D. Det, A)) )/ log(D(det(A))) is resp

, M k+1 , which is a well defined integer matrix. recursively be applied for the resulting chain . . . M k?1 M k M k+1 . . . as long as an admissible entry is found

, Conditions 1 and 2 are trivially fulfilled for modular images of exact chains of matrices over Z. It suffices to take Z = X = 0 and W = Y = 0. Thus, Thm. 16.2.8 can repeatedly be applied in order to compute local smith forms at a prime p for exact chains of integer matrices

, Suppose that M k is an exact chain of matrices over Z and let us take M k mod q. One reduction as in Thm. 16.2.8 is possible i.e. the Smith forms agree after reduction. However, attempting another reduction may fail

, As a related property we also notice, that for matrices over Z p l all minimal generating sets of columns/rows have the same, minimal cardinality equal to the number of non-zero invariant factors modulo p l . Algorithm LRE of [38, 39] can be adapted to prove this claim. Therefore, by finding a dependency, we may remove the dependent vector from the generating set in order to obtain a generating set of minimal cardinality at the end of the process, The proof of Thm. 16.2.8 is based on the special form of zero-divisors in Z p l compared with Z q

, 8 allow to trace bases of the kernel (resp. image) of M k , which become LE k (resp. E k?1 U ), if E k (resp E k?1 ) is the initial base. This is an important factor in some applications, see e.g. for computing homologies of maps

, Over integers, computational issues regarding coefficient swell arise, which is discussed in [64]. However, this can be seen as a good point of the method

, V i?1 , V i , K) repeatedly finds admissible entries and perform reductions according to Thm. 16.2.2, maintaining marks, so that V i?1 and V i contain information about the rows and columns that have to be zeroed in the neighboring matrices, Procedure Reduce(M i+1 , V i ) reads matrix M i?1 from data file and zeroes rows from M i?1 which are marked in V i . P artialElimination(M i

, N , a finite exact chain of matrices, Ensure: D k , k = 1

, sequence of diagonal matrices, Ensure: M k , k =, vol.1

, N , an exact chain of matrices, such that SF (M k ) = SF (diag(D k , M k )), k = 1

K. D-i-=-p-artialelimination(m-i-,-v-i?1-,-v-i,

, Reduce(M i+1, vol.6

V. D-n-=-p-artialelimination(m-n, V. N-?1, and K. ,

K. D-i-=-p-artialelimination(m-t-i-,-v-i-,-v-i?1,

, = P artialElimination(M T 1

, N , an exact sequence of matrices over a PIR R is given at the entrance of Alg. 17.2.1. Let 1 < i ? N . During the course of the algorithm, whenever P artialElimination

, ?1 ) is performed, as matrix M i?1 is changed. According to Thm. 16.2.2 this can be repaired by a deletion of rows of M i, PROOF At the beginning of the algorithm M k is an exact sequence and thus the conditions are fulfilled. The condition M i?1 M i = 0 is first violated when P artialElimination on

, 2: In the upper plot, evolution of ? for GL 7 (Z) matrices throughout the reduction process is presented, Figure, vol.17

J. Abbott, M. Bronstein, and T. Mulders, Fast deterministic computation of determinants of dense matrices, pp.197-204

J. Abbott and T. Mulders, How tight is hadamard's bound? Experimental Mathematics
DOI : 10.1080/10586458.2001.10504453

J. Adams, B. D. Saunder, and Z. Wan, Signature of symmetric rational matrices and the unitary dual of lie groups

C. W. Antoine, A. Petitet, and J. J. Dongarra, Automated empirical optimization of software and the atlas project, Parallel Computing, vol.27, 2000.

S. Arora and B. Barak, Computational Complexity: A Modern Approach, 2009.
DOI : 10.1017/cbo9780511804090

J. Blömer, R. Karp, and E. Welzl, The rank of sparse random matrices over finite fields. Random Struct, Algorithms, vol.10, issue.4, pp.407-419, 1997.

A. Bogdanov and L. Trevisan, Average-Case Complexity, 2006.

W. Bosma, J. Cannon, and C. Playoust, The magma algebra system i: the user language, J. Symb. Comput, vol.24, issue.3-4, pp.235-265, 1997.

R. Brent and B. Mckay, Determinants and ranks of random matrices over zm. Discrete Mathematics, 1987.

R. Brent and B. Mckay, On determinants of random symmetric matrices over zm. Ars Combinatoria, 1988.

S. Cabay and T. P. Lam, Congruence techniques for the exact solution of integer systems of linear equations, ACM Trans. Math. Softw, vol.3, issue.4, pp.386-397, 1977.

B. W. Char, B. D. Saunders, and B. Youse, Linbox and future high performance computer algebra, pp.15-23
DOI : 10.1145/1278177.1278197

L. Chen, W. Eberly, E. Kaltofen, D. B. Saunders, W. J. Turner et al., Efficient matrix preconditioners for black box linear algebra, Linear Algebra and its Applications, pp.119-146, 2001.
DOI : 10.1016/s0024-3795(01)00472-4

URL : https://hal.archives-ouvertes.fr/hal-02101893

L. Chen and M. Monagan, Algorithms for solving linear systems over cyclotomic fields, J. Symb. Cmpt, 2008.
DOI : 10.1016/j.jsc.2010.05.001

URL : https://doi.org/10.1016/j.jsc.2010.05.001

Z. Chen and A. Storjohann, A blas based c library for exact linear algebra on integer matrices, pp.92-99

M. Choi, Tricks or treats with the hilbert matrix, Amer. Math. Monthly

T. Chou and G. Collins, Algorithms for the solution of systems of linear diophantine equations, Journal of Computation, 1982.

G. E. Collins and M. J. Encarnación, Efficient rational number reconstruction, Journal of Symbolic Computation, vol.20, pp.287-297, 1994.
DOI : 10.1006/jsco.1995.1051

URL : https://doi.org/10.1006/jsco.1995.1051

C. Cooper, On the distribution of rank of a random matrix over a finite field, Random Struct. Algorithms, vol.17, issue.3-4, pp.197-212, 2000.

C. Cooper, On the rank of random matrices. Random Struct, Algorithms, vol.16, issue.2, pp.209-232, 2000.

D. Coppersmith and S. Winogard, Matrix multiplication via arithmetic progression, Proc. 19th Annual ACM Symposium of Theory of Computing, pp.1-6, 1987.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to algorithms, 1990.

V. D. Cung, V. Danjean, J. Dumas, T. Gautier, C. Rapine et al., Adaptive and hybrid algorithms: classification and illustration on triangular system solving, Proceedings of Transgressive Computing, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00318540

P. and A. Nicolau, Adaptive strassen's matrix multiplication, Proceedings of the 21st annual international conference on Supercomputing, pp.284-292, 2007.

V. Danjean, R. Gillard, S. Guelton, J. Roch, and T. Roche, Adaptive loops with kaapi on multicore and grid: applications in symmetric cryptography, pp.15-23

J. Dixon, Exact solution of linear equations using p-adic expansions, Numerische Mathematik, vol.40, issue.1, pp.137-141, 1982.

B. R. Donald and D. R. Chang, On the complexity of computing the homology type of a triangulation, SFCS '91: Proceedings of the 32nd annual symposium on Foundations of computer science, pp.650-661, 1991.

J. J. Dongarra, J. Croz, S. Hammarling, and I. S. Duff, A set of level 3 basic linear algebra subprograms, ACM Trans. Math. Softw, vol.16, issue.1, pp.1-17, 1990.

, 99. Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation, 1999.

J. Dumas, Algorithmes parallèles efficaces pour le calcul formel: algèbre linéaire creuse et extensions algébriques, 2000.

, Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation, 2006.

J. Dumas and D. Duval, Towards a diagrammatic modeling of the LinBox C++ linear algebra library, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00012346

J. Dumas, P. Elbaz-vincent, P. Giorgi, and A. Urbanska, Parallel computation of the rank of large sparse matrices from algebraic k-theory, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00142141

J. Dumas, T. Gautier, and C. Pernet, Finite field linear algebra subroutines, pp.63-74
URL : https://hal.archives-ouvertes.fr/hal-02018841

J. Dumas, P. Giorgi, and C. Pernet, Ffpack: finite field linear algebra package, pp.119-126
URL : https://hal.archives-ouvertes.fr/hal-02101818

J. Dumas, F. Heckenbach, D. Saunders, and V. Welker, Computing simplicial homology based on efficient smith form algorithms. Algebra, Geometry and Software Systems, 2003.

J. Dumas, B. D. Saunders, and G. Villard, Integer smith form via the valence: Experiments with large sparse matrices from homology

J. Dumas, B. D. Saunders, and G. Villard, On efficient sparse integer matrix Smith normal form computations, Journal of Symbolic Computations, vol.32, issue.1, pp.71-99, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02018782

J. Dumas and G. Villard, Computing the rank of sparse matrices over finite fields, vol.50, pp.47-62
URL : https://hal.archives-ouvertes.fr/hal-02068056

J. Dumas, T. Guillaume, M. Gautier, P. Giesbrecht, B. Giorgi et al., LinBox: A Generic Library for Exact Linear Algebra, Proceedings of ICMS'2002 : International Congress of Mathematical Software, pp.17-19, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02102080

A. Duran, D. Saunders, and Z. Wan, Rank of sparse 0,1,-1 matrices, Proceeding of the SIAM International Conference on Applied Linear Algebra, 2003.

W. Eberly, M. Giesbrecht, P. Giorgi, A. Storjohann, and G. Villard, Solving sparse rational linear systems, pp.63-70

W. Eberly, M. Giesbrecht, and G. Villard, On computing the determinant and Smith form of an integer matrix, Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp.675-687, 2000.

W. Eberly and E. Kaltofen, On randomized lanczos algorithms

P. Elbaz-vincent and ;. C. Soulé, Perfects lattices, homology of modular groups and algebraic ktheory, Oberwolfach Reports (OWR), vol.2, 2005.

P. Elbaz-vincent, H. Gangl, and C. Soulé, Perfect forms, cohomology of modular groups and k-theory of integers

X. G. Fang and G. Havas, On the worst-case complexity of integer gaussian elimination

M. A. Frumkin, Polynomial time algorithms in the theory of linear diophantine equations, Lecture Notes in Computer Science, 1977.

V. G. Ganzha, E. W. Mayr, and E. V. Vorozhtsov, CASC'2002. Proceedings of the Fifth International Workshop on Computer Algebra in Scientific Computing, 2002.

M. R. Garey, D. S. Johnson, and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1979.

T. Gautier, X. Besseron, L. Pigeon, and . Kaapi, A thread scheduling runtime system for data flow computations on cluster of multi-processors
URL : https://hal.archives-ouvertes.fr/hal-00684843

M. Giesbrecht, Fast computation of the smith normal form of an integer matrix

M. Giesbrecht, Probabilistic computation of the smith normal form of a sparse integer matrix, ANTS, pp.173-186, 1996.

M. Giesbrecht, Fast computation of the smith form of a sparse integer matrix, Computational Complexity, vol.10, issue.1, pp.41-69, 2001.

O. Goldreich, Notes on levin's theory of average-case complexity, Electronic Colloquium on Computational Complexity, 1997.

O. Goldreich, Computational Complexity: A Conceptual Perspective, 2008.

F. Goodman and . Algebra, Abstract and Concrete, 1997.

R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics, 1994.

M. Grandis, Combinatorial homology in a perspective of image analysis, 1999.

, Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, 2004.

J. L. Hafner and K. S. Mccurley, Asymptotically fast triangularization of matrices over rings, SIAM J. Comput, vol.20, issue.6, pp.1068-1083, 1991.

A. Hatcher, Algebraic Topology, 2002.

G. Havas, D. F. Holt, and S. Rees, Recognizing badly presented z-modules, Linear Algebra and its Applications, vol.192, p.137, 1993.

M. Hochster, Cohen?macaulay rings, combinatorics, and simplicial complexes, Lect. Notes in Pure and Appl. Math, vol.26, pp.171-223, 1977.

J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, 2006.

J. Hromkovic and I. Zámecniková, Design and Analysis of Randomized Algorithms: Introduction to Design Paradigms (Texts in Theoretical Computer Science, An EATCS Series, 2005.

O. Ibarra, S. Moran, and R. Hui, A generalization of the fast lup matrix decomposition algorithm and applications, Journal of Algorithms, vol.3, issue.1, 1982.

C. Iliopoulos, Worst-case complexity bounds on algorithms for computing the canonical structure of finite abelian groups and the hermite and smith forms of an integer matrix, 1989.

J. G. Von-gathen, Modern Computer Algebra, 1999.

D. S. Jean-guillaume, F. Dumas, and . Heckenbach, Simplicial homology -a proposed share package for gap, 2000.

T. Kaczy?ski, K. Mischaikow, and M. Mrozek, Computational Homology, 2004.

T. Kaczy?ski, M. Mrozek, and M. ?lusarek, Homology computation by reduction of chain complexes, Computers and Mathematics, vol.35, issue.4, pp.59-70, 1998.

G. Kalai, Algebraic shifting, Computational Commutative Algebra and Combinatorics, pp.121-163, 2001.

E. Kaltofen, An output-sensitive variant of the baby steps/giant steps determinant algorithm

E. Kaltofen and A. Lobo, On rank properties of Toeplitz matrices over finite fields, pp.241-249

E. Kaltofen and B. D. Saunders, On Wiedemann's method of solving sparse linear systems, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC '91), vol.539, pp.29-38, 1991.

E. Kaltofen and G. Villard, Computing the sign or the value of the determinant of an integer matrix, a complexity survey, Journal of Computational and Applied Mathematics, pp.133-146, 2004.

E. Kaltofen and G. Villard, On the complexity of computing determinants, Computational Complexity, pp.91-130, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02102099

R. Kannan and A. Bachem, Polynomial algorithms for computing the smith and hermite normal forms of an integer matrix, Journal of Computation, 1979.

, Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, 2005.

S. Khodadad and M. Monagan, Fast rational function reconstruction, pp.184-190

D. E. Knuth, The art of computer programming, vol.1, 1981.

, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, 1997.

, 96. Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation, 1996.

L. A. Levin, Average case complete problems, 1986.

J. W. Lewis, Inversion of tridiagonal matrices, Numerische Mathematik, vol.38, issue.3, pp.333-345, 1982.

D. Lichtblau, Half-gcd and fast rational recovery, pp.231-236

M. Mignotte, Math matiques pour le calcul formel

M. Monagan, Maximal quotient rational reconstruction: An almost optimal algorithm for rational reconstruction, pp.243-249

, Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, 2002.

R. Motwani and P. Raghavan, Randomized Algorithms. Stanford University, California, 1995.

M. Mrozek and B. Batko, Coreduction homology algorithm. Discrete and Computational Geometry, 2008.

M. Mrozek, P. Pilarczyk, and N. Zelazna, Homology algorithm based on acyclic subspace, Computers and Mathematics, pp.2395-2412, 2008.

T. Mulders, Certified dense linear system solving, Journal of Symbolic Computation, 2004.

T. Mulders, Certified sparse linear system solving, Journal of Symbolic Computation, 2004.

T. Mulders and A. Storjohann, Diophantine linear system solving, pp.181-188

T. Mulders and A. Storjohann, Rational solutions of singular linear systems, Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation, pp.242-249, 2000.

J. Munkres, Elements of Algebraic Topology, 1984.

D. R. Musser, Introspective sorting and selection algorithms. Software-Practice and Experience, 1997.

M. Niethammer, A. Stein, W. Kalles, P. Pilarczyk, K. Mischaikow et al., Analysis of blood vessel topology by cubical homology. pages II, pp.969-972, 2002.

Z. Olesh and A. Storjohann, The vector rational function reconstruction problems, Proceedings of the Waterloo Workshop on Computer Algebra: devoted to the 60th birthday of Sergei Abramov, pp.137-149, 2007.

V. Pan, Computing the determinant and the characteristic polynomial of a matrix via solving linear systems of equations, Inform. Process. Lett, pp.71-75, 1988.

V. Pan, Can we optimize toeplitz/hankel computations?, vol.50

V. Y. Pan, Superfast algorithms for singular toeplitz-like matrices, 2004.

V. Y. Pan, B. Murphy, R. E. Rosholt, and X. Wang, Nearly optimal toeplitz/hankel computations, 2002.

V. Y. Pan, B. J. Murphy, R. E. Rosholt, and X. Wang, Toeplitz and hankel meet hensel and newton modulo a power of two, 2005.

C. H. Papadimitriou, Computational Complexity, 1994.

C. Pernet, Algèbre linéaire exacte efficace: le calcul du polynôme caractéristique, 2006.

C. Pernet and A. Storjohann, Faster algorithms for the characteristic polynomial, 2007.

, Computational complexity theory, vol.10, 2004.

B. D. Saunders and Z. Wan, Smith normal form of dense integer matrices, fast algorithms into practice, pp.274-281

B. D. Saunders and Z. Wan, An engineered algorithm for the smith form of an integer matrix, ACM Transactions on Computational Logic, 2006.

J. E. Savage, Models of Computation: Exploring the Power of Computing, 1997.

U. Schöning and R. Pruim, Gems of Theoretical Computer Science, 1998.

H. M. Smith, On systems of indeterminate equations and congruences

D. Steffy, Exact solutions to linear systems of equations using output sensitive lifting, 2009.

D. Steffy and W. Cook, Solving very sparse rational systems of equations, 2009.

D. Stehlé and P. Zimmermann, A binary recursive gcd algorithm, Proceedings of the 6th Algorithmic Number Theory Symposium (ANTS VI), vol.3076, pp.411-425, 2004.

A. Storjohann, Faster algorithms for integer lattice basis reduction, 1996.

A. Storjohann, Near optimal algorithm for computing smith normal forms of integer matrices

A. Storjohann, The shifted number system for fast linear algebra on integer matrices, Journal of Complexity, vol.21, issue.4, pp.609-650, 2005.

A. Storjohann, P. Giorgi, and Z. Olesh, Implementation of a las vegas integer matrix determinant algorithm, ECCAD'05, 2005.

A. Storjohann and T. Mulders, Fast algorithms for linear algebra modulo n, ESA'98: Proceedings of 6th Annual European Symposium on Algorithms, pp.139-150, 1998.

T. G. Team, Gmp manual

W. J. Turner, Black box linear algebra with the linbox library, 2002.

Z. Wan, Computing the Smith Forms of Integer Matrices and Solving Related Problems, 2005.

Z. Wan, An algorithm to solve integer linear systems exactly using numerical methods, Journal of Symbolic Computation, vol.41, issue.6, pp.621-632, 2006.

P. Wang, p-adic algorithm for univariate partial fractions, Proc. of the 4th ACM Symp. on Symb. and Alg. Comp, pp.212-217, 1981.

P. S. Wang, M. J. Guy, and J. H. Davenport, p-adic reconstruction of rational numbers. SIGSAM Bulletin, vol.16, 1982.

X. Wang and V. Pan, Acceleration of euclidean algorithm and rational number reconstruction, SIAM J. of Computing, vol.32, pp.548-556, 2003.

, 07: Proceedings of the 2007 international workshop on Parallel symbolic computation, 2007.

D. H. Wiedemann, Solving sparse linear equations over finite fields, IEEE Transactions on Information Theory, vol.32, issue.1, pp.54-62, 1986.

M. Yannakakis, Computing the minimum fill-in is np-complete, SIAM J. Alg. Disc. Meth, 1981.