust patterns.
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Chapter 2

Pattern formation in single-species

bacterial colonies

2.1 Introduction

This chapter is dedicated to the study of pattern formation in single-species bacterial

colonies based on the interplay between the motility-induced phase separation (MIPS)

and the population dynamics of the cells. A phenomenological model for pattern forma-

tion based on this interplay was formulated by Cates et al. in 2010 [23]. Shortly after Liu

et al. [90] realized experiments involving engineered Escherichia coli capable of forming

patterns very similar to the ones observed in [23]. The connection between these two

works has remained elusive so far, and the topic of debate [49].

In the introductory part we recap the ideas and the results of the two papers, while

in sections 2.2 and 2.3 we develop a theoretical model which, by taking into account ex-

perimentally relevant details, makes a direct connection between MIPS and the results

obtained in [90].

v

Figure 2.1 – Schematic representation of E. coli. Left: run. Right: tumble.
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2.1.1 A model for pattern formation

2.1.1.1 Run-and-tumble dynamics

To begin with, we present the run-and-tumble model used to describe Escherichia coli’s

dynamics. It is important to note that this model is a phenomenological description re-

sulting from experimental observations [13]. It completely ignores the underlying bio-

chemical machinery, which has also been well characterized [11].

E. coli is a flagellated bacterium able to self-propel by performing a series of runs and

tumbles. During a run all the flagella rotate in the same direction (counter-clockwise,

CCW) and form a bundle. The cell then moves persistently at speed v , assumed constant,

and Brownian reorientation is small and usually neglected [22]. To change direction of

motion the bacterium performs a tumble, during which one or more flagella starts rotat-

ing in the opposite direction (clockwise, CW). This causes the bundle of flagella to break

and the cell’s position remains roughly constant while its orientation changes rapidly.

Note that this is an active reorientation and not solely the product of rotational diffusion.

As explained in section 1.2.2, the distributions of the durations of the run and tumble

events are exponential. We assume the switching rates from one state to the other to be

constant in time. We call α the tumbling rate and β the running rate, i.e. the rate at which

a tumbling cell resumes running. For wild-type E. coli, these rates correspond to a mean

run duration approximately 10 times larger than the mean tumble duration [13, 3], so that

tumbles are often approximated as instantaneous events [122, 22, 18].

In run-and-tumble models, bacteria are persistent random walkers whose diffusion

coefficient is much larger than the one of a regular passive Brownian particle of the same

size (say, a dead bacterium) [22]. The diffusivity can be computed as

D ∼ v2

dα
, (2.1)

where d is the number of spatial dimensions [12]. Note that (2.1) takes into account in-

stantaneous tumbles.

2.1.1.2 Motility-induced phase separation

Motility-induced phase separation (MIPS1) is a process during which a system of active

particles undergoes a change of state: the density of the system evolves from initially ho-

mogeneous to phase separated, with regions of high density and slowly moving particles

1See [25] for a review.
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(liquid or even solid) and regions of low density and fast moving particles (gas). MIPS oc-

curs in active systems in which the speeds of individual self-propelled particles decrease

sufficiently fast as the local particle density increases. This effect results from the follow-

ing feedback loop:

1. self-propelled particles accumulate where they go slower;

2. due to interactions, the particles’ speeds decrease in high density regions.

The first condition is a property of self-propelled particles, whose steady-state prob-

ability density does not follow the Boltzmann distribution peq ∝ exp
(
− H

kB T

)
(where H is

the hamiltonian of the system, kB the Boltzmann constant and T the temperature). For

these systems the steady-state probability pn-eq is instead proportional to the inverse of

the speed. This fact can be seen by writing down the master equation for the single parti-

cle probability density P (r,u, t ) of finding the particle at position r with orientation u and

at time t . For a particle with spatially varying speed v(r) the master equation reads

Ṗ (r,u, t ) =−∇· [v(r)uP (r,u)]+Θ[P (r,u)], (2.2)

whereΘ[P ] accounts for an isotropic particle reorientation, due for instance to Brownian

rotational diffusion or to tumbling events. If the steady-state probability is proportional

to the inverse of the speed, Pss ∝ 1/v(r), the isotropic reorientation terms vanish and

Eq. (2.2) is always satisfied.

The second condition closes the feedback loop: suppose that the particle density be-

comes non-homogeneous, due, for instance, to random fluctuations. If in regions of high

density the speed decreases sufficiently fast, due to some interactions, then in these re-

gions there can be a further increase of density, which leads to a linear instability.

If no other dynamics compete with MIPS, the system then undergoes complete phase

separation between two different coexisting densities ρH (high) and ρL (low) [141]: this

happens through a process called coarsening. In practice, small droplets disappear and

large domains become even larger in a process reminiscent of Ostwald ripening (see Fig.

2.2). In equilibrium systems, the reason for which coarsening occurs is the tendency of the

system to decrease the contact line between the coexisting densities in order to minimize

the energetically costly surface tension between them [107]. In section 2.2.2.1, we show

that in non-equilibrium systems such as bacterial colonies, surface tension terms can

arise from the non-locality of the interactions.

This mechanism was first introduced by Tailleur and Cates [139] for run-and-tumble

particles with instantaneous tumbles and quorum sensing interactions, in one-dimen-

sional space. Here we present the general model in d dimensions derived in subsequent
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Figure 2.2 – Snapshots of motility-induced phase separation in a system of
run-and-tumble particles. Reproduced from [132].

works [24, 132]. The idea is to start from the master equation for a single run-and-tumble

particle with a spatially varying speed v(r):

Ṗ (r,u, t ) =−∇· [v(r)uP (r,u)]−αP (r,u)+ α

Ω

∫
dΩ′P (r,u′), (2.3)

where r is the position of the particle at time t , u is the unit vector indicating the orien-

tation of the particle and tumbles are instantaneous. A coarse-graining procedure [132]

then leads to a macroscopic partial differential equation for the single-body probability

density in real space C (r, t ):

Ċ (r, t ) =∇· [D(r)∇C −V(r)C ] with D(r) = v(r)2

dα
, V(r) =−v(r)∇v(r)

dα
. (2.4)

The diffusivity D has the usual form of (2.1), but it is now a function of the spatial coordi-

nate. The force-like term V is also a function of space and it emerges from non-constant

v(r). Note that α does not generate a drift. One then assumes2 that Eq. (2.4) remains valid

if v is a function of r through the N -body density field ρ(r), which is assumed to evolve on

much larger timescales, leading, at mean-field level, to

ρ̇(r, t ) =∇· [D(ρ)∇ρ−V(ρ)ρ
]

with D(ρ) = v(ρ)2

dα
, V(ρ) =−v(ρ)∇v(ρ)

dα
. (2.5)

If we rewrite the expression of V(ρ) as

V(ρ) =−v(ρ)v ′(ρ)

dα
∇ρ, (2.6)

2Note that this assumption was never proven. It will be justified in section 2.2.1.
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then Eq. (2.5) can be expressed as a standard diffusion equation

ρ̇(r, t ) =∇· [Deff∇ρ
]

with Deff = D(ρ)+ρD ′(ρ)

2
. (2.7)

Deff can turn negative when v(ρ) decreases sufficiently fast:

v ′(ρ)

v(ρ)
<− 1

ρ
. (2.8)

Then, small perturbations around the homogeneous solution ρ(r) = ρ0 can grow, which

drives the system towards a phase-separated state with two coexisting densities. In this

case, the interface between the two densities must be stabilized by higher order gradients

that have been neglected in the derivation of Eq. (2.5).

2.1.1.3 Logistic growth

The first requirement for the formation of patterns, as introduced in section 1.2, is some

kind of instability that breaks the translational invariance of the initially homogeneous

state. In a colony of run-and-tumble bacteria interacting via quorum sensing this require-

ment can be fulfilled by the mechanism just described, namely by considering a negative

effective diffusivity (Deff < 0). This mechanism alone, however, cannot generate patterns:

the steady state corresponds in fact to a complete phase separation with a dense and a di-

lute region composed of slow and fast particles respectively [141] (see Fig. 2.2). To obtain

patterns further ingredients must be considered.

In section 1.2.2, we have seen how bacteria are able to explore the space by self-pro-

pelling in search of nutrient-rich regions. When they are in favourable conditions they are

able to replicate by cell division [60], while they die – or rather become dormant, i.e. non-

functional [78] – when they find themselves in starving conditions. Mathematically, this

population dynamics is often modelled by a logistic equation for the density field [100]:

ρ̇ =µρ
(
1− ρ

ρ0

)
. (2.9)

Here µ is the division rate of bacteria; it controls the typical timescale at which the system

reaches the steady state where ρ = ρ0, the carrying capacity. This value represents the

target density: when ρ < ρ0 (low competition, therefore favourable conditions) the pop-

ulation of active bacteria grows while when ρ > ρ0 (high competition, therefore starving

conditions) it decays.

This phenomenological formulation of the division and death dynamics is used by

Cates et al. [23] to model the growth of a population of run-and-tumble particles with
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density-dependent speed. They show that the coarsening observed in regular MIPS is in

this case arrested and that the system self-organizes in arrays of regularly spaced dots

or concentric rings (depending whether the initial density is homogeneous or a central

inoculum). The complete phenomenological equation to model the density dynamics

reads

ρ̇ =∇· [D[ρ]∇ρ−V[ρ]ρ
]+µρ (

1− ρ

ρ0

)
−κ∆2ρ. (2.10)

The last term proportional to the laplacian square is added to stabilize the interfaces dur-

ing phase-separation. In [23], κ > 0 and its origin is purely phenomenological, but, as

we show in section 2.2.2.1, it can be derived from a microscopic dynamics – in this case

a function of the microscopic parameters v and α – by considering a slightly non-local

coarse-grained density and approximating it by a gradient expansion.

The handwaving explanation of why the birth-and-death dynamics arrests the coars-

ening is that the two dynamics are in competition: while the mechanism of MIPS drives

the system towards a non-homogeneous steady state with two coexisting densities, the

logistic dynamics tends to homogenize the density around the constant value ρ0. More

specifically, we can consider the flux φ of bacteria through an interface between a droplet

of density ρH and the surrounding environment at density ρL . The mass exchange be-

tween ρH and ρL , due to the bacteria’s motility, is proportional to the length of the in-

terface, and hence to the radius of the droplet. On the other hand, the mass variation

inside the droplet, due to the birth and death events, is proportional to the area of the

droplet, thus to the radius squared. At steady state the two contributions must balance

and a characteristic length for the radius of the droplet – or, equivalently, for the width of

a stripe or of a ring – is selected: the coarsening is arrested. The results of a simulation

of Eq. (2.10) with the initial density following a gaussian distribution are shown in the top

panel of Fig. 2.3 (taken from [23]).

2.1.2 Experimental realizations

The model described in section 2.1.1 has been shown to give rise to stable two-dimensio-

nal patterns [23]. Tackling the question whether the mechanism can produce the same

results in real bacterial colonies requires being able to control the speed v of the bacteria

as a function of their density ρ.

Liu et al. [90] constructed a genetic circuit to control the motility of E. coli as a func-

tion of their density; a schematic representation of the circuit is shown in Fig. 2.4. A
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Figure 2.3 – Top: Dynamics of formation of patterns in 2D, starting from a
single small bacterial droplet in the middle of the simulation sample. Sim-
ulation parameters in [23]. Bottom: Time-lapsed photographs of typical
patterns obtained for the engineered strain. Experimental data in [90].

Figure 2.4 – Genetic circuit that couples the cell’s motility to the density (re-
produced from [90]).

“density-sensing module” synthesizes and excretes the autoinducer acyl-homoserine lac-

tone (AHL). At high AHL concentration (hence high cell density) a “motility-control mod-

ule” represses the transcription of the gene cheZ. When expressed, this gene encodes a

phosphatase called CheZ, which accelerates the dephosphorylation of phosphorylated

CheY (CheY-P). CheY-P is responsible for changing the direction of flagellar rotation from

CCW to CW: its presence favours tumbling over running [15]. CheZ deletion therefore

leads to an increase of CheY-P concentration, causing the cell to tumble incessantly [152,

115, 128]. The result is that at high densities the cells are less motile – because their tum-

ble duration becomes large with respect to the run duration – while at low density they

perform the regular run-and-tumble motion.

Liu et al. then inoculated a droplet containing the mutant strain depicted in Fig. 2.4

in the center of a petri dish containing semisolid agar. This is a gel whose pores are large
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enough that bacteria can swim in the gel, but dense enough that convection of the solvent

(water), and hence hydrodynamic interactions, are negligible. If the medium provides a

sufficient amount of nutrients the bacteria are able to replicate, making the total popu-

lation grow. Instead of expanding homogeneously3, the colony self-organizes in a series

of high and low density concentric rings, very reminiscent of the simulation of [23], as

shown in the bottom panel of Fig. 2.3.

Although numerical and experimental results look very much alike (cf. Fig. 2.3), there

are some important gaps between the theoretical model and the experiments. Firstly,

there are technical issues which prevent the establishment of robust quantitative connec-

tions between theory and experiments. From the experimental point of view, only the cell

density can be measured (by the means of a constitutively expressed fluorescent molecule

and Continuous-Fluorescence-Photobleaching methods [88]). It is however much more

complicated to track and measure the concentration of smaller molecules (AHL, CheZ,

the agar medium), which would provide information about the interactions. Ideally, were

these concentrations controllable, they could be used as a parameter to tune the strength

of interactions, and hence sample the space of control parameters. From the point of

view of the theory and numerical simulations, it is very easy to control these interactions,

which are basically set manually, while a lot of (potentially important) experimental de-

tails are completely ignored (such as the presence of non-motile cells, the interactions

with the agar gel, the concentration of nutrients, etc.). Indeed, it is the goal of a good

model to retain only the fundamental ingredients; nevertheless, this often comes at the

price of losing the possibility to establish quantitative connections with the experiments.

Another gap, more conceptual, between the works presented in [23] and [90] lies in

the difference in the regulation of the bacterial motility by the density. While in the former

the density controls the speed of the particle, in the latter the density controls the tum-

ble duration. The final result of both strategies is to decrease the efficiency of transport

when the density becomes large. The consequent phase separation is a signature of the

non-equilibriumness of the systems that we are analysing. Kinetic parameters are in fact

irrelevant in equilibrium systems, where the steady state distribution is solely determined

3In the context of population dynamics, the spread of a diffusing and reproducing population is de-
scribed by the Fisher-KPP equation [48]:

ρ̇ = D∆ρ+µρ
(
1− ρ

ρ0

)
. (2.11)

Starting from a central inoculum, the solution is a traveling front moving at speed c = 2
√
µD . A colony

of wild-type E. coli, incapable of controlling their motility, inoculated in semisolid agar indeed expands
homogeneously, qualitatively following the solution of (2.11) [90].
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by thermodynamic quantities such as temperature, pressure, etc. In non-equilibrium sys-

tems, however, the role of kinetic parameters is unknown and no general theory has ever

been formulated4. Consider for instance a system of bacteria with instantaneous tum-

bles, where now the tumbling rate can vary with the density, while the speed of bacteria

is constant: α=α(ρ) and v = v0. In this case, the dynamics cannot lead to a density accu-

mulation, and hence no phase separation can occur, as discussed in detail in section 2.2.2,

page 35. This example shows that, at macroscopic scales, different kinetic parameters

can play different roles, which cannot be deduced a priori. There is therefore no guaran-

tee that considering a density-modulated speed in a system of instantaneously tumbling

particles yields the same result as considering a density-modulated tumbling duration in

a system of particles with finite tumble duration. In the following, we construct a model

in which the finite duration of tumbles is taken into account and we show that in this case

MIPS can emerge via the modulations of motility parameters other than the speed. In

particular, a model in which the density modulates the tumble duration represent a more

direct connection with the experiments of [90].

Section 2.2 is dedicated to the derivation of a macroscopic partial differential equa-

tion akin to Eq. (2.5), but which takes into account finite tumble duration. Moreover, we

present a generalized coarse-graining procedure, which takes into account the interac-

tions between particles from the beginning. Unlike previous derivations [139, 24, 132],

which start from a non-interacting single-body problem and then assume that the re-

sults hold when considering a many-body system with interactions, our procedure over-

comes the need of formulating such assumptions, as we explain in section 2.2.1.2. We

then present a linear analysis of the equation we obtain, showing the role played by the

finite tumble duration, and we validate our results with numerical simulations. Then, in

section 2.3 we present the complete theory, and corresponding numerical simulations,

for pattern formation.

2.2 The role of finite tumble duration

The finite duration of tumbling events has been investigated previously in, e.g., the study

of jamming of two particles [129] or to explore its role in chemotaxis [69, 116]. Here we

show how its regulation by the local density affects the motility of the cells and under

which conditions it gives rise to MIPS and, once coupled with the logistic growth of the

colony, to patterns.

4It is indeed likely that no such theory can even exist, non-equilibirum systems being out-of-equilibrium
in many different ways, so that there cannot be a universal model able to describe them.
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2.2.1 Coarse-graining procedure

In this section we present a coarse-graining procedure that allows us to obtain, by elimi-

nating the appropriate degrees of freedom, a macroscopic description of the dynamics of

run-and-tumble bacteria with finite tumble duration.

To model the run-tumble-stop dynamics explicitly, we assume that each bacterium

can be in one of the two following dynamical states: a running state, during which it

moves in a well defined direction, and a tumbling state, during which its position is fixed.

When the bacterium resumes running, it does so with a new orientation, drawn from a

uniform distribution. We note N the total number of bacteria. For each particle `, the

motility parameters v` (the speed), α` (the tumbling rate) and β` (the running rate) are

functions of the positions of all particles, e.g. v` = v`({rn}), where {rn} ≡ r1,r2, . . . ,rN .

To distinguish a running bacterium from a tumbling one we introduce a discrete de-

gree of freedom (the dynamical state): σ` = 0,1 for the tumbling and running states, re-

spectively. We call P = P ({rn ,θn ,σn}, t ) the joint probability of the configuration {rn ,θn ,σn}

(position, orientation and dynamical state) for the colony. The master equation then

reads:

Ṗ ({rn ,θn ,σn}, t ) =
N∑
`=1

σ`

[
−∇` · (v`uθ`P )−α`P + β`

2π

∫
dθ′`Pσ`=0

]

+
N∑
`=1

(1−σ`)
[−β`P +α`Pσ`=1

] (2.12)

Here Pσ`=1 and Pσ`=0 correspond to P ({rn ,θn ,σn}) but in which the value of the variable

σ` has been fixed to 1 or 0. The first sum (first line) in Eq. (2.12) takes into account the

dynamics of running bacteria: the first term is due to the flux of probability (uθ` is the unit

vector in the direction θ`), the second is a loss term due to particles that stop running to

enter a tumbling state while the third is a gain term due to particles that stop tumbling

and start running in direction θ`. The second sum (second line) takes into account the

dynamics of tumbling bacteria: the loss term is due to particles that switch from tumbling

to running (in a new random direction) while the gain term is due to particles switching

from running to tumbling.

The coarse-graining procedure is divided into two parts, detailed in sections 2.2.1.1

and 2.2.1.2. In the first one we integrate out the degrees of freedom {σn} and {θn} that

describe the dynamical states and the orientations of all particles. By using a fast variable

approximation and a truncated gradient expansion we obtain the dynamics for the joint

probability density C0({rn}, t ) of the positions of all the particles, which obeys a Fokker-

Planck equation. In the second part of the procedure we use Itō calculus (following [39,

139]) to go from the Fokker-Planck equation for the probability density C0({rn}, t ) to a
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stochastic partial differential equation for the N -particles density field ρ(r, t ) = ∑
i δ(r−

ri (t )).

2.2.1.1 Diffusion-drift approximation

The two degrees of freedom that have to be integrated out when passing from the mi-

croscopic to mesoscopic scales are the orientations of the particles and their dynamical

states. The latter is a discrete variable and therefore, in order to eliminate it, we can simply

sum over its possible values: σ` = 0,1. On the other hand, in order to eliminate the angular

dependence {θn} from our dynamics, we express the joint probability P in a “joint” Fourier

basis: {exp
(
i
∑N

j=1 k jθ j

)
}, which takes into account the orientation of all the particles, and

then project the master equation on this basis. The use of this generalized 2-dimensional

Fourier basis instead of a generalized d-dimensional basis of spherical harmonics is justi-

fied by assuming that we consider an almost 2D system: all bacteria are assumed to swim

in a plane and their directions are defined by only one angle: uθ` = (cosθ`, sinθ`). This

assumption, although not completely faithful to the experiments (we know that in the

experiments bacteria swim in 3D inside the agar gel), greatly simplifies the calculations

and gives results which are in qualitative agreement with the experimental observations;

extending the computation to 3D is doable but would only alter quantitatively the results.

We thus express P in the joint Fourier basis:

P ({rn ,θn ,σn}) = (2π)−N
∑
{kn }

ck1...kN ({rn ,σn})exp

(
i

N∑
j=1

k jθ j

)
. (2.13)

In the following we use the notation:

C0 = ck1=0...kN=0

C±` = ck1=0...k`=±1...kN=0

C±2` = ck1=0...k`=±2...kN=0

C±`±m = ck1=0...k`=±1...km=±1...kN=0

. . .

(2.14)

We call these quantities moments: they are the components of P along the basis vectors

{1,exp(±iθ`),exp(±2iθ`),exp(i (±θ`±θm)), . . .} (2.15)

that we from now on refer to as “harmonics”.
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The dynamics of the moments (2.14), which are functions of the positions {rn} and

the dynamical states {σn} of all the particles, but not of their orientations {θn}, can be

obtained by projecting the master equation on the different harmonics:

〈1, Ṗ〉 = Ċ0

〈exp(±iθ`), Ṗ〉 = Ċ∓`

. . .

(2.16)

with

〈 f ({θn}), g ({θn})〉 ≡
∫

dθ1 . . .dθN f ({θn})g ({θn}) (2.17)

the scalar product on our joint Fourier basis.

We are in particular interested in the dynamics of the zeroth moment C0, i.e. the prob-

ability density in real space {rn}, since it is the only conserved quantity, or slow variable:

its relaxation time diverges with the system size. Projection on the zeroth harmonic and

sum over the {σn} variables leads to the equation governing the evolution of the probabil-

ity density C0({rn}, t ):

Ċ0 =−∑
`

∇` ·
[

v`
2

(
Cσ`=1
−`

(
1

−i

)
+Cσ`=1

+`

(
1

i

))]
. (2.18)

The details of the derivation can be found in Appendix A.1.1. As we can see, Eq. (2.18)

involves the higher modes Cσ`=1
±` ({rn}, t ). Note that this notation with the superscriptσ` =

1 indicates that all variables {σn 6=`} have been summed over, while σ` takes value 1. In

practice, this notation indicates a moment where all particles are in any dynamical state

(run or tumble), while particle ` is in a running state.

To obtain a closed equation involving only the probability density C0 we need to ex-

press the modes Cσ`=1
±` in terms of C0 and then re-inject them into Eq. (2.18). Unlike C0, all

the other higher modes are non-conserved – and hence fast – variables. Their relaxations

indeed occur on timescales of the order of t ∼ 1/α: at a mesoscopic scale (t À 1/α) their

dynamics have relaxed, and one can therefore assume Ċ±` = Ċ±2` = Ċ±`±m = ·· · = 0. This

is a fast variable approximation. The expression for the moment Cσ`=1
±` , whose derivation

is again detailed in Appendix A.1.1, reads

Cσ`=1
±` =− 1

α`
∇` ·

[
v`
2

Cσ`=1
0

(
1

∓i

)]
+O

(
∇3Cσ`=1

0

)
. (2.19)
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Once injected in Eq. (2.18), it gives

Ċ0 =
∑
`

∇` ·
[

v`
2α`

∇`
(
v`Cσ`=1

0

)]+O
(
∇4Cσ`=1

0

)
. (2.20)

We now assume that the probability density C0 is slowly varying in space so that we neglect

the gradient terms of higher order. We thus truncate our gradient expansion at order 2.

Finally, by studying the dynamics of Cσ`=0
0 (see Appendix A.1.1), we can express Cσ`=1

0

in terms of C0 =Cσ`=1
0 +Cσ`=0

0 and obtain a closed expression for the probability density

evolution:

Ċ0 =
∑
`

∇` ·
[

v`
2α`

∇`
(

v`
1+ α`

β`

C0

)]
=∑

`

∇` · (D`∇`C0 −F`C0) , (2.21)

where

D` =
v2
`

2α`
(
1+ α`

β`

) and F` =− v`
2α`

∇`
v`

1+ α`
β`

. (2.22)

The choice of the letters in Eq. (2.22) is not random: D` is the diffusion coefficient given by

the usual v2/(2α) [122] (the factor 2 in the denominator is due to the fact that we are oper-

ating in 2D), rescaled by the factor (1+α/β)−1, the fraction of time spent running. F` is a

drift term, which emerges from the gradient of some combination of the spatially-varying

motility coefficients. Had we not considered space-dependent motility parameters, the

dynamics at this mesoscopic scale would have been simple diffusion.

2.2.1.2 The role of interactions

As introduced in section 1.2.3, some bacteria – including the genetically modified E. coli

studied in [90], which we are considering in this chapter as a model system – interact via

quorum sensing: they are able to detect5 the concentration of certain molecules (e.g. acyl-

homoserine lactone, or AHL, in the experiments of [90]), secreted by all bacteria in the

colony, and then modify their gene expression, depending on the detected concentration.

In our case, the modification of gene expression results in a control of their motility.

At the beginning of section 2.2.1 we chose to make the motility parameters v({rn}),

α({rn}) and β({rn}) depend on the position of all the particles. This choice can now be

understood by noticing that each bacterium is surrounded by a gaussian cloud of AHL

molecules – produced by the bacterium itself –, which move diffusively and eventually

degradate. Hence, the motility parameters, which in the experiments are modulated by

5We recall that with the term “detection” we refer to the passive process of absorption of some molecules
that then act on the bacterial biochemical machinery by enhancing or repressing gene expression.
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the varying concentration of AHL, indirectly depend on the position of the particles. Then,

it is perfectly legitimate to choose an appropriate function f ({rn}) for this dependence. In

particular, we claim that a good approximation is to let f be the N -body density field of

bacteria, defined as

ρ(r, t ) =
N∑

i=1
ρi (r, t ) =∑

i
δ(r− ri (t )), (2.23)

where ri (t ) is the trajectory followed by particle i . We can then express the dependence

of the motility parameters on the particles’ positions through ρ, which gives

v`({rn}) = v[ρ(r`)]

α`({rn}) =α[ρ(r`)]

β`({rn}) =β[ρ(r`)].

(2.24)

Microscopically, however, there are both a spatial and a temporal delay between the

position and time at which AHL is produced and those at which it is sensed by another

cell. Once the AHL molecules are sensed, the bacterial genetic machinery is activated and

can then produce the proteins that control the motility. This adds a further delay in the

response to the initial production of the molecule. To take these delays into account, the

natural path would be to consider the presence of the AHL molecules as a concentration

field mediating the interactions between cells. However, as we argued in section 2.1.2,

we know that it will never be possible to make real quantitative connections between the

model and the experiments. Increasing the complexity of the model by adding ingredi-

ents phenomenologically only makes the identification of basic mechanisms harder: any

phenomenological fitting parameter introduced necessarily takes an arbitrary functional

form, that may need to be adapted or fine tuned for different situations or setups, thus

undermining our search for general principles.

We instead follow a different path, and assume that integrating out this extra field of

molecules concentration leads to a non-local dependence of the motility parameters on

the density field ρ: for instance, v[ρ(r)] would become v[ρ̃(r)] (the same holds for α and

β), with

ρ̃(r, t ) =
∫

dyds K (r−y, t − s)ρ(y, s). (2.25)

This means that a bacterium at position r at time t feels the influence of bacteria that were

at positions y at an earlier time s. Although it would be very interesting to study the effects

of temporal delays, for practical purposes we neglect them in the following treatment: we

therefore assume instantaneous interactions, so that K = 0 if t 6= s. In section 2.2.2.1 we
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study the role of the spatial non-locality of the interactions, which we show to be impor-

tant in phase-separating systems, when higher order gradients of the density stabilize the

interfaces between coexisting densities.

2.2.1.3 Collective dynamics for the density field

To study the dynamics of the density field ρ(r), we start by recasting the Fokker-Planck

equation (2.21) into a Langevin process for each particle’s trajectory. Basic Itō calculations

[70] show the equivalence between a multivariate Fokker-Planck equation of the form

Ṗ ({rn}, t ) =−∑
`

∇`
[
f[ρ̃(r`)]P −∇`g [ρ̃(r`)]P

]
(2.26)

and a system of N coupled Langevin equations of the form

ṙ`(t ) = f`+
√

2g`η`(t ), 〈ηµi (t )ηνj (t ′)〉 = δµνδi jδ(t − t ′), (2.27)

where we have simplified the notation by setting f` = f[ρ̃(r`)] and g` = g [ρ̃(r`)]. We can

then re-write Eq. (2.21) as

Ċ0 =−∑
`

∇` ·
(

v`
1+ α`

β`

∇`
v`

2α`

)
C0 −∇`

 v2
`

2α`
(
1+ α`

β`

)C0

 (2.28)

which is equivalent to the system of Langevin equations (2.27) with

f` =
v`

1+ α`
β`

∇`
v`

2α`
and g` =

v2
`

2α`
(
1+ α`

β`

) , (2.29)

where we have adopted the Itō convention for the evaluation of the multiplicative noise,

following [139, 70, 51].

Starting from Eq. (2.27), we use the properties of ρ(r) and we derive in Appendix A.1.2

the many-body Langevin equation for ρ, which has the form

ρ̇(r, t ) =∇·
[

D[ρ̃]∇ρ−F[ρ̃]ρ+√
2D[ρ̃]ρΛ

]
Λµ(r, t )Λν(r′, t ′)〉 = δµνδ(r− r′)δ(t − t ′).

(2.30)

Here the formal expressions of D and F are those of (2.22), where the motility parameters

are now functionals of the density field and ∇` has become simply ∇, the gradient with

respect to the spatial variable r. The last term is a noise term whose form cannot be cho-

sen arbitrarily but must instead be derived from the run-and-tumble dynamics directly.



34 Chapter 2. Pattern formation in single-species bacterial colonies

The multiplicative character of the noise is expected: the density cannot fluctuate when

no particles are present [39]. To conclude, note that if the density is a slowly varying field,

we can consider a gradient expansion of the coarse-grained density (2.25):

ρ̃(r) =
∫

dyK (r−y)ρ(y) =
∫

dyK (r)ρ(r−y)

= ρ(r)+∇ρ(r)
∫

dyK (y)y+ 1

2
∆ρ(r)

∫
dyK (y)y2 +O

(∇3ρ(r)
)

.
(2.31)

Truncating the expansion at the second order in gradients and considering a symmetric

kernel K , so that
∫

dyK (y)y = 0, gives

ρ̃(r) = ρ(r)+ 1

2
∆ρ(r)σ2, (2.32)

where σ2 = ∫
dyK (y)y2. Re-injecting this result in the expressions for D[ρ̃] and F[ρ̃] of

Eq. (2.30) then yields

ρ̇(r, t ) =∇·
[

D[ρ]∇ρ−F[ρ]ρ+√
2D[ρ]ρΛ

]
+h.o. (2.33)

where the h.o. terms include gradients of order 4 and 6 (odd gradients vanish because

of the choice of taking a symmetric function for the kernel K ). Hence, from Eq. (2.33), we

conclude that the effect of considering motility parameters that depend on a slightly non-

local density ρ̃(r), in the limit in which the density field ρ(r) is a slowly varying function of

r, simply results in higher order gradient terms. We first neglect these higher order terms

and discuss their role later in section 2.2.2.1.

2.2.2 Linear analysis

To study the phenomenology of the equation that we have derived, we perform a linear

analysis of Eq. (2.33) around an homogeneous profile ρ0. Note that in Eq. (2.33) the motil-

ity parameters have become simple functions of the density h(ρ(r)). Spatial gradients are

then treated with the standard chain rule: ∇h = ∂ρh∇ρ = h′∇ρ.

Within a mean-field approximation, we neglect the noise and define the perturbed

solution in Fourier space as

ρ(r) = ρ0 +
∑
q
δρq e i q·r. (2.34)

The linearized equation then reads ˙δρq =−q2Deffδρq , where

Deff = D

(
1+ρ0

[
log

v

1+ α
β

]′)
, (2.35)
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the prime indicates the derivative with respect to ρ and all the functions of ρ are evaluated

at ρ0. Here D is of the form (2.22). We have used here the same notation as the one

introduced in Eq. (2.7). The form of Deff is now more complicated, but the sole relevant

ingredient is its sign: when Deff < 0, perturbations grow triggering a phase separation,

which happens when [
log

v

1+ α
β

]′
<− 1

ρ
. (2.36)

To study the role of the different parameters, a simple strategy is to consider three separate

cases, in each of which only one parameter among v , α, and β varies with the density.

In the first case we assume v(ρ), while α and β are constants. Then α′ =β′ = 0. In this

case, the instability condition is exactly the same as in the case of a system with instanta-

neous tumbles (cf. Eq. (2.8)) and we recall it here:

[
log v

]′ = v ′

v
<− 1

ρ
. (2.37)

This condition requires v to be a decreasing function of the density and it does not de-

pend on the tumbling and running rates. We conclude that when the bacterial motility is

modified through v(ρ) and α and β are constant, the fact that the tumbles have finite du-

ration only alters quantitatively the effective diffusivity – namely by rescaling it by a factor

(1+α/β)−1 – but it does not play any role in the MIPS mechanism itself.

In the second case we assume α(ρ), while v and β are constants, so that v ′ = β′ = 0.

The instability condition then reads[
log

1

α+β
]′
=− α′

α+β <− 1

ρ
. (2.38)

This condition requires α to be an increasing function of the density: since α ∼ τ−1
r , the

mean run duration decreases with the density, resulting in a reduced motility in highly

populated regions. Note that a density-dependent tumbling rate α(ρ) leads to an insta-

bility only when the tumbles have a finite duration. For instantaneous tumbles, indeed,

β→∞ and the condition (2.38) can never be satisfied. To understand why it is so, con-

sider a run-and-tumble particle in 1D6. We assume that at time t the particle is at position

x ∈ (x1, x2), with |x1 − x2| ¿ v/α, the typical run length. If there is no tumbling event at

time t , the particle performs a run and at time t +∆t it has exited the interval (x1, x2),

where ∆t is such that |x1 − x2| ¿ v∆t ¿ v/α. If instead a tumble occurs, we distinguish

the two cases: if the tumble’s duration is finite, at time t +∆t the particle is still at position

6Generalization to d > 1 dimensions is straightforward.
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x ∈ (x1, x2); if the tumble is instantaneous, the particle simply reverses its direction of mo-

tion – since we are in 1D – and at time t+∆t has exited the interval (x1, x2). Therefore there

can be no effective accumulation due to density-modulated tumbling rate when tumbles

are instantaneous.

Finally, we consider the case in which we assumeβ(ρ), v andα constant, and therefore

v ′ =α′ = 0. In this case the condition reads[
log

β

α+β
]′
= αβ′

β(α+β)
<− 1

ρ
(2.39)

and it requires β to be a decreasing function of ρ. This condition is of course only mean-

ingful in the case of tumbles with finite duration. In section 2.1.2 we described the ex-

periments performed on a colony of E. coli capable of modifying their tumble duration

according to the local density. We are now able to relate, at least qualitatively, this experi-

mental parameter to a theoretical one, i.e. the running rate β. Condition (2.39) is satisfied

in the experiments described in [90], where the mean tumble duration τt = β−1 grows

with the density in a step-wise manner. Note that, although the experiments correspond

to the situation illustrated in the third case, with instability condition (2.39), the other two

cases could potentially be relevant for different setups, where the quantities which are

density-modulated are the speed or the tumbling rate.

2.2.2.1 Higher order gradients

In section 2.2.1.3 we have seen that a gradient expansion of the coarse-grained density

ρ̃ leads to the equation of motion (2.33) involving the local density ρ – defined in (2.23).

Because of this gradient expansion (2.31), terms of higher order in gradients appear. In

particular, we choose to retain only terms until fourth order. Then, if we neglect the noise,

within a mean-field approximation, and call m1 = v
2α and m2 = v

1+α/β , Eq. (2.33) becomes

ρ̇(r, t ) =∇· [(m1m2 +ρm1m′
2)∇ρ]

+∇·
[

1

2
σ2∆ρ

[
(m1m2)′+ρ(m1m′

2)′
]∇ρ]

+∇·
[

1

2
σ2ρm1m′

2∇∆ρ
]

,

(2.40)

where m1 and m2 are functions of ρ and the primes denote derivatives with respect to

ρ. In the first line only gradients of order 2 appear: this line corresponds to a the local

approximation of the coarse-grained density, considered in the previous linear analysis.
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The terms appearing in the second and third lines are instead proportional to gradients

of fourth order and correspond to taking into account a slightly non-local density.

We can linearize Eq. (2.40) to investigate the role of these higher order gradients, which

determine the fate of the solution at small wavelengths (large q). We consider a small

perturbation, like the one shown in Eq. (2.34), around a homogeneous profile ρ0. Then,

the terms appearing in the second line of Eq. (2.40) become negligible and the only fourth

order contribution comes from the term in the third line. The linearized equation reads

˙δρq = (−q2Deff +q4κ)δρq , with κ= 1

2
σ2ρD

[
log

v

1+ α
β

]′
. (2.41)

The role of the term of order q4 is determined by the sign of the coefficient κ. If κ is

positive, the fourth order term is not stabilizing and higher order terms (O (q6)) are needed

to saturate the instability. If instead κ is negative, its contribution stabilizes the solution

at large q . We recall that the instability condition Deff < 0 requires[
log

v

1+ α
β

]′
<− 1

ρ
< 0, (2.42)

which thus yields κ< 0. In this case, the sign of Deff determines the sign of κ. We conclude

that the overall effect of the fourth order gradients is to stabilize the solution by saturating

the instability at large q .

Some questions remain open: for instance, one could consider a system which is sta-

ble at small q , i.e. where Deff > 0. This implies[
log

v

1+ α
β

]′
>− 1

ρ
. (2.43)

The sign of κ is now independent on the sign of Deff. One can have κ< 0 for

0 >
[

log
v

1+ α
β

]′
>− 1

ρ
, (2.44)

as well as κ> 0 for [
log

v

1+ α
β

]′
> 0 >− 1

ρ
. (2.45)

In the first case the solution is stable ∀q , while in the second case it is stable for small

q and unstable for larger q . One therefore needs to analyse terms of higher orders (see
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0 q

σ(q)

O(q2)

O(q4)

O(q6)

Figure 2.5 – Schematic representation of the growth rate as a function of q .
Here the terms proportional to q2 and q6 are stabilizing, while the instability
is caused by the terms of order q4.

Fig. 2.5) and determine whether they can stabilize the solution. Looking for such an in-

stability is left for future work.

In models like the one presented in [23], the contribution of the fourth order gradi-

ent terms is not derived from considerations on the microscopic interactions, but simply

added as a phenomenological parameter required for the stability of the partial differen-

tial equation. In that case, κ is simply a positive constant and the equation governing the

evolution of ρ reads

ρ̇ =∇· [Deff∇ρ
]−κ∆2ρ. (2.46)

Although simplified with respect to Eq. (2.40), Eq. (2.46) still contains the basic ingredients

to observe a MIPS in the system, namely an instability given by Deff < 0 and a saturation

of such instability due to the term −κ∆2ρ. Moreover, simulations of Eq. (2.46) are rela-

tively easy to perform, while simulating the total Eq. (2.40) gives rise to stability problems.

Since, in any case, Eq. (2.40) comes from an approximation and its form, in this sense, is

not exact, we choose to use the simpler version (2.46) when performing numerical simu-

lations (see section 2.3.1).

Note that in equilibrium, terms like κ∆2ρ stem from a free energy Fgrad = ∫
d x κ

2 (∇ρ)2.

Here, the non-locality of the interactions hence generates an effective surface tension.

This explains the coarsening seen in MIPS (cf. Fig. 2.2).
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2.2.3 Numerical results: two types of microscopic simulations

In order to explore the fate of systems satisfying the linearly unstable conditions just de-

rived, we can perform numerical simulations of microscopic models. Details about the

numerical implementations are given in Appendix A.2.1. As we have done for the linear

analysis in section 2.2.2, we consider three different cases where only one motility param-

eter varies with the density, while the other two are constant, and we choose their values

in such a way that they satisfy the instability conditions (2.37), (2.38) and (2.39). The sim-

ulations show that the predicted phase separation occurs in the corresponding regimes

(see Fig. 2.6). This result establishes a connection between the simple microscopic model

we started from and the coarse-grained dynamics we obtained for the density field ρ, thus

validating our coarse-graining procedure and the approximations carried out.

Fig. 2.6 shows that the coarsening dynamics for the three cases illustrated in section

2.2.2 are very similar (panels a, b and c). Some minor differences, e.g. in the coarsening

timescale, the effective surface tension between dense and dilute regions or the value of

the coexisting densities, are due to differences of the motility parameters chosen to satisfy

the instability conditions (2.37), (2.38) and (2.39).

Off-lattice simulations (such as those whose results are shown in Fig. 2.6) are very

computationally expensive. An alternative which is much more efficient is to consider

on-lattice systems7. It is beyond the scope of our study to investigate the detailed condi-

tions when on-lattice and off-lattice models become comparable. The goal of our work is

to relate a microscopic mechanism involving few particles localized in space to a global

behaviour which occurs at macroscopic scales. In this sense, the only important mi-

croscopic details are those which “survive” the coarse-graining and hence play a role

in the macroscopic dynamics. Indeed, on-lattice models for run-and-tumble particles

were shown to yield the same fluctuating hydrodynamics for the evolution of the coarse-

grained density as those found starting from the off-lattice case, in the limit in which the

run length v/α is much larger than the lattice spacing [141]. This result is validated by our

simulations, which exhibit a phenomenology for the two cases which is definitely com-

parable (cf. Fig. 2.6 and Fig. 2.7). We can try and make a more quantitative analysis by,

e.g., comparing the coexisting densities for the two types of microscopic simulations: as

we show in Fig. 2.8, the two methods are in very good agreement.

7In our case, the differences in simulation time are roughly two orders of magnitude.
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t = 1000 t = 10000 t = 100000

a.

b.

c.

Figure 2.6 – Snapshots of off-lattice simulations with periodic boundary
conditions and homogeneous initial density, comparison between different
microscopic models. Box size L = 100, number of particles N = 150000.
a. Density dependent speed, constant tumbling rate, constant running rate:

v(ρ) = v0 + v1−v0
2

(
1− tanh

(
ρ−ρm

L f

))
, v0 = 0.1, v1 = 1, ρm = 12, L f = 3, α = 1,

β= 1.
b. Density dependent running rate, constant speed, constant tumbling rate:

β(ρ) = β0 + β1−β0

2

(
1− tanh

(
ρ−ρm

L f

))
, β0 = 0.1, β1 = 1, ρm = 12, L f = 3, α = 1,

v = 1.
c. Density dependent tumbling rate, constant speed, constant running rate:

α(ρ) = α0 + α1−α0
2

(
1+ tanh

(
ρ−ρm

L f

))
, α0 = 0.1, α1 = 1, ρm = 15, L f = 3, v = 1,

β= 0.1. The coarse-grained density ρ is computed with an interaction ker-

nel K (r ) = 1
Z exp

(
− 1

1−(r /r0)2

)
, with Z a normalization constant and r0 = 1 (see

Appendix A.2.1 for more details).
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t = 1000 t = 10000 t = 100000

a.

b.

c.

Figure 2.7 – Snapshots of on-lattice simulations with periodic boundary
conditions and homogeneous initial density, comparison between different
microscopic models. Box size L = 100, number of particles N = 150000.
a. Density dependent speed, constant tumbling rate, constant running rate:

v(ρ) = v0 + v1−v0
2

(
1− tanh

(
ρ−ρm

L f

))
, v0 = 0.1, v1 = 1, ρm = 12, L f = 3, α = 1,

β= 1.
b. Density dependent running rate, constant speed, constant tumbling rate:

β(ρ) = β0 + β1−β0

2

(
1− tanh

(
ρ−ρm

L f

))
, β0 = 0.1, β1 = 1, ρm = 12, L f = 3, α = 1,

v = 1.
c. Density dependent tumbling rate, constant speed, constant running rate:

α(ρ) = α0 + α1−α0
2

(
1+ tanh

(
ρ−ρm

L f

))
, α0 = 0.1, α1 = 1, ρm = 15, L f = 3, v = 1,

β= 0.1. The coarse-grained density ρ is computed with a quasi-circular in-
teraction kernel of radius r0 = 1 (see Appendix A.2.2 for more details).
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Figure 2.8 – Coexisting densities for microscopic on-lattice and off-lattice
simulations. The legend indicates which of the three motility parameters
is density-dependent. In the cases of density-dependent speed v and run-
ning rate β, simulation parameters are the same as in Figs. 2.6-a, 2.6-b, 2.7-a
and 2.7-b. In the case of density-dependent tumbling rate α, the simula-
tion parameters are the same as in Figs. 2.6-c and 2.7-c with the following
modifications: α0 = 0.01, α1 = 0.1, β = 0.01. With this set of parameters,
on-lattice and off-lattice simulations result comparable, while for the set of
parameters as those in Figs. 2.6-c and 2.7-c the coexisting density show a
bigger discrepancy. This could be due to the fact that in that case the lattice
spacing is not small with respect to the run length, hence invalidating the
continuous limit.
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2.3 Pattern formation

To derive Eq. (2.30) we have considered the dynamics of the density field at timescales

larger than 1/α and 1/β (through a fast variable approximation). In experiments, this

means t À1s. At even larger timescales, the dynamics of the division and death of the

bacteria become important. In experiments, this means t ∼2000s (30 min). We model

this birth-and-death dynamics with a logistic term of the form (2.9), following [23]. The

mean-field equation reads

ρ̇(r, t ) =∇[
D[ρ]∇ρ−F[ρ]ρ

]+µρ (
1− ρ

ρ0

)
−κ∆2ρ, (2.47)

where µ and ρ0 were defined in section 2.1.1.3 and we have considered a local approxi-

mation of the coarse-grained density.

We can perform a linear stability analysis for Eq. (2.47) by investigating the effect of

a small fluctuation around a flat profile. Following [23], we consider a perturbation such

as (2.34) around the fixed point of the logistic term ρ0. This choice is not arbitrary: with-

out MIPS, the dynamics would lead the density throughout the whole system to the fixed

point ρ0. If the homogeneous solution ρ = ρ0 is unstable, then the two dynamics (the

stabilizing logistic term and the unstabilizing MIPS) are in competition. The instability

condition then reads

σ(q) =−µ−q2Deff −q4κ< 0, (2.48)

where σ(q) is the growth rate of the perturbation: ˙δρq = σ(q)δρq . Note that because of

the logistic term, small q modes are always stable. Unstable modes therefore start at a

finite value q0 (cf. Fig. 2.9).

In the following paragraph we present the results of simulations for a pattern-forming

system, i.e. where birth-and-death dynamics are included. We only consider the case in

which β is a function of the density, while v and α are constants, since this is the relevant

case for the experiments.

2.3.1 Numerical results for pattern forming systems

We start by performing numerical simulations of the microscopic dynamics, where we

now include the birth-and-death dynamics. We model the rates with linear functions: the

division rate b0 is a constant, while the death rate d(ρ) = d0+d1ρ is an increasing function

of the density. With these definitions it is easy to relate these parameters with those of the
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Figure 2.9 – Example of growth rates for systems with and without birth-
and-death (BD) term, shown in red and blue, respectively. The large q
modes are stabilized by the term −κ∆2ρ.

logistic term in Eq. (2.47):

µ= b0 −d0 and ρ0 = b0 −d0

d1
. (2.49)

Examples of off-lattice and on-lattice simulations are shown in Fig. 2.10 (left and cen-

ter images, respectively). They show that, instead of the coarsening and complete phase

separation of the dynamics (2.33) (cf. last column of Figs. 2.6 and 2.7), the system under-

goes a micro-phase separation, and a typical lengthscale is selected. We observe a small

difference in this typical lengthscale between off- and on-lattice numerical realizations:

this is due to the difference in the way the coarse-grained density is computed in the two

algorithms (see Appendix A.2).

Another possibility to test the results of our analysis is to simulate the evolution of the

density field following the dynamics (2.47). This can be done by using, e.g., pseudospec-

tral methods. As frequently stated earlier in this thesis, simulations of phenomenologi-

cal partial differential equations can lead to solutions that qualitatively resemble experi-

mental realizations, and we emphasized the importance of connecting the macroscopic

results to microscopic models. In our case, Eq. (2.47) is constructed starting from a mi-

croscopic model and is validated by microscopic simulations, and by the fact that phase

separation occurs where the linear analysis predicts it. Hence, we can safely consider

numerical solutions of the macroscopic equations as a valid instrument to study the col-

lective behaviour of our systems of interacting bacteria8. An example of such simulations

is shown in the right image of Fig. 2.10 where, for simplicity, the parameter κ has been

8The most evident advantage of these simulations is the further reduction of computational cost: this
speeds up simulations time by another order of magnitude.
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Figure 2.10 – Simulations of run-and-tumble particles with birth-and-death
dynamics, periodic boundary conditions and homogeneous initial density.
Box size L = 100.
Left: Off-lattice microscopic simulations. Initial number of particles N =
150000, β(ρ) =β0+ β1−β0

2

(
1− tanh

(
ρ−ρm

L f

))
, β0 = 0.1, β1 = 1, ρm = 12, L f = 3,

α = 1, v = 1, b0 = 0.015, d0 = 0, d1 = 0.001. Computation of the coarse-
grained density as in Fig. 2.6.
Center: On-lattice microscopic simulation. Initial number of particles N =
150000, β(ρ) =β0+ β1−β0

2

(
1− tanh

(
ρ−ρm

L f

))
, β0 = 0.1, β1 = 1, ρm = 12, L f = 3,

α = 1, v = 1, b0 = 0.015, d0 = 0, d1 = 0.001. Computation of the coarse-
grained density as in Fig. 2.7.
Right: Numerical solution of Eq. (2.47). Initial condition ρ = 15 +
δρ, where δρ is a random perturbation of the order 10−3, β(ρ) = β0 +
β1−β0

2

(
1− tanh

(
ρ−ρm

L f

))
, β0 = 0.1, β1 = 1, ρm = 12, L f = 3, α = 1, v = 1,

µ= 0.015, ρ0 = 15, κ= 0.01.

taken as a constant (cf. discussion in section 2.2.2.1).

So far, following the linear analysis of the stable profile, we have only considered sys-

tems whose initial conditions are homogeneous. To reproduce the results of the exper-

iments, we perform macroscopic simulations where we choose a central inoculum as

initial condition for the density profile. Three snapshots of the simulation are shown in

Fig. 2.11: the rings appear sequentially at regular distance from one another. Note that

the condition for instability (2.39) is obtained by considering a perturbation of a homo-

geneous profile, while in the case of initial central inoculum the profile is highly non-

homogeneous. However, the logistic term is responsible for the initial spreading of the

colony through a propagating front described by Eq. (2.11). When the density profile en-

ters the unstable range, the system undergoes pattern formation.
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Figure 2.11 – Snapshots of a numerical solution of Eq. (2.47) starting from

a central inoculum. Box size L = 100, β(ρ) = β0 + β1−β0

2

(
1− tanh

(
ρ−ρm

L f

))
,

β0 = 0.1, β1 = 1, ρm = 12, L f = 3, α = 1, v = 1, µ = 0.015, ρ0 = 15, κ = 0.1. a.
2D view of the evolving density. b. Density profile along a cut at y = 50. The
dotted line represents the target density ρ0 = 15.
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Chapter 3

Pattern formation in multispecies

bacterial colonies

3.1 Introduction

In chapter 2 we have considered bacterial colonies in which cells interact by decreasing

their motility when the local density is high enough. We have shown that this mechanism,

coupled with population growth, can lead to the formation of spatial patterns. In the

present chapter our study on the role of motility in pattern formation is extended to the

case of bacterial colonies composed of several different species. To tackle the problem, we

combined theoretical tools with in vitro experiments, in which synthetic biology allowed

us to control the interactions. This part of my thesis was conducted in close collaboration

with the group of Prof. Jiandong Huang from the university of Hong Kong.

3.1.1 Motivations

The motivations for investigating multispecies systems are numerous. Firstly, we recall

that the question at the root of our study of pattern formation is how living organisms

can attain spatial self-organization. Real systems are rarely composed of only one type

of cells: highly varied bacterial communities are found, e.g., in soil [143] or in the human

intestine [44] and the diversity of species in such communities is at the basis of many

important functions [101, 91]. Considering multispecies systems is therefore important

in the perspective of understanding spatial self-organization in in vivo bacterial colonies,

or in multicellular organisms in general.

Another motivation, more theoretical, to study multispecies bacterial colonies, is to

explore the fate of MIPS when several different types of particles interact. In particular,

we wish to investigate what kind of new microscopic interactions can be implemented

and how they affect collective behaviours at macroscopic scales.
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Finally, from a more engineering point of view, finding new mechanisms – in this case

based on the modulation of transport efficiency – capable of controlling or generating

spatial structures could potentially be used to design functional communities.

3.1.2 The case of two species

In most of this chapter we focus on pattern formation in bacterial colonies composed of

two species. This is a first necessary step before turning to more general multispecies

systems, for at least two reasons: firstly, we want to gain a full understanding of collec-

tive behaviours in a two-species colony in order to get a clearer picture of what are the

novelties introduced with respect to a system of identical particles, and thus to address

more complicated cases advisedly. Secondly, we want to remain as close as possible to

experimentally realizable setups, and the case of two species already presents a technical

challenge, as explained in section 3.2.

Consider a colony composed of two different species of motile run-and-tumble E. coli,

which from now on we call species A and species B. If considered isolated, the two species

are identical: a single bacterium of species A is indistinguishable from a single bacterium

of species B, and they behave in the same way. They become distinguishable – though

maybe still interchangeable – when they can interact, which occurs via quorum sensing.

As in the single-species case, the effect of quorum sensing interactions is a modification

of bacterial motility, occurring through gene regulation, but in this case we consider a

reciprocal quorum sensing interaction1. With this, we mean that bacteria of species A only

respond to the presence of bacteria of species B, and viceversa. We call this interaction

mutual regulation.

Given the standard mechanism of MIPS for a single-species system, one can imagine

that, for both species, the effect of the mutual interaction is a reduction of the motility.

We call this effect mutual inhibition of the motility. Note that even if the resulting effect is

the same as the one in single-species systems, namely a decrease of transport efficiency

in dense regions, the triggering mechanisms are quite different: in the single-species case

it is motility self-regulation while in the two-species case it is motility mutual regulation.

The presence of two different species provides the possibility to investigate other types

of interactions. For instance, instead of reducing each other’s motility, the two species can

interact by increasing it. In this case, we speak of mutual activation of the motility. This

interaction has no counterpart in single-species systems, at least if one is interested in

1Systems of two self-interacting species would behave qualitatively as two isolated single-species sys-
tems, the only difference being that, because they have to cohabit in the same environment, they are in
competition for nutrient resources.
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systems that can undergo phase separation, as our linear stability analysis of section 2.2.2

shows. In the next sections we show that systems of two species that interact by mutually

increasing their transport efficiency can indeed undergo phase separation.

Finally, one can consider the case of mixed mutual interactions for the two species:

species A “activates” species B while species B “inhibits” species A, or viceversa. As we

show in section 3.4, however, this particular mutual regulation mode cannot give rise to a

phase separation.

This chapter is organized as follows: we start our analysis of a two-species system by

presenting the experiments performed by our collaborators, in particular by Nan Zhou,

a Ph.D. student in the group directed by Prof. Jiandong Huang at the University of Hong

Kong. We did not directly perform the experiments, but we helped in their conception and

design. We would like to point out that, unlike the experiments and theoretical models

presented in the last chapter (sections 2.1.2 and 2.2.1, respectively) – where our theory

was developed at a later stage, in order to better understand the experimental results –

here the whole experimental procedure has been developed with our collaboration from

the start. For the sake of clarity we present the experimental implementation and results

first and the theoretical model and numerical simulations afterwards. We then discuss in

detail the origin of patterns in two-species colonies. Finally, we present some preliminary

results obtained with a three-species colony, and corresponding numerical simulations.

3.2 Experimental realizations

We now illustrate how it is possible to experimentally implement the two types of mu-

tual interactions we just described, namely mutual inhibition and mutual activation, in

a colony of motile E. coli. In order to implement mutual interactions, we need to con-

struct two quorum sensing genetic circuits (one for each species) in such a way that the

motility-control module of bacteria A responds only to signals produced by bacteria B,

and vicecersa.

The two quorum sensing genetic circuits are constructed by adopting the quorum

sensing systems luxI-luxR from Vibrio fischeri and lasI-lasR from Pseudomonas aerugi-

nosa, which have been widely used as building blocks for engineering synthetic systems

with intercellular signaling and density-dependent phenotypes [156, 5, 135]. Specifically,

lasI in bacteria A and luxI in bacteria B separately synthesize and secrete two different

AHL molecules (3oc12HSL and 3oc6HSL). The two types of AHL molecules then bind to

and activate the transcriptional regulators lasR in bacteria B and luxR in bacteria A, re-

spectively. The activation of these regulators induces gene expression [50, 53, 108], which,
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Figure 3.1 – a. Genetic circuit for the implementation of mutual inhibition.
See main text for detailed description. b. Colocalized fluorescent stripe
patterns formed by mutual inhibition strains. A darkfield snapshot shows
the pattern resulting from the expansion of interacting E. coli strains. The
separated strains are shown in mCherry (species A), sfGFP (species B), and
merged fluorescent channels (see online version if contrast in printed ver-
sion does not allow a clear view of the ring patterns). c. Propagating front.
Relative fluorescent intensity of mutually inhibition strains at varying radius
from the seeding center, quantified from the images in b. The inset shows a
relative density profile of the bacteria populations at varying radius for the
dark field snapshot in b. The intensity values were calculated as the average
pixel intensity values across a 2π angle at fixed radius from the seeding cen-
ter. The relative values are the pixel average relative to the maximum after
background subtraction.
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Figure 3.2 – a. Genetic circuit for the implementation of mutual activa-
tion. See main text for detailed description. b. Segregated fluorescent stripe
patterns formed by mutual activation strains. A darkfield snapshot shows
the pattern resulting from the expansion of interacting E. coli strains. The
separated strains are shown in mCherry (species A), sfGFP (species B), and
merged fluorescent channels (see online version if contrast in printed ver-
sion does not allow a clear view of the ring patterns). c. Propagating front.
Relative fluorescent intensity of mutually activating strains at varying radius
from the seeding center, quantified from the images in b. The inset shows a
relative density profile of the bacteria populations at varying radius for the
dark field snapshot in b. The intensity values were calculated as the average
pixel intensity values across a 2π angle at fixed radius from the seeding cen-
ter. The relative values are the pixel average relative to the maximum after
background subtraction.



52 Chapter 3. Pattern formation in multispecies bacterial colonies

in our case, results in motility control.

To reproduce mutual inhibition and mutual activation mechanisms, two types of mo-

tility-control modules need to be designed. For mutual inhibition, we follow an approach

reminiscent of the single-species case: the transcription of cheZ is repressed and, in the

presence of a high AHL level, cells tumble incessantly, with a consequent reduction of

their transport efficiency. To implement a mutual activation interaction, the natural tran-

scription of cheZ is deleted: in this case, then, the motility-control module is designed to

restore cheZ transcription, hence increasing the cell transport efficiency in the presence

of high AHL level. The genetic circuits just described are illustrated in Figs. 3.1-a and 3.2-a.

To distinguish between species A and B, each species is tagged with a different fluores-

cent molecule (mCherry for species A and sfGFP for species B). Pictures of the fluorescent

bacteria are then taken after letting the light pass through two filters, sensitive to the typ-

ical frequencies of the emission spectrum of the two fluorescent molecules. We note two

technical difficulties due to this setup: firstly, if the two species are in the same environ-

ment, which is the case when they interact, a fluorescent picture of the entire population

cannot be taken: one needs to take images of the sample with one filter per species. Sec-

ondly, fluorescent molecules must emit at wavelength distant enough so that the signals

can be resolved; these are some of the reasons why it is not trivial to increase the number

of species in experiments.

The two species can then be engineered with the two mutual interaction mechanisms.

Let us call the mutually inhibiting particles “inhibitors” and the mutually activating parti-

cles “activators”. We first consider the case of a drop of a mixture of inhibitors inoculated

at the center of a petri dish containing semisolid agar gel. The motile bacteria swim and

reproduce, and 24 hours later the drop has spread in the radial direction and developed

circular patterns (see Fig. 3.1-b). The circular patterns, or rings, are colocalized in space,

i.e. the two species develop in-phase spatial oscillations (see Fig. 3.1-c). We note the sim-

ilarity of these rings with the ones formed by single-species colonies (cf. bottom panel of

Fig. 2.3), but stress that here the mechanism involves mutual regulation of motility.

We now consider the case in which a drop of a mixture of activators is inoculated at

the center of a petri dish containing semisolid agar gel. After 24 hours, this colony has also

spread and developed circular patterns (see Fig. 3.2-b). In this case, however, the rings are

segregated, i.e. the two species develop out-of-phase spatial oscillations (see Fig. 3.2-c).

This behaviour has no counterpart for single-species systems and it therefore represents

a real novelty.

No experiment with mixed colonies, i.e. containing inhibitors and activators, was per-

formed, since we do not expect to observe any spatial structures in such systems. We

argue this point in section 3.4.
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To conclude, note that the spreading diameter reached by the colony of inhibitors and

activators are quite different. The activators spread much more than the inhibitors. In-

deed, if we consider the case of mutual inhibition, the colony is divided into two types of

regions: in one region both species are scarce and their transport efficiency high, while

in the other one they are dense and their transport efficiency low. If we now consider the

case of mutual activation, the colony is again separated into two types of regions: in this

case, in each region one of the two species is dense and its transport efficiency is high.

Therefore, on average, the motility in the colony of mutually inhibiting particles is lower

than the motility in the colony of mutually activating particles. This explains the differ-

ence in the colony spreading in the two cases.

3.3 Theoretical model and results

In this section we construct a model for inhibitors and activators and develop a fluctu-

ating hydrodynamics for the density fields ρA and ρB for the two species of bacteria. We

then perform numerical simulations in order to validate the model and compare it with

the experiments.

3.3.1 Coarse-graining procedure for a two-species system

In order to obtain a fluctuating hydrodynamics for the density fields ρA and ρB , we follow

the steps of the coarse-graining procedure presented in section 2.2.1 and generalize it to

the case of a system of two species of run-and-tumble bacteria with finite tumble duration

and density-dependent motility.

As in the single-species case, we assume that each bacterium ` has a speed v`, a tum-

bling rate α`, and a running rate β`, and that it can be in two possible dynamical states,

defined by the discrete variable σ`: a running state (σ` = 1) and a tumbling state (σ` = 0).

The system is now composed of NA bacteria of species A and NB bacteria of species B,

with total number of bacteria N = NA + NB . Since the choice of indices is arbitrary, we

suppose that particles whose index is smaller than or equal to NA are of species A, while

particles whose index is between NA +1 and N are of species B. For each particle `, the

motility parameters v`, α` and β` are functions of the positions of the particle ` and of

the positions of the particles of the species opposite to `: for instance, v` = v`(rA
`

, {rB
n })

if ` ≤ NA, while v` = v`(rB
`

, {rA
n }) if ` > NA, with {rA

n } ≡ rA
1 , . . . ,rA

NA
and {rB

n } ≡ rB
NA+1, . . . ,rB

N .

This dependence follows from the fact, implemented in the experiments, that the motil-

ity parameters of one species are affected only by the presence of bacteria of the opposite

species, and of course of the bacterium they correspond to, through rA,B
`

.
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The dynamics of this system is described by a master equation formally identical to

(2.12), with the difference that the sum now runs over the N = NA +NB particles, describ-

ing the two types of bacteria. We recall it here for the sake of clarity:

Ṗ ({rn ,θn ,σn}, t ) =
N∑
`=1

σ`

[
−∇` · (v`uθ`P )−α`P + β`

2π

∫
dθ′`Pσ`=0

]

+
N∑
`=1

(1−σ`)
[−β`P +α`Pσ`=1

]
.

(3.1)

{rn}, {θn}, and {σn} now represent the position, orientation, and dynamical state of parti-

cles of both species A and B.

3.3.1.1 Diffusion-drift approximation

The goal of this coarse-graining procedure is to obtain the equations governing the time

evolution of the two density fields ρA(r, t ) and ρB (r, t ). The first part of the procedure,

i.e. the diffusion-drift approximation, can be carried out following the same steps as in

the procedure for the single-species system, detailed in section 2.2.1.1. We recall here the

main steps to obtain a Fokker-Planck equation for the probability density C0:

1. expand the probability density P on a joint Fourier basis {exp
(
i
∑N

j=1 k jθ j

)
};

2. project the master equation on the different harmonics to obtain the dynamics of

the coefficients C0, C±`, etc. . . ;

3. perform a fast-variable approximation and neglect the dynamics of the non-con-

served variables, i.e. all coefficients except C0

4. truncate the gradient expansion at the order O (∇2C0)2.

The evolution of the probability density C0 thus reads

Ċ0 =
∑
`

∇` ·
[

v`
2α`

∇`
(

v`
1+ α`

β`

C0

)]
=∑

`

∇` · (D`∇`C0 −F`C0), (3.2)

where

D` =
v2
`

2α`
(
1+ α`

β`

) and F` =− v`
2α`

∇`
v`

1+ α`
β`

. (3.3)

The sum runs over all N = NA + NB particles and the dependences of the diffusion and

drift coefficients are D` = D`(rA
`

, {rB
n }) and F` = F`(rA

`
, {rB

n }) if `≤ NA, and D` = D`(rB
`

, {rA
n })

and F` = F`(rB
`

, {rA
n }) if `> NA.

2Note that this truncations neglect gradient terms whose role we discuss later in section 3.4.2
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3.3.1.2 The role of mutual interactions

In our system, the motilities of bacteria of species A depend on the AHL molecules se-

creted by bacteria of species B, and viceversa. Following the argument proposed in sec-

tion 2.2.1.2, we define two local density fields, one for each species,

ρA(r, t ) =∑
i
ρA

i (r, t ) =∑
i
δ(r− rA

i (t ))

ρB (r, t ) =∑
i
ρB

i (r, t ) =∑
i
δ(r− rB

i (t )).
(3.4)

We then define two coarse-grained densities ρ̃A and ρ̃B which take into account the con-

centration field of the AHL molecules, following the reasoning of section 2.2.1.2, and

which take the form

ρ̃A(rB
` ) =

∫
dyK (rB

` −y)ρA(y)

ρ̃B (rA
` ) =

∫
dyK (rA

` −y)ρB (y).
(3.5)

The motility parameters are then assumed to be simple functions of the coarse-grained

densities (3.5):

v A
` (rA

` , {rB
n }) = v A[ρ̃B (rA

` )]

αA
` (rA

` , {rB
n }) =αA[ρ̃B (rA

` )]

βA
` (rA

` , {rB
n }) =βA[ρ̃B (rA

` )]

vB
` (rB

` , {rA
n }) = vB [ρ̃A(rB

` )]

αB
` (rB

` , {rA
n }) =αB [ρ̃A(rB

` )]

βB
` (rB

` , {rA
n }) =βB [ρ̃A(rB

` )].

(3.6, 3.7)

Since ρA and ρB are functions of the positions of particles A and B, respectively, the sub-

stitutions performed in (3.6) for species A and (3.7) for species B are formally legitimate.

We claim that they are relevant approximations of the experiments described in section

3.2.

3.3.1.3 Collective dynamics of the coupled density fields

In the last step of the coarse-graining procedure, we derive the dynamics of the density

fields ρA(r, t ) and ρB (r, t ). As in the single-species case, we start by writing Eq. (3.2) as a

Fokker-Planck equation

Ċ0 =
∑
`

∇` ·
 v2

`

2α`
(
1+ α`

β`

)∇`C0 + v`
2α`

∇`
v`

1+ α`
β`

C0

 (3.8)
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that can then be recast in a system of coupled Langevin processes for the time evolution

of the particles’ trajectories. We separate the equations for the two species:

ṙA
` (t ) = fA

` [ρ̃B (rA
` )]+

√
2g A

`
[ρ̃B (rA

`
)]ηA

` (t )

ṙB
` (t ) = fB

` [ρ̃A(rB
` )]+

√
2g B

`
[ρ̃A(rB

`
)]ηB

` (t )

〈ηX
i ,µ(t )ηY

j ,ν(t ′)〉 = δX Y δi jδµνδ(t − t ′)

(3.9)

where the spatial dependence of the motility parameters is explicit and fA,B
`

and g A,B
`

are

of the form

fA,B
`

= v A,B
`

1+ αA,B
`

βA,B
`

∇`
v A,B
`

2αA,B
`

and g A,B
`

= (v A,B
`

)2

2αA,B
`

(
1+ αA,B

`

βA,B
`

) . (3.10)

The last part of the procedure to obtain the evolution of ρA and ρB is now identical

to the single-species case and is detailed in Appendix A.1.2. The two equations for the

density fields can in fact be derived separately, starting from Eqs. (3.9) and applying Itō

calculus and using the properties of the delta functions appearing in (3.4). The dynamics

of ρA and ρB read

ρ̇A(r, t ) =∇
[

D A[ρ̃B ]∇ρA −FA[ρ̃B ]ρA +√
2D A[ρ̃B ]ρAΛA

]
ρ̇B (r, t ) =∇

[
DB [ρ̃A]∇ρB −FB [ρ̃A]ρB +√

2DB [ρ̃A]ρBΛB

]
,

(3.11)

where

DX [ρ̃Y ] = v2
X

2αX

(
1+ αX

βX

) , FX [ρ̃Y ] =− vX

2αX
∇ vX

1+ αX
βX

(3.12)

and

〈ΛµX (r, t )ΛνY (r′, t ′)〉 = δX ,Y δµνδ(r− r′)δ(t − t ′). (3.13)

Finally, if the densities ρ̃A and ρ̃B are slowly varying fields, a gradient expansion yields

the same results presented in Eq. (2.31). By considering a symmetric interaction kernel

and a truncation at the second order of the gradient expansion of ρ̃A and ρ̃B , Eqs. (3.11)

then become

ρ̇A(r, t ) =∇
[

D A[ρB ]∇ρA −FA[ρB ]ρA +√
2D A[ρB ]ρAΛA

]
+h.o.

ρ̇B (r, t ) =∇
[

DB [ρA]∇ρB −FB [ρA]ρB +√
2DB [ρA]ρBΛB

]
+h.o.

(3.14)

We discuss the nature and the role of the emerging higher order terms in section 3.4.2.
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3.3.2 Connection with the experiments

To establish a connection with the experiments, we need to consider the growth dynam-

ics of the bacterial population. As we have done in the case of single-species bacterial

colonies, we introduce a logistic term to model the spreading of the colony. We choose

this term as a generalized form of the one species case (2.9):

ρ̇A =µρA

(
1− ρA +ρB

ρ0

)
ρ̇B =µρB

(
1− ρA +ρB

ρ0

)
,

(3.15)

where µ is the growth rate of the two species and ρ0 is the carrying capacity. Note that dif-

ferent metabolisms, for instance due to different genetic circuits or fluorescent molecules,

could alter the form of the logistic term to

ρ̇A =µAρA

(
1− ρA +εAρB

ρA
0

)

ρ̇B =µBρB

(
1− εBρA +ρB

ρB
0

)
.

(3.16)

For the sake of simplicity, and in order not to introduce too many phenomenological fit-

ting parameters, we consider the simple form of (3.15).

When patterns arise, we also need to consider higher order gradient terms in order to

stabilize the interfaces. The origin of these terms, which is not the same as in the case

of single-species systems, is discussed in section 3.4.2. Here we limit ourselves to adding

a term proportional to ∆2ρA,B in the equations governing the dynamics of ρA and ρB ,

respectively.

The total system of noiseless coupled equations for the two density fields then reads:

ρ̇A(r, t ) =∇[
D A[ρB ]∇ρA −FA[ρB ]ρA

]−ζ∆2ρA +µρA

(
1− ρA +ρB

ρ0

)
ρ̇B (r, t ) =∇[

DB [ρA]∇ρB −FB [ρA]ρB
]−ζ∆2ρB +µρB

(
1− ρA +ρB

ρ0

)
.

(3.17)

Simulations of Eqs. (3.17) with central inoculum initial conditions lead to the results shown

in Figs. 3.3 and 3.4. We observe remarkable resemblance with the experimental results of

Figs. 3.1 and 3.2, respectively. In the first case (see Fig. 3.3), we have implemented the

interaction by making the two species inhibit each other’s motility: βA(ρB ) and βB (ρA)

are decreasing functions of their arguments. As a result, we observe a colocalization of
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t = 0 t = 75 t = 85

a.

b.

c.

Figure 3.3 – Snapshots of a numerical solution of Eqs. (3.17) starting from
a central inoculum for mutual inhibition interactions. The two species de-
velop an in-phase radial oscillation: they are colocalized. Box size L = 40,

initial conditions ρ0
A/ρ0

B = 1, βi (ρ j ) =β0 + β1−β0

2

(
1− tanh

(
ρ j−ρm

L f

))
, β0 = 0.5,

β1 = 7, ρm = 9, L f = 3, α= 1, v = 1.5, ζ= 0.1, µ= 0.1. a. Density of species A.
b. Density of species B. c. Total density ρ = ρA +ρB .

the two species, leading to an in-phase spatial oscillation in the radial direction. In the

second case, (see Fig. 3.4), we have implemented a motility activation interaction: βA(ρB )

and βB (ρA) are increasing functions of their arguments. As a result, we observe a seg-

regation of the two species, leading to an out-of-phase spatial oscillation in the radial

direction. In both cases the rings appear sequentially starting from the central inoculum,

after the initial front propagation.

The strong similarity between experimental and numerical results indeed validates

our model and our coarse-graining procedure. We stress that this is not a case of simple

pattern matching: even though quantitative comparisons are very hard to make (cf. sec-

tion 2.1.2), our interaction mechanisms of mutual inhibition and mutual activation used

in simulations are directly connected with the quorum sensing and motility control im-

plemented in the experiments. Moreover, the approximations and assumptions of our

coarse-graining procedure are always physically justified. We can therefore argue that

we have found a novel mechanism that can induce self-organization in colonies of multi-

species bacteria with density dependent motility. At the end of this chapter we discuss the

implication of our work for the possibility of controlling or inducing spatial organization
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t = 0 t = 50 t = 100

a.

b.

c.

Figure 3.4 – Snapshots of a numerical solution of Eqs. (3.17) starting from
a central inoculum for mutual activation interactions. The two species de-
velop an out-of-phase radial oscillation: they are segregated. Box size L =
40, initial conditions ρ0

A/ρ0
B = 1.13, βi (ρ j ) = β0 + β1−β0

2

(
1+ tanh

(
ρ j−ρm

L f

))
,

β0 = 0.5, β1 = 5, ρm = 9, L f = 3, α= 3, v = 2.5, ζ= 0.01, µ= 0.1. a. Density of
species A. b. Density of species B. c. Total density ρ = ρA +ρB .
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in systems of motile particles, showing an example involving a third species.

3.4 Origin of patterns

In the last section, we have introduced a model for a system of two interacting species

and, by using two types of interactions, mutual inhibition and mutual activation, we have

found two different behaviours: spatial colocalization or segregation. What is the origin

of these behaviours? Why cannot we observe spatial structures with mixed inhibition and

activation interactions?

In this section, we analyse in detail the interaction mechanisms giving rise to colo-

calization or segregation of the two species. We start by studying the linear stability of a

homogeneous profile and discuss the origin of the higher order gradient terms appearing

in Eq. (3.17). We then analyse the role of the logistic term and its interplay with the MIPS

mechanism.

3.4.1 Linear analysis

We first consider the intermediate time dynamics such that 1/α,1/β¿ t ¿ 1/µ, for which

the dynamics of the density field is given by Eqs. (3.11). We consider its noiseless, mean-

field, version – truncated at the second order in gradients – and perform a linear analysis

of homogeneous profiles ρ0
A and ρ0

B . Expanding ρA and ρB in Fourier modes

ρA = ρ0
A +∑

q
δρ

q
Ae i q·r

ρB = ρ0
B +∑

q
δρ

q
B e i q·r

(3.18)

and injecting this expansion in the dynamics (3.11) yields ˙δρq = −q2Mδρq , where ρ =
(ρA,ρB ) and M is the 2×2 dynamical matrix whose entries read

Mi i = Di

Mi j = Diρ
0
i

[
log

vi

1+ αi
βi

]′
,

(3.19)

where Di is of the form (3.12). Note that the density-dependent parameters vi , αi and βi

are evaluated in ρ0
j , and the prime indicates the derivative with respect to the density ρ j .

The stability of the system is then determined by the sign of the real parts of the eigenval-

ues of the matrix M . When those are positive, the system is stable, while when there is one
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eigenvalue with a negative real part, an instability grows giving rise to phase separation3.

This happens if the following condition in satisfied:

f ′
A f ′

B > 1

ρ0
Aρ

0
B

, (3.20)

where we have defined two functions f A and fB :

f A ≡ log
v A

1+ αA
βA

fB ≡ log
vB

1+ αB
βB

.
(3.21)

Condition (3.20) is reminiscent of condition (2.36) for a single-species system, but

there are important differences: in (2.36) the derivative of the logarithm must be nega-

tive, thus the logarithm must be a decreasing function of ρ. We recall that this condition

corresponds to a decreasing motility. Instead, in (3.20) the product f ′
A f ′

B must be positive,

which can be satisfied in two ways:

(i) both f ′
A < 0 and f ′

B < 0: f A and fB are decreasing functions ofρB andρA, respectively.

The motilities of both species are reduced, hence this case corresponds to mutual

inhibition;

(ii) both f ′
A > 0 and f ′

B > 0: f A and fB are increasing functions of ρB and ρA, respectively.

The motilities of both species are enhanced, hence this case corresponds to mutual

activation;

Note that condition (3.20) does not allow f ′
A and f ′

B to have opposite signs, thus justifying

the claim we made in the introduction section 3.1.2 that systems of mixed inhibition and

activation interactions do not undergo phase separation.

We can now consider the eigenvector (δρ−
A,δρ−

B ), corresponding to the unstable eigen-

value σ− < 0, whose properties are informative about how a small perturbation evolves.

The expression of the unstable eigenvalue reads

σ− = D A +DB −p
∆

2
where ∆= (D A +DB )2 −4D ADB

(
1−ρAρB f ′

A f ′
B

)
, (3.22)

3Recall the linearized dynamics ˙δρq = −q2Mδρq : the system is stable when the real parts of all the

eigenvalues of −q2M are negative, hence when the real parts of all the eigenvalues of M are positive, and
viceversa.
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ρA

ρB

(ρ0A, ρ
0
B)

f ′A < 0

f ′B < 0

f ′A > 0

f ′B > 0

Figure 3.5 – Schematic representation of the the eigenvector associated to
the unstable eigenvalue σ− of the matrix M defined in Eq. (3.19). Starting
from a homogeneous unstable condition (δρ0

A ,δρ0
B ), a small perturbation

can grow in two directions, here depicted in blue and red. The case repre-
sented in blue corresponds to mutual inhibition ( f ′

A,B < 0). In this case, in
regions where ρA grows, ρB grows too and in regions where ρA decreases, so
does ρB : the two species become colocalized. The case represented in red
corresponds instead to mutual activation ( f ′

A,B > 0): In this case, in regions
where ρA grows, ρB decreases and in regions where ρA decreases, ρB grows:
the two species become segregated.

from which a form of its corresponding eigenvector can be easily derived:δρ−
A

δρ−
B

=

D AρA f ′
A

σ−−D A

 . (3.23)

We observe that while the sign of δρ−
B = σ−−D A < 0 is fixed, the sign of δρ−

A depends on

the sign of f ′
A. We study the two cases, also illustrated in Fig. 3.5:

(i) if f ′
A < 0, which requires f ′

B < 0 to observe an instability, then δρ−
A and δρ−

B have

the same sign and in the regions where one density grows or decreases, so does the

other. This hence corresponds to the case of colocalization of the two species;

(ii) if f ′
A > 0, which requires f ′

B > 0 to observe an instability, then δρ−
A and δρ−

B have

opposite signs: in the regions where one density grows, the other decreases, and

viceversa. This hence corresponds to the case of segregation of the two species.

The linear analysis therefore agrees with the experimental results: in mutually inhibiting

systems the two species are colocalized while they segregate in mutually activating ones.

As we have done for single-species systems, we study the role of the three parameters

v , α, and β by allowing only one out of them to vary with the density, while the other two
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remain constant. We start by setting αA,B and βA,B constant and allowing v A,B to depend

on the densities ρB ,A. The instability condition then reads

f ′
A f ′

B = [
log v A

]′ [log vB
]′ = v ′

A

v A

v ′
B

vB
> 1

ρAρB
. (3.24)

When v ′
A,B < 0, v A,B are decreasing functions of the densities and hence this case corre-

sponds to mutual inhibition. Since v ′
A,B < 0 implies f ′

A,B < 0, (3.23) tells us that in this

case A and B are colocalized. The converse reasonment applies to v ′
A,B > 0, which hence

corresponds to mutual activation and segregation. We observe that the details related to

finite tumble duration, carried by the tumbling and running rates, do not affect condition

(3.24).

We then consider the case where the tumbling rate α is density-dependent, while v

and β are constant. In this case the instability condition reads

f ′
A f ′

B =
[

log
1

αA +βA

]′[
log

1

αB +βB

]′
=

(
− α′

A

αA +βA

)(
− α′

B

αB +βB

)
> 1

ρAρB
, (3.25)

where we have explicitated the minus signs in order to emphasize that f ′
A,B are propor-

tional to −α′
A,B . This was expected: transport efficiency decreases for high tumbling rates

and increases for low tumbling rates. Therefore, whenα′
A,B > 0, and hence f ′

A,B < 0, we are

in the case of mutual inhibition and the two species colocalize; on the other hand, when

α′
A,B < 0, and hence f ′

A,B > 0, we are in the case of mutual inhibition and the two species

segregate (cf. Eq. (3.23) and its consequences (i) and (ii)).

Finally, we consider the case in which v and α constant and β = β(ρ). We obtain the

following instability condition:

f ′
A f ′

B =
[

log
βA

αA +βA

]′[
log

βB

αB +βB

]′
= αAβ

′
A

βA(αA +βA)

αBβ
′
B

βB (αB +βB )
> 1

ρAρB
. (3.26)

Here we have again that f ′
A,B are proportional to β′

A,B , from which we conclude that when

β′
A,B > 0, the two species inhibit each other and hence colocalize, while when β′

A,B < 0,

they activate each other and hence segregate.

To test our results, we perform on-lattice numerical simulations of microscopic sys-

tems. For simplicity, we choose to implement the dynamics of a system in which tum-

bles are instantaneous and where the interactions modulating the motility thus occur

through the parameters v A,B (ρB ,A). This allows for faster calculations while not affecting

the density-dependent-motility mechanism, which, as shown in the instability condition

(3.24), does not depend on the tumbling and running rates. As expected, the two species
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t = 100 t = 10000 t = 90000

a.

b.

c.

Figure 3.6 – Snapshots of an on-lattice simulation of a system with mu-
tual inhibition interactions, starting from homogeneous densities. We ob-
serve colocalization of the two species and a complete coarsening at steady
state. Box size L = 100, number of particles NA = NB = 500000, vi (ρ j ) =
v1 + v0−v1

2

(
1− tanh

(
ρ j−ρm

L f

))
, v1 = 0.1, v0 = 6, ρm = 50, L f = 30, α = 1. The

coarse-grained densities ρA and ρB are computed with a quasi-circular in-
teraction kernel of radius r0 = 3. a. Density of species A. b. Density of
species B. c. Total density ρ = ρA +ρB .

are colocalized in the case of mutual inhibition (Fig. 3.6) and segregated in the case of

mutual activation (Fig. 3.7), with a complete coarsening in the steady state.

3.4.2 Higher order gradients

In deriving Eq. (3.11), we have considered an expansion of the coarse-grained density of

the type shown in (2.31). In the following we have neglected the higher order gradients

that appear when (2.31) is substituted in Eq. (3.11). We now want to understand the role

of these terms that we have so far neglected and which determine the stability of high

wavenumbers q .

Consider the equation for the evolution of ρA. By keeping terms up to fourth order in

gradients, its form would be very similar to Eq. (2.40). The important difference is that,

since the motility parameters of species A depend on ρB , the higher order gradients ap-

pearing in the equation for ρA are derivatives of the density ρB . Calling m A
1 (ρB ) = v A

2αA
and
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t = 100 t = 10000 t = 90000

a.

b.

c.

Figure 3.7 – Snapshots of an on-lattice simulation of a system with mu-
tual activation interactions, starting from homogeneous densities. We ob-
serve segregation of the two species and a complete coarsening at steady
state. Box size L = 100, number of particles NA = NB = 500000, vi (ρ j ) =
v0 + v1−v0

2

(
1+ tanh

(
ρ j−ρm

L f

))
, v0 = 0.1, v1 = 6, ρm = 50, L f = 30, α = 1. The

coarse-grained densities ρA and ρB are computed with a quasi-circular in-
teraction kernel of radius r0 = 3. a. Density of species A. b. Density of
species B. c. Total density ρ = ρA +ρB .
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m A
2 (ρB ) = v A

1+αA/βA
, we obtain

ρ̇A(r, t ) =∇·
[(

m A
1 m A

2 +ρAm A
1

(
m A

2

)′)∇ρA

]
+∇·

[
1

2
σ2∆ρB

[(
m A

1 m A
2

)′+ρA

(
m A

1

(
m A

2

)′)′]∇ρB

]
+∇·

[
1

2
σ2ρAm A

1

(
m A

2

)′∇∆ρB

]
.

(3.27)

The converse holds for the dynamics of ρB . Considering a small perturbation around a

homogeneous profile ρA,B = ρ0
A,B +∑

q δρ
q
A,B e i qx yields the following dynamics for δρq

A,B :

˙δρq = (−q2M +q4M4)δρq , (3.28)

where M is defined in (3.19) and M4 is an off-diagonal matrix such that

M4 i i = 0

M4 i j = 1

2
σ2ρ j m j

1

(
m j

2

)′ = 1

2
σ2ρ j D j f ′

j ,
(3.29)

with f ′
j as in (3.20). We also define for simplicity κi ≡ M4 i j . An instability then occurs

when

q4κAκB +q2 (
D Aρ

0
A f ′

A +DBρ
0
B f ′

B

)−D ADB
(
1−ρ0

Aρ
0
B f ′

A f ′
B

)> 0. (3.30)

Note that, when the system is unstable, f ′
A f ′

B > 0 and hence κAκB > 0 too. If we call the

roots of the left hand side of (3.30) q2+ and q2−, then the inequality is satisfied for q2 > q2+,

which means that the instability is not saturated: all modes larger than q2+ are unstable.

This fact is unexpected: in the single-species case, the fourth order gradients obtained

from the expansion of the coarse-grained density are stabilizing at linear level (cf. (2.41)

and (2.42)). Here, instead, they are not. Moreover, pushing the gradient expansion further

(sixth order, eighth order in gradients, etc.) would give rise, at the linear level, to additional

terms in Eq. (3.28) of the type q6M6, q8M8, etc. Just like M4, all the matrices M6, M8, etc.

are off-diagonal, and the leading q term in the instability condition will always result from

the product of two coefficients of the same sign (in the case of truncation at fourth order,

we have κAκB > 0).

Nevertheless, in microscopic simulations such as those shown in Figs. 3.6 and 3.7,

we observe an instability where predicted and a corresponding instability saturation with

smooth interfaces. Where do the stabilizing terms then come from? We note that during

the coarse-graining procedure we carried out another gradient expansion, namely in the
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steps where we performed the diffusion-drift approximation. In that case, we have ne-

glected, in the equations for ρA and ρB , gradients of the density of the same species. In

that approximation, the gradient expansion is truncated at the second order (cf. footnote

at page 54). This approximation was done in order to be able to obtain the Fokker-Planck

equation such as (3.8) and apply Itō calculus to derive the time evolution for the density

fields ρA and ρB . Taking into account these higher order gradients would have required a

completely different approach to our problem (see, for instance [47, 141]).

Then, within our derivation, we expect such corrections to be present in the equation

for the dynamics of ρA and ρB as terms proportional to a fourth order gradient of ρA and

ρB , respectively. The complete mean-field equation for phase separating systems with

smooth interfaces then reads

ρ̇A(r, t ) =∇[
D A[ρB ]∇ρA −FA[ρB ]ρA

]−ζ∆2ρA

ρ̇B (r, t ) =∇[
DB [ρA]∇ρB −FB [ρA]ρB

]−ζ∆2ρB .
(3.31)

3.4.3 Logistic growth in a two-species system

We now analyse more carefully the role of the logistic growth of the form (3.15), that we

recall here:

ρ̇A =µρA

(
1− ρA +ρB

ρ0

)
ρ̇B =µρB

(
1− ρA +ρB

ρ0

)
.

(3.32)

We claimed that this form is a reasonable approximation of the population growth in the

experiments: the two species reproduce at the same rate µ, also called the birth rate, and

compete for the same nutrients. Hence, a carrying capacity ρ0 for the total population

ρA +ρB . We now show that this choice entails a very subtle consequence.

3.4.3.1 Degeneracy of the solution

While in the single species case the fixed pointρ = ρ0 is unique, in the case of two species –

and in multispecies in general – the fixed point is given by ρA+ρB = ρ0, which can happen

for an infinite number of values of ρA and ρB . The fixed point of the dynamical system

(2.9) is in fact a fixed line in the phase plane (ρA,ρB ), as shown in Fig. 3.8.

To understand the properties of this line of fixed points, we study the behaviour of

small perturbations around an arbitrary point on the line (ρ0
A,ρ0

B ). The two eigenvalues

of the dynamical matrix for the linearized system are σ1 = 0 and σ2 =−µ and their corre-

sponding eigenvectors are x1 = (1,−1) and x2 = (ρ0
A,ρ0

B ). The first eigenvector is parallel

to the line of fixed points: perturbations in that direction make the solution shift along
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ρA

ρB

ρ0

ρ0

ρB = ρ0 − ρA

Figure 3.8 – Schematic representation of the line of fixed points such that
ρA +ρB = ρ0 in the phase plane (ρA ,ρB ).

the line without leaving it. On the other hand, the direction of the second eigenvector

depends on the initial condition (ρ0
A,ρ0

B ). Since σ2 is negative, perturbations in the direc-

tion x2 decay bringing the solution back to the line of fixed points. Since one direction is

neutral and the other one is stable, the line of fixed points is degenerate: in presence of

noise, the solution may diffuse along the line.

3.4.3.2 The interplay with MIPS

In chapter 2 we have seen how the competition between the logistic growth and the MIPS

mechanism can give rise to patterns with finite wavelength. The necessary condition for

which the two dynamics are in competition is, of course, that the carrying capacity ρ0 is

within the instability range of the MIPS mechanism.

We now investigate the effect of a logistic term of the form (3.32) in a two-species

system of run-and-tumble bacteria undergoing MIPS, obeying Eq. (3.17). Suppose that we

start from a homogeneous unstable profile (ρ0
A,ρ0

B ), such that ρ0
A +ρ0

B = ρ0, the carrying

capacity of Eq. (3.32). Then, a small perturbation grows, causing the system to separate in

two phases which in principle do not lie on the line defined by ρ0
A +ρ0

B = ρ0. In general,

one of the two phases (let us call it phase 1) lies above the line of degenerate fixed points:

ρ1
A +ρ1

B = ρ1
tot > ρ0. The other phase (let us call it phase 2) lies instead below the line

of degenerate fixed points: ρ2
A +ρ2

B = ρ2
tot < ρ0. A schematic representation of a typical

situation, underlying the differences between the case of mutual inhibition and mutual

activation, is depicted in Fig. 3.9.

At this point, the instability due to the MIPS mechanism has lead the solution of Eq.

(3.17) to a profile oscillating in space between two values ρ1
tot > ρ0 and ρ2

tot < ρ0, where

1 and 2 indicate the two phases. The logistic dynamics, on the other hand, tries to lead
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ρA

ρB

ρ0

ρ0

ρ0A

ρ0B
Inhibition

Activation

Phase 1

Phase 2

Figure 3.9 – Schematic representation, in the phase plane (ρA ,ρB ), of the
MIPS phase diagram (the region inside the magenta circle is linearly un-
stable) with the line of fixed points (in cyan) such that ρA +ρB = ρ0. The
initial condition is at (ρ0

A ,ρ0
B ), in the unstable region and on the line of fixed

points. A small perturbation causes the system to separate in two phases
that lie outside the unstable region. In the case of mutual inhibition, the
two phases are in the top-right and bottom-left quadrants (with respect to
the initial condition), in the case of mutual activation they are in the top-left
and bottom-right quadrants (with respect to the initial condition).

the solution towards a steady-state condition where ρss
A +ρss

B = ρ0 everywhere. If the fixed

point of the logistic dynamics (ρss
A ,ρss

B ) lies inside the unstable region, the two mecha-

nisms are in competition, which once again gives rise to patterns of finite wavelength, as

observed in experiments and simulations (cf. Figs. 3.1, 3.2, 3.3, and 3.4).

We recall that the typical size of a domain – that could be a droplet, a stripe, or a ring,

depending on the initial conditions – is determined by the balance of two terms: the flux

through the interface between phases 1 and 2, proportional to the length of the interface,

and the creation or destruction of mass inside the different phases, proportional to the

area of the domain. If for simplicity we assume that our pattern is an array of droplets,

then at steady state, where there is no net mass transport, we have

0 = ρ̇tot =πR2δρ−2πRφ, (3.33)

where δρ is the rate of mass creation/destruction inside a droplet, φ the density flux

through the interface, and R the typical radius of the droplet. From Eq. (3.33) we deduce

the typical radius

R ∝ φ

δρ
. (3.34)

Note now that the oscillation amplitude of ρtot = ρA +ρB is in general larger in the case of
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mutual inhibition, where the two oscillating profiles ρA and ρB are in-phase, than in the

case of mutual activation, where the two oscillating profiles ρA and ρB are out-of-phase.

In this last case, phases 1 and 2 may be such that the overall density ρA+ρB is always very

close to the carrying capacity (cf. Fig. 3.9). In the limit in which the coexistence densities

lay on the line of fixed points, the mass production due to the logistic term tends to zero

inside the droplet, and hence the radius of the droplet tends to infinity, as we can see

from the relation (3.34). For finite systems, this corresponds to a radius comparable to the

system size. We conclude that, for mutual activation, domains can become very large and

eventually reach the size of any finite system. This case, which requires a symmetry of the

system (ρA ↔ ρB and ρtot in the two phases symmetric with respect to ρ0), is illustrated in

Fig. 3.10.

We stress that this fact does not exclude the scenario where the typical size of domains

is smaller than the system size and patterns can be observed. In fact, for generic interac-

tions, i.e. when v A(ρB ) 6= vB (ρA), we expect the coexistence phases4 to be quite far from

the line of fixed points5. This generically prevents arbitrarily large patterns. In addition,

the coarsening dynamics is slow compared to the typical timescale at which the initial

phase separation takes place [141], as we can observe in simulations (cf. Fig. 3.10). In the

experiments, it is likely that at timescales where coarsening would take place, the colony

has consumed most of the nutrients present in the environment and bacteria have be-

come non-motile: the patterns are “frozen” in a metastable state, that cannot be exited

unless energy is provided to reactivate the cells’ functionality. To test this hypothesis, in

future works it would be interesting to relate the bacterial motility to the concentration of

nutrient.

We finally point out a subtlety caused by the degeneracy of fixed points discussed in

section 3.4.3.1. In the single-species case, the fixed point ρ0 is unique and can be chosen

in such a way that it lies inside the MIPS unstable region, hence maintaining a competi-

tion between MIPS and logistic growth. In our model for multispecies systems, instead,

it is perfectly plausible that among all the steady-state solutions (ρss
A ,ρss

B ), some lie out-

side the MIPS unstable region. Then, a rare fluctuation could make the system go from

the pattern forming region to such an outlying profile, which could destroy the patterns

4It would indeed be very useful to be able to analytically compute the coexistence densities – binodals –
for given interactions and initial conditions. Unfortunately, for non-equilibrium systems, no general meth-
ods are known for the analytical computation of the binodal lines. We show in section 4.2.1 a special case
– of simple MIPS, i.e., without logistic growth – in which we are able to map our non-equilibrium active
system to an equilibrium one at second order in gradients, highlighting the differences and similarities be-
tween the two.

5Note that this is what happens in the experiments, where the two species of bacteria are in general
distinguishable. However, since we are not able to quantify the real interactions and their differences for
different species, we adopt simple forms in order to limit the number of unknown fitting parameters.
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t = 100 t = 10000 t = 90000

a.

b.

c.

Figure 3.10 – Snapshots of an on-lattice simulation of a system with mutual
activation interactions and birth-and-death dynamics, starting from homo-
geneous densities. We observe segregation of the two species and phase
separation and a complete coarsening at steady state without formation of
patterns with typical wavelength. We note that the two species are perfectly
interchangeable in this simulation: this atypical symmetry makes the coex-
isting densities lie on the line ρA +ρB = ρ0. Box size L = 100, initial num-

ber of particles NA = NB = 500000, vi (ρ j ) = v0 + v1−v0
2

(
1+ tanh

(
ρ j−ρm

L f

))
,

v0 = 0.1, v1 = 4, ρm = 50, L f = 30, α = 1, b0 = 0.1, d0 = 0, d1 = 0.001. With
this choice of birth and death rate we are introducing another symmetry:
ρ0 = 100, which corresponds to 2ρm . The coarse-grained densities ρA and
ρB are computed with a quasi-circular interaction kernel of radius r0 = 3. a.
Density of species A. b. Density of species B. c. Total density ρ = ρA +ρB .
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t = 0 t = 100 t = 1000

a.

b.

c.

Figure 3.11 – Snapshots of an on-lattice simulation of a system with mu-
tual inhibition interactions, starting from homogeneous densities. At in-
termediate state, we observe micro-phase separation with patterns with
finite wavelength. At steady state, the system relaxes to stable homoge-
neous profiles whose values differ from the initial condition ones. Box
size L = 100, initial number of particles NA = NB = 400000, vi (ρ j ) = v1 +
v0−v1

2

(
1− tanh

(
ρ j−ρm

L f

))
, v1 = 0.1, v0 = 8, ρm = 50, L f = 20, α = 1, b0 = 0.1,

d0 = 0, d1 = 0.001. The coarse-grained densities ρA and ρB are computed
with a quasi-circular interaction kernel of radius r0 = 3. a. Density of species
A. b. Density of species B. c. Total density ρ = ρA +ρB .

(cf. Fig. 3.9). An example of this situation is shown for the case of mutual inhibition in

Fig. 3.11. We note, however, that for this particular situations to occur, a lot of mass needs

to be moved from high density to low density regions, or created and destructed. Once

again, in experiments, this typically happens at long times, by which the bacteria have

already consumed the nutrients and have become non-functional.

3.5 Controlling patterns: the case of three species

We now present some results on systems of three different interacting species of E. coli.

The goal of this work is to show that it is possible to control the spatial organization in

bacterial colonies with density-modulated motility, using the principles deciphered for

two species.
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The strategy is the following: A and B are a couple of mutually inhibiting species. The

engineered genetic circuits that produce this mutual interaction are the same as those

shown in Fig. 3.1-a. Hence, when A and B interact, they develop colocalized patterns.

Then, two other species, called sensor C and sensor D, are engineered in such a way

that they respond to the signals produced by species B, namely the AHL molecules called

3oc6HSL. In particular, sensor C responds by suppressing the expression of cheZ, hence

by reducing its transport efficiency: we can say that its motility is inhibited by B. Sensor

D, on the contrary, responds by enhancing the expression of cheZ, therefore increasing its

transport efficiency: its motility is activated by B.

The experimental results are shown in Fig. 3.12, where the geometry of the setup is

different from previous experiments: instead of a central inoculum, the growth of cell

mixture is initiated along a thin line in the middle of the semisolid agar plate. To visual-

ize the different species, A and B are tagged with the sfGFP fuorescent molecule (green),

while C and D are tagged with mCherry (red). The results are consistent with the generic

strategy discussed so far. When the motility of sensor C is inhibited by the local density

of species B, the population of sensor C shows synchronous in-phase oscillations with

species A and B, resulting in colocalized stripe patterns. On the other hand, when inhib-

ited, the population of sensor D exclusively aggregates in the low density regions, showing

a major segregation from the high density stripes of species A and B. Numerical simula-

tions are in agreement with the experimental results (see Figs. 3.13 and 3.14).

The three-species experiments show a novel mechanism allowing to control spatial

organization in motile bacteria. Sensors C and D dynamically respond to the presence of

an inducer, namely the AHL secreted by strain B, which controls their motility. In the ex-

periment, the inducer is localized in sequential stripes, as a consequence of the inhibition

interaction of species B with species A. To use the terminology of chapter 1, the couple of

inhibitors A and B act as a prepattern that modulates the spatial organization of sensors

C and D.

3.6 Conclusion and perspectives

Chapters 2 and 3 were dedicated to the study of pattern formation in bacterial colonies,

where the leading interaction mechanism is the modulation of the motility of self-pro-

pelled particles depending on the local density. This mechanism allows particles to self-

organize in space, without the need to impose any condition from the outside, such as

external fields or spatial cues.
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Figure 3.12 – Sensor strains C and D are respectively mixed by a low frac-
tion (1%) with strains A and B, called “inhibitors”. The three species mix-
ture is linearly inoculated in semisolid agar plate. Left panels of a and b:
schematic representations of the interaction loop among three engineered
strains. Right panels: darkfield snapshots of stripe patterns (first column)
formed by the three species systems. LD indicates a low density stripe,
while HD indicates a high density stripe. The distributions of each strain
are shown in sfGFP (inhibitors A and B), mCherry (sensors C and D), and
merged fluorescent channels (see online version if contrast in printed ver-
sion does not allow a clear view of the patterns).
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Figure 3.13 – Density profiles along a cut of a 2D numerical solution of
Eqs. (3.17) for a couple of inhibitors A and B, with the addition of a third
equation for sensor C, whose motility parameters depending on ρB . The
initial condition is a linear central inoculum. The inhibitors’ density is
shown in green (A and B superposed): they form in-phase spatial oscilla-
tions. The sensor’s density is shown in red: it oscillates in-phase with its
inhibitor B. Box size L = 80, initial conditions ρ0

A/ρ0
B = 1, ρB /ρ0

C = 200,

βi (ρ j ) =β0+ β1−β0

2

(
1− tanh

(
ρ j−ρm

L f

))
,β0 = 0.5,β1 = 5, ρm = 15, L f = 5,α= 3,

v = 2.5, ζ= 0.1, µ= 0.1.



3.6. Conclusion and perspectives 75

0 10 20 30 40 50 60 70 80
0

10

20

x

ρ

0

1

2

Figure 3.14 – Density profiles along a cut of a 2D numerical solution of
Eqs. (3.17) for a couple of inhibitors A and B, with the addition of a third
equation for species C, whose motility parameters depending on ρB . The
initial condition is a linear central inoculum. The inhibitors’ density is
shown in green (A and B superposed): they form in-phase spatial oscilla-
tions. The sensor’s density is shown in red: it oscillates out-of-phase with
respect to its activator B. Box size L = 80, initial conditions ρ0

A/ρ0
B = 1,

ρB /ρ0
C = 50, β0 = 0.5, β1 = 5, ρm = 15 and L f = 5, α = 3, v = 2.5, ζ = 0.1,

µ= 0.1.

βi (ρ j ) =β0 + β1−β0

2

(
1− tanh

(
ρ j−ρm

L f

))
, with i , j ∈ {A,B}.

βC (ρB ) =β0 + β1−β0

2

(
1+ tanh

(
ρB−ρm

L f

))
.

The coarse-graining procedure developed in sections 2.2.1 and 3.3.1 allows to create a

direct connection between the experiments and the underlying pattern formation mech-

anisms, by taking into account both the precise interactions among the particles and the

finite tumble duration, which play a crucial role in the experiments. When two species

are present, it is possible to implement mutual interactions. By examining in detail the

characteristic of these interactions, we were able to predict the different behaviours that

we observe in experiments. The remarkable resemblance of numerical simulations of

the macroscopic equations with the experimental results not only validates our model

and approximations, but suggest that this mechanism is very robust. Indeed, we ne-

glected many details of the experiments, from the chemical fields to hydrodynamics, to

behavioural polydispersity or the presence of agar. The fact that our theory still describes

very well the experiments suggests that the underlying pattern formation mechanism

should be very robust and hence generically encountered in Nature.

From a practical point of view, we have set the basis to start analysing how to tune the

parameters in order to obtain desired patterns. The case of three species experiments and

simulations, where a species is engineered in such a way as to follow a given prepattern,

is an instructive example. Moreover, it would be interesting to study how patterns are

modified by varying some conditions, such as for example the difference between the
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transport efficiency in dense or dilute regions.

In the same train of thought, a very interesting perspective is that of bridging the quan-

titative gap between the experiments and the theory, by finding optimal fitting parameters

for the model that could be measured in the real colonies of bacteria. This improvement is

directly related to the progress in imaging techniques and algorithms capable of process-

ing data relative to large numbers of particles and extracting the relevant fitting parame-

ters. A good candidate for this purpose is Differential Dynamic Microscopy which allows

to measure parameters such as the speed of the particles or the fraction of non-motile

cells without the need of single-cell tracking [94].
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Chapter 4

Motility-induced phase separation in

multispecies systems

The results on two-species mutually interacting run-and-tumble bacteria found in chap-

ter 3 open up exciting scenarios on the behaviour of multispecies systems of motile parti-

cles. We already showed in section 3.5 an interesting application of the MIPS mechanisms

for systems of three species, where two mutually inhibitor species self-organize and con-

trol the spatial distribution of a third species. In this chapter we present some preliminary

results on the general case in which N species coexist and interact, starting from the case

where each species interacts with any other, but not with itself (no self-regulation of the

motility). Note that in multispecies systems the interactions that we consider are still inhi-

bition and activation of motility; the question, then, is if, and eventually how, it is possible

to combine them between the different species in order to obtain a given self-organization

of the system.

For the sake of simplicity, we work within the approximation of instantaneous tum-

bles, in order to deal with simpler equations. The theory developed in chapter 2 ensures

that a generalization to systems with finite tumble duration is straightforward.

We study the stability of homogeneous profiles in simple cases for which general con-

ditions can be found to observe phase separation and show how it is possible to predict

the spatial organization of the different species in phase separated systems. At the end

of the chapter we discuss a mapping to equilibrium systems, highlighting differences and

similarities between such systems and our active ones.

4.1 Linear analysis and results

We consider a system composed of N species interacting by quorum sensing motility-

regulation: a generic scenario is that motility of species i is modulated by the density

of all species j 6= i , where we have not considered self-interactions. We hence assume
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that the speed of particles of species i can vary with ρ j 6=i : vi = vi ({ρ j 6=i }), where {ρ j 6=i } =
ρ1, . . . ,ρi−1,ρi+1, . . . ,ρN . In particular, we consider a speed vi that depends on the sum

of the densities
∑

j 6=i ρ j : physically, this may indicate that species i responds to the inte-

grated signal coming from all the other species.

We consider a coarse-graining such as the one performed in last chapters (cf. sec-

tions 2.2.1 and 3.3.1), which can be easily generalized to the N -species case, and start

directly from the time evolution for the densities of the different species. Considering a

mean-field approximation and locality of the interactions, the system of coupled equa-

tions reads

ρ̇i =∇· [v2
i ∇ρi +ρi vi∇vi

]
, (4.1)

where the time derivative is performed with respect to a rescaled time t ′ = dαt , where d

is the number of spatial dimensions and α the tumbling rate (cf. Eq. (2.5)). We consider a

solution ρi = ρ0
i ∀i where all densities are homogeneous and study the effects of a pertur-

bation around such profiles. The linearized system reads ˙δρq =−q2Mδρq , where M is a

N ×N linear stability matrix, which takes the form

Mi i = v2
i

Mi j = viρ
0
i
∂vi

∂ρ j
,

(4.2)

where the speeds and their derivatives are evaluated at ρ0
1, . . . ,ρ0

N .

In order to have an instability, M must have at least one eigenvalue with negative real

part. Since tr M > 0, there is always at least one positive eigenvalue. If N = 2, as in the pre-

vious chapter, a necessary and sufficient condition for another eigenvalue to be negative

is than that det M < 0. However, for N > 2, the condition det M < 0 is sufficient, but not

necessary: if there exist negative eigenvalues, but their number is even, then det M > 0.

Suppose now that we have a non-interacting system or a very dilute one. Then Mi j

can be neglected and M is a diagonal matrix with strictly positive eigenvalues v2
i : the sys-

tem is stable. Since the eigenvalues are continuous functions of the matrix elements, if

we continuously increase the interactions or the densities, the onset of instability hap-

pens when the real part of one eigenvalue vanishes. If the eigenvalues are real, this is

equivalent to det M = 0. However, if there are complex eigenvalues, they always appear by

complex conjugate pairs (because M is real). Therefore, their real part can vanish while

the determinant remains positive.

Without some simplifications of the matrix M , not much can be said on its spectrum

and hence on the stability of Eqs. (4.1). In the next two sections we consider particular

cases where the eigenvalues can be calculated analytically and we discuss the nature of
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the phase separations that we can obtain.

4.1.1 Fully-connected interactions

We start with a case where we assume that the functional forms of the speeds of all species

are equal; this assumption thus requires that all species interact by either inhibition or

activation of motility. We also assume that all the homogeneous profiles are the same:

ρ0
j = ρ0 ∀ j . In this way, the speeds of all species and their derivatives are evaluated at

the same value, i.e. ρtot
0 −ρ0, where ρtot

0 = Nρ0, since we assumed the speed to depend

on the sum of the other densities. This choice allows for simpler calculations while not

altering qualitatively the results: the instability conditions might be less general, but more

informative about the expected behaviour (colocalization, segregation, others. . . ).

The stability matrix in this case is composed of two constant terms, one for the diago-

nal entries, the other for the off-diagonal ones:

Mi i = v2

Mi j = vρ0
∂v

∂ρ
,

(4.3)

where ρ =∑
i ρi and v and ∂ρ j v are evaluated in ρtot

0 −ρ0. The spectrum of the matrix (4.3)

can now be easily calculated in the cases N = 3,4, . . . , and the general case deduced:

σ1 =σ2 = ·· · =σN−1 = v2 − vρ0
∂v

∂ρ

σN = v2 + (N −1)vρ0
∂v

∂ρ
.

(4.4)

We observe that the stability of the system depends on the sign of ∂ρv . We start by consid-

ering the case ∂ρv < 0, i.e. where all species interact by inhibition of the motility. In this

case the N −1 eigenvalues σ1 = σ2 = ·· · = σN−1 are positive, hence stabilizing, while the

last eigenvalue σN can be negative and give rise to an instability. The eigenvector associ-

ated to σN is of the form xN = (1,1, . . . ,1): if a perturbation makes the density of species i

become larger (resp. smaller), then all the other densities increase (resp. decrease) with

ρi one and we then observe colocalization of N species (see Fig. 4.1).

If we now consider the case ∂ρv > 0, we observe that the eigenvalue σN is positive,

hence stabilizing, while the σ1 = σ2 = ·· · = σN−1 can become unstable. As for the eigen-

vectors, their general form is xi j = (0, . . . ,0,−1,0, . . . ,0,1,0, . . . ,0), where the i th entry is

equal to −1 and the j th to +1. If xi j is one eigenvector, then the other N − 2 are such

that the entry −1 is fixed at position i , while the entry +1 is different for each eigenvector,
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Figure 4.1 – Numerical solutions of Eqs. (4.1) with the addition of a stabiliz-
ing term of the type −ζ∆2ρi (cf. discussion in 2.2.2.1) in 1D for a fully con-
nected system: the case of colocalization. Left: three-species system. The
three densities, colored in red, green, and blue are perfectly superposed.
Box size L = 32, initial conditions ρi = 11+δρi , where i ∈ {1,2,3} and δρi is
a random perturbation of the order 10−2, v(ρ) = v0 exp

(−λρ)
, ρ = ∑3

i=1ρi ,
v0 = 1, λ = 0.2, α = 1, ζ = 0.001. Right: four-species system. The four
densities, colored in red, green, blue, and yellow are perfectly superposed.
Box size L = 32, initial conditions ρi = 11 + δρi , where i ∈ {1,2,3,4} and
the δρi ’s are smooth undulations of amplitude A = 2, v(ρ) = v0 exp

(−λρ)
,

ρ =∑4
i=1ρi , v0 = 1, λ= 0.2, α= 1, ζ= 0.001.

with j 6= i . For instance, they can take the forms:

x1,2 = (−1,1,0,0, . . . ,0,0)

x1,3 = (−1,0,1,0, . . . ,0,0)

. . .

x1,N = (−1,0,0,0, . . . ,0,1).

(4.5)

If a perturbation makes density of species i become, say, larger, then all the other densities

tend to become smaller where ρi grows. Then, since all densities are interchangeable, the

same dynamics is applicable to any of them: where any ρ j accumulates, all the others

become sparse. We then observe total segregation: the space is divided into N regions1,

each one densely populated by one species (see Fig. 4.2). Finally, note that the linear

analysis does not tell us how the different domains are organized, i.e. which domains are

in contact and which are instead far from each other.

4.1.2 “Chain interactions”

We now treat the case in which the motility of species j −1 is modulated only by the den-

sity of species j , and the motility of species j is modulated only by the density of species

1We note that at first there are n > N regions where the presence of one species is predominant with
respect to the others, then a coarsening dynamics makes small regions disappear and large regions become
larger.
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Figure 4.2 – Numerical solutions of Eqs. (4.1) with the addition of a stabi-
lizing term of the type −ζ∆2ρi (cf. discussion in 2.2.2.1) in 1D for a fully
connected system: the case of total segregation. Left: three-species system.
The three densities, colored in red, green, and blue organize in three do-
mains, in each of which one species is dense and the other two are sparse.
Box size L = 32, initial conditions ρi = 11+δρi , where i ∈ {1,2,3} and δρi

is a random perturbation of the order 10−2, v(ρ) = v0 exp
(
λρ

)
, ρ = ∑3

i=1ρi ,
v0 = 1, λ = 0.1, α = 1, ζ = 0.006. Right: four-species system. The four den-
sities, colored in red, green, blue, and yellow organize in four domains, in
each of which one species is dense and the other three are sparse. Box size
L = 16, initial conditions ρi = 11+δρi , where i ∈ {1,2,3,4} and δρi is a ran-
dom perturbation of the order 10−3, v(ρ) = v0 exp

(
λρ

)
, ρ = ∑4

i=1ρi , v0 = 1,
λ= 0.1, α= 1, ζ= 3.

j +1. We set j −1 = N if j = 1 and j +1 = 1 if j = N in order to close the loop, and refer

to this model as “chain interactions”. As in the previous case, we assume that the form of

the speed v is the same for all species and that all species have the same initial density, so

that v and its derivatives are evaluated in (N −1)ρ0. The N ×N linear stability matrix M

now reads

M =



v2 ρv∂ρv 0 . . . 0

0 v2 ρv∂ρv . . . 0

0 0 v2 . . . 0
...

...
...

. . .
...

ρv∂ρv 0 0 . . . v2


. (4.6)

The characteristic polynomial of M can be easily calculated by expanding with respect to

the first column: (v2 −σk )(v2 −σk )N−1 = (−1)N (ρv∂ρv)(ρv∂ρv)N−1, which gives

(v2 −σk )N = (−ρv∂ρv)N , (4.7)

where the σk ’s are the N eigenvalues of M . From (4.7) we compute their general form:

σk = v2 +e
2πi k

N ρv∂ρv. (4.8)
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Note that

σk =σ∗
N−k , (4.9)

where the star indicates the complex conjugate.

We now analyse the spectrum (4.8) by looking at the different values that k can take.

We start by setting k = N . In this case we have that

σN = v2 +ρv∂ρv, (4.10)

which can lead to an instability qualitatively identical to the one of σN in (4.4), since their

eigenvectors are of the form xN = (1,1, . . . ,1). Hence, when σN becomes negative, which

can happen for ∂ρv < 0, the system evolves towards a colocalization of all species.

If N is even, then we can consider k = N /2. In this case, we obtain

σN
2
= v2 −ρv∂ρv, (4.11)

which can lead to an instability when ∂ρv > 0. The eigenvector associated with σN
2

now

takes the form x N
2
= (−1,1,−1, . . . ,1), which can be interpreted in the following way: when

a small perturbation makes ρ j grow, then its “neighbours” ρ j−1 and ρ j+1, i.e. the two

species j interacts with, decrease. We therefore observe a “partial” segregation of the sys-

tem in two domains: in one domain the non-interacting species {ρ2 j } coexist, while in the

other we find the remaining {ρ2 j+1}, also non-interacting. Even though some species in

domain 1 do not interact with some species in domain 2, the two domains remain im-

miscible, thanks to the “chain interactions”. The N −2 remaining eigenvalues for which

k 6= N , N /2, are complex and cannot give rise to stationary phase separated solutions.

When N is odd no eigenvalue such as σN
2

exists, and hence the only real eigenvalue

is σN , while the remaining N −1 eigenvalues with n 6= N are complex. The fact that σN

can be negative only for ∂ρv < 0 implies that if N is odd it is not possible to obtain sta-

tionary segregated profiles. This does not come as a surprise: we have seen that when N

is even, activation interactions make the system organize in two separated domains, one

containing the non-interacting species {ρ2 j } and the other containing the non-interacting

species {ρ2 j+1}. When N is odd, there is no way to arrange the system in such a way that

two interacting species are not in the same domain; the system is frustrated and cannot

be stationary, as predicted by the fact that the eigenvalues are complex. For example, if

we take N = 3, we would have that species 1 and 2 become segregated, because 2 activates

1. Then, species 3, which is activated by species 1, would tend to segregate from it, going

towards the regions occupied by species 2. By doing so, species 2, activated by species 3,
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moves towards regions occupied by species 1 and the cycles starts over: the three mutu-

ally activating species cannot be stationary.

We now consider the general case (4.8). We rewrite it as

σk = v2 +cos

(
2πk

N

)
ρv∂ρv + i sin

(
2πk

N

)
ρv∂ρv. (4.12)

to emphasize the real and imaginary parts:

Re(σk ) = v2 +cos

(
2πk

N

)
ρv∂ρv

Im(σk ) = sin

(
2πk

N

)
ρv∂ρv.

(4.13)

We note that if N is a multiple of 4, then the eigenvalues with k = N /4 and k = −N /4

always have a positive real part:

σk=±N
4
= v2 ± iρv∂ρv (4.14)

and therefore can never give rise to an instability. In all the remaining cases, i.e. when

k 6= N , k 6= N /2, and k 6= N /4, the σk ’s always have a real part that can become negative

and an imaginary part, which leads to oscillating solutions. In particular:

1. if k < N /4, cos
(

2πk
N

)
> 0 and Re(σk ) < 0 for ∂ρv < 0;

2. if k > N /4, cos
(

2πk
N

)
< 0 and Re(σk ) < 0 for ∂ρv > 0.

An example of oscillating solution is shown in Fig. 4.3 for the case N = 3. In the simu-

lation, we first observe the appearance of travelling waves, until, at larger timescales, the

solution becomes a standing wave. The final regime is shown in the figure.

4.1.3 Discussion

We have seen how spatial organization in multispecies systems is in general a highly non-

trivial problem to treat analytically. Nevertheless, in the last two sections we have shown

that in some cases the problem can be simplified and analytical solutions found. These

cases give very strong insights on what type of macroscopic behaviours and structures we

expect to observe, given a set of mutually inhibiting, activating, or mixed species.

We have indeed acquired enough knowledge in order to state a principle that can be

used in order to predict the type of phase separation we expect to observe, given the in-

teractions among the species: in general, when species i is “inhibited” by species j , the
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Figure 4.3 – Numerical solutions of Eqs. (4.1) with the addition of a stabi-
lizing term of the type −ζ∆2ρi (cf. discussion in 2.2.2.1) in 1D for a three-
species system with chain interactions: the different densities oscillate. Box
size L = 32, initial conditions ρi = 11+δρi , where i ∈ {1,2,3} and δρi is a ran-
dom perturbation of the order 10−2, vi (ρ j ) = v0 exp

(
λρ j

)
, with {i , j } a cyclic

permutation of {1,2,3}, v0 = 1, λ= 0.2, α= 1, ζ= 0.5.

former tends to accumulate in the regions where the latter is dense; on the other hand,

when species i is “activated” by species j , the former tends to accumulate far away from

regions where the latter is dense. By using this principle, one can predict the colocaliza-

tion and segregation of several different species, even in the case where mutual inhibition

and mutual activation interactions are present. One expects to find steady configurations

when all the interactions are “satisfied”: consider for instance the case N = 3 with chain

interactions. If species 2 activates species 1, then 1 segregates from 2. If we now take

species 3 in such a way that it is inhibited by species 1 and that it activates species 2, then

we see that it can colocalize with species 1, and we obtain a phase separated system where

species 1 and 3 coexist and are segregated from species 2. We can play this game with a

generic number of species, and observe that we can always find some combination of the

interactions in such a way to obtain a phase separated steady state. Note that in general,

when such a loop of colocalization/segregation cannot be closed, such as in the case of

three “chain activating” species of Fig. 4.3, the system becomes frustrated and it cannot

reach a steady state. We observe instead travelling or standing waves.

4.2 Mapping to equilibrium

In this section we show how it is sometimes possible to map our multispecies system

of self-propelled particles with quorum sensing interactions to an equilibrium system

whose dynamics derives from a free energy, at leading order in gradients. In the case

of single-species systems of self-propelled particles, it has been shown that at the local



4.2. Mapping to equilibrium 85

approximation level, i.e. neglecting higher order gradient terms arising from the non-

locality of interactions (cf. section 2.2.2.1), the dynamics satisfy detailed balance at ma-

croscopic scales [139, 24, 25]. Then, a free energy functional of the form

F [ρ] =
∫

dxρ(lnρ−1)+Fex, (4.15)

where Fex is the excess free energy, can be defined, and the steady state probability is

given by P [ρ] ∝ exp
(
F [ρ]

)
2.

Following this approach, we consider a multispecies system with local interactions

and work within a mean-field approximation. We look for the conditions under which a

free energy functional F [{ρn}] of all the densities {ρn} exists. In such a case, the dynamics

of the density of species i satisfies:

ρ̇i =∇
[

v2
i ({ρn 6=i })ρi

2α
∇(

lnρi + ln vi ({ρn 6=i })
)]=∇

[
Mi (ρi , {ρn 6=i })∇δF

δρi
({ρn})

]
, (4.16)

where we have considered non-self-interacting particles (the speed of species i does not

depend on the density of species i ). We look for free energy functionals of the form

F ({ρn}) =
∫

dx f ({ρn}), (4.17)

where f ({ρn}) is the free energy density of all species {ρn}. From Eq. (4.16) we obtain

f ({ρn}) =∑
n
ρn(lnρn −1)+ fex({ρn}), (4.18)

where
∑

n ρn(lnρn−1) is the free energy density for a perfect gas, and the function fex(ρA,ρB )

is the excess free energy density, defined by

∂ρi fex = ln vi ({ρn 6=i }). (4.19)

Schwarz’s theorem then states that if ∂2
ρiρ j

f and ∂2
ρ jρi

f both exist and are continuous at

any given point {ρ0
n} = (ρ0

1, . . . ,ρ0
N ), then

∂2

ρiρ j
f ({ρ0

n}) = ∂2

ρ jρi
f ({ρ0

n}). (4.20)

2Note that the local approximation does not correctly describe the coexisting densities in phase sepa-
rated systems. To be able to make quantitative predictions, it is necessary to take into account higher order
terms, as shown in [134]. Here, we limit ourselves to the study of the case of local interactions, leaving the
treatment of higher order gradients for future work.
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Eq. (4.20) is equivalent to

∂2

ρiρ j
fex({ρ0

n}) = ∂2

ρ jρi
fex({ρ0

n}) =⇒ ∂ρi v j ({ρn 6= j })

v j ({ρn 6= j })
=
∂ρ j vi ({ρn 6=i })

vi ({ρn 6=i })
. (4.21)

Since the left hand side of Eq. (4.21) cannot be a function of ρ j and its right hand side

cannot be a function of ρi , they must be equal to the same function gi , j ({ρn 6=i , j }), constant

with respect to the variables ρi and ρ j . This yields

vi ({ρn 6=i }) = v0
i exp

(
ρ j gi , j

)
and v j ({ρn 6= j }) = v0

j exp
(
ρi gi , j

)
. (4.22)

Since this must hold for all pairs (i , j ), with i , j ∈ {1, . . . , N }, we conclude that the function

gi , j must be of the form

gi , j =λ
∏

n 6=i , j
ρn , (4.23)

with λ a real constant, from which we obtain

vi ({ρn 6=i }) = v0
i exp

(
λ

∏
n 6=i

ρn

)
. (4.24)

Our free energy density then takes the form

f ({ρn}) =∑
n
ρn(lnρn −1)+λ∏

n
ρn . (4.25)

In single-species systems, phase coexistence densities can be (relatively) easily com-

puted by searching for concavities of the free energy density f (ρ) and then performing

a common-tangent construction. In the multispecies case, however, f ({ρn}) is an N -

dimensional surface and the common tangent becomes a common N -dimensional plane,

in general very hard to find. Combinations of analytical and numerical tools can be used

in order to predict phase equilibria in polydisperse systems (see, for example, [130, 131]

for an overview). In this thesis, we consider the simpler problem in which N = 2, and leave

the general case for future investigation.

4.2.1 A special case: two-species systems

When N = 2, we come back to our notation where we call species 1 and 2, A and B, respec-

tively. Our free energy density now reads

f (ρA,ρB ) = ρA(lnρA −1)+ρB (lnρB −1)+λρAρB (4.26)
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where the speeds of the two species have become

vi (ρ j ) = v0 exp
(
λρ j

)
, (4.27)

with i , j ∈ {A,B}. The sign ofλdetermines whether the two species are mutually inhibiting

(λ< 0), or mutually activating (λ> 0).

4.2.1.1 Linear instability: spinodal lines

To begin with, we use the free energy density (4.26) to compute the onset of spinodal

decomposition – i.e. the phase separation process occurring through the exponential

growth of small fluctuations, eventually arrested by nonlinear effects – and we show, as

expected, that it leads to the same condition for instability that we found with our linear

analysis in section 3.4.1.

For a monodisperse system that admits a free energy, the spinodal region is deter-

mined by imposing that the second derivative of the free energy density is negative, cor-

responding to the regions where the free energy is concave. For bidisperse systems, the

free energy is a function of ρA and ρB , hence a surface defined on the (ρA,ρB ) plane. If we

define the Hessian matrix H of f ,

Hi j = ∂2 f

∂ρi∂ρ j
(4.28)

then f is concave whenever at least one of the eigenvalues of H is negative, or, equiva-

lently, when det(H) < 0. This condition leads to

∂2 f

∂ρ2
A

∂2 f

∂ρ2
B

−
(

∂2 f

∂ρA∂ρB

)2

< 0 ⇐⇒ v ′
A(ρB )v ′

B (ρA)

v A(ρB )vB (ρA)
> 1

ρAρB
, (4.29)

where the right hand side of the “if and only if” implication follows from (4.26). This con-

dition is the same of the one obtained in previous chapter (cf. condition (3.24)). Because

of the form of the speed vi (ρ j ) (4.27), required for the existence of a free energy, condition

(4.29) simply becomes

λ2 > 1

ρAρB
. (4.30)

In Fig. 4.4 we show the differences between the free energy densities for mutual inhibition

(λ < 0) and mutual activation (λ > 0) interactions. In particular, we note that the main

difference is the direction, in the (ρA,ρB ) plane, along which the free energy can have a

negative curvature, and hence the direction in which the phase separation occurs. In the

case of mutual inhibition (Fig. 4.4-Left), the free energy can have negative curvature in
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the direction ρA = ρB . Then, an instability leads the system towards the coexistence of

two phases, the first one with low densities ρ`A and ρ`B , the other with high densities ρh
A

and ρh
B . In the case of mutual activation (Fig. 4.4-Right), the free energy can have negative

curvature in the direction ρA + ρB = ρ0. Then, an instability leads the system towards

the coexistence of two phases, the first one with low ρ`A and high ρh
B , the other with high

ρh
A and low ρ`B . This scenario is exactly the same we found in the linear analysis of the

previous chapter (section 3.4) and depicted in Fig. 3.5.

4.2.1.2 Coexisting phases: binodal lines

To conclude our analysis, we compute binodals, or the curves of coexistent phases, in the

case of mutual activation. Indeed, because of the form of v that we had to take in order to

define a free energy, the coexistence phases in the mutual inhibition case are at ρ`A,ρ`B ∼ 0

and ρh
A,ρh

B → ∞. Because the system is finite, the high density phase does not occur at

infinite densities, but we can observe very strong condensation.

In the case of mutual activation, instead, the free energy is confining in the direction

ρA +ρB = ρ0 and we are then able to apply a 2D version of the common-tangent con-

struction, a standard tool to compute coexisting phases in equilibrium systems. The 2D

version consists in constructing a common tangent plane for each value of ρ1
A where 1

stands for phase 1.

By imposing 3 conditions we are able to find the densities ρ2
A, ρ1

B and ρ2
B as a function

of ρ1
A. The first two conditions correspond to imposing that the gradient of F ≡ f (ρA,ρB )−

z = 0 in the two phases is the same:

∇F 1 =


∂ρA f (ρ1

A,ρ1
B )

∂ρB f (ρ1
A,ρ1

B )

−1

=∇F 2 =


∂ρA f (ρ2

A,ρ2
B )

∂ρB f (ρ2
A,ρ2

B )

−1

 . (4.31)

Hence,

∂ρA f 1 = ∂ρA f 2 = ∂ρA f and ∂ρB f 1 = ∂ρB f 2 = ∂ρB f . (4.32)

The third condition corresponds to imposing the same plane perpendicular to the gradi-

ents in the two phases:

∇F ·


ρ1

A −ρ2
A

ρ1
B −ρ2

B

f (ρ1
A,ρ1

B )− f (ρ2
A,ρ2

B )

= 0. (4.33)
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Figure 4.4 – Free energy density f (ρA ,ρB ) defined in Eq. 4.26. Left: mutual
inhibition: λ = −0.1. Top: contour plot, the colorcode corresponds to the
values taken by f . Center: cut of the top image along the red line, corre-
sponding to ρA +ρB = 25. In this direction, the curvature of the inhibition
free energy is always positive. Bottom: cut of the top image along the blue
line, corresponding to ρA = ρB . In this direction, the curvature of the in-
hibition free energy changes sign. Right: mutual activation: λ = 0.1. Top:
contour plot, the colorcode corresponds to the values taken by f . Center:
cut of the top image along the red line, corresponding to ρA +ρB = 25. In
this direction, the curvature of the activation free energy changes sign. Bot-
tom: cut of the top image along the blue line, corresponding to ρA = ρB . In
this direction, the curvature of the activation free energy is always positive.
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Binodal line

Spinodal line
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Figure 4.5 – Phase diagram for λ = 0.1 on the (ρA ,ρB ) plane. The spinodal
line is given by Eq. 4.30. The binodal is calculated using the procedure de-
tailed in section 4.2.1.2.

Hence, (
∂ρA f

)(
ρ1

A −ρ2
A

)+ (
∂ρB f

)(
ρ1

B −ρ2
B

)− [
f (ρ1

A,ρ1
B )− f (ρ2

A,ρ2
B )

]= 0. (4.34)

Eqs. (4.32) and (4.34) allow to solve the system for ρ2
A, ρ1

B , and ρ2
B as a function of ρ1

A. By

letting ρ1
A vary we can then trace the binodal line, as shown in Fig. 4.5.

4.3 Conclusion

In this last chapter we have studied the fate of MIPS in multispecies systems of quo-

rum sensing-interacting particles. We observed a much richer phenomenology than in

monodisperse systems: the system can separate in up to N different phases, whose com-

position can vary depending on the interaction among different species.

Our mapping to equilibrium allowed us to derive a free energy from which we were

able to derive the phase diagram for the case N = 2. This mapping indeed provide very

powerful tools to predict phase equilibria. Interesting perspectives would then be to gen-

eralize the procedure to the N > 2 species problem, and to go beyond the local approxi-

mation, incorporating higher order gradient terms which are known to quantitatively shift

the binodals.

In addition to the rich phenomenology of spatial structures, we observe new excit-

ing phenomena when the interactions cause the system to become frustrated. In that

case, oscillating solutions are possible. The natural next step in analysing those solutions
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would be to characterize the travelling and standing waves that can emerge, for instance

by considering a weakly nonlinear problem.

Finally, a practical consequence of characterizing MIPS mechanisms in multispecies

colonies is the fact that we are now able to directly connect microscopic interactions be-

tween different species to given macroscopic spatial structures. The mechanism being

very simple is an indication of generality, and we thus expect it to be possible to design

interacting active particles – living ones, such as cells, or synthetic ones, such as self-

propelled colloids – in order to obtain desired emergent macroscopic structures.
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Part II

Multilane driven diffusive systems
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Chapter 5

From single to multilane driven diffusive

systems

Driven diffusive systems encompass a broad class of statistical physics models involv-

ing many interacting particles moving stochastically under dynamics that are driven in

the bulk and hence, under general boundary conditions, do not respect detailed balance

[121, 98]. As such, the stationary states attained in these systems are non-equilibrium sta-

tionary states (NESS) and exhibit currents both at the macroscopic level (particle currents)

and microscopic level (probability currents in configuration space).

One-dimensional realizations have proven particularly informative. The general sce-

nario is a one-dimensional lattice connected to particle reservoirs of fixed density at each

end. The macroscopic current that flows through the system is determined by an inter-

play between the boundary reservoir densities and the bulk dynamics of the particles. As

pointed out by Krug [82], this can lead to boundary-induced phase transitions, wherein

the macroscopic current can be controlled by the boundary rather than bulk dynamics.

Such transitions have no counterpart in equilibrium stationary states, which contain no

currents.

The first model of this kind to be studied in detail was the Totally Asymmetric Simple

Exclusion Process with open boundaries (TASEP) for which an exact phase diagram was

derived [40, 41, 124]. For more general models, however, exact solutions are difficult to

come by, therefore to make progress it is important to develop approximations such as

mean-field theory [40] and heuristic approaches. For one-dimensional models a particu-

larly useful approach uses an Extremal Current Principle (ECP) [82, 110, 57]. As we discuss

in section 5.1, the principle uses the relation J (ρ), between the particle current J and local

particle density ρ, along with the boundary conditions, to derive the phase diagram. Its

predictions are borne out by exact phase diagrams, for example in the case of the TASEP.

It is noteworthy that the TASEP had first been introduced some years ago as a model

for ribosome dynamics in RNA translation [92]. Since then variants of the basic model
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have been used as a description of various biophysical transport process, such as molec-

ular motors moving on microtubules [2, 76], fungal hyphae growth dynamics [137], ex-

traction of membrane tubes [140], and it has become a generic starting point to describe

transport processes [117, 27]. However, many of these processes require a more com-

plicated geometry than a single one-dimensional lattice. For example, motorway traffic

involves several lanes with interchange between lanes and the motion of motor proteins

along cytoskeletal filaments often has multiple tracks which may involve different hop-

ping and boundary rates and possibly motors moving in different directions [54, 103].

Pedestrian flows often involve two “multi-lane streets” crossing perpendicularly and a col-

lective dynamics arises in the crossing region [61]. Inspired by these contexts, multilane

exclusion processes have been considered by several authors [111, 109, 113, 59, 120, 68,

114, 66, 28, 67, 119, 155, 150] (see for example [46] for an overview) and moreover exclu-

sion processes on more complicated graphs such as trees and networks have been formu-

lated and results obtained [6, 102, 97]. However, for these more complicated geometries

exact solutions are few and far between, therefore approximate or heuristic approaches

are essential.

In [46] a general class of two-lane models has been considered under the main restric-

tions that: (i) the transport within a lane is local, i.e. it depends only on the densities

within that lane and not on those of neighbouring lanes, and (ii) the average transverse

flux of particles from one lane to the other increases with the density of the departing

lane and decreases with that of the arriving one. Under these conditions it was shown

in [46], through a linear stability analysis of the continuum mean-field equations for the

densities, how the phase diagram can be constructed. This construction turns out to be

equivalent to an ECP which holds for the total particle current Jtot, defined as the sum of

the particle currents in each lane.

In this work we generalize this stability analysis to the multilane case which naturally

connects one-dimensional lattice gases to their two dimensional counterparts or to more

general network topolgies. In addition to the longitudinal currents flowing along each

lane, new steady transverse currents flowing between the lanes can be observed in such

systems. Their impact on the phenomenology of multilane system has not been studied

so far. By studying the eigenvalue spectrum of the linearized mean-field equations for the

densities, we show how an ECP holds for the total longitudinal current. This result implies

that a system with an arbitrary number of lanes (such as the motion of molecular motors

along the protofilaments of microtubules) may effectively be described by a one-lane sys-

tem with generally a non-trivial current density relation, validating an assumption that is

commonly made (see for example [27] and references therein). A consequence of this ef-

fective description is that the transverse current does not enter into the determination of
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Figure 5.1 – Illustration of the one-dimensional totally asymmetric exclu-
sion process with open boundaries (TASEP).

the phase diagram. Nevertheless, transverse currents can be associated with interesting

new phenomena. For instance, one can consider “sheared” systems, in which boundary

conditions impose different transverse currents at the two ends of the system. For diffu-

sive bulk dynamics, the transverse current varies continuously, interpolating between its

imposed boundary conditions. As we show in chapter 7, for systems driven in the bulk,

one may observe a discontinuity in the transverse current corresponding to shear local-

ization.

5.1 A brief recap of the TASEP

Before turning to the full multilane problem it is useful to recall the TASEP and its phase

diagram. The TASEP consists of a one-dimensional lattice of length ` with totally asym-

metric hopping dynamics of hard-core particles: at most one particle is allowed at each

site and particles can only move in the forward direction with rate p which we may take

to be unity (see Fig. 5.1). At the left boundary particles enter with rate α provided the first

site is empty and when a particle arrives at the right boundary it leaves with rate β. For

α,β≤ 1 these boundary conditions correspond to a left reservoir with density ρL =α and

a right reservoir with density ρR = 1−β.

The phase diagram for the TASEP in the large ` limit is illustrated in Fig. 5.2. The

different phases that can be observed are:

• a left phase (LP), corresponding to a bulk profile whose density is equal to that of

the left reservoir and in which the current is J = ρL(1−ρL)

• a right phase (RP), corresponding to a bulk profile whose density is equal to that of

the right reservoir and in which the current is J = ρR (1−ρR )

• a maximal current phase (MC), corresponding to a bulk profile whose density ρM =
1/2 in which the current is maximized at J = 1/4.

Note that historically the Left and Right phases have been referred to as low density (LD)

and high density (HD). Here we use a different terminology that is more appropriate to

systems that may include further phases.
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Figure 5.2 – Left: Phase diagram of the TASEP where the control parameters
are the injection rate α and ejection rate β and the phases are Low Density
(LD), High Density (HD) and Maximal Current (MC). Center: phase diagram
where the control parameters are the left and right reservoir densities and
the phases are Left Phase (LP), Right Phase (RP) and Maximal Current (MC).
In both cases the blue lines represent a second order phase transition while
the red lines represent a first order phase transition. Right: profiles corre-
sponding to left, right and maximal current phases.

To determine the bulk density of single-lane systems, Krug [82] introduced a maxi-

mal current principle which was later generalized to an ECP [57] to describe systems in

which the advected current J (ρ) has more than one extrema. In practice, this principle

states that, given two reservoir densitiesρL andρR , the dynamics select a constant plateau

whose density ρB is intermediate between ρL and ρR , and tends to maximize or minimize

the advected current J (ρB ):

J (ρB ) =
{

maxρ∈[ρR ,ρL] J (ρ) if ρL > ρR

minρ∈[ρL ,ρR ] J (ρ) if ρL < ρR .
(5.1)

For the TASEP, the current density relation is J (ρ) = ρ(1−ρ) which is most simply derived

from a mean-field consideration that a particle, present with probability ρ, moves forward

with rate 1 when there is an empty site ahead (which has probability 1−ρ). The current-

density relation for the TASEP has a single extremum which is a maximum of the current

at ρ = 1/2. The ECP then allows one to easily derive the phase diagram shown in Fig. 5.2.

Note that for more general current density relations, which may exhibit several extrema,

the ECP predicts, in addition to the Left, Right and Maximal Current Phases exhibited by

the TASEP, a new minimal current phase (mC). This phase corresponds to a bulk profile

whose density ρm is a local minimum of the current-density relation J (ρ).
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Chapter 6

Analytical treatment of multilane

systems: MF approximation

6.1 General framework

In this chapter, we consider driven diffusive systems in which particles hop along or be-

tween N parallel one-dimensional lattices each of ` sites. At both ends, each of these N

‘lanes’ is in contact with its own particle reservoir which acts as lattice site of fixed mean

density denoted by ρL/R
i for the left/right boundary site of lane i . One simple system

falling in this class consists of the N parallel TASEPs shown in Fig. 6.1.

As a starting point of our analysis, we assume that the dynamics of the system is de-

scribed by a set of N coupled nonlinear mean-field equations for the density ρi (x, t ) of

particles in lane i :

ρ̇i (x, t ) =−∂x
[

Ji (ρi (x, t ))−Di∂xρi (x, t )
]+ ∑

j 6=i
K j i (ρ j (x, t ),ρi (x, t )), (6.1)

where x = n/` is the position of site n along each lane, Ji (ρi (x)) and −Di∂xρi are the

advective and the diffusive parts of the mean-field current along lane i , and K j i is the net

transverse current flowing from lane j to lane i (with Ki j =−K j i ). Throughout our work,

we always consider systems which satisfy

∂ρi Ki j (ρi ,ρ j ) > 0 and ∂ρ j Ki j (ρi ,ρ j ) < 0. (6.2)

Physically, this means that the net flux of particles from lane i to lane j increases with ρi

and decreases with ρ j .

If the hopping rate of particles along lane i depends on the occupancies of lane j 6= i ,

then Ji depends on ρ j and not solely on ρi . In our work, however, we restrict our attention

to the case where the hopping rate along one lane depends only on the occupancies of this
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Figure 6.1 – Schematic representation of N parallel TASEPs which are con-
nected at both ends to particle reservoirs of fixed densities. Particles hop
along each lane, to the right, at rate p and can hop from lane i to lane i ±1
at rate di ,i±1, giving rise to non-zero longitudinal and transverse currents.

lane, so that the mean-field longitudinal current depends only on the density of this lane:

Ji (ρi ). The constraints we consider here thus preclude attractive interactions between

particles on different lanes, while still allowing for generic interactions along each lane.

The derivation of Eq. (6.1) from the microscopic dynamics models follows a standard

mean-field approximation comprising factorization of all density correlation functions

which we review in next chapter, section 7.2. For illustrative purposes we consider the

example presented in Fig. 6.1 of coupled totally asymmetric exclusion processes: parti-

cles hop forward longitudinally along lane i from site n to the next site n + 1 if that site

is vacant with rate p; particles can hop transversely to a vacant site at position n in a

neighbouring lane i ± 1 with rate di ,i±1. Then Ji (ρi ) = pρi (1−ρi )/`, Di = p/(2`2) and

Ki±1,i = di±1,iρi±1(1−ρi )−di ,i±1ρi (1−ρi±1). The explicit form of Ji , Di and Ki j for other

models is given in next chapter, section 7.2.

Given reservoir densities we want to compute the average density profiles along each

lane, i.e. the steady-state solutions of Eq. (6.1) satisfying ρi (0) = ρL
i and ρi (1) = ρR

i . Solving

this set of N coupled nonlinear equations is, however, very hard even in the steady state.

Therefore we first consider the possible homogeneous solutions to Eq. (6.1) which are

valid in the bulk, i.e. far from the boundaries. We refer to these solutions as equilibrated

plateaux, since their densities are balanced by the exchange of particles between lanes.

As we shall see, these solutions, which we properly define in section 6.1.1, play a ma-

jor role in constructing the form of the steady-state profiles and the phase diagrams. We

show in section 6.1.3 how stationary profiles are typically made of equilibrated plateaux

connected at their ends either to other plateaux (forming shocks) or directly to the reser-

voirs (see Fig. 6.3). For this to hold, the equilibrated plateaux have to be dynamically

stable which we show in section 6.1.2 to be true for systems satisfying conditions (6.2).
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Figure 6.2 – In a system with N parallel lanes, organized on a ring, equili-
brated plateaux can be realized with a steady loop of non-zero transverse
current K > 0.

6.1.1 Plateau solutions

The plateaux solutions – homogeneous, steady-state solutions denoted ρi (x) = ρ
p
i – are

found by setting time and space derivatives to zero in (6.1). The mean-field steady-state

equations then reduce to

∀i
∑
j 6=i

K j i (ρP
j ,ρP

i ) = 0. (6.3)

Eq. (6.3) simply states that, for each site of lane i , the mean transverse flux of particles

coming from all other lanes j 6= i is equal to the mean transverse flux leaving lane i 1.

If there are only two lanes, the steady-state condition (6.3) implies

K12 = K21 = 0, (6.4)

so that there is no net transverse current. However, for a number of lanes N ≥ 3 the condi-

tion (6.3) can be satisfied by the presence of a non-zero steady loop of transverse current.

For example, for N = 3, with K12 = K23 = K31 = K 6= 0, a non-zero steady transverse current

is present (see Fig. 6.2 for an illustration with N lanes on a ring).

6.1.2 Dynamical stability of equilibrated plateaux

The plateaux solutions are only relevant to the steady state if they are dynamically stable.

In B.1 we show, through a dynamical linear stability analysis, that a small perturbation

1Note that if one forgets the spatial structure of each lane and focuses on the exchange dynamics between
lanes, the system amounts to a Markov process with N states which has, up to an overall normalization, a
unique steady state unless it is reducible.
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δρi (x, t ) around the equilibrated plateau solution:

ρi (x, t ) = ρp
i +∑

q
δρ

q
i (t )exp

(
i qx

)
, (6.5)

where q = 2πn with n = 1, . . . ,`−1, vanishes exponentially rapidly in time if one considers

systems in which

K i
i j ≡ ∂ρi Ki j (ρp

i ,ρp
j ) > 0 and K j

i j ≡ ∂ρ j Ki j (ρp
i ,ρp

j ) < 0. (6.6)

Note that this is slightly weaker than condition (6.2) since (6.6) only has to hold for equi-

librated plateaux densities.

6.1.3 Equilibrated and unequilibrated reservoirs

In analogy with equilibrated plateaux, one can define equilibrated reservoirs, whose den-

sities satisfy

∀i
∑
j 6=i

K j i (ρR,L
j ,ρR,L

i ) = 0, (6.7)

where ρL
i and ρR

i correspond to the densities of the reservoirs at the left and right ends

of lane i , respectively. If equilibrated reservoirs are imposed at both ends of the system,

with ρR
i = ρL

i , a simple solution of the mean-field equations in steady state is found by

connecting the reservoirs through constant plateaux. Even though these boundary con-

ditions are exceptional, equilibrated plateau solutions play an important role in the steady

state of driven diffusive systems. As we show, far from the boundaries, in a large system,

the density profile is typically constant. With this in mind, in the following, we use the

term “plateaux” to describe not only completely constant profiles, where the density is

the same on all sites of the system, but also flat portions of density profiles, see Fig. 6.3,

which can be connected to reservoirs or other density plateaux by small non-constant

boundary layers.

As noted previously, when equilibrated reservoirs are imposed at the two ends of the

system with the same densities ρL
i = ρR

i , one observes dynamically stable plateaux with

ρi (x) = ρL
i . Two other more general classes of boundary condition are relevant.

First, left and right equilibrated reservoirs can imply different sets of plateaux densities

in the bulk; how the density is then selected in the bulk is one of the central questions

tackled in our work. In Fig. 6.4, we show examples of Left and Right phases, where the

bulk density is controlled respectively by left and right reservoirs. In a left (resp. right)

phase, a small modification of the right (resp. left) reservoir densities leaves the bulk part
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Figure 6.3 – Example of Left, Right and Shock phases

of the density profile unaffected; only the boundary layers connecting to the right (resp.

left) reservoir change.

Second, the reservoirs can be unequilibrated, that is their densities do not obey (6.7).

In this case both left and right reservoir densities are connected to bulk equilibrated pla-

teaux by small boundary layers. In Fig. 6.5, we show examples of the corresponding left

and right phases. Again, in a left (resp. right) phase, a small modification of the right

(resp. left) reservoir densities leaves the bulk part of the density profile unaffected; only

the boundary layers connecting to the right (resp. left) reservoir change.

Here we focus on how the densities of the equilibrated plateaux in the bulk are selected

by the boundary conditions imposed by equilibrated reservoirs and only comment on

unequilibrated reservoirs in the conclusion section 7.3 of next chapter. The boundary

layers connecting reservoir to plateaux – or plateaux to other plateaux when a shock is

observed, as in Fig. 6.3 – are beyond the scope of our work, but can be studied using

asymptotic methods [99, 155, 55].

6.2 Linear stability analysis

The mean-field dynamics (6.1) evolves the density profiles towards flat plateaux which are

connected at their ends either to other plateaux or to reservoirs. The acceptable plateaux

solutions can thus be worked out by considering which types of stationary profiles can

connect a bulk plateau to other densities at its right and left ends. For instance, in the

bottom panels of Fig. 6.5, the steady-state solution of the mean-field equations is made

up of a plateau connected on its left end to equilibrated reservoirs and on its right end

to unequilibrated reservoirs. In practice, we only study whether such profiles can exist

by looking at the vicinity of the equilibrated plateau. Namely, rather than solving the full

non-linear problem, we carry out a linear analysis of the steady-state mean-field equa-

tions

0 = ∂x
[
Di∂xρi (x, t )− Ji (ρi (x, t ))

]+ ∑
j 6=i

K j i (ρ j (x, t ),ρi (x, t )), (6.8)

around equilibrated plateaux.
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Figure 6.4 – Connections of equilibrated plateaux to equilibrated reservoirs,
for five parallel TASEPs as in Fig. 6.1. Top and bottom figures correspond
to Left and Right phases. Top: The density in the bulk is controlled by the
left reservoirs; a small change of the right reservoir densities leaves the bulk
plateau unchanged. Bottom: The density in the bulk is controlled by the
right reservoirs; a small change of the left reservoir densities leaves the bulk
plateau unchanged. For both cases, p = 1, d12 = 10−3, d23 = 9.10−3, d34 =
2.10−3, d45 = 8.10−3, d51 = 3.10−3, d15 = 7.10−3, d21 = 4.10−3, d32 = 6.10−3,
d43 = 5.10−3, d54 = 2.10−3 and results are obtained using continuous time
Monte Carlo simulations.
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Figure 6.5 – Connections of equilibrated plateaux to equilibrated and un-
equilibrated reservoirs, for five parallel TASEPs as in Fig. 6.1. Top-Left: A
bulk plateau is connected to an equilibrated reservoir on the right and an
unequilibrated one on the left. This is a left phase and the the bulk den-
sity is insensitive to small modification of the density of the right reservoirs.
There are thus two boundary layers: one connecting the bulk plateau to the
left unequilibrated reservoir, which controls the bulk density, and one con-
necting the bulk plateau to the right reservoir. Top-Right: Close-up on the
unequilibrated left reservoir. Bottom: The same with left equilibrated reser-
voirs and right unequilibrated reservoirs, in a Right phase. For both cases,
p = 1, d12 = 10−3, d23 = 9.10−3, d34 = 2.10−3, d45 = 8.10−3, d51 = 3.10−3,
d15 = 7.10−3, d21 = 4.10−3, d32 = 6.10−3, d43 = 5.10−3, d54 = 2.10−3 and re-
sults were obtained using continuous time Monte Carlo simulations.
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We thus look for steady-state profiles of the form

|ρ(x)) = |ρp)+|δρ(x)), where |ρ(x)) ≡


ρ1(x)

...

ρN (x)

 (6.9)

is a compact notation for N -dimensional vectors with components ρi (x) and |ρp) corre-

sponds to a set of equilibrated plateau densities. Since we have already established the

dynamical stability of equilibrated plateaux in section 6.1.2 (and B.1), we are now only

concerned with the existence of spatial stationary perturbations |δρ(x)) around them. In

the following, we simply refer to |δρ(x)) as “perturbations”, omitting their implicit station-

arity.

Linearizing the steady-state mean-field equations (6.8) close to |ρp) then yields

0 = Di∂xxδρi (x)− J i
i (ρp

i )∂xδρi (x)+ ∑
j 6=i

[
K i

j iδρi (x)+K j
j iδρ j (x)

]
, (6.10)

where J i
i =

∂Ji (ρi )
∂ρi

and K i
j i , K j

i j are defined in (6.6). Equation (6.10) can be seen as a first

order ordinary differential equation ∂x |v〉 = M |v〉, where

M(ρp
1 , . . . ,ρp

N ) =



J 1
1

D1
. . . −M K

J N
N

DN
1
D 1

. . . 0
1
D N


, |v〉 =



D1δρ
′
1(x)

...

DNδρ
′
N (x)

δρ1(x)
...

δρN (x)


(6.11)

Here, M K is an N ×N matrix defined as

M K
i i =

∑
j 6=i

K i
j i M K

i j = K j
j i , (6.12)

and |v〉 is a compact notation for 2N -dimensional vectors and δρ′
i (x) ≡ ∂xδρi (x). When

M is diagonalizable, solutions of this ordinary differential equation are of the form

|v(x)〉 =
2N−1∑
k=0

αk eλk x |vk〉 (6.13)



6.2. Linear stability analysis 107

0 `

ρL ρR

Re(λk) ≤ 0

0 `

ρL ρR

Re(λk) ≥ 0

Figure 6.6 – Connecting a reservoir to an equilibrated plateau. With
Re(λk ) ≤ 0, one can construct perturbations connecting an equilibrated
plateau to the left reservoirs. With Re(λk ) ≥ 0, one can construct pertur-
bations connecting an equilibrated plateau to right reservoirs.

where |vk〉 = (
D1λkδρ

k
1 , . . . ,DNλkδρ

k
N ,δρk

1 , . . . ,δρk
N

)
are the 2N eigenvectors of the ma-

trix M and λk the corresponding eigenvalues. This implies that the perturbation to the

density profile (6.9) may be decomposed as

|δρ(x)) =
2N−1∑
k=0

αk eλk x |δρk ). (6.14)

The study of the spectrum of the matrix M(ρp
1 , . . . ,ρp

N ) reveals whether given boundary

conditions can be connected to a set of bulk plateaux of densities |ρp) through appropri-

ate perturbations |δρ(x)) (6.14). This allows us to construct the phase diagram, as we

show in next chapter, section 7.1.

We now detail how the spectrum of M is organized and the role played by its eigenvec-

tors. One might expect the study of the spectrum of a 2N dimensional matrix to be rather

complex. But, as we show below, a simple result for the phase diagram, which is solely

determined by the number of eigenvalues with positive (or negative) real part, can be ob-

tained. This can be found using a simple criterion which does not require knowledge of

the full spectrum.

Specifically, we show in section 6.2.1 that there is always one zero eigenvalue, λ0,

whose eigenvector corresponds to a (unique) uniform perturbation which preserves the

equilibrated plateau condition. Then, in section 6.2.2, we show that the rest of the spec-

trum can be organized in two different ways: either with N −1 eigenvectors with Re(λk ) <
0 and N with Re(λk ) > 0, or with N eigenvectors with Re(λk ) < 0 and N−1 with Re(λk ) > 0.

We show that the first case is compatible with a Left Phase and the second with a Right

Phase (see Fig. 6.6). The separation between these two cases is thus controlled by the

change of sign of the real part of an eigenvalue, which we show in section 6.2.3 to occur at

extrema of the total current Jtot within the space of equilibrated plateaux.

Sections 6.2.1 to 6.2.3 thus establish the possibility, at the linear level, of a nonuniform

profile |ρ(x)) connecting a plateau |ρp) to other equilibrated density vectors at one of
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its ends. In next chapter, then, by studying the dynamics of the shocks connecting the

plateaux, we derive a simple recipe for constructing the phase diagram.

6.2.1 Uniform shift of equilibrated plateaux

We now show that the matrix M given in (6.11) always admits a unique λ0 = 0 eigenvalue,

associated to uniform shifts of the densities of equilibrated plateaux. Using M |v0〉 = 0

implies that |v0〉 = (
0, . . . ,0,δρ0

1, . . . ,δρ0
N

)
with

M K |δρ0) = 0. (6.15)

One easily checks that M K is a Markov (or Intensity) matrix by summing its row elements:

∀ j ,
∑

i M K
i j = 0. By the Perron-Frobenius theorem, M has a unique λ= 0 eigenvector |δρ0)

which is real and has all its non-zero components of the same sign (which we take to be

positive).

It is easy to check that a perturbation of the density vector from |ρp) to |ρp)+ ε|δρ0)

for small ε indeed results in an equilibrated plateau, since to first order in ε

∑
j 6=i

K j i (ρp
j +εδρ0

j ,ρp
i +εδρ0

i ) = ∑
j 6=i

K j i (ρp
j ,ρp

i )+ε∑
j 6=i

K i
j iδρ

0
i +ε

∑
j 6=i

K j
j iδρ

0
j

= 0+ε∑
j

M K
i jδρ

0
j

= 0 , (6.16)

where we used the fact that
∑

j 6=i K j i (ρp
j ,ρp

i ) = 0 since |ρp) is equilibrated.

The vector |δρ0) is therefore the unique tangent vector to the one-dimensional man-

ifold of equilibrated plateaux: all infinitesimal perturbations |δρp) such that |ρp)+|δρp)

remains equilibrated are thus parallel to |δρ 0). It is important to bear in mind that since

M is a function of |ρp), |δρ0) also depends on |ρp).

6.2.2 Connecting equilibrated plateaux to reservoirs

In this section we consider how a bulk plateau density vector |ρp) may be connected by a

density profile to equilibrated reservoirs |ρ r). For the sake of clarity, we focus here on the

main results whose detailed derivations are given in Appendix B.2.

First, as noted above, we show in B.2.1 that in addition to the λ = 0 eigenvalue dis-

cussed in the previous section, the spectrum of M is composed of either

(i) N eigenvalues with positive real parts and N−1 eigenvalues with negative real parts,
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Figure 6.7 – Change of sign of an eigenvalue of stability matrix M given by
(6.11). The eigenvalue λ1 vanishes at ρ1 = ρ?1 while λ0 = 0 everywhere.

(ii) N−1 eigenvalues with positive real parts and N eigenvalues with negative real parts.

We then show in B.2.2 that in case (i) the plateau density vector can only be connected

to arbitrary equilibrated reservoir densities to the right. Thus, for equilibrated reservoirs,

such plateaux can only be observed in a Left Phase – a phase in which the bulk plateaux

are controlled by the left reservoirs – with |ρp) = |ρL). Conversely, in case (ii) the plateau

density vector can only be connected to arbitrary equilibrated reservoir densities to the

left. Such plateaux can thus only be observed in a Right Phase.

As the density vector |ρp) varies, the transition between the two cases corresponds

to the vanishing of an eigenvalue, whose real part then changes sign. Precisely at the

transition one then has N−1 eigenvalues with Re(λk ) > 0, N−1 eigenvalues with Re(λk ) <
0 and two zero eigenvalues. Since the eigenspace associated with λ= 0 is of dimension 2

but there is only one λ = 0 eigenvector, the matrix M is then non-diagonalizable. Let us

now show that this corresponds to the local extrema of Jtot within the space of equilibrated

plateaux.

6.2.3 Change of sign of Re(λ) and extrema of the current

From the discussion above it is clear that for the phase diagram to be richer than simply

one Left Phase or one Right Phase, we need an eigenvalue – let us denote it λ1 – to vanish

and change sign as the reservoir densities are varied.

For equilibrated plateaux |ρ) (to lighten the notation we drop the p superscript), all

densities ρi and all eigenvalues of M(ρ1, . . . ,ρN ) can be written as functions of the density
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of the first lane ρ1 via the equilibrated plateau condition (6.3). For some value ρ?1 , we thus

require λ1(ρ?1 ) = 0 with λ1(ρ?1 ±ε) 6= 0 (see Fig. 6.7). As we show below, this happens at all

the local extrema of the total current

Jtot(ρ1) ≡∑
i

Ji [ρi (ρ1)] (6.17)

within the set of equilibrated plateaux.

At a given plateau |ρ) , the tangent vector to the set of equilibrated plateaux is theλ= 0

eigenvector |δρ0) of matrix M K (ρ1, . . . ,ρN ), defined in (6.12). The extrema of Jtot within

the set of equilibrated plateaux thus occur when

dJtot =∇Jtot · |δρ0) =∑
i

J i
i δρ

0
i = 0. (6.18)

The linearized steady-state mean-field Eq. (6.10) becomes, when we takeδρi = δρ1
i eλ1x ,

an eigenvector equation for |δρ1) which reads

(λ1)2Diδρ
1
i −λ1 J i

i δρ
1
i +

∑
j 6=i

[
K i

j iδρ
1
i +K j

j iδρ
1
j

]
= 0. (6.19)

By summing (6.19) over i , one finds (λ1)2 ∑
i Diδρ

1
i −λ1

∑
i J i

i δρ
1
i = 0 and thus

∑
i

J i
i δρ

1
i =λ1

∑
i

Diδρ
1
i . (6.20)

As we approach ρ?1 , where λ1 → 0, the left hand side of (6.20) must tend to zero.

However, since M K is a Markov matrix, there is a unique eigenvector corresponding to

the zero eigenvalue, which is |δρ0). Therefore as λ1 → 0, we must have δρ1
i → δρ0

i . Thus

as ρ1 → ρ?1 we conclude that

∑
i

J i
i δρ

1
i →

∑
i

J i
i δρ

0
i = dJtot → 0. (6.21)

As ρ1 → ρ?1 this corresponds to the extremal current condition, Eq. (6.18). The vanishing

of Re(λ1) thus occurs at the extrema of Jtot.

Finally, since |δρ0) is the unique zero eigenvector of a Markov matrix M K , all its com-

ponents are of the same sign. As Di are all positive, equations (6.20) and (6.21) imply that

Re(λ1(ρ1)) and J ′tot(ρ1) are of the same sign in the vicinity of the extrema of Jtot. Since nei-

ther of them vanish and change sign elsewhere, Re(λ(ρ1)) and J ′tot(ρ1) must always have

the same sign.
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Chapter 7

Results: phase diagram and shear

localization

In this chapter, we first present the recipe for the construction of the phase diagram, based

on the linear analysis just performed, and we show that it is equivalent to a generalized

extremal current principle for the total current Jtot(ρ1). We then show how to construct

the dynamics for the multilane system – that we assumed in the previous chapter – starting

from microscopic models and we study some interesting cases.

7.1 Phase diagram and extrema of the currents

From sections 6.2.2 (B.2) and 6.2.3, one concludes that for equilibrated plateaux density

vectors |ρ), the sign of J ′tot(ρ1) controls the boundary reservoirs to which the plateaux can

be connected:

• For J ′tot(ρ1) > 0, the plateaux can only be connected to different equilibrated densi-

ties at their right ends

• For J ′tot(ρ1) < 0, the plateaux can only be connected to different equilibrated densi-

ties at their left ends.

• J ′tot(ρ1) = 0 is a singular limiting case between these two regimes;

- For a local maximum of Jtot, perturbations with δρ1 > 0 are in a region where

J ′tot(ρ1) < 0 and can thus connect to equilibrated densities with ρ̃1 > ρ1 on the

left. Perturbations with δρ1 < 0 are in a region where J ′tot(ρ1) > 0 and can thus

connect to equilibrated densities with ρ̃1 < ρ1 on the right.

- For a local minimum of Jtot, perturbations with δρ1 > 0 are in a region where

J ′tot(ρ1) > 0 and can thus connect to equilibrated densities with ρ̃1 > ρ1 on the
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Figure 7.1 – Left: Example of current density relation Jtot(ρ1). Center: Lin-
ear stability of all equilibrated plateau. Right: Example of possible profiles
connecting left and right reservoirs. The shocks connecting the plateaux
need not be stationary.

right. Perturbations with δρ1 < 0 are in a region where J ′tot(ρ1) < 0 and can

thus connect to equilibrated densities with ρ̃1 < ρ1 on the left.

The exact shape of the profile in this case, which may involve algebraic functions

rather than exponential, is beyond the scope of our work.

To construct the phase diagram, one thus computes Jtot(ρ1) and finds the values of all

its extrema, as shown in the left panel of Fig. 7.1. This allows one to determine for each

plateau if, and how, it can be connected to other equilibrated densities at its left or right

ends, as shown in the central panel of Fig. 7.1. Then, for given sets of equilibrated reser-

voirs |ρL) and |ρR ), one can construct the profiles which are in agreement with the linear

analysis. As shown in the right panel of Fig. 7.1, these profiles are monotonic and made of

successions of plateaux, whose densities are set by the reservoirs or correspond to local

extrema of the current, connected by shocks.

While such shocks are in agreement with the linear analysis of the steady-state mean-

field equations, they need not be stationary. Let us consider the situation depicted in

Fig. 7.2. The rate of change of the number of particles in the region [x1, x2] due to the

moving shock profile is

Ṅ[x1,x2] = v
∑

i

(
ρ1

i −ρ2
i

)
, (7.1)

where v is the shock velocity and the sum is over lanes. By the continuity equation for the

number of particles the rate of change is also given by the fluxes at the boundary of the

region, thus

Ṅ[x1,x2] =
∫ x2

x1

∑
i
ρ̇i =

∑
i

[
Ji (ρ1

i )− Ji (ρ2
i )

]
(7.2)
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Figure 7.2 – Schematic of a shock profile connecting a plateau of density ρ1
1

to a plateau of density ρ2
1 moving with speed v . The number of particles

within the red rectangle varies at a rate v(ρ1
tot −ρ2

tot). If v > 0 the plateau at
ρ1 = ρ1

1 spreads while the plateau at ρ1 = ρ2
1 recedes. Conversely, for v < 0,

the plateau at ρ1 = ρ2
1 spreads while the one at ρ1 = ρ1

1 recedes.

Equating the two expressions, the velocity v of the shock is thus given by

v = Jtot(ρ1
1)− Jtot(ρ2

1)

ρ1
tot −ρ2

tot

(7.3)

where ρtot =∑
i ρi .

Let us now show that the sign of ρ1
tot −ρ2

tot is the same as the sign of ρ1
1 −ρ2

1. Since the

tangent vector to the set of equilibrated plateau, |δρ0), has all its components of the same

sign, a small increase in ρ1 results in a new equilibrated plateau with small increases of

ρi 6=1. The total density ρtot is thus an increasing function of ρ1: if one has ρ1
1 < ρ2

1 (resp.

ρ1
1 > ρ2

1) then one must have ρ1
tot < ρ2

tot (resp. ρ1
tot > ρ2

tot). Increasing and decreasing

shocks thus correspond to ρ2
1 > ρ1

1 and ρ2
1 < ρ1

1.

Increasing shocks thus move to the right if Jtot(ρ1) < Jtot(ρ2) and the plateau of density

ρ1 invades the plateau of density ρ2. Conversely if Jtot(ρ1) > Jtot(ρ2), the shock moves to

the left and the plateau of density ρ2 widens. For decreasing shocks, on the the other

hand, the plateau corresponding to the larger current widens.

Note that the shocks on all lanes are co-localized, as shown by our linear stability anal-

ysis. Intuitively, unequilibrated densities would otherwise have to coexist between, say,

the shock on lane 1 and on lane 2, which would make the profiles unstable [119].

7.1.1 Construction of the phase diagram

We can now gather everything together in a simple rule for constructing the phase dia-

gram:

• For increasing profiles, when ρL
1 < ρR

1 , among all the plateaux in agreement with

the linear analysis, the one corresponding to the smallest current spreads while the
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others recedes. The possible plateaux correspond either to the reservoir densities,

if J ′tot(ρ1)L > 0 or J ′tot(ρ1)R < 0, or to local minima of the currents (local maxima cor-

respond to decreasing profiles as shown in Fig. 7.1). For continuous Jtot(ρ1), the

global extrema of Jtot on [ρL ,ρR ] are either at the boundaries or at local extrema so

that the minima of Jtot among the possible plateaux correspond to the global min-

ima of Jtot on [ρL
1 ,ρR

1 ]. Note that if there are several minima with the same value of

the current, a shock connecting these densities does not propagate ballistically but

simply diffuses.

• For decreasing profiles, when ρL
1 > ρR

1 , the converse reasoning leads to the selection

of the plateau(x) with the largest current.

This is summarized in the generalized ECP discussed in next section.

7.1.2 A generalized extremal current principle

Let us now show how our approach relates to the extremal current principle. As noted in

section 5.1, based on the assumption that there exists a relation J (ρ) between the parti-

cle current J and local density ρ, an extremal current principle can be used to derive the

phase diagram of the TASEP [82]. In [46], this principle was generalized to two-lane sys-

tems with equilibrated reservoirs by extremising the total current summed over the two

lanes. The results of the previous section thus generalizes this approach to the N -lane

case in the presence of transverse currents.

Given two sets of equilibrated reservoirs at the left and right ends of the system, sec-

tion 7.1.1 shows the equilibrated densities ρB
i observed in the bulk to satisfy

Jtot(ρ
B
1 ) =

 maxρB
1 ∈[ρR

1 ,ρL
1 ] Jtot(ρB

1 ) for ρL
1 > ρR

1

minρB
1 ∈[ρL

1 ,ρR
1 ] Jtot(ρB

1 ) for ρL
1 < ρR

1 .
(7.4)

Note that the N = 2 case is rather atypical in that K = 0 automatically, the only non-zero

stationary currents are thus longitudinal. For N > 2, non-zero transverse currents are

generically present and it is perhaps surprising that they do not affect the extremal current

principle.

7.2 Microscopic models of multilane systems

In the previous section we presented a linear stability analysis that allowed us to predict

the phase diagrams of multilane systems starting from their hydrodynamic descriptions.
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We now compare our theoretical predictions to various microscopic models. In particular,

we discuss the validity of the generalized extremal current principle (7.4).

We consider N parallel lanes organized transversely “on a ring”, as in Fig. 6.2: particles

can hop from lane i to lane i ± 1, with periodic boundary conditions. This allows us to

study the phenomenology of non-zero transverse currents. We first consider N = 10 par-

allel TASEPs in section 7.2.1 before turning to a partial exclusion processes in section 7.2.2.

Finally, in section 7.2.4 we discuss a case where, while the simple mean-field approxima-

tion we employ is not exact, the generalized extremal current principle still holds.

7.2.1 N TASEPs on a ring

We consider a system of length ` composed of N one-dimensional TASEPs. Particles hop

along each lane at constant rates and there can be only one particle per site. Each lane is

connected to reservoirs at its ends and particles can hop from lane i to the neighbouring

lanes i ±1, giving rise to transverse currents between the lanes. For example, this could

mimic the structure of microtubules which are composed of several protofilaments along

and between which molecular motors can walk. Previously the case N = 2 has been con-

sidered (see for instance [46] and references therein) whereas the N = 3 case (without

periodic boundary conditions in the transverse direction) has been studied numerically

[150]. Here we show that indeed the system of N TASEPs for arbitrary N may be deter-

mined by the generalized ECP based on the total current.

A particle on lane i at site j can hop to the neighbouring site j +1 of lane i with rate pi

and on the site j of lanes i ±1 with rate di ,i±1, provided the arrival site is empty. The mi-

croscopic mean-field equations, within the approximation of factorizing all density cor-

relation functions, describing these N parallel TASEPs read

dρi , j

dt
= pi ρi , j−1(1−ρi , j )−pi ρi , j (1−ρi , j+1)+
+ di−1,i ρi−1, j (1−ρi , j )−di ,i−1ρi , j (1−ρi−1, j )+
+ di+1,i ρi+1, j (1−ρi , j )−di ,i+1ρi , j (1−ρi+1, j ), (7.5)

where ρi , j = 〈ni , j 〉 is the mean occupancy of the site j of lane i and we use transverse

periodic boundary conditions by identifying lanes i = N +1 and i = 1.

We can now define the mean-field currents of the microscopic models:

Ji j = pi ρi , j (1−ρi , j+1) (7.6)

K(i ,i+1) j = di ,i+1ρi , j (1−ρi+1, j )−di+1,iρi+1, j (1−ρi j ). (7.7)
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where Ji j is the mean-field approximation of the ‘longitudinal’ particle current between

sites j and j +1 of lane i and K(i ,i+1) j is the mean-field approximation of the ‘transverse’

particle current between sites j of lanes i and i +1.

To obtain coarse-grained equations, we introduce the rescaled position x = j /` along

the lattices which now goes from x = 0 to x = 1. One then uses a standard Taylor expansion

assuming that ρi , j varies slowly from site to site along a given lane:

ρi , j±1 ≡ ρi (x ±1/`) ' ρi (x)± 1

`

∂ρi (x)

∂x
+ 1

2`2

∂2ρi (x)

∂x2
. (7.8)

By keeping terms up to second order in gradients one can then write the coarse-grained

mean-field equations:

ρ̇i (x) = −∂x
[

Ji (ρi (x))−Di∂xρi (x)
]+

+Ki−1,i [ρi−1(x),ρi (x)]−Ki ,i+1[ρi (x),ρi+1(x)] (7.9)

where

Ji (ρi (x)) = pi

`
ρi (x)

[
1−ρi (x)

]
, and −Di∂xρi =− pi

2`2
∂xρi (7.10)

are the advective and the diffusive parts of the mean-field current along lane i . We stress

again that in the models we consider the longitudinal current of one lane depends solely

on the occupancies in that lane. Ki ,i+1 is the transverse current from lane i to lane i +1

defined as

Ki ,i+1[ρi (x),ρi+1(x)] = di ,i+1ρi (x)
[
1−ρi+1(x)

]−di+1,iρi+1(x)
[
1−ρi (x)

]
, (7.11)

with Ki ,i+1 =−Ki+1,i . In steady state, the equilibrated plateau (6.3) condition then reads

∀i , Ki ,i+1 =−Ki+1,i = K (7.12)

where periodic boundary conditions are implicit. At this stage, Eqs. (7.9), (7.10), and (7.11)

completely define the hydrodynamic mean-field description of our model.

We proceed as follows: we first consider left and right equilibrated reservoirs of equal

densities ρR
1 = ρL

1 = ρ1; for each value of ρ1, which is an input parameter, we solve the

equilibrated mean-field Eqs. (6.3) to obtain ρL/R
i 6=1 (ρ1), K (ρ1) and Jtot(ρ1), which we then

use to predict the phase diagram. Let us first compare these mean-field predictions with

the result of microscopic Monte Carlo simulations.

We show in Fig. 7.3 the results of simulations for N = 10 TASEPs on a ring, with pi = 1

for all lanes and transverse rates: di ,i+1 = 0.9 and di+1,i = 0.1. For such transverse rates,
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Figure 7.3 – Simulation results for N = 10 TASEPs on a ring, with pi = 1 for
all lanes and transverse rates: di ,i+1 = 0.9 and di+1,i = 0.1. Left: All density
profiles are equal and coincide with the mean-field predictions. For sake of
clarity, only the densities of lanes 1 to 4 are shown. (ρL

1 = ρR
1 = 0.51) Center:

the total longitudinal current as a function of ρ1; the maximum is at ρM
1 =

0.5. Right: The transverse current between lane 1 and 2 corresponds to its
mean-field description. As expected, all other currents Ki ,i+1 are equal to
K1,2.

the equilibrated plateau condition simply forces the densities of all lanes to be equal. As

predicted, we observe plateau profiles of densities ρi (x) ' ρL
i = ρR

i . The currents J (ρ1) and

K (ρ1) are in agreement with their mean-field predictions. We can now use the generalized

extremal current principle to construct the phase diagram of the system.

We proceed as in section 7.1: we first identify the extrema of the current and the re-

gions where equilibrated plateaux can be connected to equilibrated reservoirs at different

densities on their left or right ends (see the left panel of Fig. 7.4). We then use the extremal

current principle to construct the phase diagram. As show in the right panel of Fig. 7.4,

the agreement between the predicted phase diagram and the results of numerical simu-

lations is very good.

The phase diagram shown in Fig. 7.4 is identical to that of a single TASEP. This shows

that the frequently made assumption that the motion of molecular motors along a micro-

tubule can be modelled by a single TASEP is indeed valid [76, 140]. Note, however, that

the transverse current K is generically non-zero along the system (it follows the form of

the longitudinal current J ). Non-zero transverse currents have been observed experimen-

tally, for instance for molecular motors that have helical trajectories along microtubules

[147, 16, 104]. Our analysis thus covers the collective dynamics of such motors, suggest-

ing that their propensity to form traffic jams should be identical to that of more standard

motors [140, 84].

For the particular choice of rates made in this section, the equilibrated densities are

equal across all lanes. The system thus has a particle-hole symmetry, and both J (ρ1) and

K (ρ1) are symmetric with respect to ρ1 = 0.5 (see right panels of Fig. 7.3). On the first-

order transition line (see Fig. 7.4), K is therefore the same on both sides of a shock. We
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Figure 7.4 – Phase diagram for N = 10 TASEPs on a ring, with pi = 1 for all
lanes and transverse rates di ,i+1 = 0.9 and di+1,i = 0.1. Left: possible con-
nections of equilibrated plateaux predicted by the linear stability analysis.
Right: phase diagram where blue lines indicate second order phase tran-
sitions and the red line indicates a first order phase transition. Black error
bars indicate the phase boundaries obtained by Monte Carlo simulations.
The different phases are left (L), right (R) and maximal current phase (MC).

now turn to a more general system where this symmetry is violated and show that one can

have coexistence between plateaux with very different values of the transverse current K .

7.2.2 Counter-rotating shocks

Let us now turn to more intriguing cases where the transverse current is not simply pro-

portional to the longitudinal current. A particular example we consider is that of a trans-

verse current which changes sign along the lane. A way of achieving a spatial reversal of

K would be to have a transverse current K (ρ) which changes sign as a function of den-

sity. Specifically, one could impose reservoir densities at the two ends of the system to

have, say, clockwise and counter-clockwise flows imposed by the left and right reservoirs,

respectively (see Fig. 7.5). Thus, at the boundaries the transverse currents have oppo-

site signs. One can then wonder how the transverse flow in the bulk is selected when the

system is “sheared” by such boundary conditions.

In order to achieve a transverse current K (ρ) which changes sign as a function of den-

sity, one can first relax the condition that the transverse rates di ,i+1 and di ,i−1 are equal for

all lanes. As we show in section 7.2.4, the equilibration condition then does not impose

equal densities on all lanes. The transverse current K generically loses its particle-hole
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Figure 7.5 – Sketch of a system where K (ρL) is positive and K (ρR ) is negative.

symmetry but, as we show in Appendix B.3, it cannot change sign as a function of the

density for transverse rates of the form di ,i±1ρi (1−ρi±1).

As we now show, a partial exclusion process, in which the restriction to at most one

particle per site is relaxed, allows us to obtain the desired change of sign in the transverse

current. Specifically, we study N parallel one-dimensional lattice gases in which up to

Nmax particles are allowed on each site. Particles hop from site j to j +1 on lane i with

rate

W (i , j → i , j +1) = pi
ni , j

Nmax

(
1− ni , j+1

Nmax

)
(7.13)

and we refer to this as the Totally Asymmetric Partial Exclusion Process (TAPEP). For the

transverse hopping rates from site j of lane i to site j of lane i ±1, we choose

W (i , j → i ±1, j ) = di ,i±1
ni , j

Nmax

(
1− ni±1, j

Nmax

)
(7.14)

apart from the hopping from lane 1 to 2, in which we impose a different hopping rate:

W (2, j → 1, j ) = d2,1

(
n2, j

Nmax

)2 (
1− n1, j

Nmax

)
. (7.15)

Note that in the case of the TASEP (Nmax = 1) the hopping dynamics from lane 1 to 2 is the

same as that between other lanes since n2
2, j = n2 j . Therefore we need to consider partial

exclusion (Nmax > 1) to observe novel behaviour.

To derive the hydrodynamic mean-field description of our model, we proceed as be-

fore, to obtain a dynamics given by (7.9), where we have introduced the mean densities
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Figure 7.6 – Comparison of numerical simulations of 10 TAPEPs with mean-
field predictions. Left: total longitudinal current as a function of ρ1: the
maximum is at ρM

1 = 0.52. Right: transverse current between lane 1 and 2
(currents between all other pairs of lanes are the same). In the simulation
we have set Nmax=100 and p = 1 for all the lanes. The transverse rates are:
d1,2 = 56, d2,3 = 89, d3,4 = 7, d4,5 = 27, d5,6 = 49, d6,7 = 45, d7,8 = 18, d8,9 = 8,
d9,10 = 50, d10,1 = 62, d1,10 = 47, d2,1 = 78, d3,2 = 95, d4,3 = 94, d5,4 = 10,
d6,5 = 41, d7,6 = 8, d8,7 = 15, d9,8 = 15, d10,9 = 79.

ρi , j =
〈ni , j 〉
Nmax

. (7.16)

Advective and transverse currents are again given by (7.10) and (7.11), apart from K1,2

whose expression is:

K1,2 = d1,2ρ1
(
1−ρ2

)−d2,1
(
ρ2

)2 (
1−ρ1

)
. (7.17)

Using the methodology introduced in section 7.1, we can now compute, for equilibrated

plateaux, the transverse and longitudinal currents K (ρ1) and Jtot(ρ1).

In Fig. 7.6, we compare the results of numerical simulations of 10 TAPEPs with mean-

field predictions. Again, the agreement is excellent. Significantly, for the particular choice

of transverse rate (7.15), K (ρ1) changes sign as ρ1 varies, at ρ1 ≡ ρK
1 . Using the expres-

sion of Jtot(ρ1) and the generalized extremal current princle, we derive the phase diagram

which is compared with Monte Carlo simulations in Fig. 7.7.

On the the red line of Fig. 7.7, one observes coexistence between two profiles of dif-

ferent densities separated by a shock. On this line, for ρL < ρK
1 , these shocks separate the

bulk of the system into homogeneous phases with counter-rotating transverse currents

(see Fig. 7.8).
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Figure 7.7 – Phase diagram of N = 10 TAPEPs with Nmax = 100. Left: possible
connections of equilibrated plateaux predicted by the linear stability anal-
ysis. Right: phase diagram where blue lines indicate second order phase
transitions and the red line indicates first order phase transitions. The dif-
ferent phases are left, right or maximal current phases. The gray shaded re-
gion corresponds to the region where K > 0 is observed in the bulk (bottom-
left); in the rest of the phase diagram, one observes K < 0 in the bulk. The
rates are the same as in Fig. 7.6.

7.2.3 Shear localization

The phenomenology shown in Fig. 7.8 is rather counterintuitive. Indeed, for a Symmetric

Partial Exclusion Process which yields diffusive dynamics, one expects the density profile

to linearly interpolate between the two reservoir densities. This in turn leads to a continu-

ous variation of the transverse current K (see Fig. 7.9). In contrast, for the driven diffusive

dynamics of the TAPEP, which leads to the formation of shocks, our analysis shows that

a localized discontinuity of the transverse current may occur. Thus in the type of driven

system we consider, it is the driven longitudinal dynamics which determine the phase

behaviour and the transverse currents are dictated by the longitudinal ones.

For standard fluids, where momentum is conserved, such a shear discontinuity is un-

expected [83]. Multilane models, based on random particle hopping, however describe

situations where the momentum of the system is not even locally conserved. This is rel-

evant, for instance, to models of molecular motors hopping along a microtubule without

a proper description of the surrounding fluid. The shear localization phenomenon thus

belongs to the class of surprising phenomena which can be observed in momemtum non-

conserving systems (see [133] for how the concept of pressure can fail for such systems).
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Figure 7.8 – Simulations of N = 10 TAPEPs with up to Nmax = 100 particles
allowed per site. All longitudinal rates are equal (pi = p = 1) whereas the
transverse rates are chosen as follows: d12 = 56, d21 = 47, d23 = 89, d32 = 78,
d34 = 7, d43 = 95, d45 = 27, d54 = 94, d56 = 49, d65 = 10, d67 = 45, d76 = 41,
d78 = 18, d87 = 8, d89 = 8, d98 = 15, d910 = 50, d109 = 15, d101 = 62, d110 = 79.
Top-left: the density profile of lane 1 exhibits a shock between a left and a
right phase. The densities imposed at the two reservoirs are ρL

1 = 0.199 and
ρR

1 = 0.849. Top-right: The transverse current between lane 1 and 2 similarly
shows a shock between two values of opposite signs. Bottom: Vector field of
the current (Ji ,Ki ,i+1) along the lattice. The color code shows the value of K .
The length of the arrows corresponds to the modulus of the current vector.



7.2. Microscopic models of multilane systems 123

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

x`

ρ1

0 100 200 300 400 500

0.2

0.1

0.0

0.1

x`

K1,2

Figure 7.9 – Simulations of 10 Symmetric Partial Exlusion Processes. The
simulation details are the same as in Fig. 7.8 with the exception of the longi-
tudinal dynamics which is now symmetric, i.e. p = q = 1 for all lanes, where
p and q are the forward and backward hopping parameters respectively.
Left: density profile of lane 1 linearly interpolates between the left and right
boundary conditions. The density values imposed at the two reservoirs are
ρL

1 = 0.199 and ρR
1 = 0.849. Right: transverse current between lane 1 and 2

continuously interpolates between the left and right boundary conditions.

7.2.4 Beyond mean-field

The approach presented in this work relies on mean-field hydrodynamic descriptions of

lattice-gases. We employed a simple mean-field approximation involving the factoriza-

tion of all density correlations. In the aforementioned examples, this approach seems

to perfectly predict the phase diagram observed in Monte Carlo simulations. As we now

show, this is not always the case and the simple mean-field prediction for Jtot(ρ1) may

fail. Despite of this, the extremal current principle can still be applied, but with the nu-

merically measured current-density relation J (ρ1). This suggests that our approach solely

relies on the existence of a hydrodynamic equation, Eq. (6.1), and not on the particular

mean-field procedure we used here to derive it. Note that the same is true for single-lane

systems. In [57] an exact current-density relation, differing from the mean-field predic-

tion, was used to construct the phase diagram of a single-lane interacting lattice gas using

the extremal current principle.

Let us now illustrate this by considering N parallel TASEPs where the transverse hop-

ping rates are nonuniform. Furthermore, to allow for a richer phase diagram than those

shown above, we alternate lanes where the particles hop rightwards, from site j to site

j + 1, with lanes where they hop leftwards, from site j to site j − 1. The nonuniformity

of the transverse hopping rates induces correlations between different lanes which are

neglected within mean-field theory. As we show in Fig. 7.10, for a given example with 10

lanes and hopping rates specified in the caption, the profiles and currents calculated us-

ing the simple mean-field approximation do not match exactly the ones measured in the
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Figure 7.10 – Simulation results for N = 10 TASEPs on a ring. Even lanes
(i = 2,4,6,8,10) correspond to right-going TASEPs whereas odd lanes (i =
1,3,5,7,9) correspond to left-going TASEPs; in all cases, the hopping rate is
pi = 1. The transverse rates are: d1,2 = 0.95, d2,3 = 0.55, d3,4 = 0.72, d4,5 =
0.62, d5,6 = 0.79, d6,7 = 0.99, d7,8 = 0.81, d8,9 = 0.61, d9,10 = 0.93, d10,1 = 0.53,
d2,1 = 0.05, d3,2 = 0.45, d4,3 = 0.02, d5,4 = 0.32, d6,5 = 0.19, d7,6 = 0.49, d8,7 =
0.01, d9,8 = 0.41, d10,9 = 0.03, d1,10 = 0.23. Left: profiles of densities of lanes
1 to 4 are shown for ρL

1 = ρR
1 = 0.51. Center: total longitudinal current as

a function of ρ1: the maximum is at ρM
1 = 0.15 while the minimum is at

ρm
1 = 0.75 (Monte Carlo values). Right: transverse current between lane 1

and 2 (currents between all other pairs of lanes are the same).

Monte Carlo simulations.

Consequently, the phase-diagram predicted by the mean-field expression, Jtot(ρ1), is

slightly off its Monte Carlo counterpart. However, applying the extremal current princi-

ple instead on the numerically measured current-density relation yields a phase diagram

which is in perfect agreement with the Monte Carlo simulations (see Fig. 7.11).

7.3 Conclusion

Our work shows that a generalized extremal current principle can be used to construct

the phase diagram of multilane driven diffusive systems under the hypothesis that the

hopping rate along one lane does not depend on the occupancies of the neighbouring

lanes, and that the hopping rate between lanes increases with the occupancy of the de-

parting site and decreases with the occupancy of the target site. This allowed us to show

that the phase diagrams of such systems are equivalent to those of single-lane systems,

though with much more complicated current-density relations. It validates the frequently

made hypothesis that molecular motors hopping along microtubules can be effectively

described by single-lane models. In all our modelling, we have used equilibrated reser-

voirs; all our results extends to the case of non-equilibrated reservoirs but with two new

boundary layers connecting the bulk equilibrated plateaux with the reservoirs, as shown
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Figure 7.11 – Simulation results for N = 10 TASEPs on a ring, with the
same parameters as in Fig. 7.10. Left: possible connections of equilibrated
plateaux predicted by the linear stability analysis. Center: phase diagram
where now red lines represent the result of the extremal current principle
applied to the mean-field prediction and blue lines represent the result of
the extremal current principle applied to the Monte Carlo simulation of Jtot.
Black dots represent numerical simulations (with quite invisible errorbars)
in the vicinity of phase transition lines. The possible phases are Left Phase,
Right Phase, Maximal Current Phase and minimal Current Phase. Right:
zoom on a region where the discrepancy between mean-field prediction and
Monte Carlo simulation results are appreciable.

in Fig. 6.5. In this case, the relation between the densities of the bulk plateaux and those

of the reservoirs is, however, not known in general.

Our theory is based on the analysis of hydrodynamic descriptions of lattice gases. To

apply our approach to precise microscopic models one thus needs to construct such con-

tinuous descriptions, for instance using approximations such as the simple mean-field

approximation we have employed here (cf. section 7.2.1). Those are known to fail when

correlations between neighbouring sites are important but we have shown that the gen-

eralized extremal current principle still holds with respect to the exact current-density

relation which can be measured in a simulation.

The existence of transverse currents, impossible for single and two lane systems, can

lead to interesting phenomenology. For instance, we have shown that when a system

has different transverse flows imposed at its boundaries, driven diffusive systems can

have a bulk behaviour strongly different from simply diffusive systems. For the latter, the

transverse flow smoothly interpolates between its imposed bundary conditions whereas

driven dffusive systems can exhibit ‘shear-localization’. The system then splits into ho-

mogeneous parts with constant transverse flows separated by sharp interface(s).

Our study extends the physics of one-dimensional boundary driven phase transitions

to more complex systems and in particular to 2D lattices. It would be interesting to fur-

ther pursue this approach with more general lattice structures, such as the network of
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filaments encountered in active gels [102].
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Conclusion

This thesis was dedicated to the study and investigation of two non-equilibrium systems

at two different scales of the biological world. We have first studied the emerging collec-

tive behaviour of colonies of single and multispecies bacteria with specific interactions,

before descending at the sub-cellular level with the investigation of the dynamics of pop-

ulations of molecular motors1.

When one is interested in finding the connection between microscopic interactions

– where the equilibrium principle of detailed balance is not satisfied – and collective be-

haviours, it is inevitably necessary to start from microscopic models in order to build up

macroscopic descriptions which can be studied with generic tools. We have shown with

different techniques and approximations how it is possible to build up a hydrodynamic

description of the macroscopic behaviours in the two cases – bacteria and molecular mo-

tors – starting from different models. The choice of the different procedures is dictated by

the characteristics of the system under study: for instance, it is natural to model the dy-

namics of run-and-tumble bacteria – who swim in a continuous space – off lattice, while

the dynamics of molecular motors – who move by discrete steps – was defined on lattice.

Once a macroscopic mathematical description is obtained, standard tools such as linear

analysis can then be used to study the behaviour of the system at a collective level. The

results we obtained are clear signatures of non-equilibriumness:

• Bacteria can self-organize in patterns and spatio-temporal structures, thanks to the

simple principle of accumulation where their transport efficiency is reduced. We

were able to explain and characterize these structures, by a combination of theo-

retical and numerical tools, and the very good agreement with experimental results

suggest that this mechanism can indeed be very general. Future development of

techniques to measure and control the interactions in the experiments will open up

exciting perspectives in identifying such simple principles in in vivo systems and

using them to design functional communities.

• The motors, on the other hand, are capable of exhibiting phase transitions in one

dimension. This allowed physicists to study transport problems with an extremely

1Note that, chronologically, part II of this thesis was the first project I tackled in my Ph.D.
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simplified model, the TASEP. However, in most practical situations, general multi-

lane problems are expected to be more relevant. We found that they can be mapped

into single-lane systems by showing that they can yield the same phase diagram, at

the price of a much more complicated current-density relation. However, the nov-

elty is that they can now give rise to a much richer phenomenology, with several

different phases, and to completely new features, such as shear localization.

Then, it is natural that to overcome the limits of the chosen models, one has to relax

some of the constraints imposed by the approximations employed. For instance, in the

case of phase separation in bacterial colonies, we neglected gradients that are known to be

important to stabilize the interfaces. As for the multilane problems, the question remains

open of how the phase diagram would be modified if we consider hopping rates between

different lanes that depend on the occupancy of neighbouring sites. These represents

interesting questions to be answered in future works.

To conclude, by studying two different problems, we have exemplified the fact that the

use of system-specific models, approximations, and tools is typical of non-equilibrium

problems, although the physicists’ unrepentant hope of finding universal principles leads

us to appeal to generic schemes, often coming from the equilibrium pot. Then, deviations

from the expected behaviours are often a signature of new exciting features (or, even more

often, of a bug in the code).
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Appendix A

Methods and simulations of Part I

A.1 Coarse-graining with joint probability distribution

A.1.1 Diffusion-drift approximation

We recall the master equation for the probability density P ({rn ,θn ,σn}, t )

Ṗ =
N∑
`=1

σ`

[
−∇` · (v`uθ`P )−α`P + β`

2π

∫
dθ′`Pσ`=0

]

+
N∑
`=1

(1−σ`)[−β`P +α`Pσ`=1],

(A.1)

and the moment expansion of P on the joint Fourier basis

P ({rn ,θn ,σn}) = (2π)−N
∑
{kn }

ck1...kN ({rn ,σn})exp

(
i

N∑
j=1

k jθ j

)
. (A.2)

To begin with, we consider the marginal probability Pσ` = P ({rn ,θn},σ`) = ∑
σn 6=` P

where the dynamical state variable of all the particles except ` have been eliminated by

summation. The dynamics of Pσ` then reads:

Ṗσ` =σ`
{
−∇`

[
v`uθ`Pσ`

]−α`Pσ` +
β`

2π

∫
dθ′`Pσ`=0

}
+ (1−σ`)

{−β`Pσ` +α`Pσ`=1
}

− ∑
m 6=`

∇m[vmuθm Pσm=1,σ`].

(A.3)
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We then project (A.3) on the zeroth harmonic (that has k j = 0 ∀ j ) and obtain:

Ċσ`
0 =σ`

{
−∇`

[
v`
2

(
Cσ`
−`

(
1

−i

)
+Cσ`

+`

(
1

i

))]
−α`Cσ`

0 +β`Cσ`=0
0

}
+ (1−σ`)

{
−β`Cσ`

0 +α`Cσ`=1
0

}
− ∑

m 6=`
∇m

[
vm

2

(
Cσm=1,σ`−m

(
1

−i

)
+Cσm=1,σ`+m

(
1

i

))]
.

(A.4)

To eliminate the dependence of C0 on σ` we define the probability of a system of N

run-tumble-stop bacteria being in any dynamical state at position rn at time t by sum-

ming over all possible values of σ`: C0 = ∑
σ`=0,1 Cσ`

0 . We can now write the equation

governing the dynamics of the density C0:

Ċ0 =−∑
`

∇` ·
[

v`
2

(
Cσ`=1
−`

(
1

−i

)
+Cσ`=1

+`

(
1

i

))]
. (A.5)

Eq. (A.5) is not yet a self-consistent equation because the dynamics of C0 is expressed

as a function of the first moment coefficients Cσ`=1
±` : it is then necessary to study their

dynamics. We do this by projecting Eq. (A.4) on the semi-space σ` = 1, then on the first

order harmonic exp(±iθ`). We therefore obtain

Ċσ`=1
±` =−∇` ·

[
v`
2

(
Cσ`=1

0

(
1

∓i

)
+Cσ`=1

±2`

(
1

±i

))]
−α`Cσ`=1

±`

− ∑
m 6=`

∇m

[
vm

2

(
Cσm=1,σ`=1
±`−m

(
1

−i

)
+Cσm=1,σ`=1

±`+m

(
1

i

))]
.

(A.6)

From Eq. (A.6) we note that Ċσ`=1
±` ∝−Cσ`=1

±` , which tells us that Cσ`=1
±` is a fast variable.

We therefore take the following fast variable approximation: Ċσ`=1
±` = 0. This allows us to

get an expression for Cσ`=1
±` :

Cσ`=1
±` =− 1

α`
∇` ·

[
v`
2

(
Cσ`=1

0

(
1

∓i

)
+Cσ`=1

±2`

(
1

±i

))]

− 1

α`

∑
m 6=`

∇m

[
vm

2

(
Cσm=1,σ`=1
±`−m

(
1

∓i

)
+Cσm=1,σ`=1

±`+m

(
1

±i

))]
.

(A.7)

If we now inserted expression (A.7) in (A.5) we still would not have a closed expression be-

cause of the second moments Cσ`=1
±2` and Cσm=1,σ`=1

±`±m . Again, we can try and characterize

them by studying their dynamics. By the same proceeding as done for the first moments,
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one can show that all second moments are also fast variables and that they are propor-

tional to gradients of the density Cσ`=1
0 . Substituting their expression in (A.7) then leads

to:

Cσ`=1
±` =− 1

α`

{
∇` ·

[
v`
2

Cσ`=1
0

(
1

∓i

)]}
+O

(
∇3Cσ`=1

0

)
. (A.8)

Inserting the expression for Cσ`=1
±` in (A.5) gives

Ċ0 =
∑
`

∇`
[

v`
2α`

∇`
(
v`Cσ`=1

0

)]+O
(
∇4Cσ`=1

0

)
. (A.9)

We can now perform a gradient expansion that consists in neglecting the terms propor-

tional to higher order in gradients. Finally, note that, by definition, C0 = Cσ`=1
0 +Cσ`=0

0 .

The closed expression we are looking for is the one in which only the quantity C0 is in-

volved, instead of the marginals Cσ`=0
0 and C0 = Cσ`=1

0 . We then study the dynamics of

Cσ`=0
0 :

Ċσ`=0
0 =−β`Cσ`=0

0 +α`Cσ`=1
0

− ∑
m 6=`

∇m

[
vm

2

(
Cσm=1,σ`=0
−m

(
1

−i

)
+Cσm=1,σ`=0

m

(
1

i

))]
.

(A.10)

We first note that Ċσ`=0
0 ∝ Cσ`=0

0 : it is therefore a fast variable and Ċσ`=0
0 = 0. Then, one

can easily show that the first harmonics appearing in the sum in Eq. (A.10) are fast vari-

ables too and that they are proportional to higher order gradients of the density. They can

therefore be neglected, which gives

Cσ`=0
0 =C0 −Cσ`=1

0 = α`

β`
Cσ`=1

0 → Cσ`=1
0 = 1

1+ α`
β`

C0 (A.11)

and we finally obtain the closed expression:

Ċ0 =
∑
`

∇`
[

v`
2α`

∇`
(

v`
1+ α`

β`

C0

)]
=∑

`

∇`(D`∇`C0 −F`C0), (A.12)

where

D` =
v2
`

2α`
(
1+ α`

β`

) and F` =− v`
2α`

∇`
v`

1+ α`
β`

. (A.13)
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A.1.2 Itō calculation for interacting bacteria

For the sake of clarity, we recall here the form of the Fokker-Planck equation for the prob-

ability density

Ċ0 =
∑
`

∇` ·
 v2

`

2α`
(
1+ α`

β`

)∇`C0 + v`
2α`

∇`
v`

1+ α`
β`

C0

 (A.14)

and the equivalent Langevin process for the trajectory of a single particle

ṙ`(t ) = f`+
√

2g`η`(t ), 〈ηµi (t )ηνj (t ′)〉 = δi jδµνδ(t − t ′), (A.15)

with

f` =
v`

1+ α`
β`

∇`
v`

2α`
and g` =

v2
`

2α`
(
1+ α`

β`

) . (A.16)

Note that in the expressions (A.16) we have applied the substitutions (2.24) or, more gen-

erally, the one with the non-local coarse-grained density (2.25). Therefore, g` = g [ρ̃(r`)]

and f` = f[ρ̃(r`)].

We now proceed in the computation of the time evolution of the density field ρ(r, t ) =∑
`ρ`(r, t ) =∑

`δ(r− r`(t )), following Itō calculus:

ρ̇(r, t ) =
N∑
`=1

[
(∇`ρ`)ṙ`+ (∆`ρ`)g [ρ̃(r`)]

]
=∑

`

[
(∇`ρ`)

(
f[ρ̃(r`)]+√

2g [ρ̃(r`)]η`
)
+ (∆`ρ`)g [ρ̃(r`)]

]
=∑

`

[
−∇(

δ(r− r`)f[ρ̃(r`)]
)−∇(δ(r− r`)

√
2g [ρ̃(r`)]η`)

+∆(δ(r− r`)g [ρ̃(r`)])
]

,

(A.17)

where ∇ and ∆ are the gradient and the laplacian with respect to the space coordinate r.

Thus, since f[ρ̃(r`)] and g [ρ̃(r`)] depend on the trajectories of the particles and not of the

space coordinate, they can be included in the gradient and laplacian.

What we want to do next is to express the RHS of Eq. (A.17) as a function of ρ(r, t )

by exploiting its definition. In order to do this we have to re-write f[ρ̃(r`)] and g [ρ̃(r`)]

in such a way that they do not depend on ` anymore. Let us start with the last term in

Eq. (A.17): ∑
`

∆
(
δ(r− r`)g`(r`)

)=∑
`

∆
(
δ(r− r`)g [ρ̃(r`)]

)
=∑

`

∆
(
δ(r− r`)g [ρ̃(r)]

)
=∆(

ρ(r)g [ρ̃(r)]
)

.

(A.18)
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The second term can be treated similarly, but some more attention has to be paid because

of the multiplicative noise:

∑
`

∇(δ(r− r`)
√

2g`(r`)η`(t )) =∇
(√

2g [ρ̃(r)]
∑
`

δ(r− r`)η`(t )

)
. (A.19)

Following [39] one can show that the noise term in Eq. (A.19) has the same correlations of

∇
(√

2g [ρ̃(r)]ρ(r)Λ(r, t )
)

, 〈Λµ(r, t )Λν(r′, t ′)〉 = δµνδ(r− r′)δ(t − t ′). (A.20)

In the first term, in order to make the total density ρ(r, t ) appear, we have to detail the

computation more. We first re-write (2.25) from the main text as

ρ̃(r`) =
∫

dyK (y− r`)ρ(y) =
∫

dyK (y− r`)
∑

j
δ(y− r j ) =∑

j
K (r j − r`) (A.21)

then consider the function f`(r`) as a gradient of some generic function h`(r`):

f`(r`) =∇`h`(r`)

=∇`h[ρ̃(r`)]

=∇`h

[∑
j

K (r j − r`)

]

= h′[ρ̃(r`)]

(∑
j
∇K (r j − r`)

)
,

(A.22)

where ∇K is the gradient with respect to its argument. We now consider and develop

∑
`

δ(r− r`)f` =
∑
`

δ(r− r`)h′[ρ̃(r`)]
∑

j
∇K (r j − r`)

=∑
`

δ(r− r`)h′[ρ̃(r)]∇
(∑

j
K (r j − r)

)
=∑

`

δ(r− r`)h′[ρ̃(r)]∇ρ̃(r)

=∑
`

δ(r− r`)∇h[ρ̃(r)]

=∑
`

δ(r− r`)f[ρ̃(r)]

= ρ(r)f[ρ̃(r)].

(A.23)
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Eq. (A.17) takes thus the form

ρ̇(r, t ) =−∇
[
ρ(r, t )f[ρ̃(r)]+√

2g [ρ̃(r)]ρ(r, t )Λ(r, t )−∇(ρ(r, t )g [ρ̃(r)])
]

=−∇

ρ (
v

1+ α
β

∇ v

2α

)
+

√√√√2
v2

2α
(
1+ α

β

)ρΛA −∇
(
ρ

v2

2α

)
=−∇

− v2

2α
(
1+ α

β

)∇ρ− v

2α
∇ v

1+ α
β

ρ+
√√√√2

v2

2α
(
1+ α

β

)ρΛ


=−∇
[
−D[ρ̃]∇ρ+F[ρ̃]ρ+√

2D[ρ̃]ρΛ
]

,

(A.24)

which is Eq. (2.30) in the main text.

A.2 Simulation details

A.2.1 Off-lattice microscopic simulations

A.2.1.1 General features and time evolution

In the off-lattice simulations, particle k with 1 ≤ k ≤ N is associated to the following vari-

ables:

• the position, in terms of a couple of continuous variables (xk , yk ) with 0 ≤ xk , yi < L

and L is the size of the system;

• the orientation, in terms of a continuous variable θk with 0 ≤ θk < 2π;

• the coarse-grained density ρ̃k = ∑
`Kk`/Z , where Z is a normalization constant,

Kk` the interaction kernel of particle k with particle ` and the sum runs over the

particles ` whose position is within a certain range r0 from the position of particle

k. We choose the interaction kernel to take the form Kk` = exp
(
− 1

1−(rk`/r0)2

)
, so that

it is symmetric around k and it decreases as the distance between the two particles

rk` increases. In the multispecies mutual interaction case, particles ` do not belong

to the same species of particle k;

• a discrete variable σ indicating if the particle is running (σ= 1) or tumbling (σ= 0).

This last variable is not present in simulations with instantaneous tumbling.

The simulation is performed in discrete time with parallel update: at each time step dt ,

the coarse-grained density is first computed for each particle. Then, all particles move of a
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distance dr = v dt . Depending on the case, v can be constant or density-dependent. The

run-to-tumble and tumble-to-run events occur randomly at frequency α and β, which

again, depending on the case, can be constant or density-dependent. When a tumble-to-

run event occurs, the new orientation of the particle is chosen at random.

If birth and death is included, an additional step must be considered during which the

particles are either added at rate b = b0, or deleted at rate d(ρ), an increasing function of

the local density. Note that in our convention, the birth and death events are exclusive: if

one particle just divided, it cannot die at the same time step.

A.2.1.2 Calculation of the coarse-grained density

Only particles within a distance r0 contribute to each other’s coarse-grained density so

that performing a loop on all the N particles at each time step would be redundant and

extremely time-consuming. What we want to do instead, is a loop on only those parti-

cles within the interaction distance. In order to do this, we discretize the space in such a

way that each lattice site has a size a ≥ r0. We then associate to each site a chained list1,

corresponding to the particles present on that site at that specific time. To compute the

coarse-grained density around particle k at site (i , j ), we therefore only look at particles

at the same site and at the neighbouring ones.

A.2.2 On-lattice microscopic simulations

A.2.2.1 General features and time evolution

In on-lattice simulations, the position and the orientation of the particles are discretized.

For the particles’ position, it just corresponds to the lattice site coordinates; for their ori-

entation, we choose to let them move in 4 directions: vertical, horizontal, and the two

diagonals. They can therefore have 8 possible orientations, 2 for each direction. If we

consider finite tumble duration, each particle is also associated with the discrete variable

σ = 0,1 indicating that the particle is in a tumble or run state, respectively. Finally, both

the local and the coarse-grained densities, whose computation method is explained in

next section, are associated not with the particles themselves, but with the site.

In this case, the time evolution is implemented with random sequential update: we

divide the time step dt in N microsteps of size δt = dt/N and for each microstep we ran-

domly select one of the N particles. If N is large then δt is small and the process is almost

1A chained list is a series of pointers, each of which points to the next element in the list. It is then very
easy to go through the list and add/remove elements from it.
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identical to an ordered sequential update [19, p. 26]: on average, all the N particles are

selected at each time step dt .

Once the particle is selected, it then performs an action, according to its state and

orientation. If the particle is in the run state, it can either move (at rate v in the vertical

and horizontal direction, at rate v/
p

2 in the two diagonal directions), tumble (at rate

α), or do nothing. If the particle is in the tumble state, it can either resume a run (at

rate β) in a randomly chosen direction, or do nothing. If we consider birth (occurring at

rate b) and death (occurring at rate d), those events are included in the possible actions

for both running and tumbling particles. Note that when a particle is added (following

a birth event) or deleted (following a death event) the microstep δt is modified). Once

again, depending on the specific model, all the rates are constant or density-dependent.

To select which action is performed, we use the tower sampling algorithm.

The advantage of sequential as opposed to parallel update is that in the first case it is

not necessary to compute the coarse-grained densities for all the sites at each time step,

which is the most time-consuming computation in the simulation. The drawback is that

it can be used only in those cases where the effect of one particle’s action on the system

configuration state is very small: in our case, for instance, when particle on site (i , j ) at

time t moves, dies, or replicates, it affects the local density of site (i , j ) and the coarse-

grained density of all the sites that interact with site (i , j ). If at time t +nδt , with n < N , a

particle that lies within the interaction range from site (i , j ) is selected, its action is influ-

enced by what happened to the first particle at time t , giving rise to artificial correlations

between the two actions, which should in principle occur at the same time and there-

fore be independent. However, if the density is large enough, the correlation introduced

should be negligible.

A.2.2.2 Calculation of the coarse-grained density

We consider the particles on site (i , j ) and an interaction range r0 ≥ 1. They thus interact

with particles on sites (in , jn) such that rn = √
(i − in)2 + ( j − jn)2 ≤ r0. If the number of

sites that satisfy rn ≤ r0 is m, then the coarse-grained densities of particles on site (i , j ) is

simply the sum of all the particles on the m sites divided by m. This is equivalent to take a

quasi-circular step-like interaction kernel. This computation is done only once for all the

sites at the beginning of the simulation. Then, during the simulation, the coarse-grained

density is updated every time a particle changes site, only for the sites concerned by the

displacement, i.e. those that determine the perimeter of the interaction area. This allows

to perform nr ∼ r0 calculations instead of Nr ∼ r 2
0 at each microstep δt .
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Appendix B

Methods of Part II

B.1 Dynamical stability of equilibrated plateaux

Consider a small perturbation δρ around the equilibrated plateau solution (see section

6.1.1) which may be decomposed as

ρi (x, t ) = ρ0
i +

∑
q
δρ

q
i (t )exp

(
i qx

)
, (B.1)

where q = 2πn with n = 1, . . . ,`−1. We denote by |δρq ) the vector (δρq
1 , . . .δρq

N ). Inserting

expression (B.1) into the mean-field equations (7.9) and expanding to first order in δρ
q
i

yields the equation
d

dt
|δρq ) =C q |δρq ), (B.2)

where the matrix C q is defined by

C q
i i =−Di q2 − iq J i

i +
∑
j 6=i

K i
j i ; C q

i j 6=i = K j
j i , (B.3)

with J i
i ≡ ∂ρi Ji (ρ0). Note that the matrix C q

i i can be defined for any positive real number

q and not only for the discrete values q = 2πn. As we now show, the eigenvalues λi (q) of

the matrix C q always have negative real parts and |δρq (t )) thus vanishes at large time.

For q = 0, C q is a Markov matrix and none of its eigenvalues λi (0) has a positive real

part: Eq. (B.3) indeed shows the sum of each column elements to vanish for q = 0. Con-

versely, when q →∞, λi (q) ∼ −Di q2 and λi (q) thus has a negative real part. Physically,

the short wave-length perturbations are stabilized by the diffusive terms while the large

wave-length perturbations are stabilized by the exchange between lanes.

The eigenvalues of a matrix are continuous functions in C of its coefficients. For C (q)

to have an eigenvalue with a positive real part, we need q∗ ∈ [0,∞[ such that at least one
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eigenvalue satisfies Re(λi (q∗)) = 0, which means

∃|v) 6= 0 such that C q |v) = iϕ|v), where ϕ ∈R. (B.4)

The matrix A ≡C q − iϕI is thus singular. It is however easy to see that At , the transpose of

A, is a strictly diagonally dominant matrix, i.e.

|At
i i | = |Di q2 +

( ∑
j 6=i

K i
i j

)
+ i(q J i

i +ϕ)|

> ∑
j 6=i

|At
i j | =

∑
j 6=i

|K i
i j | = |∑

j 6=i
K i

i j |.
(B.5)

The Gershgorin circle theorem states that all eigenvalues of a square matrix B can be

found within one of the circles centered on Bi i of radii
∑

j 6=i |Bi j |. This implies that strictly

diagonally dominant matrices cannot be singular: At and A are thus invertible. Therefore,

the matrix C (q) cannot have purely imaginary eigenvalues: all its eigenvalues thus have a

negative real part for all q . Equilibrated plateaux are thus always dynamically stable when

Ji is only a function of ρi and when Eqs. (6.2) are satisfied. This can break down for more

general systems, when interactions between the lanes are allowed for [46].

B.2 Connecting bulk plateaux to equilibrated reservoirs

This appendix is divided into two parts. In the first part, we show that the spectrum of M

is composed of either (i) N eigenvalues with positive real parts and N −1 eigenvalues with

negative real parts, or (ii) N − 1 eigenvalues with positive real parts and N eigenvalues

with negative real parts. The second part then shows that these two cases respectively

correspond to plateaux which can only be observed in Left and Right phases.

B.2.1

We begin by considering a semi-infinite problem with a reservoir at the left end of the sys-

tem. Let us assume that the equilibrated plateaux densities ρp
j are determined by single-

valued (a priori unknown) functions of the reservoir densities |ρL):

∀ j ρ
p
j = H j (ρL

1 , . . . ,ρL
N ), (B.6)

When the reservoir is equilibrated, one simply has ρp
j = H j (ρL

j ) = ρL
j . We now focus on

perturbations of equilibrated reservoirs and show that the space of perturbations |δρL)

that leave |ρp) invariant is of dimension N −1.
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To see this, let us look at the consequence of an infinitesimal perturbation |δρL) of the

reservoir densities. This perturbation results in a change of bulk equilibrated densities

from |ρp) to |ρp)+|δρp), with

δρ
p
j =∑

i

(
∂ρL

i
H j

)
δρL

i , (B.7)

which can be rewritten in matrix form as

|δρp) = H ′|δρL) where H ′
j i ≡ ∂ρL

i
H j . (B.8)

By definition the bulk densities |ρp)+|δρp) are still equilibrated. Therefore, as shown in

section 6.2.1, |δρp) = ε|δρ 0), where ε is a small parameter and thus

H ′|δρL) = ε|ρ 0). (B.9)

The key observation is that since Eq. (B.9) holds for any perturbation |δρL), the matrix

H ′ projects any vector |δρL) onto the direction |δρ 0). Furthermore, we now show that

H ′ is indeed a projector satisfying (H ′)2 = H ′. Since H ′|δρL) ∝ |δρ0), the image of H ′ is

Span|δρ0). If we consider an equilibrated boundary density vector |ρL) then |ρL + εδρ0)

is also equilibrated, which implies H(|ρL + εδρ0)) = |ρL)+ ε|δρ0). Then by linearization,

H ′|δρ0) = |δρ0). Since (B.9) holds for all |δρL), H ′ thus satisfies
(
H ′)2 = H ′.

We may now invoke a basic theorem of linear algebra that for a projector, here H ′, the

direct sum of the image space and the kernel gives the full N dimensional vector space:

RN = Span(|δρ0))⊕ker(H ′). (B.10)

Note that ker(H ′) is the space of perturbations |δρL) that leave |ρp) invariant (since H ′|δρ r) =
|δρp) = 0). Therefore the space of perturbations |δρL) that leave the bulk density vector

invariant is of dimension N −1.

To connect these perturbations to the eigenvectors of the matrix M , let us consider a

given equilibrated plateau |ρp) and ask which reservoir density vectors |ρp +δρ r) it can

be connected to through a perturbation |δρ(x)). Such a perturbation can be decomposed

using the eigenvectors of M as in Eq. (6.14):

|δρ(x)) =
2N−1∑
k=1

αk |δρk )eλk x . (B.11)

By definition, |δρ(x)) vanishes in the bulk of the system (see Fig. 6.6) so there is noα0 term

in the sum.
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The sum in (B.11) is restricted to Re(λk ) < 0 when connecting to left reservoirs as terms

coming from eigenvectors with eigenvalues with Re(λk ) ≥ 0 would not die out in the bulk.

Since |δρ(x = 0)) = |δρ r), the perturbations (B.11) need to span the sets of left reservoir

perturbations that leave |ρp) invariant. Since the vector spaces of such perturbations are

N −1 dimensional, one needs at least N −1 eigenvectors with Re(λk ) < 0. Conversely, the

same reasoning for a semi-infinite system connected to a reservoir on its right would lead

to the conclusion that one needs at least N −1 eigenvectors with Re(λk ) > 0.

To conclude the first part of this appendix, let us summarize what we know on the

spectrum of the matrix M . Since it has 2N eigenvectors, one of which is associated with

the eigenvalueλ0 = 0, among the remaining 2N−1 there must be either N−1 eigenvectors

with Re(λk ) < 0 and N eigenvectors with Re(λk ) > 0 or N −1 eigenvectors with Re(λk ) > 0

and N eigenvectors with Re(λk ) < 0.

B.2.2

We now show that the first case, with N −1 eigenvectors with Re(λk ) < 0 and N eigenvec-

tors with Re(λk ) > 0, corresponds to a Left Phase.

1. Connection to left reservoirs. As we have shown, there is a space of perturbations

|δρ r) of dimension N −1 that leave |ρp) invariant. Since these are spanned by the

N −1 eigenvectors with Re(λk ) < 0, the latter constitute a basis of ker[H ′(ρp)] and

one can construct a perturbation |δρ(x)) that connects ρp to the reservoir ρp+δρ r.

Let us now consider a small equilibrated perturbation |δρ r) = α|δρ0) of |ρ r) for

which there exists a stationary profile connecting |ρp) to |ρ r)+α|δρ0). Since the pro-

file connects to the reservoir at x = 0, one needs to find a decomposition of |δρ(x))

such that

|δρ(0)) = ∑
Re(λk )<0

αk |δρk ) =α|δρ0). (B.12)

However, since H ′ is a projection on |δρ0) and Span(|δρk ),Re(λk ) < 0) = ker(H ′),

Eq. (B.10) applies and the intersection between ker H ′ and Span[|δρ0)] is the empty

set. As a consequence, δρi (0), which belongs to both sets because of (B.12), is the

null vector (αk = α = 0): the sole equilibrated reservoir to which ρp can be con-

nected to the left corresponds to |ρ r) = |ρp).

2. Connection to right reservoirs. We now consider only the N eigenvectors with

Re(λk ) > 0. While they still span ker(H ′), and |ρp) can still be connected to un-

equilibrated reservoirs on the right, the |δρk ) need not anymore be in ker(H ′). Let
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us show that |ρp) can be connected to an equilibrated reservoir on the right with

|δρ r) 6= 0. Again, this requires a perturbation |δρ) which satisfies

∑
Re(λk )>0

αk |δρk ) = ε|δρ0), (B.13)

Let us first remember that the eigenvectors |vk〉 of M(ρp) are 2N -dimensional and

that |δρk ) are simply the second half of the components of these vectors. We want

to show that |δρ0) ∈ Span[|δρk ),Re(λk ) > 0]. To do so, we consider the vector space

X = {(x1, . . . , xN ,0, . . . ,0), xi ∈R} of dimension N . The eigenvector associated to λ= 0

is |v0〉 = (
0, . . . ,0,δρ0

1, . . . ,δρ0
N

)
and clearly |v0〉 ∉ X . From this we can say that

dim(X +Span|v0〉) = N +1. (B.14)

Since one also has

dim[Span[|vk〉,Re(λk ) > 0]] = N and

dim[(X +Span|v0〉)+ (Span|vk〉)] ≤ 2N
(B.15)

(the total space is 2N dimensional), it follows that

dim[(X +Span|v0〉)+ (Span|vk〉)] < dim(X +Span|v0〉)
+dim(Span|vk〉) = 2N +1.

(B.16)

The intersection between the two spaces is not the empty set

(X +Span|v0〉)∩ (Span|vk〉) 6= ; (B.17)

and there exists a vector |w〉 ∈ X +Span|v0〉 of the form

|w〉 = (
x1, . . . , xN ,εδρ0

1, . . . ,εδρ0
N

)
(B.18)

which is also in Span|vk〉. This vector can be written as |w〉 = ∑
Re(λk )>0α

k |vk〉 and

the equality of the second half of the components yield

∀i
∑

Re(λk )>0
αkδρk

i = εδρ0
i . (B.19)

One can thus construct a perturbation, spanned by the |vk〉 with Re(λk ) > 0, which

is proportional to |v0
k〉 and connects |ρp) to an equilibrated reservoir |ρp)+ ε|δρ0)

with ε 6= 0.
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Conversely, the same reasoning would show that, for equilibrated reservoirs, a plateau

with N eigenvalues with Re(λk ) < 0 can only be observed in a Right Phase.

B.3 Transverse current in parallel TASEPs

We now show that a definition of the transverse current such as the one given in (7.11)

cannot possibly yield a change of sign in K , i.e., K = 0 ⇔ ρi = ρi±1 = 0,1. To show this,

consider at first N = 3 and let us take K = 0. Then we have

d12ρ1
(
1−ρ2

)= d21ρ2
(
1−ρ1

)
d23ρ2

(
1−ρ3

)= d32ρ3
(
1−ρ2

)
d31ρ3

(
1−ρ1

)= d13ρ1
(
1−ρ3

)
.

(B.20)

Solving the system of equation for ρi (i = 1,2,3) yields the equality

(d12d23d31 −d21d32d13)
(
1−ρi

)
ρi = 0, (B.21)

from which we can easily see that either ρi = 0 or ρi = 1, i.e. the two solutions that we

excluded, or d12d23d31 = d21d32d13. This last condition corresponds to an exactly null

transverse current for any value of the density.

This result can be generalized to the case of an N−lane system by using the recursion

relation

ρi+1 =
∏i

j=1 d j , j+1ρ1∏i
j=1 d j , j+1ρ1 +∏i

j=1 d j+1, j
(
1−ρ1

) (B.22)

and by imposing the periodic condition at the boundary: ρN+1 = ρ1. Then we find that

in order to have K = 0 for some ρi 6= 0,1 one must have
∏N

j=1 d j , j+1 = ∏N
j=1 d j+1, j , which

however implies K = 0 ∀ ρi 6= 0,1. We have shown here only the necessary condition, but

the sufficent one can be proved by taking (7.11) and setting
∏N

j=1 d j , j+1 = ∏N
j=1 d j+1, j for

generic N .

Note that this appendix shows that K cannot vanish if ρi 6= 0,1 unless it is always zero.

One could imagine, however, that K changes sign discontinuously, without ever satisfying

K = 0. This never occurs with the simple choice of rates Ki j we have considered (which

is not very surprising since K can be shown to be the solution of a polynomial equation

whose coefficients are continuous functions of ρ1). More complicated transverse hop-

ping rates, not considered in this work, leading to multiple possibilities of equilibrated

plateaux for a given value of ρ1, could, however, exhibit more complicated behaviours.
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