, Distributions normalisées d'amplitudes du courant d'obscurité, 1100.

E. Balanzat and S. Bouffard, Material under Irradiation, Solid State Phenomena Volumes 30&31, 1993.

A. L'hoir, Processus de création de défauts sous irradiation, Comprendre les irradiations, Ecole CNRS La Londes les Maures

P. Sigmund, Stopping of Heavy Ions, a theoretical approach, 2004.

N. Bohr, The penetration of atomic particles through matter, Mat. Fis. Medd. Dan. Vid. Selsk, vol.18, pp.1-144, 1948.

L. H. Thomas, The calculation of atomic fields, Proc. Cambridge Phil. Soc, vol.23, issue.5, pp.542-548, 1927.

E. Fermi, Un metodo statistico per la determinazione di alcune priorieta dell'atome, Rend. Accad. Naz. Lincei, vol.6, pp.602-607, 1927.

E. H. Lieb, Thomas-Fermi and related theories of atoms and molecules, Rev. Mod. Phys, vol.53, p.311, 1981.

O. B. Firsov, A qualitative interpretation of the mean electron excitation energy I atomic collisions, English traduction of: Soviet Physics JETP, vol.36, pp.1076-1080, 1959.

J. Lindhard, M. Scharff, and H. E. Schiøtt, Range Concepts and heavy ion Ranges, Danske Videnskabernes Selscab Matematisk-fysiske Meddelelser, vol.33, 1963.

J. P. Biersack, Zeitschrift für Physik 211, pp.495-501, 1968.

J. D. Garcia, Phys. Rev. A, vol.1, p.1402, 1970.

E. Merzbacher and H. Lewis, Handbuch der Physik, vol.34, p.166, 1958.

H. Bethe, Zur Theorie des Durchgangs schneller Korpuscularstrahlen durch Materie, Annalen der Physik, vol.5, pp.324-400, 1930.

W. H. Barkas, NuclearResearchEmulsions, 1963.

J. Ziegler and &. Srim, , 2008.

P. Helmut, Comparing experimental stopping power data for positive ions with stopping tables using statistical analysis, Nucl. Inst. Meth. B, vol.273, pp.15-17, 2012.

P. Helmut, A critical overview of recent stopping power programs for positive ions in solid elements, Nucl. Inst. Meth. B, vol.312, pp.110-127, 2013.

R. Hilsch and R. W. Pohl, Z. Phys, vol.48, p.384, 1928.

J. Frenkel, Phys. Rev, vol.37, p.1276, 1931.

R. S. Knox, Theory of Excitons, Solid State Physics, vol.5, 1963.

C. Grygiel, Online in situ x-ray diffraction setup for structural modification studies during swift heavy ion irradiation, Rev Sci Instrum, vol.83, issue.1, p.13902, 2012.

W. J. Weber, Synergy of elastic and inelastic energy loss on ion track formation in SrTiO3, Sci. Rep, vol.5, p.7726, 2015.

A. M. Stoneham and N. Itoh, Materials modification by electronic excitation, Applied Surface Science, vol.168, pp.186-193, 2000.

N. Itoh, J. Phys. : Condens. Matter, vol.21, p.474205, 2009.

F. Aumayr and H. P. Winter, Inelastic interactions of slow ions and atoms with surfaces, Nuclear Instruments and Methods in Physics Research B, vol.233, pp.111-124, 2005.

K. Schwartz, C. Trautmann, and R. Neumann, Electronic excitation and heavy-ion-induced processes in ionic crystals, Nuclear Instruments and Methods in Physics Research B, vol.209, pp.73-84, 2003.

R. L. Fleischer, P. B. Price, R. M. Walker, and E. L. Hubbard, Criterion for Registration in Dielectric Track Detectors, Physical Review, vol.156, p.353, 1967.

G. Schiwietz, K. Czerski, M. Roth, F. Staufenbiel, and P. L. Grande, Nuclear Instruments and Methods Phys. Res. B, vol.225, p.4, 2004.

F. Seitz and J. S. Koehler, Displacement of Atoms During Irradiation, Solid State Physics, vol.2, p.305, 1956.

C. Dufour, A. Audouard, F. Beuneu, J. Dural, J. P. Girard et al., A high-resistivity phase induced by swift heavy-ion irradiation of Bi: a probe for thermal spike damage, Journal of Physics: Condensed Matter, vol.5, p.26, 1993.

M. Toulemonde, C. Dufour, A. Meftah, and E. Paumier, Transient Thermal Processes in Heavy Ion Irradiation of Cristallin Inorganic Insulators, Nuclear Instruments and Methods Phys. Res. B, p.903, 2000.

A. Kamarou, W. Wesch, E. Wendler, A. Undisz, and M. Rettenmayr, Swift heavy ion irradiation of InP: Thermal Spike modeling of tracks formation, Physical Review B, vol.73, p.184107, 2006.

G. Szenes, General feature of latent track formation in magnetic insulators irradiated with swift heavy ions, Physical Review B, vol.51, p.8026, 1995.

E. Balanzat, S. Bouffard, A. Cassimi, E. Doorhyee, L. Protin et al., Defect creation in alkali-halides under dense electronic excitations: experimental results on NaCl and KBr, Nuclear Instruments and Methods in Physics Research Section B, vol.91, pp.134-139, 1994.

K. S. Song and R. T. Williams, Self-Trapped Excitons, 105 Springer Series in Solid-State Physics, 1993.

A. Jablonski, Über den Mechanisms des Photolumineszenz von Farbstoffphosphoren, Z Phys, vol.94, pp.38-46, 1935.

M. Hirai, Time-resolved studies of photochemistry in alkali halides, Defect processes induced by electronic excitation in insulators, 1989.

R. Huddle, Ion beam-induced luminescence, NIM B, vol.261, pp.475-476, 2007.

F. Mathis, G. Othmane, O. Vrielynck, H. Calvo-del-castillo, G. Chêne et al., Combined PIXE/PIGE and IBIL with external beam applied to the analysis of Merovingian glass beads, Nucl. Instrum. Methods Phys. Res. Sect. B, vol.268, pp.2078-2082, 2010.

C. Manfredotti, F. Fizzotti, P. Polesello, E. Vittone, M. Truccato et al., IBIC and IBIL microscopy applied to advanced semiconductor materials, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms, pp.1333-1339, 1998.

P. D. Townsend, Variations on the use of ion beam luminescence, Nucl. Instrum. Methods Phys. Res. Sect. B, vol.286, issue.1, pp.35-39, 2012.

S. Calusi, E. Colombo, L. Giuntini, A. Lo-giudice, C. Manfredotti et al., The ionoluminescence apparatus at the Labec external microbeam facility, Nucl. Instrum. Methods Phys. Res. Sect. B, vol.266, issue.10, pp.2306-2310, 2008.

A. Quaranta, J. Salomon, J. C. Dran, M. Tonezzer, D. Mea et al., Ion beam induced luminescence analysis of painting pigments, Nucl. Instrum. Methods Phys. Res. Sect. B, vol.254, issue.2, pp.289-294, 2007.

E. Colombo, S. Calusi, R. Cossio, L. Giuntini, A. Logiudice et al., Recent developments of ion beam induced luminescence at the external scanning microbeam facility of the labec laboratory in Florence, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms, vol.266, issue.8, pp.1527-1532, 2008.

A. Quaranta, A. Vomiero, S. Carturan, G. Maggioni, D. Mea et al., Polymer film degradation under ion irradiation studied by ion beam induced luminescence (ibil) and optical analyses, Nucl. Instrum. Methods Phys. Res. Sect. B, vol.191, pp.680-684, 2002.

N. Markovic, Ion beam induced luminescence (IBIL) system for imaging of radiation induced changes in materials, NIM B, vol.343, pp.167-172, 2015.

J. B. Birks and F. A. Black, Proceedings of the Physical Society of London, vol.64, p.511, 1951.

W. Becker, Advanced Time-Correlated Single Photon Counting Technics, 2005.

D. V. O'connor and V. Phillips, Time-Correlated Single Photon Counting, 1984.

J. Lakowicz, Principle of Fluorescence Spectroscopy, 1983.

K. Kimura, Stimulated emission and exciton complex in some insulator crystals irradiated by heavy ions, NIM B, vol.154, pp.318-324, 1999.

M. Koshimizu, Time-resolved luminescence spectra of electron-hole plasma in ionirradiated CdS, NIM B, pp.376-380, 2003.

K. Kimura, Ultra-fast luminescence in heavy-ion track-cores in insulators: Electronhole plasma, NIM B, vol.212, pp.123-134, 2003.

K. Kimura, . Matsuyama-t, and H. Kumagai, High density excitation by heavy ions: Techniques of fast measurements of emission decay of BaF2 single crystal, Radiat. Phys. Chem, vol.34, issue.4, pp.575-579, 1989.

K. Kimura, A fast decay measurement of ion-induced luminescence: radiative and nonradiative annihilation of core holes produced in a BaF, single crystal, Nuclear Instruments and Methods in Physics Research B, vol.90, pp.100-103, 1994.

K. Kimura and W. Hong, Decay enhancement of self-trapped excitons at high density and low temperature in an ion-irradiated BaF2 single crystal, Phys. Rev. B, vol.58, p.10, 1998.

K. Kimura, S. Sharma, and A. I. Popov, Novel ultra-fast luminescence from incipient ion tracks of insulator crystals: electron-hole plasma formation in the track core, Radiation Measurements, vol.34, pp.99-103, 2001.

K. Kimura, S. Sharma, and A. I. Popov, Fast electron-hole plasma luminescence from track-cores in heavy-ion irradiated wide-band-gap crystals, Nuclear Instruments and Methods in Physics Research B, vol.191, pp.48-53, 2002.

R. Toshima, H. Myaramu, J. Asahara, T. Murasawa, and A. Takahashi, Ion-induced luminescence of Alumina with Time-resolved Spectroscopy, J. of Nuclear Science and Technology, vol.39, pp.15-18, 2002.

C. Czelusniak, Preliminary results on time-resolved ion beam induced luminescence applied to the provenance study of lapis lazuli, Nuclear Instruments and Methods in Physics Research B, vol.371, pp.336-339, 2016.

H. Zeng and G. Durocher, Analysis of fluorescence quenching in some antioxidants from nonlinear Stern-Volmer plots, J. Lumin, vol.63, p.75, 1995.

E. Gardès, SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence -Application to luminescence degradation of a fast plastic scintillator, Nucl. Instr. Met. B, vol.297, pp.39-43, 2013.

S. Till, Nouvelle approche de la dosimétrie des rayonnements ionisants par mesure de fluorescence, selon la technique du comptage de photon unique, corrélé en temps, à l'échelle nanoseconde

A. H. Kahn and A. J. Leyendecker, Electronic Energy Bands in Strontium Titanate, Phys. Rev, vol.135, p.1321, 1964.

H. P. Frederikse, W. R. Thurber, and W. R. Hosler, Electronic Transport in Strontium Titanate, Phys. Rev, vol.134, p.442, 1964.

O. N. Tufte and P. W. Chapman, Electron Mobility in Semiconducting Strontium Titanate, Phys. Rev, vol.155, p.796, 1967.

J. F. Schooley, W. R. Hosler, and M. L. Cohen, Superconductivity in Semiconducting SrTiO3, Phys. Rev. Lett, vol.12, p.474, 1964.

N. Reyren, S. Thiel, A. D. Cavigla, L. Koukoutis, G. Hammerl et al., J.Mannhart, vol.317, p.1196, 2007.

A. D. Caviglia, S. Gariglio, C. Cancellieri, B. Sacépé, A. Fête et al., Phys. Rev. Lett, vol.105, p.236802, 2010.

L. Li, C. Richter, J. Mannhart, and R. C. Ashoori, Nat. Phys, vol.7, p.762, 2011.

D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Nature, vol.430, p.657, 2004.

Y. Muraoka, T. Muramatsu, J. Yamaura, and Z. Hiroi, Appl. Phys. Lett, vol.85, p.2950, 2004.

M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara et al., Science, vol.266, p.1540, 1994.

W. J. Weber, R. C. Ewing, C. R. Catlow, T. Diaz-de-la-rubia, L. W. Hobbs et al., J. Mater. Res, vol.13, p.1434, 1998.

A. Solanki, J. Shrivastava, S. Upadhyay, V. Sharma, P. Sharma et al., Int. J. Hydro. Energy, vol.36, p.5236, 2011.

M. Karlusic, S. Akcöltekin, O. Osmani, I. Monnet, H. Lebius et al., New J. Phys, vol.12, p.43009, 2010.

E. Akcöltekin, Swift heavy ion irradiation of SrTiO3 under gazing incidence, New J. Phys, vol.10, p.53007, 2008.

Y. Yamada, Y. Kanemitsu, J. Singh, and R. T. Williams, Photocarrier Recombination Dynamics in Perovskite Semiconductor SrTiO3, Excitonic and Photonic Processes in Materials, 2015.

D. Kan, Blue-light emission at room temperature from Ar+ -irradiated SrTiO3, Nature Mat, vol.4, pp.816-819, 2005.
DOI : 10.1038/nmat1498

L. Grabner, Photoluminescence in SrTiO3, Phys. Rev, vol.177, pp.1315-1323, 1969.

R. Leonelli and J. L. Brebner, Time-resolved spectroscopy of the visible emission band in strontium titanate, Phys. Rev. B, vol.33, pp.8649-8656, 1986.

T. Hasegawa, Localizing nature of photo-excited stats in SrTiO3, vol.87, pp.1217-1219, 2000.

Y. Kanemitsu and Y. Yamada, Light emission from SrTiO3, Phys. Stat. Solidi B, vol.248, issue.2, pp.416-421, 2011.

B. Valeur, Molecular fluorescence, 2002.

F. D. Brooks, Nucl. Instr. Meth, vol.162, p.477, 1979.

J. B. Birks, The Theory and Practice of Scintillation Counting, International Series of Monographs in Electronics and Instrumentation, vol.27, 1964.

. Stgobain,

A. Quaranta, A. Vomiero, S. Carturan, G. Maggioni, D. Mea et al., Nucl. Instr. Meth. B, vol.191, p.680, 2002.

J. R. Lakowicz and G. Weber, Biochem, vol.12, p.4161, 1973.

M. R. Eftink and C. A. Ghiron, Anal. Biochem, vol.114, p.199, 1981.

F. Durantel, Dosimetry for radiobiology experiments at GANIL, Nucl. Instr. Meth. A, vol.816, p.70, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01938057

E. Baron, « Cours sur les Cyclotrons », Ecole GANIL « De la source à la cible », Caen 2-6 fevrier, 2004.

, Réseau national d'accélérateurs pour les Etudes des Matériaux sous Irradiation, EMIR

R. Toshima, H. Miyamaru, J. Asahara, T. Murasawa, and A. Takahashi, Ion-induced Luminescence of Alumina with Time-resolved Spectroscopy, Journal of Nuclear Science and Technology, vol.39, pp.15-18, 2002.

J. Asahara, H. Miyamasu, and A. Takahashi, Time-resolved Spectroscopy of Luminescence Induced by a Pulsed Ion Beam, Journal of Nuclear Science and Technology, vol.36, pp.1098-1100, 2002.

, Sumimoto Cryogenics

L. Cryotronics,

. Hamamatsu,

J. L. Wiza, Microchannel Plate Detectors, Nuclear Instruments and Methods, vol.162, p.601, 1979.

W. C. Wiley and C. F. Hendee, IRE Trans. Nucl. Sci, vol.9, p.103, 1962.

. Baspik,

. Mesytec, , vol.106

G. F. Knoll, Radiation detection and measurement, 2010.

B. G. Cartwright, E. K. Shirk, and P. B. Price, Nuclear Instruments and Methods, vol.153, issue.2-3, p.457, 1978.

R. M. Cassou and E. V. Benton, , vol.2, p.173, 1978.

I. Bailly, C. Champion, P. Massiot, P. Savarin, J. L. Poncy et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms187, p.137, 2002.

R. L. Fleischer, P. B. Price, and R. M. Walker, Nuclear Tracks in Solids: Principles and Applications, 1975.

J. Max and J. Lacoum, Méthodes et techniques de traitement du signal », Dunod, 5

M. Fox, Optical Properties of Solids, 2010.

G. Saporta, Probabilités, analyse des données et statistique, (éd. Technip, p.587

P. Brémaud, , 1988.

W. Appel, Probabilités pour les non probabilistes, H&K Editions, 2013.

M. Akatsu, MCP-PMT timing property for single photons, Nucl. Instr. Meth. A, vol.528, pp.763-775, 2004.

Q. Zhang, Determining time resolution of microchannel plate detectors for electron time-of-flight spectrometers, RSI, vol.81, 2010.

G. W. Fraser, The gain, temporal resolution and magnetic-field immunity of microchannel plates, Nucl. Instr. Meth, vol.291, pp.595-606, 1990.

E. H. Eberhardt, An operational model for microchannel plate devices, IEEE Trans. Nucl. Sci, vol.28, p.712, 1981.
DOI : 10.1109/tns.1981.4331267

D. Hasselkamp, H. Rothard, K. Groeneveld, J. Kemmler, P. Varga et al., Particle Induced Electron Emission II, vol.123, 1992.

C. Keith, Probability Distribution and maximum Entropy, 2018.

H. Rothard and B. Gervais, Electron Emission from Solids Irradiated with Swift Ion Beams, in Ion Beam Science: Solved and Unsolved Problems, 2006.

C. G. Drexler and R. D. Dubois, Energy-and angle-differential yields of electron emission from thin carbon foils after fast proton impact, Phys. Rev. A, vol.53, p.1630, 1996.

H. Rothard, Secondary-electron velocity spectra and angular distribution from ions penetrating thin solids, Nucl. Instr. Meth, vol.48, pp.616-620, 1990.

G. Schiwietz, Femtosecond dynamics -snapshots of the early ion-track evolution, Nucl. Instr. andMeth. in Phys. Res, vol.225, issue.2, pp.4-26, 2004.

A. Tikhonov and V. Arsénine, Méthodes de résolution de problèmes mal posés, 1976.

J. N. Demas, Excited State Lifetime Measurements, 1983.

D. F. Eaton, Recommended Methods for Fluorescence Decay Analysis, Pure &Appl. Chem, vol.62, pp.1631-1648, 1990.

Y. G. Biraud, Les methods de déconvolution et leurs limitations fondamentales, p.203, 1976.

F. N. Madden, A comparison of Six Deconvolution Techniques, J. Pharmacokinetics Biopharmaceutics, vol.24, 1996.

T. N. Solie, E. W. Small, and I. Isenberg, Analysis of non exponential fluorescence decay data by a method of moments, Biophys. J, vol.29, pp.367-378, 1980.

I. Isenberg, Robust estimation in pulse fuorometry, Biophys. J, vol.43, pp.141-148, 1983.

R. W. Ware, Deconvolution of Fluorescence and Phosphorescence Decay Curves. A LeastSquares Method, J. Phys. Chem, vol.77, 1973.

B. Valeur and J. Moriez, J. Chem. Phys, vol.70, pp.500-506, 1973.

B. Valeur, Chem Phys, vol.30, pp.85-93, 1978.

I. Isenberg, R. D. Dyson, and R. Hanson, Studies on the analysis of fluorescence decay data by the method of moments, Biophys. J, vol.13, 1973.

A. Grinvald and I. Z. Steinberg, On the analysis of fluorescence decay kinetics by the method of least-square, An. Biochem, vol.59, pp.583-598, 1974.

E. T. Jaynes, Information Theory and Statistical Mechanics, Physical Review. Series II, vol.106, issue.4, pp.620-630, 1957.

E. T. Jaynes, Information Theory and Statistical Mechanics-II, Physical Review. Series II, vol.108, issue.2, pp.171-190, 1957.

A. K. Livesey and J. C. Brochon, Analysing the distribution of decay constants in pulsefluorimetry using the maximum entropy method, vol.52, pp.693-706, 1987.

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, 2005.

Z. Bajzer, Maximum likelihood method for the aalysis of time-resolved fluorescence decay curves, Eur. Biophys. J, vol.20, pp.247-262, 1991.

J. Nocedal and S. T. Wright, Numerical Optimization" Second Edition, 2006.

S. F. Gull and J. Skilling, Maximum entropy method in image processing, IEEE Proc, vol.131, pp.646-661, 1984.

T. J. Cornwell and K. F. Evans, A simple maximum entropy déconvolution algorithm, Astron. Astrophys, vol.143, pp.77-83, 1985.

D. Lade, J. Skillings, J. Staunton, S. Sibisi, and R. G. Brerenton, Maximum entropy method in nuclear magnetic resonance spectroscopy, Journal of Magnetic Resonance, vol.62, issue.3, pp.437-452, 1985.

J. C. Brochon, Maximum Entropy Method of Data Analysis in Time-Resolved Spectroscopy, Methods in Enzymology, vol.240, 1994.

D. A. Smith, G. Mckenzie, A. C. Jones, and T. A. Smith, Analysis of time-correlated single photon counting data: a comparative evaluation of deterministic and probabilistic approaches, Methods Appl. Fluoresc, vol.5, p.42001, 2017.

E. Henry, E. Deprez, and J. Brochon, Maximum etropy analysis of data simulations and practical aspects of time-resolved fluorescence measurements in the study of molecular interactions, J. Molecular Structure, vol.1077, pp.77-86, 2014.

R. Esposito, C. Altucci, and R. Velotta, Analysis of simulated fluorescence Intensities Decays by a new maximum entropy method algorithm, J. Fluoresc, vol.23, pp.203-211, 2013.

J. Skilling and R. Bryan, Maximum entropy image reconstruction general algorithm, MNRAS, vol.211, issue.4, pp.111-124, 1984.

S. Gmbh,

A. Quantara, A. Vmiero, S. Carturan, G. Maggiono, D. Mea et al., New high radiation resistant scintillating thin film, vol.138, pp.275-279, 2003.

L. Torrisi, Radiation damage in polyvinyletoluene (PVT), Rad. Phys. Chem, vol.63, pp.89-92, 2002.

A. Quantara, « Radiation hardness of polysiloxane scintillators analyzed by ion beam induced luminescence, Nucl. Instr. Meth. B, vol.268, pp.3155-3159, 2010.

P. G. Sjolin, The scintillation decay of some commercial organic scintillators, Nucl.Instr. Meth, vol.37, pp.45-50, 1965.

M. Hamel, M. Trocmé, A. Rousseau, and S. Darbon, Red-emmitting liquid ans plastic scintillators with nanosecond time response, J. of Luminescence, vol.190, pp.511-517, 2017.