Skip to Main content Skip to Navigation
Theses

Extraction d'information spatiale à partir de données textuelles non-standards

Résumé : L’extraction d’information spatiale à partir de données textuelles est désormais un sujet de recherche important dans le domaine du Traitement Automatique du Langage Naturel (TALN). Elle répond à un besoin devenu incontournable dans la société de l’information, en particulier pour améliorer l’efficacité des systèmes de Recherche d’Information (RI) pour différentes applications (tourisme, aménagement du territoire, analyse d’opinion, etc.). De tels systèmes demandent une analyse fine des informations spatiales contenues dans les données textuelles disponibles (pages web, courriels, tweets, SMS, etc.). Cependant, la multitude et la variété de ces données ainsi que l’émergence régulière de nouvelles formes d’écriture rendent difficile l’extraction automatique d’information à partir de corpus souvent peu standards d’un point de vue lexical voire syntaxique.Afin de relever ces défis, nous proposons, dans cette thèse, des approches originales de fouille de textes permettant l’identification automatique de nouvelles variantes d’entités et relations spatiales à partir de données textuelles issues de la communication médiée. Ces approches sont fondées sur trois principales contributions qui sont cruciales pour fournir des méthodes de navigation intelligente. Notre première contribution se concentre sur la problématique de reconnaissance et d’extraction des entités spatiales à partir de corpus de messages courts (SMS, tweets) marqués par une écriture peu standard. La deuxième contribution est dédiée à l’identification de nouvelles formes/variantes de relations spatiales à partir de ces corpus spécifiques. Enfin, la troisième contribution concerne l’identification des relations sémantiques associées à l’information spatiale contenue dans les textes. Les évaluations menées sur des corpus réels, principalement en français (SMS, tweets, presse), soulignent l’intérêt de ces contributions. Ces dernières permettent d’enrichir la typologie des relations spatiales définies dans la communauté scientifique et, plus largement, de décrire finement l’information spatiale véhiculée dans les données textuelles non standards issues d’une communication médiée aujourd’hui foisonnante.
Document type :
Theses
Complete list of metadatas

Cited literature [230 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02138938
Contributor : Abes Star :  Contact
Submitted on : Friday, May 24, 2019 - 11:44:28 AM
Last modification on : Thursday, July 2, 2020 - 1:58:41 PM

File

ZENASNI_2018_archivage.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02138938, version 1

Collections

Citation

Sarah Zenasni. Extraction d'information spatiale à partir de données textuelles non-standards. Autre [cs.OH]. Université Montpellier, 2018. Français. ⟨NNT : 2018MONTS076⟩. ⟨tel-02138938⟩

Share

Metrics

Record views

182

Files downloads

295