S. Basu and T. M. Undeland, On understanding switching and EMI performance of SiC power JFETs to design a 75W high voltage flyback converter, 15th European Conference on, pp.1-5, 2013.

P. Friedrichs, SiC power devices for industrial applications, International Power Electronics conference, pp.3241-3248, 2010.

R. A. Wood and T. E. Salem, Evaluation of a 1200-V, 800-A All-SiC Dual Module, IEEE Transactions on, vol.26, issue.9, pp.2504-2511, 2011.

A. Elasser, M. Kheraluwala, M. Ghezzo, R. Steigerwald, N. Krishnamurthy et al., A comparative evaluation of new silicon carbide diodes and state-of-the-art silicon diodes for power electronic applications, Industry Applications Conference, 1999. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE, vol.1, p.341, 1999.

J. I. Itoh and T. Araki, Volume evaluation of a PWM inverter with wide band-gap devices for motor drive system, ECCE Asia Downunder (ECCE Asia), pp.372-378, 2013.

S. Moumen, Etude de la robustesse de transistors JFET à base de SiC vis-à-vis de stress électriques

C. N. Ho, F. Canales, S. Pettersson, G. Escobar, A. Coccia et al., Performance evaluation of full SiC switching cell in an interleaved boost converter for PV applications, IEEE, pp.1923-1927, 2011.

F. Guedon, S. Singh, R. Mcmahon, and F. Udrea, Boost Converter With SiC JFETs: Comparison With CoolMOS and Tests at Elevated Case Temperature, IEEE Transactions on, vol.28, issue.4, pp.1938-1945, 2013.

A. Ritenour, D. C. Sheridan, V. Bondarenko, and J. Casady, Performance of 15mm2 1200V

. Normally-off, SiC VJFETs with 120A Saturation Current, Diamond and Related Materials, vol.19, pp.1-6, 2010.

E. Rondon, F. Morel, C. Vollaire, and J. Schanen, Impact of SiC components on the EMC behaviour of a power electronics converter, IEEE, pp.4411-4417, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00739027

M. Adamowicz, S. Giziewski, J. Pietryka, M. Rutkowski, and Z. Krzeminski, Evaluation of SiC JFETs and SiC Schottky diodes for wind generation systems, 2011 IEEE International Symposium on, pp.269-276, 2011.

P. Bogonez-franco and J. Sendra, EMI comparison between Si and SiC technology in a boost converter, 2012 International Symposium on, pp.1-4, 2012.

O. Mostaghimi, N. Wright, N. , and A. Horsfall, Design and performance evaluation of SiC based DC-DC converters for PV applications, p.2012

, IEEE, pp.3956-3963, 2012.

R. Robutel, C. Martin, H. Morel, P. Mattavelli, D. Boroyevitch et al., Integrated common mode capacitors for SiC JFET inverters, Applied Power Electronics Conference and Exposition, pp.196-202, 2011.
DOI : 10.1109/apec.2011.5744597

URL : https://hal.archives-ouvertes.fr/hal-00618665

D. Peftitsis, R. Baburske, J. Rabkowski, J. Lutz, G. Tolstoy et al., Challenges regarding parallel-connection of SiC JFETs, Power Electronics and ECCE Asia (ICPE & ECCE), pp.1095-1101, 2011.

I. Ong, J. A. Josifovi, and . Ferreira, Modeling and Reduction of Conducted EMI of Inverters With SiC JFETs on Insulated Metal Substrate, IEEE Transactions on, vol.28, issue.7, pp.3138-3146, 2013.

F. Xu, T. J. Han, J. Dong, L. M. Tolbert, W. Fei et al., Development of a SiC JFET-Based Six-Pack Power Module for a Fully Integrated Inverter, IEEE Transactions on, vol.28, issue.3, p.1464, 1478.

D. Peftitsis, G. Tolstoy, A. Antonopoulos, J. Rabkowski, J. Lim et al., High-Power Modular Multilevel Converters with SiC JFETs, IEEE Transactions on, vol.27, issue.1, p.28, 2012.
DOI : 10.1109/ecce.2010.5618274

URL : http://kth.diva-portal.org/smash/get/diva2:467521/FULLTEXT02

D. Aggeler, F. Canales, J. Biela, and J. Kolar, DV/DT -Control Methods for the SiC JFET/Si MOSFET Cascode, IEEE Transactions on, vol.28, issue.8, pp.4074-4082, 2013.

I. Josifovic, J. Popovic, and J. A. Ferreira, Improving SiC JFET switching behavior under influence of circuit parasitic, IEEE Transactions on Power Electronics, vol.27, issue.8, pp.3843-3854, 2012.

. Cer-e, Compatibilité électromagnétique

F. Chauvet, Compatibilité électromagnétique. Introduction. D 1900-E3 750, Techniques de l'Ingénieur, traité énie électronique, 1993.

B. , Modélisation et optimisation des performances CEM d'une association variateur de vitesse -machine asynchrone, 2003.

C. Jettanasen, Modélisation par approche quadripolaire des courants de mode commun dans les associations convertisseurs-machines en aéronautique, 2000.

L. Fakhfakh, Contribution à l'Étude et à la Mesure des Perturbations Conduites dans Un Convertisseur de Puissance, 2010.

F. Costa and C. Vollaire, Caractéristiques et évolution du bruit électromagnétique dans les dispositifs d'alimentation embarqués sur aéronef, Congrès CEM 08, vol.8, 2008.

M. Moreau, Modélisation haute fréquence des convertisseurs d'énergie. Application à l'étude des émissions conduites vers le réseau, 2009.

H. Zardoum, L. Fakhfakh, S. Abid, K. Ammous, and A. Ammous, Conducted EMI Prediction in Switching Cell Using Improved Classical Models, 11 th International conference on Sciences and Techniques of Automatic control and computer engineering-STA'2010, pp.1-7, 2010.

J. S. Glaser, J. Nasadoski, P. Losee, A. Kashyap, K. Matocha et al., Direct comparison of silicon and silicon carbide power transistors in high-frequency hardswitched applications, Applied Power Electronics Conference and Exposition, p.2011

, Twenty-Sixth Annual IEEE, pp.1049-1056, 2011.

I. Josifovic, J. Popovic-gerber, and J. Ferreira, Power Sandwich industrial drive with SiC JFETs, Proceedings of the 2011-14th European Conference on, pp.1-10, 2011.

L. Rixin, F. Wang, N. Puqi, Z. Di, J. Dong et al.,

. Immanuel, Development of a 10 kW high power density three-phase ac-dc-ac converter using SiC devices, EPE '09. 13th European Conference on, pp.1-12, 2009.

D. Aggeler, J. Biela, and J. W. Kolar, A compact, high voltage 25 kW, 50 kHz DC-DC converter based on SiC JFETs, pp.801-807, 2008.

F. Dubois, D. Risaletto, R. Robutel, H. Morel, R. Meuret et al., High temperature inverter for aerospace application, IMAPS Advancing Microelectronics, vol.38, pp.24-29, 2011.

T. Funaki, J. Balda, J. Junghans, A. S. Kashyap, H. Mantooth et al., Power Conversion With SiC Devices at Extremely High Ambient Temperatures, IEEE Transactions on, vol.22, issue.4, pp.1321-1329, 2007.

Y. Hamieh, Caractérisation et modélisation du transistor JFET en SiC à haute température, 2011.

A. Melkonyan, High Efficiency Power Supply using new SiC devices, 2007.

S. Vasconcelos-araújo, On the Perspectives of Wide-Band Gap Power Devices in Electronic-Based Power Conversion for Renewable Systems, p.2013

P. Friedrichs, H. Mitlehner, K. O. Dohnke, R. Elpelt, and D. Stephani, The vertical silicon carbide JFET -a fast and low loss solid state power switching device, Proceedings of the IEEE 14th European Conference on Power Electronics and applications-EPE 2001, 2001.

T. Funaki, A. Kashyap, H. Mantooth, J. Balda, F. Barlow et al., Characterization of SiC JFET for Temperature Dependent Device Modeling, pp.1-6, 2006.

M. S. Mazzola, J. B. Casady, N. Merrett, I. Sankin, W. Draper et al., SiC VJFET's In HalfBridge Circuits, Assessment Of "Normally On" And "Quasi On, pp.1153-1156, 2004.

L. Cheng, I. Sankin, V. Bondarenko, M. S. Mazzola, J. D. Scofield et al.,

B. Casady and J. B. Casady, High-Temperature Operation of 50 A (1600A/cm2), 600V 4H-SiC Vertical-Channel JFETs for High-Power Applications, Materials Science Forum, pp.600-603, 2009.

H. Asif, Etude des convertisseurs haute tension pour la protection et la coordination des réseaux de distribution, 2010.

H. Morel, Y. Hamieh, D. Tournier, R. Robutel, F. Dubois et al.,

C. Bergogne, R. Buttay, and . Meuret, A Multi-Physics Model of the VJFET With a Lateral Channel, Proceedings of the IEEE 14th European Conference on Power Electronics and applications-EPE, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00629220

S. Hrigua, F. Costa, B. Revol, and C. , Nouvelle méthode d'analyse des interférences électromagnétiques (IEM) dans les convertisseurs statiques, pp.5-7, 2012.

R. Popescu, Vers de nouvelles méthodes de prédiction des performances CEM dans les convertisseurs d?Electronique de Puissance, 1999.

H. Hassan, Méthodologie de pré-dimensionnement de convertisseurs de puissance: Utilisation des techniques d'optimisation multi-objectif et prise en compte de contraintes CEM, 2006.

J. J. Meng, W. Ma, Q. Pan, ;. Zhang, and ;. Zhao, Multiple Slope Switching Waveform Approximation to Improve Conducted EMI Spectral Analysis of Power Converters, IEEE Transactions on, vol.48, issue.4, pp.742-751, 2006.

B. Touré, J. L. Schanen, L. Erbaud, T. Meynard, J. P. Carayon et al., EMC Modeling of Drives for Aircraft Applications: Modeling Process , EMI Filter Optimization and Technological choice, IEEE, pp.1909-1916, 2011.

B. Revol, J. Roudet, J. Schanen, and P. Loizelet, EMI Study of Three-Phase Inverter-Fed Motor Drives, Industry Applications, vol.47, pp.223-231, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00741757

C. Jettanasen, F. Costa, and C. Vollaire, Common-Mode Emissions Measurements and Simulation in Variable-Speed Drive Systems, IEEE Transactions on, vol.24, issue.11, pp.2456-2464, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00506116

J. Meng, Q. Pan, L. Zhang, and Z. Zhao, Multiple Slope Switching Waveform Approximation to Improve Conducted EMI Spectral Analysis of Power Converters, IEEE Transactions on Electromagnetic Compability, vol.48, pp.742-751, 2006.

F. Costa, C. Vollaire, and R. Meuret, Modeling of conducted common mode perturbations in variable-speed drive systems, IEEE Transactions on, vol.47, issue.4, pp.1012-1021, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00141455

R. Mrad, F. Morel, C. Pillonnet, P. Vollaire, A. Lombard et al., Approche de Modélisation des Chemins de Propagation des Perturbations Conduites pour des Systèmes à Deux Conducteurs Actifs, Congrès CEM, vol.2012

R. Mrad, F. Morel, C. Pillonnet, P. Vollaire, A. Lombard et al., N-Conductor Passive Circuit Modeling for Power Converter Current Prediction and EMI Aspect, IEEE Transactions on, vol.55, issue.6, pp.1169-1177, 2013.
DOI : 10.1109/temc.2013.2265048

URL : https://hal.archives-ouvertes.fr/hal-01103586

R. Mrad, F. Morel, G. Pillonnet, C. Vollaire, and A. Nagari, Integrated Class-D audio amplifier virtual test for output EMI filter performance, Ph.D. Research in Microelectronics and Electronics (PRIME), pp.73-76, 2013.
DOI : 10.1109/prime.2013.6603127

URL : https://hal.archives-ouvertes.fr/hal-01103590

M. Foissac, J. Schanen, D. Frantz, C. Frey, and . Vollaire, System Simulation for EMC Network Analysis, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00578195

M. Foissac, Méthodologie d'analyse CEM conduite d'un réseau multiconvertisseurs

, Spécialité Génie Electrique, Electrotechnique, Automatique et Traitement du Signal" soutenue en, 2012.

, Comité International Spécial des Perturbations Radioélectriques CISPR 16, Spécifications pour les appareils et les méthodes de mesure des perturbations radioélectriques, 1987.

H. Chen, C. Chen, and Y. Ren, Modeling and Characterization of Incomplete Shielding Effect of GND on Common-Mode EMI of a Power Converter, IEEE Transactions on electromagnetic compability, vol.53, pp.676-683, 2011.

A. Bhargava, D. Pommerenke, K. W. Kam, F. Centola, and C. W. Lam, DC-DC Buck Converter EMI Reduction Using PCB Layout Modification, Electromagnetic Compatibility, vol.53, pp.806-813, 2011.

C. Martin, J. L. Schanen, and R. Pasterczyk, Power integration: electrical analysis of new emerging package, European Conference on Power Electronics and Applications (EPE), 2003.
URL : https://hal.archives-ouvertes.fr/hal-01196064

S. R. Nelatury, M. N. Sadiku, and V. K. Devabhaktuni, CAD Models for Estimating the Capacitance of a Microstrip Interconnect: Comparison and Improvisation, PIERS Proceedings, pp.18-23, 2007.

C. Martin, Vers une Méthodologie de Conception des interconnexions pour les dispositifs de l?Electronique de Puissance, 2005.

C. Martin, J. Schanen, J. Guichon, and R. Pasterczyk, Analysis of electromagnetic coupling and current distribution inside a power module, Industry Applications, vol.43, pp.893-901, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00282663

A. E. Ruehli and . Antonini, On modeling accuracy of EMI problems using PEEC, IEEE International Symposium on, vol.1, pp.341-346, 2003.

J. and A. , Rayonnement des convertisseurs statiques. Application à la variation de vitesse, 2009.

T. Sakurai and K. Tamaru, Simple formulas for two and three dimensional capacitances, IEEE Transactions on, vol.30, issue.2, pp.183-185, 1983.

E. Y. Bogatin-;-s, W. C. Poh, J. Chew, and . Kong, Approximate Formulas for line Capacitance and Characteristic Impedance of Microstrip line, Components, Hybrids, and Manufacturing Technology, vol.11, p.142, 1981.

M. Ianovici and J. J. Morf, Compatibilité électromagnétique, Presses Polytechniques et Universitaires Romandes, 1979.

V. Ardon, J. Aime, O. Chadebec, and E. Clavel, MoM and PEEC Method to Reach a Complete Equivalent Circuit of a Static Converter, Electromagnetic Compatibility (EMC), 2009.
URL : https://hal.archives-ouvertes.fr/hal-00354293

V. Ardon, J. Aime, O. Chadebec, and E. Clavel, Evaluation du modèle capacitif d'une structure d'électronique de puissance, 2008.

F. Costa, C. Vollaire, and R. Meuret, Modeling of conducted common mode perturbations in variable-speed drive systems, IEEE Transactions on, vol.47, issue.4, pp.1012-1021, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00141455

S. Hrigua, Contribution à l'élaboration de modèle précis et à faible coût de calcul pour l'électronique de puissance et la CEM'' Thèse de l'Ecole Normale Supérieure de Cachan, Spécialité Electronique-Electrotechnique-Automatique, soutenue en 2014. exécuter respectivement : OptimiseParametreModele.m CalculeCritereOptimisation.m, CalculeImpedance.m. R2=521

. L2=1, , pp.417-422

. L3=1, , pp.9-15

. L4=2, , pp.64-70

. Parametresinitiaux=,

. Z_init=calculeimpedance,

O. %-optimisation, MaxFunEvals',1e5,'MaxIter',1e5)

, Options

, Affichage des paramètres optimaux

. Z_opt=calculeimpedance,

, Modèle) xlabel('fFréquence (Hz)') ylabel('Impédance (\Omega)') grid subplot(2,1,2) semilogx(f,angle(Z_mes)*180/pi,f,angle(Z_opt)*180/pi) legend('Mesure, % Figures figure subplot(2,1,1) loglog(f,abs(Z_mes),f,abs(Z_opt)) legend('Mesure

. Z_eq=calculeimpedance,

. %-erreur-erreur=z_eq-z_mes,

. Norme=sum, abs(erreur)./abs(Z_mes)).^2)

. R1=parametres,

. L1=parametres,

. C1=parametres,

. R2=parametres,

. L2=parametres,

. C2=parametres,

. R3=parametres,

. L3=parametres,

. C3=parametres,

. R4=parametres,

. L4=parametres,

. C4=parametres,

, % Calcul d'impédances

, R1 + L1) // C1) // R0

. Zeq1=, *(Zc1))./(R1+Zc1+Zl1)

, Zeq1=(Zeq1.*R0)./(Zeq1+R0)

, % R2 // L2 // C2 Zeq2=(Zl2.*Zc2)./(Zl2+Zc2)

, Zeq2=(Zeq2.*R2)./(Zeq2+R2)

, % R3 // L3 // C3 Zeq3=(Zl3.*Zc3)./(Zl3+Zc3)

, Zeq3=(Zeq3.*R3)./(Zeq3+R3)

, Zeq4=(Zeq4.*R4)./(Zeq4+R4)

, % Résultat d'impédance