Skip to Main content Skip to Navigation
Theses

Développement d’un modèle in vitro d’inflammation intestinale par l’utilisation de lignées cellulaires humaines en co-culture pour l’étude des interactionsavec les micro-constituants alimentaires

Abstract : The intestinal epithelium, main place of the absorption of (micro)-nutrients is also the first body's defense system. An imbalance in homeostasis can lead to an inflammatory reaction associated with defects in the intestinal barrier and immune function as well as malabsorption of nutrients, as seen in IBD (Inflammatory Bowel Diseases), in micronutrient fortification strategies and noncommunicable diseases (obesity). It is therefore important to find ways of action, for example through diet, to prevent or at least reduce the nutritional and pathological consequences of intestinal inflammation, and to understand the mechanisms involved. Among intestinal models, in vitro cell culture models are increasingly used and allow to evaluate the molecular mechanisms in a simple and reproducible way and to reduce animal experimentation.In this context and in order to study the interaction of dietary bioactive compounds with the intestine in state of inflammation, the first objective of this work was the development of an in vitro model of inflamed intestine combining in co-culture two human intestinal cell lines: Caco-2 TC7 (enterocytes) and HT29-MTX (goblet cells) and an immune cell line of macrophages (THP1). Several inflammation markers were evaluated and we were able to show that the tri-culture model responded to an inflammatory stimulus (LPS / IFNγ), by increasing the production of pro-inflammatory cytokines (TNF-α, IL6 and IL8) and enzymes (INOS and COX2) as well as the expression of their genes. In addition, an increase of epithelial permeability via tight junctions (TJs) alteration has also been demonstrated, as well as overproduction of mucus, which are recognized inflammation characteristics.The second objective was to study the interaction of β-cryptoxanthin (BCX), a lipophilic and antioxidant carotenoid of citrus, with the inflamed model. To solubilize BCX, we used two types of micelles (artificial and physiological) and studied markers of inflammation. Although it appears from the preliminary results that BCX micelles show a tendency to decrease the production of some cytokines (IL6 and IL8), the role of micelle constituents (Tween 40 or bile salts / phospholipids) in the phenomenon observed and in the epithelial permeability remains to be therefore clarified.
Document type :
Theses
Complete list of metadatas

Cited literature [292 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02142190
Contributor : Abes Star :  Contact
Submitted on : Tuesday, May 28, 2019 - 2:39:41 PM
Last modification on : Tuesday, October 20, 2020 - 11:32:20 AM

File

2019_PONCE_DE_LEON_RODRIGUEZ_a...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02142190, version 1

Citation

Maria del Carmen Ponce de Leon Rodriguez. Développement d’un modèle in vitro d’inflammation intestinale par l’utilisation de lignées cellulaires humaines en co-culture pour l’étude des interactionsavec les micro-constituants alimentaires. Médecine humaine et pathologie. Université Montpellier, 2019. Français. ⟨NNT : 2019MONTG009⟩. ⟨tel-02142190⟩

Share

Metrics

Record views

296

Files downloads

819