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ABSTRACT

This thesis is devoted to the mathematical modeling of the blood flow in stenosed arteries due
to atherosclerosis. Atherosclerosis is a complex vascular disease characterized by the build up of
a plaque leading to the narrowing of the artery. It is responsible for heart attacks and strokes.
Regardless of the many risk factors that have been identified- cholesterol and lipids, pressure,
unhealthy diet and obesity- only mechanical and hemodynamic factors can give a precise cause
of this disease.

In the first part of the thesis, we introduce the three dimensional mathematical model de-
scribing the blood-wall setting. The model consists of coupling the dynamics of the blood flow
given by the Navier-Stokes equations formulated in the Arbitrary Lagrangian Eulerian (ALE)
framework with the elastodynamic equations describing the motion of the arterial wall consid-
ered as a hyperelastic material modeled by the non-linear Saint Venant-Kirchhoff model as a
fluid-structure interaction (FSI) system. Theoretically, we prove local in time existence and
uniqueness of solution for this system when the fluid is assumed to be an incompressible New-
tonian homogeneous fluid and the structure is described by the quasi-incompressible non-linear
Saint Venant-Kirchhoff model. Results are established relying on the key tool; the fixed point
theorem.

The second part is devoted for the numerical analysis of the FSI model. The blood is
considered to be a non-Newtonian fluid whose behavior and rheological properties are described
by Carreau model, while the arterial wall is a homogeneous incompressible material whose motion
is described by the quasi-static elastodynamic equations. Simulations are performed in the two
dimensional space R? using the finite element method (FEM) software FreeFem++. We focus
on investigating the pattern of the viscosity, the speed and the maximum shear stress. Further,
we aim to locate the recirculation zones which are formed as a consequence of the existence
of the stenosis. Based on these results we proceed to detect the solidification zone where the
blood transits from liquid state to a jelly-like material. Next, we specify the solidified blood
to be a linear elastic material that obeys Hooke’s law and which is subjected to an external
surface force representing the stress exerted by the blood on the solidification zone. Numerical
results concerning the solidified blood are obtained by solving the linear elasticity equations
using FreeFem+-+. Mainly, we analyze the deformation of this zone as well as the wall shear
stress. These analyzed results will allow us to give our hypothesis to derive a rupture model.

KEY WORDS

Atherosclerosis, fluid-structure interaction, Navier-Stokes equations, Newtonian, non-Newtonian,
homogeneous, elastodynamic equations, variational formulation, elasticity, hyperelasticity, in-

7



compressible, quasi-incompressible, quasi-static, non-linear, modeling, simulation, blood, plaque,
stenosis, artery, bifurcation, Arbitrary Lagrangian Eulerian, rheology, constitutive law, Saint
Venant-Kirchhoff, Cauchy stress tensor, shear stress, viscosity, existence and uniqueness of the
solution, fixed point theorem, recirculation zone, solidification zone, Carreau model, rupture.



RESUME

Cette thése est consacrée a la modélisation mathématique du flux sanguin dans les artéres
en présence de la sténose a cause de I'athérosclérose. L’athérosclérose est une maladie vasculaire
complexe caractérisée par la formation d’une plaque menant au rétrécissement de ’artére. Elle
est responsable des crises cardiaques et des accidents vasculaires cérébraux. Quels que soient
les nombreux facteurs de risque identifiés - cholestérol et lipides, pression, régime alimentaire
malsain et obésité - seuls des facteurs mécaniques et hémodynamiques peuvent donner une cause
précise de cette maladie.

Dans la premiére partie de la thése, nous introduisons le modéle mathématique tridimen-
sionnel décrivant I'introduction entre le sang et la paroi artérielle. Le modéle consiste a coupler
la dynamique du flux sanguin donnée par les équations de Navier-Stokes formulées dans le
cadre Arbitrary Lagrangian Eulerian (ALE) avec les équations élastodynamiques décrivant le
mouvement de la paroi artérielle considérée comme un matériau hyperélastique modélisé par la
loi de comportement non-linéaire de Saint Venant-Kirchhoff en tant que systéme d’interaction
fluide-structure. Théoriquement, nous prouvons l'existence et I'unicité locale dans le temps de
la solution pour ce systéme lorsque le fluide est supposé étre un fluide homogéne Newtonien
incompressible et que la structure est décrite par la loi de comportement non-linéaire quasi-
incompressible de Saint-Venant-Kirchhoff. Les résultats sont établis en utilisant 'outil clé; le
théoréme du point fixe.

La deuxiéme partie est consacrée a ’analyse numérique de ce modéle. Le sang est considéré
comme un fluide non-Newtonien dont le comportement et les propriétés rhéologiques sont décrits
par le modéle de Carreau, tandis que la paroi artérielle est un matériau homogéne incompressible
dont le mouvement est décrit par les équations élastodynamiques quasi-statiques. Les simulations
sont effectuées dans I’espace a deux dimensions R? a 'aide du logiciel FreeFem -+ en utilisant la
méthode des éléments finis. Nous nous concentrons sur I’étude de la viscosité, de la vitesse et des
contraintes de cisaillement maximale. En outre, nous visons a localiser les zones de recirculation
qui sont formées a la suite de I'existence de la sténose. En se basant sur de ces résultats, nous
procédons a la détection de la zone de solidification ou le sang passe de I’état liquide a un
matériau de type gelée. Ensuite, nous spécifions que le sang solidifié est un matériau élastique
linéaire qui obéit a la loi de Hooke et qui subit & une force de surface externe représentant la
contrainte exercée par le sang sur la zone de solidification. Les résultats numériques concernant
le sang solidifié sont obtenus en résolvant les équations d’élasticité linéaires a ’aide de FreeFem
++4. Nous analysons principalement la déformation de cette zone ainsi que les contraintes de
cisaillement la paroi. Les résultats obtenus vont nous permettre de porposer une hypothése pour
la formulation d’un modéle de rupture.



Mots-CLES

Athérosclérose, interaction fluide-structure, équations de Navier-Stokes, Newtonien, non-
Newtonien, homogéne, équations élastodynamiques, formulation variationnelle, élasticité, hy-
perélasticité, incompressible, quasi-incompressible, quasi-statique, non-linéaire, modélisation,
simulation,le sang, plaque, sténose, artére, bifurcation, arbitraire Lagrange-Euler, rhéologie,
loi de comportement, Saint Venant-Kirchhoff, tenseur des contraintes de Cauchy, contraintes
de cisaillement, viscosité, existence et unicité de la solution, théoréme de point fixe, zone de
recirculation, zone de solidification, modéle de Carreau, rupture.
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Chapter 1

INTRODUCTION

The human’s heart- only the size of a fist- is the strongest muscle in the body. It pumps
a complex, time-varying output of blood through the blood vessels constituting the circulatory
system responsible for providing the body organs with nutrients, oxygen and other supplies
needed to function normally. Further, it provides the body with a pulsating pressure waves that
propagates throughout the whole cardiovascular system. This muscle starts to beat in the uterus
long time before birth, in general 3-4 weeks after conception. The circulatory system has been
studied a long time ago. By the action of mummification the Egyptians acquired knowledge
about the human’s body and its inside. They got introduced to the main blood vessels and the
heart’s role, though they believed that the variety of the body fluids flow through the heart. The
earliest known writings and medical papers are: the Edwin Smith Papyrus (seventeeth century
BC), the Ebers Papyrus (sixteeth century BC) and the Kahun Gynecological (nineteenth century
BC). In particular, the Ebers Papyrus described the relation between the blood and the arteries,
declaring that after a person breathes air into the lungs, the air enters the heart and then
flows into the arteries without indicating any role for the red blood cells (RBCs). Egyptians
have believed that the heart is the source of emotions and wisdom. With this study, arose the
curiosity to observe the heart and the blood. For about 1500 years, an incorrect model was
built. In the second century the Greek physician and philosopher Galen of Pergamon came
up with a believable model for the circulatory system. Accurately, he acknowledged that the
system consists of venous blood (dark red) and arterial blood (bright red) which are of different
functions. Though, he proposed that the circulatory system consists of two one-way systems of
blood distribution rather than a single way, and that the liver is responsible of producing venous
blood that the body consumes. He also thought that the heart was a sucking organ, rather than
a pumping one.

Galen’s theory and other wrong views reigned in Western medicine until the 1628, when
the English physician William Harvey correctly described blood circulation. Then with time,
modeling of blood rapidly progressed, and yet it is. Models are proposed to study the blood
flow in the blood vessels, the characteristics of the blood cells and plasma and of the heart
[TBA11, TBET11,BKS09]. Further, models describing the coagulation of blood have been sub-
ject of intensive research [Boul7, GHZ09,Zhu07]. History and advances in the study of blood
can be found in [Coll5].

Related to the heart and the blood vessels, are the cardiovascular diseases. Various types
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CHAPTER 1. INTRODUCTION

of cardiovascular problems exist, for instance, coronary heart disease (CHD), heart attack also
known as myocardial infarction, arrhythmia, heart failure, congenital and rheumatic heart dis-
eases, peripheral artery disease, cardiomyopathy and much more. Some cardiovascular problems
are related to heart defects that are present at birth. Others can be due to some life habits
such as smoking, drinking too much alcohol, physical inactivity or lack of sleep. Stress, anxiety,
hypertension, diabetes, cholesterol, etc. are also major factors associated with cardiovascular
diseases. Neverthless, cardiovascular diseases are mostly related to atherosclerosis. For a rich
knowledge on the cardiovascular diseases from physiological and pathological perspectives and
some of the associated treatments and remedies the reader can refer to [MMM™05] and the
cites therein. Recent statistical surveys done by the Institute for Health Metrics and Evaluation
(THME)', showed that 17.65 million people around the world have died due to cardiovascular
diseases that is about 32.26% of the total death, revealing that it is the major cause of death
worldwide.

1.1 Atherosclerosis and Blood Coagulation

1.1.1 Atherosclerosis

Atherosclerosis is an inflammatory disease characterized by narrowing of the artery due to
the build up of a stenosis or plaque on the artery wall resulting from the occupation of the white
blood cells. The interior of the arteries is lined up with a smooth layer of cells that keeps them
smooth and facilitates the passage of blood. This layer is called endothelium. When this layer
is damaged it allows the build up of the cholesterol, lipids, macrophages and other substances
from the blood causing atherosclerosis. Over time, the plaque can build up with the platelets

Plague deposit in
fa) vessel wall (b)

Gogynght € 2004 Pesrson Edunation. inc , publshing ns Berjamin Gurmings

Figure 1.1: Formation of atherosclerosis (Benjamin Cummings).

forming a clot which causes the interruption of the blood flow into the body organs. Blood clots
can block the artery or with time and due to the effect of the shear stresses exerted by the blood

Tt is a research institute that was launched in June 2007 that works in the area of global health statistics
and impact evaluation at the University of Washington in Seattle
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1.1. ATHEROSCLEROSIS AND BLOOD COAGULATION

flow on the stenosis and the clot, the clot will be released into the flow resulting a heart attack
or a stroke. Many experiments have shown the steps of the formation of the plaque, which in
some cases eventually will end up with a rupture. It is a complex process that mainly involves
LDL?, monocytes, cytokines, macrophage, etc. which ends up with the formation of the fibrous
plaques that can rupture and a clot forms as the platelets try to fix the rupture.

It is worth to distinguish between arteriosclerosis and atherosclerosis. Atherosclerosis is a
specific type of arteriosclerosis, which is the stiffening or hardening of the artery walls. All
people with atherosclerosis have arteriosclerosis, but those with arteriosclerosis might not nec-
essarily have atherosclerosis. However, the two terms are frequently used with the same meaning.

To deal with atherosclerosis and discover preventive therapies and remedies in order to heal
patients, mathematicians handle these situations from their mathematical perspectives by em-
ploying mathematical models and performing numerical simulations. A first step is modeling the
blood flow in blood vessels. In 1775, Euler developed his equations aiming to describe the blood
flow [Eul89]. In this context, the first two dimensional model to study the blood flow in heart
was developed in the Ph.D. thesis [Pes72| using immersed method to a dog model. Successfully,
the work was extended to a three dimensional model to a heart model [Pes02, PM89]. Based
on the complexity of the formation of atherosclerosis, mathematical modeling of this process
can involve non-linear partial differential equations (PDEs) describing the blood flow and the
elasticity of the arterial wall taking into consideration the complexity of the layers of this wall.
Moreover, it can also lead to interaction systems, chemical reactions, coagulation and growth
processes. Hence, many mathematical models have been studied by considering some conditions
of this complex process [BD12, LT10, CEMR09, CHM 10, KGKV09, KGV07, KGKV11]. The
work [KGKV09,KGVO07| presented one and two dimensional models that describe the formation
of atherosclerosis as an auto-amplification inflammatory phenomenon based on the reaction-
diffusion equations where the concentration of the oxidized LDL is the significant parameter.
No focus on the interaction of the blood and the plaque has been considered. Based on this
model, a new model has been built in [CEMRO09| by considering the atherosclerosis to be an in-
flammatory process that starts at the stage of intima when the LDL penetrate and get oxidized.
A coupled system has been set up from the reaction-diffusion equation describing the inflamma-
tory phenomenon and the Navier-Stokes equations describing the dynamics of the blood flow.
An improvement of this model is presented in [CHM™10] by coupling the inflammatory process
with transport equations, transfer equations and Navier-Stokes equations each describing the
LDL in the intima, the endothelial wall and the blood flow dynamics, respectively.

1.1.2 Blood Coagulation

Atherosclerosis provokes blood coagulation [ADK12| which involves the secretation of cy-
tokine and chemokine by the inflamed site and the activation of the platlets and the endothelial
cells. Blood coagulation is the process by which the blood changes in state from liquid to- a
more viscous material- a jelly-like material, which results a blood clot. Coagulation is an instant
process that is activated once the endothelium is damaged. The process of coagulation depends
mainly on the platelets and the insoluble fibrin protein. The fibrin proteins are formed by a

2Low density Lipoproteins.
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CHAPTER 1. INTRODUCTION

process known as the coagulation cascade [DR64] which involves many biochemical reactions
where the blood clotting factors are activated [Boul7|. Blood clots are mainly associated to
atherosclerosis and are formed whenever the flowing blood comes in contact with a foreign sub-
stance in the skin or in the blood vessels wall. In particular, in the situations where plaques
formed from fats, lipids, cholesterol or other foreign substances found in the blood are identified,
over time, they harden causing the narrowing of the artery leading to a blood clot formation.
Two major types of blood clots are: thrombi, which are stationary clots, though they can cause
the blockage of a flow; emboli, which are break loose which may detach into the blood flow and
can, somewhere in a site far away, block the flow. This type of clots is dangerous and causes
infarctions, more precisely, if the blockage occurs in the brain it results a stroke, if it occurs
in the heart a heart attack would result, or in the lungs it would cause pulmonary embolism.
Many mathematical models have been developed for the description of the coagulation cas-
cade by representing the biochemical reactions using a system of ordinary differential equations
(ODEs) [BZOCT12,MNRO08,5V15]. The work [SSB11] has been devoted for the stability results
of a mathematical model of the coagulation cascade.

Mathematical models can provide a deep view of the coagulation process. Usually, the
dynamics of the blood flow is given by the Navier-Stokes equations whereas advection-diffusion-
reactions are employed to describe the concentration of the clotting factors and the fibrin poly-
mers. The interaction of the blood flow and the clot growth is given in spatiotemporal represen-
tation inside the blood vessel using the continuous approach. Both models are simulated on the
same domain and are solved on the same numerical mesh. Some models have neglected the effect
of the fribin polymers on the blood flow dynamics [JC11], while others have assumed the depen-
dence of the blood viscosity on them by employing the generalized Newtonian model for the blood
flow [BS08,SB14]. Further, some continuous models have dealt with the clot as a solid [SvdV14]
and detected its growth using F'SI system. Whereas, other models have considered the fibrin to be
a porous medium [LE10, GRRM16]|. Hybrid models have also been employed in order to achieve
a realistic representation of the clot formation [FG08, XCL"12, YLHK17, TAB*13, TAB"15].

In general, all the mathematical models used to model atherosclerosis are simple which cap-
ture only some essential features of atherosclerosis without taking into consideration the com-
plexity of the atherosclerosis and the composition of blood. More suitable models are needed
through which the physiological parameters associated to the atherosclerosis must be investi-
gated clinically. In addition, the vessel wall must be considered as a multi-component structure
taking into account the effect of the plaque growth and its rupture on their mechanism. Further,
a more realistic model must be derived by analyzing the timescales of the biological processes
carried out by the LDL, oxidized LDL and macrophages involved in this phenomenon, also, the
time for a one pulse corresponding to the blood flow; about few seconds; and the time of the
plaque growth which can be months.

In this thesis, the modeling of the blood flow through a stenosed artery will be studied as
a fluid-structure interaction (FST) model. Theoretically, existence and uniqueness of a regular
weak solution of this model are proved locally in time. Numerically, by analyzing the pattern of
the blood viscosity, the blood flow and the wall shear stress we will introduce our assumption
concerning the location of the solidification zone and its characteristics. Furthermore, we will
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study the effect of the external forces representing the shear stress of the blood on this zone
which constitutes a first step forward to propose a rupture model.

1.2 An Overview on the Thesis

1.2.1 Chapter 2: Modeling of the Fluid-Structure Interaction System

In this chapter, we introduce the FSI system that models the interaction between the blood
flow and the arterial wall when a stenosis exists. The system consists of two sub-problems; a
fluid sub-problem describing the dynamics of the blood flow through the lumen of the artery
and a structure sub-problem that describes the motion of the arterial wall. The blood is consid-
ered to be a homogeneous incompressible fluid whose dynamics is given by the incompressible
Navier-Stokes equations. On the other hand, the arterial wall is considered to be a hyperelastic
material . The interaction between the blood and the arterial wall prompts the introduction of
the Arbitrary Lagrangian Eulerian (ALE) formulation. In particular, the fluid computational
domain Q(t) must obey the motion of the blood-wall interface I'.(¢), thus it cannot be fixed in
time. Consequently we adopt the Navier-Stokes equations in the ALE frame. While, the elasto-
dynamic equations are given in the Lagrangian framework. The two sub-problems are coupled
by imposing coupling conditions on the interface I'.(t).

In the first section we introduce the modeling of the blood flow which is governed by the
incompressible Navier-Stokes equations that are written in the Eulerian framework. We dis-
tinguish between the case of a two dimensional and a three dimensional domain. Further, we
reformulate these equations on any arbitrary reference configuration. The last step in this sec-
tion is formulating the Navier-Stokes equations in the ALE framework.

The elastodynamic equations describing the motion of the arterial wall are given in Section
2.2. We highlight two cases: the case of a non-linear elastic material; and the case of a linear
elastic material. The non-linear elastic material is considered to be a hyperelastic structure .
The elastodynamic equations are formulated in the Lagrangian frame on the reference configu-
ration {0, . On the other hand, the linear elastic materials obey Hooke’s law and their associated
elastodynamic equations are given on the actual configuration Q(t).

Having the two sub-problems; the Navier-Stokes equations in the ALE frame and the elas-
todynamic equations in the Lagrangian frame, the FSI problem is set up in the third section.
Indeed, to have a well built system we impose some coupling conditions on the blood-wall in-
terface I'.(¢). These conditions ensure the global energy balance of the system. In particular,
the velocity fields and the stresses must be continuous on the interface. Further, a geometrical
condition is imposed which is given as a relation between the displacement E ¢ of the fluid domain
Q ¢ and the displacement 55 of the structure domain Q. More precisely, the displacement 5 7 is
considered to be a reasonable extension of 55.
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1.2.2 Chapter 3: Analysis of the Interaction Between an Incompress-
ible Fluid and a Quasi-Incompressible Non-Linear Elastic Struc-
ture

In this chapter we focus on proving the local in time existence and uniqueness of a regular
weak solution of the FSI system corresponding to the lumen-wall model. We consider the fluid to
be a homogeneous incompressible Newtonian fluid whose dynamics is given by the Navier-Stokes
equations formulated in the Eulerian coordinates on an actual configuration Q;(t) C R® . The
arterial wall is a hyperelastic quasi-incompressible structure modeled by the non-linear Saint
Venant-Kirchhoff model. Its corresponding elastodynamic equations are given on the actual
configuration () C R3. These equations are coupled by imposing conditions representing the
continuity of velocity fields and stresses on the lumen-wall interface I'.(¢). A rewriting of the
Navier-Stokes equations in the Lagrangian reference framework results linear equations and a
fixed domain where we can deal easily with these equations. Local existence and uniqueness of
solution of the coupled system is established based on the key tool; the fixed point theorem:.

In the first section, we introduce the Navier-Stokes equations governing the flow of velocity
v and pressure py, and the elastodynamic equations satisfied by the structure displacement &,
each with their associated boundary conditions. A compatible FSI is obtained by imposing
some coupling conditions representing the continuity of velocities and stresses on the lumen-wall
interface I'.(¢). We make use of the deformation maps A and ¢, of the fluid and the structure
domains Q/(0) and €24(0), respectively, in order to rewrite the coupled system in the Lagrangian
framework, in particular, in the reference configuration corresponding to the time ¢ = 0. Explicit
rewritings of the Saint Venant-Kirchhoff model and the quasi-incompressibility condition in the
spirit of [Gaw02] are introduced which enable us to deal with them easily when applying the
fixed point theorem.

A step forward in the second section is to partially linearize the FSI system by considering
the deformation maps A and ¢ to be given for a chosen fluid velocity ©¥ and a structure dis-
placement és in a fixed point space. Estimates on the given deformation maps A and @ as well
as on the Saint Venant-Kirchhoff model are derived based on Gronwall’s inequality (B.1) and
the generalized Poincaré inequality [BF13, Proposition I11.2.38].

Based on the partially linear system, in Section 3.3, we formulate an auxiliary problem by a
slight change on the coupling conditions attributed to the elastodynamic equations. Considering
a transformation of a divergence-free setting we formulate the variational formulation associated
to the auxiliary problem in which the pressure term disappears. Proceeding with Faedo-Galerkin
approach we define the Galerkin approximations of the solutions and derive a priori estimates
on them. Passing to the limit, using compactness results [Brel0, Chapter 9] and Aubin-Lions-
Simon theorem [BF13, Theorem I1.5.16] yield the existence and uniqueness of the solution of
the auxiliary problem.

Concerning the partially linear system, we derive a priori estimates on its solution. Then
based on the results concerning the auxiliary problem and using the fixed point theorem we
prove the existence and uniqueness of the solution of the linear system in Section 3.4.
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Regularity of the solution and some a priori estimates are presented in Section 3.5.

In Section 3.6, using the preceding results of the linear system and using the fixed point
theorem we prove the existence and uniqueness of a weak solution of the non-linear FSI system.

At last, verifying the inf-sup condition [Bre74] we establish the existence of an L? fluid
pressure. Then, based on the regularity of the solution (v,&) we get a more regular fluid
pressure.

1.2.3 Chapter 4: Discretization and Numerical Simulations

The mathematical modeling and the numerical analysis of the blood flow in a stenosed artery
is the subject of the study in this chapter. In particular, the blood-wall is modeled as a FSI
model obtained by coupling the fluid model representing the blood flow in the lumen Q(¢) with
the structure model describing the motion of the arterial wall Q4(¢) by imposing some coupling
conditions on the lumen-artery interface I'.(¢). The dynamics of the blood flow is governed by
the incompressible Navier-Stokes equations, while the motion of the arterial wall is described
by the quasi-static elastodynamic equations. We assume that the arterial wall is a hyperelastic
incompressible material. The variational formulation associated to the FSI system is formulated
by deriving the variational formulation corresponding to each sub-problem using appropriate
test functions. The system is then discretized using the partitioned approach. The discretized
system is solved using FreeFem-++ software by considering reliable physiological data and as-
suming that the blood viscosity obeys Carreau model. Numerical simulations have shown a
deep insight of processes occurring in stenosed arteries. Indeed, the blood flow, the deforma-
tion of the stenosis, the maximum shear stress and the recirculation zones are configured in
the case of a pipe-shaped stenosed artery and in the case of a bifurcated stenosed artery. Re-
sults have shown that the peak of the stenosis is characterized by a high displacement and its
neighborhood possesses a high shear stress. These results help us in configuring three major
regions; the neighborhood of the peak, the recirculation zone and the solidification zone. The
pattern of the blood speed, the maximum shear stress and the blood viscosity are investigated in
these three regions. In addition, comparison between a Newtonian blood and a non-Newtonian
blood is demonstrated by analyzing the blood speed, the viscosity and the maximum shear stress.

In the first section we introduce the three dimensional FSI system corresponding to the
blood-wall setting that we deal with by adopting the ALE approach. The variational formula-
tion associated to each sub-problem is derived using appropriate test functions that take into
account the boundary conditions. Space discretization are applied on the Navier-Stokes equa-
tions and the elastodynamic equations by employing the finite element method (FEM). Then,
the Navier-Stokes equations are semi-discretized in time by considering the convective term and
the fluid viscosity at the instant t,, while other terms are considered at the instant ¢,,,1. On the
other hand, the quasi-static elastodynamic equation is solved using Newton-Raphson method by
linearizing it with respect to the deformation ¢, and the hydrostatic pressure py, associated to
the structure domain . After solving the Navier-Stokes equations, we solve the elastodynamic
equations to get the displacement és of the structure domain. The ALE map .A representing
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the evolution of the fluid domain () is constructed assuming that the displacement £ 7 of the
fluid domain is the harmonic extension of the displacement &, of the interface I'.(t).

The second section is devoted for the numerical results obtained upon performing numerical
simulations using the FreeFem++ software in a two dimensional space. The blood flow is ana-
lyzed during a time duration of 3 seconds when a pulsatile periodic inlet velocity vy, is enforced
on the inlet of the lumen. The figures showed a high blood flow in the neighborhood of the peak
of the stenosis, which undergoes a significant deformation. Maximum shear stress is investigated
and its highest value is detected in the neighborhood of the peak of the stenosis. Further, a
conspicuous recirculation zone is identified after the stenosis. This zone is characterized by a
negligible speed at its center, which increases as the diameter of the circular region increases.
The case of a bifurcated artery where one and two stenosis exist is also investigated. Analyzing
the behavior of the flow, the viscosity, the maximum shear stress and detecting the recirculation
zones came to an agreement to the case of pipe-shaped artery. Based on the analyzed variables,
three major regions are studied (Figure 4.12). A region "A" representing the neighborhood of
the peak, a region "C" corresponding to the recirculation zone and an intermediate region "B"
spotted at the edge of the stenosis. Region "A" is characterized by the highest speed among
others, whereas Region "B" is of the highest viscosity value, while Region "C" possesses the
highest shear stress. These results will constitute an essential key for the detection of the solid-
ification zone and its characteristics. Moreover, a comparison between a Newtonian blood and
a non-Newtonian blood is drawn is Subsection 4.2.3. A Newtonian blood is characterized by a
higher speed and a lower viscosity and wall shear stress than a non-Newtonian blood. Indeed,
the non-Newtonian blood is more viscous so that, its viscous behavior forms a resistance factor
and acts as an obstacle against the flow leading to a smaller speed.

1.2.4 Chapter 5: Solidification of Blood and a First Step Towards a
Rupture Model

Regardless of the progress encountered on the modeling of the cardiovascular system in the
last few decades, it is still a challenging problem that has gain the attention of mathematicians
and engineers. The complexity of the cardiovascular system and the composition of blood mo-
tivate us to derive an appropriate model that best describes the behavior of blood flow and the
mechanism of the artery wall, in particular, in the case of a plaque formation. To our knowledge,
non of the derived models have captured the physiological properties of blood and arterial wall,
hence we are still away from attaining a reliable model.

The aim of this chapter is to propose a rupture model based on the rheological properties
of the non-Newtonian blood. In the first section, a brief overview on the viscous behavior of
blood is presented. We introduce the widely used constitutive models to capture this property
in Subsection 5.1.1.

The second section is devoted for the detection of the solidification zone in order to propose
the rupture model. Based on the results obtained in Section 4.2, in particular, the observation
of three regions where the pattern of flow and viscosity are remarkable, we give our hypothesis
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for the characteristics of the solidification zone R4(t). In fact, we consider this zone to be of a
negligible blood speed and of a high viscosity, so that blood in this region can be considered a
jelly-like material. After a precise location of this zone at the edge of the stenosis , we assume
that it is a linear elastic material of displacement w that satisfies the elastodynamic equations
with the Cauchy stress tensor o;(u) obeying Hooke’s law. Boundary conditions are set such
that, we ensure continuity of the displacements on the stenosis-zone interface I'y(t), while on
the blood-zone interface I'i(f) an external surface force f; is applied representing the stress
exerted by the blood. After deriving its weak formulation and discrete formulation, we solve the
equations numerically using the FreeFem-++ software. Results show a high shear stress exerted
by the blood on the interface I';(¢) opposed by the zone deformation resulting from the stenosis
deformation. The pattern of the maximum shear stress and the external surface force f; are
analyzed. Based on these observations, we give our assumption for a first step in a rupture model,
by assuming that the effect of the wall shear stress acting as a resistance factor against the zone
motion will scrape and dig the crust of the solidification zone leading to the fragmentation of
some solidified pieces and their release into the flow which can cause the blockage of the artery
in some faraway sites resulting an infarction.
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MODELING OF THE FLUID-STRUCTURE
INTERACTION SYSTEM
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Introduction

Cardiovascular diseases, mainly due to atherosclerosis, form the highest rate of death in the
world. Curiosity of finding cures for these diseases lead scientists, in particular mathematicians,
to study this issue from their mathematical viewpoint. The blood-wall setting can be modeled
as a fluid-structure interaction (FSI) system. This system is a multiphysics coupling between
equations describing the fluid dynamics and the structural mechanics. The interaction takes
place between a deformable structure- arterial wall- and an internal fluid flow. In general, fluid
flows are governed by the Navier-Stokes equations or Stokes equations. Whereas, the structure
mechanics are described by the elastodynamic equations. The coupling of these equations is
set up by imposing some conditions on the common boundary. Both Navier-Stokes equations
and elastodynamic equations are derived using the principal physical conservation laws [BF13,
FQV09, Ricl7, Mal]. Navier-Stokes equations are adopted in the Eulerian framework. The
Eulerian approach describes the flow with its control volume through which the fluid flows.
Indeed, the physical quantities such as velocities and pressure are considered to behave as fields
in the volume, rather than considering the property of each particle. In other words, they
are defined to be functions of time and space. In fact, in the Eulerian description, one is not
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concerned about the location or velocity of any particular particle, but rather about the velocity,
acceleration, etc. of whatever particle happens to be at a particular location of interest at a
particular time t.

On the other hand, elastodynamic equations are given in the Lagrangian framework. This
approach tracks as a function of time each particle by its position, velocity, acceleration, etc.. In
complex fields, positions of each solo particle is difficult to be tracked, therefore this approach
is rarely used in describing fluid dynamics.

As for the physical laws, such as the conservation of mass and energy or Newton’s laws,
they are easily applied in Lagrangian description by applying them to each individual particle.
Whereas, in Eulerian description some reformulations of these laws are required [Ric17, Chapter
2].

In many FSI systems of particular interest for instance for blood flowing in arteries the com-
putational fluid domain cannot be fixed in time since it is affected by the deformation of the
structure domain, consequently it ought to follow the motion of the common interface. If we
consider employing the Lagrangian approach, this means we must follow the evolution of the
blood particles throughout the whole domain, which we certainly do not want! To get over these
obstacles, we consider a domain €¢(¢) which is neither fixed, nor a material. Indeed, this is due
to the fact that its evolution does not agree with the fluid motion, rather, obeys the displacement
of its boundary 0€2;(t) which is linked to the displacement of the structure. The introduction
of this intermediate frame is known as the Arbitrary Lagrangian Eulerian (ALE) approach.

In this chapter we introduce the FSI system that models a blood-wall setting. In the first
section we introduce the Navier-Stokes equations governing the blood flow in the actual config-
uration, reference configuration and in the ALE frame. The second section is concerned about
the elastodynamic equations describing the structural mechanics. Using these two equations and
imposing some coupling conditions on the interface, in the third section, we present the coupled
system associated to the blood-wall model in the ALE framework.

2.1 Blood Flow Modeling with the Navier-Stokes Equations

Consider at time ¢t = 0 a domain Q(];. At time ¢ > 0, let Q¢(¢) be the volume occupied by
the fluid particles which have occupied Qg . The total forces exerted on the fluid in Q(¢) are the
volumetric force f; and the surface force represented by the Cauchy stress tensor oy given by

or(v,pr) =2pD(v) + A(V - v)Id — ps Id, (2.1)

1
where v is the fluid velocity, D(v) = §(VU + (Vv)") is the rate of deformation tensor and p;

is the pressure of the fluid whose density is py. The terms A and p depend on the invariants
of tensors Iy, I and I3 of the matrix D(v) [Mal, Ric17]|. The invariants of the tensor D(v) are
given by

1,(D(v)) = t1(D(v)), L(D(v)) = [t1*(D(v)) - tr(D(v))’] and Is(D(v)) = det(D(v)).
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In particular, the quantity p stands for the dynamic viscosity of the fluid. In general p is a
function of Vv or other related quantities. In this case the fluid is said to be non-Newtonian.
However, if p is constant then the fluid is called Newtonian. The term 2uD(v) + A(V - v)Id is
denoted by 7, and is called the Dewviatoric stress tensor.

The derivation of (2.1) is based on some assumptions about the deviatoric stress tensor
(linear, isotropic, symmetric). These assumptions are essential to give a specific representation
of it that depends on the invariants I}, Iy and I3 of the matrix D(v). Moreover, some results
from Spectral theory are used. For the full derivation, the reader can refer to [Mal, Section 14].
In case of a non-Newtonain fluid, the Navier-Stokes equations are given by

ov
Prap pr(vV)v =V -ap(v,ps) = ps fy. (2.2)

In the case of a Newtonian fluid the Cauchy stress tensor o; can be simplified. Indeed, as p is
constant, simple calculations give

V- 1i=MN+ )V (V-v)+ pVo. (2.3)
Recall that, the divergence of a second-order tensor T is

3
0Ty
V. T =
l;l Oz; °

where ey, k = 1,2, 3 are the canonical basis of R?. In particular, for a scalar function p and the
tensor Id, we have

kyi=1 ' k=1 k=1

Using the Cauchy equation of motion (A.3) with (2.3) and (2.4) yield

ov
Pr o + pr(vV)v = =Vpsr+ (A4 )V (V- v) + uAv + pr fy (2.5)

where A = V? is the Laplacian operator.

In case of compressible fluid flows we have an additional equation known as the equation of
state, which is commonly used in the form of a relationship between the pressure p; and the
density py.

However, we are interested in the incompressible homogeneous flows. In order to give the
equations corresponding to them, we first need to introduce some concepts.

Definition 2.1.1 (Incompressible Flow) Let Q(t) be the volume occupied by the fluid at
instant t > 0. The fluid (flow) is said to be incompressible, if for any subregion Vi of Q2¢(t), the
volume of Vi is constant in time.
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Corollary 2.1.1 The following statements are equivalent

1. A fluid is incompressible;

2. det(Id + Vv) = 1;

3. The velocity field v(x,t) is divergence free, that is to say V - v = 0;
Proof. The proof is based on Equation (A.1). See [Mal, Section 6|]. m

Definition 2.1.2 (Homogeneous Fluid) A fluid is said to be homogeneous if its mass density
pr s constant in space.

2.1.1 Incompressible Navier-Stokes Equations

These equations are derived using the incompressibiltiy condition V - v = 0. Therefore, the
incompressible Navier-Stokes equations for a non-Newtonian fluid are

0
Py (8_1; + (v~ V)”) —V .os(v,ps) =psfr on Qg(t) x (0,7),

V.-v=0 on Qf(t) X (O,T)

(2.6)

where o ¢(v,py) is the Cauchy stress tensor given by the expression

o (v,ps) = 2uD(v) - py Id. (2.7)

For a Newtonian fluid, we get the associated equation by substituting the incompressibilty
condition into (2.5).

As for the imposed boundary conditions, they mainly depend on the nature of the problem
we are modeling. It is worth to distinguish between the cases of two dimensional and three
dimensional models.

A Two Dimensional Model

In this case, the domain boundary 0€(¢) is considered to be composed of four parts as
shown in Figure 2.1.

I‘Ir')p(t)

T, (t) Lou (2)

rl)nlr)\’;(t)
Figure 2.1: A two dimensional fluid domain.

If we consider a structure coupled to both boundaries I'yop(¢) and I'peiow(?), then a Neumann
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boundary condition is imposed, representing external loads g{ and gg respectively, affecting
these boundaries. On the other hand, on the inlet I'j,(¢t) we impose a given profile velocity
vin. Whereas, a free-exit boundary condition is enforced on the outlet Iy (¢). This condition is

expressed as

of(v,py) ny =0

Hence, the boundary conditions are given by

on Fout(t) X (O’ T) (28)
on Ty (1) x (0,7),
on Loy (t) % (0,T), (2.9)

on I'iop(t) x (0,7,
on Fbelow(t) X (O, T),

where n; is the outward normal vector associated to each boundary.

On the contrary, if a structure is coupled to both Ipeiow (t) and I'yp(t), with the assumption
that one of them is fixed, or if it is coupled to either one of them; say I'yeow(t); then a load
gy is imposed on yeiow(t). In addition, on I'y, () we impose a very commonly used boundary

condition

v=0 on [p(t) x (0,7),

(2.10)

which is known as the no slip boundary condition. Physically, this condition means that there
is no tangential flow on this boundary. Therefore, in this case the boundary conditions are

V = Uin
os(v,ps) ny =0
v=20

or(v,ps) ny =gy

on 'y (t) x (0,7),
on Loy (t) x (0,7),
on I'iop(t) x (0,7,
on Dperow () X (0,T).

(2.11)

We are concerned of this case when performing numerical simulations in Chapter 4.
In a two dimensional space, the incompressible Navier-Stokes equations on the actual domain

Qf(t) are
ov

pr(50 + (0 V) = V- y(v,p) = prfy on (1) x (0.7),

ot
V-v=0

(2.9) or (2.11).

A Three Dimensional Model

on Q(t) x (0,7), (2.12)

The boundary Q¢(t) is composed of three parts. An inlet I';,(¢), an outlet 'y, (¢) and the

surrounding boundary I'f(¢). See Figure 2.2.

An inlet velocity vy, is enforced on the inlet of the domain. At the outlet, the fluid is left to
flow, by imposing the free-exit boundary condition (2.8). Further, an external load gy is imposed

on the surrounding boundary I'f(¢).
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Iy (¢)

Tin () Tout (t)

Figure 2.2: A three dimensional fluid domain.

Whence, on a three dimensional domain €(t), the incompressible Navier-Stokes equations
are

( [O0v
pi (G + W V)v) = V-0 (v,p5) = prfy on Q1) x (0.7),
V-v=0 on Q¢(t) x (0,7,
Y v =y on I'y(t) x (0,7), (2.13)
or(v,pr) ny=0 on Loy (t) x (0,7),
CACHDETEN T on I'y(t) x (0,T).

In what follows, the work is concerned about a three dimensional domain ¢(¢), hence, we
are concerned of the System (2.13).

2.1.2 The Navier-Stokes Equations in the Reference Configuration

In some situations, where the Navier-Stokes equations are coupled with a structure, a rewrit-
ing of the Navier-Stokes equations on an arbitrary reference domain is needed. We consider the
evolution of the reference configuration €2y into the current configuration Q () by a smooth map
@ defined by

@r(1): Q2 — Qp(1)
T — ps(Z,t)=a forte(0,7T). (2.14)
In what follows elements in the reference configuration are characterized by the symbol "™". In
particular, the velocity and the pressure are given in the reference configuration (2; as

B(&,t) = v(ps(&,1),t) and py(&,t) = prlps(&,1),1), VIeQ.

The variable 0,y which appears in the formulation of the Navier-Stokes equations on the
reference configuration corresponds to the velocity of the domain.

Using formulas of transformation between reference and actual configuration [Ricl7, Section 2.1]
we have

(9{0 = 8t1~) — (ijlé’tcpf . V;‘i)’i},
(v-Vg)v=Vvv = Va;'ﬁFJTI'E = (FJTI'E -V3z)0,
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which yields
O+ (v-Vo)v =0+ (F; (8- dipy) - V)b, on Qy (2.15)

where Ff = V:EQOf and Jf = det(Ff).
For the stress tensor we have

V. op(v,ps) = div(J;6(5, 51 F; ).
with

&1(,5y) = M(Vi,fa F' 4+ F (Vgc'f))t> — j; 1d.

Hence, the Navier-Stokes equations are written on the reference configuration Q ¢ as follows

(9 (00 + (F; ' (D — Dupy) - Vi) — &R/<Jf&f({77]5f)Ff_t> = Jips 5 in Q% (0,7),
div(J;F;'9) =0 on Q x (0,T),
UV = Uiy O Py on Iy x (0,7),
J6 (0, pg)F; Ay =0 on Loy x (0,7),

ka&f(’ﬁ,ﬁf)F]:t ’ﬁf:Jfgf on Ff X (0,T>,

(2.16)

where ff = ff e} QOf and gf = gf o) Lpf

Remark 2.1.1 If the domain Qf 18 considered to be the Lagrangian reference configuration,
then Oppy = . Hence, (2.16); reduces to

prJs0r® — div (Jy& (5,5 F; ') = Jporfy  on Qp x (0.7). (2.17)

2.1.3 The Navier-Stokes Equations in the ALE Frame

In some cases, as in the case of blood flowing in the arteries, the computational domain of
the fluid cannot be considered to be fixed in time. In fact, its motion has to obey the motion
of the common boundary. This issue leads to the introduction of the Arbitrary Lagrangian
Eulerian (ALE) frame. Thus, we consider a computational domain €;(¢) which is neither fixed
nor material. The ALE formulation of the fluid motion is based on the parametrization of the
motion of {2¢(¢) by a smooth map

A(.,t) : Qf — Qf(t)
Tz — A(z,t)=x forte(0,7), (2.18)

that is, Q(t) = A(Qy, 1).

As A(.,t) is fixed for any ¢, we can also denote this map by A4;(.). The map A is called
the ALE map. The initial fixed configuration Qf corresponds to the reference configuration,
which does not necessarily correspond to the initial position at £ = 0. In the ALE formulation,
we distinguish between two motions; the motion of the medium in Q¢(¢) which is governed by
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the physical laws, and the motion of the computational domain, which is arbitrary, taking into
consideration that the given law for the domain boundary movement is respected.

The ALE map gives data on the deformation of the domain at any time ¢ > 0. For any
function f € Qf x [0,T] — R, we define its Eulerian counterpart by

flx,t) = f(A N (x),1), VYaxeQit),t>0, (2.19)

which can also be written as f(.,t) = f o .A;'(.). Based on the fact that the velocity is a
kinematic quantity, defined as the time derivative of the displacement x = A,(Z) — &, then we
can define the ALE velocity, as

0A .

w:ﬁ(m,t), V& € Qy, (2.20)

which can be given in the Eulerian frame using (2.19) as w(z,t) = @ o A '(x,t), for any
x € Q;(t). In short hand notation, w = 9,4, 0 A; .
The ALE time derivative of any function f defined in the Fulerian frame, is given by

Ohfla=0f +w-V,f. (2.21)
which can be expressed in terms of its counter part f defined in the ALE frame by the relation
8tf|A(m7t) = atfo A71<$,t), v (ill,t) € Qf(t) X <OaT>

Applying (2.21) on v then combining it with (2.2) we get the non-conservative form of the
incompressible Navier-Stokes equations in the ALE frame

Py <6tv|,4+ (v— w)tvv) —V oi(v,pr) = pify on Q) x (0,T).  (2.22)

The equation (2.22) must be completed with compatible boundary conditions. We impose the
following boundary conditions

V= vy on I'y(t) x (0,7),
or(v,p;) ny =0 on Tou(t) x (0,7), (2.23)
Uf(U,pf) ’I’Lf = gf on Ff(t) X <O,T)

By these conditions we impose a given velocity vy, on the inlet of the fluid domain, and a given
surface density load g¢ on the surrounding boundary I's(¢). Moreover, a free-exit condition is
enforced on the outlet T'ou(2).

The time derivative in the ALE frame constitutes the main tool when performing simulations
for fluids in moving domains. In fact, if we consider working with Eulerian derivatives in moving
domains, then discretization cannot be performed. Indeed, a point & of the domain at the time
step t,_1 would not necessarily be on it at the time step ¢,,, and vice versa. Then to overcome
this obstacle we must track the points of the domain that accompany its evolution.

In order to solve these equations, the map A should be known. In general no information is
provided on this map nor on the time derivative of the velocity in the ALE frame or any other
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related quantities. Only the boundary displacement £ is known. Then using an appropriate
extension operator [Ric17, Section 5.3, pp. 247|, the ALE map is given by the following expression

Ai(Z) = + Ext(&(, t)‘aﬁf)'
The notation £zt stands for an appropriate extension of the boundary displacement &.

Remark 2.1.2 In general w(x,t) # v(x,t). But we should note out two cases:

1. w =0 : The domain is fired, and we consider working with the initial configuration Qf.
In other words, the Eulerian formulation is recovered.

2. w=u: The domain Qf 15 material and we track its displacement. That is, the Lagrangian
formulation is recovered.

2.2 Arterial Wall Modeling by the Elastodynamic Equa-
tions

Even though the arterial wall looks thin, it is composed of numerous number of layers as
shown in Figure 2.3.

Composite reinforced by
collagen fibers arranged
in helical structures

Helically arranged fiber-

reinforced medial layers

Bundles of collagen fibrils
External elastic lamina
Elastic lamina

Elastic fibrils

Collagen fibrils

Smooth muscle cell
Internal elastic lamina

Endothelial cell

Adventitia

Figure 2.3: The layers of the arterial wall [HGOO00].

Elasticity of the arterial wall depends on the number of collagen and elastin filaments in the
tunica media, which gives it the ability to stretch in response to each pulse. Moreover, it helps to
maintain a relatively constant pressure in the arteries despite the pulsating nature of the blood
flow. By elasticity we mean the ability of a body to resist a distorting influence or an external
stress and to recover its original size and shape when the stresses or exerted forces are removed.
Solid objects deform when forces are applied on them. If the material is elastic, the object will
return to its initial shape and size upon removing these forces.
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Some arteries show viscoelastic properties, however, they are usually of small magnitude
so that the arterial wall can be modeled as a hyperelastic incompressible material. FElastic
arteries include the largest arteries in the body, those closest to the heart. The artery wall being
considered as a structure is modeled by the elastodynamic equations. The derivation of these
equations is achieved using the conservation principles [FQV09, Section 3.3|, [Ric17, Chapter 2|.

The elasticity of the artery wall will be the subject of our study in this section. We highlight
the case of non-linear and linear elastic structures.

Let €, be a region that represents the reference configuration of the structure domain at
a given instant ¢, > 0, and () be the domain corresponding to the deformed structure at
time ¢t > to, generated by the deformation map ¢,. The actual configuration €,(t) of density
ps, 18 under the effect of an external volumetric force f, and the stress is represented by the
Cauchy stress tensor o,. The structure is adopted using the Lagrangian approach, that is, unlike
Navier-Stokes equations no convective term appears. The elasticity equation aims to find the
displacement field és : Q, x RT — R? of the structure. At any time ¢, the displacement és is
expressed as a function of the deformation ¢, as

éS(j7t):¢s(iat)_j, VZZGQS.

The deformation map ¢, : Q. x Rt — R3, is a smooth application of class C! at least, such
that J, = det(Vzp,) > 0. Hence, it is invertible and we consider its inverse ¢! to be of class
C! as well. Indeed, we can assume that ¢, is as smooth as needed so that all mathematical oper-
ations performed are justified (for instance, differentiation of integral depending on parameter,
integration by parts, etc.). In what follows we set

FS - V:ﬁ¢57 ,fs - fs 0 Ps, and ﬁs = Ps © Ps.
In the Lagrangian frame, the momentum equation is

d

L 150 dF /

T F. d% —/ LIVa - ou(@)] 0 @ di.
dt Q. Q. Q)

Qs

Combining this equation with the continuity equation (A.2) we get the elastodynamic equation
given on the reference configuration as

Jops02€, — J [V - oy()] 0 @5 = Jofis s on Q, x (0,7). (2.24)

Note that the divergence of o is defined on (). We make use of (A.8) and (A.9) to reformulate

it in terms of the divergence of the first Piola-Kirchhoff stress tensor P on 2. In other words,
we get the term [Ric17, Lemma 2.12, p. 31|

Vs P(&).

Therefore, the elastodynamic equation is

Jps0, — Vg P = Jp.fs. (2.25)
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Since we are dealing with a non-linear structure, then the map ¢, is unknown, consequently
the actual deformed configuration 4(t) is unknown. This explains the efficiency of writing the
elastodynamic equations on the given reference configuration 2.

We assume that the structure is a homogeneous incompressible hyperelastic material governed
by the equation (2.25). Hence, its density is constant, i.e, p; = ps. The incompressibility
condition is represented by

Js = 1.

Definition 2.2.1 (Hyperelasticity) [Ricl7, Section 2.2| A structure is said to be hyperlastic
if there exists a function W called the strain-energy density function W = W (Fy) or W = W(E)
such that

OW(E) o OW(E)

P= oF, OFE

This function relates the first Piola-Kirchhoff stress tensor P to the deformation gradient Fy, or
the second Piola-Kirchhoff stress tensor S to the Green-Lagrange strain tensor E given by the
expression [Ric17, Section 2.1.3]

E(F,) - %(FjFS —1d). (2.26)

In the case of an incompressible material, the strain-energy density functions are of the
following form

Wine = W(E,) + pps(det(E,) — 1) (2.27)

where pps plays the role of the Lagrange multiplier associated to the incompressibility condition
det(Fy) = 1. The variable ps is known as the hydrostatic pressure. On the other hand, if the
structure is a quasi-incompressible material then the strain-energy density functions are of the
form

C
WQinc = W(Fs> + §(det(Fs) - 1)2 (228)
where C is a sufficiently large constant.

The boundary 99 is composed of two parts (see Figure 2.4) the outer part with the left and
right edges are denoted by I';, and the inner part is I'y. We assume that the structure is fixed
at 'y, that is,

E(&,t)=0 on Iyx(0,7). (2.29)
On the contrary, its inner wall is subjected to a normal force, this condition reads

Pioivs = §s on I'yx(0,7T), (2.30)
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[0t

Figure 2.4: A three dimensional arterial wall.

where 7, is the outward normal vector to the boundary I';. .
To sum up, the elastodynamic equations on the reference configuration €2, are

Tops02€s — Vi - Pue = Jop. fs on Q, x (0,7),
Js=1 on (:25 x (0,7, (2.31)
Png = g, on I'y x (0,7),
E(&,1) =0 on T'y x (0,7),

where P, = P + ppscof(Fy).

The resultant system is of insufficient number of partial differential equations of -in general-
ten unknowns: density (respectively pressure) p, (respectively ps), the velocity 0,&s and the six
components of the Cauchy stress tensor o (or the first Piola-Kirchhoff stress tensor P). This
will lead to undetermined system! For this purpose, additional equations are essential. The
purpose of these equations is to build a link between two physical quantities especially a non-
linear relation between kinetic and kinematic. In both fluid mechanics and structural analysis
these equations relate applied stresses or forces to the velocity or the density or the deformation.
We assume that the stress tensors depend on the strain, strain rate or the deformation gradient
F,. We will adopt the Saint-Venant Kirchhoff model whose strain-energy density function W is
given by

A 2
W(E) = g(tr(E)) + pstr(E?), (2.32)
where \; and pu, are the Lamé constants. The second Piola-Kirchhoff stress tensor S associated
to the Saint-Venant Kirchhoff model is

S(E) =2uE + \tr(E)Id. (2.33)

Using the relation P = F,S between the first and the second Piola-Kirchhoff stress tensors we
get

P(F,) = F,(21,B + \tx(E)Id).
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Linear Elastic Equation

A simple case is the case of a linear elastic material. These materials are characterized by a
linear relation between the strain e and the stress o, given by Hooke’s law. If a linear elastic
material is under the effect of an external force, when removed, it returns to the original shape. In
addition, if an elastic material undergoes a small deformation, so that, the deformation map can
be approximated by the identity mapping Idq_, then the associated constitutive law is linearized
and can be considered as a linear elastic model. Indeed, in this case the Green-Lagrange strain
tensor E can be approximated by the linearized strain tensor € given by the formula

(€)= L(VE + V'E,)

The well-known Hooke’s law associated to the linear elastic materials has the following Cauchy
stress tensor

o5(&s) = 2ps6(&s) + Astr(e(€))Id. (2.34)

As tr(e(&s)) = V - &, then Hooke’s Law can be rewritten as

0.(£.) = 21.e(£) + AV - £)Td. (2.35)

The parameters A; and u, are the Lamé constants given in terms of the Young’s modulus £ and
the Poisson’s ratio v by the following relations

vE d E
an s = ——————.
(1—20)1+v) He =91 +v)
Now we proceed to give the equation that models the linear elastic isotropic incompressible

materials. Since the deformation mapping is the identity mapping, then F is the identity matrix
Idy,, consequently J; = 1. Thus, Equation (2.31) is

Ao =

/03315255 —V.0,&)=pfs inQt)x(0,T).

V& =0 in Q(t) x (0,7, (2.36)
o's(gs) n; = gs on Fl(t) X (OvT)’ '

& =0 on I'y(t) x (0,7),

For more details about the linearization, the interested reader can consult [FQV09, Chapter 3,
p-103].

2.3 The Fluid Structure Interaction Problem

The fluid-structure interaction problem describing the blood-wall model is set up using the
Navier-Stokes equations and the elastodynamic equations introduced in Sections 2.1 and 2.2,
respectively. In this case, the computational fluid domain cannot be fixed in time since it is
affected by the deformation of the artery wall, consequently it must follow the motion of the
common interface. Thus, we consider a domain () which is neither fixed, nor a material.
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Indeed, this is due to the fact that its evolution does not agree with the fluid motion, rather,
obeys the displacement of its boundary 0Q¢(t) which, due to the coupling, is linked to the
displacement of the artery wall Es. With the same notion as above, elements in the reference
configurations are characterized by the symbol " ™",

To couple the sub-problems, we must ensure a global energy balance of the system. For this
aim, three interface coupling conditions must be imposed.
Geometry Condition

The aim is to construct the ALE map A using the deformation ¢, of the structure. Indeed,
we impose that the moving domain €2 (t) follows the motion of the interface I'. = 9Q; N 98, =
I'y =T'4. This is to say

At = Ps on FC (237)

This condition can be rewritten as a relation between the displacement of the volume Qf and
the displacement & of the structure domain (2. Using the definition of the ALE map, the
displacement &; : Qf x RT — R? of the fluid domain €, is defined by

Er(@,t) = A(&) — 2, Va&e

Hence, (2.37) reduces to

g =€ on I. (2.38)

The term éf is the displacement of the domain Qf, thus, differentiating it in time gives the
velocity of the domain denoted by w. Whence, differentiating (2.38) in time yields

w=0€& on T. (2.39)

By (2.13) we have that the boundaries Tin, Dous are fixed, consequently the displacement é 7 is
null on these boundaries. On the contrary, no information on & is provided inside €2, therefore

it can be considered as any arbitrary extension of the artery wall displacement &,. This is
described as

Er(@,t) = Ext(€(&,1)];,)  in Qf x (0,7). (2.40)
Types of possible extensions can be found in [Ric17, Section 5.3, pp. 247|, [Chal3, Chapter 2].

Velocity and Stress Conditions

Due to the viscosity of the fluid, it becomes in contact with the interface and may stick to
it. For this reason, the velocity fields must be continuous on the interface. Therefore, we set

v =08, 0p;" on T'.(t).
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To simplify the notation we use (2.37) and (2.39) to get
v=wo A =w on T'.(t). (2.41)

Finally, Newton’s third law (action-reaction principle) states :"For every action, there is an
equal and opposite reaction". Hence, due to the interaction between the fluid and the structure,
the force exerted by the fluid on the structure is equal and opposite to the force exerted by the
structure on the fluid. On the interface I',, the existing surface forces are characterized by the
stresses. Thus, the following condition

J;& (B, pp)F; " oy = —Pyeit,  on T x (0,7) (2.42)

must hold. The condition (2.41) is a kinematic condition, whereas (2.42) is a dynamic one.

The Coupled Fluid-Structure Problem

Using the sub-problems (2.22) and (2.31) with the boundary conditions (2.23),(2.29) and
(2.30) together with the coupling conditions (2.40)-(2.42), the coupled problem reads:

Find
B:Q; x RY — R3,
Py Qp x RT — R,
£ :Qp x Rt — R?,
£ :Q x Rt — R3,
Dhs : Qs XR — R,
such that,

e Fluid sub-problem

(9100l a+ pr(v —w)'Vov = Vo op(v,pp) = prfy o Qp(t) x (0,7),
Vg -v=0 on Q(t) x (0,7),
vV = Ui on Ty(t) x (0,7), (2.43)
of(v,pr) ny=0 on  Tou(t) x (0,7),
(os(v,pr) ny =gy on I'y(t) x (0,T),
e Structure sub-problem
Jups0?&s — Vi - Poc = Jps s on O x(0,T),
Jo=1 on Q x (0,7), (2.44)
P s = gs on I'y x(0,7),
és =0 on [y x (0,7),
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e Coupling Conditions

(& = Eat(Elr,).
Qy(t) = A(Qy),
w = 8t€f

vV=w

| Puc 71, + J;6(8,55) F; ' iy =0

where v =90 A7, p = pr o A" and

in Q% (0,7),

in Q x (0,7), (2.45)
on T'(t) x (0,7),
on I'.x(0,7),

&8, p;) = (Vﬁ(VA)‘l + (V.A)‘t(Vﬁ)t> —j; Id.

In the next chapter, theoretical results concerning this system are obtained by transforming it
to the reference domain in the Lagrangian formulation. Then, in Chapter 4 we solve this system
numerically and present some numerical results revealing what is happening in the artery.

Page 42



Chapter 3

ANALYSIS OF THE INTERACTION BETWEEN
AN INCOMPRESSIBLE FLUID AND A
QUASI-INCOMPRESSIBLE NON-LINEAR
ELASTIC STRUCTURE

Contents
Introduction . . . . . . . . L e e e e 44
3.1 Fluid-Structure Interaction Problem . . .. ... ... .. ....... 45
3.2 A Partially Linear System . . . .. ... ... ... . 0. 54
3.3 An Auxiliary Problem. . . ... ... ... ... . 000000 66
3.3.1 Variational Formulation . . . ... ... ... ... 0oL 67
3.3.2 Galerkin Approximation . . . . . ... ... oL 69
3.3.3 A Priori Estimates . . . . . . .. .. 71
3.4 Existence of Solution for the Linearized System . .. ... ... ... 83
3.4.1 Estimates on &0 and 92 . . . . .. ... 84
3.4.2 Estimates Using Spatial Regularity . . . . . .. ... ... .. ... .. 92
3.4.3 Fixed Point Theorem for the Linearized System . . . . . . .. ... .. 93
3.5 Regularity of Solution of the Linearized System . ... ... ... .. 94
3.5.1 Regularity of the solution . . . . . ... ... ... .. .. .. 94
3.5.2 A Priori estimates on ¥ in AT, . ... o oo oL 94
3.6 Existence of Solution of the Non-Linear Coupled Problem . . . . . . 101
3.6.1 Estimates on 5 ............................... 102
3.6.2 Bstimates on 9:C . . . . .. 106
3.7 Existence and Uniqueness of the Fluid Pressure . . . ... ... ... 114
3.7.1 [Existence and Uniqueness of an L>-Pressure . . . . . .. ... ..... 114
3.7.2 Regularity of the Fluid Pressure . . . . ... ... ... ... ... 115

43
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Introduction

Fluid-structure interaction (FSI) problem is a wide spread subject, which has gain a lot of
concern and interest among mathematicians. This is due to the fact that many real-world prob-
lems consider the analysis of FSI problems as an essential tool to avoid failure. For example,
they are considered in the design of many engineering systems such as aircrafts, engines and
bridges, where the fluid-structure interaction oscillations are studied. Also, in biological field,
F'SI problems play an important role in the analysis of aneurysms and blood flow in stenosed
arteries. Various kinds of F'SI problems have been studied by modeling the fluid by either Stokes
or Navier-Stokes equations coupled with an equation modeling the structure. Some deal with
incompressible fluids [Bou06, CS04, GMOO], others with compressible fluids [BG17,BG10]. Struc-
tures modeled with plate equations or shell equations were treated in [FO99|. The Stokes equa-
tions coupled with beam equation were analyzed in [Gra98|. The case of a free boundary FSI
where the flow is incompressible and coupled with a linear Kirchhoff elastic material has been
treated in [CS04], where the existence and uniqueness locally in time of such motion has been
proved. In |[GMOO] the existence locally in time of a weak solution for an incompressible fluid
with a rigid structure has been proved. Similar model has been studied in [DE99| consider-
ing a variable density where the global existence of the solution has been proved, that is, the
existence of the solution until collisions occur between either the structure and boundaries or
between two structures. For the coupling of an incompressible fluid with elastic structure, the
existence of global weak solutions has been proved in [Bou06] when adding a regularizing term
to the structure motion. In 3D, the work in [Gra02] has proved the existence of steady so-
lutions of the incompressible Navier-Stokes equations when coupled with the non-linear Saint
Venant-Kirchhoff model. Whereas, the existence and uniqueness of a regular solution has been
proved in the case of compressible Navier-Stokes equations coupled with the non-linear Saint
Venant-Kirchhoff model in [BG17], and with linear elastic model in [BG10].

In this chapter we establish local in time existence and uniqueness of a weak solution of
the F'SI problem that describes the interaction between an incompressible homogeneous New-
tonian fluid modeled by the Navier-Stokes equations, and a hyperelastic quasi-incompressible
structure modeled by the non-linear Saint Venant-Kirchhoff model.

In the first section we introduce the homogeneous incompressible Navier-Stokes equations
and the elastodynamic equations. We couple them on one domain, by considering a common
boundary and imposing some conditions on it. First, we introduce the coupled system at time
t, which consists of the incompressible homogeneous Navier-Stokes equations with the elastody-
namic equations modeled by the non-linear Saint Venant-Kirchhoff model. From mathematical
point of view, Navier-Stokes equations are studied in the Eulerian (spatial) framework, whereas
elastic structures are studied in the Lagrangian (material) framework. In order to be able to
study the coupled system we use the deformation maps of both the fluid and the structure do-
mains to rewrite the coupled system in the Lagrangian framework, in particular, in the reference
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configuration corresponding to the time ¢ = 0. Indeed, since we are working with a problem
involving a free moving boundary, the Lagrangian frame allows us to consider working on a fixed
domain. As for the Saint Venant-Kirchhoff model we rewrite it in an explicit form which enables
us to easily deal with it when applying the fixed point theorem as well as to find some bounds
on it.

In the second section we partially linearize our system by considering the deformation maps
to be given for given fluid velocity © and structure displacement é, such that the pair (9, f) is
in some fixed point space. In the third section we formulate an auxiliary problem, which comes
from the classical system by changing slightly the coupling conditions related to the elastody-
namic equations associated to the structure. The weak formulation is derived by considering a
transformation of a divergence-free setting, so that the fluid pressure term disappears. Using
Faedo-Galerkin approach we define Galerkin approximations of the solutions and derive a priori
estimates for the Galerkin sequence. By passing to the limit, and using compactness results
with Aubin-Lions-Simon theorem we prove the existence and uniqueness of a solution for the
auxiliary problem. Based on the results concerning the auxiliary problem, and using the fixed
point theorem we prove the existence and uniqueness of the solution of the partially linearized
problem In Section 3.4. After that, in Section 3.5 we prove the regularity of the solution and
derive some a priori estimates on it. Coming back to the non-linear problem, in Section 3.6 we
use the fixed point theorem approach to prove the existence of a solution for the non-linear FSI
problem. Finally, in Section 3.7, we establish the existence and uniquness of auﬂ~L2 fluid pressure
by verifying the inf-sup condition, then based on the regularity result on (v,&) we get a more
regular fluid pressure.

3.1 Fluid-Structure Interaction Problem

In this chapter we deal with the FSI problems from theoretical point of view. The fluid
is governed by the homogeneous incompressible Navier-Stokes equations and the structure is a
hyperelastic quasi-incompressible material such that its constitutive law is assumed to be the
non-linear Saint Venant-Kirchhoff model. Let T' > 0 be given. At time ¢, let Q(¢) C R? denotes
a regular (enough) bounded connected domain representing the lumen of the artery. Recall that,
the incompressible Navier-Stokes equations formulated in the Eulerain coordinates are

(

pr (00 + (v Vo) = V- ap(v,pp) =0 in Q1) x (0,T), (3.1a)
V-v=0 in Qg(t) x (0,7), (3.1b)
os(v,ps) ny =gy on I'y(t) x (0,7, (3.1¢)
v = Uiy on Iy, (t) x (0,7), (3.1d)
or(v,pf) ny=0 on oy (t) x (0, ) (3.1e)
L v = v in Qf(t) at t = (3.1f)

where v = (vy, v, v3)" is the fluid velocity, py is its pressure and py > 0 is its density. The term
os(v,py) is the shear stress of the fluid of expression

os(v,ps) = 2uD(v) — py Id,
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~ Vo + (Vo)

with g is its dynamic viscosity and D(v) is the symmetric gradient given by D (v) 5

e Equation(3.1b) represents the incompressibility condition.

e Equation(3.1c) represents an external load on I'f(¢).

e Equation(3.1e) is the free exit condition.
On the other hand, the structure is considered to be a quasi-incompressible homogeneous hy-
perelastic material. We denote by Q,(t) C R? a regular enough domain that represents the

structure at any time ¢ > 0 and by 0€(t) its smooth boundary such that 0Q(t) = I'; (£) UT'2(t).
The structure displacement &, satisfies the following equations

ps07&s — V- 0d.(€) =0 in Q,(t) x (0,T),
U(Slzinc(ES) s = g on Fl(t) X (OvT)a (3'2)
5320 on Fg(t) X (O,T),

where oy, is the Cauchy stress tensor characterizing the quasi-incompressible property of the
structure. Its associated strain-energy density function W is of the form (2.28). A surface
external force g, is applied on I';(¢). Note that, the elastodynamic equations are formulated in
the Lagrangian coordinates.

In order to get the FSI system, the domains Q(¢) and Q,(t) are coupled by considering
I'1(t) = I'f(t). Here and after the common boundary will be denoted by I'.(t). To ensure
the compatibility of this system, some coupling conditions representing the continuity of the
velocities and stresses must be imposed on the boundary I'.(¢). These coupling conditions are
given as

v = 0:&;, on TI'.(t) x (0,7), (3.3)
Uf(v7pf> n = U&nc(ﬁS)n on Fc<t) X (O7T)7
where n is the outward normal from Q¢(t) to I'.(%).
Finally, we introduce the initial conditions
e v(.,0)=vy in Qf0),
e £.(.,0)=¢& in Q4(0),
L4 atEs<'aO) = El in QS(O)7
b pf('v O) = Pfo in Qf<0)7
which satisfy
vg € H°(Q(0)), & € H(Q(0)), & € H*(Q,(0)) and py, € H?(Q4(0)). (3.4)
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Let (t) = [2,(8) U, (0] " and 9Q(t) = [0,(1) U AL (1)] \ [094(£) N (1)),
At time t > 0, the coupled system is given by

pr (00 + (0 V)0) = V oy (0.pr) =0 in (1) x (0,7), (3.52)
V-v=0 in Q¢(t) x (0,7), (3.5b)
v = Vi, on Iy, (t) x (0,7, (3.5¢)
or(v,ps) n=0 on Loue(t) x (0,7, (3.5d)
ps0i€s =V - 0 (&) = 0 in Q4(t) x (0,7), (3.5¢)
& =0 on I's(t) x (0,7), (3.51)
v = 0 on I'.(t) x (0,7), (3.5g)
oi(v,py) 1= 0% (&) n on I'.(t) x (0,7, (3.5h)
v(.,0) = vy and ps(.,0) = py, in Q(0), (3.51)
[ £.(.0) = & and B£,(.0) = £, in ©,(0). (3.59)

The Navier-Stokes equations are defined on the domain ;(¢) which evolves over time from the
initial configuration Q;(0) according to a position function

A(, 1) 1 Qp(0) — Qp(t)
T — Az, t) ==

that associates to the Lagrangian coordinate of a fluid particle its Eulerian coordinate. For all
& € Q(0) the function A(x, .) satisfies

0A(Z,t) = v(A(Z,t),1) for t € (0,7),
A(Z,0) =

x.

The function A is called the Arbitrary Lagrangian-Eulerian (ALE) map.
Similarly, the elastodynamic equations in the displacement &, are defined on the domain Q(t)
which evolves over time from the initial configuration Q,(0) according to a position function

ps(., 1) Qs(0) — Q4(2)
¥ — @(Ut) =y
and we have
Ps(9,1) = g+ &(ps(9, 1), 1). (3.6)
Notice that, using (3.6) we have
©s(9,0) =9+ &(9,0), that is § =g + &

which yields &, = 0.
In the sequel, we omit the subscript s of the structure displacement and deformation, that is,
we write & = € and ¢, = . Further, we refer to the space elements in Qg and € by .
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The definition of these two mappings enables us to write System (3.5a)-(3.5j) on the domain
(0). To do so, we consider the following change of variables in terms of the deformation
mappings A and ¢. For all & in Q(0) and Q4(0) and ¢ in (0,7") set

0(&,1) = v(A(&,1),1), £(&,1) = E(p(,1),1) and Py(Z, 1) = ps (A& 1), 1). (3.7)
On the reference domain Q(0), the fluid stress tensor is given by [Ricl7, Section 2.1.7]
&(5,55) = det(VA) (04(50 A 5y 0 A7) ) (V.A)
— (u(Vﬁ(VA)—l + (VA (VD)) — ﬁfId) cof(V.A)
= &63(0) — preof(V.A). (3.8)

As for the quasi-incompressible structure, the Cauchy stress tensor is given in terms of the first
Piola-Kirchhoff stress tensor P as [Ricl7, Lemma 2.12]

Poine = det(Vp) (03 (£) 0 ) (V)™

= P + C(det(V¢) — 1)cof (V) (3.9)
with C > 0 a sufficiently large constant and
P =VeS(Ve) (3.10)

where
S(Vy) =2uE(Ve) + A\tr(E(Ve))Id
is the second Piola-Kirchhoff stress tensor and

E(Ve) = 5(Ve) Ve~ Td)

is the Green-Lagrange strain tensor and (s, As) € R% x R, are the Lamé coefficients.
In particular, when considering the Saint Venant-Kirchhoff stress tensor, Expression (3.10) can
be rewritten in terms of the displacement & as

P = (Id+ V§) (,,Ls (VE+ (VE) + (VE)VE) + %(QV 4 |V£|2)Id). (3.11)

Using relations (3.7)-(3.9) we reformulate the Navier-Stokes equations and the elastodynamic
equations in the Lagrangian coordinates. Hence, we can rewrite the coupled System (3.5a)-(3.5j)
on Q(0) and Q,(0) as

(prdet(V.A)D, 5 — V - 698, ;) =0 in Q4(0) x (0,7),
V- (det(VA)(V.A)™5) =0 in Q;(0) x (0,7),
v=vy0A on Iy, (0) x (0,7),
&9(8,57) 7 =0 on Lot (0) % (0,7),

< pfdet(Vgo)@fE —V-P -V [C(det(Vep) — 1)cof(Ve)] =0 in Q,(0) x (0,T), (3.12)
£E= on I'y(0) x (0,7, .
b= 0,€ on T,(0) x (0,7,
59(0, pr)n = [P + C(det(Vp) — 1)cof(Vp)| 12 on I'.(0) x (0,7,
0(.,0) =vo and py(,0) = py, in €2(0),

(£(,0) =& =0 and 09&(.,0) =& in 4(0),
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where Vo = Id + V£ is the gradient of the deformation and 1 is the outward normal of Q) £(0)
on I'.(0).

In order to deal with the structure model, we write the elasticity model in the spirit of
[Gaw02], that is, we define

Ciajp = 8-P1~ . (313)
9(09s&;)
Let us set
Ciajs(VE) = 1s(6:0aj + 0as0ij) + As(iadjz) + chajs(VE) + ¢l 5(VE), (3.14)
where cﬁajﬁ(Vé) is the linear part given by
Ciajs(V€) = 115 (010560 + 0005€i + 01j0aEs + 0apdiéi + 0150a€; + GasOi€;)
+ As(01a058; + 0ap0ii (V - &) + 0j50aEi) (3.15)
and cfaj 5 is the quadratic part written as

cd.:5(VE) = p, ((5@-(aﬁg-aaé)wﬁ@aaéﬁaag(vg}v&)) +As (%5ij5aﬂ|v£|2+aaéiaﬁéj>. (3.16)
Hence, c;qj3 can be rewritten as
Ciajs(VE) = Cst + L(VE) + Q(VE), (3.17)

where C'st is a constant, L is a linear function in Vé and @ is a quadratic function in Vé.
Remark that the coefficients ¢;, ;3 are symmetric, that is,

Ciajp = CjBia v i7 aajv ﬁ € {17 27 3} (318)

Lemma 3.1.1 For k =i,a,7,5 € {1,2,3}, we denote by Oy the partial derivative in space and
by Oy and Oy the partial derivatives with respect to time. Some consequences of the relation (3.18)
are the following

1- The partial derivatives of P with respect to time and space are respectively

3 3
88Pm = Z cmjg(Vé)(?fﬂéj and 8k13ia = Z ciajg(Vé)ﬁ,zﬁéj Y i, o = 1, 2, 3.

J.B8=1 j,8=1

2- The i — th component of the divergence of P is given by

3
(V-P)i= Y cija(VE)DR4E Vi=123. (3.19)

a7j75:1
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3- Assuming that P(é(.,O)) = 0 on I'1(0), the normal component of the stress tensor P on
the boundary T'1(0) is

3

3 t
> P =) (/ Ciajs (V€)% ds)ﬁa Vi=1,2,3 (3.20)
a=1 0

@,5,6=1

4- The ia-th component of P is given by

t
P, = Z </O Ciajﬁ(Vé)azgéj dS) Vi= 1, 2, 3.

Proof.

1- Let r be the index that represents either the time derivative or the space derivative. For
the ia-th component of P(&) we have

g 23: 5(1 (é))uxﬁ(éﬁé}) 23: 2 £
8T P i — = = Ciaj V 8T g
( (E)) pe 9( aﬁ£j> 9r = 6( 5) ﬂf

2- Considering » = « in the first part yields

J.B8=1
But for i = 1,2, 3 we have
3 3
(V-P@)i= 0.(P@)ia= Y ciajs(VEDsE;.
a=1 ,j.f=1

3- For any £ in €,(0) we have

Po(E(.) — Pu(€(,0) = / 0Pu(€(, ) ds ¥ia=123

Substituting ,P(£(., s)) by its expression from the first part gives

P (£(.,1) — Po(&(., Z / Ciajs(VE)O%E; ds Vi,a=1,2,3.
0

J,B=1

In particular, on I';(0) we have P(£(.,0)) = 0. Consequently, taking the summation over
« yields

3
Z é = Z / Ciajp V£ 355] dS) Ny Vi= 1,2,3.

a,j,f=1
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The Quasi-Incompressibility Condition

We write the condition of quasi-incompressibility in a way similar to that of the first Piola-
Kirchhoff stress tensor (3.14). In order to do so, we use the notation introduced in [Cia88, p. 5.
Indeed, in three dimensions we define the third-order orientation tensor (&;,) whose components
are the Levi-Civita symbol {e;;i }ijx defined by

1 if {i,4,k} is an even permutation of {1,2,3},
gijk = § —1 if {7, 7, k} is an odd permutation of {1, 2,3},

0  if at least two of the indices are equal.

Using Levi-Civita symbol and Einstein summation convention, we can define the ij-th element
of the matrix cof(V¢) to be

1
(cof(Vep))ij = 5Emmi€pajOpPmOypn-

Further, the determinant of the 3-by3-matrix V¢ is given in terms of the Levi-Civita symbol
using Einstein summation convention, as

1
det(Vgo) = éeijkapqrﬁpgpi@qgojﬁrgpk. (321)

We define

djojs(VE) = a<aié) [(det(Vgo) —1) Cof(Vgo)La (3.22)

which can be written explicitly as

- 1 . 5 5 .
dioéjﬁ(VS) = Eghhk’l Ep1q1r1 Emni€pga (8p§m + 5Pm) (8(15” + 51]”) [55i15jp1 (8j1€lh 5&1) (8k1€h 51917“1)

+ 5j155jlh (ailgpl 5i1p1) (alﬂ gﬁ 5k1T1) + 6k’1557“1j (8ilgp1 5i1p1) (ajl gth 5j1q1 )]
1 ~ -
+ ﬁghjlhgmqmgmmgpqa [5pﬁdmj (aqén + 5(171) + 0450n; (apgm + 5pm)]

[(ailépl + 51'1101) (ajlglh + 5j1Q1) (a’ﬂéﬁ + 5k11“1) - 1] : (323)

Clearly, diajB(Vé) is a polynomial in V& of degree at most 4. Moreover, for i = o and j =
we get the constant terms of this polynomial. Then we can write

diajs(VE) = Cst + dis;5(VE) + d ,5(VE) + db ;5(VE) + dl;5(VE) (3.24)

g Qi and dff, ;o stand for polynomials in VE with respective degree 1,2.3 and
4. This writing enables us to give the i — th component of V - [C(det(V¢) — 1)cof(Ve)]. In
fact,

where df, ;. d3)

[V-(C(det(Vgo)—1)Cof(Vgo)>]:C N diegs(VEP,E, for i=1,2,3.  (3.25)

¢ a?]?/BZ]‘

Page 51



CHAPTER 3. NON-LINEAR FLUID-STRUCTURE INTERACTION SYSTEM

In a way similar to (3.20), the normal component of the quasi-incompressible condition on the
boundary I'1(0) is

> [(det(Vep) — Deof(Ve)], fia = (/0 dmjﬁ(vé)agﬁéjds)ﬁa, Vi=1,2,3, (3.26)

O67]‘7ﬁ:

provided that (det(Ve) — 1)cof(Ve))(.,0) = 0 on I'1(0).
In what follows, for simplicity we set

biajﬁ = CiajpB + Cdiaj6~ (327)

Using Relations (3.19), (3.20), (3.25) and (3.26), System (3.12) can be rewritten as

(psdet(VA)05 — V - &3, pf) = 0 in Q;(0) x (0,7),

V- (det(V.A)(V.A)8) =0 in Q(0) x (0,7),
D=vp0A on 'y, (0) x (0,7),
(0, p;) =0 on Loy (0) x (0,7),
psdet(VE 4 1d)92E; — Z biajs(VE)D256, =0, i=1,2,3 inQ(0)x (0,7),

. 5 p=1 (3.28)
£E=0 on I'y(0) x (0,7,

D=0, on T.(0) x (0,7),

3

[&?’(67]5]0),;"]1 = Z (/Otbiajﬁ(vé>8325§jds) ﬁaa i = 17273 on FC(O) X (07T>7

a,j,f=1
’1‘3(,0) = o and ﬁf(,()) =D in Qf(O),
[£(,0)=0 and 04(.0)=¢& in Q,(0).

Notice that, unlike System (3.12), in this system the boundary condition related to the
elastodynamic equation is incompatible with it. Indeed, for Equations (3.28) and (3.28) to
combine we must have

3
&9(v - X (W vé) aﬁgj)na, i=1,2,3, on T.(0)x (0, 7). (3.29)

a,j,=1

This rewriting (3.28)5 of the elasticity equation is efficient when performing the fixed point the-
orem on the system. In fact, it helps to get over the difficulties emerging from the non-linearity
of the Saint Venant-Kirchhoff model and the hyperbolic type of the equation. Due to this dis-
agreement issue between Equations (3.28)g and (3.28)g, the first step of the work is to consider
an auziliary problem including the natural boundary condition (3.29).

By considering the boundary and initial conditions we assume that the following compatibil-
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ity conditions hold on the initial values

;

vy = &1 on I.(0),

o(vy,ps)n =0 on I'.(0),

sy = 2D (o) in - €y(0),

Vps, = nAvg in  Q(0),

V - o¢(vo,ps,) =0 on I'.(0), (3.30)
Owpfli—on = S1n + E1n on T'.(0),

V - ps [Sl + atpf|t:()]:d:| =p;V - E on T'.(0),

o (2(v W)V B+ V- E2> — V.S, on [,(0),
\ <E2 — 2((V - vg)S3 + 5’4))77, =psSon on  T.(0).

where

[ Sl = —M((D(’Uo))Z — 2(V’UQ)tV’Uo> + O'f('vg,pfo)S?,.

E1 = 2u36(£1) -+ )\S(V . Sl)Id + V- ’Uold.

Sy = 07psli=old + 20ipy|i=0Ss + pfo Sa + 201€(V - Ey)
- 2((D(’00))2 - Q(V’IJ())tV’U()) Sg + 2D(’U0)S4.

E2 = 2V£1 E1 + 2,us((V£1)tV£1 + )\3V€1 + 2((V . Uo)Sg + 54)
[ 53 = (V : ’Uo)Id — (V’Uo)t.

1 1
Sy = p_fv' (V- of(vo,pyp,))Id — p_fV<V o (v, py,)) + 2c0f(Vy).

These conditions are obtained from (3.12) by considering ¢ = 0, differentiating in time once and
twice (3.12)1, (3.12)s, (3.12)7 and (3.12)s then considering ¢ = 0 and taking into consideration
the following identities

(VA )(,0)==Vvy and 0,(det(V.A))(.,0) =V vy in Q0).

Definition 3.1.1 Let us define the following spaces

SE = L®(0,T; H™(Q2:(0))) N W™>(0,T; L*(Q2,(0)))  0<m <4,
Ff' = L%(0,T; L*(94(0))) N L*(0, T3 H' (24(0))),

FY = 12(0, T3 HA(9,(0))) 0 Y (0,T; HY(94(0))) 0 W2 (0, T; L(©4(0))),

T = 17°(0, T3 HA (€4 (0)))0H (0, T HY(€2,(0))) N2 (0, T H3(€2,(0))) "W (0, T; L2(24(0)))
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PY = 1(0, 7 HY(,(0)) N H? (0, T3 LA (24 (0)) )W (0, T3 HA(Q4(0))) W2 (0,75 H'(524(0)).

H(0,T; L*(T.(0))) == {v € H'(0,T;(T:(0)));¥(0) = 0}.
Then, for M > 1 and T > 0 we define the following fixed point space
Af = {5.6) € Ff x S, &(,0) =0, 9&(.,0) = & in Q(0) and |[5][py < M, [|Ellsp< M |
= A?\}l X A%}Q
After introducing the spaces needed, we are ready to state the main result of the work.

Theorem 3.1.1 (Main Theorem) Let (v, &1, py,) satisfy (3.4) and (3.30). Then, there exists

T > 0 such that System (3.28) admits a unique solution defined on (0,T) satisfying

(voA Eop,proA) e FL xS xPT (3.31)
A e W (0,T; H*(24(0))) x W>>(0,T; L*(€24(0))) (3.32)

and
e ST (3.33)

For simplicity, for all m,r > 0 and p, g € [1, 400], we denote the spaces W™ (0, T; W™4(€24(0)))
and W™ (0, T; W™1(€,(0))) by W™P(W"4(Q(0))) and W™P(W"1(Q,(0))), respectively.
Also the domain’s notation is simplified by writing Q(0) = €, ©,(0) = Q5 and Q(0) = Q.
Further, for all ¢ > 0, define

¥y =T.(0) x (0,1).

3.2 A Partially Linear System

Let (vo, &1, py,) satisfy (3.4) and (3.30). Let 0 < T < 1 and consider (#,€) € AL, to be given.
For these given functions we define the associated fluid flow A and structure deformation @ by

-

t
Az, t)=2x +/ B(&,s)ds V&e, (3.34)
0

and
P&, t) =+ &(2,t) vV x e (. (3.35)

We use the given (1‘5,5) to partially linearize the non-linear system. Indeed, we consider the
non-linear terms to be given in terms of (¢,£). We will give the statement of a corollary of
Sobolev embeddings which is useful in finding some estimates.
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Corollary 3.2.1 |Brel0, Corollary 9.13] For any integer m € N* and 1 < p < oo.,
1
- % <0 then W™P(RY) ¢ L=(RY),

and it is a continuous injection. In particular the inclusion holds true for any subset Q of RY.
Lemma 3.2.1 For any subset Q) of R3, we have the following embedding
H?*(Q) € L™(9).
This yields the existence of a constant C'(depending only on N=3 and p=2) such that
ll ey < Cllullirziey ¥ w € H(Q).

Let T < 1/M* and M > 1. We shall repeatedly use the following two lemmas which provide
bounds on various norms of the deformation maps A and @.

Lemma 3.2.2 For the fluid flow A given by (3.34) for a given © € Aﬂl, there exists a constant
C =C(Q)) >0 and a constant k > 0 such that

1- ||’2l||W1*°O(H4)QW3v°°(H2)0W4»°°(L2)QH4(H1)S C(1+ M).

2- ||VA — Id||yw1.00 (mroymwsce (mrtynme 2y < CM.

3- [V A| a3 < C.

4= [[cof(VA)|| oo () < C.

5 ||0cot(VA) ()| 2 < CTV M,

6- (VA ()|l=< CIVAD)|}w  fort [0, T].

7- [[cof(V.A) = Td|| poe (r5)+|(VA) ! = 1d|| poe sy < CT™M.

8- |0,(VA) ()| - < C|IVB@)| |1, for € [1,400] and t € [0, T).

9- ||det(VA)|[ < OM  and  ||0,det(V.A)|| Lz < CM.
10- ||det(VA) — 1| oo 3y < CT"M.
Proof.

1- Let G = WY (HY) N W3 (H?) N W4(L2) N HY(H").
t
For all & € Q we have A(Z,t) = & + / B(&, s) ds, then
0

t
4G e < 1allo+]| [ o6, as]
0
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Notice that as fot ¥(s)ds|i=o = 0 then applying the generalized Poincaré inequality
|BF13, Proposition 111.2.38] there exists a constant C' such that

t
H/ B(%, ) dsH < O8] pr.
0 G *
Whence,

IAZ, )|le< C + C||B||pr< C(1 4+ M).

t t
2- We have VA(E, t) = IdQ£+/ Vo(z, s) ds, so V.;l({i:,t)—IdQ(f = / Vo(Z, s)ds. Hence,
0 )

using the generalized Poincaré inequality there exists a constant Cr in (0,7 such that we

have
t
/ Vo(z,s)ds
0

< Cr|| VB[ Loo (m3)nw200 (1) H3 (1.2)

< Crl|8|pr< CM.

HVA(::&, t) - Idﬂg | ‘Wl,oo(HB)mwii,oo(Hl)mHzl(LQ) S
WLoo (H3)NW3:0° (H)NHA(L2)

t
3- For & € Qf we have that VA(E,t) = Idg + / V&(&, s)ds. Whence
0

¢
/ Vo(z,s)ds
0

HVA||LOO(H3) = ||IdQ£||Loo(H3)+

Lo (H3)
< C+CT||9||pr
<C+CTM=C.

0A; DAy,
0z; 0%
i,7,k,l =1,2,3. Hence, as HS(Qg) C LOO(Q{;) by Lemma 3.2.1 then each component of the
matrix can be bounded by the norm HVAH%M(Hs)- In addition, using the previous part
gives

4- For VA, its cofactor matrix cof(V.;l) is a 3-by-3 matrix whose components are

ooV |13y IV A 1 < ClIV A )< C.

y 0.A; 00, A
5- Using previous part we deduce that the components of d;cof(V.A) are a{l at:4k. From
Z; X
the definition (3.34) we have V.A = Idgs + f(f Vo(s)ds, which after differentiating in time
. . dA; v
gives 0;(V.A) = Vo. Hence, the components of d;cof(V.A) are a’fl a—zjk
X5 01
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Therefore,

1010t (VA | oo i3y < ClVB|| oo (11| VA | oo (119)
< CM.

As ||0,cof (VA | 123y < TV?||9,cof(VA) || oo a3y, it vields
||8tcof(V.Zl)||L2(Loo)§ CT1/2M

From the second part of this lemma, as ||[VA — Id||pecgsy< TM < 1, then VA is
invertible. For ¢t < T" we have,

1

VA (1)< C|| oo
IV A Wll~< €| a0

] ‘cof(V.Zl(t)) ( ‘Lw < c) ‘cof(V.:Zl(t)) ‘ ‘

Loe

oo

112
< Cl[VA[z=,
where we used part 4 of this lemma to get the last inequality.

For the matrix (V.4)~! we have VA(V.A)"! = Id;. Differentiating this relation in time
gives

H(VA VA4 (VA)9(VA) =
which is equivalent to

(VA = (VA)9,(VA(VA)™
Using the fact that 0,((V.A4)~! — ) 9,((VA)™) yeilds
(VA — Id) —(VA)™. Vi (VA

—((vA)'—1d ) (VA -1d) - V& (VA) ' - 1d)
((VA —Id) - V5 — V4.

Using the inequality [KP88]

/\

@(

|label[pr < C(H@IIHPIIbIILooIICIILoo+!|a|ILooIIbIIHPIICHLooH!aIILoollbIILMIICHHp)7 (3.36)

we thus obtain

t
1((VA)™! = 1d)(t)||gs < / 10,((VA)™! —1d)(s)|| s ds
0
t
< C / (VA —1d| s |[(VA) ™ = Id|| || VB[ ds
0
t
+C/ [(VA)™! —1d|[? || V| s ds
0

t t
—i—C/H(V.:Zl)1—IdHH1HV'FJHH3 ds—l—C/HVﬁHHs ds.
0 0
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Hence we get
t t
1(VA)~ = 1)) | < C/ 1(V.A) ™" (s) = 1d|| s [ VB (s) || 5 ds + C/ IVD(s)|| s ds
0 t 0
< C||V’5HL°°(H4)/ 1(V.A)" (s) = Id||gs ds + CT|| V]| po(ars)
0

t
< C’M/ (VAL (s) — 1d|| s ds + CTM.
0

Using Gronwall’s inequality (B.1) we the existence of a x > 0 such that
(VA —1d|| ey < T T < CT*M,

for T sufficiently small with respect to M.
As for |[cof(V.A) — Id||pc(ys) we use the mean value theorem. First, let us define the
spaces

Ff = H*(0,T; L*(4))) N L>=(0,T; H3(Q4)) n W (0,T; H'())
and
Cy, = {F € F{ , F = V; for some & € Ay, [|F||pr< M}.
Further, define the function
h:A(&,t) € H(Q) — cof(A) € H3(Q)).
Now we proceed to find the Fréchet Derivative of h. For any matrix A € H3(€)) we have
h(A) = det(A)A™".
Whence, for any H € H3(Q}),
Dh(A)H = cof(A) : HA™" + det(A)[-A"H'A™]
= cof(A)HA™" — cof(A)H'A™*
= —cof(A)[H — H'|A™".

Using the embedding H(Q) C L=(Qf) we have ||[DR(A)||zcms)< 4]|cof(A)||xs|| A7 |55

Applying the mean value theorem to the function h and using parts 2, 4 and 6 of this
lemma yields

1(V.A) = h(Id)[| Lo a3 < S%PHHDh(A +5(Id — A))|| ey || (VA) = Id|| o )
s€|0,

< sup [|Dh(A + s(1d — A))log, [[(VA) ~ Td]| o)

s€[0,1]
< Ol VA | oo () || (VA) ™ = Td[ oo 19)
< CT"M.
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Notice that, as Cf; is a convex set, then for any A € C};, A+ s(Id — A) € C}, for
s € [0, 1]. Thus,

Sl[lp}HDh(A + s(Id — A))|| oo (9)
s€(0,1

< € sup [[cof(A + s(Id — A))|[ o5y [[A + 5(Id — A)] 7|11

s€[0,1]

< C sup [[cof(A + s(Id — A))][cg, [[[A + s(Td — A [z

s€[0,1]

< C sup ||A+ s(Id — A)||§3T§ C'  (using parts 4 and 6).
s€[0,1]

8- We have that 8,(V.A(t)) ! = —(V.A)" - V& - (V.A)"L. Then
10/(VA®)) [ < [[(VA@)) 7= VB(@)|]r < CHIVB(@)][ 1,

where we used previous parts for the last inequality.

In particular, for r = 400 we have

10.(VA#) | < [[(VAWR) 7| VB(E)]| e < Ol VB(E)]| v

Taking supremum of ¢ in (0,7) we get
10:(V A1) |22y < ClI VB[ ()< OM,

which yields

10:(VA)) |2 (o)< CTY?|[ VB (1) o2y < CTY2M.

9- We have that A = (A, Ay, A3)!. The Jacobian matrix of A is given by the following
matrix

oA, 0A, 0A;

0T 0%y 03
V.:Zt: 8./2{2 a/\(z 8.212
071 0%y 073
OA; 04y 0A,
01,1 0%y 03

Hence, using (3.21)

o 1 o o o
det(VA) = ggijkgpqrapAianjarAk with the summation convention.
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Then,
||det (VA || oo (1r5) < CHVAHim(Hg)S C.

Moreover, the time derivative of the determinant is

o 1 o o v v o v v o o
(9tdet(V.A) = égijkgpqr (th)pA,)ﬁqu&Ak -+ 8pAi(8t8qu)8rAk + 8pAi84Aj (&%Ak)
with the summation convention.

Consequently,

10:det(VA)| |2y < CllOrVA| oo (100 [[ VA oo 112
< Cl10eV Al oo 12) || VAl T oo (112
< OV | (12) | VAL o (112)
< CM.

Consider the function f = det(F), for F(&,t) € H*(Q}). The function f is continuous,
and differentiable. Its Fréchet derivative is given by

Df(FYH =cof(F): H, ¥ H = H(&,t)c H*Q)).
Using the embedding of H*(QJ) ¢ L>(Q)) yields

IDf(F)H |3 < [|cof(F)|| o< || H | 34| |cof (F)|| | [ H | o<
< Cllcof (F)|[ s || H || 5

Therefore, we have ||Df(F)||zms)< ||cof(F')||gs. Applying the mean value theorem to the
function f and using parts 2 and 4 of this lemma yield

||det(V.A) — det(Id) || oo (1r5) < s%lal]HDf(F + 5(Id — F))|| oo (3| [ (VA) ™" = Td| | oo (119
se|0,

< sup [[cof(F + s(Id — F))|| ooz || (VA) " = Id|| poe (g1

s€[0,1]
< CI(VA) ™ = Id|| o (2
< CTFM.

Indeed, we have used that L>®(H?) C C};, and part 4 of this lemma which give

sup |[cof(F' + s(Id — F))|[r(ms)< sup |[cof(F + s(Id — F))|[cr < C.
s€[0,1] 5€[0,1] 1

Remark 3.2.1 The last part of Lemma 3.2.2 gives

det(VA) — 1]] o (1) € CTM.
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That is, for all t in (0,T) and & in QY we have
—CT"M < det(VA)(&,t) — 1 < CT"M.
This gives
det(VA)(&,t) > 1—CT*M Y (&,t) € Q) x (0,T).

Remark 3.2.2 For 0 <n <4, the quantity CTM™ can be approzimated by CT"M , with k > 0.
Indeed, as TM* < 1, then we can find k > 0 such that TM* < T*.

Lemma 3.2.3 Let M > 1, T > 0 and é € Afb be given. There exists C' > 0 such that for all
i,a, 7,8 €{1,2,3}, we have:

1-
ass (7€) + uys(VE)|| , < COM + 217) (3.37)
3
where cl,;5 and ¢, are defined by the expressions (3.15) and (3.16) respectively.
2- For any matriz A € M3(R), we have
3
> ciain(VEAjsdia 2 SHA+ APAAJ(A)P-CT(M + M)A (3.39)
is0,,8=1
-
dhaso(VE) + d2,5(VE) + L, (V) + dloys(VE)|| | < C(M + M2+ 0% + M1Y). (3.39)
3
4- For any matric A € M3(R) we have
3
> diajs(VE)AjsAia > Cltr(A)*—CT(M + M?* + M* + M*)|A]”. (3.40)
ir0,,8=1
5-
IV @] Lo m2(05) < C- (3.41)
6-
||COf(V¢)||Loo(H2(Qé))S C  and ||C0f(v¢)HL2(H2(Qg))§ CT1/2. (342)
7- We have
1det(V@)|[poo(m2y< € and  [|9pdet(V @)|| oo (rr2)< CM. (3.43)
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(V@) | oo (2 (5) < C. (3.44)

9- For € € A}, we have

Proof.

1- From the definition (3.15) of the linear part ¢}

(2

ajB(Vf) we have

lhass (VO 12< ClIVE][12< C|[€]] a1 (3.46)
While from the definition (3.16) of the quadratic part cgajﬁ(vé) we have
166V E) [13< Cl105E;0aéil s < Cl105E51 151100l | 1o +C1105E || o< | Oail | 155

< CI| V|2 | V& |12 +C I VEl 115l VE] 1
< Cl|VE|[F = N1Ellrsg)-

Here we have used the Sobolev embedding of H? into L° obtained by Corollary 3.2.1.
Using the above two inequalities we get

ek (V) + s (V)15 < Iickays(VE) oIk s (V)] 1
< C(I1€ll+11E1 3 ).

Taking supremum on (0,7") yields
s (VE) + s (Ve < Ol HIE i) < COL+ 2. (3.47)
On the other hand, using the fact that HatngLoo(HS)S ||€HS;{ we obtain

1015;5(VE) + atcgaj,é’(vé)HL‘”(LQ) < Hatciajﬂ(Vé”’L‘X’(LQ)—H’atcgajﬁ(V€>|’L°°(L2)
< C(I1éllsp+1181%; ) (3.48)
< C(M + M?).
Where we used
10:VEVE||r2< C(29)110:VE]|12]| VE] 1= < ClIE]Isz 1€l < CIIE][35-
Proceeding in a similar way, one can show that

||8kcl

t “iajp

Combining (3.47)-(3.49) gives the desired result.

(V&) + 0Fcl, (V)| perr) < C(M + M?)  for k=2,3. (3.49)

t CiajB
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2- We have
3 3 3
Ri= D (0pi0aj + 0aplij) AjpAia = > [(1+0)A;:A5] + D (1+0)AiaAia
ir00j,B=1 irj=1 io=1
=tr(A'A) + | A% (3.50)
But, using the fact that (a + b)* < 2(a? 4 b?) gives
1 1

tr(A'A) = [AP= S(JAP+AT) = J]A+ AT (3.51)

Hence,
Ry > %|A + AR

Also,

3

Ry= Y (Jiabjp)Ajpdia = Z Aj Ay = ZA” ZA]J = [tr(A (3.52)

i,0,5,8=1 i,j=1

As a result we obtain
ARy > A Jtr(A)]2.
Finally, thanks to (3.37) we have that

3
R3 = Z ( za],B(VE) za]B(V£)> ],BAia
i,,5,6=1
3

oy

i7a7j7ﬁ:1

za]B(VE) za]B(V£) |A]BAZOZ|

(3.53)

3
> =T Z Hci'aj,8<V€) + Cajs(VE)lsrAjsAial
i =1

> —CT(M + M?)| A%

In fact, in order to get the norm |A|?, we use the identity |ab| < C(|a|* + |b]?). Indeed, we
have
3
> 1AjpAil< 5 [|A| +HAP] < AP
i,0,,8=1

Therefore, combining the estimates on R;, R, and R3 we get the desired result.
3- Using the definition (3.24), the inequality (3.36) and the embedding H3 C L*°, we have
105 (VED 2 < [[VED)|[70 | VER) VE®) VE®D)| |1
< ||IVED)IIs
< |IE®)I37a-
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Taking supremum over (0,7 we get
F 4
||dmj/3||L°°(H3)§ M*.
In a similar manner we show that

i sl ooy < 1EllsTs (1 dsl ooy < 1€l & and [|d] 5| oe 1) < |I€] 2

4- Using the definition (3.23) of d;4,s we can see that for i = o and j = /5 we get the constant
terms. Hence for i = a and § = j

3 3
> dinjpAiphia = C Y AyAj; = Cltr(A)]*.
i,0,5,8=1 i,j=1
Proceeding in a similar manner as in part 2, we get the desired result.
5- For t € [0,T], we have that
V@(t) =1Idg; + VE(t)
=Idg; + /Ot 9, VE(s) ds,

then,

IV @Il < [Tdag| oo ar205) + T 110V E] oo (1205
<O+ Tl O

0p; 0P
6- Arguing as in part 4 of Lemma 3.2.2. The components of the matrix cof(V @) are aip %,
XTj O
where 7,7, k, 1l = 1,2,3. Hence
1ot (V@) i=regy < VI gy < C- (3.54)

We can then deduce that

[cof(V @)1z (203 < CT-

7- We have @ = ({1, P2, ¢3)". The Jacobian matrix of ¢ is given by the following matrix

O¢1 Op1 0
0ry 0Ty 023

v

0Py 0Py O
0T1 0%y O3

Ops Op3 0P
0r; 0%y 073
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Hence,
o 1 Ao oA ) ) )
det(V@) = égijkepqrﬁp%aqgojarnpk with the summation convention.
This yields
|| det (V@) oo a2 < ||V B 7o 2y < C.

In addition, for the time derivative of the determinant we have

N Na v oA s y SN o Sy y
0det(V@) = cijncper | (0:0p0i)00i0rPr + 0pi(010445)0r i + Oppi04 5 (0:0r i)

with the summation convention.
Whence,
10:det(V @) | (r2) < CHIV @] oo (1) 10: VB[] oo 112)
< OV Bl (1) ||V B 200 (112
< Cl|0yVE| L (1) IV B[ oo (112)

< CM.
(V@)
The inverse of the deformation gradient can be expressed as (V@)™ = [cof( (pv)] Then
det(V @)
we have
10V8) i@y < || o cot(v)|
07 = 7 lldet(V ) Lo (L)
Lo (L)
< C||eot(V )| <c
<Clfeotva)|, . <

Similarly as in Lemma 3.2.2, we apply the mean value theorem to the function f(F) =
det(F). We have Df(F)H = cof(F')H. Then ||Df(F)||zu3)< ||cof(F)||ms< C.

Applying the mean value theorem gives

||det(V@) — det(Id)|| Lo 2y < C||V@ = Id|| oo (ir2)
t

/ 3SV§(S) ds
0

< CTM.

<C

Lo (H2)

In particular, we have ||det(V @) —det(Id)||L= ()< CTM. Proceeding as in Remark 3.2.1,
gives

det(V@) >1—CTM >1— CT"M. (3.55)
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The main step to establish the local in time existence and uniqueness of solution of the
coupled problem is to partially linearize it. This is achieved by considering the non-linear terms
to be given, thus the flow map and deformation are given by (3.34) and (3.35) respectively.
For the given A, and (9,€) € AT, we denote bmjg(Vé) by bmﬂ and the fluid shear stress
is denoted by &9(®,py) when considering A in the expression (3.8). Now we write the system
(3.28) in the reference configuration at time ¢ = 0. Equation (3.28); is replaced by

prdet(VA)OD — V- &%(8,57) =0 in Q) x (0,7)

and Equation (3.28)5 is replaced by

psdet(V@)02E; — Z biajsd25&; =0, i=1,2,3 in Q5 x (0,7).

«,j,f=1

The coupling conditions on ¥ are given by

3

C0(m ) N E AR . (3.56)
[o'f('v,pf) n]i: Z Obmjgasﬁﬁjds n, for i=1,23.

a,j,f=1
For (%, €) being given in A%, | we introduce the following mapping

U (9,8 — (9,8

where (0, &) together with p; form the solution of the partially linearized system.

First, we start by defining an auxiliary problem that considers the boundary condition (3.29).
Choosing a suitable functional space we write the variational formulation where the pressure term
disappears. Uniqueness and existence of a solution of the auxiliary problem are established in
the next section.

3.3 An Auxiliary Problem

As we mentioned before, there is a disagreement between the elasticity equation and the stress
coupling condition on X7 attributed to it. Thus, we set up an auxiliary problem in which the
natural boundary condition (3.29) is used. This problem constitutes the first tool in establishing
the existence and uniqueness of the strong solution of the FSI problem. We start by introducing
the auxiliary problem. Let g = [g1, g2, g3]* be a function in H}'([0,T]; L*(Tc(0))), and consider
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the following system:

(psdet(VA)D — V - 595, 5) = 0 in Qf x (0,7),

V. (det(V.A)(VA) 1g) =0 in Q) x (0,7),

D=vno0A on ', (0) x (0,7),

&UD,pr) =0 on Tou (0) x (0,7),
psdet(VB)a2E; — Z biajs025€; =0 i=1,2,3, in Qf x (0,7),

o,j,5=1

3 3.57
£E=0 on I'y(0) x (0,7, (3:57)
b= 0,€ on T,(0) x (0,7),

a,7,/=1
0(.,0) =vg, and ps(.,0) =py, in O
(£(,0)=0 and 8£(.,0)=& in Q.

The following lemma states the existence and uniqueness of solution for the auxiliary problem.

Lemma 3.3.1 Let (9,€) € A, vy € LA(Q)), & € L*(Q) and py, € L*(Q)). For T small with
respect to M and the initial conditions, there exists a unique weak solution (0,€) € FI' x ST of
(3.57). In addition, this solution satisfies the following a priori estimate

~ Py ,05
181130+ 1112 < C 1ol 122 g, + 51161 2 gy H 181 B e, oy |- (3.58)

Remark 3.3.1 Taking T small with respect to M and the initial conditions, means that there
exists ng > 0 and € positive such that

T< g g
=% B0l ety Nl [Pl pzcar) |

From here on, we simplify the notation for all the norms by omitting the indication for the
domain as it is always clear from the context. For instance, we write ||0|| 2= ||13||L2(Q£) and
181122= 11€llz2(q)-

In order to prove Lemma 3.3.1 we proceed as follows. First, we write the variational formu-
lation corresponding to the coupled system using a divergence-free functional space. Then, we
use a Faedo-Galerkin approach to find an approximation of the solution, which enables us to
find some a priori estimates on the Galerkin sequences. Using the estimates and compactness
results we prove the existence and uniqueness of the solution.

3.3.1 Variational Formulation

Consider the following divergence-free functional space

W = {'f) € H'Y(Q)| V- (det(V.;l)(V.:Zl)*l’f)) =0 on Qg and 7=0 on )\ fout(O)}.
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Let [[.,.]] denote the weighted L? inner product defined by

(ol = [ oriidas [ piende 3w
0 0

This norm is equivalent to the norm || . |[2(qy)-
In order to derive the variational formulation of (3.57), we multiply Equations (3.57); and
(3.57)5 by a test function i € W and integrate by parts to get

/det(V.A) @ - ﬁd:’é+/f&§2(f;):Vﬁ di—/ 308, py)iny - 7 AT
Q5 <(0)

/gdet(Vgo)@% 7 dT — Z / biajp0> 55’] n; d&

i,0,7,8=1

(3.59)

but we have, y . y o .
Oa(biajs05E;) = Oabiajs0sE; + biajp0isé;.

Hence,
~ 3 ~
Z biagsOiss i & = Z | Oubiogstaly 05 = 3 | Oulhass0) i i

i,,5,6=1 i,0,7,0=1 i,0,5,8=1+ Qf
Applying integration by parts to the last integral gives

3 . 3 )

Z 8«1 za]ﬂaﬁgj 77 dx = — Z zajﬁaﬂgj 8aﬁi d53+ Z biajﬂaﬁgj ﬁa ﬁz ar.

i,005,8=1 Q5 1,a,7,8=1 i,0,5,8=1 I'c(0)

On the other hand, due to the condition (3.57)s, the integrals across the common boundary

I'.(0) will sum up to give —/ g -7 dU. Therefore formulation (3.59) is written as
I':(0)

( ~
pf/fdet(V.A)@tﬁ-ﬁdi:Jr/ &%®) : vq d:c+p5/ det(V@)02€ - 7j d

Q QO 3
< + Z / wéjﬁggfj T dx + Z / 0, bmjga@fj ;i dx (360)
i,a,7,8=1 i,a,7,8=1

:/ g-qdl. View.
r.(0)

\

Note that, the space W is the transformation of the space
W = {n e HY(Q®)|V-n=0 on Q) and p=0 on 9Q(t)\ Fout(t)}.

This explains the disappearance of the pressure term p; from the weak formulation.
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Remark 3.3.2 ":" corresponds to the Hadamard product of matrices defined by
A:B= Z Ai,jBi,ja fO’f' A, B c MnGR)

4,j=1

In order to derive the weak formulation we consider a global test function m in W. This
will simplify the work. In fact, rather than looking for two solutions using two independent test
functions on each sub-domain, we search for one solution % over the domain €2y. By considering
a global test function we are able to embed the stress condition into the formulation in such a
way that it would cancel out on the entire domain. Further, we will guarantee the existence of
a weak solution 4 in W, Consequently, v and S are considered to be the restriction of 4 on
the sub-domains Qf and €25, respectively. Note that, if we consider the restriction of 77 on the
two sub-domains Qg and ()), we cannot guarantee the existence of the weak solutions in the

restriction of W on each sub-domain. Thus, we introduce the auxiliary function 4 defined by

~ in O/ in Of
;)'/ _ v ~ ?Il 05 and ;)-/0 _ Vo ?Il 0> (361)
0§ in Q, & in Q,

which is a continuous function on €, due to the continuity of velocities across the interface I'.(0)
Wthh is glven by the condition (3.57)7. By this definition, we can write ©(t) = ¥(t) on QJ, and
fo s)ds on €23, based on the fact that £( ) = & = 0. Then, for all test functions 7 in

W the weak formulation (3.60) is equivalent to

( v,
pf/fdet(V.A)@ﬁ/ -7 dE + ps/ det(V @07 - 7 d +/

ol al

59(3) : V@ dE

s

+ Z / biajs0s( fo s)ds); Oatli dT + Z /abzajﬁaﬂ Jo A(s)ds); 7; dx

i,a,7,0=1 i,0,5,8=1
~ 3.62
I'¢(0)
;)'/(O> :;5/07

| Golag) | )

(&

ds, Vtel0,T].
I'¢(0)

ds = / (3(6)loy

3.3.2 Galerkin Approximation

\

In order to show that the system admits a unique solution we will use a Faedo-Galerkin
approach. Let {1}, be a basis of W in L?*()y) which is orthogonal for the H'-Norm and
orthonormal for the L?-Norm.

Take W, = span{t, ..., 4, }. We seek to find a Galerkin approximation {¥,}, € C*(0,T:W,,)
of the form

Yo = [ (OY() (3.63)
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satisfying

’

pf/ det(V.A)0A, - A diE + ,os/

of o

Aet(V )0, iy 45+ [ #(5): Vi, da
QO

+ Z / Diajs0s( [ An(5)ds); Ouitni A + Z /81)1&]585 I3 An(8)ds) Tlns A

i,00,7,8=1 i,0,5,8=1
:/ g -, dT V i € W,
\ I'c(0)
(3.64)
and
[(0), ] = [[Fo, Mall, V¥ 710 € W (3.65)
Notice that, trivially 4, defined in (3.63) satisfies
t t
/ (%(S)Igf> ds =/ (’yn(s) Qg) ds, Yte[0,T). (3.66)
0 *7Ir.() 0 re(0)

We can write (3.64)-(3.65) as an equivalent system of first-order, linear ordinary differential
equation (ODE) for {f"}1-, .

Set hp(t fo flt(s)ds for i =1,---  n. For 1 <k < n, the problem (3.64)-(3.65) is equivalent
to the follovvmg ODE initial value problem

Kl

( n d
Z %fln(t)
=1

pf /Qg det(V Ay, -y di + Ps/ det(V @)1 - 9y d:i:]

+Zf,"(t)/ &G () - Vi, d
=1 o)

0

+Zhn Z / la]ﬁaﬁwl] a'l/}km dx + Z / 0, bzajﬂaﬁwlj wkz dw)

a]ﬂl i,0,7,0=1

J/

Dzl (3.67)

_ / gy dP',
T'.(0)

d
SHO=fw)  vi<izm,

n

> e il f7(0) = [Fo. 9l

=1

hr(0) =0 Vi<i<n.

\
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System (3.67) can be rewritten in the following matrix form

] RO S[AOT o ]
[t les | On | oy || S| D | | oy Lot
a4 _ +
o, I hy(t) | o, hi(t)
0n><1
- A B 1€ I I - B A V0 ()1 -
d .. F ©
dt
(3.68)

with

[, Yuli—s = [Pf/ det(V A, - 1y dT + PS/Q

2

det(V@)h - Py diﬁ] ;

s
0

S, =

/Qf (1) : Vapy dii] and  [D], = [Djaplik-1-

0 Lk=1

The matrix A is a positive definite matrix as the function set {#;};_; is linearly independent.
Moreover, A is bounded on (0,7"). Further, matrices B and C' are bounded on (0,7'). Hence
by theory for systems of linear first order ODEs, we get that system (3.67) admits a unique C'-

solution {f*,..., fr, hY,...,h"} which yields the existence of a unique Galerkin approximation
{An}n of (3.64)-(3.65) such that 4, € WH(0,T; H(Qy)).

Now we proceed to derive a prior: estimates on 4,.

3.3.3 A Priori Estimates

Step 1: Estimates on 7,

We aim to find some estimates on 4,. In order to do so, we set 7, = 4, in (3.64) to get

( -
pf/fdet(VA)é?ﬁn “Np dT + /f&?c('?n) : VA, dx + ps/ det(V@)0An - An dT
Q Q

s
0 0 Q0

+ > / iaga0s (Jy Fn(5)ds); 02 fy Fu(s)ds); di (3.69)

i,0,5,0=1

3
£ 30 [ Ot 5u(6)ds)s s 2= [ g5
8 T

L ij0,,8=1 c(0)
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Then, integrating over (0,¢) and applying integration by parts yield

(2] TR0 i+ / et (V) (1) 5n (1) di

/ / B et (VA)| VA, (VA) + (VA) (V) ? dE ds
Q

t
~ ~ Ps oy | ~ ~
+ g / iajs(t) Oa( fo An(8)ds); Oal [y An(s)ds); diE — ?/0 st)sdet(Vgo)th dz ds
0

za]ﬁ 1

3 t
1 7 S ~
—5 2 /0 | Osbiags Oy n(T)dT O[5 Au(7)dr); dZ ds
0

i7a7j7B:1

Pf// dydet(VA) |7, |2 di ds + Z // 8bza]585 Js An(1)dT);05( [ An(T)dT); dZ ds

i,,5,8=1

t
:// g-Fn drds+ﬁ/ 3,02 dz + 2 [ 13,.(0)? d&.
0 JT.(0) 2 Q) 2 Q3
(3.70)

Where we have integrated by parts with respect to time as indicated below

t t
/ 65(52‘04]'585(]‘085%( fo An(T ) ds = / asgiajﬁaﬁ(fos’?n(T)dT)jaa(fosi/n(T)dT
0 0

t t
+ / iajs 08Yn,5(5) Oal fy An(T) s+ / biaja08( [y An(T)dT)j007n,i(s) ds.
0 0

. J

~
equal by exchanging indices and using (3.18)

Hence,

bicis (105 3 (5)5);0a iy (5)ds): = |Biags ()0a( [y n()ds);0u( [y u(s)ds):

(.

t=0
4

~~

=0

t t
= / Osbia;505 ([ A (T)dT) ;00 ( [ 4n(T)dT); ds + 2 / Diajs0s(fo 3 (T)dT);007ni(s) ds.
0 0

We start by deriving estimates on the terms of (3.70).
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First of all, as det(V.Zl) — 1> —CT*M, then we have

t
det(VA) |7, (t)? d& — % / / d,det(V.A) |7, |* di ds

o |

)

p w0
> gf(l — CT* M)Al [T 12y~ ||f9tdet(V-A)||L2 12| [l Lo (22)

> P
-2

(3.71)

(1 — CTHM CTH )‘|77’L||200 Lz(Qf))

Similarly, using the same relation for the stress term of the fluid we get

2

gdet(V.Zl)‘V%(V;l)_l +(VA) V5,

2

- o 2
= 2 VAVA T+ (VAT (VA +
= Nl + Ng.

£(det(VA) = 1)| VA, (VA + (VA (V4,)

For N; we have

2

Ny > B VA, (VA + (VA (VA
_ g nyn((vjl)—l _1d +Id) + ((V.Zt) _1d+ Id>( o
> LV, + (V3 + V3. ((VA) 7 - 1d) + (VA7 -1d) (V3
> g V3, + (V) (V ( VAl - Id)‘ _ g’ ((VA)‘t - Id>(V'7n)t i
> ple@)| — u| VA (V)" - 1a)[

Thus, using Korn’s inequality [GR86, Fic73] and Lemma 3.2.2 yields to

t
// glV%(Vﬂ)‘l+(Vlt)—t(V§n)t|2 di ds
0o Jaj

> /t/ ,U‘G(;?n) :
0 Jal

t
Z :U’/ [He(:)}n)(sﬂ|iz(96’)_CTKM||F?n(8>||i[1(gg)} ds
0

> j(Cy, — CT"M)||7nl[;

2
dx ds

- u‘v&n<(vﬂ)*1 ~1d)

L2(HY(2)))

Whereas for Ny we have

No = —Eder(v.2) - 1|‘V%(V.Zl)‘1 (VA H(VA)
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Hence, using Lemma 3.2.2 we have
t . y N 2
_ / / L e(VA) - 1)|VA(VA) + (VA (VE)| d ds
0 Jof
> —|ldet(V.A) = 1|z (a3) | [Tl T2y | (VA) G (119)

> uCT*M||7a|[3, (HY ()"

Therefore,

t 5 3 g . o2 .y
| 5tV V3,92 4 (T2 (95, @5 ds > u(Co = CT MRl gy

(3.72)
As for the integrals on the domain Qf, first of all using (3.55) we have
/ det(V@)|[va(t)]* d& > (1 — CT"M)||Fn| |7 (12(03)) - (3.73)
2
Thanks to (3.43) it holds
t
/ V)’S’g(t)‘ dz ds < T'|0,det(V@)|| Lo (mr2(0)) H’TLH%OO(L?(Qg))
0o Ja
(3.74)

< CTM|| Al F e (22(025))
< CT* M|l 2 (2209
Using (3.38) and (3.40) together with Korn’s Inequality, then there exists Cy > 0 such that

Z/ iais (005 (Jy T (5)d3); Oal JyFa(s)ds);

za]ﬁ 1
C+/\ \

> pasll€( fyFn()ds)| |20+ 5 IV - (JoFn($)ds)[Z2ap) —CT M|V (JyFn(5)ds)| |7 20z
C+)\ . 3

> 115l Jy 3 (8)ds| I )+ =1V - (JoFn(5)ds) 7205y = CT" M| fo Fn(5)ds] 311 ). (3.75)

On the other hand, using (3.37) and (3.39) in addition to Young’s inequality [BI'13, Proposition
[1.2.16] and Lemma 3.2.1 yield

1 7 S~
| - 5/ Dsbiajs0s( [ An(T)dT); Oal [y An(T)dT); dZ ds
o

<

I zaJBHL‘” Lo () / ||Vfo dTHLQ Q) ds

o

(3.76)

IN

C||blajﬁ||L°° H2(93)) / vao')’n dT||L2 (Q3) ds
<CT

(M + M2+ M+ M| [55 ()] oo 11 25
< CT M| [5An(s)ds|| 7 (HL(93))"
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Similarly, for i, «, 7,6 = 1,2, 3,

//8 bm]gaﬁ Jo An(T)dT); Os( 3 A , dT ds
||a biajsl| Lo (L= >)/

<C||8 blajﬂ“Loo(HZ Qs / ||Vf0 dT||L2 Qs

foyn T)dT); foyn 7)dT); dZ ds

Fn($)||22(0) ds (3.77)

t
< Ollbagoll i / (||Vf0 S () By 1509 )
0
< CT(M + M2+ M* + M) 30 (5)4s| e 13 gy Pl B 12

< CTM ||| f53n ()12 sy HIFnl = a2y |
Whence,

2 Z //abmyﬂaﬁ (Jo In(T)dT); Dol JyAn(7)dr); dE ds
0

za],é’ 1

+— Z /0 / Onbiajs0s( [ An(T)dT); Ou( [ 4n(T)dr); d ds

za]ﬁ 1
< CTM ||| f5n(5)d 3w 111 g+ 13 e m))}.

Finally, using Young’s inequality we have

t t
/ / g - In df ds / g(t> ’ (f(f;?n(s)d8> df - / / asg . (fosﬁ/n(T)dT) ds df
0 JI.(0) I'c(0) 0 JT.(0)
t

/ g(t) - (fot:yn(s)ds) dr| +
T.(0)

< gl 2 oo | Jo ¥ (8)ds| | oo L2(r.0))) / 10s9 ()| 2 (v |1 Jo An (T) AT L2(r . 0) ds

(3.78)

<

0sg - (JoAn(T)dr) ds dT

I(0)

< C5||QHL°° r2ru0y) Ol Jo¥n (s dS||L°° 2.0y TN foFn(s dSHLoo L2(T(0))) +C5||asg||L2 L2(T(0)))"

But, using the trace inequality [BF13, Theorem I11.2.19.|, there exists a constant Cq > 0 that
depends on the domain €2, such that

Hfo')’n d3||L2 re(0) = OQHfg’Yn dSHHl (€3) vt e[0T
On the other hand, as g(.,0) = 0 we have

g(.,t) = / 0s9(.,s)ds  Vtel0,T],
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then using Holder’s inequality [BF13, Proposition 11.2.18|

t

90 )] < 5)|ds

< (/t 039(.,3)’2d3> 2 (/tds>2

< VH[0s9()|| 2oy
< Vgm0

Taking supremum of ¢ in [0, 7] and squaring both sides yield

g o< TN H oy 00 Te(0).

Consequently we get

g Tn dl’ ds| < 05T|’fo.:yn(s)dsl‘%W(Hl(ﬂg))+cé||gH§{1(L2(Fc(O)))' (3.79)

r':(0)

In order to deal with [ |%,(0)]*dZ, we need the following lemma [DGHL03, Lemma 2.2].
Qo

Lemma 3.3.2 Let m, denote the weighted L2(Q) projection from L*(Q) into W,. That is
T 0 L2(Q) — W
i ([mafl, 2]) = [[7.2]] V2 €W

Direct consequences of the definition are the following

- il < 1ll2@e) V71 € LP(),

2- Imadillmen < llme,) ¥ i €W.

Using the first inequality, we have

1% (O) 1220 = |17 Vol [ 22(000) < 110l 2 (020)= 100l 72 ) F11&1][220p)- (3.80)

Combining (3.71)-(3.79) and using (3.80) we obtain
i P K ~ I
(HCw = O™ M) Tl g )+ (L = CTM)Fnl g

Ps Vi K g
+ (2 ( —-CT ) cT M)H%H%w(ﬂ(m))

<uka—CT“M 05T>|| S (8)ds e i )

Pf ps
< OB ool o + 51160 ()| + Cllg1 B ezcr oy

(3.81)
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3.3. AN AUXILIARY PROBLEM

Remark that, the constants ugs, A\s and p are given as large values by the constitutive laws of
the structure and the fluid. Moreover, ¢ is a negligible positive real number, hence norms that
are factored by the term 0 are being absorbed by larger terms. Finally, we take T small with
respect to M and the initial values, that is, the factor C'T"M is negligible. These assumptions
lead to the following estimate

130122 1 gy 1 oo 22020 LG A (9) 8 oo )

Pf Ps
<C E|’U0HL2+5|’51"L2+HQHH1(L2(FC(O)))]' (3.82)

Step 2: Estimates on 0,7,

The next step is to derive some estimates on 0;7,. Consider a function 7 in W such that
17| 2(r1(00)) < 1. The function 7 can be written as

n=m,n+ (ﬁ - Wnﬁ)

where 7, is the projection from L?*(Qq) into W, defined in Lemma 3.3.2. Notice that, as we
have 0,7, € W, then

[0 (t), 7] = ([0 (8), 7] + [0 (E), 1 — mn]] = ([0 (), T071]]-

Set 7, = m,7 in (3.64). By integrating over (0,t) we obtain

( t t
pf/ /fdet(vlt)a;n  Tnf) AT ds + ps/ / det(V@)DsAy - maf] d ds
0 Ja] 0 Jog

¢
—i—/ /fb"?c(:yn) : Vr,n de ds
0 Jo

+ Z // biajs0s( fo An(T)dT); Oa(mn); d ds

i,a,7,0=1

(3.83)

+ Z // 3bza]585 fo An(T)dT) ;i (T07); d ds—//r(o)g-wnﬁ dl ds.

i,0,7,6=1
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This is equivalent to say,

(=C1°) [ 110.5(5)mi(5)] ds =

//O'f (An) : V.1 dZ ds — Z // biajs0s( [y An(T)dT); Oa(man)); dZ ds
0

i,a,7,8=1

2://0%Manm—%nmw+//)gmmﬁw
i,a,7,0=1 0 c(0)

Bounding the terms of the right hand side of the above equality yields

(1T M) / [0 (s), mafi(s)]] ds

/ 183G i | 9 Tl o) s

- Z Wbl w1055 () e 0l L s (3.84)
i,0,7,0=1 0
3
+ > b= eipl135 25 () s bl s
i,0,5,8=1" 0

+ gl m 2w 1Tl L2 ) -

First, using Holder’s inequality and the embedding of H? in L> we have

/ 183G o o Vil
< 2/ ||V'7n(v'u4)_1||L2(Q£)||C0f(VA)||Loo(Qg)||7TnﬁHH1(Qg) ds
0
<5 [1vs VA (VA 5 d (3.85)
< O|| Fnll 2@y [V A) | o @) 1cf (VA e o) [T | 111 ) s

t
< 2||(VA)_1HL0<>(LO<>(Q({))HCOf<VA)"Loo(H?)(ng))/O ’WnHHl(Qg)HWnﬁHHl(Qg) ds

< C||’)’n||L2(H1(Qg))||7Tn"7||L2(H1(Q£))'
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Further,

3 t

> b

ia,,8=1" 0

3
< 3 [ sl VA o | il ds
iajp=1"0 (3.86)

3

<7 Z |1iajsl| ow (Lo (025))

i,0,5,8=1

< CT" M| [5An(5)ds| | oo (1 (02

(Jo In(T)dm);l1 22041100 (mni))il 205 dis

| Jo A (8)ds|| oo (111 (2 (H(23))

(€5))-

D

In addition, using the embedding of H? in L* we have

3
> NOubigsllm o135 (7)) o)1)l 2oy ds

i,0,5,8=1" 0
3
< ) | 0ub Fulr ds
iaj,é’—l 0 (3.87)
< Z ||bm]5||Loo H3(Qs /Hfo dT”Hl(Qs 7Tn77||H1 Qs dS
i,a,7,8=1

< OT* M| f; ()1l 1= (11

1T | 2 (21 (02))-

Combining (3.85)-(3.87) yields,

(3.84) < |ClFal (s gy CT* M| 57 (5)dsl e 100191 1 2o | Il e )
(3.88)

Then, using the previous estimate (3.82) gives
t i p
/0 [[0sn (), mam1(8)]] ds < C[7||UU|’L2(Qg)+§||£1||L2(QS)+O||g||H1(L2(Fc(0)))} a2 L2 (a1 (90)) -
Using the fact that |[m, 7| L2y < ||| L2 (00)) < 1 We get

f Ps
18302202y € | B w0l B+ 221811 By HIg s oo | (3.89)

Theorem 3.3.1 (Aubin-Lions-Simon) Let By C By C By be three Banach spaces. We as-
sume that the embedding of By in By is continuous and that the embedding of By in By s
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compact. Let p,r such that 1 < p,r < +00.
For T > 0 we define

W, = {u e 17(00, T}, Bo), ‘C% e (|0, T], BQ)} |

i- If p < 400, then the embedding of W, in LP(]0,T[; B1) is compact.
- If p=+o00 and r > 1, then the embedding of W, in C°([0,T]; By) is compact.

Proof. For the proof, check [BF13, Theorem I1.5.16] m

From the estimates (3.82) and (3.89) we may extract a subsequence of {7,}, which we also
denote by {#,}, such that

An = A in L0, T; L*(Q)), Ao — 7 in L*(0,T; L*(Q)),
815;5/71 - at;y in LQ(Oa Ta LQ(QO))a
Fnlor = Algs 0 L2, T HNQY)),  Anloy = Algy in L2(0, T3 H' (),

[ 3t

By Theorem 3.3.1 we get

and

t
dsi/:ys
o i (s)

Yo = € C°([0, T; L*(Q)).

ds in L°°(0,T; H'(€2))).
2

Existence of the Weak Solution

By passing to the limit as n — oo in (3.82) and (3.89) gives us the estimates on 4. To
show that 4 satisfies (3.62) we proceed as follows. We fix an integer N and choose a function

7 € C1([0,T],W) of the form

N

=Y di(t)i(&). (3.90)

=1

For n > N, we integrate (3.64) with respect to ¢ to get

( T o T

pf/ / det(VA) 07, - 1 d& dt+/ / (V) : V7 dZ dt
o Jof o Jof

T 3 T
+ps / / det(V@)Oy, - 7] d& dt + ) / /Q biajsOs( [} 1n(8)ds); ity d dt (3.91)
0 o 0 0

Z‘7a7j7/B:1

3 T T
+ ) / /aabmjﬁa@(fg%(s)ds)j ii; A& dt:/ / g -7 dl dt.
0 JQg 0 JI¢(0)

\ eu5,0=1
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By passing to the limit as n goes to infinity we get

( T T
pf/ / det(V.Zt)aﬁl -m dx dt +/ / &?(’7) :Vndzx dt
0 Jaol o Jal

A\

T 3 T
+,03/0 /Sdet(V@afY . 'f' dif} dt —|— Z /0 /Sbiajgag(fot ’N)/(S)ds)j 86@- di dt (392)
0 0

i7a7j7ﬁ:1

3 T T
+ Y //aabwjﬁaﬁ(fﬁ(s)ds)j 7 d dt:// g -7 dl dt,
\ i,,7,0=1 0 Qg 0 (0)

holds true for all 7j € L*([0,T], W) due to the fact that the space spanned by the functions of
the form (3.90) is dense in L?([0,T],W). Hence, (3.92) implies (3.62).

To show that the initial conditions are satisfied we will consider 7 € C*([0,¢], W) in (3.92)
and integrate by parts to get

( T T
pf/ / - Ou(n det(VA)) dx dt —/ / 5'?(’7) :Vn dz dt
o Jaf 0 JoJ

T 3 T
so [ Featidenve)awa- Y [ [ Guou i), 0. iz a
0 0 0 JO§

i7a7j7ﬁ:1

3 T
-y / /Qaabz‘ajﬂaﬁ(fg’?(s)ds)j n; d dt
0 0

i,0,5,0=1

(3.93)

T
——[ [ geqdtat=p [ 50)-3i0) iz~ p. [ 2€0)-7(0) s
L 0 JT.(0) Q) Q8
On the other hand, integrating by parts in time Equation (3.91) and passing to the limit we get

( T T
pf/ / - Ou(n det(V.:Zl))dzE dt — / / 5'53(’7) :Vn dx dt
o Jaf 0 JoJ

T 3 T
o[ [ 5ot deve) dzd— S [ buda(f;3(s)ds), o d de
0 H 0 /&3

i?a7j7ﬁ:1

3 T
- > / /Qaabmjﬁ@ﬁ(fﬁ(s)dS)j 7 d dt
0 0

i,0,5,8=1

T
——[ [ gt [ v-i0) dzp. [ & i(0) dz
( 0 Jre(0) e 9%

Comparing (3.93) and (3.94) yields

(3o, (0)]] = [[5(0), 7(0)]].

(3.94)
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Since 17(0) € W is arbitrary, then the initial conditions are verified.
Finally, by passing to the limit in (3.66), we obtain (3.62)s. This yields the existence of the weak
solution 4 of System (3.57).

Uniqueness of the Weak Solution

To prove the uniqueness of the weak solution we assume that 7; and 4, are two solutions of
(3.62) associated to (©,€). Setting ¢ = 4, — 4. Then for all 5 € C°(0, T; W) the solution ¢
satisfies the following variational formulation

( y
pf/fdet(V.A)@gé~ -1 dx —I—/ (<) : Vi dx + ps/ det(V@)oiS - 1 d
Q.

of 8

+ Z / za]ﬂaﬁ fo dS anz dx (395)

i,0,7,0=1

+ Z /8 binj50s( fo s)ds); 1; dZ = 0.

\  bon),8=1

Taking 17 = ¢ and integrating over (0,¢) we get

/;f/fdet(VA)k( )|? dx +/ / L VE A ds+ 22 2 det(V@)[S(0)]? d&
Q 2
—71“/ /fKF@Sdet(V.Zl) dz ds — 5/ 1C]20,det(V B) diE ds
QS
+ Z / zaj,B aﬁ fO dS agz )d (3 96)
'La]B 1 ’
—= Z / / 05 bm]gﬁﬁ Jo S(1)d7); 0aS; d ds
zoejﬁ 1
+ Z / / Oabinjsds( [ S(1)dr); 0.8 dE ds = 0.
i,0,7,8=1
Usmg (3.72)-(3.78) we get
H§||Lz HLY(Q)) +||§||Loo L2(Q) )+||f0 dSHLoo L2(Q )+||fo §)ds|[7 Hl(QS))< 0, (3.97)

which yields that 4, = 42. Therefore, 4 is a unique solution of (3.62). In addition, we have

azds € L=(H(2))-
(3.98)

Aoy € L(LA(20) N LP(H (), Alog € L¥(LX($))  and /0 (s)

t
Consequently, setting v = :y|Q£ and £ = & +/ A(s)|os ds, we obtain the existence and
0

uniqueness of the weak solution (4, €) € FI' x ST for the System (3.57).
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3.4 Existence of Solution for the Linearized System

The linear problem is given by the following system

(ppdet(VA)OD — V - %D, jy) = 0 in Qf x (0,7),

V- (det(V.A)(VA)1%) =0 in Qf % (0,7),

D=vnoA on T, (0) x (0,7),

&, py) =0 on Loy (0) % (0,7),

3
psdet(ch)afé - Z l;iaj[g@iﬁéj =0 1= 1, 2, 3, mn QS X (O,T),
a,j,f=1
. 3.99
£=0 on I'5(0) x (0,7), (3.99)
b =0,& on T,(0) x (0,7),
3 t
[&%®. )R], = Y (/0 Emmasﬁgjds> e i=1,2,3, onI.(0)x(0,T),
a,j,f=1
0(.,0) =v9 and ps(.,0) =py, in Qg,
£(,0)=0 and 8,£(.,0)=¢& in QF,

which is nothing but the auxiliary problem (3.57) when considering

3 ¢
gi=- (/ 0,Dia905¢; ds)ﬁw 1=1,2,3.
0

a7j75:1

Proposition 3.4.1 Let (9,€) € AT, vy € HY(Q!), and & € H'(Q3) satisfying (3.4) and
(3.30);. For T small with respect to M and the initial conditions, there erists a unique weak
solution (v,€) € Ff x ST of (3.99). Moreover we gel an a piori estimate on the solulion thal
s given by

18113 +1€] 137 < Cllvol 72 +C1€1 7 (3.100)

Notice that, increasing the regularity of the initial data by considering vy € Hl(Qg) and & €
H'(Qf) will lead to a more regular solution [Eva98, Brel(]. Using the regularity results we will
achieve a solution (9, €) € FJ x SI'. Now we prove Proposition 3.4.1. The proof is based on the
fixed point theorem. Indeed, the first step is to find estimates on 9,7 in F x ST then we prove
the existence and uniqueness of a weak solution of (3.99).

First, we consider System (3.57) with the function

3 t
g = iLZ == — Z (/ asémjgagéj dS) ﬁa, 1= 1, 2,3
a,j,B8=1 0
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Observe that h € H}(0,T; L2(T,(0)). In fact, using (3.37) with the trace inequality gives

10uh] |2 z2re0y)) < 1OWDiags0ss] | L222(r. o))
< |10rbiajsl oo (2210885 |2 (12 o))
< CTMM||VE]| L a (03)
< OT"M|€]| = (2 < CTMI€] |57,

and since h(0) = 0, we use the fact that
[[P|]L2(r2re0)) < ClOR| L2 2 (r 0)))
to get that the function b € H}(0,T; L*(T,(0))) such that

Rl 0,02 0o ) S CTMI|€][ 57 (3.101)

Therefore, as £ is fixed, by Lemma 3.3.1 we get the existence and uniqueness of (9, €) € FIT x ST
satisfying
~ g Py Ps K N
1512 +1€)12 < C[EL hwol B+ 2 0|3+ M1 ] 5 (3.102)

To prove that the solution (@, €) is in the space FY x ST we use the fixed point theorem. To
this end we introduce the map ¥q from SI to ST defined as

\I/()Zéf—>é.

As we mentioned previously, we ensure the existence of a weak solution (9, é) € F x ST due to
the regularity results based on increasing the regularity of the initial data. In order to prove its
uniqueness it is sufficient to prove that Uy is a contraction on SI. This is achieved by deriving
some a priori estimates on 0;7.

3.4.1 Estimates on 0,0 and 8,525

We proceed to derive a priori estimates on 0;7. Differentiating the weak formulation (3.62)
in time yields

(pf/f@(det(V.Zl)(?ﬁ) -7 dE + /fat&gz(:y) . V7 dF
Q0 Q0

3

i,0,5,8=1

3
+ Z /st)t (8abmj585(fg ﬁ(s)ds)j> f]z dx = /F (O)ath . ﬁ dr.

\  4a,5,0=1
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3.4. EXISTENCE OF SOLUTION FOR THE LINEARIZED SYSTEM

Take n) = 0,4 and integrate over (0,%) to get

Q
t
45 / / 0, (det(VB)d.F) - 0. d ds
0 S

+ Z // biajs0s(Jy 7(T)d )) 0a02( [y A(7)dT); diE ds

i,0,7,6=1

// 8 bmjgaﬁ fO ) 82 fO Y dil? ds

i,0,7,8=1

:/ dsh - 92( (fy A( dr) dl ds.
0 JT.(0)

\

First, we have

t
/ / 0s(det(V@)0s7) - Osy d& ds
0o Jag

¢ t
= / / 0sdet(VP)|0s7|* dE ds +/ / det(V@)927 - 0,7 d& ds,
0 Jog 0 Jog

but applying integration by parts in time to the second integral of the right hand side yields

t
/ / det(V )05 - 0,4 di ds
0 Jag
t
= / / det(V@)0.7 - 027 dz ds
0 JQ3

t t
1 1
= = 05 (det(V@)|0,|7) d& ds — = O,det(V@)|0.7|* dE ds
2Jy Q3 2o Q8

( t t
s / f@s(det(VA)afy) -0 dE ds + / fas&gz(a) - 0,VA d& ds
0 0 0 J

(3.104)

t
1 1 1
=~ [ det(V@)®)|0F@) dE — = | 185(0)] dF — - 0,det(V@)[8,5]2 d ds.
2 Q3 2 Q3 2 0 Q3

// det (V@) S'y) sy dx ds

2/ det(V@) ()| 07(1)[? dw—%/ 0:7(0)[* d + //adet P)OAL* d ds.
Q Q3

s
0
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Further, we have

/ /585 <Bi0‘j58/3(f08’?(7—)d7—)j> aaasg(fos’?(T)dT)i dx ds
:%/ / s <5iaj66§5(fosﬁ(r)dr)j8§a(fosﬁ(T)dT)i> A% ds
L (3.105)

t
1 7 S~ S~ ~
- 5/ / Osbiajs02s( o A(T)dT);0%,(fo A (T)dT); dE ds
0 Jag

t
+ / / Oybiaj505( f;a(f)df)jaa(ag( f;a(f)df)i) d& ds
0 Jag
and

/0 t/ﬂsas <8”‘Bi“fﬁaﬁ<fosi(7)d7)j) O2([23(r)dr); dE ds
:/0 t/ﬂsas(aaz’i”fﬁ)aﬁqos’ﬂﬂdﬂj O2([35(r)dr); dE ds
N /0 | /Q Dabiajs0s(JyA(r)dr); OZ(Jy3(r)dr): d ds (3.106)
:/0 t/Qsa"‘(asgmmaﬁ(fosﬁ(ﬂdﬂj O2([23(r)dr); dE ds

t
+/ / Oabiajsd?s( [y 3(7)dr); OX([oA(7)dr); dE ds,
0o Jog
but,

/ / Dbiagp 03 fi3(7)d),0, (2 3()r); ) diE ds

= - / / 5a(3551‘@65,6@08?(7)617)]')3f(fosﬁ(7)d7)i dx ds
0o Jaog
+/ / 3Slv)iaj585(fOSfNy(T)dT)jaz(fOS’y(T)dT)i ne dl ds
0. @ (3.107)
= - / /Saa(357)@6)35(fos“?(T)dT)jaf(foSW(T)dT)z‘ dz ds
— / / 5asz?mﬂaig(fﬁ(r)dr)ﬁ?(f;wdf)i i ds

t
—l—/ / 8slu)iaj,385(fosfy(T)dT)jﬁsz(fosi(f)df)i ne dI ds.
0 JT.(0)
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Then, combining Relation (3.105) with (3.106) and using (3.107) yield

_// Wﬂa 02, fo ) dx ds

= / / bRl 37V 22 () ) d s
0o Jog
t
+//8abm]5 25 (JyA(r)dr); O2( [ (T)dr); dEds
0 Jog
t
- / / Osbiajs025( [33(7)dr);0%( [ 4(7)dr); d& ds
o Jag
t
+/ / OsbiajsOa( [y 7(T)dT);02( [54(T)dT); g dI ds.
0 Jr.(0)
Therefore (3.104) is rewritten as
2 det(VA)( oA (#)]? d:c—l—// 0,69(%) : 0,V d ds

det(ch)( oA ()| dz + —/ / d.det(V.A)|0,7]% d& ds

/ 0,det(V@)|0s7|? dz ds + = Z / wgﬂaﬁ%aa%]( ) dx
QS

zaj/o’ 1
_Z Z //6bza]685ﬂ Jy A(r)dr); 92, [ A(r)dr); d& ds
1a]ﬁ 1
// 0 b,ajgasﬁ s A( ([, A(r)dr); d& ds (3.108)
i,,7,0=1
- Z // Osbiajsd?4( [ A O2( [ A(r)dr); d& ds
i,0,7,8=1
~ )\s ~ ~
/ / 0.h - &2(f; 4(r)dr) dT ds + / [ileFOE+EIY - FO)E] 1) d
// abmj/gaﬂ fo 7)dT),;02%( fo dr); ng dl ds
i,,5,=1
/ A0 i+ | 100 i3
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As for the stress term in (3.108) we have

t
/ / 885'?(5/) : 0s VA dx ds
0o Jaf

t
—u / / <6SV7)/(V.Zl)_1 + (VA)—tas(v»y)t)cof(v:zt) L O, V7 dF ds
0 Jaf
t
+ / / (V&&S(V.Zl)’l + as(vﬂ)*t(V&)t)cof(VA) . 0,V dE ds
o Jaf
t
+ o / / (ny(vlt)—l + V’y(V.Zl)_1>8scof(V.2l) L0, V7 di ds
0Jaf

t
2 Jy Ql

t
+ / / <V'785(V.Zl)_1 + 85(V.2l)_t(V'7)t)cof(V.2l) . 0, V7 d& ds
0 Jaf

O, VH(VA)™ + (VA)0,(V7) C dE ds

t
+ / / (V&(V.le)’l + (VA)*t(Va)t)ascoﬂvlt) L0, V7 di ds
0 Jof

= Al -+ AQ + Ag.
(3.109)
Where we have used the fact that
u(@SV'?(V.Zl)_l + (VA)—tas(v&)t)cof(v,Zt) L0,V
—u det(V.A) (asv:y(v:zt)-l + (VA)-tas(v:y)t) L O, VH(VA) !
" “ N 2
zgdet(wu (VA + (VA)9,(VA)!
and
(A+ A" : (B+B")=2A+A": B, V A B e M,(R),n e N
For A; we argue as in (3.72) to get
t
Az / @A 0, () — CT“MIOF 2 ()] s
0
> p(Cr, = CT"M) 1 (110 (3.110)
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3.4. EXISTENCE OF SOLUTION FOR THE LINEARIZED SYSTEM

For A; we use Young’s inequality with Holder’s inequality to obtain

|Ay] < / tH(vaaSwA)l + &(V}Zl)*t(V'?)t)cof(V;t)‘ e

g)Hasv;?HLQ(Qg) ds

t
S/QHVWs(V;\)1!!Lz(gg)Hcof(VAN!Loo(gg)HasVWLz(Qg) ds

0

t
S/2||V5’||L2(Q£)|IOS(VA)_lHLoo(Qg)HCOKV;‘)"Loo(gg)HasV'?Hp(Qg) ds
0

0

< Clleof( VR | (e oy |22 001 1060V R) e 1200 105 VAN s 20t
< CTI/QMH;?HLOO(Hl Qf))”;?HHl(Hl )
< CT1/2M[06|”Y||200 w2ty FOIA o Qf))}

(3.111)

Similarly, for A; we have
t
As] < /0 [(v3(va)" + (v “(va)) 8Sc0f(V:4)"LQ(Q@H@V'?HB(Q%) ds
t
< 2/ HV:Y(VA)—I‘|L2(Qg)||8SCOf(V':2L)HLoo(Q£)Hasv:yHm(Qg) ds
0

t
< 2||(VA)1HLOO(L°°(Q§))/ ||V&||L2(Q£)|’aSCOf(VA”|L<><>(Q£)H8SV:YHL2(Q£) ds ( )
0 3.112

t
< H(VA)1||Loo(Loo(ﬂ£)>/ [ 2 ) 1050V A | oo o [0 | 111 1) A
0

< CTY? | oo (11200 195€0E OV A e (e @1 1O 2211 1)

< CT">M||A| oo a2y ||| 1 (HY (1))

< CT1/2M[C 1117 e a2y O Qf>>]

Therefore, the summation of Equations (3.111) and (3.112) is bounded above by

CT2M | G5l |32 112y +O1 AN (3.113)

H(HY (] ))}
As for the integrals over €2, first we have
Ps det(V@)(1)|0~(t)]* d + = / / Dsdet(V@)|0.7|? dZ ds

2 Jo; (3.114)

>

? (1= CT"M) [0 T (12(025))-
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On the contrary, using (3.38) and (3.40) with Korn’s inequality gives

Z / wf]ﬂaﬁfyj a%]( ) d&

za]ﬁ 1

C—l-)\ r
/\ ) dX + /|V () dX — CT*MIIA| L (111 (3.115)

C—i—)\

> usCrl 7 ()7 + IV A2 = CT M| Lo 1)

C—l—/\

> 11Ol A T a0 =5 IV Ao z2(g)) = CT ML 11 023

On the other hand, using (3.37) and (3. 39) for i,a, 4,5 =1,2,3, we have

8 bmjﬁﬁsﬁ (Jo A (m)dr);02,(f3A( ;. dT ds

= —/ / 035,-&]'585'7]0&% di dS
2 0 JOj
t
< 10sbiais ()]0 ()| VA () (7205 s
/0 iB (€28) L2() (3.116)

t
< / |0sbiajs(s)]| 2
0

< CT|0sbiajpl | Lo (m2(03)) H’H%oo(m(ng))
< CT(M + M? + M? + M4)||;5/||%°°(H2(Qg))
< CTHMH:YH%OO(H?(QS))-

()i g ds

Similarly, for 7, «, j, 8 = 1,2,3, we use (3.37) and (3.39) in addition to Young’s inequality to get

aal;iajﬁagﬁ(fos’?(T)dT)jas(fos’?(T)dT)i dx ds
o

Oabia;3057;05%; dE ds
2

0
t
§/||aabz‘o<j[3(3)||L°°(98)
0

t
< ||3abz‘ajBHL°°(H2(QS))/ [06‘H’(S)Hip(gg)*‘ﬂ|as’~7(3)||%2(95) }ds
0

< CT(M + M? + M* + M*) [C'st:Y’ |70 (a1 (022))+9 yaﬁuiwmmg))}

VA(s)[|z2 )

OsY(s)||r2(05) ds (3.117)

< CT™M |Col 7113 e 113 g+ 0110 e 22
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3.4. EXISTENCE OF SOLUTION FOR THE LINEARIZED SYSTEM

Further, for ¢,a, 7,6 =1,2,3,

t
‘—//asémjﬁ 5 (fy 7 (r)dr) 102( (fy7(r)dr); d& ds
o Jag

asgiajﬁaiﬁ(fosﬁ/(T)dT)jas’% dx ds
Q2

0
t
< / ||0sbiajs ()
0

t
< [|0sbiajsl|Loo(m2 () /|:O5||f0 (7)d7 |32 )+5||as’7(5)||%2(95(o))] ds
0

< CTKM[05‘|fo.ﬁ/(3)d5H%°°(H2(Qg))+5’lat;ﬂ‘%N(L?(Qg))} ds.

F()dr|| 22008 [|105(5)] | L2 (2g) ds

Therefore, combining (3.116)-(3.118) and taking summation over i, «, j, 5 = 1,2, 3 give

A [ by o i

+ / / Oabiajs02s( [y 3(T)dr); O2( [y 4 (7)dr): dE ds

/ / Osbiajs0ag(Jy 3(1)dr); O2(Jy7(7)dr); di d8]

za]ﬁ 1

<CT*M |Gyl [5(s dsumm)+5Ham|mms +n~y|rmm>)].

For the integrals across the boundary we use (3.101),Young’s inequality in addition to the trace
inequality to obtain

t
asib 85’7 df dS S / |lasﬁ(s)|]Lz(pc(o))H@ﬂ(s)HLz(pc(o)) dS

< CT*M|[€ll 57 11|

(3.118)
HY(Q)))

< CT"M [Cs||€[%r+01I171[2

H(H\( Qf))}
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and for i, «, 7,6 = 1,2, 3, we have

Osbiajs0s( [y 3(7)dT) ;057 ne dL ds

t
< / 10sbiajsl | o) |V [ Y (T)dT || L2(r. o) | |07 (5) ]| 121 0)) s
0
(3.119)

< Cl|0biajsl| 1= (20 ))/ IV [o 3 (T)dr||m(0s) O ()l 1 (ot s

< OTYP(M + M + MP + M*) || [y3(5)ds || 1=(rr2(03))

V| g (H'(Q))

< CTY2(M + M* + M+ M) | Coll f5(5)ds e 2y +OUF s s g |

Therefore, considering the restriction of 4 on each sub-domain, and for 7" small with respect
to M and the initial conditions, i.e, the factors CT*M and CTY?M* are negligible, and using
(3.102) we get

181 [5y1.00 22y 1B 71 ) HIE W20 () HE oo )
< Ollwoll3 +Cl1Ew| 7 +CT M (1I€]I5g+1€1 57 ). (3.120)

3.4.2 Estimates Using Spatial Regularity

We have proved that the linear system has a strong solution (@,€) € FI x ST. Therefore,
for all t € (0,7, the fluid velocity © satisfies the following equation

V 39(®) = ppdet(VA)OD  in Q)
which can be rewritten as
pV - (Vo + (Vo)) = ppdet(VA)GD + F; in Q)
with
Fy = —pV - f,
where
fs = (Vﬁ((v,‘zt)*l ~1d) + (VA) - Id)Vf;)t>cof(VJ2t) — (Vi + (V5)") (cof(VA) — Td).
Using Lemma 3.2.2 we have
1 Eollzoe o) < || fol| e iy < ZHCT MI[B] o0 112)-
Hence, we obtain
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3.4. EXISTENCE OF SOLUTION FOR THE LINEARIZED SYSTEM

Besides, the structure displacement é satisfies the following equation

-V (2use(é’) + A (V- é)Id) = —p,det(V@)OF€ + HE + HE, (3.122)
with
3
He, = D7 (Fhagp + Clago) O2psn fori=1,2.3
a,j,5=1
and

2 c .
=C Z dzagﬁ za],B + dza]ﬁ + dzajﬁ) aﬁ£j7 for i = 17 27 3.

a,j,f=1

Using elliptic estimates and thanks to (3.37) we get
€| |2 12y < ps CT M ||O2E|| oo (12 +CT(M + M? + M3 + M*)||€]| 1< (129 (3.123)

To bound [|9yD|| e 12 of and Haféum(g(gg)) we use (3.120). Finally, taking 7" small with
respect to M and the 1n1t1a1 conditions in (3.121) and (3.123), then combining them with (3.120),
we achieve the following estimate

1812 -+1€12 < CT* M| Bg+Cllwol B+ 16 - (3.124)

3.4.3 Fixed Point Theorem for the Linearized System

Based on the estimate (3.124) on the solution (@,€) of the linear system (3.99), we proceed
to prove that the function ¥y is a contraction on ST, Let £, ¢ ST, For a = 1,2, we denote
by (D, €,) the solution of (3.57) with

3

t
gi=hi=— > ( / Osbiaja0s(8a); ds)ﬁm i=1,2,3.
0

a7j7621

Since (@1, &) and (@, &) satisfy System (3.57), then we can say that (©; — ¥y, & — &) satisfies
System (3.57) with g; = h! —h2 and null initial data. Hence, applying (3.124) to (1 — 0y, & — &)
and noticing that the right hand side of the estimate contains only a norm on SI given by
Hél — éQ"Sg added to some constants, consequently we get

1€ — 52‘|s§: 1Wo(&1) — ‘Po(éz)HsQTS CT"M||& - 52“5;- (3.125)

Taking T" small enough with respect to M, gives that Wy is a contraction on ST, Therefore,
we assure the existence and uniqueness of a fixed point § € ST'. Consequently, we obtain the
existence and uniqueness of a solution (0,&) € FJ x ST for the system (3.99). Finally, with
the assumption of 7' being small with respect to M and denoting C/||vo||3: +C/||&1|[3: by Co we
obtain

181172 +1€]13r < Co- (3.126)
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3.5 Regularity of Solution of the Linearized System

3.5.1 Regularity of the solution

Proposition 3.5.1 Let (#,€) € AL, with the assumption that vy € HS(QJ) and &, H3(0)
and satisfies (3.30). For T small with respect to M and the initial conditions, the solution (0, &)
is in the space F] x ST. Further, it satisfies

||| pr €57 < Co, (3.127)
where Cy denotes a constant in the norms ‘|UQHH6(Q£) and HslHHZS(Q(SJ).

By Proposition 3.4.1, we have proved the existence and uniqueness of (9, €) € FZ x ST. Increas-
ing the regularity of the initial conditions results a more regular solution |Eva98, Brel0]. The
regularity of the solution in case of a linear FST problem where the structure is considered to be
quasi-incompressible have been proved in [CS05]. Hence (v, &) belongs to F] x ST.

Next, we proceed to derive a priori estimates on the solution (@, €) in FI x ST.

3.5.2 A Priori estimates on 7 in A,

A Priori Estimates Using Time Regularity

The solution 4 satisfies the following variational formulation

det(V@)0,7 - 7 d& + / 59(3) : V@ d

f
2

pf/fdet(V.;l)(?fy 7 dT + ps/

Qf Q3

3 3
+ > biajpOs(fy A(s)ds); Oafli dB+ > | OubiajpOs(fy A(s)ds); T dE (3.128)
Q3 Q3

/[:7a7j7IB:]‘ /[:7a7j7/B:1

=/ g-fdl, View
<(0)

\
with
3 t
gi=- > </ Osbiajp0s; ds)ﬁa, i=1,23
a,j,B8=1 0

Differentiating three times with respect to time and taking 7 = 934 yield

( “
oy /f det(V.A)0!5 - 024 dZ + Oy + ps/ det(V@)0}7 - 077 dz + Cy
Q Q

s
0 0

i /Q K <V’y(V;l)_1 + (Vil)‘t(V‘r)t)cof(Vll) . V) dZ + Cy (3.129)

3
+ ) / biajp0s0R7; 0a0PF; dit + Cy = g - 035 dr,
i, B=17% I'.(0)

Page 94



3.5. REGULARITY OF SOLUTION OF THE LINEARIZED SYSTEM

where,

Cy =3py /
QO

+ ps /Q , Pdet(V.A)D,7 - 937 di,

02 :3ps /
Q8

+ s / O3det(V@)0,7 - 935 di,
Q

s
0

| Odet( VAT - 07 di + 3py / O}t (VA)7 - 0}5 di

Qo

Ordet(V@)0; 7 - 97 d& + 3p, / 02det(V @)027 - 037 d&

2

Cs =3p / O (Vﬁ(vﬂ)*l + (V.;l)’t(V'?)t>8tcof(V;l) L VORy di
QO
+ 3 / , é%(V&(VA)*l + (V,‘Zt)*t(va)t)afcof(v,‘it) . VO d
Q0
+u / , (V&(VJZt)*1 + (VA)*t(V&)t)afcof(vJZt) 1 VO}y di,
QO

and

3 3
Ci= Y. /Q safbwjﬁaﬁ(fga(sms)j 0a07%; dZ+3 ) /Q safbmjﬁamj 0.027; d

i,0,7,8=1 i,0,5,8=1

3 3
13 3 | Obiys0s0; 0005 dz+ Y [ o, (aazémjﬁaﬁ( f(f’y(s)ds)j> 933, di.
irag,8=1" % i, B=1" %

First we have,

t

pf/ / det(VA)DI5 - 037 d& ds =22 | det(VA)35(H)? dz — ﬁ/ 1035(0)|? dz
0 Jo 2 Jaf 2 Jaf
t
+ p—f/ / 0,det(V.A)|*7|? d ds.
2 Jo Jof

Thus proceeding as in (3.71) we get

t
“ e an p . an
o [ (VA0 - 05 da ds = B - CT MO L oo~ ol (3:130)
0 Jof
For the fluid stress term we proceed as in (3.109) to get

t
7 / / ) o (V’y(V,Zl)‘l + (V.:Zl)_t(V’y)t>cof(V.2t) . V& dE ds
0 JQ

4
2 Jo Jaf

t
+ 1 / / (nyag(v:zt)—l + 8§(V.;l)_t(V’y)t>cof(V;l) VY di ds.
0o Jaf

RVA(VA) ™+ (VA3 (VA) C i ds
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Then, using Korn’s inequality we can estimate the right hand side by

H(C — CT M) |34 (3.131)

@)

On the domain €2, similarly as (3.130), we have
t
v ~ ~ ~ pS K ~
po [ det(V)0 05 b ds = 21— CT M0 raopy il (3132)
0 JQ3

In addition,

3 t
Z / / bmjgﬁgaf% 0.0}7; dT ds
o Jog

i,,j,8=1
1 3 1 &
= > | [evstiiocin|e ds -5 S [ [Banosotio.cii] o) da
ivavjvﬁzl 8 i,a,j,ﬁ:l 8
1< t y
) Z / / Osbinjp0502%; 0,02%; dZ ds.
ia,,8=170 Jag

Whence, using (3.37)-(3.38) with Korn’s inequality give

3 t
Z / / biajp03057; 0.02%; diE ds > Mka||8t2’~)’||%oo(H1(Qg))—CTHMHfo.:Y(S)dﬂ|§g~
0 6

i, 8=1
(3.133)
Further, on the boundary I'.(0) we have
t ~ 3 t . _
/ 8?9 . ((“)35/ dl’ ds = / 8§biaj585(f08’7(7')d7')j fLa 85’% dl’ ds
0 Jr.(0) ioip=170 JT(0)
3 t ~ 3 t 5 ~
+2 ) / / 02biajs0p7; T 05%; dT ds+ ) / / Osbia;505057; Tl 027 dT ds.
i,a,5,6=1 0 JIc(0) i,a,j,8=1 0 JT(0)
Proceeding as in (3.118) and (3.119) we get
t
| [ [ o905 i as) < oro [ s)asl sy ey (3134)
0 Jr.(0)
On the other hand, to deal with C, Cy, C3 and Cy we use the following bounds
10Fdet( VA | o e 0 < OM", K =1,2,3. (3.135)
10 det (V@) || oo ooy < CM*,  k=1,2,3. (3.136)
||af(v~;l)_t||Lo<>(p>o(§z§))S CMk7 k=1,23. (3.137)
10 cot(VA | o ooty < CM*, bk =1,2,3. (3.138)
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3.5. REGULARITY OF SOLUTION OF THE LINEARIZED SYSTEM

Then,
¢
/0 Cy ds < CT* M7 (3.139)
Similarly
/Ot Cy ds < CT“M\WHQFE. (3.140)
On the other hand,
/0 Cy ds < CT* M| [;3(s)ds]|2 (3.141)
and
/Ot Cyds < OT“MHf(ﬁ(s)dsH?SZ. (3.142)

Combining (3.130)-(3.134) with (3.139)-(3.142) and considering the restriction of 4 on each
sub-domain give

3 2
10D e 20

<CT"M (||v||Fg+||§||§4T) + C([1& Iz +[wollZre). (3.143)

f +||at26||22(H1(Q£))+||a?£||%°°(H1(QS))+||821£||%°°(L2(QS))

This estimate together with (3.126) lead to the following estimate

18112 12y 1Py sy 191 s ar gy 11 B gy HIEN e ey

< CT*M([8] 3 +IENZy) + CUIE o+ ool o). (3.144)

Spatial Regularity

e Step 1: Estimates on @ in W2 (H2(QJ)) and € in W2 (H2(Qg)).
The fluid velocity v satisfies the elliptic equation

pV - (Vo + (Vo)) = ppdet(VA)GD + F; in Q) (3.145)
with
Fy = —pV - fs,
where
fa = (Vﬁ((v)t)*l ~1d) + (VA) ' — Id)Vf;)t>cof(V.2l) — (Vi + (VD)) (cof(VA) — Td).
as defined in Subsection 3.4.2. First we have

107 (det(VA) D) || oo (12 < CM?([8|lws.oe () < Cllwol | s+ Cl[€1 || s +CT*M (||| +1€] 7).
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First, let us estimate Fj in W2°(L?). In fact differentiating f5 two times in time gives

[(afva) (VA —1d) +2(0, V) (0,(VA) ) + (Vﬁ)(af(v,it)—l)]cof(v,it)

+ (atw) (VA)™ - 1d) + (V) (at(v,z’t)—l)} (Dicof(VA))

+ (V) ((VA)™ —1d) (92cof(V.A)).
Using (3.135) with the embedding of H? in L* and taking into consideration that

1| o (1) < Cllvol[ms+T|0]| 5 ar)
yield
1Fsllwamqz < CT M8 lwaom ity +Cl ool s (3.146)

Therefore, using (3.144) and the elliptic estimates on © we obtain

[18]lw2e (112 < Cllvoll o +Cl1&1 || ms+CT M (I[85 pr+|€]s7)- (3.147)

On the other hand, the structure displacement £ satisfies (3.122). Differentiating two times
in time yield

2|V - (20,6(€) + \(V - ) 1d) | = —p,07 (det(V @) 02€) + O HE + 0P HE,

with
3
ol i 2 & .
Hg, = Z (Ciags T Clajs) Oaplys  fori=1,2,3,
a?j7B:1
and

)

3
d _ iL Q T F N2 & C
He =C E (diz;s + ditig + dinjs + i) 00585, fori=1,2,3.
a7j7/8:1

First, we have
1det(VB)D7E|| 22y < ClIEllwae (z2).
Then using (3.144) we get
[det (V@)ITFEN 20ew2ayn < Cllvol s +C11&1 s +CT M (|[3] [ pr+]€] 7). (3.148)

Further, for 83H§ we have

t
0; Hg(&,t) = 0; HE(&,0) +/ 8§H§(5;,s) ds YV &e (3.149)
0
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3.5. REGULARITY OF SOLUTION OF THE LINEARIZED SYSTEM

Simple calculation of Q?Hg(i:,s) then setting ¢ = 0 and using the fact that 9,¢,,;5(%,0) is a
function of & give ||8fH§(5:,5)HLoo(L2(QS))§ C||&1]|gs. Moreover,

t 3 t t
/0 OsHE(Z,s) ds = > [/O B2 (Bajs + Choin) Onsts ds+3/0 s (Chojp + Clojp) 025(038;) ds
i,0,5,8=1
t 5 t 5
ol o ol u
Hence, integrating over 2§ and using (3.37), we get that the first three terms of the right hand
side can be estimated in L>(L*(Q3)) by
CT*M||€]|s7-

On the contrary, integrating by parts in time in the last integral of the right hand side gives

t
(ééajﬁ + 5?@5)%5@3&)(0 - (ééajﬁ + 5gaj5)8§5(8§§j)(0) _/o s (ééajﬂ + 53@5)%&@3@) ds

(3.150)
3 ~
As €(0) =0, then > [(éﬁaﬂ + égajﬁ)agﬁ(aggj)} (0) = 0. In addition,
i,0,7,8=1
1805 + CiagsllLoewn) < TN0iE 5 + 05l | L2y < CTEM.
Therefore,
(3.150) < CT"M||€]|sr-
Consequently,
107 Hgl| L=(z2(p) < CTM][€] |7 (3.151)
Similarly, one can show that
107 HE || L (12(05) < CT"MIIE]|s7- (3.152)

As a result, combining (3.148), (3.151) and (3.152) an estimate on & in W2 (L?()) is given
by

[1€] w2 2050 < Cllvolls+Cl1€]| s+ CT M| 18| +11€]s1)- (3.153)
Finally, combining (3.147) and (3.153) we get

101 lyy2.00 (122 THIE w20 205 < Cllvol [ as+C &l as+CT"M([[0]| g +I€llsp).  (3.154)
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e Step 2: Estimates on & in L®(H*()) and € in L=(H*()).
Again, the fluid velocity satisfies (3.145). We estimate Fj in L®(H?(Q))). First,

HF’EHLOO(HZ(Q(J;))S N‘|fﬁ|’L°®(H3(Qg))'
But

| £l oo 29y <21 VB | o (1) | (VLA) ™ = T | oo 119) | [€Of (VA || o (179)
+ |lcof(V.A) — Id|| o (g73)| [V B|| oo 113)
<CT*M||VD|| oo (mr3)
SCT MI[D|[ oo (r14).-

Further, using Estimate (3.154) we have
|det (VA0 o= 112y < C M| lwaoe a2y < Cllvo s +C11&n || s +CTM (1[5 52 +€] | 7).
Hence, the elliptic estimates yield
18]z sr) < Cl[vol s +C |l | s+ CT™ M (|[8]| 5 +1€]|s7)- (3.155)

Besides, the structure displacement ésatisﬁes (3.122). Then, by using the fact that &, = 0 with
(3.37) we have

1&a5 + Ciagsll ooz s) < TN o5 + 0l 5l | Lo (2 () < CT M.
Thus, Hgg can be estimated by
C|07& || oo 2y +CT" M€ || o (11 (3.156)
By a similar argument, we find that Hg can be estimated by
CT*M||€|| Lo 11)-
Thanks to the Estimate (3.154) on €, (3.156) can be estimated by
Cllvol s +C|[€1]| s+ CT* M (||3]| pr+11€] |57 )- (3.157)
Therefore, using the elliptic estimate we get
[1€]] 25 11y < Cllwol| s+ C[&1 || s +CT M (||| +1€] 7). (3.158)
Combining (3.155) and (3.158) yields
1811 sty 1€l = < Cllvol o+ CllEalls+CT* M8l g +1Ells7). (3.150)
Finally, Estimates (3.144), (3.154) and (3.159) give
18] +11€] 57 < Cllvoll s +C1&1 ][ +CT™M(||5] | pr+|1€] |57 )- (3.160)
Assuming that 7" small with respect to M and the initial values yields
1817 +1€lls7 < Cllvol s +C||€1]| 3= Co. (3.161)
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3.6 Existence of Solution of the Non-Linear Coupled Prob-
lem

From Proposition 3.4.1, there exists Cy > 0 and # > 0 such that for all M > 0 and (T),é) €
AT, there exists Ty > 0 so that the solution of (3.99) satisfies

18]132+1€] 13 < Co, (3.162)

for all TA§ ;.
Taking M = C, we get

18112+112 < 1. (3.163)

We seek to prove the existence of a solution of the non-linear coupled problem (3.5a)-(3.5j).
To establish this result we use the fixed point theorem. For this sake, for any 7" < T, we setting
E = Ff x S5 and W = AL. The set W is a closed subset of E. We define the function
U (6,€) — (9,€) that maps (8,€) € W into (8,€) € W which is the solution of the linear
system (3.99). An element (a,b) € U(W) is written as (a,b) = U(&, ) where (¥, €) belongs to
. But the definition of U gives that U (%, €) = - (D, £€) which is the unique solution of the linear
problem (3.99) in W, consequently (a,b) = (©,€) € W. Therefore, U(W) C W.

Consider two pairs (91, 51) and (D2, Eg) € W and two solutions (vl,fl) (Ug,§2> of the linear
system (3.99) associated to (¥y,€,) and (¥, &), respectively. Therefore ¥, ¥y, & and &, satisfy
the variational formulations (3.60) and (3.103) with

3 t
1 0

Set ¢ = A — A, then ¢(0) = 0 . The main work in this section is to find estimates on ¢ and
0;¢. These estimates will enable us to apply the fixed point theorem for a suitable choice of T’
to be precised later.

Page 101



CHAPTER 3. NON-LINEAR FLUID-STRUCTURE INTERACTION SYSTEM

3.6.1 Estimates on 5

Consider ¢ = 41 — A, in (3.62) then ¢ satisfies the following variational formulation

( v ~ v, v,
pf/fdet(VAl)@C -7} dE + /f&g(c) L V7 dE + pf/fatfh [det(VAy) — det(V.A,)]7j di
Q Q Ql

0 0

+ps/ det(V@1)0,C - 7 d + )Os/ 2 - [det(V@y) — det(V @y)| 7 dx
Q5 2

0

3 3
+ ) /Q iajs(VEDs(Jy C(s)ds); Oufl dE + ) /Q 0abiajs(VE)Is( [y C(s)ds); 7 diE

i,0,,5,8=1 i,0,5,0=1

3
t 2 /ﬂ (biess (V€1) = bias (VE2) ) B 3a(s)ds); Ouis dt

i7a7j7ﬁ:1

3
+ > /ﬂ S(aabmjﬁwél)—aabiajﬂ(vég))aﬁ( [ Fa(5)ds) 77, d% + / Fy: Vi di

i,0,5,8=1 of
= G -7 dl VieW,
\ Fc(o)
(3.164)
where
&Y(C) = u[VE(VA) ™ + (VA) (VE)eof (VA (3.165)
and
Fy = u[VA((VA) " cof(VA) — (VAy)lcof(V.A))]
+ u[(VA) (V) cof (VA — (VA) ™ (VAy) cof(V.Ay)]. (3.166)
Further, for i = 1, 2, 3,
3 t
Gi = (/ Osbiaja(VENDs( [ {(T)dT); dS) Mla
cgg=1 \7 0
3 t
+ Z (/ [&bmﬂg(Vé) — 8sbmj/3(V§2)} 85(f05f72(7')d7')j dS) fla. (3167)
a,j,B=1 \V0

Moreover, for simplicity, in what follows we set

Lo = ps0i7:[det(VA,) — det(VAy)] and Ly = p,0i7[det (V@) — det(Vgs)].  (3.168)
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3.6. EXISTENCE OF SOLUTION OF THE NON-LINEAR COUPLED PROBLEM

Taking 7 = ¢ and using the fact that ¢(0) = 0, then proceeding as in (3.70) yield

det(VA)|C(1)|2 dz — pf// d,det(V.A,)[C)? d d5+//ﬂf ): VC d& ds

QQf

t
ps det(V @y ) (t)]? dx — / Dsdet(V@1)|C|? dZ ds +/ / Fy: V(¢ dx ds
2 Q3 Q) 0o Jal

t t
+//Lo~ﬁd5:ds+//L1-ﬁd5:ds
0 Jol 0 Jog

+_ Z / icj VEl aﬁ fo ds fo

zagB 1
PN Z // 0 bzaj,b’ VSl 8,8 fO fO d(E ds
za]ﬁ 1 0
+ // 0 bzaj,@ Vgl 8,6’ fO fO dw ds
i,0,7,0=1
/ / zajﬁ Vél) zajﬂ V€2 >85 fO "}/2 dT fO dw ds
i,0,7,0=1
/ / a biajs (VEL) — Oabinjs(VEs )ag I8 A (r)dr);0( [ E(7)dr); d ds
i,a,7,0=1

:/t G -0, &(r)dr) dI ds.
0 JT.(0)

(3.169)
We proceed to estimate the terms of (3.169) in the spirit of [BG17| by using the fact that

lcof (V. Ay) = cof(V.As)[| a1y < C|[1 — B[,
(VA = (VA) | o)< ClJ1 — 8o |y
|det(V.Ay) — det(VAy)|| oo ()< Cl[81 — B[y (3.170)
and
|det(V@y) — det(V )|l oo (i < C1€1 — &l 57
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which can be established in the similar manner used in Lemma 3.2.2.
First, using Lemma 3.2.3 we have

p; det(V@))|E()? dE — //atdet DIE? d# ds
o

> ps(1 = CT*M)|[C|[700 (120

Using (3.37) and (3.39), for all 4, «, j, 8 € {1,2,3} we have

Hbiaj,B(V€1) - biajﬁ(VEZ)HLOO(Hl)S CHél - §2HL°°(H2)7
[0abiajs(VE1) = Oabiajs(VE2)| Lo (22)< Cl€1 — &2l | Lo (m2)

3.171
and ( )
1|0, za]ﬁ(vél) b za]B(V€2)HL°° (L)< CH£1 §2HW1’°°(H1)-

Then an estimate on G is given by
1G L 2o < CT*M (11 = Ellsg +HICN e anany ) (3.172)
Hence, proceeding similarly as in (3.79) we get
t
/ / G - 9,( [y ¢(r)dr) dT ds < C||G| 31 z2(r. 0y HT 11 3¢ (s) dSH%oo(Hl(Qg))
r.(0)
< CTMIE - Bl +HCT MG (3.173)

Taking into consideration (3.171) and the embedding H' C L® [Brel0, Theorem 9.9] we obtain

Z / / (Biess (VE1) = bias (VE2) ) B 5 a () dir); 02,(J5C(7)dr); d ds
0

‘ i,0,7,8=1

Z// abm]ﬁ VE) — Oubiajs vg)aﬁ 550(r)dr) ;00 [ (7)dr); dE ds
0

zoc]ﬂ 1

< ZTHbmjﬂ(véo biags (VE | 1oe (1) |1V fiA2(8) s | ogany ||V € (5) |12y

i,0,5,8=1

> T Oubiags(VE1) — Oubiags(VE) |1 (wt) 1V fi72(5)ds] | oo ) |€] Lo 0

/L‘?a7j7/B:1

< CTM||& — £2H%°°(H2(Qg))+CTM"CH%OO(Hl(Qg))'
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On the contrary, using (3.38) and (3.40) we have

Z / g8 V£1 aﬁ fO dS fO dS

i,,7,8=1
)\ K
> Ms||fo dS||L°°(H1(QS))+ |V fg d‘9||L°° L2(93)) —CT M||fo d‘9||L°° HY(Q8))"
(3.174)
Whereas, for the integrals on the fluid domain Qf we have
det(V.A,)|E(1)|? d& + / / dydet(V.A)[C)? dE ds
Qé
ﬁ . 3V 2
On the other hand, for Fy we have
1B o), < CTIIB: — Bl (3.175)
t ~
Then, using Young’s inequality we bound the integral / / F,:V( dx ds as
0o Jof
FO V¢ dz ds| < / / |F0||VC| dx ds
of
3.176
< CllB gty O et (3:176)
< C(SCTHIvl - UQHFT—i_(S‘CHLQ Hl(Qf))
In order to deal with the integral in Ly we use (3.170) and Young’s inequality to get
i yo [det(V.;ll) — det(V.Zlg)}f dx ds
f
< T’H’?HLOO HY(Q)) ||det(V.Ay) — det<VA2)HLoo(H1(Qg))HC|’Loo(m(g({)) .
< CTMHvl - UZHFTHCHLOO L2 Qf))
< CT*M |Csl[51 = B3 +0111 2 e 2oty |
Similarly, for the integral in L; we have
t
/ / Oy [det(Vc,Bl) — det(VcZa)}C dx ds
0o Jog (3.178)

< CT*M[Ci1é = &Iy +011C e z2capy |
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Finally, proceeding in a similar manner as Subsection 3.3.3 with the use of (3.175)-(3.178) and
taking into consideration that 7' is small with respect to M we get

IEIR 1 E(s)dsI < CT M 11y — &l g1 — Bl . (3.179)

3.6.2 Estimates on 8tgt

The weak solution ¢ satisfies (3.164). Differentiating (3.164) in times gives the following
variational formulation

( dydet(V.A)0,C - 77 d —|—/ 9,6%(¢) : Vi da

QS

pr [ At (VAN 71 5+ py
0

+ps / det(V@)02C - 77 d& + ps | Ddet(V$1)DC - 7 di

2

_ Z /at 1ags (VENO25( [ C(5)ds); 7l; d

i,a,7,0=1

+ Z / Oabiajs(VEN%( [y C(5)ds); 7; dE

i,a,7,0=1

+ Z / i0j B Vfla fo s)ds); Oafli da:—i—/ O Fy : Vn dx

i,a,7,8=1

+/f8tLo-ﬁd5:+ oL, -7 d&
Q0

2

- Z / at za]ﬂ(vél) at wz]ﬁ(VfQ ) af fU 72 dS) 771 dx

i,0,7,0=1

+ Z / a bla]ﬁ<vél) a bzagB(V£2 ) tg fo 72 ds)] 77@ dx

i,0,7,0=1

+ Z / 104]5 Vgl) zagB(V€2 ) ts f() 72 dS) aanz dx = 0 v 77 € W

\ i,0,7,0=1

(3.180)
where &9(¢), Fy, Ly and L are defined in (3.165) and (3.166)-(3.168), respectively.
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Take 77 = 9, in (3.180) to get

d o .
(P d | de +(VA)[0,E(1)]? dE + p—f/ Odet(V.A)|0,C|? d

s d
+%E det(v¢1)|at (t)[? d& + /é‘tdet D[0P dz

/ 8,5%(C) : 0, V¢ dz

L 1d ’ s
v 3 / g (VEN L E()ds); O (J1 E(s)ds), di
2 o

—= Z /at iajB (VE, )075( fo s)ds); Ops( fo s)ds); d@

za]ﬁ 1

+ Z /abm]ﬁ VENL ([, ((s)ds); OF( [, ((s)ds); d&

i,a,7,0=1

(3.181)

— Z /at i0is(VE)Dus( [y C(s)ds); OF( [ C(s)ds);

i,,7,0=1

+/f8tL0-8t§ d:z+/ O,Ly - 0F( [y C(s)ds) d
af Q3

+/ 8,5F0 . 8tVf dx
)

- Z / 815 ’LOéjﬁ(Vsl) 815 Za]B(V£2 ) af fo ’72 dS 62 fO dS dx

i,a,7,8=1

- Z / biajp (V&) — zaaﬁ(V52)> Oy ag(fo Yo(s)ds); O2( fo s)ds); dx

i,,7,8=1

= - Z /1" za]ﬁ Vél) za]B(VEQ ) tB fo 5/2 dS na 82 fO dS d
(0)
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where we have used

Z biais (VENIZ([iC(s)ds); 0.02([yC(s)ds); di
i,0,7,8=1+ Qg

= Z biajs(VEND(J3C(s)ds); D02 (f;C(s)ds): d

i,a,7,8=1+ Qf
’ 1 y . .

= Z /Q5lat<bmw(V£1)5fg(f0C(S)dS)j at,za(foC(S)dS)i)
i,a,5,0=1 8
— Orbiaja(VENIL( [, C(s)ds); O (fyC(s ] dz

and

Z / (bmefﬁ - bz-amWé))635<J"J€<s>ds>jaaaf<f5§<s>ds>i di

Z O [( iais(VE1) — zaJB(V£2) s (JoAa(s)ds) ] F(JoC(s

Qozajﬁ 1

— Z / za]ﬁ Vél) WJB ng > tﬁ fot"~}/2 dS na 62 fO dS
P

la],B 1

= - Z / (wzjﬁ V€1 za],B(V£2> (%] fO'YQ dS 82 fO di‘

za],B 1

- Z / (zaw V) - zaJB(VSQ)) (Eg(fm(s)ds)j) O2([LC(s)ds); d

za]ﬂ 1

- Z / wz]ﬁ VEI za]B(V£2 > tB f072 dS) na 82 fO df

i,a,7,0=1
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Therefore we can write (3.181) as

(pr d o ~ o -
b dt/ det (V.A)|0,E ()2 di + % (VA0 @

. d y
T det(chl)]at ()7 di + 2

2 dt

+m Z / i (VENTL([1 E(5)ds), afau(fé(s)ds

i,,7,0=1

- Z b (VENIL(fi C(s)ds); O2,([1 L(s)ds); d

zaj/o’ 1

s / Oubiass(VENDZ (1 {(s)ds); ([ C(s)ds), di (3.182)

i,0,7,0=1
- Z at iaj B V€1 5 fo )j atQ(fot E(S)d‘s)l dx
i,0,7,8=1

—/f(?tFo 0,V dE + | 9,Hy- 03[, {(s)ds) d&
Q0

2

—/fatLo.até dzE—/ 0Ly - 02( [, C(s)ds) d&
Q S

_ Z / binjs(VE) — mjﬂ(V&) 2 ([ Aa(s)ds); e ([, ((s)ds); dT,
i,0,7,8=1
where
3
Hy, = Z (bmjﬁ(vél) biajs ng) ([4a(s)ds);  fori=1,23. (3.183)
a,j,B=1
Step 1

Now we proceed to derive some estimates on

Clos € H'(H) nWHS(L?), Loy € WH(L?) N LX(H') and /té(s)
0

QSdS S LOO(Hl).

First, we have

t
/det(V.le)]@tf(t)]Q d:’t’:—k//@tdet(V.le)]atf]Q dz ds
Q) 0 Jaf

> (1— T M) (3.184)

> (1-CT*M)|ICII;

Wloo(L2( Qf CTMHCHFT

Wl,o0 LZ(Qf)) THMHCHFE
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Whereas, for the fluid stress term, proceeding as in (3.110) and (3.113) we get
t
/ /f@s&(l)( 0,V dE ds > ,u(]k||8tC||L2 (@l ,u(]T"“]WH@tCHL2 w1l (3.185)
0 Ja

O Fy : OtVQ: dx, we argue as in (3.176) to obtain
af

/ 8tF0 . (9tV5 dx
of

0

< / 0. F||0, V]| d
Qf

0

<
of

Cs|0.Fy|* d +/ 5|0,V di

0 f
< Csl|®1 — 62\|§g+/ 810,V E|? di. (3.186)
o
Similarly, we have
/ O, Ly - 0,C d&| < Cs||B, — 1‘32]@;+6H8t E(t )HL2 0l (3.187)
of

Combining (3.185)-(3.187) and integrating over (0,t) we get

1111wy 1€ Bos iy~ CT MO 2oy < CTNB = ol B 48110V s

(3.188)

As for the integrals on the domain €, first we have

/det(Vgol)k?t )| da:—i—//@tdet V0|7 dz ds

CT*M)||€|[f1o0 (220 ~CT "M |[F oo a1y (3-189)
Further, using (3.38) then taking supremum over (0,7) yield
Z / za]ﬁ V51 aBC] aCz ( )
i,a,7,0=1 (3190)

s + - I
IIV-CH%wmmg))—CT MIICIIgs-

> 115|€ 700 (111 03+
On the other hand, using (3.37) we have

‘—— Z / Obiass(VENDsC; Dul; dE + Z / Dubings (VE)DsC; 0,G; di

i,a,7,8=1 i,a,5,8=1

Z / Dbiags(VENDus([1C(5)ds); 0, d
Q3

i,a,7,0=1

(3.191)
< (JT“M||C||ST.
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In order to estimate / O:Hy - 0%( fo s)ds) d& we use the following two inequalities

S

1biajs(VE1) = biajs( V€| ooty < C1€1 — Eal|Loe(r2(0g) (3.192)

and

10:biajs(VE) — Oibiajs(VE)|| w12y < C1€1 — Eollwroe (i a))- (3.193)

These inequalities together with Young’s inequality give

/ 0,Hy - 97 ( fo s)ds) dx < CsC (||§1 - §2||%/V1x°°(H1)+||€1 - §2||%°0(H2)) + 5“8?55”%00@2(93))'
QO

(3.194)
Further,
/ 0Ly - 07 ([yC(s)ds) d&| < Cyl|€1 — €2||§g+6||at6(t)||%2(ﬂg)' (3.195)
QO
Finally, thanks to the trace inequality and (3.171), for i, «, j, 5 € {1,2,3} we have
‘ / <biaj5(vgl) biajs (V€2 ) s (JoAa(5)ds); 7o 07 ([oC(s)ds); dT
e PEO 3 196)

< biais (VED) () = biajs(VE) )| 22 op) || VA2 ()] oo (oo |02 [ € (5)ds | 22(ro0y)
< [biajs(VEL)(t) — bz’ajﬁ(vé)(t)HHl(rc(o))HV%@)HH?

Hence, after combining (3.189)-(3.191) and (3.194)-(3.196) then integrating over (0, ) we obtain

COlpgr o

Ps\z : - ¥ _ g ¥ _ &
5"C"L“(LQ(QS))+NS"CHLQ(Hl(QS))S CT[M4\\C\\SQT+”51 - 52“12/1/1100(H1)+H£1 - 52“%00(112)]

(3.197)

Step 2

Our next step is to estimate C|Qf e L=(H*(Q)) and fo

velocity C |os satisfies the following elliptic equation
0

s)|asds € L>(H?(€25)). The fluid

~V (Vo)) + (VE|gn)) = V- Fy + V- Fi + V - Ly — det(VA)I Ll in O (3.198)
where Fj is defined in (3.166) and

= V(1a - (VA "eof(VA) ) + (VO = (VA) (V) cof(VA)).  (3.199)
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We have
V- F0||Loo(L2(Qg))§ HFOHLoo(Hl(Qg))S CT|[v: — '52||F2T (3.200)
and
IV - Lol oo 2(00)) < 1ol oo (111 0f)) < CT |01 — o[-
For F; we have
By

B; (3.201)

IV - T(VE) — (VA (VE) ol (VA

~
B>

For the term B; we use the embedding of H* C L* and Lemma 3.2.2 to get

B, <

v {V&(Id _ (V.:ZM)A i (V.Zl)fl(:[d — cof(V-Al))ﬂ )

<|| V|| poe(z2y || Id — (VA) ™+ (VA) ! (Id - cof(V.A,))

[
L (3.202)

+ V¢ |2y |1d — (WA + (VA) 7 (Id - cof(V.A,))

‘LOO(H3)
<2/[¢ || oo (2r2) [HVJZH — Id|| oo (1) 1| (V. AL) | oo 9) | [cof (VAL ) — Td | oo (113)
<CT*MI|L|| 1= (112
On the other hand,
B; =(V{)! — (Id — Id + (V.A,) ) (V) cof(VA))
=(V{)' = (VA = 1d)(V{) cof(V.Ay) — (V) cof(V.Ay)
=(V{)'(Id — cof(VA;)) — (VA;) ' —1d)(V) cof(VA).
Thus,
|| B | oo (22 <[ V2 10w (12)||cof(WAL) = Td|| poe 1) +| [ V| e (12| [cOf (VAL ) — Id| | oo (119
+2/[(VA) ™ = Td|| oo (17| V| 1o (22) [ cof (VAL — Td] | o (179)
+[1(VA) ™ = Td|| e 17| | V2E | o (12| cof (WL AL) = Td|| o (179)
<CT*M||C|| o (112)-

For the calculations done on the divergence of the product of two tensors, check Theorem C.1.
Consequently, we obtain

IV - Fi|| e 12y < CT"M||C| oo (122)- (3.203)
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Therefore, 6]95 e L=(H*(Q)) and

MHEHLOO(HQ(Q(J;))S C||at5||Loo(L2(Q£))+CTH51 - 52||F2T (3-204)
Besides, the displacement fo s)|azds, satisfies the following equation
—/Ls VfO QSdS + VfO QSdS) ) H() + H1 + H2 - V. L1, (3205)

where Hj is defined by (3.183). As for Hj, it is given by

3

Hy; =— Z [ m]ﬁ(vfl) binjs (VE, } af fo

ahj’ﬁ:l

s)|asds); for 1=1,2,3, (3.206)

and the expression of Hj is
H, = —det(V@;)0:C.

Using (3.192) and (3.193) we have

3

[ Hol| oo (£2(023)) < Z 1Diajs (VE1) = biajs (V&) Loe 2y 1| JoV2(8)|agds|| Lo a2 ()
i,0,7,0=1

< CT*M||& — &l (z))-

For H; we use (3.37) to obtain

|1 H | z2(agy) < Z 1055 (V1) + b (VED ez 1€z 120

i,,7,8=1

3
< TNOb(VE) + 05 (VED i) 105E() agds) |

i7a7j7B:1

< CT(M + M?)|| [5¢(s

QS d8| |Loo H2(Qs))

(3.207)
In addition, we have
|| H|| o< (120 < CT||det(V 1) 0:C]| e (r2(z) < CT M| f3C(5)ds|lwzee(r20g)-
Finally, for L; it holds
IV - L || (z209) < |1 Lz g < CT 1€ — Ells-
Whence, fo s)|agds € L>®(H?(€25)) and a priori estimate is given as
sl o€ (9) g sl Lo a2 (g)) < CTIEL — &al[s- (3.208)
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Therefore, combining estimates (3.188), (3.197), (3.204) and (3.208) we arrive to

Lol +15E(5)

g ds||sr < CT"M(|0, — 172||F2T+||§1 - €2||S2T>' (3.209)

Taking 7' small with respect to M gives that W is a contraction on A%,. This yields the existence
of a unique solution (,€) in AL, of the non-linear coupled system (3.5a)-(3.5j). Using |Ricl7,
Lemma 2.56], we get the existence and uniqueness of (v, €) in a subset of F} x SF, where, F}
is equivalent to F} and ST is equivalent to ST, and the functions of ] and S} are defined over

Q(t).

3.7 Existence and Uniqueness of the Fluid Pressure

3.7.1 Existence and Uniqueness of an L>-Pressure

After we have proved the existence and uniqueness of the fluid velocity v and the structure
displacement &, we need to prove the existence of the fluid pressure ps so that the proof of
the existence of the weak solution for the coupled system (3.5a)-(3.5j) is complete. The proof
of existence of the L? function p; is based on Lemma |GR86, p.58, Lemma 4.1] |Bre74] that
reduces the proof to showing that the following inf-sup condition holds for the functional spaces

{W, L2(9,(1)) }:

inf  sup bz.q) >Cy >0, (3.210)

geL2(2(1) zew |12/ m @y llal| L2, )

with

b(z,q) = —/Q o q divz dx and z €W, q € L*((t)). (3.211)
7

Theorem 3.7.1 The inf-sup condition (3.210) holds for the functional spaces {W, L*(;(t))}.

Proof. We will proceed in a similar manner as [BDR98, Lemma 3.1]. To show that the condition
holds, it suffices to show that

v qec LZ(Qf(t)), 4z € W such that, diVZ’Qf(t) =q in Qf(t) and HzHH1(Q(t))§ ClHqHLQ(Qf(t))'
(3.212)

Let g € L*(Q(t)) be the extension of ¢ obtained by defining
_ 1
PN
%] Ja,w

Note that fg(t) g dx = fﬂf(t) q dx + fﬂs(t) q dx = 0, this gives g € LZ(Q(t)). Hence, by the virtue
of [BF13, Theorem TV.3.1], there exists a unique z € HJ(2(¢)) such that

q dx, in Q(t). (3.213)

divz = q on Q(t) and ||Z||H1(Q(t))§ CH@HL%(QU))S Cl||Q||L2(Qf(t))~ <3214>
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Since H}(Q(t)) € W, then z € W. Moreover, by restricting divz = g to Q;(¢) we get that
divz|q, () = q. Therefore (3.212) is proved, consequently the inf-sup Condition (3.210) is verified.
n

By the end of this proof, we get the existence of a pressure py € L (LQ(Qf(t))) which is unique
due to [BF13, Theorem IV.2.4]|.

3.7.2 Regularity of the Fluid Pressure

The fluid pressure p; is related to the fluid velocity v by the Navier-Stokes equations. Indeed,
at t = 0 we have

prdet(VA)O0 — V - 69(0,p7) =0 in Q(0) x (0,7),

As a result, the regularity of p; is linked to the regularity of v which is proved straight forward
using Necas inequality [BF13, Theorem IV.1.1]. Therefore, as © € F] then p; € P{. Again
using [Ric17, Lemma 2.56], we get the existence and uniqueness of a fluid pressure p; in the set
Q7 which is equivalent to P; where the functions of QF are defined over Q(t).

To this end, we have proved the existence and uniqueness locally in time of a solution (v, &, py)
of the non-linear coupling problem of an incompressible fluid with a quasi-incompressible struc-
ture.
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DISCRETIZATION AND NUMERICAL
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Introduction

Cardiovascular diseases, due to stenosis or aneurysms, are causes with the highest percentage
leading to death worldwide. Therefore, the study of human blood flow, in particular in stenosed
arteries or those characterized by the existence of aneurysms, has gained great importance and
attention, as an auxiliary given tool, that will treat these diseases and decrease or prevent them
by suggesting solutions and cures. A deep view of what is happening in the arteries would help
us in realizing the processes taking place in the arteries. Consequently, cures can be found to
these diseases. Due to the importance of this issue, it gains a lot of concern and interest among
mathematicians who; from their point of view; seek to reduce the percentage of death resulting
from cardiovascular diseases. Consequently, arose the modeling of the arterial blood flow and
simulating results. Many computational techniques and models have been developed to describe
the blood flow and study the response of the arteries walls under certain conditions. Recently,
the lumen-wall modeling has been adopted using fluid-structure interaction (FSI) model through
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which the blood and the arterial wall can be represented by their appropriate dynamics and
models based on their behavior. An overview of FSI in biomedical applications was considered
in [BGN14]. Introduction of a computational model with FSI in order to investigate the wall
shear stresses, blood flow field and recirculation zones in stenosed arteries has been studied
in [BKS09] where the blood is considered to be an incompressible Newtonian fluid. A most
commonly method used when dealing with FSI systems is the Arbitrary Lagrangian-Eulerain
(ALE) method which was first proposed in 1982 in the work [DGH82|. This method is effective
when combining the fluid formulation in the Eulerian description and the structure formulation
in the Lagrangian description.

For most FSI problems, analytic investigation of the solutions of the interaction model be-
tween fluid and structure is impossible to realize. Nevertheless, approximate solutions can be
obtained by employing numerical simulations. In this context, numerical procedures can be cat-
egorized into two approaches. Monolithic solvers [HWDO04] consists of formulating the fluid and
structure dynamics in the same mathematical framework to achieve one system corresponding to
the entire problem. Even though, this approach is unified, parallelizable and strongly coupled as
the coupling conditions are implicit in the solution procedure, it is hard to be treated numerically.
In fact an ad hoc software development is needed. In contrast, the partitioned approach allows
the usage of the respective mesh discretization, numerical algorithms and traditional solvers for
both the fluid and the structure problems. Coupling conditions are used explicitly to link the
solutions of the fluid and the structure problems. If a difficulty arises, it would be due to the
implementation of the interaction using convergence methods.

Another classification of the FSI solutions is based on the treatment of meshes. Conforming
mesh methods- mostly detected in the numerical works that adopt the partitioned approach-
treat the interface as a part of the solution by considering the coupling conditions to be physical
ones. This requires meshes to match on the interface. As a result, due to the deformation of
the structure at each step a re-meshing or mesh-updating is required. On the contrary, non-
conforming mesh methods regard the interface and the corresponding conditions as constraints so
that non-conforming meshes can be dealt with. Consequently, the fluid and structure equations
can be treated separately with their respective grids without requiring a re-meshing procedure.

This chapter is devoted to develop a mathematical model for the study of blood flow through
a stenosed artery. For this aim the interaction between the blood and the stenosed artery is
modeled as a FSI model. This is done by introducing a fluid model presenting the blood flow
into the lumen of the artery and a structure model describing the artery wall, where we link
both models by some coupling conditions which ensure the balance of the energy of the coupled
system. The blood is modeled as a homogeneous non-Newtonian incompressible fluid whose
dynamics is given by the incompressible Navier-Stokes equations. Whereas for the arterial wall,
the quasi-static incompressible elasticity equations govern the elastic behavior of the wall. The
medium is a non-linear hyperelastic material characterized by the existence of a function W
called the strain-energy density function which relates the first Piola-Kirchhoff stress tensor P
to the deformation gradient Fj.

These two models are coupled together to form the FSI model which we have already in-
troduced in Chapter 2, and will give us an appearance of the incidents occurring in a stenosed
artery. Discretization of the system is needed, in which we configure the best computational
approach. To this end our problem is treated using the partitioned approach with a conforming
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mesh method. Both sub-problems are discretized in space by employing the FEM. The fluid
sub-problem is semi-discretized in time. On the other hand, the structure sub-problem is solved
using Newton-Raphson method. Upon solving the system, numerical simulations are done with
the use of the finite element software FreeFem-++ [Hec05] by considering reliable physiological
data. We are interested in recognizing the recirculation zones. Moreover, we observe the wall
shear stress and analyze its effect on the blood flow. The aim of this chapter is to form a deep
view of what is happening in the artery, by studying the behavior of the speed, the viscosity,
the shear stress in the lumen as well as the effect of the deformation of the artery wall on the
blood flow. These factors will help us in realizing the formation of a clot, consequently will help
us to set up our assumptions for a rupture model.

The chapter is composed as follows:

The first section deals with the FSI system. The variational formulation associated to it
is derived using appropriate functional spaces. Space and time discretization are applied on
both the Navier-Stokes equations and the elastodynamic equations. More precisely, the Navier-
Stokes equations are semi-discretized in time, whereas, the elastodynamic equations are solved
using the Newton-Rhaphson method by linearizing them with respect to the deformation ¢, of
the structure domain and the hydrostatic pressure pps. Further, the algorithm needed in the
simulations is presented.

The numerical results obtained after performing simulations using FreeFem++ software with
the partitioned approach are then presented in Section 4.2. The maximum shear stress and max-
imum speed of blood are observed. Moreover, the recirculation zones are recognized. Further, a
comparison between the case of a Newtonian and a non-Newtonian blood is drawn by analyzing
quantities such as shear stresses, velocities and recirculation zones in both cases. In addition,
case of a bifurcated artery is considered and the same factors are observed.

The chapter ends up by a conclusion summarizing the results obtained in this chapter.

In Chapter 2 we have introduced the FSI problem that models the blood-wall setting. In this
chapter, the F'SI model, its weak and discretized formulations are derived in a three dimensional
case. However, numerical simulations are performed in a two dimensional space. Our work starts
by recalling the FSI system then deriving its associated variational formulation.

4.1 Fluid-Structure Interaction

The total domain Q(t) representing the artery in the actual configuration at time ¢ > 0 is
decomposed into two sub-domains 2¢(¢) and Q4 () representing the lumen of the artery and the
arterial wall, respectively as defined in Chapter 2.

The motion of the structure of density p, is described by its displacement field £ : QxR —»
R3 that satisfies the quasi-static elastodynamic equations. The evolution of the structure domain
is given by the deformation map ¢, : Qs x Rt — R3 defined in terms of the displacement ES
as @y (&,1) = & + &,(&,t). Its deformation gradient F, : Q,(t) — R**® which is a second order
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tensor is given by Fy = Vzep,. Its associated Jacobian is J4(&,t) = det(Fy(Z,t)).

On the other hand, the dynamics of the blood flow is described by the incompressible Navier-
Stokes equations on the sub-domain Q(¢). We denote by

v: QxR — R?

and
pfiQfXR+—>R

the velocity of the homogeneous blood and its pressure, respectively. The constant py stands for
the blood density.

The sub-domain 2¢(¢) of moving boundaries evolves from the reference configuration Q ¢ accord-
ing to the ALE map A given by

A1) 1 Qp — Qp(t)
T — A(Z,t)=x forte R (4.1)

that is, Qs (t) = A(Qy,1).
It is expressed in terms of an extension of the displacement &, of the interface I'., that is to say

A(Z,t) = &+ Ext(§s(2,1)|5, ). (4.2)

The operator Ext stands for an extension of the displacement of the boundary [.. Possible exten-
sions can be found in [Ricl7, Section 5.3, pp. 247|, [Chal3, Chapter 2| (harmonic, biharmonic,
wislow, etc.). In particular we consider the harmonic extension as we will see in Subsection 4.1.2.
The associated deformation gradient of A is Fy : Q(t) — R**3 defined by F; = VA where
the symbol V3 indicates the gradient with respect to the variable & = (&1, Z2, Z3). Its Jacobian
is J¢(&,t) = det(Fy(&,1)).

Here, and throughout the context é ¢ denotes the displacement of the domain Qf which we
set to be Ext(&;|p, ). Formulating the Navier-Stokes equations in the ALE frame results a new
variable w describing the velocity of the domain Q¢(¢). It is related to the displacement é ¢ by
w = 8t£f o A7, It is worth to point out that w # v. One must distinguish between v the
physical velocity of the particles and w the velocity of the fluid domain Q¢(t).

In what follows, we refer to the elements in the reference configuration by "~ ". In fact the
velocity and the pressure of the blood are given on the reference configuration ¢ by

5(#,1) = (A& 1),t) and (&) =pr (A& 1),1) V(&1 €Q xR, (43)

The Cauchy stress tensor o (v, py) is expressed in terms of the deformation tensor
Vv + (Vo)!
D) - T2

o (v,ps) = 2uD(v) — py Id. (4.4)
Its counter part in the reference configuration Qf is Jf&f(f),ﬁf)Ff_t where

&1(8.77) = (VB(VA) ™ + (VA (VD)) - s Id.
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Since the arterial wall is a hyperelastic material (see Definition 2.2.1) then there exists a

strain-energy density function W (Fy) such that the first Piola-Kirchhoff stress tensor P =

OW (F;
%. Further, due to the incompressible behavior of the material its Piola-Kirchhoff stress

tensor is of the form
P,. = P + pycof(Fy).

The variable pjs, called the hydrostatic pressure, plays the role of the Lagrange multiplier asso-
ciated to the incompressibility condition det(Fy) = 1.

On the fluid domain Q((t) a volumetric force f; : Q; x Rt — R? is applied. Moreover, a
velocity v, is enforced on the inlet of the artery I'j,(¢). On the contrary, a free-exist condition
given by o¢(v,ps) ny = 0 is enforced on the outlet T'gy(2).

On the other hand, a volumetric force f, : Q, x Rt — R3 is applied on the structure domain
which is assumed to be fixed on the boundary I's, that is to say, & = 0 on L.

On the interface I'.(t), surface forces g; : Q; x RT — R?® and g, : Qy x Rt — R? are
exerted from the fluid domain and the structure domain, respectively.

The fluid-structure interaction model describing the blood-wall interaction is obtained by
the coupling between the incompressible Navier-Stokes equations which are formulated in the
ALE frame and the quasi-static incompressible elasticity equations formulated in the Lagrangian
frame on the reference configuration Q,. The FSI system is

Find
B :Q; x RY — R3,
]5]0 : Qf x Rt — R,
éfﬁQfXR+—>R3,
£, : Qs x RT — R3,
Phs 1 s X RY — R,
such that
(00| a+ ps(v —w)' Vv — Vo - as(v,pp) = pr fy on  Q(t) x (0,T),
Ve - v=0 on Q(t) x (0,7),
V= vy on T (t) x (0,7,
or(v,pr) ny=0 on  Toy(t) x (0,7),
O'f(’U,pf) ny=gsr ~ on Fc(t) X (O,T),
—V3z - P (&) = Jspsfs on Qg x(0,T), (4.5)
Js=1 on Q, x (0,7),
£, =0 on I'yx(0,7),
Pc(&) 71y = Jos on Tex (0,7),
v =w on ['.(t) x (0,7),
| Puc(&) 7os + J;55(0, ) F; ' 7y = 0 on T.x(0,T),
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where © and py are given by (4.3) and g; = g o p,. Further, [, is the transformation of T, to
the reference configuration given by I'. = I'. o ;.

Remark 4.1.1 From Ezpression (4.2) we get that the ALE map A and the structure deforma-

tion s coincide on the interface ., that is to say,
p,=A on T..

Remark 4.1.2 Due to the incompressibility condition the ij-th component of o (v, py) is

8% 8Uj
+

L, =1,2,3
ax] amz)7 7’7.7 Y ? Y

0ij = —Pyoij + M(

where d;; is the Kronecker delta. The shear stress components are o2, 013 and a3, whereas
011, 099 and o33 are the normal stress components.

In a two dimensional space the mazximum shear stress- an important parameter in studying
the forces exerted on a fluid- is given by the expression [YHSCO04|

2
Omaz = \/(%) + 0-%2' (46)

4.1.1 Variational Formulation of the FSI System

We seek to formulate Problem (4.5) in its weak formulation. This is achieved by deriving the
weak formulation associated to each sub-problem using appropriate test functions that consider
the boundary conditions and the coupling conditions as well. First, we deal with the formulation
associated to the fluid sub-problem. Let us consider the following two functions in the Eulerian
configuration

Ny : Qf(t) — Rd and qf : Qf(t) — R,
such that
npeVi={veH'(Qt),y=0 on [u(t)} and g5 € L*(Qy(1)).

In order to derive the variational formulation we multiply Equation (4.5); by m; € Vy. Then
applying integration by parts and considering the boundary conditions yield

/ provla - My dx +/ pr(v—w)' Vv n de +/ or(v,py): Vany dz
Qr () Q(2) (1)

—/ gy My dF:/ prfr-my dx. (4.7)
Ie(t) Qf(t)

Further, multiplying the incompressibilty condition (4.5)5 by a test function g, € L*(Qf(t)) we
obtain

/ qr Vg v dx =0. (4.8)
Q (1)
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For the first term of (4.7) we use Reynolds’ Transport theorem (A.1) with a change of variables
to the reference configuration Q; to get

/ pfat’ULA"I?f d$:/ prf(?ti}-ﬁf dx
Qr(t) $i

d
= | Jps0-1y dﬁf?'—/~ Jips Vi - -7y dZ
d
= va'nfdﬂ?—/ pr(Ve - w) v -ny do
Qy(t) Qy ()

For the stress tensor, using (A.4), we have

/F()Uf(v,m)nf'nf dF—/f J1& (B, pr)Fy iy - 7y dD _ﬁ Jrgy - 7y dr.
ot .

Ie

Substituting these two equations in the formulation (4.7)-(4.8) yields

d
pr PFU - Ny da:—l—/ pr(v—w)' Vv -n; da:—/ piVa - w v -npde
tJasm (1) 2 (1)
+/ or(v,pr): Vany dw—/ gr-ns dF—i—/ qr Vg v dx = ps fr-my de.
Qg (1) Te(t) Q(t) Q(t)

(4.9)

On the other hand, to derive the variational formulation associated to the structure sub-problem,
we introduce the following functional space

Vo= {i € H'Q), =0 onls}.

Multiplying Equation (4.5)g by a test function 7, in V, then integrating by parts yields
/ P :Vzns dx + / Prscof(Fs) : Vi, d& —/ P, ng -1 dl = / Jsﬁsfs -1 dx.
Qs QS c Qs

(4.10)

Further, multiplying the incompressibilty condition (4.5); by a test function g, € L*(€,) gives

| .- vdz—o (1)

As a result, the variational formulation associated to the structure sub-problem is
Find (&5, prs) € Vi x L?(§2,) satisfying

(
/ P : Vi, d% + / Prscof(Fy) : Vi, di
QS Qs

—/ JoGs - s df—[ Jipsfs - Ts dZ =0 Y@y €V, (4.12)
Fc QS

G(J,—1DdE =0 VG e L¥Qy).
\ Qs
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To sum up, the variational formulation associated to System (4.5) is

Find
B:Q; x RY — R3,
]5]0 : Qf x Rt — R,
éfZQfXR+—>R3,
£ : QO x Rt — R3,
Prs - Qs X RT — R,
such that _
_ _ ) -
€ = Ext(€.|r) and b = % in Q)
v=w on T.(t), (4.13)
£.=0 on Ts.
and
( ov
pf/ el dw—i—pf/ (v —w)' Vv n; dx
Qp() 0L 1A 2 (%)
+/ os(v,ps) : Vaeny d —/ gr -y dl = py fr-my de, (4.14)
Qy(t) Te(t) Qy(t)
/ qf Vg v dx =0,
\ Qs (2)
(
3 P V:Eﬁs dx +[ ﬁhs COf(FS) : V@ﬁs dx
Qs Q,
_[ gs'ﬁs df‘:ps/ Jsfs'ﬁs di, (415)
I, Qs
Gs (Js—1) dz =0,
L/ Qs

for all (ny,q;) € Vp x L2(Q(t)) and (f,,Gs) € Vs x L*(€,). The coupling conditions on the
interface I'. are given in the strong form as

(4.16)

vo A= 8155,
gs = —gy.

4.1.2 The Discrete Variational Formulation of the FSI Problem

The variational formulation (4.13)-(4.16) of the FSI stands for the incompressible homoge-
neous Navier-Stokes equations coupled with the quasi-static incompressible elasticity equation.
We assume that no external forces are exerted on neither the fluid domain nor the structure
domain, i.e, fy = 0 and fs = 0. Consider a time step At > 0 and finite element partitions
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Vi and W, for the fluid and the structure sub-domains respectively of maximum diameter de-
noted by h. Our aim is to approximate the solution (v, py,&s, A, Prs) at time ¢, = nAt, for
n € N, in the finite element spaces. The approximation of the solution at time ¢, is denoted
by (v, p}, ~Q, A" pr.). The variational formulations associated to the fluid and the structure
sub-problems are respectively given by

0
,of/ 2y de +pf/ (v —w)' Vv -ny de +/ os(v,ps) : Vany dx
Qf(t) 8t A Q(t) Q(t)

(4.17)
—/ gf-nfdf—i—/ qgf Ve -vdx =0
Tc(t) Qp(t)

and
[ P : Vi, d& + / Phs cof(F,) : V3, d& — / §s -7, dl
i 2 Le (4.18)
+[ G (Jo—1)dz =0

with

v=w on Fc(t)a
{gf =g, onl.t) (4.19)

Semi-Discretization in Time of the Fluid Sub-Problem

In order to guarantee the existence and uniqueness of the solution of the fluid sub-problem
when performing the numerical simulations, we use the penalty method. This method consists
of replacing the natural weak formulation by a regular one by adding a term multiplied by a
sufficiently small parameter ¢ < 1. Indeed, writing the modified formulation in a matrix form
results a positive definite matrix, which assures the existence and the uniqueness of the solution
of the discrete sub-problem. The weak formulation associated to the Navier-Stokes equations
obtained upon adding a negligible parameter € is then semi-discretized in time, that is, the
convective term is considered at the instant ¢,,, whereas other terms are considered at time ¢,, ;.
The discrete formulation reads

1 1
pr/ vty do +PfK/ (v"o X")- my dx+ 2/ Pt D) - Veny de
t Sy tJoyn) (tn)

_ pf/ (wn+1)tvwvn+l i de — / p}l+1 Vw i de — / g}l+1 My dl’
Qf(tn) Qj’(tn)

e (tn)

—I—/ qr V-0 dx —|—/ e piiqy de = 0.
Qf(tn) Qf(tn)

(4.20)
. . 1 .
The non-linear convective term E(’u" o X™) can be approximated by
L [’U(m —v(x,t,)At tn)] (4.21)
At Y Y
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which is computed in the FreeFem—++ using the convective operator as indicated in Remark
4.1.3.

Notice that, since the strain rate tensor D(v) is symmetric, then we have D(v) : Vn; = D(v) :
D(ny) which gives

/ p'D(v") : Veny doe = / p"D(v"t) : D(ny) de.
Qg (tn) Qg (tn)

Remark 4.1.3 1. If the fluid is considered to be Newtonian, then its dynamic viscosity p is
constant. Thus, the viscosity term is

/ p"D(v"*) : D(ny) d = p D(v"™) : D(ny) de.
Qy(tn)

Qf(tn)

2. In the two dimensional space, when performing numerical simulations at a time step t,,
the non-linear convective term is eliminated using the approximation of the convection part

by the term

i('v” o X")(x) = iv

A (X (x,tn),tn) Ve Qty),

where

e At represents the time step.

o X"(x) = X (x,t,), is an approzimation at t = nAt of the solution of the following
ordinary differential (ODE) equation

dX
X(m>t) %(wvt) U(X(mat)atn)a (4.22)
X(x,t,) =z,
with v(x, t,) = (vi(@,t,), v2(x, 1)) -
Using Taylor’s expansion, we get the approximation
v"(X"(x)) ~ convect([v], v]], —At,v"), i,j € {1,2}, i # j. (4.23)

For the computational details the reader can refer to [Hec05, Section 9.5, p. 267|.

The Weak Formulation of the Structure Sub-Problem

To deal with the structure sub-problem at the time iteration ¢, 1, we will solve the non-linear
problem (4.12) using Newton-Raphson method. The variational formulation associated to the
structure sub-problem at the iteration ¢, is

)
/ PV, dE + / Pleof (FH) : Vi, di
Qs s
—/ Jrtlgnil o qodr —[ JH o fs s dE=0 Vi, €V, (4.24)
e Qs
G (It = 1) dE =0, VY §, € L¥(Q).
\ Qs
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The method depends on linearizing the structure sub-problem (4.24) with respect to the un-
knowns ¢, and ps. We start initialization by considering a suitable choice of the initial values
(@s.0,Prs0)- In particular, we link the iterations of the Newton-Raphson method to the time
iteration ¢, by considering .0 = 7 and pnso = Dj,- Then, we solve iteratively the obtained
system corresponding to the Newton-Raphson method until its solution converges to a solution
of the non-linear System (4.12). For simplicity of notation, we omit the subscript s of the de-
formation ,, that is, we write ¢, = ¢p. We proceed to derive the formulation of the structure
sub-problem corresponding to the Newton-Raphson method.

Let us define the following space

Z ={p = (p1,p2,¢3) : Q. — R p=¢"onT. and ¢ =0 on fg}
Given N € N, a tolerance tol and
(0, Prs) € Z x L*(y)

we construct iteratively the two sequences (@y)r>1 and (Pps i )r>1 by solving for (g, dpns i) the
following system

Set ¢y = ¢". Repeat: for 0 < k < N, while ||d¢x||2> tol, find (5, 0pnsi) in Z x L*(€2)
satisfying

)

oP - . Ocof - .

/ (Vzpr)Vidpr : Van,s dT +[ Phsk o (Vaer)Vadpr : Vzn, dx
Q

F, o " OF,
_ - . -, .. 0cof - .
+ | 0Dns i cof(Vaepr) 1 Vil dz — [ 65(T) OF (Vapr) : Vzdpy g - R dl
Q, I'e s

+/ P(ngok) . V@ﬁs di + / ﬁhs,k COf(V@QOk) . V@ﬁs diE — / &s,k(i) fLS . ﬁs df = O
Qs Qs Te

[ (js COf(V;;;QOk) . V;,;égok dx +/ (jS(JS,k - 1) drx =0
\ Qs Qs
(4.25)
for all (7, Gs) € Vi x L*(Qy).
Set @1 = 0, + @ and k =k + 1.

When the condition ||d¢py||2< tol is fulfilled then convergence of the Newton-Raphson method
is achieved. Thus, the solution of the structure sub-problem (4.24) is given by " = ¢, for
the last value of k for which the Newton-Raphson method converges.

Omitting the subscript k- as it is known from the context- the final variational formulation
of the problem (4.25) is given by

Find (6, 6pns) € Z x L*(Q
CL5<5QO, ﬁs) + bs(ﬁsa 5]5hs) =1
bs((SQO, st) = ](st)

o), such that V (7, G.) € Vi x L*(€,) we have
(7s), (4.26)
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where
- oP - . Ocof - -
as(s,Ms) = [ oOF (Vp)Ve : Vn, dx +[ phsaT(Vgo)Vc : Vn, da
2 e 2 (4.27)
co .
- o (T : Mg dIl’
/f S5 (V) Ve
bs(Ms, Gs) = / Gs cof(Ve) : Vns dE (4.28)
Q

l(ns) = —ﬁ P(Vy):Vn, dz — / prs cof (V) : Vi, d& +/ &,(&) -7y dl (4.29)
Qg Qg r.

i(q) = —/ q(det(Ve) —1) di (4.30)

Q
with

as: Zx Z+—R and b,: Z x L*(Q,)— R
are bilinear forms. Further,
lez* and je (L*Q)) = L*(Q,).

To ensure the existence of the solution for the structure sub-problem (4.26) we use the penalty

method by modifying System (4.26)through adding the penalized term € [ ppsGs d& with e < 1.
Qs
A rewriting of the new system in a matrix form yield a positive definite matrix.

Further, the solution of the system converges to a solution of the original system. Therefore, we
seek to solve the following system
Find (3¢, 0pns) € Z x L*(€,), such that ¥ (7, Gs) € Vs x L*(€,) , we have
as(0@, Ms) + bs(7s, 0pns) = 1(7)s), (4.31)
bS<5‘P7 gs) + Ehs(phsa q~s) = j(~s)'

with hs(ﬁhsa gs) = / ﬁhsgs de.

Space Discretization

Space discretization of the variational formulation is carried out using the finite element
method (FEM) [GR86|. We consider the two finite element spaces associated to the fluid weak
formulation

V!V and W/ ¢ L2(Qy)
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and those associated to the structures weak formulation
Ve € V, and Wi € L3(Q,),
where Vhf , W}{ , f/,f and W,f are finite dimensional subspaces described as follows

V=l ol =afvi+ . vafuny v,
W ={q ¢l =qlor+.. . +dlony < L2Qy),
Ve = {5 i = mith ANy C Vi,
Wi ={q: G =qb+...+ax0n} c L*(Q,)

with {u;}i, {#i}i, {9:}: and {6;}; are families of linearly independent functions of compact sup-
port, which are piecewise polynomials, i.e, of degree one or two depending on the accuracy
we seek for the approximate solution. More precisely, the functional spaces associated to the
velocity and displacement fields are considered to be P, whereas those associated to the pres-
sures (fluid and hydrostatic) are considered to be P;. In what follows, all terms are discretized
in space as mentioned above, so that the approximation of solution in finite element spaces is
(vh,pﬁ,ﬁh,ph . Ay) verifying (4.17)-(4.19), though, for simplicity the subscript h is omitted in
the context.

Finally, the discrete variational formulation reads:

Given (v", pf}, én 5 A") and a tolerance tol, find (v”“,p?rl £rtl it A" such that

A"+1 = 5; + Ext(€E1]z) in €

= @ - =0y, 432)
n+1 — aAn-H (An-i-l)—l on An-‘rl(wa)’

£l = on Ty,

1
pr— A / o) de + pfA_t/ (V"o X™) - 1! da — pf/ (W V" -yl da
Qf Q tn) Qf(tn)

s D@ Ve de— [ gt Ve de— [ gptalar
Qf(tn) Qy(tn) Le(tn)

+/ ¢ Vot dm+e/ pite de =0 Y (nf,q¢) e v/ x W, (4.33)
Qf(tn) Qf(tn)

1
where the non-linear convective term Kt('v” o X™) is approximated by the Expression (4.21).

The coupling conditions on T, are

6’?+1 ﬁs - _(Uf(vn+17prL+l) ) oLpn7 (4 34)
atég—&—l — ,Un+1 o (Pn
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Fix N € N. The variational formulation associated to the structure sub-problem corresponding
to the Newton-Raphson method at the time iteration ¢, reads

Set ¢ = @" and G4 = 7. Repeat: for 0 < k < N, find (dk,0pps k) in Z X L2(QS)
satisfying

oP Ocof
—(Vz 0 1 Van® dx Dhs i 200 Van® dx
QSE)FS(V i) Vo : Vi w+/ph KO, (Vapr)Vzdpy : Vin® do
. —s g~ - ., Ocof SR
+ | Dnsk cof(Vapr) : Van® d — | G4x(X) (Vzpr) : Vzop, ng -1 dl
Qs I an
< / P(V : Van® dx —l—/ Prsk cof(Vzpr) : Van® dz
Qs
—/ &1 (&) cof(Vzpp)ft, - 7° dl + (—:[ Prsk @ dE =0 V (7, §°) € Vi x Wy,
(& QS
/ qNS COf(V@QOk) : V@(SQO;C dx —f—[ q"s(det(Vigok) - 1) dex =0 v C]S S W}‘:
\ J Qs Qs

(4.35)
as long as the error ||0py|l2> tol, set @wri1 = dprp + @ and k = k + 1. If [|0pk]|2< tol,
then convergence of the Newton-Raphson method is achieved. Thus, the deformation of the
structure domain is given by @™ = ¢, for the last value of k for which the convergence
is achieved. Whence at the time iteration ¢, the displacement of the structure domain is

(@) = " (E) - 2.

Using an appropriate extension [Ricl7, Section 5.3, pp. 247|, [Chal3, Chapter 2| the ALE
map A" is given by

A&, 1) = & + Ext (€71 (&,1)

£,)-

In particular, we consider the standard harmonic extension. The aim is to construct the ALE
map, by finding the displacement 5”“ using the harmonic extension of the displacement &, of

the boundary I'.. We seek to find the displacement E”“ verifying the system

—AGT =0 in Qy,
€n+1 €n+1 on ]?C’ i (436)
5"“ =0 on Iy U Ty

Its associated variational formulation is
Find 5"“ € H N [Py(Qy))? such that

VT Vn=0, VneH,

Qf

Page 130



4.1. FLUID-STRUCTURE INTERACTION

where . ) )
H:{neHl(Qf):n:O on Iy Ulgu}

Hence, at the time iteration t,,,, the ALE map is given by the following relation
1/~ ~ | Fntl
AP (&) =2+ €7 (2,1).
The fluid domain evolves from the reference configuration as
n+1 1/0
Qf+ = A" Q).
Further, the structure domain evolves from the initial configuration according to
Q?+1 — 90n+1<Qs)~

In the next section we focus on solving System (4.32)-(4.36) numerically.

4.1.3 The Algorithm

The FSI problem is solved using the finite element software FreeFem+-+. The algorithm used
to solve the FSI problem is presented in the diagram below, see Figure 4.1. Notice that, the
main tool in the iterations is the ALE map A. Complexity of the algorithm is dependent on the
triangulation of the mesh.

—— t=1t+ At —>{ Initialization ’

Solve Navier-Stokes equations

J
. Velocity o"™!
. Pressure p}‘“
Move Domains L
Qn+1 :An—‘rl(Qf) -
Q];H B n+1(§~2) Contact force on I'.
s _fs s &;L-‘rl R, = (O'f(v”H,p?H) nf) o Q"

A4
{ Elastodynamic equations:

Perform Newton’s iterations}

ot ] k ] k+1
« The ALE map A™! Ves { Convergence test No
- ?
x The structure displacement £ [19%plz< tol

Figure 4.1: Algorithm associated to the FSI problem.
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Literally,

1-

At the time step ¢,41, we solve the Navier-Stokes equations on the domain Qy(¢,) in the

ALE frame to find the velocity of the fluid v"! and its pressure p}‘“.

Using the continuity of stresses (4.34), we are able to get the boundary condition on T,

expressed in terms of oy (v"*!, p}™).

Solve the quasi-static incompressible elasticity equations on the reference configuration
Q, using Newton-Raphson method. Check the convergence test of the Newton-Raphson
method. When convergence is achieved, the deformation (,ogjl is set to be the solution of
the last Newton’s iteration k, consequently the deformation €7 is obtained. Thus we can
proceed to get the ALE map A"1" using a suitable extension highlighted in [Ric17, Section

5.3, pp. 247|, [Chal3, Chapter 2| (harmonic, biharmonic, wislow, etc.).

Move the fluid domain using the map A", and the structure domain using its deformation

@™ and proceed to the iteration ¢, o, then start again from step (1-), and so on.

Remark 4.1.4 This algorithm is simulated over a defined interval of time.

4.2

Numerical Results

In this section we present the numerical results concerning the blood flow through stenosed
arteries after performing simulations over a defined interval of time. The study is done by solving
System (4.32)-(4.36) on the two dimensional domain representing the artery given in Figure 4.2
using the software FreeFem-+—+.

Figure 4.2: The mesh of the artery domain.

Our work is concerned in analyzing variables including the speed, the viscosity and the wall
shear stress of blood in a stenosed artery. Further, we intent to locate the recirculation zones in
the lumen. In our work we consider the following numerical values

ps = 1.056 g/cm® and At = 1072 s.

The blood is considered to have a non-Newtonian behavior. Its viscosity is assumed to obey
Carreau model [Seq18]; which will be presented in details in the coming chapter

n—1

() = oo + (o — poo) [T+ (AY)?] 7,
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where 7 stands for the shear rate defined as

7= V2 u(DW))? =/ —A4b.

The parameters present in the Carreau model are

A=3313s, n=0.35068, (s =0.00345 Pa.s and po= 0.056 Pa.s.

The blood flow and the pattern of its viscosity in a healthy artery are illustrated on Figure 4.3.

U AR R AR A RN A A R A ORI AR A A AR PR AR A R AR R A AR
N AT A YA P A A AT SO A A A AN ATA RN A NS SN ATAA A N A NS A YA A SNVl S SNATAVaVar

Bk AR S VAVaVY AL RARANPERRAR EERSETSEEs S VA N VAV S N N YA N RN NN AYAN
AVAVATRVAVAY VAV TAVATAYAD VAVATRNAVA VAV VAVATAYAY
A P N YAV S AN VAVAN R AVAA N VAV AT A SN RA AR A AR
e R S L e e e e N O OO OO O

Average speed of blood Average viscosity of blood
0 0.775 155 0.0281 0.0419 00557
I E— | N E— |

(a) Average speed of blood in a healthy artery. (b) Average viscosity of blood in a healthy artery.

Figure 4.3: Average speed and viscosity in a healthy artery.

In the case of an isotropic material the strain-energy density function W is expressed in terms
of the invariants of deformation tensors Iy, I, and I3 [Mal,Ric17]. In particular, we will consider
the following constitutive law

W(F,) = Co+ Cy (I —2) + Co (15 — 2)°, (4.37)
where Cy, C7 and C5 are set as follow
Cy =110 N.em™2, C; = 100 N.em™2 and Cy = 110 N.cm ™2
A velocity vy, is enforced on the inlet of the artery. It is given by

5 sin® : f 2i) <t < 2i+ 1
o — sin“(7t/0.5) cm/s 0r5><(z.)_t_5><(z+.), foricN.
0 cm/s for 5x (20 +1) <t <5x(2i+2),

It is a periodic continuous function of period 1 s. It attains its maximum value 5 cm/s at the
instants t = 0.25 + k s, k € N. Its profile during a time interval of 3 seconds is represented by
Figure 4.4.

4.2.1 Non-Linear Elastic Modeling of a Pipe-Shaped Stenosed Artery
Blood Flow and Arterial Wall Displacement

The first factor that gains our attention is the behavior of the blood flow in the stenosed
arteries. Figure 4.5 shows the speed of blood at different instants. One can observe the speed
of the blood, being affected by the existence of the stenosis and the displacement of the arterial
wall.
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Figure 4.4: The profile of the inlet velocity vj,.
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Figure 4.5: Blood flow in a stenosed artery.

At the first instant of the flow, the blood speed is negligible which can be observed in Figure
4.5a. After that a remarkable change encounters on the blood flow as shown in Figure 4.5b.In
fact, it can be observed that the neighborhood of the peak is characterized with a high speed.
This is reasonable, indeed, an enforced amount of blood into the artery must pass through it
regardless of the diameter of the path or if it is narrowed. Hence, in the narrowed region due to
the existence of stenosis, blood speed will become larger. At the instant ¢ = 0.5 s, that is when
vin = 0 cm/s the blood flow through the artery decreases, consequently, the stenosis returns to
its equilibrium position (see Figure 4.5¢), however, the flow continues with a negligible speed
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behavior during the time interval between 0.5 s and 1 s to reach its minimum effect at t = 1s as
observed in Figure 4.5d.

Since the displacement of the lumen domain is linked to the displacement of the arterial
wall, a view of the displacement of the arterial wall during the same instants will make the
observations of Figure 4.5 more obvious. Results during 1 second are given in Figure 4.6.
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Figure 4.6: The displacement of the arterial wall.

One can observe that the upper part of the stenosis is the region with the highest displace-
ment. In fact, as we reach the peak of the stenosis, i.e, as the stenosis becomes thinner its
stiffness will decrease. Consequently, it will be fragile, sensitive to any external force and easily
affected by the wall shear stress.

Shear Stress

It presents the effect exerted by the fluid on itself. Its expression 0,4, (4.6) in terms of the
Cauchy stress tensor o reveals its dependence on the strain rate tensor D(v) and the blood
pressure ps. This means that regions encountering a change in the velocity are characterized by
a higher shear stress. On the contrary, regions where the values of speed are close are of low
shear stress. This fact is illustrated on Figure 4.7.

The maximum shear stress is located in the region of stenosis. In fact, the observations show
that it is located at the peak of the stenosis. This part of stenosis is the most fragile part,
which makes it more affected by the blood flow. As the motion of the blood is considered to
be periodic; in general it is pulsatilic; and since the arterial wall undergoes a deformation, then
the stenosis will have an oscillating-like motion. Consequently, a variation in the speed of the
blood is recognized, which will lead to the existence of a shear stress spotted in the region of
the stenosis as in Figure 4.7b.
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Figure 4.7: The maximum shear stress.

Recirculation Zones

We are curious about recognizing the recirculation zones. They are the regions formed due
to the interruption of the flow as a result of the existence of the stenosis and they represent the
regions having a ripple-like manner. A vector representation of the blood velocity is illustrated
in Figure 4.8 which will help us in configuring the recirculation zone.
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Figure 4.8: The velocity of blood.
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Figure 4.8c shows the recirculation zones at time ¢ = 0.5 s. Mainly we can observe a big
recirculation zone that is located after the stenosis. The recirculation zone is characterized by
a center of negligible speed, which increases as the circular regions becomes wider. Further, a
zone of negligible speed is located between the stenosis and the recirculation zone. This zone is
the solidification region, which we will be the matter of study in Chapter 5. The effect of the
recirculation zone on the solidification zone would constitute an important tool to build up a
rupture model.

4.2.2 Non-Linear Elastic Modeling of a Bifurcated Stenosed Artery

Arteries with bifurcations are more important to be studied, due to the higher risk of clot
formation in these arteries. We consider a bifurcation with a stenosis rate 50%. The flow of the
blood in a bifurcated artery during the first second is given in Figure 4.9.

A

Speed of blood at t=0.01 s Speed of blood at t=0.25 s
325 325

— ‘
o
— ‘

a)t=0.01s. b) t =0.25 s.

A

Speed of blood at t=0.5 s Speed of blood att=1s
3.5 325

‘D
|m

(c) t=0.5s. (d)yt=1s.

Figure 4.9: Blood flow in a bifurcated artery.

Figure 4.9 shows the effect of the blood flow on the plaque. In particular at time ¢t = 0.25 s,
from Figure 4.9b we observe that the lumen of the artery undergoes a deformation depending
on that of the arterial wall. The same holds if more than one stenosis exist. To make it more
precise, we observe the displacement of the structure domain at time ¢ = 0.25 s, where one and
two stenosis exist (see Figure 4.10).
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(a) Bifurcation with one stenosis. (b) Bifurcation with two stenosis.

Figure 4.10: Displacement of the arterial wall in bifurcated arteries at t = 0.25 s.

From Figure 4.10 we observe that the most deformed part is the plaque, and this deformation is
larger at the peak due to the fact that the peak is of low stiffness. In addition, the bifurcated side
of the structure is also affected. Indeed, the existence of the plaque will lead to a large flow into
both the upper and the lower parts of the bifurcated region. This will results a deformation at
this region as we can see in Figure 4.10. In particular, Figure 4.9 shows that due to the existence
of a stenosis, the speed of blood (flow) is larger in the upper part of the bifurcation. A simple
comparison with Figure 4.10 gives a reasonable conclusion of having a larger displacement of
the lower part of bifurcation. Obviously, the large flow into the upper part, will affect the lower
part. This effect is recognized by a small deformation in the downward sense. We proceed to
locate the recirculation zones. In particular, we analyze the instant when the speed decreases
and tends to be negligible, i.e, at the instant ¢ = 0.5 s.
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(a) Bifurcation with one stenosis. (b) Bifurcation with two stenosis.

Figure 4.11: Recirculation zone in bifurcated arteries at ¢t = 0.5 s.

Similarly as in the case above, we observe from Figure 4.11 that the recirculation zone is
located at the right hand side of the stenosis. We observe a negligible speed at its center. This
speed increases where the circles constituting the zone are of larger diameter.
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Previous figures have shown some remarkable regions where the blood speed varies among
them. Similarly for the shear stress and the blood viscosity. More precisely, we focus on three
regions. The first region denoted by "A", is located at the peak of the stenosis. Region "B"
is located at the adjacent right bottom of the stenosis. And finally, Region "C" is the region
including the recirculation zone. The three regions are shown on Figure 4.12.

Figure 4.12: Remarkable regions.

The graphs associated to the behavior of the viscosity, the maximum shear stress and the speed
of the blood at the positions A, B and C are shown on Figures 4.13, 4.14 and 4.15 respectively.
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Figure 4.13: Viscosity of blood.
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Figures 4.13, 4.14 and 4.15 show that the position B is characterized by a high viscosity as
well as a negligible speed. In fact, the existence of stenosis causes interruption of the flow and
prevents it from reaching this region. This which will lead to the formation of a more viscous
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region at B. Consequently, the shear stress at this position is small. In the next chapter, this
region will be identified as a solidification zone. Whereas, the position A is characterized by
a high blood speed with a moderate shear stress rate. In fact, due to the narrowing of the
artery at the region of stenosis, the blood speed will be high, as we mentioned above. When the
blood leaves this narrowed region its speed will decrease. This explains the lower blood speed
in Position C. Consequently, the blood viscosity will be negligible. Further, it possesses a high
shear stress due to the change encountering on the speed in this region as we can analyze from
Figure 4.15. The investigation of these variables at these remarkable positions will help us in
locating the solidification zone, where a clot would form, and probably when exposed to high

forces exerted by the blood, will be released into the flow, leading to an infarction at some stages
of narrow vessels or arterioles.

4.2.3 Newtonian vs. Non-Newtonian Blood

We have studied the case of a non-Newtonian blood. One might be curious about how
would variables (speed, viscosity, shear stress) be affected in the case of a Newtonian blood. A
Newtonian blood is characterized by a constant dynamic viscosity p = 0.00345 Pa.s. The space

average viscosity p and the global in time average viscosity 1w of blood during 3 seconds for both
cases are given on Figure 4.16.
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(a) Space average viscosity of blood. (b) Global in time space average viscosity of blood.

Figure 4.16: Space average viscosity (left) and global in time space average viscosity (right) of
a Newtonian and a non-Newtonian blood.

At each iteration k the global in time average viscosity fi;, is given by the following relation

k
F0) = s S e,

where 11;(t) represents the space average viscosity of blood at iteration ¢, 0 < ¢ < k. Its expression
is given by
1

2] Ja,

pi(t) = wi(x, t) de, Ve Qt).

Page 141



CHAPTER 4. DISCRETIZATION AND NUMERICAL SIMULATIONS

with [Qf(¢)] is the area of the blood domain at any instant ¢.
For i = 0, we set u; = up = 0.056 Pa.s, for a non-Newtonian blood, and p; = 0.00345 Pa.s for a
Newtonian blood. At the instant t = 0.5 s, the blood flow is given in Figure 4.17.

U e .
BANASEASLISTEIREETANSAN N AN DA AAN ANV NAAANA AN
e VAN SRV VAN A AT e = <Rl

. B e AV VAN AV VAV AV VAV AV NV VAVAVAVAYAVAV (NAVAVLVAYAYAYAS
Y Y 71y (N DA R S ONATAY N AN S D D

Speed of a non-Newtonian blood
2.76e-033 114 2.28

(a) Case of a non-Newtonian blood.
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(b) Case of a Newtonian blood.
Figure 4.17: The speed of a Newtonian and non-Newtonian blood at ¢ = 0.5 s.
Considering a vector-representation of the flow at ¢ = 0.5 s helps us in locating the recircu-

lation zones in both cases of a Newtonian and a non-Newtonian blood. The results are shown
on Figure 4.18.
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(a) Case of a non-Newtonian blood.
A comparison between Figures 4.17 and 4.18 shows that a non-Newtonian blood is characterized

by a speed smaller than in the case of a Newtonian blood. Further, the recirculation zones
appear clearer in the case of a Newtonian blood.
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(b) Case of a Newtonian blood.
Figure 4.18: The recirculation zone at ¢t = 0.5 s.
Comparison of the global in time average speed and the global in time average maximum

shear stress (4.6) of a Newtonian and a non-Newtonian blood after a duration of 3 seconds are
given on Figures 4.19 and 4.20 respectively.
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Figure 4.19: Global in time average speed of a Newtonian and a non-Newtonian blood during 3
seconds.
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Figure 4.20: Global in time average maximum shear stress of a Newtonian and a non-Newtonian
blood.

These figures show that, in general, a Newtonian blood is characterized by a speed greater
than that of non-Newtonian blood. On the contrary, the maximum shear stress of a Newtonian
blood is smaller than that of a non-Newtonian blood. These results are reasonable, indeed,
Figure 4.16 shows that the average viscosity of a non-Newtonian blood is greater than that of
a Newtonian blood. The viscosity, plays the role of a sticking obstacle or possesses a frictional
manner which causes the decrease of speed as well as it increases the force between the fluid
and itself, consequently leads to an increase in the shear stress. This shear stress constitutes the
main component of the forces exerted by blood, which will be highlighted in the next chapter.

4.3 Conclusion

This chapter is devoted for the numerical study of the fluid-structure interaction problem
between the blood flow and an existing stenosis in arteries, where the blood is considered to
be a homogeneous incompressible fluid whose dynamics is given by the incompressible Navier-
Stokes equations, and the arterial wall is a non-linear hyperelastic material described by the
quasi-static elasticity equations. The simulations have shown a deep view of what is happening
in the stenosed artery and how it would be affected with some variables that we can analyze.
They helped us in configuring the existence of mainly three remarkable regions (see Figure 4.12).
Indeed, the wall shear stress and speed of blood have been studied and the recirculation zones
have been observed. These zones exist after the stenosis. In these zones the blood speed is
negligible at the center, and increases as the diameter of the circular region increases. Between
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these zones and the stenosis, we observe a region which is located at the adjacent right bottom
of the stenosis. This region is identified as the solidification zone which is characterized by a
negligible blood speed and a high blood viscosity and thus results a more viscous blood. The
deformation of the stenosis and the shear stress which constitute the main component of the
forces acting on this zone will probably play a role in the detach of the accumulated blood in
gel-like state into the flow and would lead to the generation of the infarction.

These results help us in setting up a rupture model, which will be the objective of the next
chapter.
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Chapter 5

SOLIDIFICATION OF BLOOD AND A FIRST
STEP TOWARDS A RUPTURE MODEL
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Introduction

Heart is a muscular organ which pumps blood through the blood vessels that constitute the
circulatory system also known as cardiovascular system. This system, in particular the blood
vessels, are responsible for transporting supplies needed from and into the target destination
"cells". The circulatory system has been studied long time ago since the seventeeth century B.C.
until the 1628, when the English physician William Harvey correctly described blood circulation.
History and advances in the study of the cardiovascular system can be found in [Seq18, Coll5].

Cardiovascular diseases, mainly due to atherosclerosis, enthused mathematicians to study
the rheological' behavior of blood and its flow from the mathematical viewpoint, in particular,
in case of pathologies. Modeling of blood repeatedly progressed, and yet it is. Models are
identified and proposed to study the blood flow through the blood vessels, the characteristics
of the blood cells and plasma as well as of the heart [Pes02, PM89, TBA11, TBE*11, BKS09].

!Haemorheology is the study of the blood flow properties of both the plasma and the cells.
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Further, a fluid-structure interaction (FSI) model is considered to investigate the interaction
between the blood flow and the arterial wall. Due to difficulties arising from the complexity
of the arterial wall formed of several layers each with its own unique mechanics, reduced shell
or membrane models have been employed [CTC06] under the assumptions of negligibly thin
structural components or by considering the ratio between the thickness of the vessel wall and
the vessel radius is small. Additional conditions can be induced [FQV09]. Constitutive models
are derived to capture the rheological behavior of blood, as a consequence, they constitute an
effective tool in the diagnosis of the pathologies and investigating appropriate remedies [Mac94,
BHW89]. Moreover, models describing the coagulation of blood have been subject of intensive
research [Boul7, GHZ09,Zhu07]. The complex process of coagulation depends on the platelets
and insoluble fibrin proteins which are formed by the coagulation cascade process [DR64,Boul7|.

Advection-diffusion-reaction models are employed to describe the concentration of the clot-
ting factors and the fibrin polymers while the blood flow dynamics is given by the Navier-Stokes
equations. A continuous approach is used to describe the interaction of the blood flow and the
clot growth which is given in spatiotemporal representation inside the blood vessel. Both models
are simulated on the same domain and solved on the same numerical mesh. Some models have
assumed that the fribin polymers do not affect the blood flow dynamics [JC11]. Whereas, others
have proposed that the viscosity is a function of the fibrin polymers by employing the generalized
Newtonian model for the blood flow [BS08,SB14]. Further, some continuous models have dealt
with the clot as a solid [SvdV14] and detected its growth using FSI system. In contrast, other
models have considered the fibrin as a porous medium [LE10, GRRM16].

Hybrid models have also been employed. They aim to achieve a realistic representation of

the clot formation by combining the blood flow described by continuous and discrete methods
with blood cells and clotting factors [FG08, XCL 12, YLHK17, TABT13, TAB"15].

To our knowledge, the process of a clot rupture which is enthusing scientists and mathemati-
cians is yet under investigation. Indeed, many predictions have arisen concerning the species
of the ruptured particle. Most predictions state that the lipids and fats that form the plaque,
when being under the effect of some external forces due to the blood flow, will be released into
the blood flow.

The aim of this chapter is to propose the first step step towards a rupture model based on
the rheological properties of blood, and on the FSI model presented in Chapter 4. We have
already analyzed the behavior of blood in a stenosed artery. In fact, we have spotted three
major regions where the behavior of blood is of significant pattern. These results will constitute
an important tool to set up the rupture model. To achieve the desired aim, we give in Section 5.1
a brief overview of the blood viscosity when assumed to be a non-Newtonian fluid, and highlight
the widely used constitutive models that are introduced to describe this property. Then, we
introduce our model to detect the solidification zone and give its characteristics based on some
numerical simulations that are performed using the FreeFem++ software. Blood in this zone
will be considered to be a linear elastic material, hence, by solving the elastodynamic equations
we get the deformation of this zone. At last, upon detecting the solidification zone, the first
step in a rupture model is set up by investigating the magnitude of the external forces exerted
on this zone.
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5.1 A Non-Newtonian Property of Blood: The Viscosity

In order to study the properties of blood, we must consider a sample of blood that contains a
suspension of particles?. A fluid is said to be Newtonian if the shear stress is proportional to the
strain rate tensor D(v) where the viscosity p is the proportionality constant. However, if the vis-
cosity is a function of the strain rate tensor D(v), then this fluid is identified as a non-Newtonian.
We assume that the blood cells are small compared to the macroscopic length of the blood ves-
sels to be able to approximate the blood by a homogeneous non-Newtonian fluid. Otherwise,
some difficulties may arise which prevent us from modeling the blood as a homogeneous fluid.
The presence of the blood cells can cause a remarkable change in the rheological properties of
blood. In this case models are constructed depending on reliable measurements and experiments.

Viscosity depends on the internal frictional or resistance forces of adjacent layers sliding
past one another. One must distinguish between two viscosity-related terms. In case of a non-
Newtonian fluid, the apparent viscosity or effective viscosity usually denoted by p is the quantity
measured by the viscometer for shear rates in the optimal range. Its ST unit is Pa.s. Somehow,
it represents an average measure of the resistance to flow. On the other hand, the ratio of the
apparent viscosity to the viscosity of the solvent used, i.e, to the viscosity of the plasma, is
refereed to as the relative viscosity denoted by i

The blood is characterized by a high viscosity than plasma due to the presence of the sus-
pensions. An increase in the hematocrit® (HCT or Ht) leads to an increase of the viscosity of the
suspensions which makes the non-Newtonian behavior more significant, more precisely, at very
low shear rates. This is due to a biological phenomenon |FSLSS78,KS82| that is undergone by
the red blood cells (RBCs) and leads to a decrease in the apparent viscosity. However, if either
the fibrinogen or the globulins! are absent, then we detect the Newtonian behavior. In addition
to the shear rate, the viscosity depends on the temperature. This dependence is similar to that of
water for a temperature range 10° and 40°C and shear rates between 1 and 100 s~ [MMCGG65].

5.1.1 Constitutive Models of Blood

In order to model the behavior of blood, one should consider its components which affect
its rheology. To achieve a well built model, we consider the blood to be a fluid containing a
suspension of particles designating the cellular components of blood. Moreover, to achieve the
continuum hypothesis and attain a homogeneous non-Newtonian fluid, we must assume that
the length and the timescales at each RBC is sufficiently small compared to all the macroscopic
length and timescales, thus the introduced models cannot be adopted in modeling blood flow
through capillaries.

As we have seen in Chapter 2, the blood flow obeys the conservation principles; conserva-
tion of mass, conservation of momentum and conservation of energy. We consider the general

2 A mixture where the particles do not dissolve and are left to leave freely, but will settle at the end.

3Volume percentage of red blood cells. Its normal range varies according to sexes and ages. For adult men
the normal range is [42%-54%)], whereas in women it is [38%-46%)|.

4Plasma proteins.
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constitutive law of the incompressible viscous fluid that defines the Cauchy stress tensor o, by
O'f:Td—pf Id, (51)

where 7, is the deviatoric stress tensor and py is the fluid pressure. For convenience, we recall
that the incompressible Navier-Stokes equations are

v
Of (E + (’U . V)’U) -V -1+ fo = pfff on Qf(t) X (O, T), (5.2)
V-wv =0 on Q¢(t) x (0,7,

where v is the fluid velocity and p; is its density.

To get a well posed system, an additional equation that relates the state of stress to the
kinematic variables such as rate of deformation of fluid elements is required. This equation is
known as the constitutive equation. In what follows we introduce various kinds of these models
that are widely used.

5.1.2 A Newtonian Model

In general, blood is modeled as a non-Newtonian fluid. However in large vessels it behaves
as a Newtonian fluid. The deviatoric stress tensor is then given by

Td = 2/’LD(U)7

where 4 is a constant that represents the dynamic viscosity and D(v) is the strain rate tensor

1
given in terms of the blood velocity v by D(v) = é(Vv + (Vv)'). This model yields the

well-known incompressible Newtonian Navier-Stokes equations

ov
o (a e v>v) AU Vp = ppfy on Q) x (0.7),

V.o =0 on Q¢(t) x (0,7).

(5.3)

The term (v - V)v is the non-linear convective term, whereas the term Aw is the diffusion term
related to the role of viscosity in the propagating momentum. In large arteries the inertia term
characterized by the convective term dominates the viscous term. In some literatures, the blood
flow is modeled by rescaling the Navier-Stokes equations. This yields dimensionless quantities
and the so-called Reynolds number Re® which is the ratio of the momentum forces to the vis-
cous forces. Indeed, if Re < 1 then laminar flows occur which can be modeled by the Stokes
equations. On the contrary, for high Reynolds number we have turbulent flows which can tend
to produce flow instabilities. Even though in the case of an atherosclerosis laminar—turbulent
transition can occur, turbulent models are not used in cardiovascular modeling and simulations.
Our focus is restricted to Equation (5.2) and the appropriate constitutive blood models.

In what follows, as it is known from the context that 7, stands for the deviatoric stress tensor
then the subindex d is omitted.

°It was named by Arnold Sommerfeld in 1908, after Osborne Reynolds (1842-1912), who popularized its use
in 1883. It helps predict fluid flow patterns in different situations.

Page 150



5.1. A NON-NEWTONIAN PROPERTY OF BLOOD: THE VISCOSITY

5.1.3 Viscosity Models

If we consider working with arteries of diameters less than 100 um or possessing low shear
rates, then a non-Newtonian behavior is observed. In this case, a more general and complex
constitutive model associated to the non-Newtonian behavior must be adopted. Indeed, the
constitutive equation is the main tool to develop this model. The general form of (5.1) can be
attained by considering 7 = 7(Vwv); a function of the velocity gradient Vov. It is written in
terms of the principal invariants as

T = Y1 (L, I5) D(v) 4 213, I3)(D(v))?, (5.4)

where [, and I3 are respectively the second and the third principle invariants given by

I, = %[trz (D(v)) — tr(D(v))z} and I3 = det(D(v)).
Incompressible fluids of the form (5.4) are called Reiner-Rivlin fluids. Notice that, in the case
of divergence-free velocity fields (isochoric motions), the first invariant [; is null.

If ¢)5 is a non-zero function in simpler shear flows, the behavior of this fluid would not match
the experimental results possessed by the real fluids (¢ = 0) [AM74]. Further, for real fluids,
the third invariant 5 is identically zero [AM74]. Thus, based on these assumptions we deal with
a special class of Reiner-Rivlin fluids called generalised Newtonian fluids whose deviatoric stress
is of the form

T =1 (L2)D(v). (5.5)

1
Since I; = 0, then the principle invariant I, = —§tr(D(v))2 is negative. Hence, it is helpful to
introduce the concept of shear rate to be a measure of the rate of deformation. It is denoted by
~ and its expression is

i = V2 (D)) = /~iL, (5.6)

with the ST unit s~!. Therefore the generalized Newtonian model (5.5) can be rewritten as

7 = 2u(7)D(v), (5.7)

where () represents a viscosity function that depends on the shear rate 7. Now we present
various types of generalized Newtonian models. We start by introducing the simpler model
among all other models which is known as the Power-Law model.

Power-Law Model

The Power-law model is characterized by the viscosity function

u() = k", (5.8)

where k is a positive constant representing the consistency of SI unit Pa.s™ and n is a dimen-
sionless positive constant representing the power-law index. A remarkable value for n is 1. If
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n = 1 then the fluid is of a Newtonian behavior. Whereas if n < 1 then we get pseudoplastic
fluids characterized by a low apparent viscosity at high shear rates, these fluids are also known
by shear thinning fluid. On the contrary, if n > 1 then a fluid is said to be dilatant, also known
as shear thickening fluids whose apparent viscosity increases at high shear rates. Dilatant fluids
are rarely detected. Figure 5.1 shows the variation of the apparent viscosity p as a function of
the shear rate ~ for all the fluids types mentioned above.
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Figure 5.1: The variation of the apparent viscosity as a function of shear rate.

In 1976, the power-law model was extended to a fruitful one in the work |[WS76|. It was
proposed that as blood is rich in RBCs, which have a great impact on the changes encountering
on the viscosity, then a more reliable model would be derived by considering characteristics
related to them. Indeed, since the non-Newtonian behavior of blood arises mainly from the
interaction of RBCs with each other, then the most known characteristic of them which is the
hematocrit will have a significant influence on this behavior. Hence, by using multiple regression
procedures it was found that the shear rate and the Ht are the most significant independent
variables. Therefore, the viscosity function has been considered to be a function of the shear
rate as well as on the Ht. Due to this observation, the constants k£ and n have been reformulated
and set to be

k= Clexp(Cg Ht), n=1-— Cg Ht, (59)
where
Cy, = 0.0148 Pa.s""1, Oy =0.0512, and Cj = 0.00499.

By employing the best three variable model, it has been shown that the three significant inde-
pendent variables are mainly the shear stress, the Ht and the TPMA %(solutions with unit g/dL
(gram per deciliter)), in particular the fibrinogen and globulins. As a result, the constant k is
then

k = Crexp(Cy(Ht)) x exp(C4(TPMA/H?)), (5.10)

6Proteins that exist in the plasma
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with
C; = 0.00797 Pa.s"™ ', Oy =0.0608, C3=0.00499, and Cy= 145.85 textupdL/qg.

Notice that, all the variables in the viscosity function (5.10) are independent, that is, any change
occurring to one of them does not affect the others. This seems to be impractical. Indeed, the
chemical changes, shear rates and interactions in the cardiovascular system are numerous and
complex which prohibit us from considering them to be independent. Nevertheless, the assump-
tion of independency seems reasonable when dealing with approximations.

Viscosity functions that are characterized by bounded non-zero limiting values can be written
in the general form

1(Y) = too + (o — f1oo) F'(7),
which can be rewritten in the non-dimensional form as

M—_'u"o7 (5.11)
Mo — Moo
where 1o and . corresponds to the asymptotic values of the viscosity at zero and infinity
respectively. In other words,
pio = lim pu(7y) and  peo = lim pu(7).

¥—0 y—r00
Moreover, the function F'() depends on the shear rate 4 and it satisfies the following conditions

lim F(y) =1, and lim F(y)=0.

¥—0 Y00
In practice, the lower limit of 7 to obtain the value of pg is related to some experimental chal-
lenges and the rheometer . On the contrary, this is not the case at the upper limit, due to the
fact that at higher shear rates the viscosity is approximately constant® [FQV09, Section 6.2.3].
Nevertheless, the asymptotic values of viscosity are meaningful from the theoretical viewpoint.
Furthermore, considering different forms of the function F(7) gives various generalized Newto-
nian models.

Some values for the density of blood p and the asymptotic viscosities po and o, at the body
temperature 37° that are widely used in the literature are [CK91]

p = 1056 kg/m®, o = 0.056 Pa.s, fie = 0.00345 Pa.s.

In Table 5.1 we give the most commonly used generalized Newtonian models for the human
blood. The values for the material constants given in this table were demonstrated in [CK91]
for a collection of human and canine blood of Ht ranging from 33-45%, based on a non-linear
least squares analysis.

"A laboratory device used to measure the way in which a liquid, suspension or slurry flows in response to
applied forces.

8The cells will dissolute at high shear rates. We take jio to be the limit of the shear rate at the high shear
plateau value.
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H The Model \ The non Dimensional Form \ Material Constants H
. hi]' A .
Powell-Eyring sinh _(X7) A= 53835
Ay
Cross ! . A=1.007s, m=1.028
14+ (Ay)m
1
Modified Cross . A=3.736s, m=2406, a=0.254.
(1+ (Ay)m)e
n—1
Carreau 1+ ()% A=3313s, n=0.3568.
Carreau-Yasuda [1+ (Ay)"] = A=1902s, n=0.22 a=1.25.

Table 5.1: Material constants for different generalized Newtonian models [FQV09, Table 6.2].

For these material constants we plot on Figure 5.2 the corresponding graphs of the viscosity
function pu.
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Figure 5.2: The manner of the different generalized Newtonian models.
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For a more rich knowledge in the most significant and suitable constitutive models from the
phenomenological viewpoint the reader can refer to [RSK| [FQV09, Chapter 6].

5.2 Solidification of Blood and its Rupture

The process of blood coagulation is widely observed in case of a bleeding wound. The
termination of bleeding is the platelets mission which are stimulated by the RBCs. Platelets
adhere to the vessel wall to form a layer on the site of the injury. This layer is known as a clot,
which with time its exterior surface dries to form a solid crust. Blood clots are formed whenever
the flowing blood comes in contact with a foreign substance in the skin or in the blood vessels
wall. They can be classified into two types: thrombi, which are stationary clots, though they
can cause the blockage of a flow; emboli, which detach into the blood flow and can, somewhere
in a site faraway from the thrombi, block the flow. This type of clots is dangerous and causes
infarctions, more precisely, if the blockage occurs in the brain it results a stroke, if it occurs in
the heart a heart attack would result, or in the lungs it would cause pulmonary embolism. In
particular, in the situations where plaques formed from fats, lipids, cholesterol or other foreign
substances found in the blood are identified, over time, they harden causing the narrowing of
the artery. Figure 5.3 shows a plaque (yellow in color) formed in a blood vessel.

Figure 5.3: A stenosed artery.

In 1988, the work [AvdBP"88] demonstrated that in vitro large numbers of RBCs flow in
the vessel pushing platelets to the wall; a phenomenon that is known as platelet margination.
Hence, the platelets are highly concentrated near the wall. In 2011, a model was formulated
in [TBA11, TBET11] to analyze the response of platelets and their adhesion rates to factors
including the Ht, RBC collisions and platelet size. Results showed that platelets would be the
major cause of the formation of the thrombosis. A view of what we have, gives a big expectation
of a thrombosis formed near the plaque by RBCs, platelets and Fibrinogen (Factor I)? which
breaks down to fibrin by the enzyme thrombin to form clots. Clots composed of platelets are
likely to enlarge based on the fact that platelets produce chemicals that attract other platelets,
which will lead them to stick together. A thrombus in the site of injury would take 4-10 minutes
to form. This would give an evidence that a clot in the blood vessels of a healthy human as a
result of plaque would take a long time to form, or to block the vessel entirely. We believe that

90One of the 13 factors responsible for coagulation.
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in many cases the stage of an entire block is not reached, rather, some factors in the blood flow
will force the clot to be released into the blood, and at some levels the clot will block it. We deal
with the solidification of blood as a coagulation process which takes place within the artery.

5.2.1 Detection of the Solidification Zone

The final step in the formation of plaque- which is rupture- does not always occur. We believe
that it is linked to the solidified blood and is influenced by some factors that we will discuss
later from the numerical viewpoint. For this reason, the first step in building a rupture model
is characterized by spotting the region of solidification. That is, we investigate based on the
rheology of blood, constitutive models and numerical results achieved in Chapter 4, the region
where the blood transits into a gel state. In general, in vivo, blood is liquid in state, then a
change in its state from liquid to gel is linked to a change in the viscosity. Indeed, as the viscosity
increases, a more solidified material is acquired. Hence, a solidification zone should be identified
by a sufficiently large viscosity. Though, we can detect many regions that are characterized by
high viscosity values. In fact, in regions where the values of the velocities are almost equal, the
viscosity is of high values, this fact is due to the relation between the viscosity p and the defor-
mation tensor D(v). In other words, as the rate of change of the velocity expressed by D(v)
is negligible then the viscosity tends to reach its highest asymptotic value uo (Figure 5.2). This
reveals that the condition of possessing a high viscosity is insufficient to detect the solidification
zone. Hence, another condition is essential to achieve a precise location of the solidification
zone. It is recognized that gel and jelly-like materials spread and flow slowly. Consequently, the
solidification zone must also possess a negligible speed.

Results in Chapter 4 have shown the existence of a recirculation zone that is located after
the stenosis due to the blockage of the flow by the stenosis. This zones is characterized by a
negligible speed at its center which increases as the circles formed in this zone become larger in
diameter. Between the recirculation zone and the stenosis, in particular at the adjacent right
bottom of the stenosis, we detect a region where the flow is of negligible speed and of high
viscosity. This region is identified as the solidification zone since it possesses the characteristics
mentioned above (high blood viscosity and a negligible blood speed).

Notice that, as the formation of atherosclerosis is a long-time process, the formation of the
solidification region is as well. Literally, viscosity is a time-dependent function. In fact, the for-
mation of these regions depends on the blood flow at each pulse, that is, the viscosity depends
on its history.

Numerically, we consider a threshold value py, of the blood viscosity such that when the
computed viscosity p exceeds pyy, a region D, of a high viscosity is identified. Similarly, we con-
sider a threshold value vy, of the blood speed. If the speed ||v||s is such that it is less than vy,
then we locate a region D, of a negligible speed. The solidification region R, is the intersection
of the two located regions D, and D,. More precisely, the region R, satisfies possessing a high
viscosity as well as a negligible speed.

We model the blood using the Carreau model. We recall that the associated viscosity is
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formulated as follows

n—1

1(7) = poo + (o — poo) [L+ (AY)?] 2,

where

A=3313s, n=0.3568, pug=0.056Pa.s and ps = 0.00345 Pa.s.

Further, the term + is the shear rate expressed in terms of the second invariant I as

Y= +/2tr(D(v))? = /-4l

A modification is applied to Carreau model so that the viscosity becomes a time-dependent
function expressed in terms of its history. As we are performing iterative simulations, then at
each time iteration k, for £ € N, we will express the viscosity pux in terms of the local in time
average viscosity i, given by

1o = 0.056 if k=0,
. 0.035 for 1 <k <4,
Mk = 1 5
R Z“k—i for k£ > 5,
i=1

where p_; represents the viscosity of blood at each iteration k£ —i. Then at each time iteration

k € N, we set

Mook = Moo +tx 1073 X ﬂ22

and

fok = po 1t X 107 x g%,
where t = k x At with At = 1072 s is the time step.
Hence, at the iteration k, the viscosity expression becomes

n—1

fe = foog + (o — Hook) [1+ (M)?] 2, (5.12)

with 7, given by (5.6) as \/Qtr(D(vk—l))2. In a two dimensional space, its explicit expression

1S
L\ o L)y (Lt y L)’
\/2 (%Ul > + 2 (@?@ + d_yUl + %UQ .

It should be noticed from the context that the superindices k—1 and k refer to the time iteration,
while the subindices 1 and 2 stand for the vector components of v.

To set the threshold values py, and vy, we plot the most remarkable values on a specified
time interval [to, T, to > 0. The highest remarkable value is set to be the threshold in case of
viscosity. At each iteration k, the global in time average viscosity 1, is given by the following
relation
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where 11;(t) represents the space average viscosity of the blood at iteration i, 0 < i < k whose
expression is given by

1
wi(t) = —— wi(x, t) dr, Ve Qt),
O = 10,001 Joy 0" 0

with |Q(t)| is the area of the blood domain Q¢(¢) at any instant ¢ and p;(x,t) is the viscosity
function at any time iteration 1.

We set 1, = o = 0.056 Pa.s. The graphs corresponding to the viscosity and the average
viscosity obeying (5.12) during 3 seconds are plotted on Figure 5.4.
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Figure 5.4: Space average viscosity (left) and global in time space average viscosity (right) of a
non-Newtonian blood.

The pattern of the global in time average viscosity within the lumen of the artery at the
instant ¢y = 3 s is illustrated on Figure 5.5.
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Figure 5.5: Global in time average viscosity of blood at time ¢y = 3 s.

From Figure 5.5 we observe mainly two regions possessing a high average viscosity. The first
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region, located at the inlet of the artery, is a region where the particles constituting it are
characterized by values of velocity that are almost equal. Thus, based on the expression of the
viscosity in terms of the rate of deformation tensor D(v) a high viscosity results. On the other
hand, the second region of a high average viscosity, is located near the stenosis. The existence
of stenosis prevents the flow from reaching the spot at the edge of the stenosis. Consequently,
blood will become more viscous. In particular, the values of the viscosity in these two remarkable
regions are greater than 0.04 Pa.s. Rescaling the data we get a precise location of the regions
which are characterized by an average viscosity greater than 0.04 Pa.s (see Figure 5.6).

AT
gtV
A

B
s

V.
AV
Nﬂl‘ﬂﬂ.ﬂk‘ﬂﬂﬂﬂﬂ‘%}gﬁéﬁ}h}i

AN A P PR

KR
AN,

VAV EA R ANV AN SN AVANIV v v,
N v Y D Y S A RN A

Average Viscosity of Blood at t=3 s
0.04 0.0503 0.0606
I ]

Figure 5.6: Regions of average viscosity greater than 0.04 Pa.s.

As a result, we set the threshold uy, to be 0.04 Pa.s. As we mentioned previously, another
condition is desired to obtain a precise location of the solidification zone. More precisely, the
zone must be characterized by a negligible speed. The average speed at time ¢y = 3 s is illustrated
on Figure 5.7.
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Figure 5.7: Average speed of blood at time ¢y = 3 s.

Figure 5.7 shows that the average speed attains its highest value above the peak of the stenosis.
In contrast, the lowest value is observed at the edge of the stenosis. A rescaling of the values
would help us get a precise data. Indeed, Figure 5.8 reveals that the speed of the blood existing
at the edge of the stenosis is of maximum value 0.1 cm/s.

To sum up, at ty = 3 s, Figures 5.6 and 5.8 showed a region at the edge of the stenosis
where the blood is characterized by a high viscosity and a negligible speed. In fact, by setting
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Figure 5.8: Regions of average speed less than 0.1 cm/s.

wn = 0.04 Pa.s and vy, = 0.1 s we get an accurate detection of the solidification zone at the
edge of the stenosis. The solidification zone is given in Figure 5.9.

Figure 5.9: The solidification zone Rq(t).

5.2.2 Forces Acting on the Solidification Zone

Having located the region of solidification R(t), ¢t > ty > 0 , we proceed to identify the
factors that we believe will lead to the rupture of the solidified blood. The solidification region
is made up of blood in gel state, which similarly as the plaque, will be under the effect of a
force exerted by the pressure of the blood and the shear stress. Moreover, being located at the
edge of the stenosis, it will be affected by the stenosis deformation. At any instant ¢ > 0, we
denote by €2¢(¢) the domain corresponding to the lumen of the artery and by €,(¢) the domain
representing the arterial wall. On Qy(¢) we define v the velocity of the blood and p; to be its
pressure. On the other hand, the motion of the arterial wall is defined by its displacement &;.
The boundary OR,(t) of the solidification zone is decomposed into I'y(¢) and I'y(¢) as shown on
Figure 5.10.

Linear Elasticity of the Solidified Blood

We deal with the solidification zone from the perspective of being an elastic material that
obeys Hooke’s law. Let us designate by u = (uy, us) the displacement of the domain R,(¢). The
solidification zone is under the effect of an external surface force. In particular, a surface force
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Figure 5.10: The domain of the solidification zone.

fs, representing the shear stress is applied from the blood surrounding the solidification zone
to the boundary T';(¢). Thus, the expression of f, is given in terms of the Cauchy stress tensor

o-f(’v’pf> by
f5 = —O'f(’U,pf) ’I’Lf on Fl(t) X (to,T), (513)

where n ¢ is the outward normal to the domain Q¢(¢) \ R(?).

On the other hand, since the border I'y(¢) constitutes a part of the common boundary I'.(t) =
0Q(t) N 0Q(t) then we must ensure the continuity of the deformation on this boundary, that
is, we impose the condition

u =&, on Ty(t) x (to,T). (5.14)

As a result, the elasticity equations describing the displacement of the solidification zone
Rs(t) are

—div o5(u) =0 in Rs(t) x (to, 1),
os(u) ng=f, on T'y(t) x (to,T), (5.15)
u =& on Ta(t) x (to,T),

where n, is the outward normal to the solidification zone R(t). The Cauchy stress tensor os(u)

1
(Vu + (Vu)') by Hooke’s law

is expressed in terms of the strain tensor e(u) = 3

os(u) = 2ue(u) + Astr(e(u)) Id, (5.16)

with ps and \; are the Lamé constants that are given in terms of the Young’s modulus F and
the Poisson’s ratio v as

vE FE

A = .
D A )

For a clot, which is is assumed to be an incompressible material, the Poisson’s ratio is
v = 0.492 [WRB"15]. Further, its Young’s modulus (Elastic modulus) £ = 14.5 MPa [CSLT05].
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For the sake of convenience, we recall that the Cauchy stress tensor o (v, ps) is give in terms of

t
the deformation tensor D(v) = M by

or(v,py) =2uD(v) — py Id,

where v and p; are the velocity and the pressure of the blood, respectively.

In order to write the variational formulation associated to System (5.15), we rewrite it as
a partial differential equation (PDE) with homogeneous Dirichlet boundary condition. For this
reason, we consider a function h € H*(R4(t)) such that vo(h) = &, where

Yo H2(Ta(t)) = HY(Rs(t))

is the trace operator.
Take ¢ = u— b which is a function in H'(R,(t)) that vanishes on T's(t). Since o4(u) is a function
of e(w) which is linear, then we have

Therefore, System (5.15) is equivalent to

—div o4(s) = div o,(h) in Re(t) x (to, 1),
os(s) n. = f. — os(h) n. on T'y(t) x (to,T), (5.17)
=0 on I'y(t) x (to, T),

The variational formulation associated to System (5.17) is derived by considering a test function
s € We = {n € H'(Rs(t)), m =0 on Ta(t)}

to get

/ 0,(s): Vn, de — / o5(s) ng - ms dl' = / [div os(h)] - ns d. (5.18)
Ra(t) 1 (t)

Ra(t)

Substituting os(s) by its expression (5.16) and f; by (5.13) we can rewrite (5.18) as

2u5/ e(s) :e(ns) de + /\5/ (V-6)(V-n,) de — / or(v,ps) ns - ms dl’
Rs(t) Rs(t) Fl(t) (5 19)

s emmenda= [ @vemnde Yoo
()

Ras(t)

Counsider a time step At > 0 and a finite element partition U, of the solidification zone R(t) of
maximum diameter . Our aim is to approximate the solution € at time ¢, = nAt, for n € N in
the finite element space. At any time t consider the finite dimensional sub-space

Up={mn:mn=mi1+ ... +nytbn} CW,,
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where {¢;}; is a family of linearly independent functions with compact support, which are
piecewise polynomials. In particular, we consider them to be of degree 2. Thus, at the time
iteration t,, the discretized formulation is

2,uC/ e(s)) - e(my) de + )\c/ (V) (V-my) dx —/ or(v",p}) n.-ny dU
Rs(tn) Res(tn)

Fl(tn)

+/ os(hp) n.-ny, dT' = / [div os(h})] - 1 d YV 1y, € Up,.
Ty (tn) Res(tn)

(5.20)
Upon solving (5.20) using FreeFem++ software [Hec05] we obtain the displacement of the do-
main R,(t), consequently, we get its deformation that is illustrated on Figure 5.11.

Figure 5.11: The deformation of the solidification zone between ¢t = 3 s and t = 3.25 s.

The deformation of the stenosis due to the blood external stress, results a deformation of the
solidification zone. Indeed, this is due to the continuity of displacements on the stenosis-zone
interface T's(t) given by the condition (5.14). The graphs corresponding to the space average
displacement w,,(t) of the solidification zone and the boundaries I'; (t) and I'y(¢) during the time
interval between 3 s and 4 s, are illustrated on Figure 5.12. The space average displacement
g, (t) is defined by

_ 1 /
Uyy(t) = u(x,t)||s do,

where |[.||2 is the Euclidean norm in R? and |R,(#)] is the area of R4 (¢) provided that it is strictly
positive. In a similar way we define the space average displacements of I';(¢) and T'y(¢).

From Figure 5.12 we observe that the boundary I'y(t) possesses the highest displacement. This
fact is shown on Figure 5.13 which shows the time average displacement @y () of the solidification
zone on the time interval |3 s-4 s|. The time average displacement at any position @ is given by
the formula

() = %ﬂ S (e, i),

1=0
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Figure 5.12: The space average displacement of the solidification zone and its boundaries I'; (¢)
and T'o(%).

where u(x, ) is the displacement of the solidification zone at any time iteration i € N.

The average displacement (cm)
B.47e-008 0.00101 0.00201
I ]

Figure 5.13: The time average displacement of the solidification zone Rq(?).

It seems reasonable for I';(t) to possess the highest displacement, in fact, the displacement
of the boundary T's(t) represents the displacement of the stenosis-zone boundary, while the
displacement of the boundary T';(¢) is a result of the deformation of the whole zone. The high
displacement of 'y (¢) rises our curiosity to analyze the external stress exerted by blood on this
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boundary. Its average is given by the expression

1
IP1(O] Sy

where |[';(¢)| stands for the length of the border I'; (¢) provided that its length is strictly positive.

or(v,ps) n. dl,

20 * i
*

1.8} .
~ 161 |
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Figure 5.14: The magnitude of the average external force exerted on I'y(¢) at any time t.

Figure 5.14 shows that the magnitude of the average force exerted by the blood flow on the
boundary I'i(t) is large, hence, it results an inward resistance effect on this boundary which
is large compared to the average displacement of the boundary I'1(¢) (see Figures 5.12). In
other words, the force on the boundary I'y(¢) is opposed by the deformation of the solidification
zone resulting from the deformation of the stenosis. Whence, the stress exerted on I'y(t) will
form a resistance factor against the motion of the solidification zone, which will end up with
the fragmentation of the crusted solidified blood. To investigate the effect of the stress on
the solidification zone, we will analyze the maximum shear stress ¢,,,, given by the expression

[YHSCO4]
2
Omaz = \/(%) + 0'%2' (521)

Its pattern within the solidification zone is illustrated on Figure 5.15 at ¢t = 3.5 s.

Figure 5.15 shows that the upper part of the solidification zone and the blood-zone interface
['1(t) possess the highest maximum shear stress value. Indeed, as we have mentioned previously,
as we come closer to the peak of the stenosis its stiffness decreases, thus its displacement increases
and it will deform easily, consequently, the upper part of the solidification zone will be more
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Figure 5.15: The maximum shear stress within the solidification zone at time t = 3.5 s .

affected by the motion of the stenosis. Further, the stress exerted by blood on I'y () which is of
high magnitude (see Figure 5.14) will lead to a high maximum shear stress. The space average
maximum shear stress on the boundary I';(¢) at any time ¢ is given by the formula

1

Emax(t) = = a0 Ho-max(w7t>||2 diB,
T2 ()] Jry )

where ||.||2 is the Euclidean norm in R? and |T'(¢)| is the length of T'y(¢) provided that it is
strictly positive. The graph corresponding to the magnitude of the average maximum shear
stress Tpae on the boundary I'y(¢) is given in Figure 5.16.

The force exerted by the blood on the solidification zone which opposes its motion will form a
frictional force on the solidification zone (digging manner). Further, from Figure 5.16, we observe
that at the instant t = 3.5 s when the solidification zone returns to its equilibrium position, the
boundary I'y(t) is still under the effect of the maximum shear stress. As a result, the maximum
shear stress will scrape the crust leading to the release of some pieces of the solidified blood into
the flow, which at some sites will block the flow causing an infarction.
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Figure 5.16: The magnitude of the average maximum shear stress on I'y(¢) at any time ¢.

5.3 Conclusion

In this chapter we have introduced a first step towards a rupture model based on the rhe-
ological property of the blood. The blood is considered to be a non-Newtonian fluid with a
time-dependent viscosity p that obeys Carreau model. In fact, the viscosity has been modified
so that it is a function of the viscosity at previous iterations using the local in time average
viscosity 1. We believe that what is ruptured is not the plaque, rather, the solidified blood
near the stenosis. In fact, the fibrous cap is a stiffened part of the artery wall which is enlarged
due to the inflammation beneath it, which rebut the assumption of being released into the flow.
Hence, a first step towards a rupture model is to locate the solidification zone as we believe that
the jelly-like material in this zone is the ruptured substance.

In general, in vivo, blood is in liquid state, thus, a transit to a jelly-like material is linked
to changes encountering on the viscosity. Indeed, acquiring a jelly-like material is associated
to an increase in the viscosity. As a result, the viscosity is reformulated so that it is a time-
dependent function related to its history represented by the local in time average viscosity jis.
Based on the properties of viscous materials, we can assume that the blood constituting the
solidification zone is characterized by a high viscosity and a negligible speed. Using the numer-
ical results obtained in Chapter 4 and investigating the pattern of the average speed and the
average viscosity, we consider a viscosity threshold i, such that when the computed viscosity
p exceeds it, regions D,, of high viscosity are detected. Similarly, if the speed of blood is less
than the speed threshold v, then we locate the regions possessing negligible speed. The solidi-
fication zone R, spotted at the edge of the stenosis, is the intersection of the regions D, and D,,.
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A first step to a rupture model is derived based on the forces acting on the solidification
zone R. For this sake, blood forming the solidification zone is considered to be a linear elastic
material that obeys Hooke’s law and that is under the effect of an external stress exerted by the
blood and the deformation of the stenosis. Upon solving the elasticity equations numerically
results have shown an external force representing the shear stress exerted by the blood on this
zone. This force opposes the deformation of the solidification zone. Further, a shear stress is
observed on the crust of the solidification zone, namely on the zone-blood interface, which will
scrape the crust of this zone. We believe, the opposite effects and the shear stress will lead to
the fragmentation of the solidified blood in the solidification zone. As a consequence, detached
pieces will be drifted by the flow and at some sites will block the artery causing an infarction.
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Appendix A

CONSERVATION LAWS AND
TRANSFORMATION FORMULAS

Theorem A.1 (Reynolds’ Transport Theorem) Let Q(t) € RY be a material volume. For
any differentiable function f defined on €(t) it holds

%/Q(t) fet) do = /mt) (g v <fv)> e A

where v is a vector field in R? representing the velocity of any particle that is on the position
x on the time t.

Proposition A.1 (Continuity Equation) Let Q(t) € R? be a material volume. For any vec-
tor v € R? and a scalar function p we have

% +V-(pv)=0 in Q(t). (A.2)

Definition A.1 (Cauchy Equation of Motion) The Cauchy equation of motion is based on
Newton’s second law. It is given as

ov
ot
Lemma A.1 (Piola Transform [Ric17, Lemma 2.12]) Let w : Q(t) — R® be a differen-

tiable vector field, and W its representation in the reference configuration Q. The Piola trans-
formation of w is given by

+p(vV-)v =VV . -o(v,p)+pf  in Q) x (0,7). (A.3)

JF % (A.4)

Moreover, for the normal component of w we have
/ n-w dl = / A - JF ' dT. (A.5)
a0(t) o0

169



APPENDIX A. CONSERVATION LAWS AND TRANSFORMATION FORMULAS

For the divergence of w it holds

/Q i) da = /Q G (JF ') d. (A.6)

Furthermore, point-wisely we have
Jdiv(w) = div(JF ). (A.7)

Corollary A.1 Let o : (t) — M3(R) be a reqular tensor field, and & its representation in the
reference configuration ). The Piola transformation T of o is given by

T=J6F" (A.8)

Moreover, the divergence of T is

div T = Jdivo. (A.9)
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Appendix B

USEFUL INEQUALITIES

Theorem B.1 (Gronwall Inequality') Let to > 0 and consider the functions u, f and g to
be continuous on [to, T) with T < oo and g(t) a non-negative function, such that we have

u(t) < f(t) + /tg(s) u(s) ds, t € [ty, T),

to

then the function u satisfies

u(t) < f(t)+/t:f(s)g(s) exp </:g(7') d7> ds,  t€lto,T) (B.1)

If further, g(t) is a non-decreasing function, then

u(t) < F(1) exp </t:g(s) ds), LE [to,T).

Remark B.1 If the functions f(t) and g(t) are constants say Cy and Cy, then the function u
will satisfy

u(t) < ﬁexp(Cgt).
Cs

For the proof of this theorem, some additive versions and related inequalities see [BF13,
Section 4.2]

Proposition B.1 (Young’s Inequality) Letn > 2, and x4, - - , x, be non-negative real num-
bers. Moreover, let py,--- ,pn be positive real numbers satisfying
1 1
—+ -4+ —=1 (B.2)
h DPn
Then we have
:L,Iljl ﬁn
T T, < — + +
Y4 Pn



APPENDIX B. USEFUL INEQUALITIES

The following corollary gives a version of Young’s inequality which is widely used.

Corollary B.1 Let py,--- ,p, be positive real numbers satisfying (B.2). For all real positive
numbers €1, ,&,, there exists a constant C = C(e1, - ,&n,), such that for all x1,---  x,
positive, we have

P1 DPn—1
Ty <y + ot e+ Cler, o Enr) T

Obviously, we can fix all coefficients except for one that can be found from the fixed coeffi-
cients.

The proof of Young’s inequality is based on the concavity property of the logarithmic function.

Theorem B.2 (Hélder’s Inequality) Let Q be an open set of R® and pi,--- ,p, be positive
real numbers. Let r € [1,00) be such that

1 1 1
=
r b1 Pn

For all functions f; € LPi(Q), Vi =1,--- n, the product fi--- f, belongs to L" () and we
have

1o fallor < T il o (B.3)
=1

The proof is based on using Young’s inequality.

Page 172



Appendix C

Vectors and Tensors

C.1 Vectors

Definition C.1.1 (Gradient and Divergence of a Vector) Let v be a vector field in Q C
R?, that is sufficiently reqular. We define the gradient of v denoted by gradv or Vv by the
n-by-n matrix given by

oV, ovy

Fral o
Vv =

ov, . . ov,

Fral o

Further, the divergence of v denoted by div(v) or V - v is defined by

V-'v:zn:g:;.
=0

(2

Definition C.1.2 (Scalar Product of Vectors) Let uw and v be two vector fields in R, The
scalar product of u and v denoted by u - v 1s the scalar value defined by

u-v:Zuin—. (C.1)
i=1

C.2 Tensors

Definition C.2.1 (Divergence of a Tensor) Let A = (A;j)1<ij<n be a regular tensor field in
M, (R). The divergence of A is defined by
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"L 0Ay
= ox;

V.-A= : : (C.2)
"L 0A,,

0x;

i=

Theorem C.1 Let A, B be two regular tensors in M,(R). We denote by A;, fori=1,...,n,
the i-the row of A. The i-th element of V - (AB) is given by

Proof. The 7j-th element of AB is

k=1

We have

V- (4B): =3 i

aAszk
_ZZ Or; —
=1 k=1

_ZZ(MM : ““aai];j> (C.4)

jlkl

= Z VAik k+ Z A Z 885;}k]
k=1 J

k=1

where VA; € M,,(R) is the Jacobian matrix of the vector A;. m
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