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Géraldine MORIN - IRIT, Examiner, Professor, Chairwoman
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Introduction

A key component of Oil & Gas exploration workflows is the structural model. It is built by

interpreting geological objects on three-dimensional digital images of the underground called

seismic cubes. Amongst the modeled objects, sediment deposition surfaces (horizons) are

especially relevant. They are typically interpreted as sparse polylines or heightmap fragments

by geologists, and then interpolated into a denser representation such as a heightmap or

a triangle mesh. As hydrocarbon resources get harder to locate and put into production,

horizons of complex shape are increasingly considered. Namely, horizons with reverse faults

and horizons modeling salt domes are frequently found, amongst other places, in compressive

domain. Their shape can be so distorted as to prevent the use of heightmaps: they then

become cumbersome or even outright impossible to manage within traditional Oil & Gas

software applications. The correct handling of these two types of “multivalued” horizons is

therefore mandatory for a structural model to be correctly built.

The first difficulty is that no software package currently provides a unified representation

of standard monovalued horizons along with their multivalued counterparts. This is notably

due to the fact that few reviews of typical spatial data structures have been conducted in

the field of geoscience and hydrocarbon exploration, especially targeting structures arising

in compressive domain. The initial objective of the thesis is therefore to find candidate new

models and assess their potential to represent multivalued horizons. This will be the subject

of the first chapter. The search for new data structures is subjected to various constraints,

from user methodologies to software and hardware limitations, along with pragmatic engi-

neering issues such as software legacy and ease of deployment. Once the specifications will be

established, potential models will be qualitatively reviewed, then quantitative performance

measurements in a representative benchmark will be conducted. At this point, relevant new

models will be chosen to represent reverse-faulted and salt dome horizons. Two different mod-

els will eventually be used because their associated horizons typically have different geometry

and processing needs.

Once data structures are chosen, multivalued horizons have to be reconstructed from

sparse interpretation data (polylines and heightmap fragments) to the target multivalued

horizon model. A state of the art will show that the subject of surface reconstruction from

sparse and unorganized polylines and heightmap fragments representing open multivalued

surfaces has not been the subject of much academical interest. Consequently, interpolation

methods will be proposed so that both reverse-faulted and salt dome horizons can be effi-

ciently reconstructed from interpretation data, as reported in the second and third chapters,

respectively.

The reconstruction of reverse-faulted horizons will target a model naturally extending the

heightmap, that we call a patch system. In essence, it is a set of connected heightmaps, using

as many heightmaps as required to model a multivalued horizon. In addition to its simplicity,

this model will allow for standard monovalued horizon reconstruction methods to be elegantly

1



2 Introduction

adapted. Our reconstruction approach will therefore benefit from the speed and robustness

of image-based, two dimensional interpolation methods while modeling a three dimensional

object. This will be done at the cost of a preparation stage based on graph labeling, whose

complexity is kept low by a unified handling of input interpretation data and a heuristic graph

propagation algorithm.

Another reconstruction method will then be presented, in order to interpolate polylines

representing a salt dome into a triangle mesh. Once again, for simplicity and performance

reasons, we will propose a two dimensional approach. The idea is to parameterize polylines

to the plane, to enable easy two dimensional interpolation and triangulation. Once formed

in the plane, the triangle mesh can then be transformed back into space. Standard mono-

valued interpolation approaches will again be leveraged, enabling real-time reconstruction on

our target hardware platform. Most of our work lies in the construction of a polyline pa-

rameterization method, using a barycentric approach. These simple parameterizations are

defined by a neighborhood and a set of coefficients, and we will show how typical neighbors

and coefficients in the literature are not suited to polylines. Instead, we will present an inter-

polated neighborhood along with a set of optimal coefficients, and show their efficiency when

parameterizing polylines.
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We will start by providing the reader with an introduction to the Oil & Gas industry in

general and exploration in particular, notably the construction of a structural model. In a

second time, we will see that new models are required for multivalued horizons, as well as

new reconstruction methods. This first chapter will finally compare and eventually select the

new models, while the following chapters (see chapters 2 and 3) will present reconstruction

methods for the two main families of multivalued horizons.
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1.1 Oil & Gas Exploration Primer

1.1.1 Hydrocarbons

1.1.1.1 Definition

A hydrocarbon is a molecule including only carbon and hydrogen atoms. When bonded to

other atoms, hydrocarbons are turned into a variety of organic compounds, rich enough to

form the entire branch of organic chemistry [Sil06]. By varying the added atoms and the

molecule shapes (linear alkanes, cyclocalkanes, alkynes, arenes, etc.), organic compounds can

be used in an impressive number of applications. Table 1.1 reports some of the most common

hydrocarbons.

C atoms Phase Typical form

1-4 Gas Heating and cooking gas

5-18 Liquid Solvents, gasoline

12-24 Liquid Kerosene

18-50 Liquid Diesel fuel, heating oil, fuel oil, lubricants

50+ Solid Petroleum jelly, paraffin wax, tar, asphalt, polymers

Table 1.1: Common hydrocarbons sorted by increasing carbon atom count, and their phase

at standard conditions of temperature and pressure (293°K, 1 atm).

1.1.1.2 Uses

Hydrocarbons were initially used mostly for lighting in the form of “rock oil” – petroleum,

from petra (rock) and oleum (oil) [Dal15]. Today, hydrocarbons take many other shapes and

are of primary importance in most aspects of our modern society, amongst which:

� Static energy production. Hydrocarbons are used in massive quantities as fuel for

static power plants, especially in countries that ruled out nuclear power (Germany or

Poland for example). They are available in whatever phase is most suitable, as solid

(coal), liquid (diesel fuel, kerosene, gasoline, marine fuel) or gas (natural gas). They are

cheaper than most other energy sources, and easy to transport by rail or pipe;

� Mobile energy production (fuel for motor vehicle / mobile power plants). The en-

ergy density of hydrocarbon fuels is significant, and can be leveraged by combustion in

many mature engine designs (mainly piston engines or gas turbines, following various

thermodynamic cycles) that are competitive in most mechanical environments, such as

high-torque, high-speed, high-efficiency or small form factor;
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� Chemical industry. Hydrocarbons can be found in most industrial processes, having

organic chemistry, an entire subfield of chemistry, dedicated to them. They are precur-

sors, catalysts, solvents, reactants and can be turned into a range of useful products,

from plastics, waxes, asphalts and lubricants to drugs. Sulfuric acid, a work-horse of

the chemical industry, is made out of elemental sulfur also coming from hydrocarbons.

Because of all these beneficial applications for a booming industrial world, explaining

how and where hydrocarbons form has been the subject of intense geological and geophysical

studies from the end of the XIXth century.

1.1.1.3 Formation, Migration, Traps

Hydrocarbons are organic compounds and as their name suggests, they often have a biological

origin. They are indeed formed by the deposition of micron-scale decomposed organic material

within sediments that turn into rocks on geological time scales [Sch13] – a typical hydrocarbon

field is made of rock formations 20 to 400 million years old. Under favorable conditions

(high temperature and pressure) that naturally occur at depths of several kilometers, these

biological products are cooked into droplets of hydrocarbons, from heavy crude oil to light

natural gas depending on the exact local conditions. Note that we will not consider coal here

and focus on oil and natural gas, though coal is formed in a somewhat similar process and is

indeed a fossil fuel. Being a solid, coal is mined by other companies than typical oil & gas

industrials, using processes from the mining industry.

Figure 1.1: An example situation where hydrocarbons form and migrate using a conducting

fault until stopped by a seal rock: they are now trapped in the reservoir rock, where they

accumulate. The lighter gas can be found at lesser depths than heavier oil. Other hydrocarbon

deposits called “unconventionnals” are increasingly produced, for example shale gas, tight gas,

coal bed methane or oil shales but will not be considered here. Image courtesy of TOTAL

SA.

Once formed, hydrocarbons can move within porous rock formations, until they are stuck

between non permeable objects called “seals”, ranging from salt formations to non-conducting
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faults. Hydrocarbons are then trapped in a porous rock that is called a reservoir, as seen in

figure 1.1.

Easily accessible hydrocarbons were discovered quickly, e.g. open-air oil spills. These low-

cost resources are now long gone, and newly discovered reservoirs are buried deep beneath

the surface or even the sea floor. Finding reservoirs (exploration) and extracting hydrocar-

bons from them (production) is therefore required, a significant investment in both time and

resources.

1.1.2 The Oil & Gas Industry

1.1.2.1 Domains of Activity

The Oil & Gas industry involves companies and countries that produce economic value by

activities related to hydrocarbons. Lands potentially containing hydrocarbons are owned

by states, who provide exploitation licenses to companies and take an interest in return.

Exploring and producing hydrocarbons on a field typically is a multi-billion dollar project, and

companies tend to group together in joint ventures to minimize risks. Around companies lives

an ecosystem of contractors and specialists that sell assistance and expertise. As illustrated

in figure 1.2, the three main activities (also known as streams) in the oil & gas industry are:

� Exploration and Production (Upstream). Each country is partitioned into “blocks”,

and states can authorize companies (often specialized contractors) to explore for hydro-

carbons. If reservoirs are found, and they are estimated to be economically viable to

exploit, the field is put into production. We will detail the processes of exploration in

section 1.1.3. At this point production wells are drilled and connected to local treatment

facilities (gas liquefaction, monitoring) that are linked to a transport system, be it a

pipeline or a tanker filling station1;

� Refining (Midstream). Extracted raw hydrocarbons (crude oil or natural gas) take their

real value after processing in refineries. Each reservoir produces a unique cocktail of

hydrocarbons, with varying properties that must be taken into account, such as sulfur

content. In a few words, they are separated by distillation and some of the products

may be cracked into lighter compounds that typically have a higher economic value, e.g.

fuels;

� Selling Refined Products (Downstream). At this point, refined products are sold to

consumers in the form of chemicals, fuel at gas stations, etc.

Some industrials focus on a single activity while other “integrated” companies have capa-

bilities in every oil & gas sector, from exploration to selling. This is challenging and prevents

1Unconventionals, oil sands, coal liquefaction or thermal depolymerization require different processes and

are not discussed here.
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Figure 1.2: Main oil & gas activities. Once discovered, hydrocarbons are produced, be it

offshore (1) or on land (2). Natural gas requires liquefaction for cheaper transport (3). Hy-

drocarbons are then processed in refineries (4) where they are separated and turned into

higher value products, as compounds for the chemical industry (5) and fuel for motor vehicles

(6) or power plants (7). Image courtesy of TOTAL SA.

extreme specialization, while providing protection against economical hazards – a pure ex-

ploration company is indeed in great danger when oil price is low, and no exploration is

conducted to reduce costs.

1.1.2.2 Climate Change and Sustainability

We discussed the many uses and merits of hydrocarbons. Climate scientists have however

accumulated massive evidence of the impact fossil fuels have on human health and the world’s

climate, mostly by releasing pollutants (nitrogen oxides, particles, sulfur compounds) and

huge quantities of carbon dioxide in the air [Cli]; [Bat+12]. In response to this global threat,

some oil & gas companies have changed their course of action in order to promote the cleanest

fossil fuel: natural gas. Burning natural gas, especially in high efficiency combined-cycle power

plants, releases less than half the CO2 of coal-fired turbines for an equivalent energy output.

With no spoil tips and proper filtering, this also prevents the emission of polluting particles,

sulfur compounds and nitrogen oxides.
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Renewables are undeniably to become a significant proportion of the energy mix [Ren].

Meanwhile, the growing energy demand must be pragmatically met by baseline power plants

powered by nuclear fuels or natural gas. Moreover, most renewables are intermittent energy

sources, relying on rains to fill dams, wind to blow on turbines or clear clouds from the sky

for solar panels [JW16]. As of today, with no solution for country scale energy storage, peak

reactors are required when renewables are not enough. This can only be done with hydrocar-

bon based plants, that can be turned on at second or minute time scales. Hydrocarbons will

therefore likely have a lesser influence in the static energy sector for baseline power, while

still remaining a major energy source for peak power if no large scale power storage solution

is devised.

Concerning mobile power, electric engines and their many advantages are starting to be

competitive against the rampant heat engines powering motor vehicles. They have still to

solve the energy storage problem, relying for now on difficult to recycle lead-acid or lithium-ion

batteries and (potentially polluting) electricity production. Hydrogen fuel cells also improve

in efficiency and are starting to be deployed in personal vehicles and trains, yet hydrogen has

to be produced in the first place, requiring energy. What will not change however is that the

energy density of hydrocarbons is only beaten by nuclear fuels, which are of course reserved for

specialist applications (e.g. military submarines and aircraft carriers, icebreakers, seaborne

power plants). This means there is for now no serious alternative to hydrocarbons for heavy-

duty applications, as in trucks, tankers and airplanes. Indeed, a switch to the cleaner Liquid

Natural Gas (LNG) seems the only reasonable path when it comes to replacing the diesel and

marine fuels powering trucks and tankers.

In the chemical industry, hydrocarbons will remain a force to reckon with even in the far

future: many chemicals and products simply cannot be obtained without hydrocarbons for

now, and these activities have negligible CO2 emission compared to the burning of hydrocar-

bons as fuel for energy.

All this being said, there is strong evidence hydrocarbons (especially natural gas) will still

be needed at a large scale in the future, even when taking a responsible course towards a

renewable, minimal CO2 future2.

1.1.3 Exploration, Structural Interpretation

The big picture of the oil & gas industry being set, we will now focus on hydrocarbon explo-

ration, and more precisely on the structural interpretation stage.

2This is even more relevant when considering other issues such as carbon capture and storage, geothermal

energy and hydrogen gas storage for example.
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1.1.3.1 Seismic Reflection Surveys

As previously said, countries suspecting the presence of hydrocarbons in blocks overlapping

their lands can authorize contractors to explore them, often in collaboration with the country’s

national Oil & Gas company. The objectives of exploration are to locate potential reservoirs,

and assess their economical potential: can hydrocarbons be extracted cheaper than they can

be sold? In order to do this, two information sources are typically leveraged:

� Exploration wells. By drilling wells (holes dozens of centimeters wide, thousands of

meters deep) and lowering measurement instruments in them, a high resolution (inferior

to the centimeter) but very localized insight on the field is obtained. Drilling wells is

expensive, in the millions of dollars per well or even way more in complex environment

such as deep offshore. This means only a handful of wells will be drilled, in a few

carefully thought places;

� Seismic reflection surveys. The main source of information on a field (and the way to

decide where to drill exploration wells to be sure about hydrocarbon presence) is to

conduct what are called seismic reflection surveys. Though they are often even more

expensive than several wells combined, they provide a very large scale (dozens of square

kilometers), but low resolution (around twenty five meters most of the time) picture

of the subsurface. The process is to create acoustic waves using air guns or vibrating

trucks, and let the acoustic waves propagate and reflect in the underground3. Huge

arrays of sensors are set up at the surface, and an inversion problem is solved using

supercomputers in order to reconstruct an image (actually an echography) of the field.

The digital result is a geolocalized 3D array, called a seismic cube.

1.1.3.2 Interpretation

Because wells are very localized, the big picture of the survey is obtained using the seismic

cubes. On a cube, geologists will interpret geological objects in a coherent, plausible scenario

explaining what is visible on the cube, and how it got there. In figure 1.3, a section of the

seismic cube was used to pick a polyline representing a salt dome.

Amongst the objects picked by geologists are reflectors, called “horizons”, which model

a difference of acoustic impedance often associated with a change in rock type. This means

the interface between different rock types is modeled by a horizon surface. Other important

objects are faults, which are the result of mechanical failure and displacement within a rock

formation subject to stress. When rocks are compressed or elongated by natural geological

processes, they deform up to a point where they eventually form faults, and are displaced

along the fault surfaces. Once horizons and faults (as well as other objects) are detected,

they are grouped in a so-called structural model.

3It is also possible to use electromagnetic waves instead of acoustic ones, but will not be discussed here.
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Figure 1.3: An example seismic cube in which a section was considered by a geologist, who

picked a polyline representing a salt dome.

1.1.3.3 Reservoir Modeling

The structural model, whose realism is locally verified by exploration wells, only gives a

rough idea about the reservoir. A reservoir model is constructed at this point, to localize

hydrocarbons and model the fluid movements that will happen if production wells are placed

here and there. This enables optimal placement of production wells, which are also very

expensive. At this point, a business case can be made and the field might be put into

production if deemed economically viable. There are many uncertainties in all this process,

meaning sometimes the production wells yield no hydrocarbons, and stay “dry”. While some

are statistically bound to be so, having too much dry wells and therefore not producing as

much as expected is obviously a huge set back, hence the close attention payed all along the

exploration chain in order to correctly assess the hydrocarbon content of the reservoir.

1.2 Limits of Current Horizon Model

As an exploration project is conducted, geological objects will be given various representations

within Computer-Aided Design (CAD) software processes. The trend is to first interpret

objects on the cube using sparse interpretation data (polylines or fragments of heightmap),

and move towards denser representation as the project moves on. These denser representations

are built by interpolation from sparse interpretation data, and will be used to construct the

structural model as described in section 1.1.3.2.

1.2.1 Interpretation Data

The whole problem takes place in a digital seismic survey of horizontal dimensionsW ·H pixels,

the horizontal plane being associated to the first two coordinates (x, y) of a 3D point (x, y, z).

We will furthermore note NS the number of pixels in the survey grid, i.e. NS
.
= W · H. The



1.2. Limits of Current Horizon Model 11

survey is illustrated in figure 1.4. Using double brackets for integer intervals, i.e. ∀(a, b) ∈
N2, a < b, Ja, bK

.
= {n ∈ N, a ≤ n, n ≤ b}, we therefore define the survey domain D such as:

D .
= J0,W − 1K× J0, H − 1K (1.1)

Figure 1.4: The survey 2D grid within 3D space. First two axes span the horizontal plane

at a given depth. Note the third axis is directed downwards, as is customary in exploration.

Even though we speak of heightmaps, they actually are “depthmaps”.

Recall horizons are interpreted by geologist on seismic cubes. Using CAD software, they

look at planar sections of the seismic cube (horizontal maps, vertical sections, or arbitrary

intersections) and pick horizons using either polylines (series of joined segments) or heightmap

fragments (images whose pixels are an elevation distance, with not all pixels being valued).

This is illustrated by figure 1.5. The idea is to pick as few interpretation data as necessary

in order to save time. The standard process for horizons is to pick interpretation data either:

� By propagation. In regions of the seismic cube where Signal-to-Noise Ratio (SNR) is

high, automatic methods can be deployed to quickly pick horizons. The user clicks on

points in the section, and the horizon is propagated in 3D towards similar seismic cube

values. This is fast but will not work in noisy cube areas. The output is a heightmap

fragment, i.e. a heightmap whose pixels are not all valued. It is in general a 2D manifold

providing information on the local shape of the horizon;

� By manual picking. In low SNR areas where propagation fails, manual picking is re-

quired. This is a tedious but necessary process. Moreover, geologists with experience

can use analogues and reasoning to pick objects not directly visible in the seismic cube,

and no automatic method can hope to achieve this at the moment. Manual picking

produces polylines, that are 1D manifold that locally describe the shape of the horizon.

1.2.2 Interpolated Data

Once picked, either automatically or manually, interpretation data is then typically inter-

polated into a denser representation: the heightmap. Because horizons represent variations
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Figure 1.5: Two orthogonal cross-sections of the seismic cube. From the first section, a

heightmap fragment (displayed as a point cloud) was propagated from seed pixels. A polyline

was picked on the second section.

in acoustic impedance, often associated with different rock types, they are typically located

at the interface between layers of sediments. Sediments are usually deposited on sea beds

by a gravity-driven process, i.e. they are initially mostly flat. Using an explicit represen-

tation such as a Digital Elevation Model (DEM), i.e. a heightmap, is therefore perfectly

valid. Heightmaps can moreover be converted easily to point clouds or triangulated surfaces

(meshes) for hardware-accelerated display using Graphical Processing Units (GPUs). For

these reasons, heightmaps and triangulated surfaces are core objects in the interpretation

workflow [Cau+09]; [Nat+13].

1.2.3 Multivalued Horizons

We said horizons are explicit surfaces in the mathematical sense, i.e. it can be projected un-

ambiguously on the plane. This is valid most of the time, however in some situations, namely

in compressive domain, horizons may take complex shapes. When subjected to compressive

forces, horizons are indeed deformed or broken by faults, and cannot be represented by an

explicit model such as a heightmap. As illustrated in figure 1.6, the two main geological

situations where this is observed are:

� Horizons with reverse faults. Recall faults are mechanical failures within a rock forma-

tion under stress. In extensive domain, where a rock is elongated, faults blocks slide in a

way that a hole is created within a horizon. This does not prevent the use of heightmaps.
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Figure 1.6: The two main types of multivalued horizons. Horizon with reverse-faults (left) and

salt dome (right). The former is only multivalued when some horizon parts are superposed

because of the displacement along fault planes, while the latter is an intrinsically 3D object.

However in compressive domain, one part of the horizon (the hanging wall) goes on top

of the other (the foot wall), making the horizon not explicit anymore;

� Horizons representing salt domes. Huge salt deposits can form when seas dry up on

geological time scales. Salt being less dense and more ductile than most rocks, it

reacts to compression the way a toothpaste would when the tube is pressed on. In

compressive domain, salt formations therefore form ascending bodies called salt domes,

that sometimes eventually detach from the salt sheet by forming tear-shaped diapirs.

The horizon depicting the limits of a salt dome can be folded to a point where it is not

explicit anymore, preventing the use of a heightmap.

For these two types of horizon, a new model is required to replace the heightmap. However,

horizons are a core object of oil & gas CAD software, meaning there is no hope to replace

heightmaps by a completely different model in practice. This would introduce intolerable

software refactoring costs, and would break many features built on the assumption that

horizons are explicit surfaces.

1.2.4 Thesis Objectives Reformulation

At this point we can fully understand the objectives of this thesis. We want to provide

tools that help to handle multivalued horizons (either reverse-faulted horizons or horizons

representing salt domes) when building the structural model. This means we have to:

� Find new models that will replace the heightmap (without changing the model too much

for software legacy reasons). This is the subject of section 1.3;
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� Develop interpolation methods in order to reconstruct multivalued horizons from inter-

pretation data (polylines or heightmap fragments) to the chosen new models, for:

– Reverse-faulted horizons. This is done using the method exposed in section 2;

– Horizons representing salt domes. We present a way to achieve this in section 3.

1.3 New Models

1.3.1 Current Handling of Multivalued Horizons

While heightmaps cannot be used to represent multivalued horizons, current interpretation

software has working, if limited and cumbersome, approaches to handle multivalued surfaces.

In theory, triangulated surfaces can be obtained using implicit methods [CCC18] or explicit

picking that use information from the seismic cube [WFH18] – or both, as they provide

complementary insights on the field [CC17]. In practice however, these methods may struggle

with the memory requirements required for production fields. While out-of-core approaches

have been developed to mitigate this issue [LDD14], there still are massive fields making a

case for more adapted approaches.

In other words, current software packages typically only allow a sparse representation

of multivalued horizons (polylines along with heightmap fragments), or are very costly to

evaluate dense representation (mesh) that often cannot even be computed because the seismic

quality is too poor.

All these limitations show the need for new models that would allow a proper representa-

tion of multivalued horizons, with efficient (non-implicit, i.e. purely geometrical) reconstruc-

tion methods to get a dense representation even in noisy cube areas.

1.3.2 Specifications for New Models

We will start by providing specifications for potential multivalued horizon models. We will

enumerate the user requirements, and see how they translate into software requirements. A

review of potential models found in the literature will give some candidates to start with, that

we will compare qualitatively and then quantitatively in a benchmark, before concluding on

which models are to be used for multivalued horizons.

1.3.2.1 User Requirements

We said horizons are picked by geologists in order to build the structural model. In more

details, horizons are manipulated during the following processes:
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� Modeling. Sparse interpretation data is used to reconstruct the surface by interpolation.

This must be fast, so that interpretation data can be modified in order to have a

satisfying final surface – the model;

� Saving. Once built, the model must be saved to be accessed in the future without having

to reconstruct it once again from interpretation data;

� Quality Control (QC) and Display. Once reconstructed, the model will be visualized:

– On horizontal cube sections (map view);

– On vertical cube sections (section view);

– In 3D (3D view).

� Seismic attributes. A standard processing applied to horizons is the computation of

seismic attributes, i.e. quantities located on the horizon surface that have some phys-

ical or geometrical meaning. Typical examples are the seismic cube’s chaotism or the

horizon curvature. While salt domes are modeled mostly to be displayed, reverse-faulted

horizons must have attributes computed on them.

1.3.2.2 Corresponding Software Requirements

The user requirements being made clear, we can now translate them into software specifi-

cations, that will guide our search for the best multivalued horizon models. Indeed, we are

looking for a 3D database that will undergo the following actions:

� Reconstruction. The model will be populated by reconstruction from sparse polylines

and heightmap fragments. This must be very fast to allow interpretation data to be

modified in order to get a satisfying final model;

� Memory layout and Serialization. Once built, the model must be saved:

– In volatile Random Access Memory (RAM) for fast access, notably to allow con-

version and processing, see below. RAM is faster than non-volatile memory but

has a more limited capacity, in the dozens of GB on a typical workstation. This

means the model must have a low memory footprint, preferably compatible with

compact sequential Inputs-Outputs (IOs) in order to benefit from the full memory

bandwidth;

– In non-volatile memory, e.g. on a remote file system through the network. Non-

volatile memory is typically slower than RAM, though the traditional Hard-Disk

Drives (HDDs) are increasingly replaced by Solid-State Drives (SSDs) and higher

bandwidth connection protocols, reducing the performance gap between volatile

and non-volatile memory. Remote storage has a virtually unlimited capacity but

a low memory usage is of course welcome. Anyway the main point is that network

traffic will be required, meaning the model will have to support random access to

some of its parts (block streaming).
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� Display format conversion:

– To point clouds, that are sometimes used in map and 3D view. This means the

model must be easy to sample, in order to generate a point cloud at the desired

resolution;

– To triangulated surfaces, the preferred format for 3D manipulation leveraging hard-

ware acceleration with GPUs. Triangulation of the model is not typically done on

the fly, but is expected to be nearly instantaneous.

� Processing. The computation of seismic attributes basically requires the model to be a

spatial database supporting efficient spatial queries. For example, in order to compute a

curvature seismic attribute, the local manifold support of the surface must be accessible

everywhere, by taking the intersection of a small ball and the surface at some location.

Meanwhile, recall that the more distant new models are from a heightmap, the more

software refactoring will be required. A great emphasis is therefore put on finding an extension

of the existing model, instead of a radically new one. Specifications being set, we will now

review the various models proposed by the literature.

1.3.3 Spatial Data Structures: State of the Art

Many models are available in the literature when it comes to representing objects in space.

They are used in a variety of application, e.g. for Geographical Information Systems (GIS)

and CAD. We will focus on four standard models, and also provide an ad hoc data structure

that extends the heightmap to multivalued horizons.

1.3.3.1 Acceleration Structure vs Isochron Representation

Recall horizons model deposition surfaces. This means a horizon corresponds to a surface of

constant geological time when considering the age of rock formations within a seismic cube.

For this reason, a point on a horizon is called an isochron. We can now remark that many

multivalued horizon models can be seen as an isochron representation, whose performance is

improved by an acceleration structure, where:

� The isochron representation provides a local description of a horizon surface element.

For example, we can use a triangulated surface to locally represent the horizon;

� The acceleration structure enables good performance when considering the entire hori-

zon. Continuing the previous example, the whole triangulated surface can for example

be manipulated faster by using an octree to locate the triangulated surface vertices in

space.

By separating isochron representation from acceleration structure, we can now review

them separately and study the various combinations in a second time.
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1.3.3.2 State of the Art of Isochron Representations

The properties we are interested in when considering isochron representations are the follow-

ing:

� Geometry, i.e. how well the locations of isochron representations are preserved;

� Topology, i.e. how well the connectivity information between isochron representations

is preserved;

� Explicit character, i.e. how many coordinates are used to embed isochron representa-

tions in space?

We are a priori interested in non-explicit, i.e. implicit, isochron representations because

they require less coordinates per isochron. In other words, they have a smaller memory

footprint. We will see that implicit representations however have other drawbacks that can

mitigate the advantage of not being explicit. Anyway, we will consider the most common

models when it comes to representing isochrons, by increasing degree of implicit character.

They are illustrated in the case of a salt dome horizon in figure 1.8.

Point Clouds. Point clouds are ubiquitous models for surface representation [LW85];

[RL00]. The main reasons probably are the sheer simplicity of the model, and the fact

that any measurement device that sample a real world surface will eventually produce a point

cloud [SHG06]. Moreover, many point cloud surface reconstruction methods can be found in

the literature [Ber+17]; [Sol+17]. A 3D point cloud is a very explicit model, as 3 coordinates

are required per point. It stores the geometry of the sampled surface into its points, while

no topology is preserved at all. Most often, the topology is extracted by considering close

enough points as neighbors, which can become problematic when the sampling is sparse and

non-uniformly distributed.

Triangulated Surfaces. Surfaces can be modeled by a set of connected polygons. Triangles

are generally used as they are always convex, leading to a triangulated surface – also called

trimesh or mesh. Meshes benefit from an extensive literature on reconstruction, processing

and compression [Bot+10]; [HLS07]; [Mag+15]. They also are a standard display format

in order to benefit from hardware acceleration via GPUs. As for point clouds, meshes are

explicit, i.e. all 3 coordinates must be used for each mesh vertex. Triangulated surfaces can

represent connectivity: indeed, they store the surface geometry in vertices, and the topology

in edges. A varying triangle density may be used, as low-curvature areas can be modeled by

fewer, larger triangles than high curvature zones.

Parameterization. We call parameterization any mapping from a surface to the plane.

Parameterization is a vast research field, with many applications in the discrete world [FH54];
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[HLS07]. If we are given such a parallelization of the horizon surface to the plane, only 2

coordinates are required for parameterized isochrons. Such a parameterization would therefore

be less explicit than a point cloud or a mesh, reducing the memory footprint. However, finding

and storing the parameterization is a significant challenge on its own, as the mapping from

space to the plane must be saved. Moreover, while mesh parameterization benefits from a

mature literature, mapping sparse and non-uniformly distributed polylines to the plane has

not been extensively studied to our knowledge.

Patch System. In contrast with explicit models (point clouds & meshes and, to a lesser

extent, parameterizations), the standard monovalued model provided a regular support. In

a heightmap, pixel locations are indeed implicit. This means their coordinates do not have

to be stored, only the pixel value. In this context, we can say a heightmap only requires

1 vertical coordinate (the elevation) per isochron, further reducing the requirement from 3

(point clouds and meshes) and 2 (parameterization).

We are therefore interested in still using heightmaps to model multivalued horizons. The

need for heightmaps supporting more than simple orthogonal elevation arose in computer

graphics and more precisely in procedural terrain generation [Sme+09]; [TPB06]. When it

comes to modeling cliffs with overhangs [Pey+09]; [GM03] or waves [FTR86], the heightmap

is indeed not enough. Existing methods are targeted towards generation of a surface from

mathematical formulas, whereas we are interested in describing a real-world surface: another

approach must be considered. There are hybrid elevation map models coming from point

cloud acquisition [Dou+10], but while they can handle multivalued surfaces, they would have

a prohibitive memory cost on dense production data. On a side note, using computer graphics’

normal maps for multivalued surface storage is tempting at this point, but is actually a form

of parameterization and suffers from the same drawbacks.

A natural extension of heightmaps is instead to use a set of connected heightmaps, called

a patch system. The idea is to use as many heightmaps as required: two vertically superposed

points must indeed belong to two separate heightmaps. We also want to support connections

between pixels of different heightmaps so that a complete connected surface can be described

(see figure 1.7).

More formally, a patch system P made up of NP patches Pi can be defined as:

P
.
= {Pi, i ∈ J0, NP − 1K} (1.2)

Each patch Pi is defined as:

Pi
.
= {Hi, Ni} (1.3)

Where:

� Hi is the patch heightmap, storing the geometry of the patch:

Hi :

{
D → R
(u, v) 7→ Patch height z at (u, v)

(1.4)
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Figure 1.7: An example of multivalued surface described by a patch system made up of two

patches P0 and P1. The geometry is stored in the two heightmaps H0 and H1, whereas the

per-pixel topological connections between the two patches are stored in the two neighbor data

structure N0 and N1.

� Ni is the so-called neighbor data structure containing the neighborhood information.

Namely it provides the natural pixel neighbors of any pixel of heightmap Hi, and if nec-

essary the pixel neighbors in another patch Pj , j 6= i. The latter only occurs for pixels

touching another patch, i.e. on the “edges” of a patch. This structure stores the topol-

ogy of the patch system, and can typically be constructed as a neighbor patch index map

that provides for each pixel a list of neighbors. A neighbor in this list is a pair of patch

index and neighbor index (for example, from 0 to 3 for the four Von Neumann neigh-

bors). This is made space efficient by omitting neighbors that are in the same patch, in

other words neighbors with the same patch index.

It must be noted that using a neighbor patch index map prevents from modeling salt dome

horizons using a patch system, as it would lead to a prohibitive number of patches. This is

acceptable, as salt domes do not require seismic attributes to be computed, therefore a patch

system will not be the preferred format for them, but seems promising for reverse-faulted

horizons (more details on this in the following sections).

It follows that a patch system is a piecewise-explicit representation of a multivalued hori-

zon, and benefits from the efficiency of the heightmap model for both storage and access. This

model elegantly extends the heightmap, and a monovalued horizon can be seen as a patch

system with a single patch, without any useless overhead or complexity being introduced.

Voxels. We end this model review by considering the most implicit model: a set of vol-

umetric pixels, also known as voxels. Voxels are used in many applications, ranging from

medical imagery [Nov97] to computer graphics [Hug+13]. As for a heightmap, a voxel array
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provides a regular support, removing the need for voxel coordinates. Moreover, because the

voxel array is a tessellation of space, no elevation is required per voxel. In other words, only

the presence or absence of isochron must be stored per voxel: loosely speaking, 0 coordinates

are stored per voxel. A voxel array describes the surface geometry by the presence / absence

of voxels, while the topology is implicit once a neighborhood type is chosen (e.g. the typi-

cal 6 Von Neumann neighbors). Voxels have however a significant drawback: because space

must be regularly divided, naive voxel storage is prohibitive. Optimized implementations can

however achieve impressive memory cost reductions [IS11], especially when their processing

benefits from hardware acceleration via some form of General purpose Programing on GPU

(GPGPU) [PKT04].

We have so far considered 5 potential isochron representations for multivalued horizons.

Reducing the per-isochron memory footprint can be achieved using increasingly implicit

isochron representations, but it has a cost, be it the computation of a polyline parame-

terization, the construction of a patch system or the storage of a voxel array.

1.3.3.3 State of the Art for Acceleration Structures

The performance of spatial databases (for both time and memory) can be improved using

acceleration structures [ZD17]; [Azr+13]. They are also of increasing interest in high per-

formance computer graphics, especially their adaption on the GPU [STL14]; [TSr05], as a

promising path towards real-time global illumination. They are data structures that allow

efficient access to objects placed in space, especially when a great number of them is con-

sidered. These objects can be either punctual, or having a spatial extent [GG98] – in our

case they are the isochron representations we just presented. They are also known as spatial

indices, as they are designed to index objects by taking their position in space into account.

Without acceleration structures, a sequential scan of all objects is required when one of them

is the subject of a query, e.g. it must be found, changed or removed. This means we want to

provide better than O(n) algorithmic complexity with acceleration structures.

In order to provide fast access to objects, each acceleration structure has a particular inner

mechanism to discard as many objects as possible from a final short list of candidates that

must eventually be searched sequentially. This is a form of space partitioning, that is either

regular (independent of data) or data-fitting (following data to avoid wasted space). We will

present acceleration structures by increasing degree of data-fitting. There is always a compro-

mise between data-fitting (which reduces wasted space and therefore provides faster queries)

and the cost of such data-fitting, that can offset its benefits (implementation complexity and

query performance reduction). Spatial indices often provide an O(n log n) building complex-

ity, and an O(log n) query complexity that exponentially beats the O(n) naive sequential

search. With spatial indices, we are intersted in the compromise between:

� Data-fitting, i.e. how close to the data the acceleration structure is, namely how much

wasted space is avoided;

� Traversal speed, i.e. how much overhead does the spatial index introduces for internal
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Figure 1.8: A salt dome horizon, as represented by the various models discussed in this section.

Top row: point cloud (left), triangulated surface (right). Middle row: parameterization

(parameterized monovalued surface on the left, 3D surface on the right). Bottom row: patch

system (left, 3 patches are required here because there are at most 3 vertically superposed

surface points), voxels (right). Note that in this simple case, a patch system can be used to

model a salt dome, however in general it is not the case (to be discussed at the end of this

chapter).
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management?

The following list is by no means exhaustive, as many specialist data structures can be used

in other contexts (hash tables [Knu97], Morton codes [Bia69], skip lists [Pug90] or radix-trees

[ZZN14] to name but a few). Moreover, there are many variants of the proposed approaches

that will not be discussed here for the sake of brevity. More detailed reviews of spatial indices

can be found in the literature [OSdH]; [Pan+16]. The acceleration structures we will review

are illustrated in figure 1.9.

Grid. An easy planar acceleration structure is the grid, a regular implicit subdivision of

the plane into rectangular cells [RSV01]; [MM06]. This is naturally extended into any finite

dimension metric space. Other cell shapes can also be used, as long as they can tessellate

the space. Each grid cell contains a list of objects, and a global list of non-empty cells is

maintained. When a query is performed, this list of cells is traversed to narrow down the

search to at most 4 cells (or 8 in space), whose object lists are sequentially searched. Grids

are regular acceleration structure that do not fit to contained data at all. This means some

data set can exhibit poor performance, and some pathological data sets can be constructed

to defeat the grid entirely (as an example, if the cell size is too big and all the data set is

contained in a single cell, the grid performs no better than a naive list). However, the cost of

maintaining the grid is minimal, meaning this acceleration structure has a very low overhead.

Regular Tree (Binary Tree, Quadtree and Octree). In order to have an adaptive

resolution (versus the fixed grid cell dimensions), a hierarchical subdivision of grid cells can

be envisioned. A typical approach is the binary tree (or quad-tree [FB74] and octree [Mea80]

in 2 and 3 dimensions), that subdivide a given domain into 2 halves along each axis, each

potentially subdivided further if necessary. The main parameter is an optional maximum

tree depth, if a few large leaf nodes are preferred over many smaller leaf nodes at various

depths. This acceleration structure is therefore more data-fitting than the grid, however the

leaf nodes’ spatial extent can still be considerably larger than the contained objects.

KD-Tree. By allowing the binary tree to subdivide into two parts but not necessarily at

the middle (but still along the axes), the kd-tree (and relaxed quadtree and octree variants)

can be obtained [Knu97]. This acceleration structure is even more data fitting, but has a

bigger overhead as the separation is not always at the middle, preventing some optimizations

and parallelization opportunities.

Binary Space Partitioning (BSP). A Binary Space Partitioning (BSP) tree is a kd-tree

that splits not necessarily along the axes [SD69]; [Fuc+80]; [TN87]. This further increases the

acceleration structure overhead while making it more data-fitting. At this point, diminishing

returns are obtained by making the space subdivision even more irregular. Another approach

must be taken in order to increase data-fitting.
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Rectangle-Tree (R-Tree). Instead of subdividing space with an increasing irregularity,

we can group the objects into clusters that each has a Minimum Bounding Volume (MBV).

The clusters can then be organized themselves into a tree, in a so-called Bounding Volume

Hierarchy (BVH). Depending on how the MBV and BVH are built, a great variety of accel-

eration structure can be constructed, amongst which the rectangle-tree (R-tree) [Gut84] and

others (R+ [SRF87], R* [Bec+90], Hilbert [KF94], VP [Uhl91]; [Yia93] -trees to name but a

few). These acceleration structures are very data-fitting, as by construction, the MBV is kept

very close to data. However, a significant overhead is introduced to compute MBVs and man-

age the BVH, especially to keep it balanced. Various insertion and removal policies can be

implemented depending on the data type. On a side note, the relevance of BVHs in computer

graphics is likely to increase on the GPU, especially as GPU architectures recently started

providing some direct hardware acceleration for BVH traversal and triangle-ray intersections.

Let us wrap up our review of acceleration structures. A first idea is to partition space:

with grid acceleration structures, we started with a regular subdivision of space. By further

reducing the regularity of the subdivision, more data-fitting was obtained, at the cost of

increased overhead. In the end, a BSP tree indeed makes for an irregular subdivision of

space. Another data-driven approach is then to group objects into bounding volumes, and

manage them in a tree. This is the most data-fitting method, but it also presents a significant

overhead.

1.3.4 Evaluating the Best Models

1.3.4.1 Qualitative Comparison

We provided a list of isochron representations. Some of them (point clouds, meshes and

voxels) can be greatly improved using acceleration structures. We hence reviewed the most

common of them. At this point we can create many models by combining them, for example

we can envision point clouds in a R-tree or voxels in an octree. For concision, we will focus on

the grid, octree and R-tree, a representative subset of the mentioned acceleration structures.

This means we now have to compare the following 11 models:

� Point cloud (in a Grid / Octree / R-tree);

� Mesh (in a Grid / Octree / R-tree);

� Parameterization;

� Patch System;

� Voxels (in a Grid / Octree / R-tree).

An exhaustive comparison by hand would be cumbersome. We will instead first com-

pare isochron representations between them, and then proceed similarly with acceleration

structures. A more detailed quantitative comparison will follow next (see section 1.3.4.2).
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Figure 1.9: Some 2D points, as stored by the acceleration structures discussed in this section.

Top row: a Grid implicitly divides the plane and stores points in lists for each cell (left),

while an octree regularly subdivides the plane (right). Middle row: a kd-tree is an octree

where subdivisions can occur not necessarily at the middle of a cell (left), and a BSP tree

even allows the subdivisions not to be along the axes. Bottom row: another approach is to

group point clusters into a hierarchy of bounding volumes, as done by a R-tree.
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First let us compare isochron representations, as reported in table 1.2. An implicit rep-

resentation is interesting, because it removes the need from storing coordinates per isochron.

Moreover, a connected representation is desirable as it makes the topology unambiguous and

easy to access. A low memory footprint is also preferred in order to make storage and transfer

faster, while allowing bigger horizons to be managed given a fixed memory budget. Finally,

the complexity (of implementation, as well as other costs) should be kept low.

Is. Rep. Connected Memory footprint Complexity

Point cloud - - + ++

Mesh + + ++

Parameterization - ++/- - -

Patch System ++ ++ -

Voxels + - - +

Table 1.2: Qualitative comparison of isochron representations. Each property is noted from

very bad (- -) to very good (++).

We see that point clouds are disconnected and have a noticeable memory footprint (be-

cause they are explicit). Triangulated surfaces are connected but require maintaining an edge

list (or a half-edge data structure), and also have a significant memory cost. Parameterization

has a low memory impact if the mapping is not stored, though it will likely have to be. While

it is connected in parameter space, this is distorted in normal. It also requires some efforts

to be computed. Patch systems seem promising, being connected and compact, though some

machinery is required to construct them. As for voxels, they are connected and simple to

implement, but have a prohibitive memory cost. Overall, point clouds and voxels seem not

suited for our needs. Patch systems look more interesting, by construction, while meshes and

parameterizations could potentially do.

1.3.4.2 Quantitative Comparison

Complementing the previous qualitative comparison, we can conduct a quantitative measure-

ment of each model performance. Performance comparison has already been presented on

many occasions [MK03]; [RSDB11]; [Sar+08], but not with seismic interpretation data. The

idea is to construct a benchmark program in which each model will be implemented and sub-

jected to a battery of tests, representing real workloads. The memory and time footprint will

then be measured, and this can be done against several realistic data sets at various scales.

So to speak, we are looking for the best model in a “4D optimization problem” that tests:

� all models (most being a combination of an isochron representation within an accelera-

tion structure);

� against all situations (i.e. within a test representing a realistic use case of the model);
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� against all data types (data source, for example a flat horizon, a folded one, salt domes,

reverse-faulted horizons, etc);

� at all scales (various data size to test performance and measure algorithmic complexity).

We will now provide a brief presentation of the benchmark target platform, and then

discuss the models, tests, data types and scales. If needed, appendix A can be used to get a

more detailed presentation of the benchmark.

Implementation Platform. In order for our benchmark to be as representative as possible,

it will be implemented on the very platforms that will run production code and Oil & Gas

software. At the time this is written, a workstation typically has two CPU sockets, sporting in

total around 32 CPU cores, i.e. software threads on a Simultaneous Multi-Threading (SMT)

machine. Each core implements the x86-64 64 bits Instruction Set Architecture (ISA), and

has access to around 64GB of DDR3 Registered RAM with Error Correcting Code (ECC).

Cold storage takes the form of several TB of SSD storage, complemented by remote file

systems on PB-scale filers. The machine is running an enterprise Linux distribution, and uses

a professional graphics card. Our target CAD software being written in Java 8 code, we will

implement the benchmark in this language.

Models. We have initially selected 11 models, most of which are a combination of accel-

eration structure and isochron representation. Using the abstraction mechanism of object-

oriented programming, we can reduce implementation efforts by separating acceleration struc-

ture and isochron representation as two interfaces, implemented by various concrete classes.

A model is then either a custom built one (patch system, parameterization) or a combina-

tion of an implementation of isochron representation and an implementation of acceleration

structure.

As mentioned previously, there is not much literature on the parameterization of sparse,

non-uniformly distributed polylines. We thus removed the parameterization from the candi-

date models (not knowing at the time that we would eventually develop one, see chapter 3).

The benchmark therefore compares 10 models, only one (patch system) being custom built.

Tests. We have now to define some tests in order to represent the various situations in which

a multivalued horizon is typically used. The performance of the models will be measured

during each test, namely the memory and time required to complete the test. The list of

implemented scenarios is reported in table 1.3.

While being synthetic, these tests are a good representation of a typical model behavior

in a CAD workflow, from the storage aspects to the navigation in a seismic cube (fetching

sections, maps), the update of a model after interpretation data is modified, and eventually

the conversion to display formats such as point cloud or mesh. Note that each test boils down

to a series of queries performed on the model. For example, the ReadSection test is a query



1.3. New Models 27

Test Description

Serialize Serialize data from model to binary file

Unserialize Unserialize data from binary file to model

ReadAll Read entire model

ReadSection Read data (only a section) from model

ReadMap Read data (only a map) from model

WriteAll Overwrite entire model

WriteSection Overwrite model (only a section)

WriteMap Overwrite model (only a map)

ConvertToPointCloud Convert model to point cloud

ConvetToMesh Convert model to mesh

Table 1.3: List of tests. The intent of the test and the target properties that are measured

are also reported.

that finds all isochrons in a particular section of the cube, and represent a user wanting this

section for display.

Data Types. We need some data sets to be loaded into our candidate models. Because we

are developing new tools for the handling of multivalued horizons, now multivalued model is

readily available from production data: instead, we have to rely on synthetic data sets. This

is not problematic as synthetic data allows for a focus on specific properties we want to test,

and it can be made as realistic as possible. We will use the following data sets (they are

reported in figure 1.10):

� MonovaluedPlane. A tilted plane, representing a monovalued horizon with negligible

height variations. It will ensure that legacy monovalued horizons are correctly handled;

� MonovaluedDisk. A tilted disk, similar to a plane but with non-valued isochrons, i.e.

areas of the survey grid were the horizon is not defined. This is to test the correct

management of non-valued isochrons;

� MonovaluedFractal. A tilted plane with an added height, computed using procedu-

ral noise algorithms. Because several frequencies are found in this noise, representing

several scales, we call it a fractal noise. With this data set we will see how well de-

tails are preserved and how much the high frequency content is increasing the memory

requirements;

� MultivaluedSawTeeth. A multivalued horizon that could have been generated by re-

verse faults. This will show how well reverse-faulted horizons are handled by our models;

� MultivaluedDome. A multivalued horizon that model a symmetrical salt dome. We

will test how such horizons are processed using this data set.
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Figure 1.10: The synthetic and scalable data sets used for our tests. MonovaluedPlane

(top left), MonovaluedDisk (top middle) and MonovaluedFractal (top right) are mono-

valued and used to check that new models can still represent standard horizons correctly.

MonovaluedFractal also introduces high frequency shape variations that will be used to

monitor how complex local shapes are handled by the models. MultivaluedSawTeeth (bot-

tom left) and MultivaluedDome (bottom right) are multivalued and model the two main types

of multivalued horizons, namely reverse-faulted horizons and salt domes.
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Because these data sets must be available at several scales, they all are procedural, i.e.

are obtained by evaluating some parametric function at the desired resolution. They are not

loaded from a digital surface format, such as a mesh file.

Data Scales. The objective of having several scales is to observe the influence of data

size on performances. Indeed, production data can range from small 2D exploration cubes

(having a single section) to huge high-resolution 3D surveys. This means horizons can count

from thousands to hundreds of millions of isochrons. We will hence consider square seismic

surveys (recall figure 1.4) of side dimension 103, 104 and 105 isochrons. This means that data

sets we just presented will have, depending on their exact shape, around 106, 108 and 1010

isochrons. The latter survey certainly is huge even by todays’ standards, but will provide

some future-proofing for our performance measurement.

Results. Many comments are given on the results in appendix A. We will focus here on

the big picture, by considering the performance (in time) of all tests for each model, at the

biggest scale, on the MultivaluedSawTeeth data set. Results are presented in figure 1.11.

Intuitively, point clouds and meshes benefit from the fact they already are a display format,

in other words the conversion to point cloud or mesh for display is just a fast copy. Being

explicit model, they are the slowest to serialize. The point cloud model is compromised by

the high sampling density required to correctly model the saw teeth, which leads to a high

memory footprint and slow operations. Conversely, very implicit models such as voxels do

require a data-fitting acceleration structure (octree, R-tree) to reduce their memory footprint

to something manageable. This introduces overhead, especially compared to an intrinsically

2D model such as the patch system. Patch systems are indeed the definitive overall winner

of this benchmark, performing good in all tests. They require more work than just a copy for

display format conversion, but can be easily sampled or triangulated.

The relative performances measured in the benchmark are moreover complemented by

other aspects. Software backwards compatibility clearly favors the patch system and mesh

models, as the former is a natural extension of the monovalued model, and the latter is already

used to model geological objects. These two models are moreover relatively straightforward,

not requiring a complex acceleration structure to shine. For all these reasons, we can now

choose a model for each multivalued horizon type:

� Reverse-faulted horizons require seismic attributes to be computed, and the patch sys-

tem seems the most reasonable format: there is a cost associated to the computation of

such patch system, as well as for display format conversion, but it is the fastest format

for processing, being simpler than a completely 3D model such as voxels;

� Salt dome horizons will be best represented with triangulated surfaces. No processing

will be done on them, and this standard format has many advantages: it is connected and

can be made reasonably fast with a simple acceleration structure if need be. Moreover,
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Figure 1.11: Performance comparison of candidate multivalued horizon models.
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many software packages target the manipulation of meshes, meaning most operations

will not have to be coded from scratch.

1.3.5 Summary

Although this benchmark is by no means comprehensive, it provides a good insight on how

typical spatial data structures perform on seismic interpretation data. Such a comparison

was found lacking when we gathered the candidate models, and we hope it will benefit others.

Its realism and extent can still be improved by adding new isochron representations (notably

parameterization, for example as presented in section 3), acceleration structures (BSP trees or

others), but also more tests and data types. Using real production data instead of synthetic

sources is also possible, though this data will not be provided at several scales. We did not

consider the thread safety and parallelization potential of our models, which can however be

a great optimization opportunity for some tasks.

Models now being selected, we must develop a reconstruction method for each one, starting

only from interpretation data (polylines and heightmap fragments). The reconstruction of

reverse-faulted horizons into a patch system is the subject of chapter 2. Reconstructing salt

domes from polylines into a mesh will be discussed in chapter 3.
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Before anything else we will provide a brief overview of the surface reconstruction liter-

ature. It will be apparent that no adequate method is available for the reconstruction of

both reverse faulted and salt dome horizons. Thus, we will propose in this section our own

reconstruction method for reverse-faulted horizons. As we chose the patch system in order

to represent such horizons, we need to find a way to interpolate sparse interpretation data

(polylines and heightmap fragments) into a patch system. In section 2.3 we will present

gridding, the standard monovalued horizons’ reconstruction method, and see how it can be

extended to multivalued horizons. This will be achieved very naturally, because the patch

system model is itself an intuitive extension of the heightmap model. However, we will see

that a preparation stage is required (see section 2.4) in order to construct a patch system

ready for gridding. Results, performance considerations and optimizations will also be given.

33
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2.1 Surface Reconstruction: a Brief State of the Art

The subject of surface reconstruction benefits from a vast literature targeting various input

formats, from point clouds to triangle meshes. It is a very active field with an increasing

relevance, as data acquisition gets facilitated by popular measurement devices such as Light

Detection And Ranging (LIDAR) systems. We will briefly expose the big picture of surface

reconstruction for our input data type of interest (polylines and heightmap fragments), as

more specialized approaches will be discussed in more details for each multivalued horizon

type. The literature can be consulted for a more extensive review of numerical reconstruction

and interpolation methods [Pre07]; [LH14].

2.1.1 Surface Reconstruction from Polylines

While the literature on surface reconstruction from point clouds is plentiful (see e.g. [LPG12];

[FR01]; [Ber+17]), there are fewer known methods capable of reconstructing surfaces from just

a set of polylines. A polyline network can be seen as a very inhomogeneous point cloud, with

very high density subsets (the lines) separated by big voids. Consequently, point cloud surface

reconstruction methods do not generally perform well on polylines. A specific literature has

thus developed to tackle the latter problem, often with industrial design (CAD) or medical

imaging applications in mind [BG93]; [VRS11]; [Bes+12]; [BM07]; [SS14]; [BVG11]; [Iji+14];

[BBS08]; [AJA12]. However, strong assumptions are frequently made on the regularity of the

input lines, for example, requiring regularly spaced parallel cross-sections [BG93] or convex

or otherwise simple patches [VRS11]; [Bes+12]. Other approaches impose constraints on

the surface topology [BM07]; [SS14]; [BVG11], which has to be closed in most cases. These

assumptions are not realized in our case as our polylines depend on seismic signal quality

and user input. Finally, some algorithms depend on application-specific properties [Iji+14] or

require extensive user interaction [BBS08]; [AJA12], which is not practical outside of CAD

software. Image processing applications for the modeling of organs on medical devices is

another source of literature on the subject, but it is mostly focused on the reconstruction of

closed surfaces in order to use implicit volumetric methods [ZJC13]; [Zou+15]. As we target

open surfaces, these methods cannot be easily adapted, and their computational cost would

be prohibitive at the resolutions required for us anyway.

2.1.2 Surface Reconstruction from Heightmap Fragments

The field of geostatistics is notably interested in the reconstruction of dense heightmaps from a

few fragments, ranging from single pixels to small heightmap parts. Historically, the objective

was to construct map from just a few measurements on the field (be it a digital elevation

model from punctual altitude values, or an ore richness indicator from a few exploration

mining wells). Generic signal processing operations such as spline interpolation [BPT07];

[Boo89] come first to mind but are not adapted to very sparse real world data. Purpose-built

approaches such as kriging [Zim+98]; [Eme05] or inverse-distance weighting [She68] are more
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adapted but gridding, a variational approach [Bri74]; [SW90] is preferably deployed because

it is straightforward, efficient and robust towards constraint density anisotropy which can be

severe in our case. However, gridding requires a regular support (a grid) to work, and must

be adapted for multivalued surfaces represented by a patch system.

2.1.3 A Need for New Reconstruction Methods

As illustrated by this brief state of the art, the subject of surface reconstruction from either

polylines or heightmap fragments (with our constraints) has not received much academical

attention – interpolating both of them simultaneoulsy even less so, to the extent of our

knowledge. We will therefore have to develop our own reconstruction methods, targeting

either reverse-faulted horizons (patch systems) or triangle meshes (salt domes). In this chapter

we will start by extending the gridding process to patch systems.

2.2 Sketch of Proposed Method

We use patch systems to represent reverse-faulted horizons. We need to devise a recon-

struction method that, from polylines and heightmap fragments, leads to a dense surface

representation using patches. We propose to achieve this in two steps:

� Multivalued gridding preparation. In this stage we will find how many patches are

required, and somehow turn input polylines and heightmap fragments into patch pixels

(this is the subject of section 2.4);

� Multivalued gridding. Once the patch system has some pixels associated with input

data, it can be interpolated using an extension of gridding (see section 2.3).

In order to properly understand how to prepare for multivalued gridding, we will start by

presenting the gridding method, and how it can be extended to multivalued surfaces modeled

as patch systems.

2.3 Interpolating Horizons by Gridding

2.3.1 Monovalued Case

As mentioned in section 2.1.2, gridding is a very popular interpolation method for mono-

valued horizons. We will now present how the gridding process reconstructs horizons in the

monovalued case.
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2.3.1.1 Objectives

As presented in section 1.2.1, we consider a digital survey D of horizontal dimensions

NS
.
= W · H pixels. In the monovalued case, the heightmap we are interested in is

also the size of the survey. Given a set of constraint height values fu,v to respect at po-

sitions (u, v) ∈ D, the objective of gridding is to find the unknown heights elsewhere on

the heightmap, while creating a smooth surface. This can be formulated as the search for

an unknown function f : D 7→ R that takes the values fu,v at locations (u, v) while being

smooth.

2.3.1.2 Variational Formulation

Let Ω be the set of locations where the height is known. Horizon gridding can be seen as

a minimization problem of a quantity J(f) defined by two components D(f) and L(f), the

first quantifying how close the surface is to the constraint heights, the second measuring the

“smoothness” of the final surface:

J(f)
.
= D(f) + L(f) (2.1)

Where:

� D(f) is the constraint term that imposes f to pass through known values at locations

in Ω. It is defined as:

D(f)
.
= ||f · δ − f ||2 (2.2)

With:

– δ being the selection function such as:

δ :


D → {0, 1}

(u, v) 7→

{
1 if (u, v) ∈ Ω

0 otherwise

(2.3)

– f is f evaluated at locations in Ω:

f :


D → R

(u, v) 7→

{
fu,v if (u, v) ∈ Ω

0 otherwise

(2.4)

� L(f) is the smoothness term. In our case we want to minimize the variations and

curvature of f which is expressed using a linear combination of the gradient and Laplace

operators, as they provide an image of the local slope and curvature respectively1:

L(f)
.
= α||∇f ||2 + β||∆f ||2 (2.5)

1As written, L(f) prevents an exact passage through constraints but this is acceptable in our context.
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2.3.1.3 The Gridding Equation

We want to minimize the quantity J(f) = ||f · δ− f ||2 +α||∇f ||2 + β||∆f ||2. This is reached

when ∂J
∂f = 0, which leads to:

(α∆ + β∆2 + δ)f = f (2.6)

The parameters α and β in equations 2.5 and 2.6 can be made small in order to have a

surface closer to input constraints. Conversely, big values lead to a very smooth surface that

might respect constraints more loosely. Control over uncertainties can therefore be obtained

using relevant parameter values.

2.3.1.4 Numerical Implementation

Recall we note NS the number of pixels in the survey grid. When evaluated numerically using

the finite difference method, by mapping the survey grid on a vector of RNS , it can be shown

that this leads to the definition of a matrix equation in the form:

A · x = b (2.7)

where:

� A is an NS × NS matrix representing the action of operator (α∆ + β∆2 + δ), i.e. the

access to neighbor pixels

� x is a vector of RNS containing the unknown height pixels f

� b is a vector of RNS containing 0 for pixels without constraints, and the known height

f for constraint pixels

Monovalued gridding is performed by first rasterizing the polylines onto the heightmap

using standard algorithms [Bre65]. Pixel positions and heights are interpolated between poly-

line vertices in this process. As for heightmap fragments, they are projected on the complete

heightmap. Equation 2.7 can then be solved by a direct or iterative method (Jacobi, Gauss-

Seidel, conjugate gradient, etc.). Implementations are presented in details in the literature

[Wal14].

Figure 2.1 illustrates the gridding of some projected polylines and a heightmap fragment.

Note that not all pixels of the heightmap become valued (the surface does not take all the

image). Indeed, gridding only takes place in what we call the envelope of the horizon, i.e.

the pixel locations where it should be defined. Outside envelope, extrapolation would occur

instead of interpolation2.

2The actual definition of an envelope for monovalued horizons and how it prevents pixels from being gridded

are not detailed here for the sake of brevity.
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Figure 2.1: An example of monovalued gridding shown on a map (i.e. viewed from top). A

color ramp is used to represent elevation. Sparse constraint pixels from rasterized polylines

and heightmap fragments (left) are interpolated into a dense surface (right).

2.3.2 Multivalued Case

When looking at equation 2.7, we see that only the connectivity information stored in A

depends on the horizon type: it is a simple access to natural pixel neighbors in the case of a

monovalued horizon, and becomes slightly more complex in the case of a multivalued horizon

– a patch pixel can have neighbors in another patch. Using the notations introduced in section

1.3.3.2, in order to grid multivalued horizons, we define an extended unknown vector xE that

contains the unknown heights xi associated to all NP patches Pi simultaneously:

xE
.
=

 x1
...

xNP

 (2.8)

Using the connectivity information given by the neighbor data structure presented in

section 1.3.3.2, it is possible to construct the extended operator matrix AE and the extended

constraint vector bE in a similar manner and therefore interpolate each patch correctly.

Equation 2.7 then becomes:

AE · xE = bE (2.9)

Interpolation of a multivalued horizon in the form of a patch system is then a natural ex-

tension of monovalued gridding. However, given just a set of input polylines and heightmap

fragments, in order to prepare a patch system for gridding, we must first convert the input

interpretation data into a unified graph (section 2.4.1), then provide a solution to a parti-

tioning problem (section 2.4.2) and finally solve an envelope computation problem (section

2.4.3).
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2.4 Multivalued Gridding Preparation

2.4.1 A Graph View of Input Interpretation Data

2.4.1.1 Input Polylines

Recall geologists pick polylines in the low SNR areas of the seismic cube. An example of such

a polyline is illustrated by figure 2.2. We can therefore define p, the set of Np input polylines,

as:

p
.
= {pi, i ∈ J0, Np − 1K} (2.10)

� Each polyline pi can be written as follow:

pi
.
= {Vj = (xj , yj , zj), j ∈ J0, Npi − 1K} (2.11)

i.e. it is a set of Npi 3D points. Those points are scattered within the survey. They are

considered to form an open polyline, each being connected by an edge to the previous

and next vertices in the set pi – except for the first and last vertices.

� Each polyline vertex is placed along a regular grid in the first two dimensions, as it

belongs to the survey of size W ×H pixels. The third axis use real numbers for better

vertical precision. This can be summarized as:

∀i ∈ J0, Np − 1K, ∀(x, y, z) ∈ pi,


x ∈ J0,W − 1K

y ∈ J0, H − 1K

z ∈ R
(2.12)

� Note we use uppercase P for the set of patches Pi in a patch system, while lowercase p

is the set of input polylines pi.

2.4.1.2 Input Heightmap Fragments

In high SNR regions of the seismic cube, automatic picking of horizons can be performed (for

example by propagation from seed seismic samples [Kes+82]). This leads to the creation of

heightmap fragments in parts of the survey. We define h, a set of Nh heightmaps such as:

h
.
= {hi, i ∈ J0, Nh − 1K} (2.13)

� Each heightmap is an image of the same size than the survey:

hi :


D → R

(u, v) 7→ hi(u, v) =

{
z if pixel is valued

γ (outside surface) otherwise

(2.14)
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Figure 2.2: A polyline made up of 4 vertices, and their horizontal location on the survey grid.

� γ (outside surface) is the magic pixel value meaning that at this location, the heightmap

is not defined (e.g. it is outside of or a hole in the surface);

� It is therefore possible for heightmaps to have holes in them, associated with a zone of

one or more γ valued pixels. It means that the heightmap pixels at the boundary of

such holes have less than 4 valued neighbor pixels;

� By definition each heightmap, hence each heightmap connected component, describes a

monovalued (explicit) surface;

� Once again, note we use uppercase H for the heightmaps Hi of a patch system, while

lowercase h is the set of input heightmap fragments hi, leading to the input heightmap

connected components hi,j (see below).

Each heightmap hi can be made up of several connected components hi,j as depicted in

figure 2.3. As for polylines (each being a single connected component), we will rather more

consider the set h∗ of heightmap connected components, instead of the set of heightmaps h.

We can now grant that each object in h∗ is, by construction, made up of a single connected

component, i.e. from any pixel we can reach any other. This is not incompatible with holes

or recursive inclusion of valued pixels inside a hole, for example as in figure 2.3.

2.4.1.3 An Abstract Graph of Interpretation Data

An elegant and practical way to handle both polylines and heightmap fragments as unified in-

puts for our reconstruction scheme is to create an intermediary abstract graph G as illustrated

in figure 2.4, constructed in two steps:
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Figure 2.3: This heightmap h0 is made up of 4 connected components. There is moreover a

recursive inclusion of pixels in a hole, i.e. h0,3 is within h0,2, which is tolerated as long as the

abstract graph is connected (see next section).

� A geometry pass to create the set of graph vertices V , representing input interpretation

data (be it a polyline or a heightmap connected component);

� A topology pass to create the set of graph edges E, associated with a topological link

between two interpretation data instances (for example, two polylines intersecting or a

polyline ending on a heightmap).

2.4.1.4 Geometry Pass: Creating Graph Vertices

The first step is to gather both polylines in p and heightmap connected components in h∗

into a single set of input interpretation data, namely V , that will be the vertices of the

abstract graph G. By construction, each element in V will be either a polyline or a heightmap

connected component, i.e. it will be monovalued (explicit) and made up of a single connected

component. Figure 2.5 provides an example of such abstract graph vertices, coming from the

input data in figure 2.4.

2.4.1.5 Topology Pass: Creating Graph Edges

The second step is to detect the junctions between any two interpretation data, and create a

graph edge in E for each junction. This also leads to the possible splitting of graph vertices

(for example two polylines snapped in the middle lead to four polylines connected at an end).

This is done in order to get connections only at the border of interpretation data, be it a

polyline end vertex or a heightmap connected component’s border pixel. Two graph vertices

will be moreover added in order to represent the two new polylines. Because we have two

classes of interpretation data (polyline or heightmap connected component), we have three
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Figure 2.4: An example of sparse input interpreptation data graph, made up of polylines and

heightmap fragments, each being composed of potentially several connected components.

possible junctions (the Polyline-Heightmap junction being identical to the Heightmap-Polyline

junction):

� Polyline-Polyline junction (PP). This happens when two edges coming from two distinct

polylines are very close – recall polylines are hand-picked on computer screens, so they

cannot intersect exactly numerically speaking. Given a so-called snapping threshold

dS , we can therefore snap together the polyline edges and introduce a common polyline

vertex, as illustrated in figure 2.6;

� Heightmap-Heightmap junction (HH). Automatic propagation of heightmap fragments

from several starting points can lead to superpositions between two or more heightmap

connected components. By a process similar to polyline snapping, we can join two

superposed heightmap connected components along a boundary curve made of pixels

(see figure 2.7)3;

� Polyline-Heightmap junction (PH). Polylines are often picked in low SNR areas, whereas

heightmaps can be propagated in high SNR zones. This means they provide two comple-

mentary types of input interpretation data, that must be eventually connected together.

As for PP and HH junctions, a polyline passing close enough to a heightmap connected

component will lead to a connection between a border pixel and a polyline vertex, as

shown in figure 2.8.

3This junction process is not detailed here but is in the spirit of the dilated envelope restriction in section

2.4.3.3.



2.4. Multivalued Gridding Preparation 43

Figure 2.5: An abstract graph representing interpretation data (either heightmap connected

component or polyline) in its vertices. Junctions (topological connections between interpre-

tation data) will later be represented with graph edges.

Figure 2.6: Close edges from different polylines are snapped at a common polyline vertex.

Edges farther than dS are not snapped and stay superposed. This leads to four polylines,

connected together at an end vertex represented by a five branched star.

We now have a graph G of interpretation data, whose vertices are interpretation data

geometry (polyline or heightmap connected component). The graph vertices have an “intra”

topology (polyline edges joined by polyline vertices, or implicit connectivity between valued

pixels of heightmap connected components), but are by construction monovalued and made

up of a single connected component. Figure 2.9 provides an example of the graph at this

stage. The graph edges represent “inter” topology, arising in the three situations previously

described. At this point the graph G can be partitionned into monovalued sub-graphs that

we will interpolate.

For the rest of our worklow, we can assume without loss of generality that G is a connected

graph, i.e. all input interpretation data was picked to represent a single connected surface. If

not, each connected component can be handled independently as a separate connected graph.

2.4.2 Partitioning Problem

The objective is now to find a decomposition of G into a set of monovalued sub-graphs Gi,

i.e. sub-graphs where no internal vertical overlap occurs. Such decomposition is not unique,

therefore some criteria must be defined in order to choose a suitable partition.
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Figure 2.7: Two heightmap connected components that have both superposed parts and

“almost joined” parts. Superposed parts are shown in red and are too far away to be joined.

Close enough parts (in green) are made to nicely join each other along a boundary curve

made of pixels, represented by a four branched star.

Figure 2.8: A polyline close to a heightmap is snapped on two border pixels, represented by

a three branched star.

After a partition is found, each sub-graph will be turned into a patch heightmap in the

envelope computation stage, and will then be gridded. Both these steps have a computational

complexity of O(NP ·W ·H) where NP is the number of patch in the patch system, W and

H are the width and height of the patch (here we assume patches the size of the survey for

simplicity). This means we want to reduce the number of patch (so the number of sub-graphs

Gi) as much as possible, and large patch size must be avoided – this is a second order concern

though as only the envelope will be considered, not the entire heightmap image.

Considering the partitioning problem in a variational framework could provide an optimal

combination of patch count and size [Bul+13], but we favored a simpler method based on a

heuristic. The graph having a relatively small size, this easy-to-maintain approach is actually

preferable from an engineering standpoint. In this context, we propose a constructive method

that leads to an acceptable compromise between patch count and size. It is based on three

steps:
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Figure 2.9: The abstract graph after junctions are handled: there are now graph edges

representing topological connections between input interpretation data. Stars with 3, 4 and

5 branches represent PH, HH and PP junctions respectively.

� Multivalued scan. Vertically superposed interpretation data of G are detected,

grouped into superposed zones, and graph vertices are introduced in order to avoid

having half-superposed interpretation data;

� Sub-graph index propagation. Simultaneous propagation of sub-graph index from

superposed zones leads to the definition of monovalued sub-graphs Gi;

� Merge. Reduce sub-graph count by merging together those that can be. The sub-

graphs after merge are noted G̃i.

2.4.2.1 Multivalued Scan: Detecting Superpositions in the Graph

The objective of this section is first to detect when the interpretation data associated with two

graph vertices are vertically superposed, and second to split them such that any two graph

vertices are either completely superposed or not at all. As for the three possible junction

situations, there are three different kind of superposition:

� Polyline-Polyline superposition (PP). Polylines are picked in planar sections of the cube

(vertical, horizontal or arbitrary). This means some polyline edges can be vertically

superposed. There is no reason for two edges to be entirely superposed though, so

we introduce a polyline vertex whenever necessary so that a polyline edge is either

completely superposed with another, or is not at all (see figure 2.10);

� Heightmap-Heightmap superposition (HH). Some heightmap connected components can

vertically overlap, while having a significant distance between them: they will not be

joined as in section 2.4.1.5. Instead, each must be split into several heightmap connected

components such that each is either completely superposed with another, or not at all.

This is illustrated in figure 2.11;
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Figure 2.10: Polyline vertices (symbolized here by diamonds) are introduced and polylines

split in order to only have polylines that are totally overlapping, or not at all.

Figure 2.11: Superposed heightmap pixels lead to three new heightmap connected compo-

nents, joining the previous ones along boundary curves.

� Polyline-Heightmap superposition (PH). By seeing a polyline as a heigtmap (for ex-

ample by rasterization [Bre65]), a PH superposition is nothing but a degenerate HH

superposition and can be solved as shown previously (see figure 2.12).

Whatever the superposition type, additional graph vertices will be added in order to

enforce total or zero superposition for any two graph vertices. Once these vertices are intro-

duced, detecting vertically superposed graph vertices is a simple geometric problem. Figure

2.13 shows the final graph after superpositions are handled.

2.4.2.2 Sub-Graph Index Propagation

At this point, we can give an index i for each graph vertex that is superposed, and for each

we initialize a monovalued sub-graph Gi with the graph vertex. The sub-graphs Gi are called

monovalued as by construction, each is made of graph vertices that do not overlap, each one

being also monovalued by construction. All the graph vertices can then be indexed using a

propagation method illustrated by algorithm 1.
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Figure 2.12: A polyline superposed with a heightmap, leading to the creation of a new

heightmap along superposed pixels. The polyline must also be split in two and a polyline

vertex (drawn as a diamond) is introduced.

Figure 2.13: Abstract graph after superpositions were detected. Extra graph vertices were

added as described previously, and superpositions between graph vertices are noted with a

dashed line.

This ensures that all graph vertices will have a sub-graph index, but more importantly

that each index will be associated with a similar number of graph vertices4. Following the

previous example, figure 2.14 shows the evolution of the sub-graph index propagation in the

graph.

2.4.2.3 Merge

By starting from superposed graph vertices, sub-graph index propagation ensures that enough

monovalued sub-graphs will be used. However it can lead to a massive over-estimation of the

number of required sub-graphs, especially when the input interpretation data is dense. This

being said, it occurs that many of the sub-graphs can be merged together.

4Exact same number is not reached as it depends on the graph shape for propagation. Moreover, two graph

vertices can have a different geometrical extent, e.g. polylines being often smaller than heightmap connected

components.
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Figure 2.14: Before propagation, only superposed graph vertices are given an index, symbol-

ized here by a color. At each propagation step, each color gets propagated in the graph until

all graph vertices have a color. After propagation end, sub-graphs (i.e. graph vertices of the

same color) are merged together to reduce the sub-graph count, as explained in the following

section.

Indeed, let us consider a pair of sub-graphs (Gi, Gj), i 6= j. If they are connected by a graph

edge and do not have graph vertices that overlap vertically, then they are merged together.

An example of merging can be found in figure 2.14. We call G̃i the merged sub-graphs.

2.4.3 Envelope Computation

At this point the partitioning problem is solved as we found a partition of G into a relatively

low number of monovalued sub-graphs G̃i. In order for a sub-graph G̃i to be gridded, it is

however necessary to convert it to a patch Pi and compute its envelope. As detailed in the

next section, each sub-graph will indeed be converted into a heightmap, and its polylines and

heightmap connected components will be rasterized into constraint pixels.
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Algorithm 1 Sub-graph index propagation

Procedure propagate (G, {Gi})
Input:

G . Connected abstract graph

{Gi} . Indexed sub-graphs (superposed graph vertices only at start)

Algorithm:

1: vertices← FIFO list with all vertices of {Gi}
2: while vertices is not empty do

3: Pop a, the first vertex of vertices

4: for Each unindexed vertex b touching a do

5: index← a’s index

6: Index b with index

7: Add b to vertices

8: end for

9: Add a to Gindex
10: end while

End procedure

For a patch Pi, the envelope is the combination of two objects:

� A mask indicating for each pixel of its heightmap Hi whether it is to be gridded or not.

This mask will be encoded in the heightmap Hi using a boolean value, for example true

if inside envelopes, false otherwise;

� A set of junction points, i.e. pixels that have neighbor pixels in another patch. This

will be encoded in the neighbor data structure Ni.

The envelope will therefore be the domain around constraint pixels, i.e. pixels coming

from interpretation data. There are methods to compute the envelope (or “hull”) of a set of

pixels: one could consider using the pixels’ convex shape [KS86] or alpha shape [EKS83], but

in our case this leads to masks that are too large and hence does not prevent extrapolation.

An efficient and intuitive way to construct this mask is instead to use the closing mor-

phological operator against the constraint pixels of each patch heightmap. Closing is actually

the succession of a dilatation and an erosion, both using a structural element of size dC ∈ N∗
pixels. When a relevant value of dC is chosen, holes between constraint pixels are closed by

the dilatation while extrapolation is avoided because of the erosion. We therefore propose the

following steps to find the envelope of each patch:

� Heigtmap conversion. Turn each sub-graph G̃i into a patch heightmap Hi initialized

with constraint pixels;

� Dilatation. A dilated envelope is created independently for each patch;
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� Dilated envelope restriction and junction point location. For each patch pair

that is connected topologically by an edge of G, restrict dilated envelopes to ensure

smooth connection along a set of junction points;

� Joint erosion. Each dilated envelope is eroded to prevent extrapolation. This is done

simultaneously, i.e. on the multivalued surface.

2.4.3.1 Heightmap Conversion

Each sub-graph can now be converted into an image of size W ×H, the survey size (see figure

2.15). We therefore associate each sub-graph G̃i with its corresponding patch Pi of heightmap

Hi whose pixel (u, v) contains the height z for any interpretation data (u, v, z) in G̃i:

Hi :


D → R

(u, v) 7→


z′ if ∃M ′ = (x′, y′, z′) ∈ G̃i,

(u, v) = (x′, y′)

ν (null value) otherwise

(2.15)

Remarks:

� ν (null value) is a magic value designating a patch pixel that is not yet valued (it is

not a constraint pixel). The value of such a pixel will be set during gridding. It must

not be confounded with γ pixels (recall figure 2.2) which define locations outside the

heightmap, i.e. pixels that will never be valued;

� Concretely, Hi is obtained by rasterizing any polyline in G̃i and projecting any

heightmap connected component in G̃i;

� The “intra-patch” connectivity information once stored explicitly in the vertices and

edges of G̃i is now replaced by the natural neighborhood of the pixels in Pi. The

“inter-patch” connectivity, i.e. the topological connection between G̃i and its potential

neighbor sub-graphs is for now lost though, but it will be stored in the neighbor data

structure Ni when computing the dilated envelope restriction and the joint erosion.

2.4.3.2 Dilatation

Although image morphological operators are typically defined by kernels associated with

structural elements, numerical implementations are faster when using Euclidean Distance

Maps (EDM). It can be shown that both dilatation and erosion are equivalent to the thresh-

olding of an EDM5 [Rus98]. Using an EDM is faster than using masks because there are

5This is for disk-shaped structural elements and distance maps based on the L2 norm, because the disk is

the topological ball associated with the L2 norm in R2.
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Figure 2.15: Following the example in figure 2.14, each subgraph Gi is converted into a

heightmap Hi. The superposed result is displayed here. Overlapping graph vertices in G

lead to overlapping pixels in this image. Polylines are rasterized and heightmap connected

components are projected in order to get this raster representation.

efficient O(W · H) algorithms to compute an approximated distance map [Dan80]; [TH16].

Using approximations is tolerable in our case as the envelope does not require pixel-perfect

precision and those errors are small [Gre04].

Recall constraints are the non-ν pixels of heightmap Hi. We therefore construct the map

of distance to constraints DCi. Being a distance map, each pixel of DCi has a positive value

and is only zero on the location of constraints, i.e. non-ν pixels. DCi is defined by:

DCi :

{
D → R+

(u, v) 7→ distance to closest non-ν pixel
(2.16)

We then define the dilated envelope DEi by thresholding the distance map DCi:

DEi
.
= {(u, v) ∈ D, DCi(u, v) ≤ dC} (2.17)
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Using this thresholding method, it is possible to obtain the dilated envelopes, as depicted

by figure 2.16.

Figure 2.16: An example of dilated envelopes. They overlap when constraints of the two

patches are both closer than dC .

2.4.3.3 Dilated Envelope Restriction and Junction Point Location

Before computing the erosion, we want dilated envelopes to join along a boundary curve

without overlapping around the known topological connections between two patches, i.e.

near edges of G that have vertices from two sub-graphs (Gi, Gj), i 6= j. Meanwhile, we also

want to allow and preserve dilated envelopes overlapping around superposed constraints (for

example in figure 2.16, superposed polyline edges must eventually lead to superposed parts

of the final multivalued surface). This can be handled simultaneously by a criteria map using

the following procedure.

Compute Criteria Map: Each boundary between two patches Pi and Pj should be lo-

cated “in the middle” of the two patches’ dilated envelopes. For this reason we compute a

criteria map Ci,j derived from distance maps DCi and DCj : see figure 2.17 for an example.

The criteria map can be defined as:

Ci,j :

{
D → R
(u, v) 7→ DCi(u, v)−DCj(u, v)

(2.18)

Remarks:

� A pixel in criteria map Ci,j has negative value when closer to patch i than patch j;

� A pixel in criteria map Ci,j has positive value when closer to patch j than patch i;
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� We want the boundary curve between patches i and j to be defined the location of sign

change in Ci,j ;

� However, the boundary curve should not be defined around superposed constraints, i.e.

on pixels valued 0.

Figure 2.17: In green is depicted the isovalue 0 in the criteria map used in order to define the

boundary shape. It is “between” the pixels unless on the “0 areas” associated with superposed

constraint pixels, where the boundary curve should not be defined.

On a side note, the use of EDM thresholding and criteria maps shows how 3D implicit

methods, whose performance was commented in section 1.3.1, can be somehow used on a

2D scalar field that is built only from geometry, not from seismic cube samples. This makes

our approach both faster and independent from seismic cube SNR (though noisy cubes of-

ten introduce uncertainties on picked polylines and prevent the propagation of heightmap

fragments).

Restrict Envelopes: In order to restrict the dilated envelopes, we introduce the set of

locations where the criteria map is positive and negative (excluding locations where criteria

is zero): {
C+
i,j

.
= {(u, v) ∈ D, Ci,j(u, v) > 0}

C−i,j
.
= {(u, v) ∈ D, Ci,j(u, v) < 0}

(2.19)

We then define the restricted dilated envelopes RDEi and RDEj of patches i and j as

depicted by figures 2.18 and 2.19: the restricted dilated envelope of patch i is the dilated

envelope of patch i, but deprived of areas where the criteria map Ci,j is strictly positive, i.e.

when closer to patch j. “0 areas” are kept on the restricted dilated envelope so superposed

envelopes can exist. This can be noted as:{
RDEi

.
= DEi \ C+

i,j

RDEj
.
= DEj \ C−i,j

(2.20)
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Figure 2.18: By keeping “0 areas” while removing envelope beyond the location of sign change

in the criteria map, it is possible to define the restricted dilated envelope, here for the right

patch as an example.

Locate Junction Points: Once restricted, the dilated envelopes will perfectly join at the

boundary. At this point, the neighbor data structure Ni of each patch Pi can be updated as

locally around the boundary, the per-pixel connections between any two patches are known.

2.4.3.4 Joint Erosion.

Whereas dilatation could be computed independently for each patch in previous section, it is

required to consider the patch system as a whole during erosion. Once again, using kernel-

based morphological operators works but is extremely slow. Using EDM thresholding still

speeds up the process, but the fast two-pass algorithm previously used [Dan80] cannot be

easily adapted to a non-manifold support, in our case the patch system.

Instead we propose to use a fast-marching algorithm [TH16] that propagates pixel by

pixel the distance from outside the restricted dilated envelope on a “multivalued EDM” DOi,

i.e. a patch system whose heightmaps are EDM. As our patch system model clearly defines

neighborhood relations in the entire horizon using the neighbor data structures Ni, fast-

marching implementation is straightforward.

Once computed, the multivalued EDM DOi can be thresholded using the closing distance

dC , leading to the definition of the eroded envelope EEi. The erosion of the example patches

is shown in figures 2.19 and 2.20, depicting the envelopes respectively before and after erosion.

The eroded envelope EEi is therefore:

EEi
.
= {(u, v) ∈ D, DOi(u, v) ≥ dC} (2.21)

Along with restricted dilated envelopes, boundaries are also eroded. The neighbor data
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Figure 2.19: Restricted dilated envelopes before erosion. Notice the areas “outside” constraint

pixels where extrapolation would occur if no erosion was performed.

Figure 2.20: Cut envelopes after erosion. They still connect along a neat boundary curve,

but erosion removed envelope “outside” where extrapolation would have occurred.

structures Ni needs therefore to be updated again at this point to only connect together

points that are still on the envelope. By construction, we now have an eroded envelope EEi
for each patch Pi, and all eroded envelopes join nicely along the eroded boundaries.

It is now time to update the patch heightmaps with the envelope information: from now

on, each pixel of Hi outside of the eroded envelope EEi is associated with a boolean value

false (outside patch) in the envelope mask. At this point the patch system is ready for

gridding as described in section 2.3.
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2.5 Results

Examples of reconstructed surfaces using both synthetic and real data are presented here

to illustrate the action of our method on polylines and heightmap fragments interpreted by

geologists. At the time this is written, the handling of heightmaps as input is still under

implementation. Quantitative results will therefore only be provided for polyline inputs.

2.5.1 Illustration on Synthetic Data

The proposed model of patch system as well as the multivalued gridding approach we devel-

oped provide good results on both synthetic and real data. First, we will comment here the

interpolation of sparse synthetic polylines and heightmap fragments into a patch system.

Figure 2.21: Example of synthetic data: sparse polylines and heightmap fragments.

Figure 2.21 shows the input polylines as they would be picked by geologists on a survey.

Many superposed zones will be detected in the multivalued scan, leading to the indexation

of a lot of sub-graphs in the index propagation stage. The final sub-graph count will not be

excessive though, because of the merge step. Eventually, only 2 patches are necessary (see

figure 2.22).

After conversion to heightmaps, envelope computation begins. This will lead to the def-

inition of valid envelope masks and neighbor data structures, used by the gridding process.

The resulting patch system is depicted in figure 2.23. The global surface is smooth even along

patch boundaries.
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Figure 2.22: After patch index propagation and merging, two patch indices have been at-

tributed.

Figure 2.23: Following envelope computation and gridding, a patch system is created (left).

Patches join smoothly along a boundary curve (right, with another viewing angle and a color

map indicating elevation).

2.5.2 Illustration on Real Data

After this simple and readable example, we will show that complex real data can be addressed

with our approach. In figure 2.24, a sparse set of polylines describing a complex reverse-faulted

horizons are reported. There are at most 3 vertical superpositions in the data: in other words,

at least 3 patches will be used to represent the multivalued surface with a patch system.

In practice, as illustrated in figure 2.25, an extra patch will be created in this case. Indeed,

recall we use a heuristic graph propagation algorithm for the sake of speed and simplicity,

which means we cannot guarantee that the number of produced patch is the minimum one.

This is not an issue as no data set was found to generate a pathological number of patches,

and the additional patches that are sometimes produced are a very low price to pay in order

to have a fast and straightforward approach.
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Figure 2.24: A set of 12 input polylines describing a horizon made multivalued by several

faults. This input is sparse despite representing a complex geometry, making it quite difficult

to tackle.

2.5.3 Performance Considerations

Our multivalued gridding scheme is based on a preparation stage, where the number of patches

is found by a heuristic graph propagation algorithm. The graph vertices represent high-level

interpretation data, i.e. polylines or heightmap fragments, instead of, say, polyline vertices or

heightmap pixels. This means the graph has a relatively small size, making the propagation

very fast. Interpretation data is then projected on patches, using either straightforward

vertical projection (for heightmap fragments) or rasterization (for polylines).

This quick preparation step is then followed by a standard 2D interpolation, namely grid-

ding. Once again, this image-based method is fast and robust, making the overall multivalued

gridding almost instantaneous for human users. Table 2.1 reports the run-time of our multi-

valued gridding method for the real data set we just presented. We considered varying levels

of input density in order to show that the algorithm is scalable. Indeed, the run-time of the

algorithm is linear in the number of input polyline vertices, and quadratic in survey resolution

for EDM computation and gridding – compared to the sometimes exponential costs of graph

partitioning approaches, and the cubic complexity inherent to any 3D interpolation approach.

Another advantage of using gridding is that control over surface smoothness and input data

fitting is obtained through the α and β coefficients presented in section 2.3.
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Figure 2.25: Reconstructed surface displayed as a point cloud, using one color per patch.

Note that 4 patches were created for this horizon, though there are at most 3 superpositions

in the data: this is because our approach is based on a heuristic.

Polylines Vertices Run-time (ms)

12 194 207

25 401 423

51 937 892

73 1392 1203

Table 2.1: Run-time of the multivalued gridding method on the real data set, at varying

polyline densities. Linear scaling in performance is observed. The survey size was used for

resolution, in our case 1137 · 2227 pixels, i.e. a bit more than 2 megapixels.

2.5.4 Summary

This multivalued gridding method is an extension of existing work on the reconstruction of

horizons from polylines [Bau+18b], and had lead to an article currently being submitted to the

Communications in Computer and Information Sciences. This method is a natural extension

of monovalued models and reconstruction methods, meaning our approach will induce only

minimal software refactoring efforts. Moreover, it is very fast and easy to implement. The cost

that must be paid for this performance is the machinery of multivalued gridding preparation,

i.e. the unified graph construction, partitioning and envelope computation.

An interesting feature would be the handling of faults during the gridding stage. Faults are

the result of mechanical failure within a geological object. These discontinuities can displace

rock formations on a wide range of distances, some largely visible even at the seismic scale.
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Horizons can be for example cut and displaced by faults – normal faults being one of the

primary source of multivalued horizons. For this reason it makes sense to prevent access to

neighbor pixels on the opposite side of a fault while gridding. This is a standard feature of

current monovalued gridding implementations in modern geophysics software, and would be

appreciated for multivalued horizons as well. Beyond new features, many optimizations could

also be conducted in order to reduce the run-time and memory footprint of the algorithmic

chain. From multi-grid schemes, multi-threading and compression strategies to constraints

for the sub-graph index propagation, a lot of progress can be made to support ever larger

horizons.
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It is now time to design a reconstruction method for horizons representing salt domes.

They will be modeled by a triangle mesh, so we need to eventually triangulate our input

polylines. The idea summarized in section 3.1 is to first parameterize the polylines to the

plane, i.e. “flatten” them. This is the subject of section 3.2. Once in 2D, the polylines can be

rasterized on a regular grid, and monovalued gridding can once again be used for interpolation.

As explained in section 3.3, at this point, triangulation is straightforward, and the triangle

mesh can then be transformed back into 3D space, yielding the reconstructed surface. We

will also comment the performance issues and optimizations related to this reconstruction

scheme.

61
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3.1 Sketch of Proposed Method

3.1.1 Problem Presentation

The problem we intend to solve, illustrated by figure 3.1, is the following: how do we re-

construct salt domes from sparse, non-uniformly distributed polylines picked in unorganized

cross-sections?

Figure 3.1: Sparse set of input polylines picked in unorganized cross-sections (left). We want

to reconstruct the surface described by the polylines (right).

3.1.2 Proposed Method, Motivations

The main difficulty we face is that surface reconstruction is often difficult in three dimensions,

especially for sparse and non uniformly distributed data. In the spirit of previous point-

cloud triangulation methods [FR01], we therefore propose to transform the problem to a

two-dimensional one. This is moreover an improvement upon a previous proposal [Bau+18a].

Namely, we use the following workflow (illustrated by figure 3.2):

1. The polylines are parameterized over a subset of the plane, in other words we “flatten”

them. This way, when viewed from the top, polylines are not superposed anymore

except at their intersection points. The parameters u, v along with the z coordinate

form the so-called deformed space, in which the polylines (and the reconstructed surface)

are monovalued. This process is explained in section 3.2;

2. The flattened polylines are then interpolated in the plane. We propose to use gridding,

a robust method frequently used for monovalued horizon interpolation (this is explained

in section 2.3).

As a general assumption, we consider that the input polylines have clean intersection, i.e.,

do not “hover” on top of each other. In practical applications, a preprocessing step to snap

together close polylines might be needed in order to satisfy this requirement.
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Figure 3.2: Our proposed workflow, from left to right. Input polylines, picked in unorganized

cross-sections, in three-dimensional space (x, y, z) – Polylines in deformed space (u, v, z), i.e.,

as a z-valued heightmap. They are now monovalued – Interpolated surface in deformed

space – Interpolated surface projected back in three-dimensional space.

3.2 Polylines Parameterization: a Barycentric Approach

Our objective is to deform the space where input polylines are picked so that when viewed

from the top, they do not overlap anymore. In this abstract deformed space, the horizon

depicting a salt dome is hence monovalued, and can be interpolated using standard two-

dimensional interpolation methods, for example gridding (see section 2.3). The interpolated

surface can then be transformed back from deformed space to normal space, yielding the

reconstructed three-dimensional surface.

3.2.1 Parameterization and Discretization

3.2.1.1 Smooth Case

In the smooth theory, conformal (angle-preserving) parameterizations of surfaces are widely

studied and posses a large body of literature. Conformal parametrizations can be proved

to exist for any three-dimensional surface havig disk-like topology, and they have interesting

properties that enable their efficient calculation [HLS07]; [FH54]; [SC17]. In particular, if

we fix the target boundary of the parameterization, a conformal map is harmonic, i.e., every

point is in some sense the average of its neighbors, using the Laplace-Beltrami operator ∆LB

which takes the shape of the 3D surface into account.

3.2.1.2 Discrete Case

We are interested here in the implementation of our method in a discrete setting, where

surfaces are often represented as a collection of elements, often triangles. In this restricted

setting, strict conformal maps, meaning maps that preserve exactly all the angles in the

mesh, do not exist unless the surface is developable [Cra15]. For example, a closed 3D

surface is completely determined (up to scale) by giving the angles of each triangle, while an

open disk-like surface is completely determined by giving the angles and one triangle. Indeed,
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consider the example of a 3D conical fan made up of a set of triangles meeting at one common

summit. In this case, the sum of 3D angles at the common vertex is in general different than

2π (depending on the local Gaussian curvature) so that no strict angle-preserving mapping

to the plane is possible since then the sum of angles would have to be exactly 2π. Thus, a

different, less rigid approach such as barycentric mappings will be used.

3.2.1.3 Barycentric Maps: State of the Art

Barycentric methods find their origin in graph drawing problems [Tut60], but are well suited

for mesh parameterization as well, being easy to understand, implement and often yielding

satisfying results [HLS07]. Barycentric methods can also be adapted for point clouds [FR01],

or even for other supports such as arbitrary polygons [Flo03].

However, to the extent of our knowledge, adapting barycentric methods to polyline pa-

rameterization has not been the subject of much academical interest. In the following section,

we will therefore propose a natural extension of barycentric methods for polylines.

3.2.2 A Barycentric Mapping for Polylines

Let us consider a set of N ∈ N points xi ∈ R3. We want to find, for each 3D point xi, a 2D

point in parameter space ui ∈ R2, while preserving the distribution of points from space to

the plane. Such a map will represent the parameterization, or flattening, we are looking for.

Barycentric methods solve this problem by enforcing a local equilibrium, i.e. by making

each 2D point ui the barycenter of its 2D neighbors, with weights based on the relative

distribution of their correspondent 3D points xi. As previously shown [FR01], by fixing the

exterior boundary points in space and under some sufficient conditions that do apply here, the

system of local barycentric equations leads to a sparse global linear system that has a unique

solution.

Without loss of generality, we can assume that the first nB < N points, in the list of

input points xi, i ∈ J0, nB − 1K are the boundary points, that is, the endpoints of the input

polylines. For each boundary point (x, y, z), we associate a parameter point (u, v) ≡ (x, y),

i.e., we parameterize the boundary points by simple vertical projection1. It follows that the

nI = N − nB remaining 3D points are interior points, and have to be associated with a

parameter point ui ∈ R2 using a barycentric equation:

ui
.
=
∑
j∈Ni

λi,juj (3.1)

Where:

1We make the assumption that they are not vertically superposed and are indeed on the convex outside

boundary of our input data set when viewed from top. Vertical superposition on the boundary can be resolved

via a small perturbation of the point coordinates.
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� Ni is the neighborhood of point i, namely the set containing the indices of the points

considered close to point i in space;

� λi,j ∈ R are the coefficients associated with each ordered pair of points i and j. In order

to be interpreted as barycentric coordinates, they are required to be strictly positive

and sum to one for each point i [HLS07]:∀j ∈ Ni, λi,j > 0∑
j∈Ni

λi,j = 1
(3.2)

Note that in general λi,j 6= λj,i. Barycentric maps are therefore defined by giving, for

each point, its neighborhood as well as the associated set of coefficients. Various choices of

neighborhoods (see section 3.2.3) and coefficients (see section 3.2.4) have been explored in

order to find a barycentric map parameterizing the polylines on the plane, while introducing

as few distortions as possible.

3.2.3 Barycenter Neighborhoods

In this section, we assume that we have a method that produces a valid coefficient λi,j for

any ordered pair of points i and j. We will focus on the definition of a set of neighborhoods

suitable for polyline parameterization.

3.2.3.1 Topological Neighborhood

When considering connected data such as a triangle mesh, a very natural neighborhood for

every vertex i is available: the set of vertices connected by an edge to i [HLS07]. The same

definition can be naturally transposed to our situation, by considering the set of polylines as

a graph. After snapping, the network of input polylines can be seen as a connected graph,

whose edges can be used to define a topological neighborhood for each vertex i, denoted N T
i

(see figure 3.3 for an example).

Figure 3.3: Topological neighbors are graph vertices connected by an edge.

This neighborhood definition takes polyline edges into account and provides balance at

polyline crossings. In fact, the coordinates of vertices with more than two connected points
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can be represented as a linear combination of the coordinates of their topological neighbors,

satisfying the barycentric equation (3.1). However, the topological neighborhood does not take

into account polylines that are very close geometrically without touching. This means that

the distribution of points in the plane will in general look very different from the distribution

in 3D space. It also will not unfold loops, i.e. cycles in the graph containing exactly two

crossings (see figure 3.4), which are bound to become aligned by the barycentric equation.

This will prevent polylines from being separated by a discrete interpolation process such as

gridding, and must be avoided. The topological neighborhood is therefore not well adapted

to polyline parameterization.

Figure 3.4: An example of loop, namely a cycle in the graph containing exactly two polyline

crossings. Because parameterized vertices along the loop must be a linear combination of end

points, they will end up aligned in the plane and the loop will not be unfolded.

3.2.3.2 Geometrical Neighborhood

In contrast with triangle meshes, point clouds do not contain any connectivity information. A

simple neighborhood for any vertex i can however be defined by considering any point within

a sphere of given radius r ∈ R+ centered on i [FR01], producing a geometrical neighborhood

that we will denote NG
i . This is illustrated by figure 3.5.

Figure 3.5: Geometrical neighbors are constructed from vertices within a given radius r.

This neighborhood takes geometrically close, but disconnected, polylines into account,

making it easier to satisfy the barycentric equation (3.1). It also unfolds loops by adding
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neighbors on the sides. This being said, it completely ignores the existence of polyline edges,

and can have a shrinking effect when a large sphere radius is used2. It also has an intrinsic

resolution limit on the reconstructed topology, as any structure of the final salt dome surface

smaller than the geometrical radius will not be resolved. Similarly to the topological neigh-

borhood, the geometrical neighborhood alone is not sufficient for a correct parameterization

of polylines.

It should be noted that it is possible to mitigate the drawbacks of the shrinking effect

and intrinsic resolution of the geometrical neighborhood by estimating locally an appropriate

sphere radius ri. This can be done iteratively, by looking for the smallest radius that puts the

current point i inside the 3D convex hull of its neighbors. This will automatically result in

a balancing barycentric equilibrium, satisfying equation (3.1) without increasing the size of

neighborhoods too much and suffering from the detrimental effects of a larger-than-necessary

radius.

3.2.3.3 Our Proposal

As discussed previously, topological or geometrical neighborhoods alone are not enough for a

correct parameterization of polylines. This was to be expected, as polyline data falls some-

where in between the 0D disconnected point clouds and the 2D manifold-connected triangle

meshes. In order to leverage the advantages of both neighborhoods, we propose to interpo-

late the barycenter produced by each method. To this end, recall that we have denoted λi,j
the coefficient between vertex i and vertex j. We can therefore compute the topological and

geometrical barycenters as: 
uTi

.
=

∑
j∈NT

i

λi,juj

uGi
.
=

∑
j∈NG

i

λi,juj
(3.3)

An interpolation between the two can be obtained via an interpolation coefficient α ∈ [0, 1],

yielding the parameterized barycenter:

ui
.
= (1− α)uTi + αuGi (3.4)

We have found through numerical experiments that the addition of a global interpolation

coefficient is already enough to greatly improve the quality of the parameterization. It can

however present some local problems, where a higher or lower coefficient value would have

been more desirable. To this end, it was proposed in [Bau+18a] to compute a local coefficient

αi for every vertex i, namely the coefficient that leads to a more appropriate 3D barycenter:

αi
.
= arg min

α

∥∥∥∥∥∥ xi −

(1− α)
∑
j∈NT

i

λi,jxj + α
∑
j∈NG

i

λi,jxj

∥∥∥∥∥∥
2

(3.5)

2The barycentric equation makes each point the weighted average of its neighbors. In other words, it has

a low-pass filtering effect on data, namely it attracts points towards the center of mass hence the shrinking

effect. This only becomes detrimental for big values of r though.
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In this sense the interpolation of neighborhoods is optimal and indeed yields very good

results, especially compared to the use of a single neighborhood. This choice of neighborhood

is very well suited to polyline parameterization, producing fully flattened polylines with un-

folded loops, while preserving distribution of points from space to the plane. Results will be

discussed in more details in section 3.4.

3.2.4 Barycenter Coefficients

We will now assume that the neighborhoodNi of each point i is given, and consider the various

sets of coefficients λi,j used to define the barycentric map, in order to select an appropriate

method for the parameterization of the input polylines.

3.2.4.1 Constant Coefficients

As previously mentioned, the origins of barycentric methods can be traced back to the problem

of graph drawing [Tut60], that is, how to draw a given (planar) graph on paper without

overlapping edges. A barycentric approach with constant coefficients is enough in this context.

For polyline parameterization, such a choice would not take polyline edge lengths into account,

which makes constant coefficients unsuitable.

3.2.4.2 Inverse-Distance Coefficients

The relationship between graph drawing and mesh parameterization is clear: by considering

a triangle mesh as a graph of its vertices, drawing a graph on paper is equivalent to provide

a two-dimensional parameterization of the mesh. In order to take polyline edge lengths into

account, the coordinates of input points xi ∈ R3 must be somehow considered. In order

to do this, many methods have been devised [GH97]; [Wac75]; [Flo03]. We will focus here

on approaches based on distance between points [FR01], mostly because polylines, unlike

triangle meshes, do not give much connectivity information, making it difficult to take full

consideration of the local shape (for example using angles).

Using the inverse-distance coefficients effectively means that the farther two points are

from each other, the smaller the influence is between them, which makes it easier to balance

the local equilibrium and satisfy equation (3.1). Thus, we can define the coefficient between

any two distinct points i and j by normalizing the inverse-distances as:

λi,j
.
=

‖xi − xj‖−1∑
k∈Ni

‖xi − xk‖−1
(3.6)

The main drawback of inverse-distance coefficients is that they perform poorly on sparse

and non-uniformly distributed data, which is often encountered in geoscience applications.
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Indeed, given a point of index i, all points on a sphere centered on point i will provide the

same inverse-distance, without taking the exact point distribution into account. Though they

can work for point clouds, they are not always sufficient for polyline parameterization.

3.2.4.3 Our Proposal

In order to overcome the limitations of the inverse-distance coefficients, we propose once again

a locally optimal approach. The idea behind it is to locally compute the optimal coefficients,

that is, to compute for each vertex the neighbor coefficients that lead to the “best” barycenter.

This can be formulated as a constrained optimization problem over the neighborhood of each

point i:

Minimize ‖xi −
∑
j∈Ni

λi,jxj‖2

subject to ∀j ∈ Ni, λi,j ≥ 0

and
∑
j∈Ni

λi,j = 1

(3.7)

We can reformulate this problem as a constrained quadratic optimization problem. The

energy to minimize is just the difference between the point coordinates and the barycentric

combination of its neighbors. This can be simply refactored using the inner product in R3 as

follows:

‖xi −
∑
j∈Ni

λi,jxj‖2 = (xi −
∑
j∈Ni

λi,jxj)
T (xi −

∑
k∈Ni

λi,kxk)

= xTi xi − 2
∑
j∈Ni

λi,jx
T
i xj +

∑
j∈Ni

∑
k∈Ni

λi,jλi,kx
T
j xk

(3.8)

The term xTi xi is constant and can therefore be discarded. Since minimizations need to be

carried out independently for each vertex i, for the sake of clarity we will drop the subscript i

from all equations. The position of the treated vertex will therefore simply be denoted as x,

and its neighborhood N . With these adjustments, our problem is equivalent to the following

box-constrained quadratic program (QP), with an additional equality constraint:

Minimize
1

2
λTQλ+ pTλ

subject to ∀j ∈ N , λj ≥ 0

and
∑
j∈N

λj = 1

(3.9)

Where:

� λ ∈ R|N | is the column vector containing the unknown optimal coefficient values for

vertex i, noting |N | the cardinality of N ;
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� Q is a real, symmetric |N |×|N | matrix corresponding to the Gram matrix3 of the coor-

dinate vectors xj , j ∈ N . As such, Q is positive semi-definite, making the optimization

problem convex;

� p ∈ R|N | is the column vector defined by pj
.
= −xTj xj .

As a constrained quadratic programming (CQP) problem, our minimization can be solved

by a variety of methods. We have chosen to follow the exterior point active-set approach

presented in [VL04], called BOXCQP. Active set methods for inequality-constrained opti-

mizations are based on the realization that, according to the standard Karush-Kuhn-Tucker

(KKT) conditions, on the optimum a constraint is either satisfied as an equality, or it is

inactive (i.e., the corresponding Lagrange multiplier is zero). Consequently, constraints can

iteratively be activated and deactivated, based on the sign of the corresponding Lagrange

multiplier, until the solution is reached. Once the set of active constraints is known, a simple

optimization on the unconstrained unknowns yields the solution. BOXCQP specializes this

approach to box-constrained problems, i.e., CQP problems with constraints ai ≤ vi ≤ bi for

all variables i, and it allows updating multiple constraints in a single iteration, sacrificing the

monotonicity of the convergence for superior performance.

Following [VL04], we can add Lagrange multipliers µj for inequality constraints. An extra

multiplier α is also added for the equality constraint, leading to the following Lagrangian for

our minimization (3.9):

L .
=

1

2
λTQλ+ pTλ− µTλ+ α(λT1− 1) (3.10)

where 1 is a vector containing all ones. From this Lagrangian, the following KKT condi-

tions can be deduced:


Qλ+ p− µ+ α1 = 0

µjλj = 0

λT1− 1 = 0

λj , µj ≥ 0

(3.11)

At each iteration k, the BOXCQP algorithm divides the constraints into two sets, inactive

A(k) and active B(k) constraints. In practice, if we have λj < 0 at iteration k− 1, we put j in

B(k) at the next iteration, and correspondingly if λj ≥ 0 at iteration k − 1, we put j ∈ A(k)

at iteration k. This means that at iteration k we have to set the Lagrange multipliers µj = 0

for the unconstrained vertices j ∈ A(k), and we set λj = 0 for the constrained ones j ∈ B(k).

Accordingly, we split the coefficient vector λ, the multiplier vector µ and the right hand side

vector p into the unconstrained λA, µA = 0A,pA and constrained λB = 0B, µB,pB parts (0A

3Recall that the Gram matrix G of a set of vectors yi ∈ Cm, i = 1, . . . , n is the n× n Hermitian matrix of

inner products defined by Gi,j
.
= y†

iyj .
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and 0B are null column vectors of respective size |A(k)| and |B(k)|). The KKT conditions

(3.11) for iteration k can then be reformulated as the following system of equations:

Q
(k)
AA 0AB 1A

Q
(k)
BA −IB 1B

1TA 0TB 0


λAµB
α

 =

−pA
−pB

1

 (3.12)

where:

� Q
(k)
AA is the |A(k)| × |A(k)| submatrix of Q containing rows and columns r, c ∈ A(k);

� Q
(k)
BA is the |B(k)| × |A(k)| submatrix containing rows and columns r ∈ B(k), c ∈ A(k);

� IB is the |B(k)| × |B(k)| identity matrix;

� 1A,1B are column vectors, of lengths |A(k)| and |B(k)| respectively, containing all ones;

� 0AB is the null matrix of size |A(k)|× |B(k)| and 0B is the column vector of length |B(k)|
containing zeros.

It should be noted that, due to the normalization constraint, we can only achieve a system

of size |N |+ 1 instead of the smaller size |A(k)|. However in all conceivable applications, with

only a few dozen vertices in a neighborhood, this augmented size is not an issue.

Using this approach, a set of locally optimal coefficients can be computed. Numerical ex-

periments show that these locally optimal coefficients lead to a parameterization of superior

quality compared to inverse-distance coefficients, and are relatively cheap to evaluate numer-

ically – in practice, the size of the local system to solve is no more than a few dozen points

on real data, and only a handful of BOXCQP iterations are usually required for convergence.

Results will be discussed more thoroughly in section 3.4.

3.3 Polylines Interpolation by Gridding and Triangulation

We showed how polylines can be parameterized from 3D space to the plane, through a barycen-

tric approach. Indeed, we proposed a mixed neighborhood interpolation with locally optimal

coefficients. Now we will briefly explain how two-dimensional gridding (as presented in chap-

ter 2) can be used to interpolate polylines in the plane on a regular support, which then

enables straightforward triangulation.

3.3.1 Gridding Parameterized Polylines

The interpolation process described in the previous section is carried out in parameter space

(u, v) ∈ D. The 3D, real-world coordinates of the surface can then be seen as an immersion
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f : D 7→ R3. Thus, equation 2.6 needs to be solved once for every coordinate x, y and z,

each time setting the constrained values fi to the corresponding real-world coordinates of

the polyline points xi, yi and zi. Thus, every point in parameter space D is associated with

its three-dimensional coordinate, leading to a dense immersion of the whole surface, with

polyline points getting mapped close to their original positions.

3.3.2 Triangulation of a Gridded Surface

Once the parameterized polylines are gridded, they can easily be triangulated. A naive

triangulation (e.g. using two triangles for each group of four pixels) can be used, but this can

lead to very dense meshes irrespective of the smoothness of the surface, eventually introducing

significant storage or visualization problems. Adaptive approaches can be used, for example

by only using a high triangle density where local surface curvature is high.

Whatever the triangulation method used, once the triangle mesh is computed in deformed

space, its vertices can be transformed into three-dimensional space using the previously com-

puted map, and the reconstruction process is complete.

3.4 Results

3.4.1 Illustration on Synthetic Data

In order to construct an efficient barycentric map for polylines, we proposed an interpolation

method for each vertex neighborhood with local estimation of the geometrical radius and the

interpolation parameter, combined with a set of locally optimal coefficients. We will now

show examples that illustrate how this custom barycentric map performs better than existing

methods, that were originally designed with point cloud or mesh parameterization in mind.

The first input dataset we will consider is shown in figure 3.6. It is a sparse set of polylines,

representing a typical mushroom-shaped salt dome, commonly found in geosciences. The

objective is to flatten the polylines so that they become monovalued.

We will first of all consider the interpolated neighborhood method for this example, in

order to illustrate the influence of the choice of coefficients. To this end, figure 3.7 depicts how

optimal coefficients lead to a better parameterization. It can be seen that the distribution

of points is indeed better preserved when using the optimal coefficients. In this case, the

inverse-distance coefficients were moreover unable to unfold all loops, making the use of

optimal coefficients mandatory. Gridding and triangulation in the plane are then applied. The

reconstructed surface using optimal coefficients and interpolated neighborhoods is reported

in figure 3.8.

Let us now introduce a quality metric ∆θa that quantifies the average of angle4 distortions

4Absolute value of angles is actually considered as angle distortions can be negative: an average of signed
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Figure 3.6: The input polylines for this simple example, viewed from the side and in perspec-

tive.

Figure 3.7: Parameterized polylines (in the plane, or equivalently polylines in deformed space

and viewed from top with orthogonal projection). Using inverse-distance coefficients (left) and

optimal coefficients (right). Optimal coefficients better preserve the distribution of polylines

in parameter space, and unfold all loops (highlighted by the red circles in the figure), whereas

inverse-distance coefficients cannot cope with local issues and do not unfold all loops.

between 3D polylines and their parameterized 2D counterparts. For length distortions, we

note ∆l the normalized dimensionless edge distortion error used in [YBS04]. Note that in

general, we are interested in reducing the gradient of the length distortions, as there will always

be some length distortions where the Gaussian curvature does not vanish. In our case, because

we fixed the boundaries and we will eventually use a regular triangulation in parameter space

(instead of an adaptive one as for example in [Los17]), we can directly consider the length

distortions. We reported the quality metric values in table 3.1 for various combinations of

neighborhoods and coefficients, applied on the input polylines reported in figure 3.6. These

measurements highlight the efficiency of our proposed interpolated neighborhood and optimal

set of coefficients. They also show that on average, simple neighborhoods and coefficients work

relatively decently. However, they cannot unfold loops and therefore totally prevent the use of

discrete interpolation methods. In this particular case the inverse-distance coefficients (when

using the interpolated neighborhood) managed to unfold all loops, but this is not always the

case. For this reason, optimal coefficients are preferably used in practice.

angles would often be around zero.
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Figure 3.8: Reconstructed surface, fitting input polylines. Fitting is done using α = 0.02

and β = 0.2 with polylines coordinates normalized in [0, 1]. The gridding parameters are

explained in section 2.3.

3.4.2 Illustration on Real Data

3.4.2.1 First Example: Handling Complex Shapes

Real-world data can be much more challenging than the previous synthetic example in both

size and complexity (survey size i.e. gridding resolution, polyline count, target surface curva-

ture, etc). Indeed, in compressive domains, salt formations can reach extremely convoluted

shapes. As an example, figure 3.9 illustrates the top surface of a salt body in compressive

domain. It shows both the input polylines and the surface reconstructed with our interpolated

neighborhood and optimal coefficients.

3.4.2.2 Second Example: Influence of Picking Density and Uniformity

Another top salt horizon was picked using various polyline distributions, and the surface was

once again reconstructed by the interpolated neighborhood and optimal coefficients. The

results are reported in figure 3.10, and show how robust our method is towards anisotropy,

that increases as polylines are picked in a less organized fashion. Quality metric measurements

are also reported in table 3.2, noting ∆θm and ∆θM the minimum and maximum absolute

angle distortions. As expected, a dense and organized set of input polylines leads to the

best output surface. However, the visualization results also show that a relatively sparse and

unorganized set of polylines is sufficient to capture the shape of the target surface. Even on

very sparse input data sets, the angle and length distortions still remain relatively low.

3.4.3 Discussion

We believe that our method possesses significant advantages: it is conceptually simple, rel-

atively straightforward to implement, and fast. Namely, numerical tests show that triangle

meshes of several million triangles can be reconstructed in under a second on a typical oil
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Neighborhood Coefficients ∆θa (°) ∆l (-) Loops unfolded

T Inverse-distance 19 0.44 7

T Optimal 16 0.42 7

G (fixed radius) Inverse-distance 23 0.62 7

G (fixed radius) Optimal 24 0.56 7

G (optimal radius) Inverse-distance 24 0.56 7

G (optimal radius) Optimal 25 0.51 7

T+G (optimal radius) Inverse-distance 9 0.41 3

T+G (optimal radius) Optimal 8 0.39 3

Table 3.1: Performance of various neighborhoods and coefficients. The topological neighbor-

hood (T) is more conformal and isometric than the geometrical neighborhood (G), as it is

balanced at polyline crossings. The geometrical neighborhood is better at unfolding loops,

though it did not manage it on its own in this case. Indeed, only the interpolated neighbor-

hood (T+G) had loops correctly unfolded. Optimal coefficients improve the parameterization

if an adequate neighborhood is used. Overall, our method (interpolated neighborhoods and

optimal coefficients) works best, reducing both angle and length distortions.

Polylines Points Angle distortions Length distortions

∆θm (°) ∆θa (°) ∆θM (°) ∆l (-)

59 2454 0.05 8 152 0.36

30 661 0.09 11 139 0.42

10 246 0.004 13 160 0.47

Table 3.2: Quality metric measurements for the picking types illustrated in figure 3.10. Angles

and lengths are well preserved in average. Moreover, no trend in minimum and maximum

distortion values can be observed, another indication of the robustness of our method.
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Figure 3.9: Production data for the top of salt in compressive domain. Input polylines and

reconstructed surface are shown. Several domes are joined, forming significant overhangs

over the salt sheet. Highly curved areas are well resolved, despite the relative sparsity of

the picking. The entire reconstruction process (parameterization, gridding and triangulation)

took less than a second on a typical oil & gas workstation.

& gas workstation5. The speed with which a parameterization can be obtained means that

many tests can be done quickly, allowing the iterative tuning of the parameters to achieve the

best result. The good performance of the algorithm is due to fact that the method is based on

solving a few sparse linear systems for the gridding part and dense, but small, linear systems

for the determination of the locally optimal neighborhood coefficients. Parallelization is also

straightforward, notably in the construction of the linear system. Gridding and triangulation

could also be made more efficient using parallel linear algebra and adaptive meshing libraries,

which however we have not done in this work. Finally, we believe that the underlying phi-

losophy of our method, which solves a 3D problem in 2D, has an intrinsically lower time and

memory footprint compared to other reconstruction methods that are completely formulated

in three dimensions, such as implicit approaches.

5See section 1.3.4.2. We used Java linear algebra front-ends towards LAPACK [And+99] for dense matrices

and CSPARSE [Dav06] for direct sparse solvers.
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Figure 3.10: Influence of input polyline density and distribution (top row) on the recon-

structed surface (bottom row). From left to right, a dense organized input, a sparser unor-

ganized input and a very sparse unorganized input. The middle example shows how similar

reconstructed surfaces can be obtained from fewer and unorganized polylines.

3.4.4 Summary

We showed how a barycentric mapping can be developed in order to parameterize 3D poly-

lines representing a surface to the plane. This mapping can handle sparse, non uniformly

distributed polylines that were picked in unorganized cross-sections. Once flattened, the

polylines describe a monovalued horizon in an abstract, deformed space. At this point, stan-

dard gridding can be performed in order to interpolate the polylines. From a regular grid, it is

then easy to create a triangle mesh to produce a discrete version of the reconstructed surface.

The method presented here, and especially the locally optimal set of barycenter coefficients,

is an improvement upon a previous proposal [Bau+18a], and a research paper presenting it

is undergoing submission to the journal Computers & Geosciences.

Further advances could be made, for example by developing a globally optimal set of

coefficients instead on relying on local minimization problems, that play the role of a surface-

wide Laplace-Beltrami operator. Another possible improvement is the use of more recent

conformal parameterization algorithm, for example as presented in [SC17], to automatically

determine the position of the surface boundary in parameter space, minimizing locally the area

distortion and thus further improving the quality of the reconstructed triangulated surface.

Moreover, a richer set of inputs could be tackled by relaxing the assumption that all polyline

endpoints need to be boundary points for the parameterization, allowing partial polylines as

an input: a manual flag on polylines could be used to this end. An automatic detection would

be even more preferable, saving time for other picking tasks and lowering the risk of human

errors. As for performance, further parallelization of our method could be envisioned, notably

in the gridding and triangulation stages.





Conclusion and Perspectives

It is now possible to handle multivalued horizons within a structural interpretation framework.

Amongst the possible data structures from the literature, we selected the most appropriate to

model multivalued horizons: reverse-faulted horizons are most efficiently represented by patch

systems, a natural and effective extension of the monovalued model. Salt domes would not

benefit as much from a patch system representation because the sub-vertical parts they often

have would require too many patches. Instead, a simple triangle mesh is adequate, especially

since seismic attribute are rarely computed on salt dome surfaces – the regular support of the

patch system is therefore not needed.

These two models are close enough to existing ones that software refactoring efforts are

minimal. They can moreover be reconstructed from sparse interpretation data using our

proposed two methods. Namely, reverse-faulted horizons can be gridded in a natural extension

of the monovalued gridding, at the cost of a preparation stage whose complexity is kept low by

a unified handling of input interpretation data, and a heuristic graph propagation algorithm

that partitions the input data into what will eventually become the patches. This approach is

straightforward, fast and resource-efficient because it is intrinsically two dimensional, despite

the fact that we reconstruct a three dimensional surface.

As for salt domes, they can also be reconstructed from polylines using a two dimensional

approach. A polyline parameterization method is however required. Because we once again

use a regular planar interpolation (gridding), a distortion-minimizing parameterization is

preferred. We proposed a barycentric approach by developing a neighborhood and coefficients

that are well suited to polyline parameterization. The simplicity and efficiency of both our

barycentric mapping and the gridding method makes this reconstruction almost instantaneous

for human interpreters, significantly out-pacing most other triangulation methods (notably

implicit approaches) while yielding a reconstructed surface of measurably good quality.

Using our models and reconstruction methods, multivalued horizons can become a first-

class feature of any Oil & Gas interpretation software package. We chose models that are

identical (triangle mesh) or very close (patch system) to existing data structures, making it

easy to address software legacy issues. They can be efficiently populated by automatic recon-

struction from interpretation data, and they are by construction well suited to typical horizon

processing tasks: the patch system requires almost no change in seismic attribute evaluation

code and can be easily converted for display. Triangle meshes modeling salt domes can be

directly visualized by rasterization while benefiting from hardware acceleration via GPUs.

Both models and reconstruction methods can be (and most often have been) parallelized to

benefit from the full power of a typical modern workstation.

This being said, many improvements remain for a better handling of multivalued horizons.

The most elegant and striking feature would be a totally unified handling of any multivalued

surface, namely a single model for both reverse-faulted and salt dome horizons, that can be

reconstructed from any interpretation input, be it polylines or heightmap fragments. One
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could for example envision the parameterization of the abstract input graph of a reverse-

faulted horizon, by “sliding” the data along the fault surfaces. If such a unified model could

not be devised, another area of research would be the improvement of the multivalued grid-

ding pipeline, for example by a more balanced graph propagation algorithm that takes the

size of the interpretation data into account. As for polyline parameterization, BOXCQP is

perhaps not the most adequate solver for our box-constrained QP problem. Moreover, instead

of having a regular triangulation in parameter space, one could use an adaptive triangula-

tion that would not suffer from distortions as much as our naive method does. Beyond the

industrial issue of multivalued horizon management, this thesis allowed the benchmarking of

standard data structures in an Oil & Gas context, and the development of innovative surface

reconstruction method from polylines, under conditions of sparsity and non-uniform distribu-

tion not often considered by the literature. This benchmark could be extended to more data

types, supporting other models and tests to improve its realism.



Appendix A

Multivalued Horizon Models: a

Benchmark

A.1 Overview

A.1.1 Objectives

This appendix will provide a more technical insight into the benchmark used to evaluate

new models for multivalued horizons. We will first establish a measurement protocol and

present the benchmark software architecture. In a second time, implementation details will be

given, notably the data structures used for isochron representations and acceleration structure.

Optimization will also be discussed, as well as the definition of the data sets. Results will

eventually be reported and commented, especially the influence of various parameters such

as the model access pattern (the context of each test), the data type and the data scale.

The benchmark’s most significant result is the model comparison, that was given in section

1.3.4.2.

A.1.2 Protocol

Recall that for software legacy reasons, this benchmark is implemented in Java on a x86-64

Linux workstation. This means the benchmark code will be interpreted by a Java Virtual

Machine (JVM), while some of its bytecode will likely be compiled “just in time” for opti-

mization [Arn+18]. In other words, care has been taken to “warm-up” the JVM so that the

run-time optimization noise is reduced. Moreover, all measurements have been taken several

times to reduce variance, as the operating system kernel and other user-space programs might

have been interfering with the benchmark’s allocated CPU time.

Because exact timing and memory usage is likely to change with platform evolutions, we

will only present normalized results. In other words, all results are rescaled so that the patch

system model always scores 1 in the benchmark. This makes for an easier comparison between

models.

In order to fully benefit from our target implementation platform (presented in section

1.3.4.2), we will have to maximize:
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� Memory bandwidth. This is obtained via buffered file system access – be it on the

local SSDs organized in Redundant Array of Independent Disks (RAID) or on a remote

filer – compact and aligned RAM usage, cache-aware memory handling and minimum

strain on the Garbage Collector (GC). Most performance benefits will be leveraged by a

correct handling of the CPU caches. In our case we benefit from the typically significant

(a few dozen megabytes) L3 cache of workstation CPUs, in which sizable parts of our

data will mostly reside. High RAM capacities also allow us to consider memory hungry

approaches – if there is a benefit to it of course;

� CPU usage. We can achieve this using parallelization via multi-threading and Sin-

gle Instruction Multiple Data (SIMD) operations and data structures. In our context,

multi-threading is often easily achieved using the Java 8 Stream API on containers:

because processing tasks are often very demanding (requiring from milliseconds to sec-

onds), there is no need for fine-grain (micro-second scale or less) multi-threading that

would typically require a job system, or even a lock-free implementation for minimum

contention1. As for SIMD operations, we only have to use SIMD-aware data structures

and operations, and the JVM will hopefully produce the corresponding x86-64 vector in-

structions. Typical workstations will benefit from the top-end x86-64 Streaming SIMD

Extensions (SSE) or the more recent Advanced Vector Extensions (AVX) [Int]. As an

example, our machine even had AVX2 available, meaning 256 bits vector registers could

be used. In other words, each CPU core can simultaneously operate on 6 8-bits values

per instruction, or 4 32-bits values. At this point memory bandwidth must be heavily

optimized though, lest the CPU cores quickly starve for data.

Note that GPGPU approaches are not considered here for deployment and compatibility

reasons: all processing will be done on CPUs. A typical workstation is a powerful machine,

but it requires some care to be fully used. It also has some specialist hardware design into it,

be it several CPU sockets and the corresponding Non Uniform Memory Access (NUMA) issues

[Sol15], or very high bandwidth but high latency Quad Channel ECC Registered memory.

All this being said, the machine is expected to be pushed to its limits, Oil & Gas applications

being typically compute and memory intensive. They are indeed very often given as an

example of how well performance can scale with CPU core count and RAM capacity. For

more details about the hardware aspects of optimization, comprehensive reviews can be found

in the literature [Fog18a]; [Fog18b].

A.1.3 Benchmark Architecture

The benchmark is a console Java program made of around 40 classes organized in a dozen

packages (see figure A.1). In order to reduce implementation work, a few abstract inter-

faces were defined, notably for acceleration structures, isochron representations, models (as

1To be more precise, the duration of typical processing tasks far exceeds the standard CPU burst time

on modern operating systems, which lies around a few dozens milliseconds. There is therefore no need for

particular approaches that minimize process or thread level preemption.
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Figure A.1: A Unified Modeling Language (UML) view of the benchmark program. Isochron

representations and acceleration structures are all implementations of an abstract interface.

Models are then built by combining those, or are custom (patch system). Similarly, tests all

relate to an abstract test interface. HorizonPart provides an intermediate data structure

between data sets and models.

shown by figure A.2), tests (see figure A.3) and data sets. For each interface, various im-

plementations were provided. For example, the Grid, Octree and RTree classes are im-

plementing the AccelerationStructure interface. Most models are then a combination of

IsochronRepresentation within an AccelerationStructure. The PatchSystem required a

custom implementation, being ad hoc by construction.

One thing of note is the necessity of an intermediary data structure between models and

data sets. Indeed, some tests require the insertion, deletion or retrieval of a local fragment of

a horizon surface. The class HorizonPart was therefore introduced, and is a local description

of a multivalued surface. It is heavily based on a patch system for practical reasons (see

figures A.4 and A.5). Great care was taken in order to avoid measurement bias because of

the similarity between the PatchSystem model and the very close HorizonPart2. In other

words, this similarity is not artificially improving or reducing the patch system performance.

2For example, heightmaps could be shared between PatchSystem and HorizonPart instances but were fully

copied.
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Figure A.2: Models are either a combination of an isochron representation and an acceleration

structure, or custom built.

Figure A.3: Tests all implement an abstract Test interface, and target each model through

the abstract HorizonModel interface.
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Figure A.4: HorizonPart provides a common ground between models and tests. It is built

quite similarly to a patch system, because it makes it easier to extract a local manifold

representation of a surface using this model.

Figure A.5: HorizonPart is a hierarchical representation of a surface. Each connected com-

ponent is modeled by a potentially multivalued Chunk, itself composed of several monovalued

heightmaps. Isochrons are therefore pixels of those heightmaps.



86 Appendix A. Multivalued Horizon Models: a Benchmark

A.2 Implementation

A.2.1 Isochron Representations

Isochron representations have already been presented, but we will provide here some imple-

mentation details that the reader might find interesting. Some design choices were arbitrary,

while others were made with our specifications in mind. In order to use isochron representa-

tions in the acceleration structures, a base interface IsochronRepresentation was required.

We then implemented the following isochron representations:

� PointCloud. A list of 3D point coordinates, using a 32-bit floating point representation

for each coordinate. It is implemented in the Structure Of Array (SOA) fashion, i.e. one

list for each axis. We preferred SOA instead of Array Of Structure (AOS) because the

former is likely to benefit from packed SIMD instructions that the JVM will eventually

produce. Such vector operations will for example be used when rescaling coordinates,

or any other large scale modification. While it has the downside of requiring more

cache ways for efficient use of the CPU caches, our target x86-64 platform typically

sports 8-ways L2, L3 and sometimes even L4 caches that will manage this SOA without

problems. Moreover, an AOS approach would lead to heavy use of the GC, leading to

prohibitive memory management;

� Mesh. An half-edge mesh implementation was used in order to enable efficient traversal

[Bot+10]. The downside of using doubly linked list is however that an AOS approach

must be used. Because Java does not allow for function inlining or other small class

mitigation strategies, this means a significant work for the GC when mesh vertices and

edges are added or removed. Memory thrashing is also possible after many modifications

on such a mesh, as new object pointers are allocated in ever more distant virtual memory

locations, defeating the purpose of having CPU caches. Vertices use a 32-bits floating

point number for each coordinate;

� PatchSystem. Our ad hoc model was implemented in a similar way than the

HorizonPart class: it is a list of HorizonChunk, each being a single connected compo-

nent. Each is made up of potentially several Heightmap, stored in a list. Each heightmap

has its corresponding neighbor data structure as described in section 1.3.3.2. We im-

plemented the latter as a neighbor patch index map. In order to increase the spatial

locality of reference (pixels close in pixel coordinate distance must be close in memory),

the patch heightmap is a 2D array stored using a Z-order curve. This technique is com-

monly used for texture storage [Mor66], and allows pixel blocks to fall into close cache

lines, improving the CPU cache efficiency. The same goes for the neighbor patch index

map. The latter can however benefit from an additional processing as for cold storage:

it can indeed be saved in compressed form, for example using Run-Length-Encoding

(RLE), as it will be made up of mostly non valued pixels in practice [RC67]. As for

quantization, heightmaps use a 32-bits floating point number for each pixel, while a

smaller 8-bit integer was chosen for the neighbor patch index map. In practice, this
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limits the number of patch per chunk to 256, which proved sufficient in both tests and

production;

� Voxel. As for patch systems, a block storage through Z-order curves is used. This is

further improved by bit-packing, by storing 4× 4× 4 = 64 voxels into 64-bits integers.

Compression schemes could have been deployed, but would have reduced the speed at

which voxels are manipulated, and were hence not considered.

A.2.2 Acceleration Structures

Now that isochron representations are detailed, we can focus on the implementa-

tion of the selected acceleration structures. Recall each isochron representation imple-

ments an abstract IsochronRepresentation interface. By creating a generic interface

AccelerationStructure< IsochronRepresentation > that accepts an implementation of

isochron representation, we can implement each acceleration structure, and it will work for

each isochron representation – though PatchSystem is left on its own. This object-oriented

approach significantly reduces the number of required classes, leading to an easier and more

elegant implementation.

State-of-the-art acceleration structures are delicate constructs that require some significant

effort to implement, tune and debug. To this end, let it be noted that various tests have been

developed to check that they each behaved correctly, and each design decision was confirmed

by performance measurements. The benchmark provides the following implementations of

acceleration structures:

� Grid. The Grid class is a list of GridCell< IsochronRepresentation >. The cells

can therefore be specialized for each type of isochron representation, be it a point cloud,

mesh vertices or a voxel array. The grid cell was tuned so that it is small enough to

avoid having large isochron representations in each cell, while being large enough to

significantly reduce the number of discarded isochron representations if a cell is nothing

in a query. On a side note, a GridCell is also an IsochronRepresentation, so that a

fixed depth greater than 1 can be used for the Grid acceleration structure. In practice,

diminishing returns are quickly reached when using depths higher than 2 or 3;

� Octree. Being trees, octrees can be naively implemented using pointers to node in-

stances. This typically leads to many allocations and deallocations that significantly

stress the GC, and this is not even considering the additional problems on NUMA sys-

tems. However, this can be mitigated by having, for each node, an index towards a block

of 8 son nodes instead of 8 indices towards one son node each. Despite reducing the

strain on the GC, it still uses a lot of memory and some pointers. A more compact rep-

resentation is the linear hashed (pointer-free) octree, that relies instead on node integer

indices and Z-order curves [Gar82]. On the down side, linear octrees have more overhead

when modified, and can use more memory when representing sparse data – which is our

case, as we only represent surfaces embedded in space, instead of volumes for example.
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Once again, there is a compromise between memory footprint reduction and traversal

speed. All things considered, we chose a pointer-based octree implementation grouping

nodes by blocks of 8;

� RTree. Amongst the many possible variants of R-tree available in the literature, we chose

the R*-tree variant with an MBV in the form of an Axis-Aligned Bounding Box (AABB).

It is a R-tree with an improved topological splitting strategy – a heuristic that reduces

node overlap and therefore enhances performances. It has a higher internal maintenance

cost however, and is harder to implement. When bulk-loading the tree, i.e. when

constructing it in a single insertion, Z-order curves or other packing schemes can be used

to produce a balanced tree [LEL97]. In theory, the R*-tree is one of the most data-fitting,

hence memory efficient, data structures. In practice, this is significantly mitigated by

the use of pointers and their detrimental effects on modern x86-64 platforms whose

performance increasingly relies on the correct use of CPU caches [CHL00]. Indeed,

recall typical workstations are multi-socket NUMA machines with high core count. This

means they can suffer from many problems with pointers: cache coherency and conflict

misses, cache thrashing, pointer aliasing and false sharing, or memory fragmentation to

name but a few [SHW11].

A.2.3 Data Types

Recall several scales of data will be considered. So to speak, a data set is the sampling of

an ideal surface at a given resolution, i.e. scale. This means the data sets, also called data

types, must be somehow parametric: given a scale, an intermediary representation must be

produced, in the form of a HorizonPart instance. Most data types are simple enough not

to require any comment. The MonovaluedFractal data set is obtained by computing some

Perlin value noise, a very common algorithm in procedural texture generation. As for the

MultivaluedDome, it is a warped half-sphere whose border circle is mapped to a square: the

deformation gives the desired multivalued overhang in order to model a salt dome.

A.3 Results

Before commenting various results, it must be noted that given 10 models, each subjected to

10 tests, using 5 data sets at 3 scales, 1500 measurements were conducted. Conducting the

full benchmark takes several minutes and produces a dozen result files, that can be formatted

using command-line options. The necessity and advantage of an automatic benchmark is

made very clear at this point. There is no hope of reporting or discussing all the results here

however, therefore we will only consider the influence of the last 3 parameters (test, data set

and scale), while section 1.3.4.2 comments the influence of the first parameter, i.e. models.

This is enough to draw conclusions as to which models are most suited for representing

multivalued horizons, performance wise.
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A.3.1 Influence of Context

We will consider the performance of all models in each test, using the MultivaluedSawTeeth

data set at the largest scale. Were smaller scales used, we might have the data set fully

contained in Last Level Cache (LLC), which would bias the memory intensive tests. Anyway

by using this protocol, we will see how models perform depending on the context, i.e. the

access patterns. Results are reported in figure A.6.

As expected, the point cloud and mesh models perform measurably better when it comes

to display format conversion (though triangulating point clouds is costly). They are not the

most suited for reading / writing operations, as well as serialization, mostly because it is more

difficult to leverage the full benefits of coherent memory access with such explicit models, as

compared to the regular voxels or patch systems – for them, looping through pixels / voxels

can benefit from caching if done linearly. This comparison shows that patch systems, and

to a lesser extent voxels, are adequate models for processing (reading, writing, conversion),

while point clouds and especially meshes are more adapted for display.

A.3.2 Influence of Data Type

Let us now observe the ReadAll test with each model on all data sets at the largest scale.

This tests represent a situation where the entire horizon is read from the model, for example

for global processing or in preparation for a conversion or serialization. Results are reported

in figure A.7.

A first observation is that the simpler the data set, the more similar the models perform.

This means that for smooth monovalued surfaces, there is no need for complex models –

hence the current use of heightmaps. When data sets are multivalued, the good processing

performance of patch systems and voxels is clear. Moreover, intrinsically 3D objects such as

salt domes are difficult for patch systems to model, because they can require a lot of patches

where the surface tangent plane is almost vertical. For them, voxels are best for processing,

and to a lesser extent triangulated surfaces (though they are better used for display, as shown

in the previous section).

A.3.3 Influence of Scale

Finally, we will consider for all models the MultivaluedSawTeeth data set, at each scale in

the WriteAll test. This will provide a measurement of the algorithmic complexity of each

model, i.e. its asymptotic performances, as the data to handle gets larger and larger. It

must be noted that asymptotic behavior is perturbed for smaller scales due to the presence

of a large 20MB last-level cache (LLC). In other words, the smallest data scale (survey of

side dimension 103 isochrons) fits entirely in the cache, which dramatically speeds-up any

processing on it. This explains the big difference in time performance between this data set

size and the others, although this is not visible on the relative scale we use (see figure A.8).
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Figure A.6: Performance of models in each tests, with the MultivaluedSawTeeth data set at

the largest scale.
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Figure A.7: Performance of models in the ReadAll test, on each data set at the largest scale.
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Figure A.8: Performance of models in the WriteAll test, on the MultivaluedSawTeeth data

set at various scale.

On a side note, another disturbance was avoided by using isochron counts that are not big

powers of 2, which could have introduced cache trashing on the typically 8-way associative

LLC. We used the WriteAll test instead of ReadAll, because the cache write policies are

often the source of performance issues, especially in multi-socket systems such as ours.

As explained, most models perform the same for small data scales, as memory traffic is

made easy by having the entire data into the LLC. As survey size gets bigger, the performance

difference between models increases, and especially between acceleration structures for the

same isochron representation. The maintenance cost of each acceleration structure, i.e. its

“overhead”, is made more visible as more isochrons have to be considered. This will result

in better performance for reads, but has to be payed whenever there is a change in the

acceleration structure, as for writes. The patch system performs really well in this situation

because it is an intrinsically 2D representation. Triangulated surfaces are also efficient to

some extent.
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A.3.4 Summary

We have seen the influence of our 4 parameters of study, namely model type, test, data set and

scale. We are looking for a model that performs relatively well on average, and can cope with

the bigger data sets for future proofing. It was also mentioned that our two main multivalued

horizon types, namely reverse-faulted horizons and salt domes, have different needs. The

former will be the subject of a lot of processing, mostly seismic attributes computation, while

the latter is essentially modeled for display.

With this in mind, the patch system appears to be very suited to the modeling of reverse-

faulted horizons. With excellent performance in processing, it only suffers from having the

need to be converted to point cloud or mesh for display, though the cost is manageable. This

model is adequate because it represents a 3D surface with 2D elements, and a reverse-faulted

horizon is indeed such a kind of object, being essentially a 2D surface teared and distorted at

some places.

As for salt domes, the patch system has detrimental performance issues with highly vertical

surface tangent planes, what geologists would call “sub-vertical” areas. As processing needs

are lighter for salt domes, a display oriented model seems more relevant. In other words, the

mesh is an excellent model for salt domes.

As discussed in chapter 1, these favorable performance arguments are complemented by

other aspects, such as limiting software refactoring and implementation simplicity. Patch

systems are indeed a natural extension of the heightmap model, and triangulated surface

are standard objects of Oil & Gas software packages, already used to model monovalued

horizons, faults, geological bodies and many other objects. We moreover observed that there

is no need for excessively complex acceleration structures with these models, avoiding the

cost of implementing, tuning and maintaining them. For all these reasons, patch systems and

meshes will be used for the multivalued horizons’ data model, representing reverse-faulted

horizons and salt domes, respectively.
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Résumé — Les horizons sont des éléments indispensables à la création d’un modèle struc-

tural pour l’exploration d’hydrocarbures. Ces horizons peuvent avoir des formes complexes,

les rendant difficiles voir impossibles à manipuler par les logiciels d’exploration. La gestion

de ces horizons “multivalués” dans l’interprétation structurale passe par deux axes de travail.

Il faut premièrement trouver un modèle pour les représenter. Un état de l’art des modèles de

données et un programme de comparaison automatique montrent ainsi comment les systèmes

de patch et les surfaces triangulées sont les plus adaptés pour représenter les horizons avec

failles inverses et les dômes de sel, respectivement. Dans un second temps, il faut pouvoir

reconstruire les surfaces de ces horizons multivalués à partir de données d’interprétation, qui

sont à la fois peu denses et non-uniformément distribuées. Nous proposons deux algorithmes

de reconstruction, un pour chaque type d’horizon. Ces méthodes sont basées sur les approches

classiques en géoscience, et forment donc une extension naturelle de l’état de l’art. Avec ces

modèles et leurs méthodes de reconstruction, la gestion des horizons multivalués est désormais

possible et pratique, permettant de considérer des champs plus complexes.

Mots clés : Horizons Multivalués, Modèle de Données, Indexation Spa-
tiale, Structure d’Accélération, Reconstruction de Surface, Gridding,
Paramétrisation, Polyline, Carte d’Élévation.

Abstract — Horizons are first-class elements of the structural models used for Oil & Gas

exploration. When they have a complex shape, they become difficult or even outright im-

possible to manage within typical software packages. Handling those so-called “multivalued”

horizons indeed requires tackling two problems. First, data models must be found to represent

them. A review of the state of the art, complemented by a benchmark, led us to promote

the use of patch systems and triangulated surfaces in order to represent reverse-faulted hori-

zons and salt domes, respectively. Second, multivalued surfaces must be reconstructed from

sparse and non-uniformly distributed interpretation data. We developed two reconstruction

methods, each targeting a multivalued horizon type. They are based on standard geoscience

interpolation methods, making them both fast and natural extensions of the state of the art.

Using the proposed models along with the reconstruction methods, it is now possible to effi-

ciently tackle the more complex fields where they are typically found.

Keywords: Multivalued Horizons, Data Model, Spatial Index, Acceleration
Structures, Surface Reconstruction, Gridding, Parameterization, Polyline,
Digital Elevation Model.
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