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Résumé

Le Japon s’est doté du réseau sismologique à haute sensibilité (Hi-net) qui contient

plus de 1000 stations permanentes, qui fournissent d’immenses ensembles des données

continues au Japon. Dans le cadre d’un accord avec le NIED, nous bénéficions d’enregis-

trements continus de données à court et d’inclinomtres pour analyser les variations de

vitesse sismiques.

Nous appliquons ici la méthode de surveillance avancée basée sur le bruit (doublet

+ inversion, (Brenguier et al., 2014)) pour suivre l’évolution mécanique de la croûte à

différentes échelles de temps avec une résolution temporelle allant de mensuelle à quoti-

dienne sur différentes périodes. L’objectif est d’obtenir la première surveillance à grande

échelle au Japon et d’étudier l’impact des perturbations environnementales sur la pro-

pagation des ondes sismiques. Un autre objectif important de cette thèse est d’étudier

l’évolution post-sismique liée au séisme de Tohoku-oki (Mw 9.0) en 2011. La vitesse des

ondes sismiques change dans les semaines et les mois qui ont suivi le séisme. Cependant,

l’origine physique de ces changements n’est pas claire. En utilisant à la fois les enregis-

trements Hi-net à courte période et à inclinomètre, nous obtenons des changements de

vitesse sismiques dans toute la croûte jusqu’à 50 km en profondeur. Le résultat de courte

période fournit une meilleure compréhension des processus souterrains sous les impacts

de certains forçages environnementaux tels que l’hydrologie, la thermoélasticité et cer-

tains effets de charge directe. Le résultat de longues périodes montre des réponses co et

post-sismiques différentes avec la profondeur. Il s’agit d’une méthode supplémentaire et

directe pour révéler en profondeur le champ de contrainte/déformation, ce qui améliore

la perception du mécanisme d’un tremblement de terre.

Cette thèse comprend principalement les trois parties suivantes.

La première partie est consacrée à la présentation de la relation entre la fonction de

Green et les corrélations croisées. La simulation numérique à Hokkaido vérifie également



l’établissement de la relation entre les deux.

La seconde partie concerne l’analyse des variations transitoires de vitesse des ondes

sismiques dans la croûte provoquées par les perturbations environnementales. Les im-

pacts des perturbations saisonnières environnementales sur la déformation de la croûte

sont mesurés et discutés en fonction des observations géodésiques. Récemment, la sur-

veillance du bruit sismique ambiant a fourni de nouvelles informations sur la déforma-

tion continue de la croûte, révélée par les changements temporels de vitesse sismiques.

Dans cette étude, nous identifions les différents facteurs environnementaux responsables

des effets saisonniers locaux et montrons comment une meilleure compréhension de ces

perturbations de la croûte causée par l’environnement améliore les observations des mo-

difications des propriétés sismiques induites par la tectonique. La comparaison des effets

saisonniers entre les changements de vitesse sismique et les observations géodésiques du

champ de gravité mesuré par GRACE et du déplacement vertical du GPS montre une

forte corrélation.

La dernière partie consiste à étudier la réponse mécanique de la croûte aux grands

séismes. La surveillance de la vitesse sismique basée sur le bruit peut directement son-

der en permanence l’état mécanique de la croûte en profondeur. Dans ce travail, nous

étudions la réponse de la croûte terrestre au séisme de Tohoku-oki Mw 9.0, 2011. Nous

employons ici pour la première fois le réseau très dense de tiltmètre Hi-Net en tant que

sismomètres longue période (8 - 50 s) pour que la surveillance basée sur le bruit échan-

tillonne la croûte à plus de 5 km en profondeur, qui est la limite pour les données des

sismomètres courte période. L’évolution spatio-temporelle des changements de vitesse

sismiques dans différentes bandes de périodes révèle une réponse sismique dépendant de

la profondeur. Le résultat pourrait avoir des implications à la fois sur la réponse visco-

élastique de la croûte aux grands déformations ou sur une réponse complexe des vitesses

sismiques de la croûte à un écoulement de fluide transitoire.

Cette thèse s’inscrit dans le cadre d’une collaboration plus générale entre ISTerre –

Université Grenoble Alpes et le Massachusetts Institute of Technology visant à dévelop-

per des outils de surveillance dans des contextes naturels et industriels.
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Abstract

The Japanese High Sensitivity Seismograph Network (Hi-net) contains more than

1000 permanent stations, which provide large continuous data sets throughout Japan.

In the framework of an agreement with NIED, we benefit from both short period and

tilt meters data downhole recordings to analyze the seismic velocity variations. We ap-

ply here the advanced noise-based monitoring method (doublet + inversion, (Brenguier

et al., 2014)) to follow the mechanical evolution of the crust at different time scales with

a temporal resolution from monthly to daily in different period ranges. The objective

is to get the first large scale monitoring throughout Japan and study how environmen-

tal perturbations affect seismic waves propagation. Another important objective of this

thesis is to study the 2011 Mw 9.0, Tohoku-oki earthquake-related postseismic evolu-

tion. Seismic waves velocity changes in the weeks and months following the earthquake.

However, the physical origin of these changes is not clear. By using both Hi-net short

period and tilt meter recordings, we achieve seismic velocity changes in the whole crust

down to 50 km at depth. The short-period result provides a better understanding of

the subsurface processes under the impacts of some surrounding environmental forcings

such as hydrology, thermoelasticity, and some direct loading effects. The result from long

periods shows different co- and post-seismic responses with depth. It is an additional and

direct method to reveal the stress/strain field at depth, which improves the perception

of the mechanism of an earthquake.

This thesis mainly consists of the following three parts.

The first part is devoted to the theoretical demonstration of the relationship between

the Green’s function and cross-correlations. The numerical simulation in Hokkaido also

verifies the establishment of the in-between connection.

The second part is about the analysis of the transient changes of seismic wave velo-

city in the crust caused by environmental perturbations. The impacts of environmental



seasonal disturbances to crustal deformation are studied and discussed based on geode-

tic observations. Recently, ambient seismic noise-based monitoring provides new insights

into the continuous deformation in the crust as revealed by the temporal seismic velocity

changes. In this study, we identify the different environmental factors in charge of the

local seasonal effects and show how better understanding these environmentally indu-

ced crustal perturbations improves the observations of tectonic-induced seismic property

changes. The comparison of seasonal effects between seismic velocity changes and geode-

tic observations from both GRACE measured gravity field and GPS vertical displacement

show strong correlation.

The last part is the study of the mechanical response of the crust to large earthquakes.

Noise-based seismic velocity monitoring can directly probe the mechanical state of the

crust at depth continuously in time. In this work, we study the response of the crust to

the Mw 9.0, 2011 Tohoku-oki earthquake. we employ here for the first time the very dense

network of Hi-net tiltmeters as long period (8 – 50 s) seismometers for the noise-based

monitoring to sample the crust below 5 km depth, which is the limitation for the data

of short period seismometers. Spatio-temporal evolution of seismic velocity changes in

different period bands reveals depth-dependent seismic response. The result could have

implications of both nonelastic response of the crust to large strain changes or a complex

response of crustal seismic velocities to transient fluid flow.

This thesis is in the context of a more general collaboration between ISTerre – Univer-

sité Grenoble Alpes, and the Massachusetts Institute of Technology aiming at developing

tools for monitoring in natural and industrial contexts.

8



Table des matières

1 Introduction 13

1.1 Background of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

I Noise-based Imaging and Monitoring 17

2 Principles of Ambient Seismic Noise Correlation 19

2.1 Elastic Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Green’s function and Cross-correlation . . . . . . . . . . . . . . . . . . . 21

2.2.1 In Scalar Wavefield . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 In Elastodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Applications of Ambient Seismic Noise Correlations 31

3.1 Ambient Seismic Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Surface Waves Tomography . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Body Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Ambient Seismic Noise-based Monitoring . . . . . . . . . . . . . . . . . . 37

3.4.1 Origins of Seismic Velocity Changes in the Earth . . . . . . . . . 37

3.4.2 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.4 Some Improvements . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Other Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



TABLE DES MATIÈRES
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Chapitre 1

Introduction

Sommaire

1.1 Background of the Thesis . . . . . . . . . . . . . . . . . . . . 13

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1 Background of the Thesis

In the past decade or so, ambient noise-based seismology has become an essential

branch of seismology. The rationale behind noise-based seismology is that the cross-

correlation of two continuously recorded noise signals can be regraded as the Green’s

function, which represents waves generated at one station and recorded at another sta-

tion. The reconstructed cross-correlation functions carry information of the wave field

where the waves pass through between the two correlated stations.

The reconstruction of Green’s function depends on the equipartition condition of the

different modes of the elastic wave field. An equal excitation of all types of waves can

be achieved by a homogeneous distribution of sources or through multiple scattering.

The cross-correlation can be used as earthquake or active sources generating seismic

signals to image and monitor the underground medium. The emergence of noise cross-

correlation has made up for many of the shortcomings of traditional seismology. For

example, surface wave tomography relies no longer on the occurrence of earthquakes

or generation of active sources. The construction of continuous seismic signals helps us

successively track changes in seismic wave velocity, which may be related to some slow

slip events, eruptions of volcanoes, or some earthquakes.



INTRODUCTION

This thesis is a comprehensive application of the ambient seismic noise-based monito-

ring in the whole of Japan. The Japanese Islands are located in the eastern margin of the

Asian continent and the northwestern margin of the Pacific Ocean. This is an active plate

boundary zone where four lithospheric plates converge on one another (Ishibashi, 2004).

Therefore, Japan has experienced considerable seismic and volcanic activities. Under the

impact of the 1995 Kobe earthquake, Japan started to deploy the high-sensitivity seis-

mograph network (Hi-net) (Okada et al., 2004; Obara et al., 2005) from 2000 till 2008.

There are in total around 800 stations (Fig. 1.1(a)). All of them are installed at the

bottom of a borehole more than 100 m at depth to record weak and fast activities. Fig.

1.1(b) illustrate the constitution of Hi-net stations in the borehole. The deepest bore-

hole is Iwatsuki (IWTH) station located in Saitama city. Its depth is 3510 m. The dense

distribution of Hi-net allows us to monitor δv/v using more than 1000 downhole stations

with both short period and tilt meter stations.

We apply the latest noise monitoring method by Brenguier et al. (2014) to conti-

nuously recorded seismic noise data. The big dataset allows us to follow the changes in

physical properties of the crust throughout Japan. We except to first understand how

the near surface could be affected by some transient perturbations. Then we will try to

monitor the seismic velocity changes using tilt meter data for the first time and go to

long period bands. The results at long period will help understanding deeper structural

changes and possible depth-dependent changes.

1.2 Outline

This thesis consists of three main parts :

Part I shows an introduction of the principles and the development of ambient seismic

noise correlation in seismology over the last decade years. The focus of this part is to

present different methods of noise-based monitoring and compare their pros and cons.

Part II is about environmental seismology. How to use noise correlation to follow

the subsurface seismic velocity changes and identify the annual signals in different re-

gions throughout Japan. In this part, we also show some geodetic observations (GRACE

measured equivalent water height, and GPS recorded vertical displacements) and their

uniformity with seismic velocity changes.

Part III is a Tohoku-oki earthquake-related study. We first verify the feasibility of

14



INTRODUCTION

Figure 1.1 – (a) Hi-net station distribution. Blue triangles indicate data from 2008
to 2012. Red triangles indicate data from 2011 to 2012. (b) The constitution of Hi-net
stations in downhole. (c) Depths distribution of number of Hi-net stations.

using tilt meter data to monitor the seismic velocity changes down to 50 km in the crust.

We monitor the changes in different period ranges in 8 – 50 s. The depth-dependent co-

and post- seismic velocity changes reveal a complex response of crustal seismic velocities

to both static strain by the earthquake and transient deformation.
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Chapitre 2

Principles of Ambient Seismic Noise

Correlation

Sommaire

2.1 Elastic Wave Equation . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Green’s function and Cross-correlation . . . . . . . . . . . . 21

2.2.1 In Scalar Wavefield . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 In Elastodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . 28

We start this chapter from wave equations to the theoretical establishment of the

relationship between Green’s function and noise cross-correlation. We show a numeri-

cal simulation which verify the relationship deduced between the Green’s function and

cross-correlation. At the end we will discuss the limitations in practical applications.

2.1 Elastic Wave Equation

Firstly, wave equation is a second order partial differential equation that relates spa-

tial derivatives of propagation of wave disturbances and second time in a simple wave.

Considering a homogeneous medium, the equation of motion in terms of displacements

and stress variables can be expressed as by eq.2.1.



PRINCIPLES OF AMBIENT SEISMIC NOISE CORRELATION

ρ
∂2ui
∂t2

= fi + ∂jτij, (2.1)

where ρ is density, ui is displacement, τij is stress tensor, and fi is a body force term.

Both of ui and τij are functions of position x and time t. According to the linear, isotropic

relationship between stress and strain,

τij = λδijekk + 2µeij, (2.2)

where the strain tensor is,

eij =
1

2

(
∂iuj + ∂jui

)
, (2.3)

thus, ekk = ∂kuk. λ and µ are lamé parameters, we can substitute 2.3 into 2.2 and

2.1. Then we obtain :

ρ
∂2ui
∂t2

= fi + ∂iλ∂kuk + ∂jµ
(
∂iuj + ∂jui

)
+ λ∂i∂kuk + µ∂i∂juj + µ∂j∂jui. (2.4)

The equation 2.4 turns into following when using the vector Laplacian of the displa-

cement field.

ρ
∂2u

∂t2
= f +∇λ (∇ · u) +∇µ ·

[
∇u+ (∇u)T

]
+ (λ+ 2µ)∇∇ · u− µ∇×∇× u. (2.5)

This is one form of motion equation in terms of displacements for an elastic isotropic

medium (Aki et Richards, 2002). When ignoring the second and third terms of gravity

and velocity gradient and assuming an homogeneous medium, the standard form of

seismic wave equation becomes,

ρ
∂2u

∂t2
= f + (λ+ 2µ)∇ (∇ · u)− µ∇×∇× u. (2.6)

Without considering the force term f, equation 2.6 can be regrouped in terms of

Helmholtz potentials as,

20



2.2 Green’s function and Cross-correlation

∇

[
(λ+ 2µ)∇2Φ(x, t)− ρ∂

2Φ (x, t)

∂t2

]
= −∇×

[
µ∇2Ψ(x, t)− ρ∂

2Ψ (x, t)

∂t2

]
, (2.7)

where Φ(x, t) is a scalar potential and Ψ(x, t) is the curl of a vector potential, both are

functions of space and time (Stein et Wysession, 2003) (Chapter 2.4). The two solutions

of 2.7 give the P- and S-wave velocity, which are α =

√
λ+ 2µ

ρ
and β =

√
µ

ρ
respectively,

and this is valid for a homogeneous medium.

The force term f can also be decomposed in Helmholtz potentials as : f = ∇Φ+∇×Ψ.

The general displacement u (x, t) due to a body force F (t) can be written as follo-

wing and u (x, t) = F (t) ∗ Gij, where ∗ is a time convolution and Gij represents the

displacements recorded at one receiver when a body force F is applied as source. It is

fundamental to investigate the medium wherein waves pass through.

u (x, t) =
1

4πρ

(
3γiγj − δij

) 1

r3

∫ r/β

r/α

τF(t− τ)dτ

+
1

4πρα2
γiγj

1

r
F

(
t− r

α

)
+

1

4πρβ2

(
γiγj − δij

) 1

r
F

(
t− r

β

)
,

(2.8)

where γi = xi/r = ∂r/∂xi and r is the distance between source and receiver. The three

terms on the right describe separately the displacements of the near field, the far-field

P wave, and the far-field S wave. We can observe that the amplitude of different terms

depend on the distance r. This is the elastodynamic Greens’s function in an unbounded

isotropic and homogeneous medium.

2.2 Green’s function and Cross-correlation

Ambient seismic noise related techniques are based on the theory that waves recorded

at two receivers are correlated to give the Green’s function. It provides an alternative way

to obtain seismograms which relies no longer on the occurrence of earthquakes or active
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sources. The relationship between the Green’s function and the cross-correlation equation

has been discussed for decades, and the development process is mainly as follows.

Aki (1957) first gave the early hint to noise-correlation by offering an approach

(SPAC) to estimate phase velocity of microtremors in order to reveal the nature of

the medium. For 1D structure, Claerbout (1968) gave an important result that new

seismic responses are produced by cross-correlating seismic recordings at different sites.

The author shows that the reflection seismogram of a horizontally layered medium can

be generated by the auto-correlation of its transmission response. The first application

on the helioseismic tomography by Duvall et al. (1993) determines the travel time of

waves along subsurface ray paths by cross-correlating the signals at two separated sur-

face points. Later for acoustic thermal fluctuations, Weaver et Lobkis (2001) argued the

possibility of extraction of information on waves propagation between two ultrasonic sen-

sors when cross-correlating the recorded signals. This is true in the diffuse field created

by a distant source or by thermal fluctuations in the specimen (Weaver et Lobkis, 2002).

Campillo et Paul (2003) first showed the extraction of the ballistic wave Green’s function

from correlation of the seismic coda recorded at seismic stations in Mexico because of

the diffusive characteristics of coda, which is the later arrivals in seismograms (Aki et

Chouet, 1975). Weaver et Lobkis (2004) pointed out that one can retrieve the Green’s

function in open heterogeneous systems. The emerged Green’s function is the full Green’s

function of the medium, symmetrized in time, with all reflections and scatterings and

propagation modes. Also for scalar wave in a homogeneous elastic background, scatters

can act as secondary sources, the high-frequency Green’s function can be obtained by

cross-correlating signals recordings with the stationary phase approximation (Snieder et

Beukel, 2004). Roux et al. (2005) first theoretically demonstrated the correlation between

the Green’s function and the derivative of noise correlation functions in a 3D homogene-

nous medium with and without attenuation. Wapenaar et Fokkema (2006) showed that,

for an arbitrary 3D inhomogeneous acoustic lossless medium, an integral over sources

on an arbitrarily shaped surfaces of cross-correlations of wavefield serve as the Green’s

function between any two points in the shaped surface. For all these studies, the authors

confirm the feasibility of reconstruction of the Green’s functions from the ambient noise

field. However, the underlying assumptions of physical constraints on the medium and

the characteristics of wavefield are different. Yet the reconstruction of these Green’s func-

tions depends strongly on the spatio-temporal noise sources distribution. Either a fully

diffusive medium or an even noise source distribution is required for the convergence of
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2.2 Green’s function and Cross-correlation

the exact Green’s function rebuilt from noise.

2.2.1 In Scalar Wavefield

In this section, we start from re-showing some mathematical derivation of the relation-

ship between Green’s function and cross-correlations equations in simple scalar wavefield.

The analytical expression of spatial correlation of scalar waves in the frequency domain

has been studied by Aki (1957); Duvall et al. (1993); Chávez-Garćıa et Luzón (2005) in 1-

and 2-D. Nakahara (2006) demonstrates that in 1-, 2-, and 3-D random scalar fields, the

normalized spatial correlation can be used to provide information about the propagation

of waves between receivers.

In scalar wave field, the wave equation for waves propagating changes into

∂2u (x, t)

∂x2
− 1

c2
∂2u (x, t)

∂t2
= P, (2.9)

where c is the speed of propagation of waveform. P is an impulsive source in both

time and space and equal to δ (r) δ (t). The corresponding Green’s function G (r1, t; r2, t
′)

which satisfies the equation above is(
∇2 − 1

c2
∂2

∂t2

)
G
(
r1, t; r2, t

′) = δ (r1 − r2) δ
(
t− t′

)
, (2.10)

between receivers r1 and r2.

The 1D Green’s function for 1D wave equation is deduced as :

G
(
r1, t; r2, t

′) =
c

2
H
(
t− r/c

)
, (2.11)

where H denotes the Heaviside’s unit step function and r is the distance between

receivers r1 and r2.

The principle of noise correlation is that the cross-correlation of two signals at recei-

vers r1 and r2 can be regarded as having a source at r1 producing waves that are recorded

at r2 in the causal part (positive time) of the correlation function and from r2 to r1 in

the anticausal part (negative time) when the noise sources distribution is homogeneous

or the wave field is well diffusive. For any two signals u1(t) at r1 and u2(t) at r2 having

interdistance equal to r, the normalized correlation of u1(t) and u2(t) is defined as,
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C (r1, r2, t) =
1

2π

∫ ∞
−∞

C1,2 (r, ω) exp (−iωt) dω

=
1

2

(
δ

(
t− r

c

)
+ δ

(
t+

r

c

))
.

(2.12)

The time derivative of Eq. 2.11 is

dG (r1, r2, , t)

dt
=
c

2
δ

(
t− r

c

)
. (2.13)

Substituting Eq. 2.13 into Eq. 2.12, we get

C (r1, r2, t) =
1

c

(
dG (r1, r2, , t)

dt
− dG (r1, r2, ,−t)

dt

)
. (2.14)

This is the relationship between the Green’s function and cross-correlation functions

in 1D scalar wavefield. The former one can be retrieved from the integral of the norma-

lized spatial correlations (Nakahara, 2006). Then for 3D, the Green’s function with an

impulsive point source can be deduced as

G
(
r1, t; r2, t

′) = − 1

4πR
δ

(
T − R

c

)
, (2.15)

where T = t− t′ and R = |r1 − r2|.

The relationship between the normalized cross-correlation functions and Green’s func-

tion has been shown firstly by Roux et al. (2005) for scalar waves.

C (r1, r2, t) =
1

2π

∫ ∞
−∞

C1,2 (r, ω) exp (−iωt) dω

=
1

4π

∫ ∞
−∞

exp
(
iω
(
t− r/c

))
iωr/c

dω − 1

4π

∫ ∞
−∞

exp
(
iω
(
t+ r/c

))
iωr/c

dω.

(2.16)

The time derivative of the cross-correction between signals at receivers r1 and r2

C (r1, r2, t) is
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d

dt
C1,2 =

1

4πr/c

(
δ
(
t− r/c

)
− δ

(
t+ r/c

))
= c

(
G (r1, r2, t)−G (r1, r2,−t)

)
.

(2.17)

The right two terms correspond to the forward and backward Green’s function between

r1 and r2. The time derivative of cross-correlation is proportional to the Green’s function,

which means there is a π/2 phase shift between them. This does not affect the noise-

based monitoring using directly the cross-correlation functions, as all the time shifts are

measured relatively. However it has an influence on the travel-time based-tomography.

This phase difference should be corrected when the exact arrival time is needed. Both

relationships that we reproduce above are valid under the assumptions that noise sources

are spatially homogeneous and the medium is acoustic lossless infinite.

xA 

xB 

x 

𝝏D 

𝓖(x
A
, x B

, ω
) 

𝓖(xA, x, ω) 

𝓖(x
B , x, ω) 

Figure 2.1 – Sketch of a bounded area with locations of two receivers xA and xB and
a source coordinate x at ∂D.

When goes into a 3D bounded medium Wapenaar et Fokkema (2006) first deduced

the relationship between the imaginary part of Green’s function and the integral of the

Fourier transform of cross-correlation of observations of wave field at two locations xA

and xB, which are inside of the boundary. G denotes the Fourier transform of G. This

relationship in the frequency domain is deduced based on the acoustic source-receiver

reciprocity theorem and shown as

2jIm
(
G (xA,xB, ω)

)
=

∫
∂D

1

P (x)
(G∗ (xA,x, ω) ∂iG (xB,x, ω)

− ∂iG∗ (xA,x, ω)G (xB,x, ω))nid
2x.

(2.18)
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The left part denotes the imaginary part of the Green’s function between xA and xB.

P indicates the acoustic pressure. ∗ is the complex conjugation. The integral for the right

term is arbitrary and along the source coordination x.

2.2.2 In Elastodynamics

In elastodynamics, the extraction of Green’s function has been experimentally proved

by cross-correlation in diffuse elastic wavefield generated by multiple scatterings (Cam-

pillo et Paul, 2003) or by random distribution of noise sources (Shapiro et Campillo, 2004)

for the surface-wave part in seismology. Sanchez-Sesma et Campillo (2006) first theoreti-

cally demonstrated that the 2D Green’s function can be retrieved from cross-correlation

under the condition that the incident waves are isotropic plane waves. They show the

proportional relationship between the Fourier transform of averaged cross-correlation of

and the imaginary part of the Green’s function as following under the assumption that

Es/Ep = α2/β2.

〈ui (r1;ω) u∗j (r2;ω)〉 = −8Esk
−2Im

(
Gij (r1, r2;ω)

)
, (2.19)

where Es = ρω2S2/2, k is S wavenumber and equal to ω/β. β is S wave speed. r1, r2

are locations of two receivers.

For 3D, the relationship between the Fourier transform of averaged cross-correlation

of and the imaginary part of the Green’s function is shown as :

〈ui (r1;ω) u∗j (r2;ω)〉 = −2πEsk
−3Im

(
Gij (r1, r2;ω)

)
, (2.20)

where Es = ρω2S2 in 3D, and k is S wavenumber and equal to ω/β.

2.3 Numerical Simulation

To confirm the theoretical relationship between cross-correlation and Green’s func-

tion, we simulate the elastic wave propagation in 3-D heterogeneous media without at-

tenuation using the velocity model by Matsubara et al. (2017) in Japan using the SEM

code developped by Trinh et al. (2017). The region is defined in Hokkaido as a square
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with length of 400 km. Two receivers r1 and r2 are centered in this square. The interdis-

tance of two receivers is 60 km. The source frequency is 0.2 Hz. Fig. 2.2 shows the sketch

of the array setting.

r1 r2 40
0 

km
 

400 km 

r = 160km 

0° 

Figure 2.2 – Sketch map of the array set. Two black triangles indicate the two receivers
r1 and r2. The black circle indicates locations of sources with a radius of 160 km.

Considering that noise sources come isotropically from all possible azimuths from 0◦

to 360◦. We calculate the cross-correlations of all the recorded signals at the two receivers.

The cross-correlations are plotted against the clockwise azimuths (Fig. 2.3). We observe

clearly the direct arrivals and the later coda waves.

The stack of all cross-correlations in Fig. 2.4 (blue dashed curve) is supposed to be

symmetric and resemble the Green’s function with a phase shift of π/2. The derivative

of stacked cross-correlations fits well into the Green’s function between r1 and r2 except

the amplitude which are slightly different. This similarity verifies the interrelationship

between the cross-correlation equation and the Green’s function that, in time domain :
∂

∂t
C(t) ∝ Gr1,r2(t) − Gr2,r1(−t), the derivative of cross-correlation equation yields an

exact representation of the Green’s function with an amplitude factor.

Yao et van der Hilst (2009) discuss in detail the phase relationship between cross-

correlations and Green’s function. We zoom in one part of the later arrival from 40 s to

60 s and we observe that even the coda part of the derivative of stacked cross-correlations

are in phase with the Green’s function. And the cross-correlations still differ from the

green’s function with a π/2 phase shift. This simulation confirms the availability of the
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Figure 2.3 – Normalized cross-correlations of signals recorded at receivers r1 and r2
from 0◦ to 360◦.

later portion of the cross-correlation. And realistically, we can use directly the cross-

correlations for the propose of monitoring. As we measure the relative time changes

within different pairs of cross-correlations.

2.4 Discussion and Conclusion

The validation of the equivalence between the Green’s function and correlation func-

tions have been proved under different assumptions. In practice, the distribution of noise

sources are out of control and non-isotropic, which is unfavorable for reconstructing a

symmetric Green’s function (Paul et al., 2005). The travel time measurements based on

the direct arrival waves are strongly affected by the non-isotropic distribution of noise

sources. However the presence of scatterings can compensates this influence to some

extent. The theoretical bias in travel time measurements on direct arrival waves has first

been discussed by Weaver et al. (2009) on considering a fully asymptotic limit for the

far-field sources in homogeneous medium. Later Froment et al. (2010) show the bias of
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Figure 2.4 – The blue dashed curve indicates the stack of cross-correlations with all
possible azimuths. The black curve is the green’s function between r1 and r2. The red
curve is the derivative of stacked cross-correlations. Zoom in from 40 s to 60 s is shown
down in the lower right.

travel time from different levels of uneven noise distribution. They also show that when

using the coda waves of cross-correlations, the bias almost disappears. This is the benefit

of using coda waves for monitoring. Colombi et al. (2014) evaluate the temporal stability

of the coda of cross-correlations. This provides us the opportunity to assess theoretical

errors when using the coda waves part for monitoring. We estimate the theoretical error

using the method introduced by Colombi et al. (2014) for our case with parameters :

frequency f = 0.3 Hz, the mean free path l = 100 km, and velocity c = 3 km/s at lapse

time t = 60 s. We get the theoretical fractional error is 1.5 · 10−4 when noise sources are

extremely in-isotropic (B2 = −0.6). Furthermore, the coda waves of cross-correlation is

less subject to non-homogeneous origins of noise sources. Therefore, the expected error

for our monitoring should be smaller than 1.5 · 10−4.

So when dealing with actual problems, we need to take different methods to en-

hance the stability of reconstruction of Green’s functions. For example, the preproces-

sing of noise data before cross-correlation (Bensen et al., 2007), stack of cross-correlation

equations, filtering (Stehly et al., 2011; Moreau et al., 2017), cross-correlation of cross-

correlation (C3) (Stehly et al., 2008) or quality control and selection based on signal-

to-noise ratio. This will be further discussed in the application of ambient seismic noise

29



PRINCIPLES OF AMBIENT SEISMIC NOISE CORRELATION

Chapter.
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Chapitre 3

Applications of Ambient Seismic

Noise Correlations
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This chapter mainly introduces the applications of ambient seismic noise correlation

methods in seismology over the last decade, such as surface wave tomography, body wave

extraction, and monitoring. We introduce briefly different aspects of these applications

and focus on noise-based monitoring. The emphasis is given on the comparison between

different methods and the presentation of cutting-edge aspects on what improvements

have been made.



APPLICATIONS OF AMBIENT SEISMIC NOISE CORRELATIONS

3.1 Ambient Seismic Noise

Ambient seismic noise is a persistent vibration of the ground that is recorded by

seismometers. The origin of noise is diverse and distinct for lower and higher frequencies

(Gutenberg, 1958; Donn, 1966; Bonnefoy-Claudet et al., 2006). For higher frequency

(f > 1Hz), noise comes mostly from human activities with daily and weekly variations.

Whereas for lower frequency (f < 1Hz), noise is mainly due to natural causes like

the interaction of the oceanic swell with the solid Earth and atmospheric turbulence in

storm areas, and standing waves in the ocean resulting from the interference of oppositely

moving wave trains of the same period. Notably, in the frequency band 0.3 – 0.05 Hz, the

ambient noise is often referred to as microseisms, which is not produced by earthquakes

or explosions. Microseisms may occur when atmospheric disturbances generated energy

is converted into energy of ocean waves that then transmit a portion of this energy either

to the ocean bottom or to coast. Then elastic waves travel through the crust and can be

recorded. Physically, ambient seismic noise consists primarily of the fundamental mode

of surface waves, with dominating Rayleigh waves(Toksoz et Lacoss, 1968).

The spectra of microseisms contain two prominent energy peaks are around 14 s and

7 s of period, which are called primary and secondary microseismic peaks respectively.

The primary peak resembles the spectrum of ocean gravity waves. The expected sources

areas for these are in the shallow water as the limitation of penetration of gravity waves

at this period (Haubrich et al., 1963; Friedrich et al., 1998). However, Stehly et al. (2006)

also show that the primary microseism could be generated in oceanic deep basins. The

interaction between the gravity waves and ocean floor can produce both Rayleigh and

Love waves. And the latter one requires horizontal forces that come from the interaction

between propagating ocean waves and sea-bottom topography (Saito, 2010). While for

the secondary microseism, Longuet-Higgins (1950) suggests that it originates from surface

pressure oscillations caused by the interaction between oppositely travelling components

with the same frequency in the ocean wave spectrum. Such interactions can be acquired

from both coastal and deep water (Hillers et al., 2012).

For very long period > 30s, continuous oscillations of Earth surface which are often

referred to as ”hum” have also been observed. The excitation of hum is confirmed to be

the interaction between atmosphere, ocean and seafloor, probably through the conversion

of storm energy to oceanic infragravity waves that interact with seafloor topography by

Rhie et Romanowicz (2004) using an array-based method. Based on the array analysis of
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tiltmeter recordings in the Japanese islands, Nishida et al. (2008a) find clear evidence of

background Love and Rayleigh waves. They suggest the most likely excitation mechanism

is shear traction acting on a sea-bottom horizon as a result of the linear topographic

coupling of infragravity waves.

The location of noise sources varies in time and space Stehly et al. (2006). The do-

minant sources distribution is anisotropic in azimuth, which leads to a non-accurate

reconstruction of Green’s function. The connection between the Green’s function and

noise correlations is underlying the theory that noise sources come from all directions.

This can be solved by using well scattered coda waves or by stacking the multi-directional

cross-correlations. We will introduce this later in detail in the applications of noise cor-

relations part.

3.2 Surface Waves Tomography

Ambient seismic noise consists primarily of the fundamental mode of surface waves

(Toksoz et Lacoss, 1968). Surface waves propagation between two sensors can be well

retrieved from the correlation of ambient seismic noise (Shapiro et Campillo, 2004) or

from the correlation of coda waves (Campillo et Paul, 2003). The first attempt of ambient

seismic noise-based surface waves group-speed tomography is made by Shapiro et al.

(2005) to image the upper crust of California. This improves the local resolution of

crustal structure. Then ambient noise surface waves tomography has been widely applied

from small scale ex : volcanic system (Brenguier et al., 2007) ; regional scale ex : Yao

et al. (2008); Stehly et al. (2009) ; continental scale ex : Yang et al. (2007); Bensen et al.

(2007) to global scale ex : Nishida et al. (2009); Haned et al. (2016) to investigate the

underground structure from shallow to the upper mantle.

Traditional ambient noise tomography employs a two-step inversion approach based

on ray-theory. 2-D velocity maps are estimated using surface wave group or phase velo-

city measurements, followed by 1-D depth inversion of local dispersion curves to obtain

shear-wave velocity models, which together form a pseudo 3-D velocity model. Most pre-

vious studies for improving ambient noise tomography are in the same 2-step workframe,

including retrieval of Green’s functions (Stehly et al., 2008; Moreau et al., 2017) ; 2-D

Helmholtz tomography (Lin et al., 2009; Lin et Ritzwoller, 2011) ; 2-D non-linear velocity

map inversion (Bodin et al., 2012a; Young et al., 2013) and 1-D non-linear depth inver-

sion (Bodin et al., 2012b; Shen et al., 2012; Lu et al., 2018). Fang et al. (2015) directly
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invert for 3-D model without constructing intermediate group or phase velocity maps,

so that the resulting 3-D model is constrained as a whole.

Recent advances in computational resources and numerical techniques allow new

ambient noise inversion approaches based on solving the wave-equation, referred to as

’ambient noise wave-equation tomography’. The new approach takes advantages of accu-

rate 3-D numerical simulation of wave-field and misfit kernels. It overcomes main draw-

backs of traditional ambient noise tomography by taking into account 3-D and finite-

frequency effects. Current applications of ambient noise wave-equation tomography (Gao

et Shen, 2014; Chen et al., 2014) make use of the traveltime information. Efforts are also

made towards ambient noise full waveform inversion considering amplitude information

(Fichtner, 2014, 2015). However, since the amplitude are influenced by the anisotropic

distribution of ambient noise source and preprocessing procedure, the ambient noise full

waveform inversion is still under development and need to be improved.

In Japan, Nishida et al. (2008b) first use tiltmeter recordings to reconstruct the

Green’s functions for imaging entire Japan. The authors take advantage of dense array

of Hi-net tiltmeters and obtain 3-D S wave velocity structure (Fig. 3.1) (0.1◦ × 0.1◦ × 1

km grid) from the surface to a depth of 50 km.
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Figure 20. Depth slices of a resultant S wave velocity structure. We also plot the lithospheric
boundaries and volcanoes as triangles. In the depth slice at 15 km, we also show three rectangular areas of
local traveltime tomographic models: (1) the model by Nakajima et al. [2001], (2) that by Matsubara et
al. [2005], and (3) that by Nakajima and Hasegawa [2007b].

B10302 NISHIDA ET AL.: A 3-D S WAVE VELOCITY MODEL BENEATH JAPAN

15 of 22

B10302

Figure 3.1 – Depth slices of a resultant S wave velocity structure in Japan after Nishida
et al. (2008b).
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3.3 Body Waves

Despite surface waves predominate the reconstructed Green’s function, extraction of

body waves has been verified first by Roux et al. (2005) from the cross-correlation of

noise recordings in the Parkfield network, California (Fig. 3.2). Later, Draganov et al.

(2007) show the results on the retrieval of reflections arrivals in regional seismology.

Both Moho-reflected body wave (SmS) and its multiples have been identified by Zhan

et al. (2010). They also report that relatively weak body waves can be masked by uneven

distribution of noise sources by the surface waves’ precursors. Poli et al. (2012a,b) also

show the emergence of body waves at high-frequency (0.5–2 Hz) on the northern part of

the fennoscandian region and Moho-reflected body waves from the 410 km and 660 km

discontinuities at depth from noise correlations. This provides the possibility of imaging

of the mantle transition zone with ambient seismic noise using body waves. Global pro-

pagagtion of body waves have been retrieved by Nishida (2013) using seismic hum with

frequency-wave number filtering in the range of 5 to 40 mHz. Boué et al. (2013); Nakata

et al. (2015) extract body waves to probe separately the deepest part of the Earth at

global scale and regional scale in California.

The Fig. 3.2 represent the first observation of P waves from ambient seismic noise

correlation by Roux et al. (2005) using noise recording on the dense temporary seismic

network installed in the Parkfield area.

response between pairs of stations [Roux et al., 2004]. The
directivity angle depends on the frequency and the range
between the station pair.
[8] Among the 30 stations analyzed, all 146 station pairs

whose relative locations lie along lines having azimuths
between 40!–60! have been selected. This range of azi-
muths was chosen to include the main noise propagation
direction from Figure 1b. Figure 2a shows the spatial-
temporal correlation function for the Z-Z components of
the noise field and reveals the presence of fast and slow
waves propagating at about 5 and 2 km/s, respectively.
Figure 2a is the passive analog of the shot gathers obtained
during the seismic reflection/refraction survey conducted by
Catchings et al. [2002]. In Figures 2b and 2c, the spatial-
temporal NCF has been filtered in two different frequency
bands, which show that the fast and slow waves travel at
high and low frequency, respectively.
[9] Both the Z-Z and Z-R traces obtained from the

NCF for two stations separated by 8.8 km are displayed
in Figure 3a. Each trace is normalized by the noise auto-
correlation at each station so that the amplitude of the NCF
is representative of the coherence of the noise field between
the two stations. Figure 3b corresponds to a time-frequency
analysis of the Z-Z component of the NCF. Two wave
packets are distinguishable at high (0.9 Hz) and low (0.4 Hz)
frequencies. The low frequency wave packet is dispersive as
expected for a Rayleigh wave. The observed dispersion fits
well with the dispersion computed from the red velocity

profile in Figure 4a (assuming Vp/Vs !
ffiffiffi

3
p

). Figures 3c
and 3d show the polarization plots for these two wave
packets. The linear particle motion obtained at 0.9 Hz
indicates the presence of a P-wave while the elliptical
particle motion obtained at 0.4 Hz is a further evidence of
a Rayleigh wave.
[10] Figure 4 shows ray paths for the P-wave performed

in a simplified 1-D seismic-velocity model of the SAF
[Catchings et al., 2002; Thurber et al., 2004]. The ray
arrival inclination at range 8.8 km matches the polarization
angle Q (Figure 3c) obtained from the NCF. This polariza-
tion behavior for station pairs from 6 to 11 km apart, is
consistent with the ray-modeled inclination varying from
60! to 70! (Figure 4b) and with the observed inclination

Figure 1. (a) Map of the Parkfield area (an 11-km large
square), showing stations (*) and SAF (dashed). (b) Angular
distribution of incoming noise on the Parkfield network
averaged over one month. Plane wave beamforming is
summed incoherently over 70 frequencies from 0.1–1.3 Hz
(North is 0!).

Figure 2. Range-time representation of the Z-Z compo-
nent of the noise correlation tensor averaged over one
month in three frequency bands (a) [0.1–1.3 Hz], (b) [0.1–
0.45 Hz], and (c) [0.7–1.3 Hz]. Each plot has been
normalized by its own maximum.

L19303 ROUX ET AL.: P WAVES FROM NOISE CROSS-CORRELATIONS L19303

2 of 4

Figure 3.2 – Range-time representation of the Z-Z compo- nent of the noise correlation
tensor averaged over one month in three frequency bands [0.7 – 1.3 Hz]. The plot has
been normalized by its own maximum after Roux et al. (2005).
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3.4 Ambient Seismic Noise-based Monitoring

In this section, we focus on noise-based monitoring and discuss the motivation behind

monitoring, the principles, and some conventional methods. In the end, we introduce

some comparisons and improvements made in our actual work in Japan.

3.4.1 Origins of Seismic Velocity Changes in the Earth

Changes in the subsurface stress field is an important indicator for studying nuclea-

tion and triggering of earthquakes, as well as the activity of natural and humanmade

reservoirs (Silver et al., 2007a). However the estimation of the stress state mainly relies

on either downhole strainmeters or some geodetic observations. The former one is geogra-

phically and temporarily restricted, and the latter one lacks direct information at depth.

Usually, the changes of the physical properties of the rocks in the crust are accompanied

by changes of seismic wave velocity. Numerous studies have proven the dependence of

seismic velocity in the crust on stress, some theoretical analysis (O’Connell et Budiansky,

1974; Schoenberg, 1980), through some early experimental proofs (Birch, 1961; Nur et

Simmons, 1969; Nur, 1971), and field works (Reasenberg et Aki, 1974; Yamamura et al.,

2003; Silver et al., 2007b). Therefore, monitoring of seismic velocity changes can be used

as an effective tool to probe changes of the subsurface stress field.

The continuous noise recordings provide us with a unique chance to reconstruct the

continuous Green’s functions between any couple of seismic stations (Campillo et Paul,

2003; Shapiro et Campillo, 2004; Campillo, 2006). The possibility to reconstruct these

Green’s functions repetitively in time, e.g. at different calendar days, leads to conti-

nuously monitoring the seismic velocity changes, and thus changes in the physical pro-

perties of the crust. The origins of seismic wave velocity changes are diverse and usually

can be linked to some environmental factors induced transient stress changes, which in-

cludes rainfall-induced pore pressure change (Sens-Schönfelder et Wegler, 2006; Meier

et al., 2010; Tsai, 2011; Wang et al., 2017; Johnson et al., 2017), temperature induced

thermoelastic effect (Ben-Zion et Leary, 1986; Meier et al., 2010; Tsai, 2011; Richter

et al., 2014; Hillers et al., 2015a), and tidal effects (Yamamura et al., 2003; Hillers et al.,

2015b). There are also some environmental loading effects such as atmospheric pressure

(Johnson et al., 2017), snow (Wang et al., 2017), groundwater (Johnson et al., 2017) and

sea surface height (Wang et al., 2017) etc., which act by opening or closing the micro-
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cracks in the medium. In addition to those environmental factors, there is also dynamic

stress changes, such as the occurrence of an earthquake, which can produce a sudden

quick drop of seismic velocity (Brenguier et al., 2008a, 2014; Taira et al., 2015; Wang

et al., 2017). This phenomenon has been experimentally and systematically studied by

Lyakhovsky et al. (1997); Johnson et Sutin (2005) and is often referred to as nonlinear

elastic behavior including both anomalous nonlinear fast dynamics (ANFD) and slow

dynamics (SD). And Lyakhovsky et al. (2009) develop a nonlinear continuum damage

model and successfully explain various deformational aspects of damaged materials with

theoretical analyses and numerical simulations.

In this thesis, we will show a comprehensive study in Japan on seismic velocity

changes, which are related to environmental factors induced transient stress changes and

the 2011 Tohoku-oki earthquake generating both significant dynamic and static stress

changes.

3.4.2 Principles

Fig. 3.3 (a) and (b) illustrate the continuous noise recordings at site A and B and

the reconstructed Green’s function between them from A to B in the positive causal part

and from B to A in the negative anticausal part. When the local medium encounters

changes, the seismic velocity change and thus the travel times too. Normally we measure

the changes of seismic velocity using surface and coda waves. The basis of the moni-

toring using coda waves is that the medium undergoes a homogeneous change, the δt

accumulates linearly with the lapse time. The relative δv/v is equal to -δt/t in case of

a homogeneous perturbation. Coda waves are the multiple scattered waves, the tail part

on the cross-correlation functions Fig. 3.3 (d). They sample the medium with a much

longer path than the direct arrival waves Fig. 3.3 (c). Hence, the later coda wave arrivals

are sensitive to very small velocity changes in the medium. Fig. 3.5 illustrates how the

later coda waves are more sensitive to velocity changes than the direct arrivals. We arti-

ficially stretch the black wave form by a decrease of velocity of 0.01 δv/v in Fig. 3.5 (a).

The red curve clearly shows that the later part of time lag has a bigger phase shift. Fig.

3.5 (b) show real noise cross-correlations after the 2011 Tohoku-Oki earthquake. We can

also see that the phase shift becomes more evident with increasing lapse time. Ambient

seismic noise based monitoring has also proved to be valid even in the case where the
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Figure 3.3 – (a) Noise recordings at stations A and B. (b) The cross-correlation function
between A and B. (c) Stochastic medium changes of the wave path between A and B.
(d) Two cross-correlation equations with a slight time shit. Schema from presentation
by Brenguier 2017.

Green’s functions are not well reconstructed (Hadziioannou et al., 2009; Weaver et al.,

2009). Here we present daily cross-correlation functions from vertical components of Hi-

net stations FSWH and TOWH in Japan in the frequency range 0.1 - 1 Hz from 2008

to 2012 3.4. The average cross-correlation (red curve) shows good symmetric waveforms.

On the days of the occurrence of earthquakes, there is no distortion observed. We can

still see very stable and clear scattered waves even until late tag times of 60 s.

Noise-based monitoring has provided insights into tectonic and volcanic processes, to

allow the detection of long-term post-seismic relaxation in fault zones (Brenguier et al.,

2008a; Hobiger et al., 2012; Froment et al., 2013). Fig. 3.6 show the classic example of

earthquakes related seismic velocity changes in the San Andreas fault zone (Brenguier

et al., 2008a). The result indicates that there is an immediate decrease in the seismic velo-

city coincident with earthquakes that is followed by a slow relaxation. Authors point out

that the seismic velocity changes are related to both co-seismic damages in the shallow

layers and to deep co-seismic stress changes and postseismic stress relaxation within the

fault zone. Monitoring also offers insights into velocity decreases as precursors of volcanic
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Figure 3.4 – Daily cross-correlation between two Hi-net stations FWSH and TOWH
from 2008 to 2012. The red curve represent the mean cross-correlation functions. The
two horizontal black lines indicate the day of two earthquakes.

eruptions (Wegler et Sens-Schönfelder, 2007; Brenguier et al., 2008b, 2011; Obermann

et al., 2013), and interactions between seismic and volcanic systems (Brenguier et al.,

2014; Taira et Brenguier, 2016). Also seismic velocities can be affected by external envi-

ronmental perturbations, such as rainfall (Sens-Schönfelder et Wegler, 2006; Meier et al.,

2010; Tsai, 2011; Hillers et al., 2014), thermoelastic stress (Meier et al., 2010; Hillers

et al., 2015a), and atmospheric pressure (Silver et al., 2007a). Both environmental per-

turbations and earthquakes related seismic velocity changes will be introduced in detail

for cases in Japan in the second and third parts of the thesis.

The noise-based monitoring probe very high accuracy of seismic velocity changes

down to 10−5. Time resolution can be as accurate as hourly or daily to detect velocity

changes of different origins. However, the spatial resolution is relatively low as the tra-

vel path of coda waves cannot be accurately obtained. Regarding these problems, some

improvements have been made in recent studies. We will mention this in the last section

of this chapter.
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Figure 3.5 – (a) One cross-correlation from both vertical components of stations FSWH
and TOWH. Black curve represents the calculated cross-correlation from noise recordings
after preprocessing. Red curve represents the cross-correlation after artificially stretching
by 0.01 velocity decrease compared to the black curve. (b) shows the same black curve as
in (a). The red curve is another calculated cross-correlation after the 2011 Tohoku-Oki
earthquake. Both are zoomed in from 10 s to 30 s.

3.4.3 Methods

Nowadays, there are three different fundamental ways for noise-based monitoring :

stretching (Lobkis et Weaver, 2003; Sens-Schönfelder et Wegler, 2006), doublet (Poupi-

net et al., 1984; Brenguier et al., 2008a,b; Clarke et al., 2011) and doublet – inversion
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Figure 3.6 – afterBrenguier et al. (2008a)

(Brenguier et al., 2014; Gómez-Garćıa et al., 2018). In this section, we are going to briefly

talk about the principles of the first two methods and focus on the third one, which has

proved to be the most robust.

Basically, ambient seismic monitoring is based on time shift measurements between

two cross-correlation functions. One is fixed as the reference (ccfref ) and usually is the

stack of a series of correlations over a specified period without big earthquakes. The other

one is called current cross-correlation (ccfcur), which is usually a daily or monthly stack

of noise cross-correlations.

Stretching method is a time domain waveform based method. The ccfcur is chan-

ged by stretching the waveform by a factor ε. Then the velocity changes are evaluated

by solving an optimisation problem which from evaluation of cross-correlation coefficient

between the ccfref and the stretched ccfcur on the part of coda waves. The application of

this method is fast and effective, however, it may be affected by the temporal variability

of noise source frequency content (Zhan et al., 2013; Daskalakis et al., 2016).

Doublet method (called also Moving Window Cross-Spectral method) was
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first introduced by Poupinet et al. (1984) for retrieving the relative velocity changes

between earthquakes doublets. Recently, (Brenguier et al., 2008a,b; Clarke et al., 2011)

apply this method to continuously recorded noise cross-correlations. This is a frequency

domain measurement. The time changes between ccfcur and ccfref are estimated in dif-

ferent time windows with an overlap. Usually, the moving window length is determined

by the minimum frequency in the selected period range. The maximum lapse time used

for measuring depends on the stability of the emerged Green’s function by evaluating

their energy envelops. The time shifts are measured within each window from the slope

of a linear regression of the phase difference within the defined frequency range. The seis-

mic velocity changes are given by the slope of the second linear regression of all the time

shift from each moving window. Compared to stretching, the doublet method may be

free of the bias from the temporally varied noise frequency content due to the separation

of amplitude and phase spectra in the frequency domain before measuring time-shifts

(Zhan et al., 2013).

Doublet – Inversion Method is a new method that is based on the Doublet method

(Brenguier et al., 2014). The authors avoid the choice of an arbitrary ccfref function and

improve the precision of the measurements by separately computing velocity changes for

all of the possible daily ccfcur functions for each station pair. Then they use a Bayesian

least-squares inversion to retrieve the accurate daily continuous velocity change time

series for every station pair. The basic steps of this method are represented as follows.

The definition of velocity changes at day i is :

δvi =
vi − vref
vref

. (3.1)

Then the difference of velocity between day i and day j is :
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δvj − δvi =
vi − vref
vref

− vj − vref
vref

=
vj − vi
vref

=
vj − vi
vi

· vi
vref

= δvij ·
vi
vref

= δvij ·
vi − vref + vref

vref

= δvij · (δvi + 1) ' δvij.

(3.2)

This linear relationship of the velocity changes between ccfcur to ccfcur and ccfcur

to ccfref can be written as d = Gm and allows inverting of daily velocity changes for n

days from n (n− 1) /2 pairs of ccfcur. m is a vector of measured daily seismic velocity

changes from day1 to dayn using Doublet method. G is a sparse matrix of dimension[
n · (n− 1)

2
, n

]
(see details in the supplementary materials by Brenguier et al. (2014)).

Then the solution of m is given by the following equation,

m =
(
GtC−1d G+ αC−1m

)−1
GtC−1d d, (3.3)

where Cd is a covariance matrix describing the Gaussian uncertainties of the data

vector d. Cm is a priori covariance matrix weighted by the parameter α and is expressed

as,

Cmij = exp

(
−|i− j|

2β

)
, (3.4)

which sketches the correlation between the δv on day i and j. β is the parameter cha-

racterizing the correlation length (Lcorr), which actually controls the smooth strength

of the inversion result.

This method is the most robust among the three presented methods. It has a big

drawback : the amount of calculation is much more massive than the first two ways.

But this method provides a very stable result by calculating all possible date-pairs noise

cross-correlations. In this thesis, all the studies in Japan are based on the Doublet –
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Inversion method.

3.4.4 Some Improvements

Although, the validation of noise-based monitoring has proved success even in cases

when the Green’s functions are not well reconstructed (Hadziioannou et al., 2009; Weaver

et al., 2009), the improvement of the validated monitoring result can be realized through

different ways. In this study, firstly the inversion after the doublet has a good ability

to reduce fluctuations of velocity changes and can adjust the parameters to focus on

long-term or short-term tendency. Nine components correlations also improve the ability

of detection of earthquakes-related seismic velocity reductions. Fig. 3.7 shows the results

of seismic velocity changes from different combinations of 3 components for station pair

FSWH-TOWH using Lcorr = 5. Tohoku-oki earthquake-related seismic velocity decrease

can be identified from each component-pair.

Also, the average of these nine velocity changes curves further enhances the iden-

tification of earthquake-related velocity changes shown in Fig.3.9 with different Lcorr

values.

We compare the results by normal average and weighted (according to their errors)

over the 9 components (Fig. 3.9). They are slightly different, and we take the latter one

and apply for all the station-pairs.

For each site, we calculate all the possible cross-correlations within a distance of

smaller than 30 km, measure the velocity changes through the cross-correlations with

different directions, and average the results. This process is equivalent to superimposing

cross-correlations in different directions to achieve a stable result from the theoretical

Green’s function.

It is also vital to primarily stabilize cross-correlations with the help of different ways,

ex : using the Correlation of Correlations (C3) (Stehly et al., 2008) to better retrieve

the Green’s function, even in the presence of a directive and poorly oriented ambient

noise. Because coda waves of correlation are better equipartitioned compared to the

noise sources. As well as applying filters in the curvelet transform space Stehly et al.

(2011) to improve the SNR of stacked correlations. More recently, Moreau et al. (2017)

verify the efficiency of the SVD-based Wiener filter on stabilizing correlation functions.

We also test the SVD-based Wiener filter on cross-correlations of NN component-pair
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Figure 3.7 – Seismic velocity changes (%) from different combinations of 3 components
for station pair FSWH-TOWH using Lcorr = 5.

of tiltmeter KMYH-NKWH from 2008 to 2012 with daily resolution. After filtering, the

noise level of correlations decrease, and the signal-to-noise ratio is enhanced. We see the

continuous coda waves till ±400s lapse time. The only problem is that SVD filtering is

time consuming when the dataset is huge as in Japan.

3.5 Other Applications

In addition to these deep-developed applications described above, there are currently

also several popular applications such as the study on the amplitude information car-

ried by the ambient field (Prieto et al., 2011). The amplitude information contains both

amplification effects from elastic structure and attenuation effects. The noise-based at-

tenuation tomography (Lawrence et Prieto, 2011) provides complementary information

to the noise-based or earthquake-based tomography. The reconstructed Green’s function

from ambient noise field can also used to predict long-period ground motion from earth-
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Figure 3.8 – Mean seismic velocity changes (%) from 9 combinations of 3 components
for station pair FSWH-TOWH using Lcorr = 5 (red) and Lcorr = 1000 (blue).

Figure 3.9 – Comparison of mean seismic velocity changes from different average me-
thod over 9 components.

quakes. The virtual earthquake approach developed by Denolle et al. (2013) shows clear

improvements of the predicted ground motion related to the surface impulse response.

Various earthquake-based scientific applications will be strongly reconsidered and further

developed in the ambient seismic field.
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Figure 3.10 – Cross-correlations of one component pair KMYH-NKWH-NN from 2008
toe 2012 in 8 – 50 s. The left one is without any filter. The right one is after applying
the SVD-based Wiener filter. Red line indicates the day of Tohoku-oki earthquake. Blue
line indicates the gap of data.

48



Deuxième partie

Environmental Crustal Seismic

Velocity Changes





Chapitre 4

Seasonal Crustal Seismic Velocity

Changes throughout Japan

Sommaire

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Analysis of Seasonal Variations in δv/v . . . . . . . . . . . . 58

4.4.1 Seasonality Strength . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.2 Three-months Average Seismic Velocity Changes . . . . . . . . 58

4.4.3 Sub-Areal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Linear Model Correction . . . . . . . . . . . . . . . . . . . . . 69

4.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . 73

4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7.1 A1 : Comparison with GRACE . . . . . . . . . . . . . . . . . 74

4.7.2 A2 : Time shift measurement . . . . . . . . . . . . . . . . . . . 75

4.8 Statistical Analysis of the Seismic Velocity Changes . . . . 78

In this chapter, we monitor the seismic velocity changes in the frequency band from

0.15 Hz to 0.90 Hz throughout Japan. We focus on studying some seasonal effects and

identifying the dominant environmental factors in charge of the repeated annual patterns

in different locations. We develop a linear model based on different local meteorological

and oceanographical observations to simulate the seasonal signals and subtract them from
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the measurements. In addition to the content related to the paper by Wang et al. (2017),

we also do some statistical analysis by comparing the time series of seismic velocity

changes before and after correcting the seasonal effects. Statistical results illuminate

that seismic velocity changes after removing the seasonal signals are more consistent

with Gaussian distribution compared with the directly measured velocity changes.
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4.1 Abstract

Noise-based crustal seismic velocity changes are known to be affected by environ-

mental perturbations, such as rainfall, atmospheric pressure loading, and temperature

changes. Similar to geodetic observations, these external perturbations can mask the ef-

fects of tectonic and volcanic processes. In this study, we benefit from the dense Hi-net

short-period seismic network that covers the entire Japan to measure continuous changes

in seismic velocities over a few years, using noise-based seismic monitoring. Some strong

seasonal seismic velocity changes are observed in both southern Japan (Kyushu Island)

and northern Japan (Hokkaido Island). Decreasing of seismic velocities in summer in

southern Japan can be clearly explained by a model of increased crustal fluid pore pres-

sure associated with high rainfall. In northern Japan, it is necessary to adopt a more

complex model to explain the observed seismic velocity variations, which takes into ac-

count precipitation, snow depth, and sea-level changes. Moreover, western and eastern

Hokkaido Island show very different responses to these different external perturbations.

The models developed are used to remove the seasonal components of the seismic ve-

locity changes. The minimum remaining detectable seismic velocity change reduces to

10−5, which allows detection of crustal responses to small earthquakes that are previously

hidden in the strong seasonal perturbations.
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4.2 Introduction

Advances in ambient noise correlation methods (Campillo et Paul, 2003; Shapiro et

Campillo, 2004; Campillo, 2006) have led to continuous monitoring of temporal variations

of seismic velocity changes (δv/v) in the crust. Noise-based monitoring has provided

insights into tectonic and volcanic processes, to allow detection of long-term post-seismic

relaxation in fault zones (Brenguier et al., 2008a; Hobiger et al., 2012; Froment et al.,

2013), velocity decreases as precursors of volcanic eruptions (Wegler et Sens-Schönfelder,

2007; Brenguier et al., 2008b, 2011; Obermann et al., 2013), and interactions between

seismic and volcanic systems (Brenguier et al., 2014; Taira et Brenguier, 2016). Similar

to geodetic observations (Heki, 2001), crustal seismic velocities are affected by external

environmental perturbations, such as rainfall (Sens-Schönfelder et Wegler, 2006; Meier

et al., 2010; Tsai, 2011; Hillers et al., 2014), thermoelastic stress (Meier et al., 2010;

Hillers et al., 2015a), and atmospheric pressure (Silver et al., 2007a). In volcanic areas,

correction of these environmental seismic velocity perturbations improves the detection

capability of precursors to volcanic eruptions (Rivet et al., 2015).

Japan is prone to frequent seismic and volcanic activities. A dense distribution of

the high-sensitivity seismograph network (Hi-net) (Okada et al., 2004; Obara et al.,

2005) allows us to monitor δv/v in the upper crust using 718 stations. In this study, we

investigate seasonal crustal seismic δv/v over a number of years and across the whole of

Japan.

We apply here the approach of Brenguier et al. (2014) to continuous seismic records

from the permanent short-period seismic network in Japan. We measure the accurate

daily seismic δv/v starting from 2008, and observe co-seismic and post-seismic responses

to the Mw 6.9, 2008 Iwate-Miyagi Nairiku and Mw 9, 2011 Tohoku-Oki earthquakes.

In addition to the relative seismic velocity decreases (10−3) that are coincident with

these earthquakes, the seasonal seismic velocity changes with amplitudes of 10−4 for

both Kyushu Island and the northeastern corner of Hokkaido Island are observed. The

summer-time reductions of seismic velocities in Kyushu can be clearly explained by a

model of crustal fluid pore pressure increase that is associated with strong rainfall in

summer. The best fitting curve in the northeastern corner of Hokkaido Island suggests

an origin of both precipitation and snow. We also study some other regions that show

strong seasonal repeatability with relatively small amplitudes of the seasonal changes in

δv/v. Detailed comparative analysis between seismic measurements and different environ-
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mental factors shows that the seasonal effects differ greatly from one region to another.

It is necessary to adopt a more complex model to explain the observed seismic velocity

changes on the basis of the meteorological and oceanographic observations. Finally, we

introduce a linear model to remove the seasonal components of seismic δv/v. This pro-

cedure improves the detection capability of the crustal responses to small earthquakes

that are previously hidden in these strong seasonal perturbations.

4.3 Data and Methods

We measure relative seismic velocity changes (δv/v) from the continuous noise recor-

dings of the Hi-net stations in Japan (Figure 4.1a). We compiled a dataset composed

of 718 Hi-net stations. The dataset that we were able to gather consists of 501 stations

for north Japan with data spanning from 2008 to 2012 and 217 stations for south Japan

with data spanning from 2011 to 2012.

To improve the temporal stability of the noise records before correlation, we apply

one-bit normalization (Campillo et Paul, 2003; Shapiro et Campillo, 2004), which re-

moves some irregular events and preserves the phase of the signal during this period. In

the frequency domain, spectral whitening in the band from 0.08 Hz to 2.0 Hz can de-

crease the effects of temporal changes in the microseismic sources (Shapiro et al., 2006).

In the present study, we reconstruct the Green’s functions by calculating the hourly cross-

correlation functions using both the vertical and horizontal components, of station pairs

up to 30 km apart to restrict the amount of measurements. Daily cross-correlation func-

tions are provided by averaging the hourly cross-correlation functions, which improves

the stability of the daily cross-correlation functions and enhances the signal-to-noise ra-

tio. Delay measurements from the nine correlations that result from the three-component

recordings enhance the stability of the evaluation of δv/v.

Based on these daily cross-correlation functions, we perform the doublet method

similar to Brenguier et al. (2014) using a Bayesian least-squares inversion to retrieve

accurate daily relative δt/t time series for every component pair. The final curve of δt/t is

centered around 0. The doublet measurements are performed from −60s to +60s of time

lag, and in the frequency band from 0.15 Hz to 0.90 Hz. At these frequencies, the depth

sensitivity of the seismic coda waves to velocity perturbations can be considered similar

to the surface-wave sensitivity (Obermann et al., 2013, 2016). The depth sensitivity

of the phase velocity of Rayleigh wave to a shear-wave velocity perturbation (Froment
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et al., 2013) indicates that our measurements essentially characterize δv/v to within 8

km in the upper crust. Because coda waves of the ambient noise correlation result from

scattering, using this tail portion of the cross-correlation functions can effectively reduce

the influence of the directivity that arises from the inhomogeneous distribution of the

noise sources (Colombi et al., 2014). Furthermore, the feasibility of seismic monitoring

with multiple scattered waves has been demonstrated, even if the Green’s function is

not perfectly reconstructed (Hadziioannou et al., 2011). Considering that the medium

undergoes a homogeneous change, the δt/t accumulates linearly with the lapsed time.

The relative δv/v is equal to -δt/t in case of a homogeneous perturbation. Hence, the later

coda wave arrivals are sensitive to very small velocity changes in the medium. Instead of

using a simple arbitrary stack as the reference function, we enhance the accuracy by using

a linear inversion of every day-to-day δv/v measured with the doublet method (Brenguier

et al., 2014). Based on the frequency domain phase measurements, the doublet method

is hardly affected by possible seasonal changes in the spectral content of the ambient

noise, as might be the case for the stretching method (Zhan et al., 2013; Hillers et al.,

2015a).

For each station pair, we average δt/t by weighting according to the quality of the

individual phase measurements over all of the nine components of the cross-correlations.

Furthermore, for each station, we average δv/v over all nearby station pairs less than 30

km apart. This procedure additionally improves the precision, and furthermore, it reduces

the effects from the directivity of the sources. We can finally monitor the relative seismic

δv/v for 718 Hi-net stations distributed across the whole of Japan.

Figure 4.1b shows four randomly selected time series to demonstrate the seismic

δv/v in the different regions. The shapes and amplitudes of these time series are easily

distinguishable from one region to another. From north to south, station TAJH (located

in eastern Honshu) shows strong seismic velocity decreases that are coincident with

the 2008 Iwate-Miyagi Nairiku earthquake and the 2011 Tohoku-Oki earthquake. The

velocity tends to recover after the Iwate-Miyagi Nairiku earthquake. In spite of this, the

δv/v had not returned to its previous level when the Tohoku-Oki earthquake occurred.

Station MWDH in central Honshu shows both the rapid velocity decrease due to the

Tohoku-Oki earthquake and some strong seasonal fluctuations that correspond to velocity

decreases in summer and increases in winter. Station OKBH shows two decreases in the

seismic velocity related to the nearby 2009 Shizuoka earthquake and the 2011 Tohoku-

Oki earthquake. The stations in the western Japan that are represented by the blue
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Figure 4.1 – (a) Distribution of the Hi-net stations in Japan. The blue triangles indicate
data recorded from 2011 to 2012. The yellow stars indicate the locations of the epicen-
ters of four earthquakes : Mw 6.8, 2008 Tokachi-Oki earthquake (41.892◦N 143.754◦E) ;
Mw 6.9, 2008 Iwate-Miyagi Nairiku earthquake (39.030◦N 140.881◦E) ; Mw 6.2, 2009
Shizuoka earthquake (34.743◦N 138.264◦E) ; and Mw 9, 2011 Tohoku-Oki earthquake
(38.297◦N 142.373◦E). (b) Randomly selected time series for the seismic δv/v for the
four stations, TAJH, MWDH, OKBH, and MJNH. The scattering of the colored points
indicate the error. The four dashed vertical red lines indicate the days of Shizuoka ear-
thquake, Iwate-Miyagi Nairiku earthquake, and Tohoku-Oki earthquake (from left to
right).

triangles (Figure 4.1a) show seismic δv/v in 2011 and 2012. MJNH in Kyushu exhibits

strong seasonal changes, with increases in winter and decreases in summer. The velocity

decreases from June and reaches its lowest in July, during the rainy season. However,

the recovery of the seismic velocity is more gradual compared to the abrupt reduction.

The shapes of these time series are complicated in different regions and cannot be easily

represented by single sinusoidal curves, as presented by Hobiger et al. (2012). These

seasonal characteristics suggest that the seismic δv/v in Japan are subject to nonidentical

environmental factors in different areas. In other words, the seasonality is strongly region-

dependent.
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4.4 Analysis of Seasonal Variations in δv/v

4.4.1 Seasonality Strength

We observe large seasonal variations in seismic velocity across Japanese islands. These

seasonal signals should reflect the in-situ physical changes in the upper crustal properties,

but limit the possibility to correctly track the tectonic changes. We want to show areas

that are strongly affected by the seasonal variations. The Pearson correlation coefficients

are calculated for the annual signals between two different years, and the mean correlation

coefficients are mapped. The annual signals in the north are chosen from years 2008, 2009,

and 2010, when there is no large earthquake. Figure 4.2b shows an example of how the

correlation coefficient (CC) is computed for station KWNH in the west of Honshu, as

according to equation 4.1.

CC (y1, y2) =
cov (y1, y2)

σy1σy2
, (4.1)

where σy1 and σy2 are the variances of annual signal in two different years. Then the

mean correlation coefficients with a spatial resolution of 1 km using a linear interpolation

are mapped after applying Gaussian filter with 300 km full width. Assuming that a

correlation coefficient ≥ 0.6 signifies large seasonal effects and the correlation coefficients

represent a seasonality strength, the map of the seasonality strength (Figure 4.2a) shows

that the seasonal effects are very strong in Hokkaido and Kyushu, and Honshu along the

Sea of Japan.

4.4.2 Three-months Average Seismic Velocity Changes

To map the quarterly seismic δv/v (Figure 4.3), the δv/v is averaged over each 3-

month period, beginning from January. Spatial smoothing is applied with a 300 km full

width Gaussian filter. In northern Japan, the δv/v is demeaned, detrended and averaged

from the years 2009 to 2010, to avoid the large velocity reduction that is coincident

with the 2008 Iwate-Miyagi Nairiku earthquake and the 2011 Tohoku-Oki earthquake.

In southern Japan, the δv/v is the detrended mean over the years 2011 to 2012.

The quarterly maps give an intuitive sense of the temporal and spatial variations of

the seismic velocities. Large anomalies can be found in Kyushu and in the northeastern
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Figure 4.2 – (a) Seasonality strength distribution in Japan. (b) The example of station
KWNH. The vertical dashed red line indicates the day of the Tohoku-Oki earthquake.
The upper record shows the seismic δv/v time series at station KWNH with color-coded
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corner of Hokkaido (Figure 4.3a, c). However, the anomalies show different features in

these two regions. Kyushu shows large decreases in seismic velocity in the third quarter. In

contrast, the velocity in northeastern Hokkaido begins to decrease in the second quarter,

and continues to be negative in the third quarter. This area is dominated by an increase

in the seismic velocity in the first quarter. This difference suggests that the seismic

velocities for these two islands may be controlled by different physical mechanisms or

different variations of a single physical mechanism, or both.

The quarterly variation of seismic δv/v is globally correlated with the quarterly va-

riation of total water storage derived from the gravity-change measurements by GRACE

(Gravity Recovery and Climate Experiment, available at http ://grgs.obs-mip.fr/grace/).

The relatively positive δv/v in the north in the first quarter is in agreement with high

Equivalent Water Height (EWH, cm) due to snow depth in winter. The relatively nega-

tive δv/v in the south in the third quarter corresponds to high EWH due to rainfall in

summer. More complicated process has occurred in central Japan. Detailed comparison

of quarterly variations of seismic δv/v and GRACE is in appendix A. We believe that

in Kyushu the negative changes in the velocity in the third quarter can be associated

with the heavy rainfall in the monsoon season. The rapid increase in the pore pressure

due to the large amount of precipitation might be the main driving force that leads to

the decrease in seismic velocity. In contrast to Kyushu, Hokkaido has heavy snowfall

every year. The combination of these various external environmental factors might pro-

duce complex deformation of the crust. Thus it is necessary to study the seasonal effects

separately in these different areas, and to identify the predominant external forces.

4.4.3 Sub-Areal Analysis

The seismic δv/v in both Kyushu and the northeastern corner of Hokkaido shows

large seasonal fluctuations. The specific seasonal characteristics of each of these regions

requires them to be analyzed separately. Seasonal seismic δv/v are known to be influenced

by meteorological effects (Sens-Schönfelder et Wegler, 2006; Meier et al., 2010; Froment

et al., 2013; Hillers et al., 2014; Rivet et al., 2015). Thus, in this section, the time series

of δv/v are compared with the different meteorological effects. All of the meteorological

data are from the Japan Meteorological Agency.
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4.4.3.1 Kyushu Velocity Change Anomaly

Kyushu is located in the southwest of Japan. Little snowfall is recorded for Kyushu,

except at high altitudes. In contrast, there is intense precipitation in the monsoon season.

In the present study, the time series for δv/v is calculated for 74 Hi-net seismic stations

(Figure 4.4a), from 2011 to 2012.

Figure 4.4b shows that in Kyushu, temporal evolutions of seismic velocity in 2011

and 2012 are similar with transient reductions of velocity in July by an order of 10−4

and subsequent recoveries. Then the velocities recover gradually to their initial levels.

This periodic velocity change is mostly controlled by annual variations of precipitation.

Sens-Schönfelder et Wegler (2006) first noted that a decrease in the seismic velocity

at Merapi Volcano is solely associated with precipitation. In southern Japan, Nakata

et Snieder (2012) have also estimated that shear-wave velocity changes are negatively

correlated with precipitation, using vertical arrays of surface and downhole seismic sites.

The increase in pore water pressure leads to a decrease in the effective pressure of the

rock, and reduces the shear modulus (Snieder et Beukel, 2004; Meier et al., 2010; Tsai,

2011; Froment et al., 2013; Hillers et al., 2014; Rivet et al., 2015).
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Figure 4.4 – (a) Mapping of the mean seismic δv/v in July from 2011 to 2012 from the
74 Hi-net stations. The red triangles indicate locations of the quaternary volcanoes. (b)
Upper record : Daily mean precipitation for Kyushu (gray) and computed relative diffused
pore pressure changes (blue) from the 129 meteorological stations. Lower record : Time
series of δv/v for the Hi-net stations (gray) and the averaged δv/v time series (black).
The red curve gives the synthetic δv

v syn
curve.

In our analysis, the mean seismic δv/v (Figure 4.4b) suggests that the strong annual
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variations are negatively correlated with the mean precipitation. Therefore, it appears

that the direct ground water loading effect, that can increase δv/v, is not predominant.

Instead, the pore pressure diffusion is more likely to be the dominant mechanism that

controls the seasonal effects for Kyushu. The infiltration of rain water produces delayed

pore pressure changes in the first kilometers of the crust. When the daily precipitation

is at its maximum in July, the decrease in the seismic velocity also tends to be at its

maximum. Meanwhile, δv/v are slightly delayed due to the hydraulic diffusion, compared

to the peaks of the daily precipitation. We map the mean seismic δv/v in July over the

years 2011 and 2012 after Gaussian smoothing of width 100 km. Figure 4.4a shows

that the locations of the strong variations correlate well with the central and southern

volcanic zones. The crustal rock in the volcanic zones should have more cracks and be

more sensitive to external stress changes. This finding confirms the high susceptibility of

velocity changes to external perturbations in volcanic regions, as reported by Brenguier

et al. (2014).

The poroelastic effect is then computed from the daily precipitation records. Based

on the one-dimensional fully coupled diffusion equation developed by Talwani et al.

(2007) and used by Rivet et al. (2015) to improve the monitoring, the superposing pore

pressure diffusion changes are calculated using equation 4.2. Here, we consider the direct

pore pressure changes (P (r, t)) that are due to diffusion within a certain distance r from

the daily precipitation at the surface.

P (r, t) =
n∑
i=1

δpierfc

 r(
4c (n− i) δt

)1/2
 , (4.2)

where δt is the time increment from the first day i, δpi is the precipitation load

changes (ρ · g · δhi) at the sampled instant ti, c is the diffusion rate (m2/s). For each

day at each station, the pore pressure is the mean value within the certain distance r. In

this study, r is 8 km the same as depth sensitivity of seismic δv/v. The modeled seismic

velocity changes ( δv
v syn

(t)) can be estimated using a transfer function as follows :

δv

v syn
(t) = 〈δv

v
(t)〉+

cov
(
δv
v

(t), P (t)
)

var
(
P (t)

) ∗
(
P (t)− 〈P (t)〉

)
, (4.3)

where 〈〉 is the average over time. The diffusion rate is estimated by minimizing

squares residual σ2 between the modeled δv
v syn

and the measurement :
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σ2 (c) =
1

n

n∑
i=1

(
δv

v
(i)− δv

v syn
(i, c)

)2

. (4.4)

Here, n indicates the number of days. We find c = 1m2/s as an optimal diffusion rate

for calculating changes of pore pressure in the following study. The mean pore pressure

changes (Figure 4.4b, blue curve) can be transformed into the synthetic δv
v syn

using

equation 4.3. The synthesis (Figure 4.4, red curve) correlates well with the real seismic

δv/v. We confirm that the pore pressure changes from the precipitation control of the

seasonal seismic δv/v in Kyushu.

4.4.3.2 Hokkaido Velocity Change Anomaly

Hokkaido is located in the northeast of Japan. Seismic δv/v time series are plotted

along the longitude in Figure 4.5b, for 2008 to 2012. The seasonal effects are much

stronger in the northeastern corner (from 144◦E to 145◦E) than in the other areas. The

velocities increase from the beginning of each year, and reach their maximum in February,

and then begin to decrease. In other areas in Hokkaido, the seismic velocities show

annual variations with increases and decreases in summer and winter, respectively. These

fluctuations are smaller than in the northeast. We can observe decreases of velocity that

are coincident with the Tohoku-Oki earthquake for both sides of Hokkaido. In addition,

we can observe velocity decreases following the 2008 Tokachi-Oki earthquake just for the

stations in the east. This confirms that these observations are very sensitive to changes

in the crust. The seasonal effects can interfere with the δv/v related to earthquakes. The

different features of the annual fluctuations reveal that the seasonal effects for the two

sides of Hokkaido might be dominated by different external factors.

Figure 4.6b shows that the mean seismic δv/v in eastern Hokkaido tends to increase

at the beginning of each year, and then to decrease in summer. The amplitudes of fluc-

tuations are more than 10−4. The mean daily snow depth is about 50 cm, and this reaches

its maximum in winter when the increasing rate of velocity is maximum. The mean daily

precipitation is less than 50 mm and is concentrated in the summer, during which δv/v

decreases. From these observations, it can be seen that the mean seismic δv/v in the east

is negatively correlated with mean precipitation and positively correlated with mean

snow depth. The changes in the diffused pore pressure P induced by precipitation can be

computed using equation 4.2, as with Kyushu. It would thus appear that the seismic δv/v
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(b) (a) 

Figure 4.5 – (a) Map of the 95 Hi-net seismic stations (black triangles) and the 112
climate stations (red points) in Hokkaido. (b) Relative seismic δv/v along the longitude
from 140◦E to 145◦E. The dashed red lines indicate the days of Tokachi-Oki earthquake
and Tohoku-Oki earthquake, from left to right.

is controlled by a combination of the changes in pore pressure and snow depth. Here,

we consider two possible effects of the snow depth. The first is the direct elastic loading

effect that has been observed by geodetic measurements (Heki, 2001; Grapenthin et al.,

2006). This is also observed in Mount St. Helens by seismic monitoring (Hotovec-Ellis

et al., 2014). The other effect is that the snow cover impedes infiltration and recharging of

the groundwater (Seiler et Gat, 2007), thus decreasing pore pressure. We can summarize

these effects by considering a linear relationship between seismic δv/v and the combined

effects of both the changes in pore pressure and snow depth, according to equation 4.5.

δv

v syn
= a · P + b · S + C, (4.5)

where a and b are the coefficients of the daily mean precipitation P and the mean

snow depth S, respectively, and C is a constant with offset parameters. The synthetic

curve of δv
v syn

in the northeastern corner of Hokkaido is then constructed, as shown in

Figure 4.6b. This curve is consistent with the mean measurements in this area. The best

fit for a and b are −4.9 ∗ 10−6Pa−1 and 2.1 ∗ 10−6cm−1), respectively. According to the

best fitting coefficients, both poroelasticity and snow depth have roles in the seasonal

effects in northeastern Hokkaido. Daily precipitation and snow depth are negatively and
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Figure 4.6 – (a) Map of the 23 Hi-net seismic stations (black triangles) and the 26
meteorological stations (red points) in Hokkaido. (b) Upper record : Mean seismic δv/v
over the 23 Hi-net stations (black curve), and the estimated velocity change time series
(red curve) from the effects of pore pressure changes from both rainfall and snow depth.
The dashed red lines indicate the days of Tokachi-Oki earthquake and Tohoku-Oki ear-
thquake, from left to right. Lower record : Mean daily snow depth (cm), and mean daily
precipitation (mm).

positively correlated, respectively, with the seismic δv/v, as we expected. A special geo-

logical condition in eastern Hokkaido which is covered by the Kushiro marsh, the largest

marsh in Japan (Nakamura et al., 2004), might enhance the response of seismic δv/v by

pore pressure changes.

4.4.3.3 Western Hokkaido and Honshu

The map of seasonality strength (Figure 4.2) indicates that the Sea of Japan side of

Honshu and Hokkaido also shows significant seasonal effects. The seismic δv/v time series

of 92 Hi-net stations which show high (>0.6) seasonality strength (Figure 7a, b) show

rapid velocity decreases due to the Tohoku-Oki earthquake. They also show relative

velocity decreases in winter and increases in summer, except for some stations in the

Japanese Alps in central Honshu and in the Kanto region (Figure 4.2a). These stations

are at around 138◦E and 140◦E, and they mainly show ephemeral decreases in velocity

in summer.

Seasonal effects in the Japanese Alps can be explained well by precipitation-induced

pore pressure changes. Figure 4.8a shows the mean precipitation and the mean pore pres-
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(a) (b) 

Figure 4.7 – (a) Map of the 92 Hi-net seismic stations (black triangles) with seasonality
strength > 0.6. The red points indicate the meteorological stations that record the daily
precipitation and daily maximum snow depth. The cyan diamonds indicate the seven tidal
gauge stations. The 18 blue points indicate the meteorological stations that record the
daily mean atmospheric temperatures.(b) Relative seismic δv/v along the longitude from
135◦E to 142◦E. The dashed red line indicates the day of the Tohoku-Oki earthquake.

sure changes calculated using equation 4.2. There is close correlation between the curves

of the synthetic δv
v syn

(Figure 4.8b, red) and the mean seismic measurement (Figure 4.8b,

black).

The other areas except stations in the Japanese Alps or Kanto region (Figure 4.7a)

also show repetitive but weak seasonal variations (Figure 4.9). In these areas, the mean

daily snow depth is around 75 cm, and the mean daily precipitation is less than 25 mm.

The overall tendency of the mean seismic δv/v is to decrease in winter and increase in

summer. This curve is out of phase with the mean seismic δv/v in eastern Hokkaido,

which is controlled by a combination of pore pressure changes and snow. Figure 4.9c

shows that the precipitation-induced pore pressure changes do not correlate with the

mean seismic δv/v. The seasonal effects in Hokkaido and Honshu along the Sea of Japan

are almost independent of the pore pressure changes and the snow depth. Although the

snowfall is much more intense on the western side, no clear associated velocity increases

are observed ; instead velocities decrease during the period of intense snowfall. As the

amplitudes ( 10−4) of the seasonal effects in this area approaches the minimum detec-

table velocity changes that are theoretically expected with extreme changes in the noise
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Figure 4.8 – (a) Mean daily precipitation (gray) in the Japanese Alps region and diffused
pore pressure changes (blue). (b) Relative seismic δv/v in the Japanese Alps region. The
black curve represents the mean seismic δv/v. The red curve represents the synthetic δv

v syn
from the pore pressure changes. The dashed red line indicates the day of the Tohoku-Oki
earthquake.

wavefield (Colombi et al., 2014), the observed δv/v might be under the influence of noise

source properties, also some other factors such as sea level fluctuation and thermoelastic

stress changes might predominate the seasonal effects in this area.

The sea surface height is subjected to a variety of physical processes of meteorologi-

cal (e.g., atmospheric pressure, wind stress) and oceanographic (e.g., surface currents)

origins (Matsumoto et al., 2006). It does not only provide information about the physi-

cal processes along the coast (Chelton et Enfield, 1986; Mitchum et al., 2001), but it is

also an important indicator of ocean mass variations (Matsumoto et al., 2006). Ocean

mass variations can change the ocean bottom pressure, as well as the stress acting on the

seashore (?). The pressure can be different according to the types or directions of the pre-

existing faults (Luttrell et Sandwell, 2010). Tide gauges measure the regional sea level

changes, which are very consistent with the changes in sea surface height in Figure 4.9b.

Altimetry data are provided by the National Oceanic and Atmospheric Administration

Laboratory for Satellite Altimetry. Sea level data are usually used to improve the accu-

racy of altimetric data near the coasts (Morimoto et al., 2000). Here, we consider the

changes in sea level as the same as the changes in sea surface height. Figure 4.9b shows

the mean δv/v time series along the Sea of Japan compared to the mean changes in

sea level from seven tidal gauge stations. The changes in seismic velocity and sea level

correlate well with each other without any remarkable phase shift. Seismic velocity tends

to increase when the sea level is high, and vice versa. Munekane (2009) also considered

the seasonal load deformation due to ocean mass variations caused by nontidal factors
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from the Sea of Japan for improved precision of GPS measurements. We thus assume

here an instantaneous elastic ocean loading effect on the upper crust for Honshu and

Hokkaido along the Sea of Japan.

Apart from the sea level, the nonuniform distribution of the air temperature in space

and time, and the heterogeneity of the physical properties in the crust can generate

thermoelastic stress (Berger, 1975; Ben-Zion et Leary, 1986). Given that the upper crust

is characterized by both horizontal and vertical temperature gradients (Lubimova et

Magnitzky, 1964), Meier et al. (2010), Tsai (2011), Richter et al. (2014), and Hillers

et al. (2015a) attributed the seasonal seismic δv/v mainly to the thermoelastic strain

in some arid areas. Thus, we also compare the mean δv/v with the mean temperature

in the Sea of Japan side of Honshu and Hokkaido. There is a time delay of about 35

days between the time series of the atmospheric temperature changes and the seismic

δv/v before the Tohoku-Oki earthquake. The amount of delay is comparable with that

inferred by Richter et al. (2014) for northern Chile, and a little smaller than the delay

(around 40− 45 days) of Hillers et al. (2015a) for the San Jacinto fault, in an arid area.

The time delay appears to be distorted by the earthquake, and the mean delay is about

64 days after the earthquake. The delay can be enhanced by the upper unconsolidated

layer, which conducts heat but does not transfer stress (Berger, 1975; Ben-Zion et Leary,

1986). The strain changes at depth come from the temperature changes at the lower

interface of the unconsolidated layer. Detailed comparison within time series of seismic

δv/v , temperature and SL are in appendix B. Both temperature and SL have relatively

high correlation with seismic δ v/v and all mutually correlated. We cannot exclude the

effect from each of them. We choose in the following to use SL to reconstruct seasonal

signals.

In western Hokkaido and Honshu, we studied the seasonal effects separately in the

Japanese Alps and along the Sea of Japan. This confirms that the changes in the

precipitation-induced pore pressure control the seasonal seismic δv/v in the Japanese

Alps. However, the seasonal effects are more complicated along the coast of the Sea

of Japan. The time series of the mean seismic δv/v does not correlate with the pore

pressure changes or the snow depth. There is a good correlation between the seismic

measurements and both the sea level and the atmospheric temperature recordings. As

the atmospheric temperature does not differ in the two sides of the island, we do not

consider that this factor is predominant in the Sea of Japan side, although there remain

the potential effects from the thermoelasticity that is driven by the changes in tempe-
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Figure 4.9 – (a) Mean daily precipitation and snow depth along the Sea of Japan. (b)
Mean seismic δv/v (black), mean sea level changes (light blue), and satellite altimetric
heights (red). The mean seismic δv/v is averaged over 58 Hi-net stations along the coast
of the sea of Japan, without the central Japanese Alps. (c) Mean precipitation-induced
pore pressure changes (blue) and the mean seismic δv/v (black). (d) Mean seismic δv/v
(black) and the mean atmospheric temperature changes (orange). All of the dashed red
lines indicate the day of the Tohoku-Oki earthquake.

rature. However, the changes in sea level can reflect the complicated physical processes

in the coastal region, and these are consistent with the time series of the mean seismic

δv/v.

4.5 Linear Model Correction

The previous paragraphs show that seasonal changes in the seismic velocities are

controlled by rainfall-induced pore pressure changes, and in some regions by snow depth

and sea surface height. Different regions of Japan show different sensitivities to these

external perturbations. Thus we introduce a linear model of external perturbations, which

is based on meteorological and oceanographic data, and used to create the synthetic

seasonal velocity changes time series ( δv
v syn

) for each Hi-net station.

δv

v syn
= a · P + b · S + d · SL+ C, (4.6)

where a, b, and d are weighting coefficients for the time series of pore pressure changes

69



SEASONAL CRUSTAL SEISMIC VELOCITY CHANGES THROUGHOUT JAPAN

(P ), snow depth (S), and sea-level changes (SL) from the closest meteorological and

tide gauge stations of each Hi-net station, and C is a constant. The δv
v syn

time series

are obtained for each Hi-net station by fitting the time series of the observed δv/v and

adjusting a, b, d, and C.

The linear model is tested here by choosing three Hi-net stations with strong seaso-

nality. Figure 4.10b-d shows the best fitting curves of δv
v syn

and the residuals for these

three stations. In the absence of a significant earthquake, the random fluctuations of the

δv/v time series after correction are reduced by about a factor of 1.5 − 2.5, and down

to the order of 10−5 (Table 4.1). The level of correction also depends on which station is

chosen.

Table 4.1 – Standard deviations before and after correction
Station Name Before After
TREH 1.21 ∗ 10−4 5.48 ∗ 10−5

ARKH 6.23 ∗ 10−5 3.99 ∗ 10−5

UWEH 4.91 ∗ 10−5 1.94 ∗ 10−5

Figure 4.11 shows the quarterly seismic δv/v before and after removing the δv/vsyn

time series for each Hi-net station from 2008 to 2010. The two anomalies in northeastern

Hokkaido and Kyushu almost disappear. The spatially uniform coefficient of diffusivity,

which is kept 1m2/s in this study, might not be a good approximation, and might bring

some instability. An anomaly remains in northeastern Honshu that is due to the co-

seismic and post-seismic effects of the 2008 Iwate-Miyagi Nairiku earthquake. This thus

shows that this correction procedure improves the extraction of the tectonic signal. In

addition, some poor corrections might be due to some nonlinear relationships or changes

in the characteristic coefficients of the crust before and after different earthquakes.
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Figure 4.10 – (a) Locations of the three Hi-net stations (black triangles). (b-d) The
black curve represents the seismic δv/v at the different stations. The red curve represents
the curve of the synthetic δv

v syn
from the linear model, taking the meteorological and

oceanographic data from the nearest weather and tide gauge stations. The blue curve
represents the residual of the δv/v after removing the red synthetic curve. The two dashed
vertical lines indicate the day of the Tokachi-Oki earthquake (Mw 6.8) and the day of
the Tohoku-Oki earthquake (Mw 9).
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Figure 4.11 – Quarterly seismic δv/v before and after the correction in Japan from
2008 to 2010. (a, b) Mean δv/v before and after correction from January to March. (c-d)
Mean δv/v before and after correction from July to September. The red star indicates
the epicenter of the Iwate-Miyagi Nairiku earthquake (Mw 6.9).
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4.6 Discussion and Conclusion

Seismic velocity changes δv/v over the whole Japan are measured using the doublet

method applied to the coda wave part of the noise cross-correlation functions. They

allow us to continuously track temporal changes of the mechanical properties of tectonic

and nontectonic origin in the upper crust. In this study, we observe strong seasonal

seismic δv/v in addition to the sudden velocity drops that are coincident with different

earthquakes. The seismic velocities show strong seasonality in Kyushu and Hokkaido, and

along the Sea of Japan side of Honshu. Seasonal variations show complex and variable

annual patterns in different areas. These differences depend mainly on the local geological

conditions and external perturbations.

The quarterly seismic δv/v show two large anomalies in Kyushu and in northeastern

Hokkaido. The diffuse pore pressure changes induced by strong precipitation in monsoon

seasons control the local seasonal effects in Kyushu. In addition, pronounced velocity

decreases are identified in the volcanic regions, which are more sensitive to external stress

changes due to the large amount of pre-existing microcracks and high fluid pressure. Both

precipitation and snow depth affect velocity changes in eastern Hokkaido. Although the

snow depth is positively correlated with seismic δv/v in this area, the mechanisms that

link δv/v and snow depth are still unclear. Snow might increase the seismic velocity

through a loading effect, by reducing the porosity and by enhancing the drainage in this

special marsh area. However, neither pore pressure change nor snow depth can explain

the seasonal seismic δv/v in western Hokkaido, even though the snow depth is much

greater along the western side of Japan.

Clear seasonal fluctuations also appear in western Honshu and Hokkaido. Yet, the

seasonal changes of δv/v are relatively weak. The Japanese Alps in central Honshu show

strong seasonal effects that are explained by rainfall-induced pore pressure changes, as

in Kyushu. Sea of Japan side of Honshu shows similar seasonal effects as in western

Hokkaido, with velocity increases in summer and decreases in winter. The related mean

seismic δv/v time series have good correlation with changes in both sea level and atmos-

pheric temperature. The changes in sea level can be linked to seismic velocity changes

through a loading effect in the coastal regions.

Therefore, we propose a simple model to correct for the seasonal effects for each single

station by taking the meteorological and oceanographic data from the nearby stations.

The standard deviation of the δv/v time series after correction is reduced to 10−5. Time
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series of seismic δv/v after correction allow us to track small changes in the mechanical

properties of the crust linked to tectonic effects. It should also be noted that these

seasonal effects should be observed and verified using GPS deformation measurements.

More analysis with dense GPS data needs to be carried out. We expect this comparative

analysis to provide a better model of the correction of seasonal effects, leading to a more

precise estimation of seismic δv/v of tectonic origin.

4.7 Appendix

4.7.1 A1 : Comparison with GRACE

Gravity Recovery And Climate Experiment (GRACE) monitors the gravity field and

is sensitive to detect the total water storage, which is represented as equivalent water

heights (EWH, cm). In this study, we use the EWH 10-day and monthly solutions RL03-

v3, courtesy of CNES/GRGS. The time-variable GRACE data after preprocessing mainly

reflect the gravitational changes from hydrology, snow cover, baroclinic oceanic signals

and post-glacial rebound. The reference field of EWH grids is a static mean field, which

is close to the actual value of the Earth’s gravity field on the first day of 2008.

Quarterly variations of EWH (Figure 4.12) are mapped using monthly solutions

RL03-v3 with spatial resolution of 1 deg2 in the same periods as Figure 4.3. In Kyushu,

it is clear that EWH is dominated by the high rainfall in the third quarter as in Figure

4.3c. Besides, we can observe that the positive EWH in the eastern corner of Hokkaido

in the first quarter is due to the snow fall in winter and corresponds to the increase

of seismic velocity. There are more complicated process occurred in the central Japan,

which may relate to the ocean in both sides.

In addition to the quarterly comparison of the spatial characteristics of EWH and

seismic δv/v, we also use single point extraction to get 10-day time series of EWH in

different locations. The single point data comes from barycentric computation from the

values at the 4 surrounding grid points with surface area of 1 deg2. All the time series

are demeaned. There are 12 missing values during the period from 2008 to 2012. We

observe in Figure 4.13 that EWH are positive or negative correlated with seismic δv/v

in different locations. The sensitivities of variations of EWH to δv/v are all comparable.
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(a) 

(d) (c) 

(b) 

Figure 4.12 – Quarterly variation of EWH (cm) during the same period as seismic data
(N : 2009-2010 ; S : 2011-2012). (a) Jan. - Mar. (b) Apr. - Jun. (c) Jul. - Sep. (d) Oct. -
Dec.

4.7.2 A2 : Time shift measurement

We analyze the correlation of mean seismic δv/v in the western Hokkaido and Honshu

with mean variations of atmospheric temperature and SL. The three time series are shown

in Figure 4.14a. Figure 4.14b is the correlation matrix within δv/v, temperature, and

SL. Time shift between δv/v and each other two time series is calculated using a one

year moving window. The time shift results are shown in figure 4.14c. Seismic δv/v is

posterior to changes of atmospheric temperature. The mean delay is ∼ 35 days. However

the time shift between SL and δv/v is small and ∼ 8 days.
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Figure 4.13 – The four different color indicates areas where the GRACE data is selected.
(b)-(e) show the seismic δv/v (black) and EWH (cm, blue) in different areas. (b) is
positively correlated to the EWH. The positive EWH is upwards plotted. (c), (d) and
(e) are negatively correlated to the EWH. The positive EWH is downwards plotted.
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shift (days) between δv/v and all other variations in (a).
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4.8 Statistical Analysis of the Seismic Velocity Changes

In this section, we do some statistical analysis of the seismic velocity changes accor-

ding to a procedure which was proposed by Hisashi Nakahara from Tohoku University.

He suggested to analyze our data to investigate the underlying statistical probabilities of

velocity changes in absence of big earthquake. We choose two time periods of two years

from 2009 to 2010 in the north and from 2011 to 2012 in the south to run the statistical

analysis. We selected four seismic stations BKEH, AAKH, MKOH, and UWEH (Fig.

4.15) in regions with strong seasonal variations to analyze their probability distributions

and compare the statistical probabilities before and after correcting the seasonal signals.

Figure 4.15 – Locations of stations BKEH, AAKH, MKOH, and UWEH.

Fig. 4.16 and Fig. 4.17 display the results of probability density and Q–Q (quantile-

quantile) plot at four stations. The time series of seismic velocity changes have been

centered to have a zero mean and rearranged in ascending order. Linearity of Q-Q plot is

a mark of Gaussianity. For results before correction, we observe the probability density

plots are showing deviations from the Gaussian distributions. Q–Q plots are only almost

linear and are not symmetric. For results after correction, the probability density distri-

butions are more consistent with Gaussian distribution and Q-Q plots produce some ap-

proximately straight line. Both evidences suggest that the seismic velocity changes during

the period without big earthquake follow approximately a normal distribution. Besides,

we can clearly observe that the corrected results are more consistent with the Gaussian

distribution. This indicates that the deterministic signals due to external forcing have

been effectively removed. The remaining fluctuations appear as random Gaussian noise

and adhoc techniques, as averaging, are justified to weaken the short term fluctuations.
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Figure 4.16 – (a) - (d) show the statistical analysis at station BKEH and AAKH using
seismic velocity changes before and after correcting the seasonal effects (continued on
next page).
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Figure 4.17 – (e) - (h) show the statistical analysis at station MKOH and UWEH using
seismic velocity changes before and after correcting the seasonal effects (continued from
previous page)
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Chapitre 5

Comparison of Seasonal Velocity

Changes with Geodetic Observations
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We systemically study the seasonal seismic velocity changes in the crust throughout

Japan in the Chapter 4. The global comparison between seasonal seismic changes and

GRACE satellite measured gravity field (equivalent water height, EWH) shows strong

consistency. Besides, some local seasonal signals and the adjacent EWH are very correla-

ted with each other. For the regions with strong seasonality, Except in Hokkaido seismic

velocity changes and EWH are positively correlated. For other regions, such as Kyushu,

central Alpes, western coastal side of Honshu are all negatively correlated with EWH.

Especially in Kyushu, not only the seasonal seismic velocity changes are in agreement

with the EWH, but also the long-term trend. However, as both spatial and temporal

resolution of GRACE is low, we need GPS observations to make more accurate local



COMPARISON OF SEASONAL VELOCITY CHANGES WITH GEODETIC
OBSERVATIONS

comparisons. In this Chapter, we compare the time series of seasonal seismic velocity

changes with both GPS recorded vertical displacement and GRACE measured gravity

field to further study the seasonal effects throughout Japan.

5.1 Introduction of GPS Data

Japan operates a dense continuous Global Positioning System (GPS) network, known

as GEONET since 1994 for providing geodetic positioning to monitor crustal deformation

in Japan. In this study, we make use of 1218 GEONET stations with three components

recordings from 2008 to 2012 Fig. 5.1. The average inter-station distance is around 25 –

30 km. Data preprocessing corrects the effects from solid earth tide, pole tides, and ocean

tidal loading using GAMIT software (Herring et al., 2010) at ISTerre. In this chapter,

we mainly discuss the time series of vertical displacements and their comparison with

the measured crustal seismic velocity changes in the frequency band 0.15 – 0.90 Hz.

Figure 5.1 – Distribution of GPS stations (blue triangle) used in this study.

Daily displacements of three components yield abundant information about crustal

deformation in Japan. Many complex processes do not relate to tectonic deformation

and emerge from seasonal variations. These seasonal signals are affected by changes in
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environmental factors also seen on seismic velocity changes. Many studies have been car-

ried out on the topic of the origin of seasonal displacements measured from GPS. Most

of the observed seasonal fluctuations on vertical motions are attributed to loading and

poroelastic responses induced by changes of the ground water table (Bawden et al., 2001;

Watson et al., 2002; Tiwari et al., 2014; Khandelwal et al., 2014). The large vertical dis-

placement has been demonstrated to be well correlated to elastic deformation computed

from hydrological data at a site in the central Amazon Basin by Bevis et al. (2005). Both

hydrology and thermoelastic induced stresses and strains have also been confirmed by

Tsai (2011) in southern California. In Japan, Heki (2003, 2004, 2007) analyzes different

possible processes for seasonally varying environmental displacements, emphasize the

important contribution of snow loads, and conclude that the spring thaw may enhance

the seismic activities beneath the snow cover. The dense distributed GPS offer us the

opportunity to understand regional-dependent seasonal crustal seismic velocity changes

better.

5.2 Comparison between GPS Vertical Displacement

and Seismic Velocity Changes

Firstly, we recall the map of the distribution of seasonal effects throughout Japan from

the last chapter. The figure below (Fig. 5.2) shows the seasonality strength of which the

value is the correlation coefficients between any two annual signals within different years.

We see that the eastern corner of Hokkaido, the total Kyushu, the central Alps region,

and the western coastal side of both Honshu and Hokkaido show strong seasonal effects

(Wang et al., 2017). So we will select several seismic stations in this regions and compare

the time series of seismic velocity changes with the nearby GPS vertical displacement.

We select several Hi-net stations in different locations where there are strong seasonal

effects as shown in Fig. 5.2. Centered on these seismic sites, we search for all the GPS

vertical displacement measurements with a radius of 30 km. Then we compare the Hi-net

seismic velocity changes with the averaged vertical displacements within this range. So

we analyze the relevance between the seismic velocity changes and GPS vertical displa-

cement by subregion.
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Figure 5.2 – Map of the seasonality strength of the annual seismic velocity changes in
0.15 - 0.9 Hz.(Wang et al., 2017)

5.2.1 Kyushu

In Kyushu, seismic velocity changes are measured from 2011 to 2012. We identify the

dominant environmental factor responsible for the seasonal seismic velocity changes is the

intense precipitation induced pore pressure changes, especially in summer (Wang et al.,

2017). We choose two seismic stations and compare the seismic velocity changes with

all GPS vertical displacements within a distance of 30 km. The amplitudes of seasonal

seismic velocity changes are about 10−2(%). The sensitivity of seismic velocity changes

to GPS height is 10−2(m−1) for both stations.

The two stations are TAKH and UWEH (Fig. 5.3 (a)), and there are 8 and 6 GPS

stations within 30 km, respectively. Both stations are located in the region where the

seismic seasonal effect is substantial. By contrast, we can clearly see in Fig. 5.3 (b) and

(c) that there is a positive correlation between the seismic velocity changes and GPS

vertical motion for both stations and especially for the first year in 2011. When the

seismic velocity decreases subjected to the precipitation induced pore pressure changes,

the GPS height also decreases rapidly. Instead of this, GPS height decreases slowly

with time. Especially for station UWEH, during the period when velocity decreases
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suddenly in each July, the GPS height does not change as sharply as changes of seismic

velocity. It shows when the precipitation is strong GPS vertical component tends to move

downwards with a relatively slow response compared to the seismic response due to the

precipitation. In this region, GPS height may be more sensitive to the water loading effect

induced subsidence on the crust. However seismic velocity changes are more sensitive to

the precipitation induced pore pressure changes. it is also worth noting that apart from

the instantaneous response to precipitation, the two-year trend of both seismic velocity

changes and GPS height are identical at the two stations.
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Figure 5.3 – (a) Locations of Hi-net seismic station TAKH and UWEH in Kyushu. (b)
and (c) are the comparison between time series of seismic velocity changes (black curve)
at TAKH and UWEH and the averaged nearby GPS vertical displacements (blue curve).

5.2.2 Japanese Alps

In the Japanese Alps region, seismic velocity changes are measured from 2008 to 2012.

It has also been shown that the local seismic velocity changes are controlled mainly by

the precipitation induced pore pressure changes as in Kyushu (Wang et al., 2017). We

show the seismic velocity changes at Hi-net station AAKH and around which there are 6

GPS stations within the distance of 30 km (Fig. 5.4). The sensitivity of seismic velocity

changes to GPS height, which is the ratio of velocity changes to vertical displacement,
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is 10−2(m−1) the same as in Kyushu.

The contrast of seismic velocity changes and GPS height shows that they are nega-

tively correlated, even for the two years after the Tohoku-oki earthquake. Except that

the seismic response to the big earthquake is the decrease of velocity due to the instan-

taneous dynamic stress changes. However, GPS height increases along with the uplift of

the crust and continues to rise in this area. In comparison to the Kyushu area case, GPS

vertical component moves upwards when seismic velocity decreases due to the changes of

pore pressure generated by precipitation. This difference may indicate that in this region

the GPS vertical displacements are controlled by poroelasticity induced deformation as

observed by Johnson et al. (2017).
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Figure 5.4 – (a) Locations of Hi-net seismic station AAKH in the Japanese Alps region.
(b) is the comparison between time series of seismic velocity changes (black curve) at
AAKH and the averaged nearby GPS vertical displacements (blue curve).

5.2.3 Eastern Hokkaido

In the eastern corner of Hokkaido, we observe seasonal seismic velocity changes with

strong velocity increase in winter. We select the Hi-net seismic station BKEH (Fig. 5.5).

The GPS height is averaged over 7 nearby stations. The seasonal signal in this region

is controlled by both effects of increased pore pressure during precipitation in summer

(velocity decrease) and of closure of crustal cracks in winter (velocity increase) affected

by both snow loading and pore pressure decrease by water drainage (Wang et al., 2017).
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5.2 Comparison between GPS Vertical Displacement and Seismic Velocity Changes
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Figure 5.5 – (a) Locations of Hi-net seismic station BKEH in Hokkaido. (b) is the
comparison between time series of seismic velocity changes (black curve) at BKEH and
the averaged nearby 7 GPS vertical displacements (blue curve).

From the comparison with GPS height, we do not observe the clear seasonal pattern

on GPS height. The snow effect is not clear from the GPS observation. Conversely, the

five-years downward long-term changes in GPS height has an overall downward trend,

which could be related to the positive changes in seismic velocity.

5.2.4 Western Coastal Side of Hokkaido and Honshu

Seismic velocity changes in the western coastal region of Hokkaido and Honshu show

strong seasonal effects with annual harmonic changes, which are considered to be affected

by the loading effect from the changes of sea surface height of the sea of Japan (Wang

et al., 2017). We select two stations (BFWH and MKOH in Hokkaido and Honshu, res-

pectively) to compare with the nearby GPS vertical displacements. There are separately

7 and 6 GPS stations within the distance of 30 km. Likewise, the sensitivity of seismic

velocity changes to GPS height is 10−2(m−1) for both stations.

Time series of seismic velocity changes and GPS height are well in phase and positi-

vely correlated (Fig. 5.6 (b) and (c)). This appearance is identical with the conclusion

by Williams et Penna (2011) that the non-tidal oceanic loading changes act on the GPS

height time series in the coastal sites. The seasonality of vertical motion and δv/v along

the coast is due to the elastic response of the upper crust under the effect of the variations
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Figure 5.6 – (a) Locations of Hi-net seismic station BFWH and MKOH in Hokkaido and
Honshu, respectively. (b) and (c) is the comparison between time series of seismic velocity
changes (black curve) at BKEH and the averaged nearby GPS vertical displacements
(blue curve).

of sea surface height. Munekane (2009) has also discussed the impacts of atmospheric

delays, atmospheric loads and sea surface height on the GPS time series of height changes

in Japan. They conclude that sea surface height is a key factor in charge of the seasonal

GPS height variations along the Sea of Japan. Accordingly, these arguments confirm the

analysis by ? in this region.

5.3 Comparison with Observations by GRACE

Gravity Recovery And Climate Experiment (GRACE) monitors the gravity field and

is sensitive to water stored in the Earth’s crust, which is represented as equivalent water
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Figure 5.7 – The four different color indicates areas where the GRACE data is selected.
(b)-(e) show the GPS heights (cm, black) and GRACE measured EWH (cm, blue) in
different areas. The positive EWH is downwards plotted.

heights (EWH, cm). In this last chapter, we use the EWH 10−day solutions RL03−v3,

courtesy of CNES/GRGS. The time-variable GRACE data after preprocessing mainly

reflect the gravitational changes from hydrology, snow cover, baroclinic oceanic signals

and post-glacial rebound.

We use single point extraction to get 10 − day time series of EWH around the four

seismic stations : BKEH, MKOH, AAKH, and UWEH in different locations. The single

point data comes from barycentric computation from the values at the 4 surrounding

grid points with a surface area of 1 deg2. There are 12 missing values during the period

from 2008 to 2012. Then we extract GPS data within 30 km of these seismic stations

and take the average over all related GPS heights. Both time series of GPS heights and

GRACE measured EWH are demeaned.
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We keep the ratio of height to EWH as -0.1 and plot the positive value of EWH

downwards. Generally, the two time series at different locations show a strong negative

correlation. Especially the long-term trends of five years at station BKEH (Fig. 5.7(b))

and of two years at station UWEH (Fig. 5.7(e)) outline that when the total water storage

increase, the GPS height decrease due to the subsidence from the water storage. For the

seasonal changes, there are some differences between the two. At station BKEH, we see

clearly the increase of EWH during each winter. However, from GPS height, there is no

legible seasonal change. For the other three locations, the seasonal variation of the two

is basically negatively correlated. In addition to those transient responses and longterm

trend, MKOH and AAKH in Honshu also exhibit rapid changes associated with the 2011

Tohoku-oki earthquake. The GPS heights increase at both locations in response to the

earthquake, while the EWH decrease at both locations.

5.4 Discussion and Conclusion

By selecting several seismic stations and comparing with the nearby GPS observa-

tions, we find that the time series of seismic velocity changes show a clear positive or

negative correlation with GPS vertical displacements in different regions. In both Kyushu

and the western seaside of the Sea of Japan, the two positively correlate. In the central

Japanese Alps region, the two negatively correlate. While in Hokkaido, we do not observe

a clear correlation between the changes in seismic velocity changes and GPS height. In

addition to seasonal effects, we find that the five-years long term trends of GPS height

and velocity changes fit with each other in both Kyushu and eastern Hokkaido. The

consistency from different observations of GPS and GRACE ensures that our seasonal

changes of seismic velocity are derived from the real physical changes of the underground

medium.

As the distribution of GPS stations is very dense and can be used to compare with

seismic velocity measurement at each Hi-net station, we then analyze the correlation

between time series of seismic wave velocity variations and GPS vertical displacements

throughout Japan. Fig. 5.8 shows the maps of correlation coefficients between the two

time series. In the north, we take the data in the years 2009 and 2010 to avoid the effects

from the 2008 Iwate earthquake and the 2011 Tohoku-oki earthquake. In the south, we

take the data from 2011 to 2012 to compare with the crustal seismic velocity changes

within 8 km at depth.

90



5.4 Discussion and Conclusion

Figure 5.8 – Map of the correlation coefficients between the time series of seismic
velocity changes and the averaged GPS height within distance of 30 km.

Overall, the two have a relatively positive correlation on the Japanese Sea side, Kyu-

shu and the eastern corner of Hokkaido, where seasonal effects of seismic velocity changes

are dominated by different environmental factors. An exception is in the central Alps re-

gion where the seismic seasonal effect is proved to be controlled by precipitation induced

pore pressure changes and the two time series are negatively related. The good correlation

indicates that there is a strong connection between seismic velocity changes and GPS

vertical displacements, however, the responses to environmental perturbations of GPS

vertical displacement and seismic velocity changes are different at different locations.

Through these comparisons above, we have summarized a few important conclusions.

First, both GPS vertical displacement and GRACE-derived gravity field show strong

annual patterns comparable to seismic velocity changes at the same site. The two in-

dependent geodetic observations are both useful to estimate the subsurface processes

induced by seasonal changed environmental factors. Secondly, the sensitivities of seismic

velocity changes to GPS heights in different areas are similar around 10−2(m−1). The ra-

tios of GPS height to GRACE measured gravity field are also constant -0.1 at different

locations. Thirdly, the time series of heights and EWH are negatively correlated regar-

ding all the long term trends, the seasonal effects, and the responses to the Tohoku-oki
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earthquake. Finally, both GRACE and GPS show a strong correlation with seismic ve-

locity changes on the western side of the Sea of Japan. This confirms the important role

of sea surface height to the deformation of the crust in the adjacent coastal region. And

the map of the overall correlation coefficient shows that the extent to which sea surface

height may affect the crust at a seasonal time scale. The further detailed comparison

needs to be done to confirm the different dominant mechanisms of seasonal effects on

seismic velocity changes and GPS recorded displacements in regional scales.

With the development of noise-based monitoring, we can directly measure the change

of seismic wave velocity at different depths to better and more accurately continuously

monitor the real-time changes of physical properties in the crust. The three different

observations can complement each other, help us better analyze the causes of seasonal

changes, and more importantly, study the long-term tectonic-related changes of physical

properties to understand the mechanisms of earthquake occurrence. The earthquake-

related seismic velocity changes will be the focus in the following chapter.

92



Troisième partie

Earthquake-related Co- and Post-

seismic Processes from Noise-based

Monitoring





Chapitre 6
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SEISMIC RESPONSE OF THE MW 9.0, 2011 TOHOKU-OKI EARTHQUAKE
BENEATH JAPAN FROM NOISE-BASED SEISMIC VELOCITY MONITORING

6.1 Tiltmeter Data Introduction

The previous part mainly introduced the seasonal changes of seismic wave velocity at

a relatively high frequency that is expected to refer to the shallow crust. The emphases

of this chapter will be shifting to study the Mw 9.0, 2011 Tohoku-oki earthquake-related

seismic velocity changes. In addition to the short period Hi-net data that we have used

for monitoring, the National Research Institute for Earth Science and Disaster Preven-

tion (NIED) also deployed high sensitivity tiltmeters that are co-sited with short period

sensors having burial depth of at least 100 m in the borehole (Okada et al., 2004; Obara

et al., 2005) to monitor the deformations. They have also been used to disclose the struc-

ture of the upper mantle (Nishida et al., 2008b). Fig. 6.1 shows the configuration of the

Hi-net stations in the borehole and the distribution of these tiltmeter stations in the

whole of Japan.

Tiltmeter recordings have two horizontal components and a flat acceleration response

in the frequency band 0.002–0.5 Hz, that suggest to use them as broadband seismometers.

Tonegawa et al. (2006) verify that tiltmeter recordings can be used in the frequency band

between 0.02 and 0.16 Hz and show the comparison of the radial component recordings by

the tiltmeter and a nearby broadband station. Both of them show quite similar velocity

waveforms and amplitude spectra (Fig. 6.2). Nishida et al. (2008b) show the extraction of

both Rayleigh and Love waves from the cross spectra of tiltmeter horizontal components

noise recordings and build a three-dimensional crustal S wave velocity structure of Japan.

Later Tonegawa et al. (2009) extract the body waves (direct P and S, and reflected

waves) from cross-correlating the teleseismic wavefield recorded by Hi-net tiltmeters. This

dense distributed broadband network provides us with the opportunity to investigate

the seismic velocity changes in different frequency bands and to get the deeper temporal

seismic response to the big earthquake. We start this chapter from the first successful

application of tiltmeter recordings to seismic monitoring and concentrate on analyzing

the depth-dependent earthquake-related seismic velocity changes in the vicinity zone of

the earthquake.
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(a) 
(b) 

Figure 6.1 – (a) shows the configuration of the Hi-net stations by Okada et al. (2004).
(b) shows the distribution of Hi-net stations (blue triangles).

Figure 6.2 – Red curve indicates tiltmeter recordings and black curve indicates broad-
band seismogram. (a) Velocity waveform comparison (b) Amplitude spectra comparison.
After Tonegawa et al. (2006)

97



SEISMIC RESPONSE OF THE MW 9.0, 2011 TOHOKU-OKI EARTHQUAKE
BENEATH JAPAN FROM NOISE-BASED SEISMIC VELOCITY MONITORING

Qing-Yu Wang1, Michel Campillo1, Florent Brenguier1, Albanne Lecointre1,

Yosuke Aoki2, Tetsuya Takeda3,4, and Akinori Hashima2

1 Univ. Grenoble Alpes, CNRS, ISTerre, 38000 Grenoble, France.

2 Earthquake Research Institute, University of Tokyo, Tokyo, Japan.

3 National Research Institute for Earth Science and Disaster Prevention, Tsukuba Ja-

pan.

4 Ministry of Education, Culture, Sports, Science and Technology, Tokyo Japan.

6.2 Abstract

Studying the mechanical response of the crust to large earthquakes provides us unique

insights into the processes of stress release and build up in preparation for future earth-

quakes. In complement to geodetic methods (GPS, InSAR) that derive crustal strain dy-

namics from surface observations, noise-based seismic velocity monitoring directly probes

the mechanical state of the crust at depth continuously in time. In this work, we study

the response of the crust to the Mw 9.0 Tohoku-oki earthquake. In addition to the Hi-net

short period sensors, we employ here for the first time for the noise-based monitoring

the very dense network of Hi-net tiltmeters as long period (8 – 50 s) seismometers to

sample the crust below 5 km depth. The spatial distribution of strong velocity decreases

at short periods appears be limited to the region of strong ground shaking induced by

the 2011 Tohoku-oki earthquake, while the long period velocity changes correlate well

with modelled static strain induced by fault slip. The amplitudes of coseismic velocity

changes diminish with increasing period. The velocity change at longer period is delayed

in time concerning the date of the earthquake. The inversion of seismic velocity changes

at depth illustrates how S waves velocity changes temporally within five layers down to

50 km at regional scale after a major earthquake.

———————————————-
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6.3 Introduction

Postseismic processes are produced by stress changes and relaxation following earth-

quakes. Studying postseismic processes is crucial to understand the local rheology of the

crust and earthquake interactions Pollitz (1992, 2005); Freed et al. (2006, 2007); Fuku-

shima et al. (2018). Over the past ten years, noise-based seismic monitoring started to be

used for the observation of near-surface damage induced by large earthquakes (Wegler et

Sens-Schönfelder, 2007; Brenguier et al., 2008a; Wegler et al., 2009; Taira et al., 2015).

The continuous monitoring of seismic velocities provides a new tool to capture the physi-

cal processes of lithospheric rheology after large earthquakes. It provides not only insight

into tectonic and volcanic processes (Brenguier et al., 2008a,b; Wegler et al., 2009; Chen

et al., 2010; Obermann et al., 2013; Froment et al., 2013; Brenguier et al., 2014; Taira et

Brenguier, 2016) but also into some transient fluctuations derived from external environ-

mental perturbations (Sens-Schönfelder et Wegler, 2006; Meier et al., 2010; Tsai, 2011;

Hillers et al., 2014, 2015b; Wang et al., 2017). The characteristic depth at which changes

are monitored varies from meters (Sens-Schönfelder et Wegler, 2006; Hillers et al., 2015c;

Mao et al., 2018) down to dozens of kilometers in the crust (Rivet et al., 2013; Froment

et al., 2013; Obermann et al., 2014) through measurements at various periods. Our goal

here is to investigate the changes at depth up to 50 km at regional scale after a major

earthquake.

Previous noise-based seismic monitoring studies of the Mw 9.0, 2011 Tohoku-oki earth-

quake, such as Brenguier et al. (2014); Sawazaki et al. (2015); Gassenmeier et al. (2016);

Wang et al. (2017), rely on relatively short periods < 10 s and thus shallow depths.

Brenguier et al. (2014); Wang et al. (2017) show that there is a fast coseismic decrease

of velocity followed by a long-term exponential postseismic relaxation. Brenguier et al.

(2014) point out that at shallow depth, coseismic velocity drops are mostly induced

by shaking from seismic waves emitted by the Mw 9.0 mainshock. The depth of velocity

changes can be estimated by considering the surface wave sensitivity kernels in the upper

crust. Minato et al. (2012) consider that earthquake-related seismic velocity changes in

the period range 2 – 10 s contain information from both stress release and strong ground

motion at shallow depth. Those results show however that seismic velocity changes at re-

latively high frequencies are mostly sensitive to earthquake-related damage in the shallow

layers (Brenguier et al., 2014; Gassenmeier et al., 2016).

At long period 12 – 30 s, Froment et al. (2013) show that seismic velocity changes reduced
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by the Mw 8.0 Wenchuan earthquake are very different from the velocity changes at short

period (Obermann et al., 2018). The intent of this study is to investigate with long period

signals the velocity variations induced by the Tohoku-oki earthquake at depth. We use

both Hi-net short period and tiltmeter data (Obara et al., 2005; Okada et al., 2004) to

measure the frequency-dependent velocity changes before, during and after the Mw 9.0,

2011 Tohoku-oki earthquake. We validate the feasibility of using tiltmeter recording to

measure monthly seismic velocity changes in the period bands 8 – 30 s and 15 – 50 s

and combine these observations with results from the Hi-net short period data corrected

from seasonal effects in the period band 1 - 7 s.

We find that the spatial distribution of velocity changes shows high correlation with

strong motion amplitude in the period band 1 – 7 s, and with coseismic dilatation for

longer periods. At long period, the maximum of velocity drop is delayed from the time

of the earthquake occurrence, with a time lag depending on the period that could be as

large as six months. This suggests that the processes responsible for the velocity changes

are different at the surface and at depth.

6.4 Data and Methods

In this study, we restrict the studied area close to the rupture zone in Honshu. We

select 190 tiltmeter stations (Fig. 6.4(a)) with recording gaps less than 5% and spanning

from 2008 to 2012. Tonegawa et al. (2006); Nishida et al. (2008b) have used tiltmeter

data as broadband seismometers in Japan for tomography. The comparison of both

velocity waveforms and amplitude spectra between recordings from tiltmeter recordings

and nearby broadband stations show strong similarities between these two types of data

(Tonegawa et al., 2006).

The routine preprocessing of continuous signals consist of 1-bit normalization and spec-

tral whitening from 0.02 Hz to 0.125 Hz. These operations aim at improving the temporal

stability of the noise records and at decreasing the effects of temporal changes in the mi-

croseismic sources (Campillo et Paul, 2003; Shapiro et Campillo, 2004; Shapiro et al.,

2006). We stack daily cross-correlation functions over every 30 days starting from 28 Jan

2008 and smooth the stacked cross-correlation functions using a 30 days moving average

window. Then we adopt the doublet and inversion methods by Brenguier et al. (2014) to

retrieve accurate monthly velocity changes for all the 7636 horizontal component-pairs
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up to 90 km apart. The doublet measurements are in two period bands 8 – 30 s and 15

– 50 s, for which the moving window lengths are 30 s and 50 s respectively, from -400 s

to 400 s of the time lag with 60% overlap. For each station, we average all related pairs

within 90 km and obtain time series of monthly seismic velocity changes lasting for five

years.

6.5 Spatial and Temporal evolution of seismic velo-

city changes

In addition to measurements using tiltmeter signals at period 8 – 50 s, we also measure

time series of seismic velocity changes corrected from seasonal effects in period band 1

– 7 s using both vertical and horizontal components of Hi-net short period data (Wang

et al., 2017) with the same procedure including the same time average of the cross-

correlations. The smoothness of the response therefore affected in exactly the same way.

The evolution of spatial and temporal seismic velocity changes at different periods enable

revealing depth-dependent Tohoku-oki earthquake-related co- and post-seismic physical

processes.

We select 7 seismic stations at different distances from the epicenter of the Tohoku-oki

earthquake. The Fig. 6.3 shows the locations of the 7 sites (6.3(a)) and time series of

seismic velocity changes in three different period ranges in order from north to south

(6.3(b – h)).

Globally, we can observe that the amplitudes of seismic velocity changes decrease as the

period increase. This means that the velocity changes greatly in the shallow layers, and

as the depth increases, the velocity changes weaken. However, the ratios of amplitudes

within three time series differ a lot at different locations. As well as the postseismic

recovery procedures are very different in the three different period bands that we studied.

For short period in 1 - 7 s, large seismic velocity changes coincident with the 2011 Tohoku-

oki earthquake can be observed at all the seven stations and then recovers gradually. We

find that the velocity changes do not recover to the initial level at the end of 2012 for all

Hi-net stations. The coseismic velocity drop is stronger near the earthquake and this drop

decreases rapidly with the increase of the epicentral distance (6.3 (b) - (h)). The stations

HMNH and KAKH also show the sudden seismic velocity drops coincident with the 2008
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Figure 6.3 – (a) locations of selected Hi-net stations. (b) - (h) Time series of seismic
velocity changes in different period ranges for Hi-net stations TWWH, HMNH, KAKH,
MRMH, AWNH, FMIH, and ASSH. Yellow stars indicate separately the Mw 6.9, 2008
Iwate-Miyagi Nairiku earthquake (39.030◦N 140.881◦E) and Mw 9, 2011 Tohoku-Oki
earthquake (38.297◦N 142.373◦E), and the aftershock of Tohoku-oki earthquake (38.1◦N
141.86◦E). The shaded area include six months after the Tohoku-oki earthquake. The
three vertical red dashed lines indicated separately the days of Iwate-Miyagi Nairiku
earthquake, Tohoku-oki earthquake, and the aftershock on the April 7th, 2011.
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Iwate-Miyagi Nairiku earthquake. Note that the velocity changes have not recovered to

the level before the earthquake.

For seismic velocity changes in 8 - 30 s and 15 - 50 s relatively long period ranges,

there is almost no coseismic velocity drop. We can only observe coseismic velocity drops

coincident with the 2011 Tohoku-oki earthquake for stations nearby the epicenter, which

are stations TWWH, HMNH, KAKH, MRMH, and AWNH. The amplitude of velocity

drops are smaller than that in 1 - 8 s. However the co- and postseismic responses do not

differ strongly at different sites. During first several months after the earthquake, seismic

velocity continues to decrease. Especially in 15 - 50 s, velocity tends to be minimum till

around the end of 2011. This delayed response in time may be controlled by some deep

factors, about which we will discuss in detail.

For the ratios of amplitudes at different locations, we first define three ratios r12, r13,

and r23 as separately the ratio between the amplitudes of curves in period band 1 - 7 s

and of curves in period band 8 - 30 s, between the amplitudes of curves in period band

1 - 7 s and of curves in period band 15 - 50 s, and between the amplitudes of curves in

period band 8 - 30 s and of curves in period band 15 - 50 s.

a) There is little seismic response regarding the velocity changes at FMIH and ASSH in

period bands 8 - 30 s and 15 - 50 s. So we focus on how the ratios vary at the other five

sites.

b) First, at KAKH, the site closest to the earthquake, we observe that seismic velocity

changes are very distinguishable, and there are big r12, r13, and r23.

c) At station AWNH, when the distance exceeds a specific value, the co- and post seismic

velocity responses at long period 8 - 30 s and 15 - 50 s tend to decrease too. There are

also distinguished seismic velocity changes in different period bands.

d) At station TWWH, seismic velocity changes in three period bands are quite similar.

The three ratios are approximately equal to 1.

e) Then for the other two stations HMNH and MRMH, r12 is almost 1. This implies

that amplitudes of velocity changes decrease faster with distance in short period band

1 - 7 s than in long period band 8 - 30 s. The amplitudes of seismic velocity changes in

15 - 50 s period band are smaller compared in other period bands. r13 and r23 are similar.
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6.5.1 Spatial distribution of postseismic velocity changes

  

(a) 

(d) (c) 

(b) 

Figure 6.4 – (a) distribution of 190 tiltmeter stations ; (b) – (d) Mapping of the mean
co- and post-seismic velocity changes over months from April to September in 2011, for
1 – 7s, 8 – 30s, and 15 – 50s, respectively.

Assuming the preseismic velocities fluctuate around 0, we first remove the mean seismic

velocity changes before the Tohoku-oki earthquake and compute mean velocity changes

over six months following the Tohoku-oki earthquake from April to September in 2011.

We map the spatial distribution of mean values using linear interpolation with the re-

solution of 1 arc-minute (∼ 2 km) after averaging over all stations spacing less than or

equal to 100 km for all the 190 stations in three period ranges (Fig.6.4 (b - c)).

Fig.6.4 (b, c, and d) illustrate that seismic responses at different periods are very distinct.
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In 1 – 7 s period band (Fig.6.4 (b)), velocity decreases strongly down to −0.08% in

the surrounding region of Miyagi, which is not adjacent to the epicenter of 2011 Mw

9.0 Tohoku-oki earthquake. The amplitude of maximum drop decreases outwards from

the center area around Sendai. Different from velocity changes in 1 – 7 s period band,

the location with most substantial velocity changes for 8 – 30 s period range is shifted

northeast to the coastlines of southern Iwate and northern Miyagi (Fig.6.4 (c)). The most

significant velocity drop reaches 0.05%, which is smaller than that at short periods. For

period band 15 – 50 s (Fig.6.4 (d)), this value reduced to 0.025%. The co-seismic velocity

changes for 15 – 50 s period band show a much smaller amplitude compared with other

periods. The area with strong velocity changes spreads mostly to the north and south

Honshu. Both geographic limits of spatial distribution of seismic velocity changes in 8 –

30 s and 15 – 50 s period ranges is to the volcanic front associated with the subduction

of Pacific Plate. The difference features of distribution of velocity variations in different

period bands may suggest that the origins of the seismic velocity changes are disparate.

(a) (b) 

Figure 6.5 – (a) Mean postseismic velocity changes over months from April to Septem-
ber in 2011 in 8–30s. (b) Map of PGV (cm/s).

In order to clarify the main origins of velocity changes in different period ranges, we

compare the maps of seismic velocity changes with map of pgv and deformation in

the crust, respectively. Fig.6.5 shows the velocity changes in short period range 1–7

s and the root summed squares of peak ground velocity (PGV) measured from three

downhole components. Both of them are smoothed over 100 km before mapping. The

spatial distribution of postseismic velocity changes shows similarities with the regions
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of strong shaking. This similarity suggests that seismic velocity changes at short period

are sensitive to changes of the medium due to shaking, lightly related with the non-

linear behavior of superficial unconsolidated shallow layers. This is consistent with the

conclusions about the seismic velocity susceptibility by Brenguier et al. (2014) that is the

ratio between the changes of seismic velocity (δv/v) and dynamic stress ε̇, which is
δv/v

ε̇
,

where ε̇ ∼ u̇(t) (PGV). The authors point out that the crustal seismic velocity reduction

is related to the mechanical weakening of the crust by the dynamic stress associated

with the seismic waves. And also Sawazaki et al. (2015) prove that shallow damage is

the predominant factor for short period seismic velocity changes.

(a) (b) 

Figure 6.6 – (a) Mean postseismic velocity changes over months from April to Septem-
ber in 2011 in 8–30s. (b) Modelled coseismic static strain at the depth of 20 km.

Fig.6.6 shows map of seismic velocity changes in 8 – 30 s and map of coseismic dilata-

tion at 20 km at depth. Coseismic dilatation is calculated using a 3-D depth-dependent

viscoelastic finite element model based on the GPS displacements (Freed et al., 2017).

Both of maps are smoothed over 100 km before mapping. We observe that the area of

maximum velocity drop is shifted to the northeast and is in agreement with the spa-

tial distribution of coseismic static strain. The different temporal evolution and different

spatial distribution of seismic velocity changes indicate the existence of differences of

behaviors at the different depths probed by our measurements. A first order conclusion

is the existence of specific changes at depth, different from the ones in the shallow layers,

the latter is likely dominated by strong shaking. In the following, we investigate quanti-

tatively the depth dependence of the seismic velocity changes.
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6.5.2 Temporal Variation of Seismic Velocity at Depth

6.5.2.1 Averaged Seismic Velocity Changes

74 Hi-net stations in the most affected area (the red trapezoidal shaded zone, Fig.6.7

(a)) are selected to measure the averaged temporal evolution in four period ranges 1 –

7 s, 8 – 16 s, 15 – 30 s, and 20 – 50 s. Fig.6.7 (b) shows the monthly averaged time

series of seismic velocity changes in four different period bands. Overall, seismic velocity

decreases resulted from the Tohoku-oki earthquake. Coseismic responses are of the same

order of magnitude (10−4) in four different period ranges and tend to be smaller with

increasing periods.

(a) (b) 
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Figure 6.7 – (a) is the map of tiltmeter stations with red shaded area, where seismic
velocity changes are selected to see the temporal evolution. (b) Time series of seismic
velocity changes averaged over stations in the red shaded area in four different period
ranges.

For postseismic velocity changes in 1 – 7 s period band, velocities decrease instanta-

neously when the earthquake occurred and recovered relatively fast within the first few

months. In the 10 – 20 s period range, the coseismic velocity decrease down to −0.04%

and recover slowly. For long period ranges 15 – 30 s and 20 – 50 s, it is important to

highlight a delayed response. The maximum velocity drop is delayed from the time of

the earthquake occurrence, with a time lag depending on the period ranges that could
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be as large as six months. The two shapes of these curves are different means that there

are different behaviors at different depths. If the changes of physical properties happened

only at the surface, the curves at different frequencies would have different amplitudes

but the same shape. Therefore, this difference suggests a depth-dependent rheology with

non-elastic behavior extended into the lower crust. This is another evidence in addition

to the different spatial distribution of changes in different period ranges.

A similar delayed minimum is also observed by Froment et al. (2013) for the case of

the 2008 Wenchuan earthquake (May 12, Mw 8.0). They find the delay of ∼ 3 months

after the main shock in 12 – 20 s period band. Velocities tend to decrease gradually

during the first three months after the mainshock and reach the minimum around July.

By contrast with our results, seismic velocity changes in Wenchuan are more significant

at long period compared to the short period. This may result from the low velocity zone

in the Earth’s crust at depths of 20 – 40 km as reported by Chen et al. (2018), where

velocity perturbations could be stronger than in shallow layers. The delayed seismic

velocity changes in Wenchuan is argued to be due to the non-linear viscoelastic seismic

response from the lower crust. Nevertheless, the precise physical meaning of this delay

remains unclear.

6.5.2.2 Inversion of Seismic Velocity Changes

To better understand the period-dependent seismic velocity changes, we firstly invert our

measurements into four different period bands for a five layer model reaching a depth of

50 km. In this study, we measure the seismic velocity changes for each 30 days (monthly)

in four different frequency bands. Assuming coda waves are predominated by surface

waves, the inversion is based on the frequency-dependent Rayleigh waves sensitivity

kernels Kdc/dβ (f) (Fig.6.8 (c)). We use the velocity model by Matsubara et al. (2017)

and take the mean value (Fig. 6.8 (b)) for calculating Kdc/dβ (f) in the red shaded area

shown in Fig. 6.8 (a). The inversion problem is expressed as :

d
M×1

= G
M×N

m
N×1

, (6.1)

where d is the observation vector consisting of δv/v in four different period ranges.

δv/vfi,tM represents velocity changes in frequency band i and in month t. m is the model

of velocity changes in each layer at depth. So for velocity changes in each month, if we

invert the seismic velocity changes into five layers, the relationship 6.1 turns into :
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Figure 6.8 – (a) gives the red shaded area for averaging the velocity model ; (b) shows
the averaged velocity model after interpolating at 1 km resolution ; (c) are normalized
sensitivity kernels of the median period in different period ranges ; (d) Dispersion curves
of the fundamental mode of Rayleigh waves from the averaged velocity model.
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
δv/vf1,t

δv/vf2,t

δv/vf3,t

δv/vf4,t

 =


K ′f1,d1 K ′f1,d2 K ′f1,d3 K ′f1,d4 K ′f1,d5
K ′f2,d1 K ′f2,d2 K ′f2,d3 K ′f2,d4 K ′f2,d5
K ′f3,d1 K ′f3,d2 K ′f3,d3 K ′f3,d4 K ′f3,d5
K ′f4,d1 K ′f4,d2 K ′f4,d3 K ′f4,d4 K ′f4,d5





δvs/vsd1,t

δvs/vsd2,t

δvs/vsd3,t

δvs/vsd4,t

δvs/vsd5,t


, (6.2)

where K ′fi,dj = Kfi,dj ∗
βdj
cfi

and is deduced from :

dcfi = Kfi,dj ∗ dβdj
dc

c fi
= Kfi,dj ∗

βdj
cfi
∗ dβ
β dj

dc

c fi
= K ′fi,dj ∗

dβ

β dj

⇒ K ′fi,dj = Kfi,dj ∗
βdj
cfi

(6.3)

βdj and cfi are defined as the mean value within the jth layer and in the ith period band,

respectively. Kfi,dj indicates the surface waves sensitivity kernels in frequency band i and

at a certain depth j for each layer. We compute the dispersion curves of the fundamental

mode of Rayleigh waves (Fig. 6.8 (d)) from the averaged velocity model.

The Eq. 6.2 is an under-determined system without prior information. We adopt the

damped least-squares (DLS) method, also known as Levenberg-Marquardt method to

solve the problem. This method minimizes :

‖Gm− d‖2 + ε2 ‖m‖2 , (6.4)

where ε indicates a norm damping. And the solution m without considering the smoothing

term is :

m =
(
GTG+ ε2I

)−1
GTd. (6.5)

The term
(
GTG+ ε2I

)−1
GT is often referred to as G−g, the generalized inverse. The

resolution operator R, which is referred to as the model resolution matrix or resolving
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Figure 6.9 – the resolution operators R for the δvs/vs within five layers.

kernel, describes the relationship between the true mtrue and m from inversion, where

m = Rmtrue. The perfect R should equal to I the identity matrix. R takes the form as :

R = G−gG (6.6)

The damping coefficient for this inversion is fixed as ε = 0.15 according to the Fig. ??

by searching the inflection point. Velocity changes in different months are independent

and share the same sensitivity kernels K. Thus, R is a 5-by-5 matrix and the same for

seismic velocity changes at different time points. The resolution kernel in each layer for

each time t is shown in Fig. 6.9. The diagonal values of R are the biggest for each layer.

According to Fig. 6.9, the first three layers can be better inverted than the last two deep

layers. The first layer has the best resolution. The process is repeated for each time step

of one month between 2008 and 2012.

Depth localization of S waves velocity changes
δvs
vs

(t, z) is shown in (Fig.6.11 (c) and

(d)). We can observe that the amplitudes of changes weaken when depth increases. At

the end of 2012, velocity changes at different depths have not recovered to the initial state

before the earthquake. The time delay of the maximum velocity drop becomes larger at

depth. The recovery appears to be faster at depth compared in the upper layer. Strong

changes are mainly located in shallow layer within 5 km in the crust, and it’s hard to
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Figure 6.10 – Summed residual versus summed m for searching the best-fitting norm
damping coefficient ε. The red circle indicates ε = 0.115, which is used for inversion.

confirm if there is any physical change below 30 km, as δvs/vs is not obvious enough and

the amplitudes of changes are comparable with the fluctuations before the earthquake

happened.

6.5.2.3 Inversion with Random Perturbation

For the sake of verifying the impact of random perturbations on the inversion results. We

separately add 0.01% random noise to the measured results of different period bands, and

then use the same inversion steps and coefficients to invert seismic velocity changes from

different period bands into different layers in depth based on the normalized Rayleigh

waves sensitivity kernels in order to study the contribution of each period band on the

inversion results.

Fig.s 6.12, 6.13, 6.14, 6.15 show the original measured seismic velocity changes in four

period ranges (Fig.s 6.12, 6.13, 6.14, 6.15 (a)) and how they change after adding 0.01%

random noise (Fig.s 6.12, 6.13, 6.14, 6.15 (b)). (Fig.s 6.12, 6.13, 6.14, 6.15 (c) and (e))

give results of inverted s wave velocity changes plotted versus depths.

By contrast, we can summarize how the 0.01% random perturbation affect the inversion
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Figure 6.11 – (a) Measured monthly seismic velocity changes in four period ranges. (b)
Normalized sensitivity kernels of Rayleigh waves to shear waves. (c) Inverted monthly S
waves velocity changes versus depth from 2008 to 2012. (d) Summation of the inverted
seismic velocity changes (e) Inverted monthly S waves velocity changes from 2008 to 2012
down to 50 km at depth.

results. Separately, the short-period (1 – 7s) interference only has a large impact on the

inversion results of the first layer, and the deep results hardly change. The change in

other period ranges show same features as in 1 – 7 s. Perturbations in 8 – 16 s period

range has a big impact on the second layer, 15 – 30 s has a big impact on the third
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Figure 6.12 – (a) Measured monthly seismic velocity changes in four period ranges.
(b) Measured monthly seismic velocity changes in four period ranges after adding 0.01%
random perturbation in 1–7 s period range. (c) Inverted monthly S waves velocity changes
versus depth from 2008 to 2012. (d) Summation of the inverted seismic velocity changes
(e) Inverted monthly S waves velocity changes from 2008 to 2012 down to 50 km at
depth.

layer, and 20 – 50 s has impact on both the forth and fifth layers. The addition of noise

in 15 – 30 s period range generates the greatest interference with the inversion results.

Overall, each inversion result after noising can basically re-obtain the characteristics of
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Figure 6.13 – (a) Measured monthly seismic velocity changes in four period ranges.
(b) Measured monthly seismic velocity changes in four period ranges after adding 0.01%
random perturbation in 8–16 s period range. (c) Inverted monthly S waves velocity
changes versus depth from 2008 to 2012. (d) Summation of the inverted seismic velocity
changes (e) Inverted monthly S waves velocity changes from 2008 to 2012 down to 50
km at depth.

the s-wave velocity variations with depth similar to the previous one shown in Fig. 6.11

(e).

115



SEISMIC RESPONSE OF THE MW 9.0, 2011 TOHOKU-OKI EARTHQUAKE
BENEATH JAPAN FROM NOISE-BASED SEISMIC VELOCITY MONITORING

2008 2009 2010 2011 2012 2013
-0.08

-0.06

-0.04

-0.02

0

0.02

 v
/v

 (%
)

1-7s
8-16s
15-30s
20-50s

2008 2009 2010 2011 2012 2013
-0.08

-0.06

-0.04

-0.02

0

0.02

 v
/v

 (%
)

1-7s
8-16s
15-30s  0.01(%)
20-50s

2008 2009 2010 2011 2012 2013
-0.08

-0.06

-0.04

-0.02

0

0.02

 v
/v

 (%
)

0 -10km
10 -20km
20 -30km
30 -40km
40 -50km

2008 2009 2010 2011 2012 2013
-0.08

-0.06

-0.04

-0.02

0

0.02

 v
/v

 (%
)

1-7s
8-16s
15-30s
20-50s

(a) 

(e) 

(d) (c) 

(b) 

Figure 6.14 – (a) Measured monthly seismic velocity changes in four period ranges.
(b) Measured monthly seismic velocity changes in four period ranges after adding 0.01%
random perturbation in 15–30 s period range. (c) Inverted monthly S waves velocity
changes versus depth from 2008 to 2012. (d) Summation of the inverted seismic velocity
changes (e) Inverted monthly S waves velocity changes from 2008 to 2012 down to 50
km at depth.
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Figure 6.15 – (a) Measured monthly seismic velocity changes in four period ranges.
(b) Measured monthly seismic velocity changes in four period ranges after adding 0.01%
random perturbation in 20–50 s period range. (c) Inverted monthly S waves velocity
changes versus depth from 2008 to 2012. (d) Summation of the inverted seismic velocity
changes (e) Inverted monthly S waves velocity changes from 2008 to 2012 down to 50
km at depth.
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6.6 Discussion

We focus on the Tohoku-oki earthquake related seismic velocity changes at different per-

iods using Hi-net short period and tiltmeter data. Depth localization of velocity changes

based on the Rayleigh waves sensitivity kernels helps better tracking both time- and

depth-dependent crustal stress evolution. Because we use horizontal components with

tiltmeter, we also check the inversion results based on the Love waves sensitivity kernels.

The results in Fig. 6.16 show similar characteristics of S waves velocity changes versus

depth. Coseismic velocity changes decrease with increasing depth. Delay of the maxi-

mum velocity drop increases with depth. However, seismic velocity changes in relatively

long period ranges (15 – 30 s and 20 – 50 s) are not well recovered (Fig. 6.16 (e)) after

inverted. As Love waves are more sensitive and concentrated to shallow depth in the

crust. The located S waves velocity changes appear relatively shallow compared to that

using Rayleigh waves sensitivity kernels, which usually have a maximum sampling depth

of about one third of their wavelength.

It is important to note that all the inversion in this study is based on the assumption

that the depth sensitivity of seismic velocity changes is dominated by surface waves

sensitivity. But actually, we measure velocity changes of coda waves, which is considered

to be multiple scattered waves that are caused by numerous heterogeneities distributed

uniformly in the earth’s crust. Coda waves consist at each time of a superposition of

complex paths mixing P, S, and surface waves. Due to the scattering nature of coda waves,

the wave paths are random and indeterminate. We are not able to assign trajectories to

each arrival time, and it is difficult to locate the velocity changes.

The sensitivity of coda waves to a velocity change have been studied numerically by

Obermann et al. (2013, 2016) to evaluate the roles played by body and surface waves.

The authors report that the sensitivity of coda waves (Kc) is the combination of the

sensitivities of both surface waves (Ksw) and bulk waves (Kbw). Ksw is more important

in the early coda, and bulk waves have an increasing importance in later coda. For long

period, the transport mean free time t? is large (100 s). Since we measure the velocity

changes at around lapse time of 400 s at long periods. We are in the case of the early coda,

where the sensitivity is dominated by the one of Rayleigh waves. With this proviso, Kc

is controlled by Ksw in long period ranges. To be more precise, Obermann et al. (2013,

2016) prove that the sensitivities obey a relationship :
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Figure 6.16 – (a) Measured monthly seismic velocity changes in four period ranges.
(b) Normalized sensitivity kernels of Love waves to shear waves. (c) Inverted monthly S
waves velocity changes versus depth from 2008 to 2012. (d) Summation of the inverted
seismic velocity changes (e) Inverted monthly S waves velocity changes from 2008 to 2012
down to 50 km at depth.

Kc = αKsw + (1− α)Kbw, (6.7)

where α is the partition coefficient. The estimation of the partition coefficients requires
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numerical simulation. Fig. 6.17 shows the result of how partition coefficients change with

normalized lapse time (normalized by mean free time t?). We can see the importance of

Ksw for the first six mean free times and the increased importance of Kbw with growing

time. This figure is confirming our choice of using surface waves sensitivities.

Figure 6.17 – Evolution of the partition coefficients for different degrees of heterogeneity
ranging from 10% to 50% in the 3-D medium. The time axis has been normalized by
the transport mean free time t? = l?/c (l? is the transport mean free path). Displayed in
red the partition coefficients α for the surface-wave sensitivity, and in blue 1− α for the
bulk-wave sensitivity. after Obermann et al. (2016)

Indeed α = 1 in Eq. 6.7 is an extreme case. It means our measurement is made at very

short normalized time, when Kc depends totally on the surface waves sensitivity kernels

Ksw.

It would be more precise to consider that for the coda waves that we use, the depth

sensitivities depend on both sensitivities of surface and bulk waves. Since the precise

values for t? and α are not available, we will evaluate the implication of our hypothesis

by considering the case of scattered body waves. We will see that with our hypothesis

of surface waves is actually underestimating the depth of seismic velocity changes at

relatively short periods.

In order to accurately evaluate the sensitivity of coda bulk waves, we need to calculate

Kbw in terms of the probability of intensity P. We follow the 3-D Kbw sensitivity method

by Obermann et al. (2013); Planès et al. (2014); Obermann et al. (2016) and start with
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the definition of kernel Kbw by Pacheco et Snieder (2005) (Eq. 6.8) to calculate 3-D bulk

sensitivity.

Kbw

(
r′, r, s, t

)
=

1

P (r, s, t)

∫ t

0

P
(
r, r′, t− t′

)
P
(
r′, s, t′

)
dt′, (6.8)

where P describes the probability of intensity of a pulse of energy that propagates through

the medium at the distance r′ (r′ = r at the receiver) and at time t. The approximate

solution of intensity propagator to a diffusion equation solution in 3D can be expressed

as Eq. 6.9.

P (s, r, t) =
1

(4πDt)d/2
exp

(
−|r− s|2

4Dt

)
, (6.9)

where D represents the diffusion constant and equal to
cl?

d
. d is dimension, which is

equal to 3 when in 3-D. This is an analytical solution that can be used for calculating

the Kernel sensitivity. The intensity propagator can be also represented as the solution

of radiative transfer equation. (Paasschens, 1997) as an interpolation of the 2-D and 4-D

analytic solution (Planès et al., 2014). Unlike the diffusion propagator, which is valid

only when time t is much larger than the transport mean free time t?, which is equal

to l?/c, where l? is the transport mean free path, the radiative transfer solution has a

general validity at all lapse times Planès et al. (2014); Obermann et al. (2016).

c is energy velocity and is determined by the equipartition state. As lapse time increases,

the total energy of P- and S- wave modes reach stable so-called equipartition state. The

energy ratio between S- and P-waves is
Es
Ep

and is represented by x. The total energy

can be express as :

E = Ep + Es = Ep + xEp

E =
E

1 + x
+

x

1 + x
E.

(6.10)

For elastic wave scattering, the energy ratio x is 2γ30 , where γ0 is the velocity ratio and

≡ α0/β0. The velocity c is finally determined by a weighted average according to equation

6.11 by taking the theoritical equipartition ratio as 10.4, when γ0 =
√

3 for a Poisson

solid (Weaver, 1982; Margerin et al., 2000) for further calculation.
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1

c
=

1

β0

1

(1 + x)
+

1

α0

x

(1 + x)
. (6.11)

The total travel time in 3-D over the volume V can be expresses as (Pacheco et Snieder,

2005) :

t =

∫
V

Kbw

(
r′, r, s, t

)
dV
(
r′
)

(6.12)

The perturbation of travel time δt can be expressed as :

δt =

∫
V

Kbw

(
r′, r, s, t

) δsl
sl

(
r′
)
dV
(
r′
)
, (6.13)

where sl is slowness. We can replace the left side of Eq. 6.13 by δt = −δv
v bw

t. As the

slowness perturbation
δsl
sl

(r′) = −δv
v

(r′), so the equation can be written like :

− δv

v bw
t = −

∫
V

Kbw

(
r′, r, s, t

) δv
v

(
r′
)
dV
(
r′
)
, (6.14)

In case of homogeneous velocity changes
δv

v
in each layer of volume Vi from surface to

deep, then the measured bulk waves velocity changes
δv

v bw
can be expressed as the sum

of the integral of velocity perturbation over all (i) elementary volume dV (zi) in depth.

We assume that in each layer of volume Vi, the velocity perturbation
δv

v
(zi) is a constant.

In each layer, there is an integral over dVi

δv

v bw
=
∑
i

∫
Vi

Kbw(zi)

t

δv

v
(zi)dVi, (6.15)

Thus, the bulk seismic velocity changes velocity is the summation of perturbation
δv

v
(zi)

multiplied by the weight that is given by the sensitivity kernel in each layer over the

total travel time.

We use the 3-D sensitivity equation by Planès et al. (2014); Obermann et al. (2016) based

on the approximate analytic solution (Paasschens, 1997) of radiative transfer equation to

evaluate the theoretical depth sensitivity of bulk waves velocity changes
δv

v bulk
. We take
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the energy velocity c (mixed P and S waves) as 3.89 km/s according to the formula 6.9 and

the inter-distance of source and receiver as 50 km. Assuming the velocity perturbation
δv

v
(zi) is 1 in 1 km layer (dV (zi)) down to 100 km at depth, we compute the sensitivity

K by testing different scattering mean free paths l (km) and lapse time t (s) in the coda

diffusion. Fig. 6.18 gives normalized depth sensitivity of bulk waves velocity changes
δv

v bulk
with various combinations of l and t. We take the mean free path similar to the

orders of magnitude estimated by Sato (1978) and Aki et Chouet (1975) at different

frequencies in Japan.

From the result, we can observe that when taking mean free path as 10 km for short period

measurement, bulk waves are more sensitive to the upper crust. However the penetrating

depth is already deeper than surface waves sensitivity kernels. And the sensitivity gets

deeper with increasing lapse time in the coda. This illustrates the conclusion that bulk

waves are more important in later coda. When using longer and more realistic mean free

paths equal to 100 km and 1000 km considered for long period measurement, the depth

sensitivities of bulk waves are more sensitive to the deep part than using 10 km mean

free path. All sensitivities are quite similar and have a non-negligible important portion

at more than 40 km at depth. This is very different from the surface wave sensitivity

kernels, of which the sensitivity decreases rapidly with depth.

Therefore, for the bulk waves, the depth sensitivities have more weight at greater depth

than considering solely surface waves. The inverted results in the deep should take more

proportion. We measure the seismic velocity changes till 400 s for tiltmeter data at

relatively long period. Thus, the inverted velocity changes would be deeper if we had

considered bulk sensitivity than the current depth. Therefore, our measurements in 1 –

50 s period ranges should reflect the velocity changes at larger depth if bulk waves were

considered. It should be pointed out that the assumption of surface waves sensitivity is

actually underestimating the depth of the temporal changes in physical properties.
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Figure 6.18 – Depth sensitivity of body waves with different lapse time t and scattering
mean free path l for an area with length, width, and depth are respectively 1000 km,
1000 km and 100 km and for a total velocity changes = 1.
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We want to understand the physical processes that control the depth-dependent seismic

velocity changes, especially for the delayed postseismic response at depth.

For seismic velocity changes at shallow depth, seismic velocity changes are controlled

by the dynamic perturbations from the earthquake. The instantaneous coseismic drop

followed by a long-term postseismic relaxation can be explained by the processes referred

to as fast and slow dynamics in laboratory experiments. A physical model is proposed

by Sens-Schönfelder et al. (2018). The model consists of a material having structures

which are broken by shear deformation and closed by some chemo-physical process with

a series of characteristics time scales.

Explanation of the delayed seismic response should be referred to geodetic observations.

Postseismic deformation of Tohoku-oki earthquake has been widely studied based on

both onland and offshore GPS observations and numerical modeling. Sun et al. (2014);

Watanabe et al. (2014) consider postseismic deformation is controlled by viscoelastic

relaxation in the lower crust. Ozawa et al. (2011); Uchida et Matsuzawa (2013) propose

that the deformation is dominated by afterslip which occurred deeper than the coseismic

slip, while (Yamagiwa et al., 2015; Hu et al., 2016; Freed et al., 2017) suggest the combi-

ned effects from both viscoelastic relaxation and afterslip. Freed et al. (2017) explain the

postseismic displacements, vertical and horizontal, on-land and offshore, using the com-

bined model of afterslip and viscoelasticity with depth-dependent layered viscosity. All

these studies show extension beneath the continental crust following the big earthquake.

The extension itself may lead up to the weakening of the crust, thus decreasing of the

seismic velocity. Also, extension enables the rise of fluid under the lithostatic pressure

at depth. The fluid diffusion process can also conduct to the continuing seismic velocity

changes after the earthquake. Nakajima et Uchida (2018) point out that there is repea-

ted fluid transfer from megathrusts. The fluid induced pore pressure may reduce the

frictional strength of the megathrust and may be an additionally crucial part enhancing

weakening of the megathrust during the slow slip episodes. The transfer of fluid arising

from the hydrated slab can reduce seismic velocity from the lower crust to the subsurface.

It could be an important factor that in charge of the delayed response at great depth.

Similar to GPS observations, the seismic response is also subject to combined effects of

viscoelastic deformation from lower crust, afterslips that occur in the following months

after the mainshock in the deeper crust than coseismic deformation, as well as fluid

drainage during the slow slip events. Even though, an absence of obvious evidence does

not allow for determining uniquely the primary cause of the depth-dependent seismic
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velocity changes and delayed response.

6.7 Conclusion

We verify for the first time that tiltmeter recordings can be regarded as broad band

seismometers and can be used to monitor the seismic velocity changes at different periods.

This is also the first time for a monitoring at long period up to 50 s. The results of different

frequency bands provide us with a good opportunity to study the temporal evolution of

depth-dependent seismic velocity changes in the whole crust. A comprehensive analysis

in spatio-temporal scale helps us to better unveil the 2011 Tohoku-oki earthquake-related

co- and post-earthquake stress recovery processes.

Distribution of strong velocity decreases at short periods are limited to the areas with

strong ground shaking induced by the Mw 9.0 Tohoku-oki earthquake, while the long

period velocity changes correlate well with modeled static strain induced by both viscoe-

lastic deformation and fault slip.

Temporal evolution of velocities changes in different period ranges shows very different

seismic responses. The amplitudes of coseismic velocity changes decrease with increasing

periods. The velocity changes at greater periods are delayed in time with respect to

the date of the earthquake. Using the sensitivity kernels of different period bands of

the Rayleigh surface wave, we localize the S waves velocity changes down to 50 km at

depth into five layers. Strong velocity changes are mainly concentrated within 10 km.

The intensity of the velocity change decreases with increasing depth. Delayed response

increases with depth.

Seismic velocity changes at depth are very different from the changes in shallow layers.

Seismic velocity changes in shallow layers are dominated by the dynamic perturbations

from the earthquake. Based on some current geodesic studies, we suggest that the de-

layed seismic velocity decrease could find its origins in both the visco-elastic response of

the crust to large strain changes or a complex response of crustal seismic velocities to

transient deformation like fluid transfer through the crust. But the exact physical mea-

ning of this delay should be further explained. This may help to unravel this megathrust

earthquake related physical processes.
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With the development of noise cross-correlation, traditional seismic methods need no

longer to rely on earthquake events. We can construct the Green’s function through noise

cross-correlations. The reconstruction of Green’s function not only covers any location

but also has temporal continuity. The property of temporal continuity makes possible a

new noise monitoring technology, which has rapidly developed and has been increasingly

used in the past decade. Noise monitoring can track the evolution of physical properties

of underground media by measuring changes in seismic wave velocity. This has been

especially done for the changes in the subsurface medium before and after some large

earthquakes.

In this thesis, we mainly focus on the study of seismic wave velocity changes throughout

Japan and the physical processes responsible for these changes. The choice of Japan is

justified by the density and the quality of the seismometers and tilt meters network,

Besides, we eventually focus on the 2011 Mw 9.0 Tohoku-oki Earthquake to explore the

characteristics of velocity changes before and after one of the largest earthquake ever

recorded, and the evolution of the postseismic recovery process.

This thesis consists of three main parts :

The first part is devoted to the theoretical demonstration of the feasibility of recons-

tructing the Green’s function from ambient seismic noise. We start from the elastic wave

equation and show the full solution of the Green’s function. Then, we review the recons-

truction of the Green’s function under different conditions, including acoustic waves and

elastic waves from 1D to 3D. We try a numerical simulation using an accurate velocity

model in Hokkaido. The simulated results show the equivalence between the Green’s

function and the derivatives of cross-correlation functions. We also discuss the possible

dependence of noise monitoring on the assumption that the distribution of noise sources
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is not ideally isotropic.

We introduced the main applications of noise cross-correlation, including the origins of

noise, body wave extraction, noise-based tomography, and noise-based monitoring. We

emphasized the last application, the noise-based monitoring, which is also the substance

of this thesis. In this application, we introduce the origins of seismic velocity changes and

three monitoring basic methods differed in time and frequency domains. In the whole

research, we adopt the third one : doublet + inversion method, which is proved to be

the most precise method so far. We show in detail how to use this method and some

monitoring results in single stations. We also mention some possible improvements, in-

cluding stacking, filtering, and C3, etc., which can optimize the noise-based monitoring,

but require more computational time.

In the second part, we start to apply noise-based monitoring to the Hi-net data throu-

ghout Japan. We study the transient changes of seismic wave velocity in the crust caused

by environmental perturbations. The emphasis of this part of the thesis is to analyze the

annual signals in different regions and identify the related environmental factors. The

impacts of environmental seasonal perturbations to crustal deformation are usually tra-

cked and discussed based on geodetic observations. Recently, ambient seismic noise-based

monitoring provides new insights into the continuous deformation in the crust as revea-

led by the temporal seismic velocity changes. In this study, we perform massive data

analysis of the continuous seismic records of the very dense Hi-net short-period network

(718 stations) in an active tectonic region. We measure the seismic velocity changes in

the frequency range of 0.15 - 0.9 Hz from 2008 to 2012 throughout Japan. Strong sea-

sonal effects are identified in the whole Kyushu, northeastern Hokkaido, and the west

coast side along the Sea of Japan. Transient seasonal crustal drops of seismic velocity

in Kyushu are well explained by a model of pore pressure increase induced by heavy

precipitation in summer during typhoon period. In the Northeastern Hokkaido, seasonal

signals are controlled by both effects of increased pore pressure during precipitation in

summer (velocity decrease) and of closure of crustal cracks in winter (velocity increase)

affected by both snow loading and pore pressure decrease by water drainage. The res-

ponse of the crust in western coastal side is more enigmatic as it shows a very small

sensitivity to either precipitation or snow loads effects but correlates well to the changes

of sea surface height along the Sea of Japan. Finally, we show how better understan-

ding these environmentally induced crustal perturbations improves the observations of
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tectonic-induced seismic property changes. We build a linear relationship based on snow

depth, pore pressure changes, and sea level changes to reconstruct the annual pattern

and correct the seasonal effects. The minimum detectable seismic velocity relative change

is down to 10−5 after correction and the corrected time series are more legible for long-

term changes tracking. This is favorable for studying earthquakes related seismic velocity

changes and the postseismic relaxation.

We compare the seismic velocity changes and GRACE measured gravity field (repre-

sented by equivalent water height, EWH) with the same spatial scale. The comparison

between the two series of velocity changes and GRACE shows that the velocity variations

at regional scale has an origin into physical process in the Earth. Further comparison with

GPS measured vertical displacement for each station show that GPS vertical component

is however more sensible to the subsidence from precipitation than to pore pressure

changes. For the stations along the western side of Honshu and Hokkaido, both GPS and

seismic velocity show a positive correlation with sea level changes.

The third part consists of the study of the mechanical response of the crust to large

earthquakes. This provides unique insight into the processes of deformation in prepara-

tion for future earthquakes. Noise-based seismic velocity monitoring can directly probe

continuously in time the mechanical state of the crust at depth. In this work, we study

the response of the crust to the Mw 9.0, 2011 Tohoku-oki earthquake. In addition to

the Hi-net short period sensors, we employ here for the first time for the noise-based

monitoring with the very dense network of Hi-net tilt meters as long period (8 – 50 s)

seismometers to sample the crust below 5 km and down to 50 km at depth in different

period bands. Velocity changes at different periods show great differences. Spatial distri-

bution of strong velocity decreases at short periods resamples the map of strong ground

shaking produced by the 2011 Tohoku-oki earthquake, while the long period velocity

changes correlate well with the static strain computed in a model including viscoelastic

relaxation and afterslip at depth, and constrained by GPS observations. These observa-

tions indicate that the variations at depth are not a spurious effect of changes in the

shallow layers.

We invert the seismic velocity changes in different period bands into depth-dependent

velocity changes based on the surface waves sensitivity kernels, which may underestimate

the actual depth of changes. This underestimation has been discussed based on the 3-

D bulk waves sensitivity which is another contributor of coda waves sensitivity, that is
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expected to be small in our condition of measurement at long periods. We therefore invert

our measurements for a depth dependent velocity changes with surface wave kernels. The

inverted results show that coseismic velocity drops diminish with increasing depth. Strong

seismic velocity changes are observed in shallow layers and recover immediately after the

main shock. The temporal evolution of velocity changes at different depths shows that

the maximum drops of velocity at greater depth are delayed with respect to the date

of the earthquake. This delayed response could have implications for constraining the

response of the crust in terms of both the visco-elastic response of the crust to large

strain changes or a complex response of crustal seismic velocities to transient fluid flow.

There are some important conclusions that can be drawn from this study :

Noise-based seismic monitoring offers the possibility of continuous monitoring of under-

ground physical properties with high temporal resolution (from hourly to monthly). This

helps understanding the evolution of physical properties under the impacts of different

forcing and transient disturbances, and of tectonics processes.

Seismic velocity changes in shallow layers are affected by some surrounding environmental

factors, such as precipitation-induced pore pressure changes, and loading effects from

both snow depth and sea level. The transient seasonal changes show strong regional

differences and can be well correlated with the local geodetic observations such as GPS

vertical displacement and GRACE gravity field measurement. The combination of these

observations can provide a better explanation of leading causes for the regional-dependent

seasonal seismic velocity changes.

Tohoku-oki earthquake-related seismic velocity changes are depth-dependent, which illu-

minates that the responsible physical processes vary with depth. Seismic velocity changes

in shallow layers can be explained by the dynamic perturbation waves from the earth-

quake. The delayed changes at long periods may imply some nonelastic response at depth

or deep fluid. In particular, the postseismic transient decreases of seismic velocity obser-

ved in all period ranges at the beginning of 2012 may result from the transfer of fluid

arising from the hydrated slab to the subsurface due to the permeability-altering by

extension following the mainshock.
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Perspectives

The progress of ambient seismic noise cross-correlation has promoted the development

of 3D surface and body waves imaging in both regional and global scales. In the field of

noise-based monitoring, the ballistic waves monitoring will improve the spatial resolution

of monitoring compared to coda waves and will be expected to become an important

aspect of monitoring. In addition, the study of crustal and upper mantle anisotropy and

the scattering properties in the earth will be further developed.

For noise-based monitoring, we will achieve in the future 4D imaging of the earth at depth

and continuously in time. This will greatly enhance our understanding of the evolution

of the earth’s crust with daily/monthly time resolution. The big earthquake-related co-

and post- seismic velocity changes can help building physical models to simulate the

evolution of the crust around seismic faults. The systematic analysis of seismic velocity

changes combined with other geodetic methods will lead us to better monitor and locate

the seismicity.
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