j. +?2KB+ HBK ;BM; Q7 # BM imKQ b
#BQ/mMM P;mMH2F2

hQ +Bi2 i?Bb p2 ' bBQM,

#BQ/mM P;mMH2F2X j. +?2KB+ H BK :BM; Q7 #> BM imKQ bX h?2Q"2
IMBp2'bBid /2 "Q /2 mt- kyRNX 1M;HBb?X LLh, kyRN"P_.yy9y X i2H@

> G A/, i2H@ykRjd389
21iTb,ffi2HX "+?Bp2b@Qmp2 i2b X7 fiZH@YKR ]«
am#KBii2/ QM kj J v kyRN

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X



THeSE

PRfSENT/E E

LOUNIVERSITf DE BORDEAUX
f COLE DOCTORALE DES SCIENCES CHIMIQUE

ParABIODUN OGUNLEKE

POUROBTENIR LE GRADE DE

DOCTEUR
SPfCIALITf: CHIMIE PHYSIQUE

IMAGERIE CHIMIQUE 3D DE TUMEURS DU CERVEAU

Soutenue le 18 Mars 2019

Devantla commission dOexamen formZe:de
Professeur Sophie Javerzat Examinateur
ProfesseuGanestSockalingum  Rapporteur
Professeur Wojciech M. Kwiatek Rapporteur

ProfesseuCyril Petibois Directeur de thZse



PhD THESIS

PRESENTED AT THE

UNIVERSITY OF BORDEAUX
DEPARTMENT OF CHEMISTRY

by ABIODUN OGUNLEKE

TO OBTAIN THE DEGREE OF

Doctor of Philosophy
SPECIALITY: CHEMICAL PHYSICS

3D CHEMICAL IMAGING OF BRAIN TUMORS

Defended on March 18, 2019

Defended in front of the exam committee
Professor Sophie Javerzat Examiner
ProfessorGanestSockalingum Reviewer
Professor Wojciech M. Kwiatek Reviewer
Professo Cyril Petibois Director of thesis






Acknowledgements

This work has been carried out under the supervisiétraft Cyril Petibois in the group of

biophysics of vascular plasticity, Institut national de la santZ et de la recherche mZdicale unitZ 102
de IOangiogensse et du mienvironnement tumoral (INSERM U1029, LAMC), University of
Bordeaux, France. It would have bampossible to complete this work without the support and

kind gestures of many people

Firstly, | would like to thank God, the giver of life and wisdom for the gift of life and wisdom.

| would love to thank profoundlirof. Cyril Petibois, for givingme this valuable opportunity to

learn under his direction. | am deeply grateful for his generosity, kindness, tenderness, constructive
criticism, considerations and continuous involvement in the project. Without his immense
encouragement, inspiring guidan@nd support this work would not have been completed. It was

an honour and privilege working under his supervision.

| would also love to express my gratitude to every member of the team who showed me love and
guidance throughout the period of this wdrlam grateful for the contributions bfaylis Delugin,

Prof. Sophie Javerzat, Dr. Benoit RecuandDr. Hugo Balacey | will forever be grateful for

your encouragement, kind words, constructive criticism and support throughout the period of this

work. It was such an honour working with and learning from you all.

| would also love to express my appreciation to every member of the Harvesting Faith Ministries

church who became my family away for home. | am deeply grateful for your support and prayers.

Lag but in no way the least, | want to thank my family, for their encouragement, prayers and
support from birth till this moment.



DEDICATED TO MY PARENTS AND FAMILY



~ ~

RZsumZ

L'histologie tridimensionnelle (3D) est un nouvel outihaeZ de cancZrologie. L'ensemble du profil
chimique et des caractZristiques physiologiques d'un tissu est essentiel pour comprendre la logiqu
du dZveloppement d'une pathologie. Cependant, il n'existe aucune technique analytique, in vivo ot
histologique, apable de dZcouvrir de telles caractZristiques anormales et de fournir une distributior
3D " une rZsolution microscopique. Nous prZsentons ici une mZthode unique de microscopie
infrarouge (IR) ~ haut dZbit combinant une correction d'image automatisZe aaiyse ultZrieure

des donnZes spectrales pour la reconstruction d'imagje.3bus avons effectuZ I'analyse

spectrale d'un organe complet pour un petit modele animal, un cerveau de souris avec une tumeur
de gliome implantZe. L'image 3R est reconstite ~ partir de 370 coupes de tissus consZcutives et
corrigZe " l'aide du tomogramme " rayons X de I'organe pour une analyse quantitative prZcise du
contenu chimique. Une matrice 3D de spectres IR 8% rst@yZnZrZe, ce qui nous permet de
sZparer la masgumorale des tissus cZrZbraux sains en fonction de divers paramstres anatomiques
chimiques et mZtaboliques. Nous dZmontrons pour la premisre fois que des parametres
mZtaboliques quantitatifs (glucose, glycogene et lactate) peuvent stre extraits stmgtoen 3D

partir des spectres IR pour la caractZrisation du mZtabolisme cZrZbral / tumoral (Zvaluation de I'ef
de Warburg dans les tumeurs). Notre mZthode peut stre davantage exploitZe en recherchant
I'ensemble du profil spectral, en distinguaifiZdents points de repsre anatomiques dans le cerveau.
Nous le dZmontrons par la reconstruction du corps calleux et de la rZgion des noyaux gris centrau

du cerveau.

Mot-clZs ImagerielRTF, imagerie IRQCL, imagerie chimique 3D, pathologie nuinge, test
Clinique



Abstract

Threedimensional (3D) histology is a new advanced tool for canceroldgy whole chemical

profile and physiological characteristicsaofissue is essential to understand the rationale of
pathology development. However, thes no analytical technique, in vivo or histological, that is
able to discover such abnormal features and provide a 3D distribution at microscopic resolution.
Here, we introduce a unique highroughput infrared (IR) microscopy method that combines
autanated image correction and subsequent spectral data analysisif®ri®RAge reconstructiomn.
performed spectral analysis of a complete organ for a small animal model, a mouse brain with an
implanted glioma tumor. The 3R image is reconstructed from 3Z0nsecutive tissue sections

and corrected using the-pdy tomogram of the organ for an accurate quantitative analysis of the
chemial content. A 3D matrix of 89 ¥0° IR spectra is generated, allowing us to separate the
tumor mass from healthy brain ti€subased on various anatomical, chemical, and metabolic
parameterd. demonstratéor the first timethat quantitative metabolic parametéyhicose,

glycogen and lactat&an be extracteand reconstructed in 3fbom the IR spectra for the
characterizatio of the brain vs. tumor metabolism (assessing the Warburg effect in tumors). Our
method can be further exploited by searching for the whole spectral pdefdaminating different
anatomical landmarks in the bralrdemonstrate this by the reconstrantof the corpus callosum

and basal ganglia region of the brain.

Keywords: FTIR microscopyQCL-IR imaging 3D chemical imagingDigital pathology Clinical
test
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INTRODUCTION

This work wasconductedwithin the Giophysic€of vasculamplasticity groupin the researchunit of
theangiogenesiandthemicro-environmenof tumors,INSERM U1029situgedatthe University of
Bordeaux The main themeof this researchs to developa 3D imaging methodologyfor chemical
characterizationf braintumors.Thisis anareaof canceresearchhatis currentlynotyetdeveloped
and hasa potentialof becomingvery valuablein improving the existing diagnostictool for brain

tumors.

Braintumorsdueto their ability to existevenata smallsize,thusmakingthemextremelyto diagnose
and cure, are often consideredas one of the highly destructiveand lethal group of brain diseases.
Surgeryis usuallydifficult dueto the delicatenatureandfunction of the organ.Characterizeavith
high morbidity and mortality, brain tumorsoften leadto progressivedeclinein physical,cognitive

andemotionalfunctionsandarein manyinstancedatal.

Braintumorsresultfrom anuncontrolledoroliferationof cellsderivedfrom neuraltissueor structural,
supportivetissuewithin the brain[1]. It is simply the formationof abnormalcells within the brain.
Typically, the humanbrain completesits growth and developmentsoon after birth and the vast
majority of cells entera restingstate;they normally neverdivide again.However,oneexceptionto
this rule is whena braintumor develops The abnornal brain cells re-enterthe OcelcycleCbecause

of alterationgn anyof a hugenumberof geneghatcontrolcell division andgrowth processef?].

Dependingontheir behavior tumorsaregenerallyclassifiedinto benignandmalignantor cancerous
tumors.Benigntumorsaregroupof similar cells characterizedvith slow growthanddo notinvade

surroundingissuesor spreado otherorgans Onthe otherhand,malignantor cancerousumorsare

heterogeneousellscharacterizeavith rapidgrowthandinvasioninto surroundingissuesandorgans.

Brain tumorscanbe further classifiedbasedon their origin andlocationin the brain. Brain tumors

canbeclassifiedinto primaryandsecondaryumorsdependingn their origin.

Primarybraintumorsoriginatefrom thebrain,cranialnervespituitary glandor meningesThelargest
andmostaggressivgroupof primarybraintumorsbasednthelocationof theirorigin is theglioma.
Gliomasmakeup 80% of all malignantprimary brain tumors [3] andmainly affectthe astrocytes
(alsooligodendrocyte)
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The secondanbrain tumors(metastases)riginatesfrom organsoutsidethe brain or from primary
tumorsin the brain Secondarybrain tumors are always malignantand make up the majority of
cancerousbrain tumors. Typically, secondarybrain tumors arise from primary tumor cells that
migratehematogenouslgr via directinvasionof adjacentissueTheyusuallystartin onepartof the
bodysuchasthelungsor breaseindspreadpr metastasizep thebrainthroughthebloodbrainbarrier
(BBB) [4].

Severaltherapeuticstrategieshave been proposedand are clinically available for brain tumor
treatment.Resectionis a common practice in bran tumor treatment.lt aims at reducing the
intracranial pressureby removing as much tumor as is safely possibleto preserveneurological
function [5]. Other strategiesincludes chemotherapy[6] [7], radiation therapy [8] [9], active
surveillancq10] [11], supportivetherapy[5].

However thetreatmenbf braintumorsremainsachallengeasthe mortality rateremainshighin spite
of the advancesn the therapeuticof brain tumors. A study conductedin 2012 [12] showsthat
worldwide, approximately256,213new casef brainandother CNS tumorswerediagnosedyith
an estimated189,382deaths.This representsapproximately74% mortality from the incidences
reported.

Therapeutic®f braintumorsis highly dependenon the accuratecharacterizatiomndconsequently
diagnosisof brain tumors.The choiceof therapeuticstrategyapplieddependn the reliability of
diagnosiswhich dictatesthe prognosisand consequentlyhe therapy.Therapeuticstrategysuchas
resectiondepend®n accuratedelineationof the tumormass Hence accuratedraintumordiagnosis

is avital stepin thetreatmenof braintumors.

Generally, brain tumor imaging is the first stepin brain tumor diagnosis.Brain tumor imaging
encapsulatea variety of methodsandtechnologiesusedto eitherdirectly or indirectly obtainthe
imageof the anatomyandphysiologyof the brain. Brain tumorimaging playsanimportantrole in
the diagnosisireatmenfplanning,andposttherapyassessmertf braintumors.It providesa visual
representdon of the brainwhich helpsdoctorsto preoperativelyisualizethe morphology Jocation,

size,gradeandconsequentlyhe prognosisandtreatmenbf braintumors.

Magneticresonancémaging(MRI) methodis clinically the gold standardor braintumorimaging.

MRI is basedntheprincipleof nucleamagnetiaesonancandusesadiofrequencyvavesto probe
17



softtissueanatomyandphysiologyin vivo. It is a norrinvasivetechniquewhich providesgoodsoft
tissuecontrastendis widely availablein clinics.MRI makest possibleto producemarkedlydifferent
typesof tissuecontrastby varying excitationandrepetitiontimes, which makesit a very versatile
tool for imagingdifferentstructureof interest13].

MRI wasfirst reportedasa viable tool for detectingbraintumorin 1984[14] andhasevolvedto
becomethe standarctlinical routinein braintumorexaminationlt providesneurconcologistswith
2D or 3D contrastimagesusedto identify lesion, determinethe lesion location, extentof tissue
involvement,andresultanimasseffectuponthe brain, ventricularsystemandvasculaturg15].

However,it is unableto revealpathologicabbjects suchasmetastasesr tumorswith diameteless
than5PLOmm. Thisis dueto thespatialresolutiorwhich cannotgo below1-mmatthebestfor human
applications,100-um in smallanimals[16] [17] [18] andlow sensitivityto sometumor types[19].
In spiteof theadvances MRI [15] [20], howeverdueto thelimited spatialresolutionwhich makes
it impossibleto characterizébrain tumorsat cellular resolution.MRI is mainly usedclinically for
preoperativeanalysisandto aid targetingof tumorsfor tumorexcision[21].

Histopathologicalexaminationis the standardfor brain tumor diagnosis[22]. Histopathological
analysisis the standardprocedureroutinely usedto revealthe amountof necrosis,proliferative
regionscollagenandvascularitywithin thetumorarea[23]. Histopathologicatechnique&nablethe
analysisof the cellularity, nuclear atypia, metabolic pathways, mitotic activity, pleomorphism,
vasculamyperplasiaandnecrosiq21].

Historically, histopathologicakvaluationhadbeenusedby the World Health Organization(WHO)

for the classificationof brain tumorsin the light of tumorigenesispasedon their microscopic
similaritieswith differentputativecellsof origin andtheir presumedevelsof differentiation Recent
updatesn the WHO classificationhasincorporatedoth histologicalandmoleculargeneticfeatures
[22] in tumor classification Analysesof the metatlic pathwaydnvolvedin tumorigenesisnayalso

provideusefu informationfor braintumordiaghosisandtreatment.

Hypoxia and metabolitedeprivation are commonly observedin solid tumors and modulatethe
transcription of genes involved in several cellular processes,including malignant growth,
angiogenesisandmetastasi$24]. Brain tumorsalsoexhibit differencein their energyrequirement,

dependingon the cell types considered,tumor grade and lesion locations. Thus, an accurate
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determnationof the spatialmetabolicprofile of tumorsis requiredfor a beter diagnosisn orderto

adoptrelevanttherapeuticstrategy

Traditionally, histopathologicalexaminationpreparessampletissuesfor microscopic study by
histological staining. This is donein orderto revealcellular compositionof tissues.Typically, a
moleculartargetis determinedand probedundera microscopewith the aid of histologicalstains.
Stainingis a commonlyusedmedical processin the diagnosisof tumorsin which a dye color is
appliedon the posteriorandanteriorborderof the sampletissuedo locatethe diseaseaer tumorous
cells or other pathologicalcells [25]. More recently,immunostainingwhich binds antibodiesto

antigendn tissueshavebeenusedto stainparticularprotein,lipid andcarbohydrate.

Unforturately,traditionalhistopathobgy imagingtechniquesrelimited in braintumorapplications
due to the limited known molecular information about brain tumors. Furthemore, multiple
immunostaining cannot identify more than four different antigenson a same sample [26].
Alternatively, metabolicparametercan be usedas complementarynformationfor tumor diagnosis
through techniquesthat allow accessto the 3D organizationof tissue contentsalong with their
guantitativemeasurementotablyfor chemicalandcellularparametersanbeutilizedin histological

examination

Spectrosopic techniquesuch as massspectroscopycan offer quantitativemeasuremenof tissue
contens. Combininga spectrometeand a microscopeis cdled spectremicroscopy.Thesesetups
offer a global view of the samplechemicalcontentswhich can be further analyzedfor extracting
relevantmolecularparameterdor diagnosis[27]. 3D chemicalimaging is achievedby sever&
spectremicroscopic methods. These provide a quantitative analysis of tissue content and
substructurewith adepthof informationthatno otherhistologicaltechniquecandeteminefrom the

samesample However theyarecurrentlyunderexploitediespitetheir potential.

An emerging spectremicroscopic technique for histopathologicalexaminationis IR spectre
microscopyAs aresultof theadventof powerful IR sourcesvith quantumcas@delaser§QCLS)in
2014,IR spectremicroscopycannow producemillions of IR spectrgper hourwith high S/N. This
innovationhasled to newdevelopment# IR imageanalysedor biosamplessuchas3D-IR image

reconstructionor the quantitativeanalysisof metabolc or biochemicalparameter§27].
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3D spectoscopy analysisrapidly faces the problem of big data managementas spectraare
characterizedy large seriesof x, y datawhoseexploitationrequiresintensecalculationmeans.
Thereforemostof specto-microscopytechniquesrecurrently notappropriateonlargesamplesi.e.

typically from the 1 mm?® to the 1 cm?® tissuevolumes suchasatumorbiopsyor asmallanimalorgan
in which a pathologycanbe modeled.

Theterm Obiglata@n 3D chemicalimagingholdsa doublemeaning sincea 3D spectrummatrix is
at the sametime massiveand containscomplexchemicalinformation. The massivenatureof the
informationis dueto the hugenumberof spectraHowever,the complexnatureof this information
stemsfrom the fourth dimensionof the voxels, the spectraldata, which require advanceddata
treatmentgo extractthe Oembedded®emicalinformation (e.g.,individual absorptionbandsin IR

andRamanspectraby curvefitting methods).

Furthermoreanalytics(i.e., thealgorithmsperformingspectraldatatreatmentso producebiological
metadata)require major computing resources,combining CPU means for high-performance
calculationwith GPU cardsfor both parallelizedcalculationson spectraand visualizationof 3D

recorstructedresults[28].

3D reconstructions emergingn IR spectremicroscopy Previously acquisitionof a 3D histological
datasetvasnotfeasibledueto bottlenecksuchasinability to maintainconsistenS/N andrelatively
slow acquisitiontime for large samplesAs the new frontier of 3D chemicalimagingby IR is just
openingup, thereis currently no standardprocessingsequenceor specializedalgorithmsfor 3D
reconstructiorof IR slices.Thus, thereis needto developa standardprocessingsequencefor 3D

reconstructiorof IR slices.

In this thesis,advancedspectradatatreatmentmethodswere developedor the characterizatiorof
braintumors.Also developeds anadvancegrocessingequencéor 3D quantitativereconstruction
of IR slices.An applicationof our developednethodss shownin a quantitative3D reconstruction
of tumor in a mousebrain basedon the chemical characterizatiorof tumor and normal tissue
metabolismAlso presentedi this thesisis the 3D reconstructiorof the anabmy of mousebrain by

usingour advancegrocessingequencéor 3D quantitativereconstructiorof IR slices.
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This manuscript is organizedasfollows:

Thefirst partof this manuscriptPartA, is dedicatedo the understandinghe stateof the art within
the domainof this work. In thefirst chapterwe introducethe conceptof chemicalcharacterization
of brain tumor by infrared imaging. | define the biological and anatomicalelementsneededto
understandur work as well as review on the biomarkersfor chemicalcharacterizatiorof brain

tumors.

In the secondchapter,we introducethe different techniquedor 3D reconstructiorof histological
images!| presenta comparativestudyof thesemethodsandtheir applicationto 3D reconstructiorof

infraredimages.

In the secondpartof this manuscripPartB, we presenthe contributionsmadeduring the courseof
thiswork. In thethird chapterwe introduceanadvancegrocessingequencindor thedevelopment
of 3D IR imaging.This includescomputationamethodsor extractingbiological metadatdrom IR
spectraanda hierarchicaimethodfor 3D reconstructiorof IR metadatamages.

In thefourth chapterwe presentheapplicationof our proposednethodgo 3D chemicalimagingof
tumorsin a samplemousebrain. | discussour experimentalsetup,samplepreparationand data
acquisition and a step by step detailed experimentof our proposedmethodsfor chemical

characterizatiowof braintumor.

In thefifth chapterwe presentan elaborateexperimento resole the anatomyof the mousebrain
vis-"-vis itOschemicalinformationin what is called 3D anatomechemistryof the mousebrain. |

presenthereconstructiorof someanatomicalandmarkin the mousebrainin this chapter.

In the lastchapterwe makea gereral conclusionanda reflectionon the perspectiveshathavebeen
refinedby thiswork.
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CHAPTER 1: Brain tumor characterization
and diagnosis

1.11General Description of brain tumors

Brain tumorsresultfrom anuncontrolledproliferationof cellsderivedfrom neuraltissueor
structural supportivetissuewithin the brain[1]. It is typically theformationof abnormalkells
within the brain. The humanbraincompletests growthanddevelopmensoonafterbirth andthe
vastmajority of cellsenterarestingstate;theynormally neverdivide again.However,a major
exceptionto thisruleis whenabraintumordevelops.

Theabnormabraincellsre-enterthe OcelcycleCbecausef alterationsn oneor severalgeneshat
control cell division andgrowth processef?]. Dependingon their behavior tumorsaregenerally
classifiedinto benignandmalignantor cancerousumors.Benigntumorsaregroupof similar cells

characterizedvith slow growthanddo notinvadesurroundingissuesor spreado otherorgans.
Ontheotherhand,malignantor cancerousumorsareheterogeneousell phenotypegharacterized
with rapidgrowthandinvasioninto surroundingissuesandpossiblymetastasingo distantorgars.

Braintumorscanbefurtherclassifiedbasedon their origin andlocationin the brain.

Brain tumorscanbe classifiedinto primaryandsecondaryumorsdependingon their origin.

Figure 1Brain tumor classification based @aamorlocation[29]
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Primarybraintumorsoriginatefrom the brain, cranialnerves pituitary glandor meningesThe
largestandmostaggressivegroupof primarybraintumorsbasedn thelocationof their origin is

theglioma.Gliomasmakeup 80% of all malignantprimarybraintumors|3].

Thesecondanpraintumors(metastases)riginatesfrom organsoutsidethe brainor from primary
braintumors Secondarypraintumorsarealwaysmalignantandmakeup the majority of cancerous
braintumors.Typically, secondarypraintumorsarisefrom primarytumor cellsthatmigratevia the
blood systemor throughdirectinvasionof adjacentissueTheyusuallystartin onepartof the body
suchasthelungsor breas andspreadpr metastasizep the brainthroughthe blood brainbarrier
(BBB) [4].

In mostcasesabraintumoris namedfor the cell type of origin. Somebraintumorsarenamed
accordingo their location.Today,mostmedial institutionsusethe World HealthOrganization
(WHO) classificationsystento identify braintumors[22].

The WHO classifiesbraintumorsby cell origin andhow the cellsbehavefrom theleastaggressive
(benign)to the mast aggressivémalignant). Sometumortypesareassigned grade which signifies
therateof growth. Therearevariationsin gradingsystemsgependingn thetumortype.

Theclassificationandgradingof anindividual tumor characterizethefeaturesof thetumorata
specificstageof growth Althoughtheymayfall into a specificclassificationor category brain
tumorsarespecificto eachindividual. Brain tumorshavevastly differentcharacteristicand

patternsof growthdueto the molecularprofile of theindividual tumor.

A seriesof criteriaareusedto makea diagnosisandgrading.Oneimportantcriterionis anaplasia,
themannerin which tumorcellsgrow with thelossof normalform or structure The degreeof
anaplasiaelpsto forecasta tumorOgrowth potential. The mostrapidly growingtumorshavethe
highestdegreeof anaplasialn additionto othercriteria, sometumorsareexaminedor their genetic

traitsto evaluateghe natureof thetumor.

Gliomas are the most common aggressiveand the worst kind of primary brain tumors, which
representibout42% of all adultbraintumors[30] andapproximately50%in children.Gliomasare
usually locatedin the deepwhite matterof the cerebralhemisphere$31], mostfrequentlyin the

frontal lobe andmainly affectthe astrocytegalsooligodendrocyte)
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Dependingontheir shapeandsize,gliomasareclassifiedfrom gradel (consideregsbenign)to
gradelV (themostmalignant).Thegradel gliomaarepoorly aggressivéumorsmostcommonin
childrenandyoungstersGradell arediffuseor low-gradeastrocytomasgradelll arehigh-grade
anaplasti@strocytomasndgradelV arealsocalledglioblastomamultiform (GBM) or malignant

astrocytomas.

Severaltherapeuticstrategiehavebeenproposedandareclinically availablefor gliomatreatment.
Resections acommonpracticein braintumortreatmentlt aimsatreducingtheintracranialpressure

by removingasmuchtumorasis safelypossibleto preserveneurologicalfunction[5].

Otherstrategiesncludeschemotherapi6] [7], radiationtherapy{8] [9], activesurveillancg10] [11],
supportivetherapy[5]. Thesestrategiesanalsobe combinedn somecasedo reducethe probability

of arelapse.

However,the treatmentof gliomaremainsa challengeasthe mortality rateremainshigh in spite of
the advancesn the therapeuticsof brain tumors. A study conductedin 2012 [12] showsthat
worldwide,approximately256,213newcase®f gliomaandotherCNStumorswerediagnosedwith
an estimated189,382deaths.This representsapproximately74% mortality from the incidences

reported.
Therapeutic®f braintumorsis highly dependenon the accuratecharacterizatiomndconsequently
diagnoss of brain tumors.The choiceof therapeuticstrategyapplieddependn the reliability of

diagnosisvhich dictatesthe prognosisandconsequentlyhetherapy.

Therapeuticstrategysuchasresectiondependson accuratedelineationof the tumor mass.Herce,

accuratebraintumordiagnosigs avital stepin thetreatmenof braintumors.
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1.2! Current Diagnostic Methods

Clinical symptomsareusuallyindicatorsof the presencef gliomatumorsin thebrain. The
observedsymptomsdependn the anatomicakite of thetumor. Brain gliomacancauseheadaches,
nauseaseizuresyomiting andepilepsy diminishedconsciousnessyeaknes®r numbnessiossof
vision, personalitychangesndlossof mentalsharpnessr difficulty in concentratingGliomaof
the optic nervemay causevisualloss.

However the standargrocedurdor diagnosinggliomais throughbrainimagingand
histopathologicaéxaminatiorof braintissues.

1.2.1! Brain Imaging

Generally, brain tumor imaging is the first stepin brain tumor diagnosis.Brain tumor imaging
encapsulatea variety of methodsandtechnologiesusedto eitherdirectly or indirectly obtainthe
imageof theanatomyandphysiologyof the brain.

Brain tumorimagingplaysanimportantrole in the diagnosisireatmenfplanning,and posttherapy
assessmerdf braintumors.It providesa visual representatioof the brain which helpsdoctorsto
preoperativelyisualizethe morphology,location, size,gradeand consequentlythe prognosisand

treatmenpf braintumors.

1.2.1.1 Computed Tomography

Computed Tomography (CT) Computed Tomography combines sophisticeagdsganner and
computer technology. Unlike other medical imaging techniques, CT has the ability to show a
combination of soft tissue, bone, and blood vessels in the final 2D or 3D images

CT is effective at examining bone and tissue calcification and haemorrhage. It can determine some
types of tumours, as well as help detect swelling and bleeding. Usually, iodine is the contrast agen
used during a CT scan.

However, CT scans involve pasure to ionizing radiation. This is a concern for people who have
multiple CT scans and for children, because they are more sensitive to radiation than adults.

While high resolution CT allows the clear imaging of blood gessabout 3860 um diameter,

however, the xay dose used for acquisition increases as the quality and resolution of the final
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image increases. Thus a compromise must be sought between the overall image quality and the si
of tumours. This makes CT nstiitable for imaging glioma metastases.

1.2.1.2! Positron-emission Tomography
Positroremissiontomography(PET)imagingusespositroremittingradionuclidego label
moleculessuchasglucose wateror ammoniawhich canbeimagedinsidethe body. Althoughit has
limited spatialresolution(3®4 mm), it canbe preferreddueto its higherspecificity andsensitivity
for in vivo imaging.It requiresalsoprobessuchasfluoro-deoxyglucose(FDG) labeledwith the

positronemittedF havinga half-life of 210min.

Dueto thetechniqueresolutionandtemporallimits, suchlabelcanbeusedonly to locatethe
primarytumorsite.PETis highly specificdueto labelingmoleculesputit limited whenpossible
applicationgo smalltumorspecimensvherelong accumulatiorof contrastagentis requiredto

obtainasignal.

1.2.1.3! Magnetic Resonance Imaging

MagneticResonancémaging(MRI) An MRI is the standardmagingtechniquefor suspectedbrain
tumors.An MRI is ascanningdevicethatusesmagneticields andcomputerdo captue imagesof
thebrain.It doesnotusex-raysandit providespicturesfrom variousplaneswhich permitsdoctors
to createa threedimensionaimageof thetumor. The MRI detectssignalsemittedfrom normaland

abnormatissue providing clearimagesof mosttumors.

Magneticresonanc@naging(MRI) methodis clinically the gold standardor braintumorimaging.
However,it is unableto revealpathologicalbbjects suchasmetastasesr tumorswith diameteress
than5BP1L0 mm. This is dueto the spatialresolutionwhich cannotgo below 1-mm at the bestfor
humanapplications100-um in smallanimals[16] [17] [18] andlow sensitivityto sometumor

types[19].

In spiteof theadvancesn MRI [15] [20], however dueto thelimited spatialresolutionwhich
makest impossibleto characterizdraintumorsat cellularresolution. MR is typically used
clinically for preoperativeanalysisandto aid targetingof tumorsin biopsieg21].
Theabovementionedmagingtechniquesreonly effectivefor thelocalizationof the bulk disease

in vivo butdoesnotallow theimaging of detailedanatomyandphysiologyof tumorsaswell as
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metastasesnaging.This is dueto their limited spatialresolutionwhich cannotgo below 1-mm at

their bestfor humanand100-um in smallanimalapplications.

Consequentlyit is necessaryo use alternativeex-vivo histopathologicaéxaminatiorof tissuedor
diagnosisof tumors.Histopathologicakxaminations the standardor braintumordiagnosig22].
Histopathologicaproceduresreroutinely usedto revealtheamountof necrosisproliferative

regions collagenandvascularitywithin thetumorarea[23].

Thus,biopsiesareperformedo enablethe analysisof the cellularity, nuclearatypia,metabolic
pathwaysmitotic activity, pleamorphism,vasculathyperplasiaandnecrosig21] of tumorsin

orderto obtainpathologicaldiagnosisandarealsohelpful to identify thetumormargins.

1.2.2! Biopsy & surgical excision

A biopsyis asurgicalproceduran which a smallsampleof tissueis takenfrom thetumorsiteand
examinedundera microscopeTheresultshelpthe doctordiagnosehetype of tumor. The biopsy
will provideinformationon typesof abnormalkellspresenin thetumor. Therearetwo kinds of

biopsy proceduresanopenanda closedbiopsy.

An openbiopsyis doneduringacraniotomy A craniotomyis a surgicalprocedurehatinvolves
removinga pieceof theskull in orderto getaccesgo thebrain(excision) A closedbiopsy(also
calledstereoacticor needlebiopsy)is performedwhenthe surgeonwantsto avoidremoving
healthytissuefrom theareasurroundinghetumor,or whenthetumoris in anareaof the brainthat

is difficult to reach.

Guidedby a CT or MRI thatis performedprior to the procedurethe surgeordrills asmallholeinto
theskull andpasses narrow,hollow needlethroughthe holeinto thetumorto removea sampleof
tissue.Oncea samples obtaineda pathologiswill examinethetissueundera microscopeFurther
examirationor analysismaybe performedon thetumortissuein orderto accuratelydiagnosehe

tumor.

Thepathologistdiagnosesumorsby examiningthe histologyandphysiologyof thetissue.This
domainis referredto ashistopathologylt involvestheidertification of tumorsby light microscopy
of pathognomoniaistologicalandimmunohistochemicgllHC) stainingpatternsHematoxylinand
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eosin(H&E) is the standardstainusedby histologiststo highlight certainareasor moleculesn
tissuesHistologicalexaminationncludesgradationof tumorcell density,vascularizationsmalk
cell, densityandmatrix loosening andthe presencef necrosisatypia,mitoses andendothelial
proliferation.

Thepathologistypically usessomesalientcharacteristicsalled biomarkerswvhich characterize
differenttypesof tumorsin orderto determinghetype andgradeof thetumor. Thebiomarkers
typically include;the morphology molecularandchemicalcompositionof thetumortissue.For
examplethedegreeof anaplasiamitotic activity aswell asendotheliabroliferationand/ornecrosis
canbeusedto identify GBM.

1.2.2.1! Histological/Anatomo-pathological characterization

Anatomapathologyis oneof the standardistopathologicahndclinical diagnosticcriteria. The
first publishedclassificationof braintumorsby the WHO wasbasedpurely on their morphological
andhistologicalfeaturesSomebraintumorsarewell-differentiatedandcanbe diagnosedolely
basedn their histopathologicahppearancgS2].
Histologically,braintumorswerecategorizedsastrocytomagligodendrogliomaglioblastomaand
oligoastrocytom#33] [34] [35].

Figure 2 Histological classification of brain tumors. A: Astrocytoma showing variable nuclear pleomorphism. B: Gliobastoma
showing viable cells palisading necrotic areas. C: Oligodendroglioma showing unstained cytoplasm and a fine capilliaky networ

D: Oligoastrocytoma showing heterogeneous diffusive tufidéis
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Astrocytomasaretypically invasiveanddo not form a solid massor clearmargins Well-
differentiatedtumor cellsexhibita moderatencreasan the numberof nuclei,variable nuclear
pleomorphismanda meshlike networkof glial fibrillary acidicprotein(GFAP)processes.

Necrosisandaflorid microvasculaproliferationusuallyindicatethe presencef glioblastoma.

Generally oligodendrogliomasrediffusive tumors which areprimarily madeup of sheetf cells
with spheroidnucleisurroundedy a clearhalo (unstainectytoplasm)andafine capillary network.
Thegradingis determinedy theincreasen mitotic activities,nuclearanaplasiandcell density.

Fordiffusive tumors,it is quitedifficult to identify andassociatéo a specificfamily of tumors.
Hence theoligoastrocytomaategorywascreatedHowever,poorly-differentiateccumor cellshave
beenreportedto havehigh ratesof inter-observewariability which leadsto misdiagnosisind
inappropriateherapeutidreatment.

Thisis justifying furthermolecularanalysisof tumorcells,i.e.,genessequencingn orderto
identify key prognostiomarkersandclassifya tumorbasedn uniguemolecularandcytogenetic
parametersThis is makingadirectlink betweerpathologicalevaluationof tumorbiopsyand
refining the diagnostiomarkersbasedn genomics.

Furthermoremultiple immunostainingcannotidentify morethanfour differentantigensonthe
samesample.Thesebottleneckgive riseto the needfor the developmenof novelor
complimentaryrapidandaccessibléechniquedor braintumordiagnosis.

Also, theuseof labelsmakesthe standardechniquesemiquantitativeat bestdueto different
manualinterventionsduringtheimagingof tissuesThis lack of quantitativeinformation
compromisesiutomatiorandadvancedlataanalyticsthatcould potentiallyovercomethe
limitations of pathologist.
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Figure 3 Overview of WHO starsdld tumor diagnostic toolsThe use of MRI imaging as the gold standard for determining tumor

site, followed by biopsy, histological imaging and molecular characterization.

1.2.2.2 Molecular characterization

TherecentWHO classificationis thefirst to incorpoatemolecularparameterso furtherdefine
gliomasin anobjectivemannel[32]. Severaimoleculargeneticsstudieshavebeenconducted
identifying consistengeneloci anomaliesassociateavith particulartypesof cancerNot only are
thesegeneticmarkersusedto classifytumor subtypesbut theyalsoareoftenprognostiqredictors

of thecourseof thedisease.

Forexamplejn gliomas,the mostcommonmutationsdentifiedto datearein theIDH1/IDH2
geneswith IDH1 mutationsdentifiedin approximately80% of grade2/3 gliomas[22]. Themost
commonmutationis a singleaminoacid missensenutationin IDH1 atargininel32(R132H),
identifiedin 12% of sampleg23]. Gliomasurvivalis stronglyassociatedavith theIDH1/IDH2
mutaton, with IDH1 wild-typetypically beingassociateavith pooreroutcomeg24,25].

Anothermoleculamarkeridentifiedis co-deletionof the 1p and19qarmsof their respective
chromosomef24]. Useof IDH1 mutationand1p/19qco-deletionstatushasnearlyeliminatedthe

previousamorphouglassificationof oligoastrocytomg26].

Recentadvancesn sequencinglongwith thevastdatafrom cancegenomeatlashaveenabledhe
classificationof GBM into four distinctsubtypesncluding classicalmesenchymaproneuraland
neural[37]. This efficient classificatiorhasbeenreportedio haveresultedn theincreaseof the

survival periodfor patients.
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Figure 4 WHO nolecular classification of brain caecin adult, young adult and children. Showing the different grades of brain
cancer; GradedlV, classified by the IDH1/IDH2 mutatid38].

However,a majorbottleneckwith molecularcharacterizatioms the runningcostandthetime
requiredfor completescreeningf tissuesAlso, therecognitionof histologicheterogeneityvithin
braintumorscontainingmultiple phenotypesrecompellingreasondor developingmorerefined
andaccuratediagnostidechniquesyhich mayhelpimprove treatmenbutcomeg39].

Theseconventionatechniquesisedfor diagnosisarealsoproneto biasedsubjectiveinterpretation
by the histopathologistsThis is becaus¢heseprocessearelargelymanualanddependnthe
pathologist'saxpertisdfor the interpretatiorof results.Conventionahistologyis alsonot suitedfor
metabolicprobeof tumorswhichis essentialn tumordevelopment.

1.2.2.3! Chemical characterization

Alternatively,the chemicalanalysisof tissuescanbe also performedby labelree microscopies,
suchasthosederivedfrom spectroscopyCombininga spectrometeanda microscopaes called
spectremicroscopy.Thesesetupsoffer a globalview of the samplechemicalcontentqlipids,
proteins,carbohydrateandnucleicacids)which canbeanalyzedor extractingrelevantmolecular
parameter$or diagnosis.

As agenerafeaturedor spectremicroscopiestheyallow qualitativeandquantitativeanalysisof
thebasiccomponent®f tissueswith a depthof informatian thatno otherhistologicaltechniquecan
determindrom the samesample This is donewithout the useof histochemicattainsbeforedata
acquisitionsthusensuringto analyzethetissuewith all its constituenunaltered.
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Spectroscopiearequantitatve by nature. Theyallow mappingpotentiallya wide rangeof chemical
informationin anonsupervisegatternwhichis undoubtedlya majoradvantagéor comparison
betweerhealthyandpathologicakissuespecimensvithout anya priori knowledgeaboutthe
sample.

1.31Spectroscopies and brain tumor analysis

Spectroscopiesffer an invaluable opportunity to access chemical features of biological samples in
a nonsupervised way. The global chemical information they provide enables the exploitation of a
large arrg of chemical species or paratars Spectroscopic techniques such as Mass spectrometry,
Raman, Midinfrared and Xray fluorescencare the only currently available techniques that can
guantitatively analyze tissue content (e.g., molecular concentrasindsubstructures (e.g., cells or
blood vessels).

Figure5 shows the pysical principle of the midhfrared, raman and mass spectroscopy methods.
X-ray fluorescencéXRF) can be used to analysace elements and metal idnsiosamples,

however, it is not discussed in this thesis due to its low relevance to cancer imaging.

Figure5 Physical Principles of Spectromicroscopy Methods Providing Global Chemical Information from Tissues. The infrared (IR)
and Raman bands can be described by their position (l), intensity (i), full width at half height (FWHH), and Gaussiaiaiiorentz
fraction (/). The mass peaks are described by their intensity (i) at given mass:charge ratio (m/z). Therefore, mass specisa (MS
require the identification or localization of the peaks and calibration of their intensity scale to extract quantitativeiitio while
IR and Raman require more sophisticated spectral data treatments will be more sophisticated. This issdaege dherlap
between adjacent bands for complex biological sample spectra in IR and Raman, meaning that using the intensity & a given | i
rarely characteristic of a single band. This phenomenon is even more pronounced for IR spectroscopy, wheshlprogid
absorption band§28].
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1.3.1! Mass Spectrometry Imaging

Massspectrometrys basedn ionizationof the samplesandseparatiorof ionsaccordingo their
massto chargeratio (m/z). MassSpectrometrymaging(MSI) techniquesavetwo possible
applicationsthe analysisof eitherinorganicor organiccontentthroughmassfractions.Iln general,
MSI techniquesncludea spatiallyresolvedonizationmethodto collectmassspectrarom anarray

of positionsacrossa sample[28].

Massspectrometnhasevolvedoverthe yearsandhasrecentlygainedattentionfrom the medical
communityaspotentialroutinetool for medicaldiagnosisiueto the newdevelopment& ambient

ionizationtechnique$40].

Theambientionizationtechnique®ffer a simpleinstrumentatiorandreattime assessmemf tissue
molecularinformationwhich hasbeena majorbottleneckwith MSI. A chemicalmassspectrum
displayinghundredsf compoundanbe obtainedfrom a selectedegionof atissuesampleplaced
undertheionizationsourcen lessthanl seconddependingon the choiceof massanalyzer.

A majorstrengthof MSl is its high sensitivityandspecificity, severaimoleculardetailscanbe
obtainal from MSI massspectraA trademarkof MSI is its sensitivityto smallmoleculessuchas
lipids andmetabolitesDueto its sensitivity,MSI hasbeenusedto studythe metabolomics,

lipidomicsandproteomicsof glioblastomé&Figure 6) [41, 42].

While the high sensitivityof MSI is of greatdiagnosticvalue,the currentstateof MSI technology
posessomelimitationsto theclinical useof MSI for braintumordiagnosisAlthough major

improvemets havebeenreported MSI generaremainsrelatively slow for tissueimaging[43].

MSI is alsolimited by the spatialresolutionofferedby the currentinstrumentsWhile someMSI
techniquesllow imagingat submicrometermresolution,a compromiseof acquisitiontime and
sensitivityis usuallyrequiredfor suchimageacquisitiong43]. Dependingonthe m/z rangeseta
priori in orderto definethe molecularparametersvhich areof interestfor atissue,MSI remainsa

supervisednethodandits spectraldataarechallengingto analyze[28].
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Figure 6 Necrotic and Glioblastoma tissues analysed by Mass SpectrofAg¢t®ptical images of a D43 seati H&E shined after
MSI analysis. Dotted lines on the section delineate areas of necrosis ONO and viable glioblastoma OGBMO tumor. (B)riNegative i
mode mass spectrum acquired frtma viable GBM area durinlylS| analysis (selected mass spectrum is inditdty an arrow in
A). In red, m/z values corresponding to lipids species exclusively or preferentially detected in thee@8Nhaet corresponds to a
MSI ion image representing the repartition of an ion at m/z value 279.0. (C) Negative ion mode ctass spEjuired from the
necrotic area during DESMSI analysis (selected mass spectrum is indicated by an arrow in A). In red, m/z values corresponding to
lipids species exclusively or preferentially detected in areas of necrosis. Inset corresponds-kID Bl image representing the
repartition of ion at m/z value 572.[44]
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1.3.2! Raman spectroscopy

Ramanspectroscopys basednirradiationof a sampleby meansof laserandrecordingof
scatteredadiationthatarisesfrom the molecularvibrationsin the sample Ramanspectroscopy
testsmolecularvibrationof asymmetricchemicalbondsto detecttheinelasticscatteringof photons
andtherefore providesinformationon the molecularstructureandconformationof thetargettissue
[45].

Ramanhasthe advantagef beinginsusceptibléo water,which remainsa problemfor other
spectroscopitechniquesBut this is notanymoreanadvantagdor the analysisof tissuesectionsn

histologicalexaminations

Neverthelesssincethereareproteincontentdifferencesetweertumortissueandnormaltissue,
Ramanspectroscopgandistinguishthemat molecularevel [46, 47]. FurthermoreRamanspectra

canberapidly processedandaresultcanbe offeredin reattime duringthe surgery

The main strength of Raman microscopy is its lateral resolution. Riaucesscopyoffers better

spatial resolution (<fum) [48]. Another advantage of its high odstion is that it can be used to
highlight subtle changes in small tissue substructures, such as vascular endothelial dysfunctions,
abnormal inclusion of lipid droplets in cells [38], and so on. Raman has been used to investigate
medulloblastoma (grade IWHO), low-grade astrocytoma (grade WHO), ependymoma and
metastatic brain tumof49] and the grading of astrocytom&®)].

In principle, the high resolution of Ramaacatteringshould give aignificant advantage to Raman
spectremicroscopy for resolving small tissue substructures. However, this higher resolution is not

easily exploitable.

Raman microscopy is facing three major challenges which include; big data as a result of the high
resoldion, longer acquisition time causing changes in ambient conditions between the moment of
the background acquisition and the degradation in sigradise ratio (S/N) as the acquisition

resolution increasg8].

Ramanmicroscogy is also limited by its poor sensitivity. The magtvanced studies for the
analysis of tissues show that Raman spectra could provide up40 Bands if an appropriate
curvefitting method is usefb1], thereby limiting thabnly a few bands can be extracted for

guantitative analyses based on a linear sifz&jl
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Figure 7 Discrimination of healthy and tumor tissues by Raman spectros@®pM&E stainingof healthybrain tissue section.
(BED) H&E stainingof gliomabrain tissue sections. Raman md&#H are based on EPneans cluster analysis on secti@x&D,
respectivelyln E, the area associated to the spatial distribution of cluster 9 correlates with white matter tiem the corpus
callosum (CC). Tissue surrounding CC was encoded by cluster 12. Other clusters (1, 3, 8, and 10) described the cortex (Gray
matter). Clusters 2 and 7 described blood and could be associated to the vascularsatibhshow Raman maps glioma brain
tissuesClustersassigned to tumor tisswee clusters 4, 56, 8, and 11All clusters assciated with tumor shows decrease in the
intensity of the lipids bands at 700, 1062, 1128, and 1296 cm! 1 corresponding to cholesterol and phospholipids. Inathetrast,
bands were more pronounced in the tumor model such as bands at 782 and 8R@ttrifduted to DNA and/oRNA.[52]

1.3.3! Mid-Infrared Spectroscopy

Mid-Infrared(Mid-IR) spectroscopys atechniquebasedon thevibrationsof moleculesAn
infraredspectrumis typically obtainedby passingnfraredradiationthrougha sampleand
determning whatfractionof theincidentradiationis absorbedt a particularenergy.In complex
biologicalsystemsthelR spectrums the sumof the contributionsof the biomoleculegpresente.g.
proteinsipids, sugarsandnucleicacids)[53], creatinga molecularfingerprintof the sample The

fingerprintof no two molecularstructureproducethe sameinfraredspectrum.
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Mid-IR spectroscophasanadvantag®f allowing rapid mappingof potentiallya wide rangeof
chemicalinformationin anonsupervisegatternwithout prior sampldabelingMid-IR
spectroscopyffersa highersignalto-noiseratio (S/N) thanRamanandthusmorechemical
parameter$or analysisWhile Ramanhasa higherspatal resolutionthanMid-IR shouldbe
generallymorestablethanRamanbecaus®f its highersignatto-noiseratio. It alsohasthe
advantag®f arelatively simpleandaffordableinstrumentatiof54].

Mid-IR microscopyis particularlywell suitedfor tumorimagingasit provideshigh contrast
betweerhealthyandtumortissueswhich are usuallycharacterizedy majorredistributions
betweerproteinsandlipids contentd27]. Thetechniqueof FTIR spectraimappingis ableto detect
subtk chemicalchangesn tumorsindicativeof tumor progressiorandfor identifying prognostic
indicatorg[55]. Mid-IR microscopyhasbeenusedin the mappingof tumor progressionn tissues
[53] andto discriminatebetweermalignantandnormaltissueq56, 57].

While Mid-IR microscopyhasshowna lot of promiseandcomparativeadvantag®verother
spectroscopiefr braintumordiagnosishowever |t is currentlyunderexploitedlespiteits

potential.Thisis dueto severalimitationsof currentcommerciaMid-IR instruments.

Thesdimitationsinclude;relatively high spatialresolutioncomparedo atechniqudike Raman
spectroscopyhich offersspatialresolution of <1-um, relativelylower moleculardetailscompared
to ahighly sensitivetechniqudike MSI, the bottleneckf usingcooledIR detectorslong
acquisitiontime for largetissueandtheinterpretatiorof spectradata.
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Figure 8 FTIR comparison of healthy and glioma tissBhotomicrography of HE stained healthy brain tissue (A) and glioma tissue
(B) sections. (Ayhows particular structures can be recognised such as CC that appears as a OVO shape with the genu (apex)
pointing medially, and CA. In figure B, the more intensely stained area, marked OTO represents tumor zone. Te@@sETHR
maps (C) and (D) were obtained from the measured areas marked with a black frame on the adjacent unstained healthy (A) and
glioma @) tissues, respectively. Pseuclor FTIR maps were constructed omans clusters. Each cluster (consisting of similar
spectra) was assigned to one brain feature. Blue: denotes areas in the scan where no tissue was present; yellow, nedl, brown a

cyan:Cortex areas; grey: CC and CA areas; green: tumor tissue area; pink: infiltrative &8]e.

Technique  Penetration | Lateral Spectral Field of @ Tissue Accessible Refs
depth (1" ) resolution | interval, view area chemical
" ) (resolution) (" #  covered @ data
# % /min
(G
IR 30 5-10 500-4000cm  2000x 800000  100-200 [27,
' @-8cm?) 2000 59]
Raman 50 4-32 100-4000cm  Single 70000 50-100 [60,
'.54cm™)  point 61]
volume
MSI 0.01 10-100 500-10000 Single 1500 100-1000 [62,
m/z,(1-10 point 000 63]
m/z) volume

Tablel Comparison of the analytical performance of misgectroscopic techniqued/hileanalyzingfrozentissuesthemain
analyticalperformancewary by technique R (sectionthickness5E25 mm;best3D resolution: 10 mm;); Raman(sectionthickness:
540 mm; best3D resolution:5 mm;); MS (sectionthickness5860 mm;beg 3D resolution:10 mm) [28]
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1.4!Mid -IR microscopy for cancer biology

Around 1800,Harschelstudiedthe spectrunof sunlight usinga prismandmeasuredhe
temperatur®f eachcolor. He foundthatthe highesttemperaturevasjust beyondthered,whatwe
call nowinfrared.The electromagnetispectrunof thelR regionis conventionallydividedinto

threeparts

Figure 9 Electromagnetic spectrum: Showing IR divided into the far, mid and near regions and their corresponding wavelengths

Mid-IR spectroscoppasicallydealswith the mid-infraredregion400@600cm™ (2.5625um
wavelength)whichis the mostinformativefor biosamplesincetheserevealvibrationsof
molecularbondsfrom organiccompoundsalthoughthe far-infraredapproximately400010 cm™
(25P1000um)andnearinfrared14,00@4000cm’™* (0.75ER.5um)havealsoprovidedsomebenefits
[64].

Sincethemiddle of 20thcentury,Mid-IR spectroscopgoupledto microscopy(IR micro-
spectroscopyhasbeenrecognizedasa nonrdestructivelabelfree, highly sensitiveanalytical
methodwith manypotentialusefulapplicationgn differentfields of biomedicalresearctandin

particularcanceresearclanddiagnosig65].

Thecouplingof anIR spectrometeto anopticalmicroscopeoffersthe uniqueopportunityfor
studyingbiologicalsampleswvith a spatialresolutionlimited by the neardiffraction limit of infrared
light (5-10$m).
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1.4.11 FTIR Spectrometer

IR spectrometnhasevolvedfrom the useof dispersivanstrumentsvhich weregenerallyslow and
did not allow the measuringf all infraredfrequencessimultaneouslyFourierTransforminfrared
(FTIR) spectrometryvasdevelopedn orderto overcomehelimitationsencountereavith

dispersivanstruments.

A solutionwhich employedavery simpleopticaldevicecalledaninterferometerlt couldmeasue
all frequenciesn a givenspectrakrange commonly4000-500$m for themid-IR region,andwith
high spectraresolution,downto 1 cm™* or better.

Mostinterferometere@mploya beamsplittewhich takestheincominginfraredbeamanddividesit
into two opticalbeamsOnebeamreflectsoff of aflat mirror whichis fixed in place.Theother
beamreflectsoff of aflat mirror whichis onamechanisnallowingit to moveon ashortdistance

(typically afew millimeters)awayfrom the beamsplitter.

Thetwo beamgeflectoff of their respectivemirrorsandarerecombinedvhenthey meetbackat
thebeamsplitter. Consequentlythe paththatonebeamtravelsis a fixed lengthandthe otheris
constantlychangingasits mirror moves the signalwhich exitstheinterferometers theresultof
thesetwo beamsanterferingwith eachother.

Theresultingsignalis calledaninterferogramwhich hasthe uniquepropertythateverydatapoint
(afunctionof the movingmirror position)which makesup the signalhasinformationaboutevery
infraredfrequencywhich comesfrom the source.This meanghatastheinterferograms measured,
all frequenciesrebeingmeasuresgimultaneously.

However the measurednterferogransignalcannotbe interpreteddirectly becaus¢he amalyst
requiresafrequencyspectrum(a plot of theintensityat eachindividual frequency)n orderto make
anidentification.A meansof Odecodingtheindividual frequenciess required.

This canbeaccomplishedia a well-knownmathematicatechniquecalledthe Fourier

transformationThis transformations performedby the computemvhich thenpresentshe userwith

thedesiredspectrainformationfor analysig66].
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All moderniR spectrometeraseFTIR andarecomposedf thefollowing commonelementsan
internalIR light source theinterferometebasicallya Michelsoninterferometer)andasingle

elementdetectorconnectedvith anamplifieranda computer{67].

1.4.2! FTIR Microscope Setup

The FTIR microscopeas basicallya spectrometecoyledwith amicroscope.The FTIR
microscopas similarto visible light microscopebutit doesnotemployglassrefractiveelements
(glassis opaquéo IR light of %>6Gum). For thisreasonFTIR performedn transmissiomequires
thatprobingsamplesaredepositedn opticalwindows(e.g.ZnSe,Cak,, andBaF, crystals)thatdo
notabsorbor absorbverylow mid-IR radiationandhavevery high valuesof transmittancevithin a
wide rangeof frequenciesn themid-IR region.

IR radiationfrom the spectrometeis focusedontoa sampleplacedon a standardmicroscopexby
stage After passinghroughthe sample theinfraredbeamis collectedby a cassegraibjective
which producesanimageof the samplewithin the barrelof the microscope.

In thefirst FTIR microscopesavariableapertures placedin thisimageplaneproducedoy the
cassegraimbjectivein orderto definethe areaof analysis.Theradiationis thenfocusedonto a

smallareadetectorby anothercassegraicondenser.

Themicroscopealsoincludedglassobjectivesto allow visualinspectionof the sampleln addition,
by switchingmirrorsin the opticaltrain, the microscopecanbe convertedrom transmissiormode

to reflectancanode.

In theearly 1990s,FTIR microscopesvereequippedvith asingleMCT detector.This enabledust
theanalysisof a singlesection singlespot,definedby the apertureof the microscopg68]. In order
to geta high lateralresolution the minimal aperturedimensionis setto approximatelyl0$mx
10$m.With this setup it is possibleto investigatespectroscopicallginglecells,which allowsthe
classificationof Onormal@ersusmalignantcellsin amedicaldiagnostielike analysig54, 68, 56].

Thedrawbackof this procedures thatthe investigationof largersampleareasusingareasonable
lateralresolution(betweenl0-40$m), is extremelytime consumingtakingup to daysfor larger
samplesn thecmrangeanalyzedat a lateralresolutionof 10-40$m) [69].
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Thebreakthrougltamefor FTIR microscopesvhenarraydetectordoecameaccessibl¢70, 71, 72].
Theuseof afocal planearray(FPA) detectolinsteadof usinga singleMCT detectoreducedhe
experimentatime drasticallyfor theinvestigationof alargersamplearea Additionally, usingthese
detectorsuperiorimagefidelity wasgained.

FPAsaremadeof manysmall individual pixelslaid outin agrid patternFPAsaretypically
availablein 64x64,128x128and256x256grids (largerarraysarecurrentlyproposed)The
predominantlyutilized MCT detectorarraysizeis 64 x 64 pixels,allowing the acquisitionof 4096
infraredspectrgperexperimen{65, 68].

Eachsmallpixel functionsasa singlesmalldetector For theimagingsetup,no aperturesare
necessaryo definethe analyzedsamplearea.The microscopemagesof the sampleplaneare
directly projectedontothe detectorarray,andthussimultaneouslyrom eachpixel of the FPA,
spectraldataarecollectedfrom a specificsampleregionwithin thefield of view usingthe coupled

spectrometer.

This setupprovedto bea cutting edgetechnologywhenit wasintroducedandenabledhe
successfuapplicationof FTIR to samplesrom avariety of cell lines[73], bloodcells[74], tissues
[75], cervix [76], breas{77], prostatd 78], lung[79], colon[80], brain[53, 81], skin[82],
esophaguf83], liver [84], lymph system[85] andstemcells[86].

Theresultsof all thosestudieshaveclearlyindicatedthat FTIR associatedavith the useof some
appropriatestatisticaldataanalysisnethodshasanaccuracyin classifyingnormalandmalignant
tissues/cellsn theorderof 80-100%(68].

However,in spite of its manyadvantagesheapplicationof FTIR to canceresearctandclinical
diagnosticzontinuego be promisingor immatureandto the bestof my knowledgeno FTIR

microscopehasbeenputin clinical trials for cancerscreeningr diagnosido dae.

Thisis dueto somebottlenecksassociatedvith this setuphavehinderedthe progressiorof FTIR to
becomearoutinetool for clinical diagnosisThesebottlenecksanbe summarizednto threemajor
problemswhichinclude,reproducibilityof spectraat high S/N ratio, lack of standardizegrotocols
for spectraldatatreatmentandthe suitability asatool for 3D pathology{87].
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1.4.3! High-throughput and Reliable IR System

Onemajorbottleneckassociatedavith the FTIR systemis the difficulty of maintainingand
reproducingspectrawith high S/N ratio for largetissuesat the dimensionof clinical biopsies
(frequentlylcnf). At diffraction limited resolution,.e. about5-10pumfor themid-IR range the
acquisitionof 1cnf tissueareawill betoo long (hours)at sufficientspectralquality (S/N " 100)for

routinecaseg27].

In order to maintainigh S/N ratio, as defined by the ratio of source power (SP) to the noise power
(NP), in theFTIR setup, enough IR signal must be cumulated on the detector by performing a
number of scans in continuous mode within the selected interval of wavenumbédrsife 4000

cm-1 to 600 cml) at a selected scanner velocity (e.g 40 kHz).

Therefore, to increase S/N values, a possible solution is to modify the source power, SP, that is to
increase the brightness or IR light source.
1.4.3.1 IR Sources
(a)! Globar Source
The most ommon IR source is a Globar source. A silicon carbide 840 .Jnmwide and
20B60mm long that can be electrically heated up to B0680/C. Globars were introduced
as IR sources inside FTIR equipment in the-a860s, but have not been modified further.
They have been observed to have a welatonflux [87]. This pavedway for the useof

synchrotrorsourcefor FTIR instruments.

(b)! Synchrotron Source
Sincethe 1980s thelack of commerciallyavailablepowerful IR sourceshaspushel
spectroscopist® usethe synchrotrorradiationIR beam[87]. SynchrotrorradiationFTIR
providesa highersignal/noiseratio at the highestspatialresolutionbecaus@f its intense
brightnesg488], therebypermittingintracellularimagingof molecularchemicalstructure

andcomparedo globarlR light source489].

However,a majorbottleneckis thatsynchrotrorlight sourcesareextremelycostintensivedueto
the high consumptiorof energyandit is not feasibleto usethefull powerof synchrotronR
radiationwithout damaginghethin silicon-basedilm of IR detectors.
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Also, in spiteof synchrotrorradiationhavingphotonflux thatis 2E8 ordersof magnitudehigher
thanGlobarin transmissionthis powerful sourcecould not providemorethana 10ER0% increasen
S/Nratio[90]. A lackof correlationbetweerincreasesn sourcepowerandsignallevelis partly
dueto thelimited sensitvity of commerciallyavailablelR detector487].

Recently,in orderto overcomethis limitationsof FTIR systemhigh-spectralbrightnessbroadly
tunablelR lasersourcewith alargeformat(480& 480),uncooledmicrobolomegr FPA detectors
hasbeendeveloped91].

1.4.3.2 Quantum Cascade LaselR

QuantumcascaddasergQCL) aresemiconductolasersthatemitin the mid- to far- infrared
portionof theelectromagnetispectrumQCL provideshigherspectal radiancehanthe
synchrotrorsourceandsignificantly morethanthe standardslobarsourceln quantumcascade
structureselectronsunderganter subbandtransitionsandphotonsareemitted.The electrons
tunnelto the nextperiodof the structureand the processepeats.

Thereforeunlike IR interferometersQCLsgeneratehe mid-IR signalwavelengthby-wavelength
in absolutevaluesandthe spectrunreconstructiordoesnot requirethe Fouriertransformanymore
(thusreducingmathematicaapproximatonsin absorptiorcalculations)92], andprovidesabsolute

countof photonson detectorthusensuringmoreaccuratequantitativeanalysisof biosamples.

Figure 10 Setup of different kind of IR micoope and their respective spectral brightne3$=TIR microscope setup. (b) QTR
microscope setup. (§pectral brightness of globars, synchrotron IR source, and QCL 1403BOWbarreF2 lasers ow2then7

(83301430 cn) range diffeencein relation to the noise floors of commercial MCT and microbolometer F®4s
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Becausef this wavelengthby-wavelengtlsignalsgenerationpbtaininga largespectraregionmay
taketime, butthe developmenof pulsedlaserswvorking in themsrangeis compensatinghe

periodicmodeof signalgeneratiorj93].

QCL-IR microscope setup

Themaincomponent®f QCL-basedR microscopesasshownin Figure10, includemultiple QCL
modulesanopticalmultiplexer,a condensera switchableobjective,anautomatedtage andan
uncooledargemicrobolometeFPA (480& 480). Thearchitectureenablesa smallfootprint,

currentlyaboutonethird thatof acommerciaFTIR microscope.

Thelasersourcecomprisesnultiple broadlytunableexternalcavity QCL modulesthatenable
platftormmodulariy andscalability. The high brightnes=f the QCL sourcetakesadvantagef the
full dynamicrangeof commercialuncooledmicrobolometeFFPAshaving14 timesthe numberof
pixelsfoundin stateof-the-art FTIR microscopesHowever,it is limited to a shorer spectral
intervalof 1800830cm".

The QCL-IR andFTIR microscopetavebeenrecentlycompared27, 94]. The S/Nratiowas
foundto be approximately50% higherwith a singlescanusingthe QCL-IR systemthanwith the

bestacquisitioncondition(1000scans¥or the FTIR system.

The comparisons evenmorestriking if we considerthatthetissueareacoveredby asingleFPA
tile dimensionacquisition is 340x 340pum? for the FTIR system(2.66x 2.66 um?/pixel) and2000
x 2000pm? for the QCL-IR system(4.3x 4.3 um?/pixel).

The QCL-IR hasalsobeenobservedhatthe QCL-IR couldbeupto 150xfasterthanFTIR in

acquisitiontime of alargetissueof 7mmdiameter However.it alsoobservedhatthe coherencef

lasersourcesnodifiesthe shapeof the spectradataresultingfrom samplemeasurement27].
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Specification FTIR QCL-IR
Resolution(cm-1) 1-16 4 ands
Spectrarange(cm-1) 4000400 1800830
Detectorsize(mm 40x 40 17x 17
FPAtype(pixels,condition) | 128x 128 N2-cooled 480x 480Uncooled

FPA coveraggmm) 5.12x 5.12 8.16x 8.16

Mag.levels 15X 36X 4X 12.5X
Final pixel size(mm) 2.66x2.66 1.1x1.1 4.25x4.25 1.36x1.36
FOV (mm) 340x 340  140x 140 2000x 2000 650x 650

Table2 Comparison of the basic specificationFdfIR and QCLIR microscopes showing the improved capabilities of the-(FCL

The FTIR however offers a larger spectral range compared to the [RE]L

Thereductionin theacquisitiontime on largesampleareasaswell asthe useof uncooledFPA
detectorenablegheacquisitionof reproducibleandthusreliablequantitativedatafrom tissue
samplesanddevelopmenof analyticaltechniquedor diagnosticsThis s giving to IR microscopya
uniqueadvantag@ver otheranalyticaltechniquesnotablyfor the ability to determineabsolute

concentrationsf chemicalandmolecularspeciesn biosamples.

1.4.3.3!
Oneof thechallenge®f spectroscopitechniquesemainsthe complexityof spectradatafor end

IR data treatment

userswho arenot specialistof their utilization, i.e. for cliniciansandbiologists.The data
treatmentslevelopedor extractingchemicalinformationfrom raw spectraemainin the domainof
expertiseof spectroscopistnterpretatiorof spectraldataasbiologicalinformation)or use
multivariatestatisticsdo not crossmatchthe usualstandard®f pathologistsi.e. recognizing
anatomicafeaturesor labelingspecificantigenson thetissuesectionsThusthereis a needfor the
developmenof IR datatreatmenfprotocolsthatcanbe usedby oncoepathologistgor
characterizatiomnddiagnosisof tumor.
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ThelR spectrums definedby bandswith animportantoverlappingbetweerthemin somespectral
regions. Themajormarkerpeaksarethe Amide | andAmide Il characterizinghe contentsn
proteinsandpolypeptidesAmide | bandhasa centeredabsorptiorat 650cm™ andidentifies
primarily the C=0 stretchingnodesyC=0, associatedavith vibrationsof a secondanamide,
whereasAmide Il bandabsorbingat @550cm™ refersto the combinationof bothN-H bendingand
C-N stretchingvibrations.Not only Amide | andAmide Il identify proteinmoleculebuttheir

positionsandshapesnayreflectchangesn the secondaryroteinstructure[95].

In Table 3, we presentheregionof absorptiorof differentbiomoleculesthathavebeenidentified
andassignedismajorspectracomponent®y functionalgroupanalysis Functionalgroupanalysis
is particularlyusefulfor the qualitativeanalysisof pureorganicmoleculessincethe IR spectrunmof
eachmoleculeis unigueandit canserveasa signatureo distinguishamongdifferentmoleculesfor

instanceproteins,nucleicacids,lipids andfatty acyl chains,andsaccharidef65, 96].

However,anIR spectrunof a biosamplecontainsalargenumberof bandsmanyof which will be
impossibleto confidentlyassignto the vibrationof a particularfunctionalgroupor to agiven
molecule . Moreover,cellscontainmanymid-IR activemolecularconstituentsuchasmembrane
lipids andphosphabids, glycolipids, proteins glycoproteinsphosphoproteingjucleicacids,
carbohydrateanda variety of smallmetabolitegshatmayconcurto spectrafeaturesTherefore,
thereis aneedfor advancedpectraldatatreatmensuchasspectrabanddecompsitionandcurve
fitting [96] to isolatethesebandsindividually.
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Vibrational mode (functional IR frequency (cm—l) Molecular information

group)

Amide A, B 3300,3100 FermiresonancéetweerN-H stretchandovertoneof
Amide ll, sensitiveto secondanstructure

n(-C1U4) stretch 3010 Fattyacyl chainsunsaturation

nad-CHjz) stretch 2960 Predominantlydueto proteins

nad-CHg) stretch 2875 Predominanthydueto fatty acyl chains

nad>CHp) stretch 29240916 Predominanthydueto lipid, frequenciegjualitatively

ng(-CH3) stretch 2870 Predominanthydueto lipid, frequenciegjualitatively

ng(>CHy) stretch 28551848 Monitor acyl chainconformationabrderandpacking

n(>C1U40) 173®1760 Dueto acid carbonyls

n(>C1U40) 174@®1720 Dueto estercarbonyl,sensitiveto hydrogenbonding

Amidel 16891630 Predominantlydueto C1U4@tretch sensitiveto secondary
andtertiary structures

n(>C1U40) 1684,1672,1664,1656,1645,1637, Proteinsp-turns,antiparallelb-sheetsparallelb-sheetsa-

1625,1610 helix, unorderedstructure a-like triple helix, antiparallelb-

sheetsparallelb-sheets

n(-C1U4¢g Weak Sensitiveto conjugation

Amidell 155@1530 Predominantiydueto N-H in-planebendandC-N stretch,
sensitiveto secondanstructure

d(>CHy), d(-CHz) 147591460 Methylenemodesin IR sensitiveto acyl chainpacking

n{(>C0O0) 14501400 Dueto NMF componentsaindaminoacidsidechains

V(>CHy) 1337 IR markerfor Proin collagen

t(CHy) Transacyl chain

Amidelll 12791235 C-N stretchandN-H in-planebend,sensitiveto secondary
structure

na{P=0) 1227 Phosphates

Table3 Major IR and Raman bandsaignments for Soft TissSuga8]
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1.4.3.41 IR Data Treatment Methods

Thereareseveraldifferentmethodgor the analysisof IR spectraor chemicalinformation
extraction:from the simpleinspectiorto identify peaksto, chemometricsyvheremathematical,
statisticalandcomputersciencesnethodsareappliedto improvethe understandin@f chemical
informationcontainedn typically broadandcomplexIR data.Herewe discusghedifferent
methodsusedfor IR datatreatment.
(a)!IR data pre-processing
Preprocessings requred in orderto reduceandcorrectinterferenceshatmaygenerate
irrelevantvariancesuchasatmospherievatervapourandcarbondioxide, variablebackground
absorptiorprofiles,anddifferencesn samplethicknessBackgroundntensitychangeslong
theinterval of wavenumeberthatmay alterthe baselineareusuallycompensatetly
appropriatemathematicamethoddor baselinecorrection.

BaselineCorrection

An infraredspectruntypically consistof chemicalinformation,baselineandrandomnoise[97].
In anideal conditionthe baselineof a spectrunshouldbe aflat line, however mostof thetime,
thebaselings notflat; it hasalinearor nonlineardistortion[98]. It is importantto correct
baselinedistortionsbecausdt variesmoreor lessrandomlybetweerspectran a IR spectrum
matrix, whichin turn creategproblemsfor analyticalcomparisorof spectraandvisualizationof
chemicalinformationdueto the problemof vignettingthatarisesasa resultof varying
intensitiesacrosghe spectrunmatrix.

Thedistortionin baselinealsoaffectsthe spectrakesolutionandpeakassignmentBaseline
correctionalsohelpsto getrid of strongoutlying artifactsignalsin the spectrunmatrix.
Mathematicalmethodssuchaspolynomialfitting andrubberbandnethodhavebeenproposed

for IR spectrabaselinecorrection[97, 98, 99].

Figure 11 Baseline correction of IR spectra indar to make spectra data comparable and eliminate strong outlying artefact signals.

(a) IR spectra with uncorrected baselines. (b) Baseline correction of the purple spectrum by polynomial fitting.
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(b)!Derivative Spectra
Numericaldifferentiationwith respecto wavelengthfor qualitativeanalysisandfor
guantification.couldalsobe performedon spectra.
If aspectrums expresse@sabsorbance%, asafunctionof wavelength; , suchthat& (
)* %

Thederivativespectran thefirst ordercanbe expresseas:

& o0 1#& 1
Ty (TR @
Thesecondrderderivativecanbe expresseas:
2& & 309 1#& 5#& 9 (2
Thethird orderderlvatlvecan beexpresseas:
, %& & 30 1#H& 58 ;9 5# /50 3
()T (# 06
Thefourth orderderivativecanbe expresseds:
, 8& & 5& 1H88& 5#& 9 h# 4
T() ()(#30 320. 0.8 /0. / 20. ()

A first-orderderivativeis therateof changeof absorbancith respecto wavelengthA
first-orderderivativestartsandfinishesat zero.It alsopasseshroughzeroatthesame
wavelengthas' .. of theabsorbanceéand.Eithersideof this pointarepositiveand
negativebandswith maximumandminimumatthe samewavelengthsstheinflection
pointsin theabsorbancéand.This bipolarfunctionis characteristiof all odd-order
derivativeq100].

The mostcharacteristideatureof a secondorderderivativeis a negativebandwith
minimum at the samewavelengthasthe maximumon the zercorderband.It alsoshowstwo
additionalpositivesatellitebandseithersideof the mainband.A fourth-orderderivative
showsa positiveband.A strongnegativeor positivebandwith minimumor maximumatthe
samewavelengthas' ... of theabsorbanceandis characteristiof the everorder
derivativeq100].

Derivativetechniquesrewidely usedin spectraanalysisfor backgroundtorrectionand

molecularspecificity [100, 101,102]. The spectrakesolutionis enhancedvhenthefirst

derivativeis computedsincechangesn the gradientareexaminedSecondderivative
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spectrums atechniquewidely usedto enhanesthe separatiorof overlappingpeaksand
revealsthe positioningof peakg102].

Figure 12 Derivative of a spectrum showing th& 2", 3% and 4" derivative spectrum. The"2derivative is chaacterized with
negative peak at the.. while the 1st derivative passes through zero.at . The 3 derivative shows the characteristic bipolar

function of odebrder derivatives with positive and negative bands at either side bf the

(c)!Band Integration

IR spectracanalsobe subjectedo numericalintegration. A spectrunconsistof bandswhich
areseriesof equallyspacedvavenumbere aregularsequenceA IR spectruntypically
consistof well-definedbandssuchasamidel,amidell, lipids, phospholipidscarbohydrates.

Mathematically the areacoveredby thesebandscanbe computeddy performingnumerical
integration.Thisis usefulto computethe distributionof thesebandsin thebiosample.
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Let) *=+beanIR spectrunfrom abiosampletheintegralof a bandboundedy wavelengths

[a, b] is definedas;

| )@= ©

Figure 13 IR band integral of the Amidel banal) IR bandsshowing different bands in soft tissuéb)Integration of the Amidel

band f:c@g/;%t

(d)!Multivariate Analysis

Multivariate patternrecognitionmethodscomparea largenumberof variableg(e.g.absoluteand
relativeintensity,the position,andthewidth of oneor moreabsorptionsjvithin adaaset.The
IR spectraof biosamplesrevery complexsincethey consistof the overlappingabsorptiorof

themainbiomolecules.

In orderto retrievethe significantandnonredundantnformationcontainedn the spectrajt is
necessaryo applyanappr@riatemultivariateanalysisnethodwhich areableto processery
high-dimensionablata.Generally multivariateclassificationwith supervisedr unsupervised

patternrecognitioncanbeappliedto IR spectrg65].

The popula multivariateanalysisechniquesreprincipalcomponentinalysis(PCA), principal
componentegressior{PCR),partialleastsquare¢PLS),discriminantanalysisDA), cluster
analysis(CA).

PCAis anonparametrianethodfor extractingrelevantinformation from confusingdatasets
allowingto identify patterndn dataandto highlight their similaritiesanddifferenceq103].

PCAreduceghedimensionalityof spectradatainto principalcomponentd®y maintainingas
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muchvarianceaspossiblg[104]. Major benefitof PCA s thatthelargenumberof initial
dimensionsarecondensedo only afew dimension(principalcomponent)thosereflectingthe
mostrelevantanalyticalinformation[105]. It canalsobe combinedwith discriminantanalysis

asPCA-LDA for classificationinto differentcategories.

Figure 14 showsanexampleof classificationof embryonicstemcell spectreof different
differentiaton days.This figure highlightsthelimitations of PCA asa spectruncanbelongto

multiple classesn poorly differentiatedcells.

Figure 14 PCAELDA of Embryonic steroell differentiating second derivative spect@usteringof second derivative spectra from
1800 to 800 cit is reported as 2D (A) and 3D (B) score plots. Clustering of second derivative spectra in the lipid absorption region
from 3050 to 2800 ci: 2D (C) and 3D (D) score plots. On each PELADA component, thegacentage of the explained variance is
reported. Represented data correspond to 4, 7, 9 and 14 days of differentiation. Clusters are represented as elligBeplot the
and ellipsoids in the 3D. The semies of ellipses/ellipsoids in the 2D/3D plotsrespond to two standard deviations of the data.
[106]

PCRis amethodusedtogethemwith PCA. Onceasetof k principalcomponentfiasbeen
obtainedusingthe PCA method they canbeusedasinput variablesfor a multivariate
regressioranalysisnsteadof theoriginal data.By eliminatingcorrelationsn the original data,

the PCRmethodallowsto performlinearregressioron spectradata.
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PLSregressiorsearche$or a setof componentshatexplainasmuchaspossiblethe covariance
betweerspectrunmin the spectradata.ln this way, comparedo the PCR,the principal
componentgontainmoreinformationabouttherelationshipetweemredictorsanddependent
variablesFor classificationinto differentcategoriesthe PLS method takesthe nameof partial
leastsquaradiscriminantanalysiS(PLS-DA)

(e) Spectral decomposition

SpectraBanddecompositiorandcurvefitting is usedto decompos@anddeterminghe
guantitativevaluesof underlyingor narrowbandsin heavily overlappedands.While
multivariateanalysisprovidesusefulinformationaboutthe varianceof spectradata,the nature
of varianceon globalspectradoesnot reflectingindividual molecularvariations.Thusthereis a
needfor amethodwhichis ableto decompos&dands into individual

SpectraBanddecompositiorandcurvefitting helpsto condensepectradatainto few band
parametersThisimportantfor spectrafeatureextractionasit helpsto approximatehe
guantitativevalueof smallerbandsthathavebeenmergedinto biggerones.
Banddecompositiorandcurvefitting seekgo extracta seriesof bandsasa ModelM ={B,b

n [1...N]} whichis representativef all thechemicalcompoundpresenin asample.

In orderto definestandardgrotocolsfor theinterpretatiorandpresentatiorf IR spectraand

imagesmethodamustbe definedfor extractingthe distributionof different biomoleculesand

translatingtheminto biological metadatahatarewithin thedomainof oncoepathologistsThisis

referredto asspectromics.

Spectromicss definedasthe ability to exploitanyspectrainformation(or setof spectral

informationusinganykind of mathematicaprocedurefor characterizatiof biosamplgfrom

chemicalto molecular biological,andanatomicatissuecontents)107].

Thedevelopmenof datatreatmenmethoddor quantitativelR microscoly andspectromicenables

thereconstructiorof a 3D quantitativechemicalimagesof a biologicaltissueby IR spectre

microscopywhich openstheway to 3D digital pathology(Figure 15).
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1.5!Towards large scale3D pathology

Threedimensional(3D) microscopyis a powerfulapproactor imagingbiologicalspecimensnd
is the nextfrontier for modernhistopathology.It offersexcellentspatialresolutionandfacilitates
the observatiorof tissuesub-structuresandcontentunderphysiologcal andpathological

conditions.

3D pathologyis expectedecauseissueblocksarenot naturallytransparentandthey contain
complex3D networks(bloodandlymph systemsmembranesjervesandotherfibers, etc.),a3D
arrangemenof differentcell phenotypeghatis nothomogeneousndanextracellularspacethatis
composedf manyothercompoundsandfilamentousstructuresFroma geometrigpoint of view, it
is possiblein principleto instantlyvisualizetissueabnormalitiesising3D pathologyandit has
significantadvantagesomparedo the usual2D histology.

Figure 153D IR image reconstruction for specti@érived features of tissue satructures. (a): 2D IR image of single wavelength
absorption (1424 cff) revealhg blood vessels in a tissue sestif mouse brain. (d): Stacked 3D IR images for 20 consecutive
tissue section (10 um thickness) showing the distribution of Amide I, lipids and lipids/amidel(L/A) ratio. (diftedrgpectrum
showing extractable HRands and zoom on the 1E8®00 crif* spectral interval for selecting bands allowing to reconstruct the
blood vessel network BV in (B6]

Figurel15 showsthefeasibility of the 3D reconstructiorof the chemicalparametersf tissuesuo-
structuresHowever this wasdoneempirically by manualhandlingof the 3D reconstructiorof IR
imagesfor only 20 consecutiveslicesof 10 um thickness.To extendthis empiricalapproacho
scalein clinical applicationsjt meangnovingfrom few spectrao billions of spectra.
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Computingthe 3D volumeof this big datais nottrivial. Thus,the effort requiredoecomes
exponentiacomparedo thereconstructiorof bloodvessehetworkof aregionof interestin asmall

sampleandthusrequiresthe automatiorof the processes.

ForthenewQCL-IR to be consideredor usein clinical diagnosisof tumours it mustbedeveloped
for 3D imagingof tissuesAlthoughIR microscopyis not suitablefor directtomographic
measurementsn biosampledbecauséR photonshavelimited depthof penetrationn matter,
biosampleslsocontain>60% of waterwith unmanageablabsorptionsandthe transmission
measurementdo notallow resolvingabsorptionsn atrue confocalgeometry However its

guantitativenatureshouldallow thereconstructiorof a 3D matrix of spectreof largesample4108].

As aresultof afastandhigh S/N level spectraacquisitionsrom severatissueslices,QCL-IR
microscopyshouldallow reconstructinga large3D matrix of IR spectrdor tissueanalysesTo
achieve3D reconstructionspectraldatatreatmenmethodshatallows discriminationof two
objects(e.g.healthyvs. pathologicakissueor substructuresnsidethe sametissuevolume)mustbe

developed.

Different spectradatatreatmenimethodshavebeendevelopedsofar to extractchemical
informationfrom spectrausingindividual IR bandor well-identified regionsof the IR spectrum
suchasamidel region.The 3D reconstructiorof thesedatamight provideuniqueinformationabout
atissuewith 3D resolvedsubstructurexorrelatedo biochemicalor metabolicevent§107].

Thiswould leadto the combinationof morphologicalandmoleculardatainto the same3D imageof
abiosamplesthuscomparabléo the MRI/CT or PET/CTmultimodalimagingmethodsputwith
unigueadvantagef beingquantitativeandusinga singletechniqieto perform3D reconstructiorat
themicroscopicscalewithoutthe useof anylabelor imagingcontrastagentthusavoidingsample

manipulationsandalterations.

Figure16 showsa proof of conceptfor 3D reconstructiorof brain tumors.This wasachievedusing
20 consecutiveissueslices.Theslicesweremanuallyalignedin orderto visualizethe spatial

arrangemendf thetumorin themousebrain.In this thesiswe will developa processingequence
for automatinghe procesf resolvingbillions of spectraat the scaleof thewhole mousebrainand

computing3D volumeof tumorsandtissuesubstructures.
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Figure 16 Example of 3D reconstruction of mouse brain tumor ughgrain tissue slices. The ddepment of IR imaging for large
scale 3D pathology would allow the reconstruction of the tumour in the whole mouse brain.
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CHAPTER 2: Techniques for 3D
reconstruction of histological images

Threedimensional3D) histologyis a powerfulapgroachfor microscopidmagingbiological
specimensndis thenextfrontier for modernhistopathologyThis is due to the inherent limitations

of conventionalD histology.

Histology permits the observation of structures of the internal topographyetaenwhich are
invisible at macroscopic scale. Atiugh it enables the investigation of tissues at a cellular level, it

is invasive and breaks topology dueséztioning

Threedimensional (3D) reconstructiaf 2D histological slicesvas thus introdced to overcome
the limitations of singlesecton studies in a dimensional scopéreedimensional (3D)
reconstruction and examination of tissue at microscopic resolution have significant potential to
enhance the study of both normal and disease pro¢cessBsularly those involving structural
changes or those in which the spatial relationship of disease features is imp€¢int

In this chapter, we present a review of the development of 3D histology and the different imag

processing techniques required for 3D reconstruction histological images.

2.1. From 2D to 3D Histopathology

3D pathology is expected because tissue blocks are not naturally transparent, and they contain
complex 3D networks (blood and lymph systems, nramés, nerves and otHépers, etc.), a 3D
arrangement of different cgdhenotypes that is not homogeneous, and an extracellular space that is

composed of many other compounds &flamentous structures.

From a geometric point of view, it is possilhegrinciple to instantly visualize tissue abnormalities
using 3D pathology and it hagynificant advantages compared to the usual 2D hist¢iddgy).

It offers excellent spatial resolution and facilitates the observatiossoitisutstructures and
content under physiological and pathological conditiomsancer applicationumour size,
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including maximum tumour diameter and tumour volume may ¢ raccurately measured in 3D
compared t@D for diagnostics

Visualization of3D histology volume can also help the pathologist when they report the orientation
of the tumour or when investigating the spatial relationship between the distributions of different

disease biomarkgfSigurel17).

Figure 17 3D reconstrution of mouse brain anatomy showing true location, structural and spatial arrangement of different
anatomical features in 3D compared to a 2D view where no information about the location of the staretkresvnA-B: 3D
reconstruction of the mouse brain cortexDC3D reconstruction of the basal ganglia regiorFE3D reconstruction of the

hippocampus region of the mouse brairHG3D reconstruction of the Thalamus region of the mouse Bidifh].

3D histology also reduces significantly misinterpretation that occur in 2D assessment of complex
networks such as microvasculaturartiRularly in the setting of restructured microvasculature

during disease, where vessel andwoek morphometry cannot be predicted.

In contrast to large and mediusized vessels that can be embedded and sectioned in specific
directions, the orientation of arterioles and venules of the microvasculature cannot be determined

from conventionalkD histological imageq112].

In order to extend histologicakaminations from 2D to 3D, one faces a major problem of how to
regain information of the structures in 3D from a series of 2D samyfié&sme slicing break the
spatialrelations between structures and creates discontinuities which hamper intuitive
representations in 3D and thereby, a tmterstanding of theampleanatomy.
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Moreover, in3D pathology, it is also mantiay to consider sb\Wissue distortions due tsswe
removal by surgery or biopsy. The shape of the tissue is considerably altered via cryomicrotomy,
and thefinal 3D reconstruction model that is created from serial 2D sections will bel &gnitly

distant from reality.

In addition,tissue sukstructuresare independently and randomly altered due to the cunrantal
natureof cryomicrotomy This may result in anatomically different structures looking similar in
microscope slides and converseljcing may cause one same structure to have differensvfew

not consistent.

These alterations are collectively called as artefddf3]. Artefacts include, loss of details, folds
and wrinkles, cracks and hol@$hese alterations could result in misinterpretation of histological
images as they are capable of altering the morphaoiegyestructuresas well as result in

inconsistent contrast of similar tissue structuregure18).

For quantitative analyses in 3D pathology, the determination of the ua@oncentrations as
well as the distribution of tissue ssbructures will be directly dependent on tkeavery of the
naive 3D shape of the tissué/hile current manual methods of histology make artefacts inevitable,

however, they are surmountable.

Figure 18 Problems associated with 2D histological images. (a) Tears and holes in tissue slice. (b) Global shape deformation of
tissue slices. (c) Artefacts in and around tissue slice. (d) Glue deposited on sample slide. (@)dadigaiment of tissue

substructures. (f) Vignette arising from difference of thickness around tissue edges.
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In the light of these problemseveral techniqudsave been proposed for 3D reconstruction of
histological image§l13]. These includes, techniques to solve major alterations in 2D histological
imagescombining noAnvasive imaging with histology to relateacroscopic information to the
underlying microscopic properties of tissues through the estatdighof spatial arrespondences

and recovering of sectioning axis for 3D reconstruction

Typically, 3D reconstruction of histological slices follows a classical image processing pipeline to
solve the problems listed abov@dure18). This consits of 3 major processes which includes;

image preprocessing to resolve the problems introduced by histological sample preparation, image
information retrieval process where useful information such as anatomical landmark is determined
and extracted in thieistological images, pogirocess where the extracted anatomical landmarks are

refined for reconstruction.

Figure 19 Typical image processing pipeline for histological image processing. This pipeline includes methods fprémage
processing such as grey scale level normalization, segmentation methods and im@gecgssing methods such as clustering to

group into different intuitive classes.

2.2. Image pre-processing techniques for 3D digital

histopathology

Image preprocesing techniques are required to solve the problem of artefacts on histological
slices before 3D reconstruction. Two major problems that can be addressed by image pre
processing methods are the variation in intensity due to slight difference in tisémeskiand

resolution of cracks, holes and tears in tissue sections.
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2.2.1. Intensity normalization

Ideally, the absolute colour of a slide reveals the biological component that a pathologist wishes to
retrieve. For example, in the case of H&E, the col@lue quantifies the amount of nucleic acids
(blue-purple) hematoxylin has bound to, and the amount of proteins (in pink) Eosin has bound to.
However, due to the presence of artefacts or because of optical aberration from microscope and tr
camera used famaging[114] slides tend to exhibit different colours.

In general, histology reconstruction methods require the use of greyscale images for intensity
standardization (or the channel that provides the best contrast in amfRRG&across the seried
2D histological images. This due to the use of differences in intensitpas of the criteria used

for identifying salient strucires andinding correspondence between series of histological images.

Histogram equalizatiof115, 116]methodhas been used to correct inhomogeneous intensity in a

single histologicalslice.

Histogram Equalization

A definition of image contrast the difference in luminanggrightnesspr colour that mags an

object distinguishableHistogram equalization is a technique used to enhance the contrast of image:
and correct inhomogeneous brightness by manipulating the distribution of intensities on the image
histogram.

This involves computinghe histogram fothe individual color channels and luminanedues, as
shown inFigure20. From this distribution, we can compute relevant statistics such as the

minimum, maximum, and average intensity values.

Histogram is tk basis for numerous spatial damimage processing techniques and could be
characterized by flat and bell shapeglre20). Bell shaped specification usually represents a
normal distribution. This typef specification usuallappears to have one cluster that much of data
cluster aroundavhich results in inhomogeneous intensit®s the other handldt specifications

indicative of a uniform distribution of intensities.

Mathematically, to compute the equalized histogram oiffreage,the probability density function

and cumudtive density function ahe input image histogram computedThese functions are then
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appliedfor modifying the input imagentensitylevelsto generate @rocessedontrast enhanced

image

Histogram gualization could however be subject to bias in the presence of extreme outliers. To
correct the bias, methods that seek to normalize slices by using multiple slice references have alsc

been proposed for normalizing intensity of serial histological seqtidry, 118]

Figure 20 Histogram Equalization example. (a) Tissue sample with bell shaped closely clustered distribution of image intensities. (b)

Contrast enhanced image by uniformly distiting the intensities.

2.2.2. Tissue Alterations

The problem of alterations such as tissue cracks, tears or holes within the tissue are more
challenging to solve than the variationsntensities. This is particularly challenging because of the

need toassert if the hole is an anatomical feature or an aberration due to histology.

Consequently, manual delineation of the torn area is the standard procedure to identify torn parts ¢
a tissue[119]. This is followed by the usd the image histogram to identify the intensity class of

the surrounding tissue fdl up the missing parts. Depending on the geometry or size of the tear,
different methods can be used to fill up the crack and holes. Like intensity normalizationpldoles a

cracks can be corrected using a single image or multiple histological images.
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For a single histological image with the assumptbthe horizontality of tearg manual

contouring of the torn area andldd it by repeating pixel values of the contalong the columns

of that region can be used to fill up the holes and créggsire21) [120]. Landmark

correspondence could also be determined between multiple images to stitch cracks, holas and tor

pieces in a slicgl19].

Figure 21 Tissue hole correction example. (a) Tissue with manuaietion of hole regioby the dotted red bob) Corrected
hole using the arage intensity of neighlbing pixels computed from tlimxed region in thenagehistogram(c) Image histogram

showing the pixel distribution of the boxed region in the image (a)

2.3. Image segmentation techniques for histological

Images

Image segmentation helps to understastblogicalimages byextracting informaon from the
image In practice, it is often interest@dsome certain areas whiblave the same characteristic
Typically, an image segmentation algoritisybased on certain criteria to divide an input image

into a number of the same nature of the category

An application for analysis of histological images is for both correction of aberrations during
sample preparation such as glue deposit and for extracting meaningful information such as
anatomical structuredglineating the border of disease in tissues, cell counting etc.
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Segmentation methods could be based on simple global information of the image such as image
histogram or more complex information such as topology, geometry and tgalire 22]

Methods of segmentation such as thresholfii2g] [124] [113], edge segmentatiosegmentation
usingactive contoufl125] andsegmentation using morphological operaf@®5] arerelevantfor
histologicalimagesegmentation

One of the most comma@egmentation methodks the use of thresholds is a characterization of
pixel intensites belonging to a specific objectditectly divides tle histogramThresholdmethod
could be localor globalin domain The global threshold method divides the image intodlasses
of the background and foreground whitetlocal threshold methagesmultiple segmentation

thresholds and divides the image into multiple target regions and backg(biunds?22).

An advantage of the threshold methodtsdow computation complexityl he disadvantage is that it
is difficult to obtain accurate results for image segmentation problems where there is no significant

intensitydifference or a large overlap of thgensityvalues in the imagg.22].

This is as a result aéking into accounjusttheintensityinformation of the image without
considering the spatial information of the imalges sensitive to noise and grayscale unevenness,
leading it often combined with other methadsng morphological operatofsuchasopening,
erosionor dilation) to refinetheresultsof thresholding126].

Figure 22 Threshold segmentation example. (a) Originalgaavith histogram divided into@asse of white and black pixeléb)
Retrieving the tissue mabk thresholding the background pixels (class c1) and foreground pixels (class c2). (c) Using threshold

segmentation to segmeartatomical landmarkrom the whole tissue
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Generally, there is no ideal segmentation method, the choice of method dependsficrirapge

requirement and targeted information. Below is a table comparison of different image segmentatior

methods and their application to histological image segmentation.

Method

Description

Advantages

Disadvantages

Application

Thresholding
[127]

Based on the histogram
peaks of the image to
find particular threshold

values

(1) It does notequire
prior information of

the image.

(2) Low computation

complexity.

(1) Does not work well
for an image without any
significant intensity

difference.

(2) Does not consider thg
spatial details, so canno
guarantee that the
segmented regions are

contiguous

Tissue masking,
Anatomy extraction,

Contrast enhancement

in the feature space. Cal
be generally broken into
two steps:

(1) categorize the points
in the feature space into
clusters;

(2) map the clusters bac
to the spatial domain to

form separate regions

implementation

Edge Based on the detectiaf | Intuitive and works | (1) Does not work well | Tissue masking,
detection discontinuity, normally | well for images with images in which the Anatomy extraction,
[128] tries to locate points with) having good contrast| edges are Hdefined or | Disease Delineation,
more or less abrupt between regions there are to many edges| Cell counting
changes in gray level.
(2) Less immune to
noise than other
techniques, e.g.,
Thresholding and
clustering
Distance Assumes that each Straightforward for | (1) How to cetermine the| Tissue masking,
Clustering region in tke image classification and number of clusters. Anatomy extraction,
[128] forms a separate cluster| easy for (2) Does not utilize Tissue classification,

spatial information

(3) Time consuming

Disease Delineation
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Method

Description

Advantags

Disadvantages

Application

Region Group pixels into Work best when the | (1) Are by nature Tissue masking, Tissug
based129] | homogeneous regions. | region homogeneity | sequential and quite classification, Disease
Including region criterion is easy to expensive both in delineation
growing, region splitting, define. They are also| computational time and
region merging or their | more noise immune | memory
combination than edge detection
approach (2) Region growing has
inherent dependence on|
the selection o$tarting
region and the order in
which pixels and regiong
are examined
Active Basedon the use of (1) Useful to track (1) Cannot effectively Tissue mdsing,
Contour image information to and fit nonrigid handle intensity Anatomyextraction,
[130] evolve a segmenting shapes inhomogeneity Disease Delineation.
curve (2) Result dependent on
(deformablésmooth (2) Can allow user | the initial contour and
contour3 which match to| interaction. parameters.
various object shapes (3) Long runtime
and motions
Blob Based on the analysis ol (1) Can correctly Does not work well with | Tissue masking,
analysis image topology for segment the objexit | imageswith complex Anatomy extraction,
[131] continuous connected | even though a part ol shape networkr when Disease Delineation,

components, holes and

borders.

theboundary is

missing or many

noisy regions

accompany the

object

(2) Geometrical
operations can be
performed directly

using shape

information.

there are too many

shapes.

Cell counting,

Table4 Comparison of different segmentation methods and their applications for histological[t38gé&27, 128, 129
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2.4. Registration methods for 3D histology

reconstruction

The basic foundation of dtlistologicalreconstruction gmoachis image registration. Regardless of
the approach chosen for reconstruction, image registration methods are neededsb establi
correspondence and spatially align the set of histological slices

Registration is the process of bringing two images, one usually referred to as OreferenceO and the
other as OsourceO into spatial alignment and deforming the source image suclokbaiki¢ ithe

reference imaggL13].

The objective is to estimate the transformation that optimizes an energy function. It is usually made
of two terms, one referred to as the matching criterion and a regulator which hedpgrod the

extent and type of transformation applied.

At its simplest, image registration involves estimating a mapping between a pair of images
(reference and source images). The reference image is assumed to be spatially OstationaryO or

OcorrectO anskd as a reference image to which the source imagagped

The mapping between both images can be considered as a function of a set of estimated

transformation parameters of the image coordinate used to spatially align both [[b32}es

2.4.1. Image Transformation Models

The transformatiomodeldefines how the source image can be deformed to match the reference
image; it characterizes the type and number of possible deformgt88jsA trarsformationmodel

uses the coordinates of corresponding control points in two images to estimate the geometric
relation between the images, which is then used to transform the geometry of source image to that

of the other to spatially aligned the imag&34].
The most used transformation moghe rigid affine and deformabléransformation. Rigid and

affine transformations are global transformatimode| i.e. applied to the whole image. They are

particularly useful in reawstruction of serial histological slices because they largely satisfy the rigid
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body constraintOn the other hand, deformable transformation modekects the local deformation

of the source image

(@)! Rigid Transformation

Rigid transformation in two dimeirans is defined by two paramesetranslation and rotatio
translation mees every point of an image or a geometric space by the same magnitude in a given

direction.If a pointF is to be translated b@ units, then the transformation is simply:

H( =5 I # (6)

Rotation is defined a motion of a certain space phaserves at least one point. It can be described
as the motion of a rigid body around a fixed pdindiffers from translation whicks a motion that

does not requés a fixed point.

Consider an image rotated at point coordiriat®t, by an arbitrary anglK, translated on the 1
L=MINy a magnidute unit df and by a magnitude unit &on theH1 L=MNThe rigid

transformation of the image is expresssd

#P ( QRSK1 HTUXS | )
W( QTUKS5 #RSK5 O

(b)!  Affine Transformation

Affine transformation is an extension of rigrdnsformation andre typically used in instances of
rigid body movement where the imagelsgafactors are unknown or suspected tortm®rrect

In affine image registration global scaling (i.e. shrinkage and expansion) and global skewing are
also allowed, but parallel lines remain parallel intla@sformed imageAffine registration of
histology images is therefore suitable for correction of shrinkage and expansion of the tissue
sections. The matrix equation for affine transformation is similar to the rigid transformation with
the addition of scal&X+and skew'Y +factors to théunction

X.RSK 10, TUK [] = =N.RSK1 HO, TUK5 [.
QTUK NRSK [;|\ H‘( =Q. TUK5 HY RSKS5 [ )
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(c)) Deformable Transformation

Deformable or nomigid registration corrects the local deformation of the source image.
Deformable registration finds a displacement field or a deformation map for the pixels of the source
image and can vastly change #t@pe of the objecta the source image.

Local deformation of tissue sections can be correctdtkimistology images by usimgformable
registration techniques. There are different approaches to model the local deformation of tissue.

Figure 23 Image transformation models. (a) Source image. (b) Rigid. (c) Affine (d) Deformable

Several methods have been proposed for image registaitiustological images angave been
classified using different taxonomy based on certatar@a [135, 136] Here we introduce some

image registration methods that are used for histological images reconstruction classified based or
their mechanism of establishing correspondence between images and voldrtiesrature of

their transformation.

Here, we classify the methods for image registration into three categories; the rigid and affine
transformation based methods which is used for global registration of histologicaltekdeajure
based methods wth uses salient features in histological slices for registration and local motion

estimation methods which considers the pixel level displacement between histological slices.

2.4.2.Rigid and affine transformation based methods

Rigid and affine transforntien based methods estimate the translation, rotational, scaling and skew
parameters to align the source image. Téreysed forglobalregistrationi.e. applied to the whole
image They are particularly useful in reconstruction of serial histologic@sbecause they

largely satisfy the rigid body constraint. These methods assume that an image is a rigid body that

can be subject to motion within its geometric space.
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(@)! Phase Correlation

The phase correlation methfi87] is a frequency domain technique used to estimate the delay or
shift between two copies of the same signal. This method has been easily extended to 2D and 3D
images, and has been successfully applied in several image registration pfbB&rS89]

Phase correlation provides straigbtward estimation of rigid translational motion between two
images, which is based on the Fourier shift progé#9]. The Fourier shift property states that a
shift in the spatial domain of two images results in a linear phase difference in the frequency

domain of the Fourier Transforms (FT).

Given two 2D function$ *=JHt, M*=JHtrepresenting two images related by a simple translational
shift_=in horizortal andOH in vertical directions, and the corresponding Fourier Transforms are
denoted *aJb+andc *aJo+ Thus,

c (an) ( N *a;b_l_d?)e*0<f / 0Zg+ (9)

This means that the imagleave the same Fourier magnitude, whilke phase difference is directly
related to their spatial displacement.

The phase chandettaJb+, is defined as the normalized cross power spectrum betwaedc ,
which is a matrix:

> (adb)c *ab+

(10)
h(adb) ( #I (ado)c *aJo+ | (

#;dS e0<f / 0Zg+

wherei #lenotes complex conjugate am¢aJb) has the phase corresponding to the phase

difference of the images.

Thus, the translation shift®=J0Htcan be estimated in the spatial domain by takingrtherse

Fourier transform of the phase difference. The inverse Fourier Transform of the phase difference i<
a delta function centered at the displacement, which in this case, is the point of registdation

The phase correlatigkll (=JH) is given as:
kI (=H) ( #(=1 0=3H1 OH) (11
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While phase correlation registration is mostly used to estimate translational shifts between images.
it can, under certain limited conditions, also be used to estimatane rotatios and scalesf the
frequency domain is presented in polar coordinates, then the rotation will be a shift on the axis
corresponding to the angle. Therefore, a rotation angle can be derived by phase correlation based
shift estimation in polar coordinatesing the logpolar phase correlation methidi1].

Figure 24 Phase correlation registration example showihg usage of phase correlation to determine relative translative movement
between two inges corrupted by independent Gaussian ndike.image was translated by (30,33) pixels. Accordingly, one can

clearly see a peak in the phaserrelation representation at approximately (30,3342].

(b)!  Log-polar phase correlation

Thelog-polartransform is used fdristologicalimageregistrationdue toits rotation invariant and

scale invariant propges. The logpolar image geometry is used because of the fact that scaling and
rotation inCartesian domain corresponds to puamslation in logpolar domainlt is basically an
extension of the phase correlation algorithm in polar coordinates.

The pohr coordinates is defined#sIK+correspond to radial distance from the center and angle
from the center respectively. Takitagarithm of radial distance, we get logpolar coordinates.
The logpolar transformation is a conformal mapping from the points on the Cartesiarfplaine

to points in the logpolar planefok] *n+JK+[143].
Consideing a polar coordinate system, wheres the radial distance from the center of the image
say*=,JH,+andK denotes the angle. Any poit#tJ-can be represented in polar coordinatesitaind

is given by
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(nJIK) ( n(\/*: 1#,2 5 #H1 2 3;#5\/3?—:51 jj:) (12
q

Figure 25 Approximate mapping from Cartesian space to (", #) spabe black box shows that the pixels are at a constagiea

with respecto the center. fie boxes with cross marks are at a constant radial distance from the ¢&Atdr.

In log-polar coordinates, logarithm of the radial axis is taken by:
(nXK) ( *ok]*n+IK+ (13

Now if the image is scaled by a factor of $gythen the coordinatés-JHtin Cartesian domain will
becomett= JH + Introduction of logarithms will simplify the procedure, the coordinates in log
domain will be reflected as:

*ok] *t= +Jok] (tH )+# *(ok]t #5 #Kk]=)J(ok]t #5 #Hk]H)+ 14

The equatior® shows that scaling is represented as translation in log polar domain. The effects of
distortions are expressed by Ipglar image translation anaxis andK axis, espectively in the
log-polar coordinates. However, when the original image is translat&a by Ht, the

corresponding logolar coordinates is represented by:

n’( #k]/*d" RSK1 # =£ 5 #d" TUK 1 # H# (19
*d¥ TUK 1 # H+ (16)
! ?
KON S ReRT A =+

According to the above equations, the slight translation produces a modification offizdgiog
image. Therefore, the lggolar image is not suitable féaithfully extracting translation parameters
of imageq145, 146, 147]
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To overcome this limitation, the lggplar transform phase correlation algorithm first applies
Fourier transform over the images andrtlapplies the Lo§olar Transforn{Figure26) to the
magnitude spectrum to recover scale and rotation by using phase correlaticporatogpace
[143].

This is due to the fact that the magnitsgectrums of the image and its translated counterpart are
same; only their phase spectrums are different.

Figure 26 Log-polar phase correlation registration example showing translation and rotation recovery of image (bjpolelog
transform[148].(a) Reference image (b) Rotated image (cjpotar transform of (a) (d) logolar transform of (b). (e) logolar

registration of (a) (f) logpolar registration of (b)
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2.4.3.Feature based methods

Thefeatue basednethodgselies on the salierieaturesof the imagesn order to achieve supixel
accuracy in image registration as opposed to the gédigaiment provided by rigid registration
methodsTheoptions ought to be distinct, unfold everywhere thagmand with efficiency

detectablen each picture.

Featurebased approaches attempt to find the correspondence and transformation using distinct
anatomical features that are extracted from images. These features include pointspatgyss,
(regions inthe image with large variation in intensity in all the direct)arsd contours of

anatomical structurg449]. Featurébased methods are typically applied when the local structure

information is more significant than the infioation carried out by the image intensity.

Feature based methods typically follow four fundamental Gtepge27), namely; feature
detection and description, feature matching, transformation model estimation, image traisformat

and resamplin§fL49].

Figure 27 Fundamental steps of feature based image registration.
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Feature detection and description/Any salient and distinctive objects or features like clesed
boundary remns, edgescontours, line intersections, corners, etc. are detected using the various
feature detectors. For further processing, these features can be represented by their point
representativesenterof gravity, line endings, distinctive points whiclearalled control points

(CPs) or with a vector called feature descriptor which describes the different parameters of the
detected featur@50].

Feature Matching: In this step, the correspondence between the features detetitedsensed
image and those detected in the reference image is established. Various feature descriptors and

similarity measures are used for matching purpose.

Transformation model estimation: The type and parameters of the mapping functions, aligning
thesengd image with the reference image, are estimated. The parameters of the mapping function
are computed using the established feature correspondence in the previddsstading on the
intended transformation, affine or deformable transformatiorbeaapplied to map the source and

reference image.

Image transformation and interpolation: The sensed image is transformed by means of the
mapping functiondmage values in nemappedcoordinates are computed by the appropriate
interpolation techniqué’he most generally used interpolation techniques are bilinear interpolation
and nearest neighbor interpolation [4]

The accuracy of entire featubased image registrationethods are typally evaluated based on
the parameters like localization error, ofahg error, alignment error and computational time
required[150].

2.4.3.1.Feature detection methods

Below are some of thieature detection methods usedfieature based histological image
registration.

(@)!  Harris corner detection

Cornersare regions in the image with large variation in intensity in all the direclitvesHarris
corner detectomethod was proposed to find whether a point shows signifibamge in all
direction or no{151]. If yes, then point is marked as a corner point.
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Harris corner detectav(=JH), is based on the auto correlation function ofithiensities It
basically finds the difference in intensity for a displacemef@efdOH+in all directions. This is

expressed as below:

2 (17)
W(=H) ( #Z X (=H) \[-(zs 0=H5 OH) 1 -*:JH+J

<Z yez{ly #fzg~ 4z € e}~ { #z~z€e~2Z ez~,z€e~

The window function is either a rectangular window or Gaussian window which assigns weights to

pixels underneath.

A Harrisresponse functiofi (see appendix} then computed to determine if the pdmiHtis a
corner or not.

The Harris corner detector is invariant to translation, rotation and illumination cl&®jeThis
detector is most petitive and most informative. The disadvantage of this detector is it is not
invariant to large scale changes3].

(b)!  Scale invariant feature transform (SIFT)

Scale invariance is an important factor in ensuring the reliabiligxtracted features in a series of
2D histological slices. It is important that the features extracted can be detectable even under
changes in image scale, noise and illuminafidre deformation of tissue slices after histological
sectioning contribute® the change of scale of salient features in successive tissue slices.

The SIFTmethod is robust and invariant to scaling, orientation, illumination changes, and partially
invariant to affine distortion. This is achieved by decomposing images intiplauésolutions and
performing the registration from low resolutions to high resolutions, hierarchal registration speed,
avoid local minima, and therefore improve registration performgiries.
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Figure 28 SIFT keypoint generation showing tloeir parametersf a SIFT keypointhe keypoint center coordinates x and vy, its

scale (the radius of the region), and its orientation (an angle expressed in rafi8h§)

A SIFT keypoint as shown ifrigure28is an image region with an orientation. It is described by a
geometric frame of four parameters: the-p@ynt center coordinates x and vy, its scale (the radius of
the region), and iterientation (an angle expressed in radighS}p].

(c)! Speeded up robust features (SURF)

SURF as the name implies, is a speededersion of SIFTIn SIFT, Lowe[156] approximated
Laplacian of Gaussim(LoG) with Difference of Gaussian for finding scalgace. SURF goes a
little further and approximatesaplacian ofGaussiarwith Box Filter[157].

SUREF is based on mulsicale space theory and the feature detector is loasddssian matrix and
also rely on the determinant of Hessian matrix for both ssyzdee detection and k@pint

localization.

Since Hessian matrix has good performance and accuracy. Ind(rdgeis the given point, the
Hessian matrix *PJ, +in P at scale, , it can be define as:

.-<<*P\J,, + .-<Z*P\]u + (18)
c(Pd,) ( t{_z(*PJ” b ap*Pl

Where. ... *PJ, +is the convolution result of the second order derivative of Gaussian filtetheith

image | in pointP, and similarly for. .,*PJ, +and. zz*PJ, +

SURF creates a OstackO without 2:1 down sampling for higher levels in the pyramid resulting in
images of the same resolution. Due to the use of integral images, SURRIgtestack using a box
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filter approximation of secombrder Gaussian partial derivatives as shown in figure (2). Since
integral images allow the computation of rectangular box filters in near constait 5&je
24.3.2. Feature matching
The problem ofeaturematching can be formulated as follows, supposeitigg point detected by
a feature detector in an image associated with a desctiptorof Y dimension.

(P (- *%{0( S8k NE (19)

where for allY, the feature vector provided by thétkdescriptor is

F D ( %292k I, + (20

The aim is to find the best correspondehde another image from the setdfinterest points #(
#1,d ,A\\J . @y comparing the feature vectbr *t+with those of the points in the det To this
end, a distance measure between the two interest points desdriptbfandi - *I +can be
defined as

(T (A~ (D 1 #- (1)) (21)

A match between the paof interest point$tJl +is accepted only if is the best match fdrin
relation to all the other points in the first image &nd the best match farin relation to all the

other points in the second image.

In this context, it is very imptant to devise an efficient algorithm to perform this matching process
as quickly as possible. The nearasighbor matching in the feature space of the image descriptors
in Euclidean norm can be used for matching vector based feftGeds

2.4.4. Non-rigid registration methods

A series of unregistered sequential histological slices can also be considered as a moving object ir
visual scene caused by the relative motion between an observer and a scene. Image regrstration c

thus be considered as an object motion estimate problem across frames in a visual scene.

The purpose of local motion estimation methods is to compute a motion field representing the
displacement of points in consecutive images. This enhancgsx®llaccuracy in registration as it

tracks the displacement of each point across the histological image stack.
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This problem can be addressed using a variational formulation by modeling the problem as
minimization of an energy function. Generally, the funct®oomposed by a data term and a

regularization term.

The data term is usually based on the conservation of some property during motion. A common da
term is based on the brightness constancy assumption, which assumes that the object illumination
does ot change along its motion trajectory.

The regularization term allows to define the structure of the motion field and ensures that the optic:

flow computation is well posed and this can be seen as Oa priofiB63rm

Optical flow method

The notion of optical flow literally refers to the displacements of intensity patterns. This definition
originates from a physiological description of the visual perception of the world through image

formation on the retina.

In that sens, while optical flow is necessarily caused by relative motion between the observer and
the objects of the observed scene, it only represents motion of intensities in the image plane, and 1
necessarily accounts for the actual 3D motion in the physieakE61].

Computation of optical flow means computation of two vectoesd’ . Vector® represents
horizontal velocity of motion and represents vertical velocity of motion. Usuadllyand’ are
computed using the coepts of energy functional. And the main aim is to minimize this energy
functional. Energy functional consists of two terms: data term and smoothne$$G2fm

To determine optical flow, there is need to track some propeftiesages. Two key problems in
optical flow estimation are: 1) Determine what image property to track 2) Determine how to track it
[162]. Some features of the images are assumed to stay constant among multiple frames during
optical flow estimation.
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The most common assumption used in optical flow estimation is the brightness constancy
assumption. It states that the gray value of corresponding pixels in the two consecutive frames

should be the same.

Assumes*=JH]J +is thecenter pixel in a n&n neighbourhood and move8HyHin time0[ to

o*=5 0=JH5 OHJ 5 O[+ Sinces*=JH] +ande*=#5 0=JH#5 HOHJ#5 #O[ +are the images of the

same point (and therefore the same) we have:

*=JHJ +4 #*=H5 H0=0HH5 HOHI#5 +O[ + (22)

The choice of registration approach depends on the domain and scale of deformity in the set of

histological images. The table below illustrates some deformation and the appropriate registration

technique.
Rigid/Affine Feature Based Nonrigid

Global

rotation/translation r N N
Subtissue

rotation/translation N r N
Global

shrinkage/expansion r r r
Subtissue

shrinkage/expansion N r r
Tears/missing parts N N r

Table5 Comparison of different registration techniques for histological images and their respective suitabilityefenditfnd of

tissue aberrations.
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2.5. 3D histology reconstruction techniques

3D histology reconstruction methods aim to restbeeloss of continuity due to volume sliciog
tissues They are based on the assumption that the shape of a biological specimen changes smootl
across sections, but suffers from the various artefacts that affect every setgmemihently during

prepaation.

While using 2D histological serial sections alone enables the reconstruction and representations of
structures and their environment in 3D, which helps with subsequent segmentation and
classification taskgL63], howe\er, the original shape is unattainable without prior or external
knowledge.

The basic foundation of all reconstruction methods is image registration. Image registration consist
of optimizing the spatial alignment of variously oriented 2D slices reladieach other, while
being robust to artefacts following histological preparation.

The most straightforward path to achieve 3D reconstruction of a series of 2D histological images is
to register every slice with its direct neighbor and repeat the grogesthe following pairs. This
is done by choosing a reference point to start from.

This reference point is an arbitrary slice usually the first slice or the middle slice in the series. In
this approach, reconstruction is achieved by stacking ofahsformations between all pairs of
adjacent sections.

However,without anyinformationaboutthe original shapeyolumereconstructiomemainsanill -
posedproblemi.e. thereexistsa solution,it is notuniqueandthereis no mechanisnof validation
beausethetrue shapas unknown;for example changingheinitial arrangemenof slicesrelative

to oneanothemwill leadto a differentreconstruction.

Thus,thereis a needfor a groundtruth referenceo regulateandvalidatethe procesf registration.
Thecombination of noAnvasive imaging with histology to relate macroscopic information to the
underlying microscopic properties of tissues through the establishment of spatial correspondences
in amultimodalframeworkhasbeenstudiedfor 3D reconstrgtion of thetrue shapeof tissuesand

tissuesubstructures.
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Themultimodalframeworkfor 3D reconstructiorof serialhistologicalsectionscanbe groupednto
threedifferentapproaches:

Thisincludeslice basedapproachwhich considersachsliceasanindividual object,
volumebasedapproachwhich considerghe setof serialsectionsasa wholevolumeand
ahybridapproach113].

Figure 29 Strategies to register histology with volumetric medicalgimg (ex or in vivo alone). The three main approaches (slice
based, volumbased and iterative) are presented. (*) In cases where ex vivo imaging is used as an intermediate modality,
correspondences between ex vivo and histology are achieved through atep8, and the mapping between histology and in vivo

is completed via registration between ex and in vivo scans (extra[ 1))

2.5.1. Sliceto-slice registration (2D-2D)

In this approach, every histological slice is cdesed as an individual object. This approach is
generally preferred in cases where the histological dataset is too sparse or has too few slices. It
consists of the use of 2D histological serial section dataset and a 2D reference dataset obtained fr

othermodalities such as MRI or standard anatomical atlas.
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The methods used in this approach assume that the cutting planes of histological slices and the
acquisition planes of the reference set are parallel and that there always exists a histological sectic
that has a counterpart in the set of MR slices. The problem therefore simplifies42Ca 2D

registration between every histological slice and its corresponding slice in the reference dataset
[113].

2.5.2. Slice-to-volume registration (2D-3D)

This approach extends the shigeslice approach by acknowledging that there is no certainty that
the cutting plane of histological slices is parallel to the acquisition plane of the reference dataset.
Likewise, there is no guarantee that thstological slices are parallel to each other. This implies

that structures belonging to a tissue slice may extend over several slices in the reference dataset.

This in turn suggests that the corresponding 3D reference slice can only be discoveigddhr
slice-to-volume (2D3D) registration. In 2EBD volume registration, 3D point cloud is generated by
detecting key features, matching points or intensities between a 2D histological slice and slices of
3D reference volume. This is done by mappirg2b histological slice to the 3D plane of the
reference datasgt64, 136]

2.5.3. Volume-to-volume registration (3D-3D)

Themaindrawbackof slice-basedapproachess their sensitivityto initialisation, the choiceof the
initial referencepoint affectsthe costfunctionand thusthe convergencef theregistration
procedureOtherchallengesnvolve the costfunctionselectionandthe optimisationstrategy{165].
As aresult,the performanceof slice-to-volumeregistrationshowsgreaterdependencen theinput
imagesthan3D-3D registration165]. Consideringhistologicalsectionsall together.e., the
histologicaldataseasawhole,allowsovercomingsuchanissue.
Volume-basedapproachegypically follow asequenal procedureFirstly, avolumeis
reconstructedrom the setof histologicalslices by serialpairwiselinearregistration§166, 167] or
simplestackingby alignmentof tissueslices[168]. Thisis followed by a coarselinearalignmentof
thegeometrieof bothreferencamagevolumeandhistologicalvolumes,which maythenbe

refinedby nonlinearregistration.

2.5.4. Hybrid approach

The hybrid approach is similar to volume based approach except that both the serial arrangement
the histology stack (reconstructed volume) and its alignment relative to the reference image volum:
are jointly refined.
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A 3D-3D registration, which pdates the global alignment between the current estimate of the
histological volume and the reference image volume is implemented alongsRi2 efgistrations,
which affect the serial arrangement of slices relative to each other by aligning them with thei
current corresponding slice in the reference image volume used. This in turn provides a new

histological volume which is used at the next iteration. This process is repeated until convergence.

2.6. Assessmentechniques for 3D histology

reconstruction

The validation of the accuracy and precision of 3D histology reconstruction ispaseidl problem

or impossible without the use of a reference model for comparison. Validation techniques seek to
identify neuroanatomical structures that are recognizdtderagistration in the reconstructed 3D
volume[113].

Below are some of the methods that have been used for the validation of 3D reconstruction of

histological slices.

2.6.1. Visual Assessment.

Visual assessment is an irttué way of validating the reconstruction accuracy but must be carried
out by experts and does not provide with any quantitative measure. Visual assessment is very
practical when comparing one method of reconstruction against {t68rsl70] This can

generally be done without the help of a reference 3D volume.

In the case of histology reconstruction without the help of 3D reference volume, the criteria used tc
tell whether the reconstruction is successful includeally improved representations of small

structures (subcortical nuclei, cortical areas) and smooth inner and outer fbrdérs
When a 3D reference volume is available, visual assessment can be performed-ggatimss

comparisor[166, 172]of the two volumes displayed in the same geometry or by superposition of
adjacent sectiond.17, 120]in order to check for disparities.
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2.6.2. Landmark-basal validation

This is the most widespread metHa&d 3] used for validation of 3D histological reconstruction. It
consists of the automatic or manual extraction of corresponding anatomical landmarks or key
features in the reconstited volume and the reference voluh#s, 165] This is followed by the
computation of the Euclidean norm between the corresponding landmark points extracted in the tw
images. This is also referred to as targetstegfion error (TRE)168, 173]

2.6.3. Measures of Image coegistration.

Measures of image eegistration rely on regions of interest(ROIs) manually delineated by an
expert in the registered histological 2D seasi@nd the reference image. The Dice score or the
Jaccard index are two measures that can be computed to quantify the amount of overlap between
two regiond117, 174, 175]The Dice score was shown to beekable indicator of registration
accuracy only for small and localized ROls in several locations in the imagespéke

2.6.4. Texture-based methods.

Greylevel caoccurrence matrices(GLCM177] have been used to assess the quality of the
histology reconstructio[il78]. Such matrices were computed by calculating how often the pair
made of a pixel of interest with a certain intensity and its immediate neigimbtine direction
orthogonal to the cutting plane occurs in order to quantify the smoothness of the reconstruction
[113].
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CHAPTER 3: From IR spectra to registrable
metadata images for 3D pathology

In this chapter, weropose a standard processing sequence or methodology for 3D chemical
imaging of tissues by IR microscopy. The methodology combines the methods and approaches the
have been discussed in Chapter 1 and 2 for IR spectra data treatment and 3D recomgtruction

tissue samples.

It has been demonstrated that IR spectrum matrix can be reconstructed in 3D by stacking of serial
tissue section6]. Our proposed methodology is aimed at standardizing the protocols that have
been used exgsimentally for chemical imaging by IR microscopy as well as define a standard
routine that can be used clinically by pathologists for 3D chemical imaging of brain tumours.

Figure 30From IR spectra to registrable metadata imag@s3D pathology. (a) 3D reconstructed volume of the mouse brain.
(b)Visible image of histological slices from mouse brain. (c) 2D IR mapping of spectral derived information. (d) 1D spectrum

extracted from 2D IR map in (c).

3.1. Introduction

3D histologyis a powerfulapproacHor microscopidmagingbiologicalspecimensndis the next
frontier for modernhistopathologyThey provide a 3D visualization efructures of the internal

topography of a specimavhich are invisible at macroscopic scaled areof diagnostic value.

Although, clinical imaging techniques such as MRI and CT @ew~isualization of organs, which
canalsodepict anatomical features that are of diagnostic y&meever, in smaller biosystems,
such as cells, tissues, or sratimalorgans, these techniques are limited by their sensi{iMB/
cannot go belovt00-pm in small animals)Thus, there is a lack of relialténical standar@dD

imaging solutions at the microscopic scale for use itobgical analysig111].
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Conventional histological methods such lasrfescencéased confocal imaging have been
demonstrated tperform 3D analyses on small biosamples, mostly cells and small tissue blocks, but
their penetraon depth is limitecand the use of lads restricts the analytical value of the 3ages

[179].

This is a major frontier in biological research, where supervised techniques depending on labels or
contrast agents can no longer satisfy the discovery appetito$pesimens. Betteguality images

of biosamples, at higher resolution, with higher contrast, and providing larger quantities of
information, makes the addition of global chemical information more important. This is particularly
true when several (or a niiide of) chemical compounds of tissues nieeble revealed by
histology[28].

While spectremicroscopiecannotrival fluorescencérasedmagingtechniquesn termsof
resolutionandpenetratiordepth.However,in termsof sanple areascannegerunit of time (in

minutes) IR andMS matchthe performancef multiphotonmicroscopyat appropriateesolutions.

Thus,with appropriate8D reconstructioimethodsa 3D view canbe achievedthe advantag®f
spectremicroscopiestemsfrom their ability to providemanydifferentchemicaldatacompared
with thetwo or threelabelspossiblewith multiphotonmicroscopy.

Finally, themainadvantagesf spectremicroscopiesrethattheycanprovideextensivejf not
global,quantitativechemicalinformationaboutthe samplewithout a priori supervisionlcompared
with labelrelatedhistology).

Massspectrometryf{MS) imagingwasthefirst spectroscopitechniquehatwasprovedto providea
3D reconstructiorof the chemicalinformationof atissueblock [180]. In principle,massspectracan
providethousandsof signalsrecordedrom eachvoxel of a3D MS image.

A wide variety of moleculescanbeimagedin this way, including proteins peptides|ipids, and
endog@ousandexogenousnetabolitesalthoughthey cannotbeimagedall together.Thus,no
globalchemicalinformationcanbe obtainedrom the sample(including proteins lipids and

sugars).

IR microscopy on the other hand providésbgl chemical informatiorof tissue samples. This
implies that all chemical bonds gent in the sample will raise absorption bands, notably for
proteins and lipids, whicaxhibit intense absorptionbut also with major corbution from

carbohydrates and nucleic acidshe find spectral information.
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Also, because it is quantitative, it also allows mapping potentially a wide range of chemical
information in a norsupervised pattern, which is undoubtedly a major advantage for comparison
between healthy and pathological tissuecgmens without any a priori knowledge about the
sample

However, IR microscopy has been limited due toatatively high spatial resolution compared to a
technique like Raman spectroscopy which offers spatial resolutiob-jofn, relatively lower
molecuar details compared to a highly sensitive technique like MSI, the bottlenecks of using

cooled IR detectors, long acquisition time for large tissue and the interpretation of spectra data

IR microscopy is now ready for development of 3D histology due tdetielopment of QCL
microscopes; which means data acquisition can be done over a long period of time for large sampl
[27]. Thus,with appropriatedatatreatmenimethodsand3D reconstructioriechniques3D
guantitativechemic&imagingof tissuesamplesanbe achievedoy IR microscopy.

However, in order to introduce IR microscopy as a diagnostic tool for pathology, there is a need to
develop standard routines for chemical imaging by IR microscopy. Several experimental methods
[181, 65, 54, 53, 55, 24lave been proposed for IR data treatment and to the bestlafowledge

no method have been processed for 3D reconstruction of IR chemical images.

In thischapter, we introduce a processing sequence fdR3microscopyl propose a routine
based on standard experimental techniques for IR data treatments and techniques that have been
used for 3D reconstruction of histological imagesvaluate and extenddtdifferent methods for a

routine application to 3D chemical imaging of tissues by IR microscopy.

Our proposedgrocessingequenceomprisef five majorsequentiaphasesvhich spandrom
samplepreparatiorto 3D reconstructiorof tissueslices.Thesephasesnclude;1- sample
preparation?2- dataacquisition,3- IR datatreatment4- metadataxtractionand5- 3D

recorstruction.

Figure 313D chemical imaging by IR microscopy processing sequence.
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Thesamplepreparatiorphaseconsistsof the histologyprotocolsusedfor preparingtissuesamples
for IR imaging.

Thedataacquisitionphaseconsistof setupandprotocolsnecessaryor 3D chemicalimagingby IR
microscopy.The majorfeatureof this phases the setupof a high-perfamancecomputing

environmenfor analysisanda datastorageserver.

Thedatatreatmenstepconsistof routinecomputationamethodghatareimplementedor
guantitativeanalysisof the IR spectrummatrix. | definethe basicmathematicabperationsequred
in orderto aid interpretatiorof the 3D spectrunmatrix of braintissuesamplesThisis followed by
themetadataroductionphase This phasds theinterpretatiorstagewherespecificchemical
informationis extractedo be mappednto derived2D IR imagesfrom the IR spectrummatrix.

The 3D reconstructiorphases thefinal stepof our proposednethodologyIn this phasewe
proposeanew 3D hierarchicaimageregistrationrmethodfor 3D reconstructiorof derivedIR
imagesln this phasewve useof imageregistrationtechniquedo partitionandrealignthe derived2D
IR imagesfor 3D reconstructiorof tissueslices

3.2. Sample preparation

In orderto obtainthe 3D spectrummatrix of brain tissuesthereare basichistological stepsthat

precedeheacquisitionof tissuesamplesisinganIR microscopeThesesamplepreparatiormethods
areconventionaimethodsusedin histologywith the exceptionof preparingthe samplefor dying or

immunohistochemistry.

ForIR microscopysamplepreparationthefollowing stepsarefollowed:

1. Sampleextractionfrom micro environmentCouldbeatissuesamplefrom biopsyin clinical
applicationor anorganextractedrom ananimal.

2. Embedthe samplein optimal cuttingtemperaturédOCT) compound.

3. For analysisof healthy tissues,the instant freezing of the sampleusing Isopentane(2-
methylbutanefooledat-80* (liquid Ny) to guaranteehatthe degradationn cell andtissue
contentsasaresut of beingtakenout of the microenvironments limited.

4. Otherwise,the sampleis cooledat -80* (liquid N) without Isopentanefor pathological
tissueswvherecracksin tissuestructuresnight not be of greatimportancean tissueanalysis.

5.I Continuouscryo-microtomywherethetissuesamples sectionedvithin therangeof 4-20$m
thickness.

6. Fix sectionedissuesona2mmthick CaF, window for acquisition.
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The 4-20$m sectionthicknessrangeis specifiedbecause0-$m representshe thicknesslimit for

imaging at cellular resolution.In addition, for exampleat 20-$m a mousebrain leadsto 300-400
sectionswhile at4-$m, it is 5 timesmore,which consequentlynakesobtaininggoodshapedissues
difficult aswells elongatingthetime for total imageacquisitions.

Also, 4-3m alsoraisestheissueof SNRandthusIR spectradatatreatmentsvill be compromisedht

thisresolution It representshediffractionlimit of IR radiation.

Figure 32 IR microscopy sample preparation process.

3.3. Data acquisition

To performdataacquisitionof a preparedsample the sampleis mountedon the samplestageof the
IR micrascope.Typically, IR microscopesomeswith a proprietarysoftwareto simplify the data
acquisitionprocess.On the software,the areaof interestin the sampleis defined, the range of

wavenumberso probeis aso defined.A repostory to storethe datais definedandthe acquisitionis

launched.The duration of the acquisition dependson different factors such as the type of IR

microsope,spectrakesolution pixel sizeandthe sizeof thesample.

| proposea setupfor reliableandreplicablelR dataacquisition.This setupconsistof theinstrument,
datarepositoryandanalyticalnode.In orderto ensureproperdatamanagementve proposethe use
of this high-performancecomputingsetupanddatastoragefor IR samplesThis is importantasthe

separatiorof concernsallowsa fault tolerantsystemthatcanbe easilytracedfor errors.
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Figure 33 Data acquisition setup for 3D IR microscopy

In the figure above,the 3-tier architectureproposedenableshe separatiorof the point of 1- data
acquisition,2- storageandprocessingiodein orderto achievea secureandfault tolerantsystemfor
3- IR dataprocessinglt is amajorrequiremento separatéhe datastoragenodeandthe processig
nodefrom the point of acquisitionbecauséhe processingf IR datais computationallyntensiveand

thedatasizeis hugedependingon the sizeof thetissue.

Similarly, performing computationon this huge data requireshuge computationalcapacity.For
example giventhe problemof spectradecompositiona 32-coresCPUwould requireapproximately
" dayto computelR-banddecompositiorof onetile (230,400spectra)f the sampletissue.Hence,

this big dataalsorequiresa high performanceomputingnodefor high-throughputcomputation.

In Figure 33, the architecturealso definesa securepathwayfor data collection and information
retrieval. Thereis no directaccesdgo retrievedatafrom the storageserver.This ensureghatthe IR
datais securecandcanonly bemodifiedthroughaccesgo the datastorageserver.The computations
and information retrieval is processedn the HPC node which providesa fast accesgo relevant

information.
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3.4. IR data treatment

RawlIR spectrdike othermeasurementderivedfrom analyticalinstrumentstypically consistof
chemicalinformation,baselineandrandomnoiseq182]. Theserandomnoisesanddifferent
baselinesontributeto varyingintensitiesacrosgissuesamplesandmakequantitativespectral

informationincomparable.

IR datatreatmenimethodsareusedto correctraw IR spectraor baselinedistortions,rregular
intensitiesin orderto makelR spectraeadyfor quantitativeanalsis. Datatreatmentsanalso
enhancejualitativespectrainformationin termsof visualizationdueto the correctionof irregular

intensitiesarisingfrom distortedbaselines.

In this section,we propase a routine datatreatmentprocessfor correctingraw IR spectra.These
includesan automatedaselinecorrectionmethodanda methodto removehistologicalartefactsdy

analyzingspectradata

34.1. Automated Baseline Correction

Raw IR spectramustbe correctedor enhancinghe quantitativeaspeciof spectralinformationand
makethemcomparabldghroughbaselinecorrection Typically, the correctiors of baselineoffsetor

distortionsare performedto avoid further artifactsin spectral datatreatmentsSubroutinesmustbe

appliedto all spectrawith the samethresholdsjntensity levels...etc. to avoid quantitdive change
betweerspectrg26].

Severalbaselinecorrectionsexist in the literature and have beenappliedfor IR spectrabaseline
correction[97, 183]. However,thesetechniquesare manual,thus not practicalfor useover large
datasetvith hundredsof tissuesections.
Thus,we proposea simpleautomatedaselinecorrectionproceduralefinedby Bobroff etal [26] for
large datasetof tissuesections.To automatethe correctionof baseline,we apply the following
procedure:
1.! ForFTIR systemsthecorrectionof ambientabsorptior(CO2andwatervapor)by theremoval
of the2400 2300cm™ (((CO,)) band.
2.! lteratethroughthe spectrunto determinehelowestabsorbancealue
3. Apply anoffsetof baselinenducingnegativeabsorptiorvaluesarecorrectedgsothatthewhole
spectruncurveis raisedby thelowestabsorbancealue;
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4! Alternatively,correctbaselineby applyingan offsetwith the lowestabsorbancealuesetto

Zero.

Figure 34 Baseline correction for enhancing quantitative and qualitative spectral information. (a) Example of spectrum taken from
different regims of a pathological mouse brain tissue showing quantitatively incomparable baselines for each anatomicdbjegion.
Automated baseline correction showing corrected baseline by rasing the whole spectrum curve with the lowest absorpf@n value

IR image before baseline correction. (d) IR image after baseline correction.

3.4.2. Automated SpectraCleaning

Spectracleaningis a procesaisedin theremovalof artefactssuchasholesandgluesthatarisefrom
histological samplepreparation(Figure 35). While this can also be achievedon spectraderived
imagesof tissueslicesto enhancevisualizationby using image processingtechniquessuch as

thresholdingandsegmentationgleaningat spectradatalevel offerstwo significantadvantages.
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It enhanceshe speedof computationon spectradatabecausef the removalof spectrathat arises
from artefacts.It also enhancesomparativeanalysisbetweenspectradue to the elimination of
irregularspectrahatarisefrom artefactsthuseliminatingbaselinesssociateavith thesespectra.

Figure 35 Untreated mouse kidney sample tissue spectra showing spectrum corresponding to surrounding glue and tissue. The

spectra corresponding to glue shoiwggular absorption pattern and baselines.

Theaim of anautomatedR spectracleaningalgorithmis to definea function) *Ntwhich compares
the IR spectrain a 3D spectrummatrix andreturnsa modified 3D spectrummatrix whereirregular
IR spectraarenulled.

Figure 36 Spectra cleaning algorithm result showing the removal of surrounding glue from the spectrum matrix.

This generallyrequiresan iteration strategy,metric of comparisonand a thresholdto validate a
spectrum.There are severalmethodsthat can be employedto achievethis dependingon the
complexityof artefactsonthetissuesample.
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(i) Unsupervised Clustering
The automatedspectramaskingfunction) *N+could be definedasan unsupervisedlusteringtask,

wherethe setof Nspectras groupednto Oclusters.

YN (#Y D Y fI=1 el

e <——
* . represents featurevectorwhoseclassis eitheranartefactslide background,a tissueregionor

myelinatediissuestructure.

Figure 37 Spectra cleaning by segmentation. (a) A sample mouse brain tissue showing different components of the spectra matrix

differentiated by colour. (b) Segmentati@sult creating 3 clusters, of slide background, tissue area and myelinated structures.

(i) Principal Component Analysis

Theautomatedpectranaskingfunction) *Nt+couldalsobedefinedasataskof retrievingorthogonal
componentsf the3D spectrunmatrix. Thedatacouldbesubjectedo PrincipalComponenAnalysis
(PCA) to obtainmoredetailedinformationaboutsourcef variancein the 3D spectrunmatrix.
Typically, thefirst principalcomponents expectedo containonly tissuerelatedspectrgunlessmore
than50%o0f thelR imageis occupiedy glue,thenthe1* PCwill berelatedto it), therebyeliminating

theartefacts.
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Figure 38 Spectra cleaning by principal component analysis of a sample brain.tiEsee' and 24 principal component contains

tissue related spectra onlthereby elimenating the artefacts present in the tissue slice

(iif) Peak Ratio (Supervised Cleanim)

Supervisednaskingasthe nameimpliesthis methodis derivedafteranexperimenbon the spectrum
of differenttypesof artefactsTheratio of the $(P-O-C) stretchpeak(1088cm™) andAmide | peak
(1652cmt) canbe usedto removeregularartefactshat arisefrom gluessurroundinghetissue.
Thisis afastalternativeto unsupervisealusteringandPCA asit doesnot requiremultiple iteration
(unlessthe 1088 cm-1 peakis low due to weak absorptionof glue or contributionfrom tissue
molecularconents)#

Typically, the Amide | peakis absenin tissuesthisis usedasthethresholdto filter outthe spectra
correspondingo artefacts.

Figure 39 Spectra collected from glue samples. Showing the 108geak and the absee of the Amide | peak.
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Thetablebelowshowsasimpleperformanceomparisorof theabovdistedtechniquegor automated

spectrecleaning.

Method Speed Accuracy TissueSize
Clustering(2 classes) Moderate High Medium
PCA (2 principal Slow Very High Small
components)

Peakratio Fast Normal Large

Table6 Performance comparison of spectra cleaning techniques using a mouse brain sample of 591,667,200 spectra..

3.5. Metadata extractionfrom IR spectra

The metadataextractionphaseinvolves the manipulationof quantitativespectralinformation to
extract specific biological markersfrom tissue sample.Metadatacan be extracteddirectly from
treatedraw spectraor from advancedpectraldataprocessingechniqueike banddecorvolution or
curvefitting [26, 24,184,185, 2].

Thetaskof extractingall possiblemetadatdrom IR spectras too largeandout of the focusof this
thesis.In this section,we focuson two major metadatdor brain pathologyapplicationthat canbe
extracteddirectly from treatedraw IR data.Thesearethe anatomicalregionsof the brain andthe

metabolicaberration®f atumor.

We proposethe useof standardspectraldatatreatmentgintegrationof absorptiondhandson raw
spectrapeakpicking on secondaryderivativespectragtc.)to revealthe anatomyof the brainbased
on chemical contentsvariations betweenregions. Importantly, we could also calibrate several

metabolicconcentrationa(glucoseglycogen/actic-acid)in tissuesamplesisingthis approach186].

3.5.1.Anatomy

The anatomyof tissuescanbe extractedirom IR spectrummatrix basedon the chemicalprofile of
differentanatomicaktructures.For example for brain histologyapplicationsthe anatomyof brain
tissuescanbe extractedoy exploitingthe globalchemicalprofile of the brain.
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The brainis alipid-rich organ.The white matterof the brain containswell-definedlong myelinated
fiber tracts.On the other,the gray matterhousesnumerousneuronalcell bodieswhich arerich in

differentproteinsfor neurotransmissiommongotherpurposesThus,exploitingthelipid andprotein
informationfor IR spectracanleadto distinguishingdifferent anatomicalfeaturesin the gray and

white matter.

Theproteininformationcanbe extractedoy computingthe spatialdistributionof proteinusingthe

. . . 2@A
numericalintegrationof thebandregion |

288 A%vi;vhile thelipid informationcanbe extractedy

computingthe spatialdistributionof lipids from theintegrationof the ??683 # f??gzizaﬂand fZGBA j: #for

FTIR systemspands.To furtherdistinguishbetweerthe gray andwhite matteranatomical

structurestheratio of theintegrationof the proteinbandandlipid bandcan betaken(f;%:B#@

7862

f?6EA #

Figure 40 Mouse brain tissue sample using lipid and protein information from spectra to highlight different regions in the slice.
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3.5.2.Metabolism

Metabolismis broadlydefinedasthe sumof biochemicalprocesse living organismshat either
produceor consumeenergy[187]. Metabolicalterationsare a hallmark of anischemicor hypoxic
conditionof brain, which occursduring stroke,cancergrowth andgenerallyin neuredegenerative

disease.

Conventionalhistology at bestoffers a semiquantitativehistochemicalglycogenanalysiswithout
informationaboutglucoseandlactate.Thus,IR microscopyoffersa uniqueadvantagen the areaof
metabolicanalysisdueto the ability to resolveglycogen glucoseandlactatestoresin tissuesamples

from spectradata[188].

In orderto revealthe metabolicinformationfrom IR spectrathe secondderivativeof the spectrum
matrix is takento revealunderlyingbandpeaksn the carbohydratéandregionof the IR spectrum
Most of thepeakpositionsin the carbohydratéandareeasilyfoundin theseconderivativespectra

Figure 41 Second derivative spectra of a pathological mouse brain showing the peak position of glucose, glycogen and lactate in the

spectrum from tumor site and healthy tisEL&6].

The peakpositionof glucoseis revealedat 1031cnt, glycogenis revealedat bandpeak1024cm*
and1162cm’™. Lactateis revealedat bandpeakposition 1127 cm*. Figure showsan exampleof

metabolismanalysisof a pathologicamousebrainby IR microscopy Thefigure showsthedepletion
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of glucoseglycogenstoreandconsequentlyhe increaseof lactate thusshowingthe presencef an

increasan glycolysis.

Figure 42 Metabolic analysis showing increase in glycolysis in the tumor region resulting in increase in lactateltiistabd the

depletion of glucosglycogen store

3.6.3D Reconstruction

In this sectionwe present generalmethodology fo reconstruction of 3D volume of IR metadata
images In line with the objective of this thesis, we focus on brain imaging applrcaiihus our
experimental strategy is demonstrated on the 3D reconstruction of mouse brain metadata images.

Severalmethods have been proposed for the 3D reconstruction of tissue blocks, but the tissues we
first stainedor blockface ghotographic volura registratiorwas used with MRI to help correct the
shape in thesoft tissue image$113, 189] However, the use débelling and staining methods or

gadolinium injections for MRI prevent further OunalteredO chemialgisis.

Our metlodology overcomes such a bottleneck, providing both an image registration and correctiol
method for reconstructing 3D tissue blocks, and can determine the molecular concentrations in 3D
microscopic resolution. Ehkey advantage is tlievelopnent of a genuine combination of in vivo

3D imaging with quantitative spectroicroscgy for producing a 3D quantiige chemical image of

a tissue block186].
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Our strategy isa multimodal approachased orthe combindion of in vivo acquisition of the 3D
image of the mouse brain in the skull witietadata images from infrareldR] spectremicroscopy

for the histological analysis.

This is a Volumeo-Slice based approach for 3D reconstruction of histological imag#saMissue
sectionsfrom the Xray tomogram allows theorrecton of the stape distortions ir2D-IR image.
Consequently, we could obtain a 3D patch of correctetRRilnages, constituting a 3IR spectrum

matrix for the quantitative chemical analysisative brain contents.

Figure 43 Pipeline for 3D reconstruction of IR metadataages. This includes the acquisition ey tomographic data, pre
processing by denoising, smoothing and artefact correction, tomographic ragdgiwirby iterative methods, pgstocessing
methods such as segmentation, deformable registration with IR data and visualization methods such as shape analystsabnd chemi

analysis of reconstructed volume.

This methodology is divided into two major EarThe reference model acquisition which entads X
ray tomographic reconstruction of differentray projections of the mouse brain skull and the

hierarchical image registration method for 3D reconstruction el Dnages.

3.6.1.Reference Model Acquidion

3D reconstruction of tissues generally is arpdsed problem with many possible solutions in the
absence of a real model to validate the stacking of tissues. Thus as detailed in Chapter 2, we prop:
the use of a reference model for guiding the 8&bnstruction of mouse brain tissues.

The heads of themouse can banalysed with and without brain inside the skull to obtain the actual
brain volume by subtraction of segmented 3D imagleis. can be achieved byieno-radiologyusing

X-rayimaging.

The objectivas to obtain a 3D image of the brain without altering its contents duer&y3 and the
choice of Xray microscopy is also to avoid the use of contrast agents or labelling methods (as fo

MRI), which modify the cheroal contents of the tissae
102



The volume rendering from 3 axial absorptmojections allowgo obtain areconstructedealistic
CT shape of the mouse brauhich can baised to virtualize all tissue sections and create a 2D mask
of their planar limits.

X-ray Tomographic Reconstuction

The goal of tomographicreconstructions to recoverthe interior structureof a body usingexternal
measurementom manydifferent projections(directiong, andtomographyis basedon deeppure

mathematiceandnumericalanalysisaswell asphysics andengineering

To reconstructhe X-ray imagesobtainedat differentanglesof the skull into a 3D volume we use
the knowledge of the principle of tomodensitometrywhich is also used in CT imaging.
Tomodensitometryneasuretheattenuatiorof theradiationgoingthroughanobjectin anX-rayline.

As X-raystravelfrom the X-ray saurcethroughanobjectto an X-ray detectortheyareattenuatedby

thematerialonthex-rayline (neglecing scatteanddiffraction). In monochromati&-rays,thelinear

attenuatiorcoefficientis proportionalto the densityof the object;thus,if we areableto estimatethe

attenuationye canrecoverthe densityof the object[190].

So,let) >#e « # bethedensityof the object. Mathematically,the goal of X-ray CT is to recover
) from theattenuatiormeasurements&ivena point = in anobject,accordingto BeerOkaw, if #*=+

is thenumberof X-ray photonsn thebeamwhenit arrivesat =, thentheintensityin asmallsegment

of lengthO= is decreasedly the multiplicative factor) *=+0=.

Thisis aclassicaRadontransform(Appendixproblemandis givenas:

? % (23)
s ( #jj ) GH)MN 1 =RSK1 HTU¥+=,H
3%
3%
To reconstruct3D volume of an object from the x-ray attenuationmeasurementshe classical
algorithmusedin CT imagereconstructiorfrom different projectionsis the filter back projection
algorithm. However, this algorithmis ill -posedand requiresa lot of projectons for accurate3D
reconstructionThis is not practicalfor our applicationdueto therisk of burningof the mousebrain
samplefrom heatof x-ray radiation.
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The iterative reconstructionalgorithm shows more advantageshan conventionalfiltered back
projection(FBP) algorithmin dealingwith the reconstructiorproblem with incompleteprojection
[191]. Theiterationprocessanbeinitiatedwith anemptyimageestimateor usingprior information,
for example a standard=BP reconstructioror a volumeof a similar object.In generalthe betterthe
prior imagesmatchthefinal imagesthefasterthe processconvergesowardsa stablesdution.

Figure 44 Iterative tomographic reconstruction algorithprocess

Iterativereconstructioomethodsconsistof threemajor stepswhich arerepeatedteratively asshown
in Figure 44. First, a forward projectionof the volumetricobjectestimatecreatesartificial raw data
which,in asecondstep,arecomparedo therealmeasuredaw datain orderto computea correction

term.In thelaststepthe correctiontermis backprojectedontothevolumetricobjectestimatg192].
Theiterativeprocessis finishedwheneitherafixed numberof iterationsis reachedpr theupdatefor

the currentimageestimateis consideredgmall enoughor whena predefinedquality criterionin the

imageestimatds fulfilled.
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Figure 45 X-ray tomographic reconstruction of the mouse skull frerayxprojections.(a) 12-xay projections of the mouse skull

used for the tomographic reconstruction of the mouse skull volume in (b).

3.6.2.3D Hierarchical image registration method for 3D

reconstruction of 2D-IR metadata images

| proposea novel 3D reconstructioomethodfor 2D-IR stack.Our methodis a hybrid approach

which combinessolumeto-volumeandsliceto-sliceregistrationrmethodgor 3D reconstruction.

Thevolumeto-volumeregistrationis appliedto achievea globalalignmentbetweerthe 3D volume
of IR stackandthereferencamagevolumeobtainedby x-ray tomographyThis is donetogether

with aslice-to-sliceregistrationto correctlargeandsmallanatomicaktructuresn the IR stack.

Our proposednethodcanbe dividedinto threeserialstepamplementedn a hybrid CPU/GPU
modelto high performancendto improvecomputatiorspeed Thefirst stepis the globalalignment
of the 2D-IR stack,this s followed by registrationof thetissue stackusingvirtualizedsectionfrom
thex-ray referencanodelon the GPUserverandthenafinal refinements doneby locally

deformingsimilar angomical structurego usingopticalflow method

()!  Global alignment of slices
The step of our proposedmethod is a global alignmentof the 2D-IR stack.| proposea rigid
transformationmethod to correct the translationand rotational differencesbetweenslices. As
discussedn, log polar phasecorrelationmethodoffers an accuraterigid transformatiorparamesrs

estimation.
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Theaccuracyof theglobalregistrationrdepend®ntheinitializing slice.l proposea manualselection

of aOcorrectly@¥ientedslice choserasthe centerslice. In aniterativemannerall slicesarealigned

in conformityto this slice by estimatingthe rotationandtranslationdifferencefrom the centerslice.
(i)!  Global registration with X-Ray model

Theglobalregistrationwith X-ray modelstepis to correctthe globalshapeof tissueslices.Thex-ray

tomogramis virtually sectionedo the numberof tissueslicesanda maskof eachvirtual sectionis

obtained.

Thisis followed by a simpleshapematchingalgorithmto estimatethe virtual maskthatcorresponds

to eachtissueslice. An affine transformationis performedto deform teachtissue slice to its

correspondingirtual slice.

(ii)!  Local registration of brain sub-structures
Local registrationis doneto correctthe deformity betweensimilar anatomicalstructuresin serial
tissuesections As discussedn section2.4. Registration methods for 3D histology reconstruction,
we proposethe useof optical flow estimationwith deformabletransformto estimateand correct

motionchangedetweersimilar anatomicaktructuresn betweertissues.

Figure 46 Global and local alignment acfample mouse brain dataset. (a) 3D volume obtained after rigid alignment tissue slices
showing global shape deformity. (b) Virtual sections created frammyXnodel. (c) Mapping and deforming IR metadata image to x

ray virtual section. (d) Local motion correction of tissue substructures. (e) 3D reconstructed volume of mouse brain.
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Below is a detailedstepof our proposedD hierarchicaimageregistrationfor 3D reconstructiorof

2D-IR metadatamages.

Algorithm
Input: setof unaligned2D-IR metadatamagesS = {1,En}, 3D x-ray referencenodelM

Output:3D reconstructedR metadatavolume

1.! LetY beanarbitraryslicemanuallyselectedasthe centerslice.

2.1 Computetherigid transformatiorparametenof all slicesof eachslicewith respecto Y

3. Apply affine transformatioron all slicesto alignthemto Y

4. Virtually sectionj into asetof virtual sectionst.

5.! £# — ¢, computethemaska. of thevirtual sectionslice.

6. £#. — ¢. ,find themostcorrelatedslice¥ — Y

7.! Computethe deformablaransformthatdeforms¥ to correspondo =.

8. £# — Y, estimatethe opticalflow of ¥, § and¥ 35 which arethesectionthatprecedednd
follow ¥

9. Apply adeformabldransformatiorto correctmotionchangesn ¥

10.Stackthegloballyalignedandlocalmotionimagesn Sto obtaina3D reconstructegtolume

of thesample.
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CHAPTER 4: 3D Chemical Imaging of
Tumors in Mouse brain

In this chapter, we introduce a direct apgiion of our proposed methods for 3D imaging by IR
microscopy.l demonstrate the application of our methods to investigate to precision a specific
anatomical structure in the mouse braiapplied our proposed methods to the chemical imaging of

tumors inthe mouse brain. Our aims can be summarized as follow:

al! To demonstrate that 3D chemical imaging using IR speutcooscopy can be used for the
3D pathological investigation of large tissue bloeksl the comparative advantage over
classical histology.

b.! To demonstrate that quantitative metabolic parameters can be extracted from the IR spect
for the daracterization of the brain metabolism-&sis tumor metabolism (assessing the
Warburg effect in tumors).

c.! To demonstrate that 3D IR spectrocroscopy canchieve a quantitative molecular analysis

of tissues

Here, we present the methods used in our experiments and thereafter the results and perspecti
drawn from our experimentssing a mouse brain in which glioma tumor cells had been implanted to

grow a tunor in 28 days before the acquisit of 3D in situ and 2D histogical images.

4.1. Methods

Below are the methods used in our experiments from sample preparation to 3D quantitative molecul

analysis of tumors in the mouse brain:

4.1.1. Sample preparatios

The 3D image model of the mouse brain used for 2D and 3D IR image corrections has been obtain
on healthy animalslQ to 12weekold male rag8&C’~ immunodeficient mice). A series of 12 animals
were used for acquisition of the head 3D image aftesection The dissectionconsisted in the

removal of the skin, eyes, tongue, teeth, &cdo obtairthe skullandthe brainsample
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The X-ray tanographic images were obtained in sequence with and without the brain (360 projection:
over 180 degrees, providing gbgh resolution meshing of the brairjor skull imaging, ie brain

was aspiratedthrough the occipital hole. The internal part of the Isiuds further cleaned from
possible tissue remaiby enzymatiaigestion(Liberase TL, Roche ref 054010200®d) 20 minutes

at 37;C

The lowdose Xray images of the brain further used for IR analyses were obtained using 3 projection:
(-90, 0, and 90efrees) in same conditioasthe 360 projectiohigh resolutionmages, thus limiting

the xray dose to negligible amount (not heating the brain before histological analyses). The aim we
to reconstruct the 3D model of the brain with limited 2D projestionusing the highesolution X%

ray tomographic images as references.

The mouse brasprepared for 3D histological analydesd been xenograftedth NCH421K glioma
tumor spheroids (proneural, stdike cells). Briefly, primary tumorderivedNCH421K sgheroids (5
spheroids of 10 cells per mouse) were implanted into the right cerebral cortex using a Hamilton
syringe fitted with a needle (Hamilton, Bonaduz, Switzerland) and following the procedure already
described24].

Animals were anesthetized using Imalgene 1000 (Ketamin 10 g/100 ml) injected intraperitoneally
Mice were fixed using a stereotaxic alignment instrument. Injections were realized in the striatun
(2.2 mm on left from bregma 0 and 3 mm of depth) using Hanmsjange.An analgesia isealized
(Buprenorphine 0.1mgg) before and aftdsrain implationsaccording to the ethical criteria

Full brains (with xenografted tumor on one lobe and healthy brain on the other lobe) were remove
from sacrificed mice afte28 days of tumor growth. The sample holder with brain were inserted in a
plastic tube and plunged into liquid; for instant freezingThe frozen brain was deposited in the
upright position (with cerebellum on the bottom) on cooled glue (polyvinyl aldoharyostat,-

20;C) to avoid tissue embedding. The total duration from the death of animal to the complete freezin
of brain was always less than two minutes, what guaranty that degradation in brain cell and tisst

contents was limited.

After freezing,additional glue was used to homogenize the sample as a regular block intended fo
cryosections (CryostafM190Q LeicaMicrosystems, France). A complete sectioning of the brain

was performed at 28m thickness. A total of 34885 sections was obtained degig on he brain
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dimensions the sectioning was stopped in the cerebellum mass). In the example of iBD bra
reconstructions shown in the respltsection was reserved for histology (depositegetatin-coated
slides) and the following section was negel for IR microscopy (deposited on Gafndows having

the same dimension as histological slides), and so on alternatively for the complete series of sectiol

For histological imaging, all tissue sections were incubated with antibodies against honmaatinv
antigens (Santa Cruz 626@nd a green fluorescent secondary antibody (goatnmamise 488
antibody, InterchimFP-SA401Q. Imaging was carried out by using a Nikon eclipse E600

microscope.

4.1.2. Xray image acquisitions

Microradiology was perfored with unmonochromatized (white) synchrotromays emitted at the

01-A beamline wavelength shifter of the National Synchrotron Radiation Research Center (NSRRC
Hsinchu, Taiwan). The photon energy rangea 4 keV to 30 keV with critical energyt ~12 leV;

the beam current was kept constant at 360 mA with the@popperation mode all over acquisition

periods.

To obtain 4.59&3.43 mm imagesrys were converted into visible light using a Cd\\&ihgle
crystal scintillator and then detecting the photerik an optical microscope equipped with a 1600 &
1200 pixel CCD camera (model 211, Diagnostic Instrumehtsdduced the radiation dose by
attenuating the Xay beam with two 550 um silicon wafers. The dose was 33.9 Gy per 100 ms for a
specimen thickness of 1 cm placed before the sample. The sseil#ator distance was 5 crh.

used a 2& lens in the opticalamoscope to obtain the desired field of view; the pixel size in the final
image was 2&2 pm).

A simple background flattening image filter was used for large areaqn@drology images. The

conceptual details of synchrotrsased microtomography, includj absorption and phase contrast,
have been discussed in previous sttidyhe highresolution tomographic images were captured with
360 angles over 180 degre&be low resolution (and low Xay dose) images were captured with 3

angles {90, 0, 90 degrees) and reconstructed using therkggiution models.
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4.1.3.IR acquisitions for 20-Im spatial resolution imaging

| analyzed the mouse brain tissue sectionsRbynicroscopy. The QGIR microscope (Spero’,
DaylightSolutions, CA, USA) is equipped with 4 IR lasers providing wavelengths every dlony

the 1800900 cm" spectral interval, thus 225 absorption values. The microscope is constantly purgec
with dry airand sample compartment is isolated from ambient air by a plastic box. The detector is
non-Na.liquid frozen focal plane array (FPA) detector with 480x480 elements.

The acquisition of IR images was setup for a finai$gi resolution (the closest dimeasi with
respect to the 2@m tissue sectioning thickness), although the raw images haebavaeral pixel

size (using the low magnification optics). The® pixel size was obtained after acquisition by
binning 5x5 pixels. IR image acquisitions lastgdto 2 hours per section at the largest tissue section

dimensions, ~6x8 mm).

A total of 170190 IR images was obtained per brain for thelROmage reconstruction (same
number for the corresponding histological image providing a comparison betweanviiomes).

The microscope was installed in a thermally controlled room (20;C) for standardizing the ambien
conditions during acquisitions over the total duration of acquisitions (2 months). Raw IR image dat:
were stored on server and duplicated forrsga set of 2BIR images at ~2@m resolution.

4.1.4.3D IR and 3D histological images reconstruction

For the 2D and 3DIR images presentdtere we used a mouse brain from which 370 sections were
obtained by continuous cryomicrotomy. Therefore, 188 RIDmages were obtained and represented

a matrix of 9.4million IR spectra and 140 Gb of raw data on a storage server (after processing the
5x5 pixel binning).

The same number of histological sections was obtained, alternatively to the IR sectionsha@uring
continuous cryomicrotomy. The visible images of IR and histological sections, obtained right aftel
sectioning on a transmission optical microscdgi&k@n AZ100M), were merged into a full set of
reference images of the mouse brain. These visible invegiescoupled to the 2D masks of virtual
brain sections extracted from the 3Bra§ tomogram of the mouse brain for further corrections and

resizing.
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The resizing of 2Ehistological images was done by edgeded image interpolation. The first and
last images corresponding to the actual set of tissue sections (histological B@3¥0Rmages) are
defined according to the optical (visible) images taoknediately after cryomicrotomythe 2D
mask of each image is extracted from the actual volume of theentwas (respecting a Zfm
distance between 2hasks to match the thickness of histological sections).

The lacking 2Dmasks (370 sections vs. 100 images in the Allen brain atlas) are completed for
correcion of all tissue sectiongdistological images ere corrected for shape alterations by edge
guided image interpolation with their correspling 2D mask for reference.

The IR images were corrected bypigelation and redistribution of the full spectral absorbance at
the 2D image level. A pixel grid atsolution of the IR image (here-$in lateral resolution) covers

the 2Dmask that the 2BDR image must match. The IR spectra contained in IR image pixels are
redistributed in the pixel grid of the 2Dask.

The total spectral absorbance of the-IBDimage is calculated before and after IR spectra
redistribution to ensure that the chemical information of thedisgction remains unchangdthe

185 histological images are positioned in the actual volume model of the mouse brain for 3C
alignment and patahg.

The alignment is performed by anatomical pattern recognition with respdwt Adlén brain atlas
images and the 2imasks Typical anatomical features are salient angles found at the surface of brain
volume, such as the longitudinal cerebral fisstine lobeserebellum interfaces, etclhe 185 2D

IR images are also aligned and patched according to the same procedure as for histological image

4.1.4. Brain metabolic assays

In a series of 10 mice with 41833 days of tumor development in the rigi@misphere, brains were
harvested for dissection of the left hemisphere (healthy tissue). Tissues were immediately weighte
and brain homogenates were obtained by sonication in 10% wt/vol of 0.1 N NaOH and 0.01% SD
and centrifuged for 15 min at 16,00@&4;C.

The supernatant was acidified and diluted with 0.03 N HCI. Glycogen and glucose were measured |
a fluorescence enzymatic assay using the amyloglucosidase fe@lydogen was digested with

112



amylo*-1,4*-1,6-glucosidase (AG) (Sigma). The glucose levels were determined with hexokinase
and glucosé-phosphate dehydrogenase (Sigma) through formation of NADPH from the reduction
of NADP".

Glucose levels obtained fromamples without AG were subtracted from samples with AG to
determine glycogen levels. Glycogen and glucose were expressed both as micromoles per gram
fresh brain tissue ($mol/g). The effects of SD were evaluated-tbgts. For lactate, brain
homogenats (20 mg) were added to 100 $I of-wad 3 M perchloric acid, homogenized using a
homogenizer, and then centrifuged at 1,000 g for 5 min at 4;C. The resulting supernatant was mixe
with buffer containing glycine, hydrazine, and NAD and then added to.LDH

The fluorescence measurements were taken at 350 nm excitation and 450 nm emission. The lact
concentration was calculated from a standard curve. For comparison with IR spectral data, statistic
tests were considered significant if P <4.0

4.1.6.IR spectra data treatments

€) IR image postprocessing:

The corrected 2BR images were cropped to remove pixels (and thus IR spectra) out of the brain
section (containing OCT glue and other features that could bring artefactual data after spectra de
treatments, and thus alter the quality of the final 3D images derived from the 3D IR spectrum matrix
and the 3BIR image was patched as a 3D spectrum matrix of the brain only.

All IR spectra were baseline corrected using a standard procedure (elastti@orbased on null
absorption at 1800 ch). Absorbance spectra were first used to check that spectral intensity scale wa:
consistent between IR images.

(b)  3D-IR image reconstruction

The#1800-900 cm') spectral intensity integration was calculated for all IR spectra and the 3D image
was reconstructed (full spectral intensity 3D image of the brain). The full spectral intensity typically
ranges between 0 and 300, and this scale wdredpp all 2DIR images before 3D reconstruction.

The 3D patch of 2BR images was first performed with uncorrectedIBOmages (figure 2) to show
the mediocre volume rendering induced by the multiple tissue sections shape alterations due
surgery, ample deposition on sample holder, and cryomicrotomy.
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The same 3D patch performed with correctedlROmagesby X-ray imaging allowed to align
properly each 2BR image according to observable external anatomical details as explained above
Therefore, Bihough the spectra data treatments were applied etR2ibhages, the positioning of
each 2DIR image in the 3D alignment was fixed for all volume renderings.

(c) Tumor volume:
Importantly, the positioning of the 3[R image of the brain inside its skwvas used to check that
all 2D-IR image resizing and corrections could accurately recover the internal anatomy of the brair

which also resizes the tumor.

| performed the segmentation and meshing of the tumor volume after a classical spectroscop
analysis, i.e., by calculating the protetio-lipid absorption ratiof1700-1480 cm')/417601710cm

). The mesh of the tumor volume is extracted as an independent volumetric image for shar
comparison with its 3Mistological image.

The meshed tumor volumeg IR and histological, were subtracted as polysurfaces to check the
relevance at using the proteinlipid absorption ratio to reveal a glioma tumor in the brain. The
difference between IR and histological meshed volumes was measured and expressertatag®

of the histological (reference) volume.

The difference between meshed volumes of the tumor from uncorrected and corretfea8C3D
histological images was also calculated to show the effect of 2D image corrections on tumor volum

rendering.

(d)!  Anatomical regions:

To exploit the full spectral intensity 3IR image of the brain, anatomical regions were directly
segmented from intensity scale manipulation. In 2D images, many different anatomical region:

appear as a color gradient respectivdhéintensity scale rendering.

For every 2BIR image, we segmented the color gradients and checked for anatomical region:
reconstructions in 3D from the 3R image (where successive segmented 2D images provide

continuous 3D structures).
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To that end, weelected 10, 25 or 50 color gradients, depending on the refinement expected in 2L
images, depending on its complexityused a standardized ramax intensity scale on all 20R
images with rainbowelated rendering: blugreenyellow-redwhite. The samecolor gradient
scaling was used for all 2[dand 3Dchemical images presentations.

Once an anatomical structure could be highlighted and meshed in 3D, it was extracted and saved
an independent image for separated analysis. The fulR3Dhage of the kain could be used again

for determining other anatomical regions using other levels of color gradients on intensity scale, ar
so on. The anatomical regions were systematically compared to the existing anatomical atlases of 1
mouse brain, the Allen braiatlas for example.

(e)  Quantitative metabolic analyses:

Several metabolic parameters (glucose, glycogen, lactate) were quantifiedRnirdBges and the
distribution of concentrations was determined as follows:

1-! Second derivative IR spectra were calcudte the whole 3D spectrum matrix of the mouse
brain. IR spectra of the left hemisphere (healthy tissues) and for the tumor (from its meshe
volume) were analyzed separately.

2-! The absorptions of glucose (1031 Hni53], glycogen (1024 and 1162 c¢Hyy and lactate
(1127 cm') [188] were measured by integrating band areas on second derivative spectre
(glucose: 10441027 cn; glycogen: 10271018 and 1164157 cni’; lactate: 11381114 cm
! Bexpressedn a.u.) x1d);

3-! Since there is no histological method to determine the concentration of these metaboli
molecules on histological sections, the calibration of molecular concentrations was
established considering the average value of their absorptionsigaleqt to the values of
metabolic assays on the brain homogenates obtained in parallel with another batch of 10 mic
(same sex, age and experimental conditions, with a glioma tumor implanted the same day
for mice used on histological/IR experimeni®)e calibration was performed using only the
left hemisphere part of the 2IR images (healthy tissues not affected by the tumor). The
scaling of molecular concentrations was done according to the distribution of IR absorptior
for each molecular absorptiqa.u.) .1¢" + SD vs. $mol/g , $mol/g + SD). The normal
distribution of absorptions (mean + 3x SD, in a.u.)*.16ata not shown) was calculated for
the left hemisphere of the brain and for the tumor volume to reveal the heterogeneity o

metabolic parameters betwesmatomical regions (mean £ 3x SD, in $mol/g).
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4-! The IR spectra corresponding to the anatomical regions meshed from the left hemisphere (c
OAnatomical regionsO paragraph) were analyzed separately to reveal the mean + SD val
of metabolic parameters aptbtted

5-1 3D-plots of molecular concentrations in the whole mouse brain were produced with volume

rendering. The double intensity label (a.u.J* 46d $mol/g) is provided.

4.2.Results

The results shown in thibesisare related to a mouse brain in whiglioma tumor cells had been
implanted to grow a tuman 28 days before acquisition of 3ih situand 2D histological images.

The presence of a tumor in the brain was the perfect challenge for a quantitative chemical analysis
tissues: tumors are highdifferent from healthy tissues in terms of chemical composition (usually
with higher protein and lower lipid conterji93]) and metabolisnil94]. | achieved to show these
differences with a quamtive chemical analysis of the mouse brain using the following
methodology:

4.2.1.Acquisition of the actual 3D shape of the brain

| first used mice heads for-bay tomographic analysis of the brain volume. Heads were analyzed
with and without brain inde the skull to obtain the actual brain volume by subtraction of segmented
3D images. The segmentation method we used allowed to obtain the meshing of brain-$rth a 2

accuracy.

The highresolution images were used as models for resizing thedd®& 3projections *ray
images. The objective was to obtain a 3D image of the brain without altering its contents due to X
rays, and the choice of-May microscopy is also to avoid the use of contrast agents or labeling
methods (as for MR]I195], PET/SPECT196], intravital imaging197], massspect imaging198],

etc.), which modify the chemical contents of the tissues.

It would have thus afféed the chemical analyses by IR microscopy after histology. The volume
rendering from 3 axial absorption projections allowed to obtain a realistic CT shape of the mous
brain that was used to virtualize all tissue sections and create a 2D mask of tizifiiis.

The main issue following the acquisition of a brain volume from 3 axial absorption projections was

to determine the beginning and ending point of brain sectioning as well as the actual axis ¢
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sectioning. This issue was solved by using anlabia anatomical atlas of the mouse brain, the Allen
Developing Mouse Brain Atlg499].

| resized the atlas with respect to the actual volume of the mousel luseal. a graptheoretic slice
to-slice reconstruction withglobal histologyto-CT reconstruction to achieve high accuracy, both in
the alignment of features between slices and in the 3D shape of the reconstructed brain.

4.2.2.Acquisition of a 3D IR spectrum matrix of the brain

After acquisition of thehree X-ray projections for volume rendering of the brain, the organ was
removed from skull and deposited in the upright position (with cerebellum on the bottom) on sampl
holder for continuous cryomicrotomy at a-8 thickness. A series of 3485 sections couldeb
obtained depending on the organ size.

Alternatively, one section was reserved for conventional histology (named histological images) an
one section was reserved for IR microscopy analysis (named IR images). The goal was to obtair
series of histologial sections sufficiently representative of the whole brain for comparative analyses
between IR microscopy and histology, and for 3D image reconstructions.

An example of 2D IR image of the mouse brain with typical IR spectra from different anatomical
regons is shown irfFigure47.

Figure 47 3D-IR reconstruction of mouse brain. a) Sample IR image of the full spectral absorbargam(ile spectra from

infrared image(c) 3D reconstructio of uncorrectd IR image stack
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Figure47 show a 3BIR image obtained from a mouse brain:

A.! The 2DIR image of the section shown is approximatively located at Bregrfd mm /
internaural0.24 mm. The mouse brain has been sectioned-&t2Bickness (370 sections).
The IR image is shown as a fajppectral absorbance (in a.u.)).

B.! ThelR spectran corresponding to the-4 positionsmarked in (A)are shown in the central
panel. They show important absorbance intensity variations throughcpabgal interval
(1800900 cn', also called the fingerprint region). These absorbance intensity variations
allow recognizing the major anatomical regions of the mouse brain, which can be used fo
proper alignment using anatomical atlas of the brainh(siscthe Allen Developing Mouse
Brain Atlas).

C.! For the 3DIR image reconstruction, the full spectral absorbance intensity scale was set free
(set at O for artefactual pixels in 2D images, <1.5% of pixels for all images) for the 185 raw
2D-IR images obtair from mouse brain sectioning. The 3D patch shows that many tissue
shape alterations where present onlRDmages.

IR spectra from different regions of the brain show quite different absorption profile, thus confirming
that variations of chemical contsrdre significant-or individual 2DIR images, he 1800900 cm

1) intensity scale ranged102to 0-331for the whole set of 185 images

The intensity scale was set free tbe 3D-IR image reconstruction. The first reconstruction of the
3D-IR image from 2D raw IR images (without any planar shapeecton) was just centealigned

using the central axis between lobes as anatomical reference.

As shown inFigure 48, the general shape of the 3R image of the brain contains numerous
distortions. They came from organ shafierations during surgery (due to the relapse of the brain
volume once extracted from the skull, which exerts a pressure on brain tissues, and also due to i

gravity-related collapse of this very soft tissue at deposition on the sample holder).

This isalso due to the weknown tissue alterations during cryomicrotomy, where tears, bends,
cracks, etc. appear at the tissue sectioning or deposition process. This is showing clearly the relevai
of using a 3Din situ (or in vivo) imaging method for obtaingnha realistic volume rendering of the
mouse brain before histological analyses. This is atsitieal to ensurdurtherquantitative chemical
analysis fronthe 3D-IR image
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4.2.3.Correction of the 2D histological images from 3D Xay

tomogram

The IR aml histological images were corrected for shape alterations using e td§mogram and
the 100 virtual slicesiom 100images- Figure48) given by the Allen Mouse Brain Atlas.

| first compared anatomical images with the IRl &rstological images to define the sectioning plan
effectively used while obtairing all histological sections. The anatomical images are resized
according to the actual 3D volume of the mouse brain. They serve as reference for comparir

anatomical regionsbserved on visible, histological, and IR images.

Importantly, they allow defining the first and last sections obtained on a mouse brain by
cryomicrotomy, which number is variable according to the size of the organ and some potential los
of sections aextremities. They are also used for proper alignment and 3D patching after shape

corrections, as shown Figure48.

Figure 48 Schematic of the shape corrections process for 2D images and 3D volumstmeciions.

Figure48 shows a detailed overview of the shape correction process.
A.! The actual volume model of the mouse brain is used to resize the anatomical images of tr
Allen Mouse Brain AtlasThe first and last frames corpesmded to the limits of the full set
of tissue sections obtained by continuous cryomicrotomy (bgital and IRD370 sections).
B.! The virtual 2D masks of the 370 images are extracted from the actual volume of the mous

brain.
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C.! The histological images ao®rrected by edgguided image interpolation.

D.! The IR images are corrected bypigelation and redistribution of the full spectral absorbance.
The total spectral absorbance of the 2D IR image is calculated before and after IR spect
redistribution for vlidation of the image correction process.

E.! The 185 histological images are positioned in the actual volume model of the mouse brain fo
3D alignment and patching. The alignment is performed by anatomical pattern recognitior
with respect to the Allen brairtlas images in (A) and the 2D masks obtained in (B).

F.I The 185 IR images are also aligned and patched according to the same procedure.

G.! 3D reconstructions of the Kin brain atlas.

H.! 3D-IR imageresized to match the actual dimensions of the mouse brain.

[.! 3D-IHC imageresized to match the actual dimensions of the mouse brain.

The sets of IR and histological images (185 images for each set) werdouse brain volume
rendering andte 3D histological image was segmented to highlight the tuman observeiat the
reconstructed 3D images of the brain perfectly match the actual volume of the brain defined in by X

ray tomogram.

| applied a classical IR spectroscopy analysis to highlight the tumor from the 3D chemical image, i.e
the proteinto-lipid ratio defined by absorption rati®17001480 cm')/417601710 cnt), or the
absorption ratio between amide | and lipid es{@is This analysis highlights the tumor mass,
containing higher concentration in proteins and lower canagon of lipids than its surrounding

tissues.

4.2.4.Anatomy of the brain based on 3D chemical data

An important objective of our study was to demonstrate that 3D chemical imaging by IR -spectro
microscopy can be used for the 3D pathological investigatidarge tissue blocks segmented the
tumor mass based on a simple spectral analysis to compare it with tumor volume rendering from tt

3D histological image.
As expectedthe IR spectra extracted from the tumor and at a similar location in tihemeitphere

show important differences for most of absorption regions. The shape of tumor volume was foun
very similarbetween IR and histological analyst#secalculation oHausdorffdistances between the
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two volumes shoimg only marginal differences3D-IR = 9.39 mni; 3D-IHC = 12.24 mni;
difference ~30%

The ability to extract the 3D spectrum matrix of the tumor mass is important to analyze specifically
its chemical contents. This is also true for the healthy brain tissues (at least the left remigpbk
is not affected by the tumor metabolism and the mechanical pressure it exerts on the surroundil

tissues).

Figure49shows examples of segmentation performed on the mouse bréC3&8nd 3DIR images,
both for the turor mass extraction and for defining anatomical structures from chemical analyses or
the 3D IR image.

This segmentation can be based on absorption profiles extracted from spectra (as for the tumor mi
with the lipid/protein contrast). It is noteworthyathealthy brain tissues andatomical entitiesan

be successfully separated directly from IR spectra (also using the important absorptioncesfere
shown in spectra dfigure4?).

Therefore, an anatomical atlas of the mobssn might be developed from its 3D quantitative

chemical image.

Figure 49 Segmentation of brain regions based on chemical contents
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Figure49 shows the results obtained after the segmentation efeliff brain regions based on their
chemical composition.

A.! The 3BDIR image of the mouse brain in the skull highlighting the tumor mass using the
[€17601710 cni)/41700-1592 cm')*100] absorption ratio (L/P as indicated in figure scale
legend).

B.! 3D-IR image of the tumor mass extracted from whole brain by segmentation of the voxels
presenting the chemical profile of the tumor (full spectral absorbance).

C.I Tumor mass in the skull

D.! Tumor mas®xtractedrom the 3Dhistological image bgreen chanel segmentatio

E.! Representation of the Hausdorff distances between tHas2@logy (reference) image of the
tumor mass and its 30R counterpart (both sides of the tumor mass).

F.I lllustration of the tumor growth mechanics as revealed by the segmentationlldC3&nd
3D-IR images of the tumor volume with respect to the brain regions invaded.

The Hausdorff distance calculation shows very interesting features. ThdQGREumor image is
showing the tissue volume occupied by tumor cells while théRBRumor image is showgthe
tissue volume which chemistry is significantly altered by tumor.

The 30% difference between the two volumes represents the tissue volume where tumor cells
present but where they did not alter yet significantly the chemical composition aftine (i.e. tissue
areas where tumor cells are dispersed).

The Hausdorff distance calculation between these two volume renderings of the samefarmsr

us about the way the tumor developed one sidein front of the cortex the 3DIHC to 3DIR
differences are limited or null, thus the tumaas blockedoy a cortex barrier (except along the
OtunnelO formed by the needle when implanting the tumor cells); on the other side, the differenc
are larger, showing that the tumor had easier way to invadeatleechyma through the caudate

putamen region.

This result illustrates the importance of 3D histology for understanding the anatomeidtadnical

chemical features that drive the development of a pathology.

122



4.2.4.Quantitative 3D metabolic images basedn 3D chemical data

The last major objective of this study was to demonstrate that 3D IR spactascopy will develop
3D pathology as a new avenue for biological research, notably by providing quantitative chemice

analyses that nothertechnique hadchieved till now.

With the example of a solid glioma tumor, the challenge was to analyze major metabolic paramete
of the brain200], the glycogen stores and the gluctsetate metabolism through the concentration

of thee molecules. They collectively allow to address theated Warburg effect in tum¢i94].

To obtain a quantitative analysis, we performed an absorption integration from the §3¢¢5@31

cm™), glycoger[188] (1024 and 1152 cif), and lactate (1127 ¢hmost specific IR bands on all IR
spectra of the 3D IR image of the brain after calculating their second derivative, a standard procedu
for a fast IR spectralata extractiofs.

From 2 derivative spectra, the 3D mapping of molecular concentrations in the brain was founc
consistent between tissue sections g no major contrast aberraticame to alter the visual
rendering of these analysas shown irFigure50.

Figure 50 Quantitativemetabolic analysis of the brain showing the distribution of glucastate and glycogen in a pathological

mouse brain.
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Fromthe 2" derivative of the 3D spectrum matrix, the glucose, glycogen and lactate IR absorptions
are quantified and mapped for the whole brain. The 3D volume renderings with molecular
concentrations habeen determined according to the healthy brain (left hemisphere) as a reference
Images are scaled with equivalent absorption (a.u?) d8d concentration ($mol/g) values.

To achieve a quantitative analysis of molecular concentrations by IR spectascopy, our strategy
was to use the intensity scales of the glucose, glycogen and lactate IR absorptions from spectra of-
left-brain hemisphere.

| first compared the molecular concentrations between enzymatic assays and IR spectra data analy:
A group of 10 mice with similar tumor mass in the right hemisphere were sacrificed to analyze thei
left hemisphere.

Fluorescence enzymatic ess§®61] were made on tissue homogenates and provided a 2.2 + 0.7
$mol/g of glucose4.1 + 1.7 $mol/g of glycogen, and 1.2 + 0.5 $mol/g of lactate. These results are
consistent with other studies on m[282, 203, 204thathave been reported from similar enzymatic
assays. Interestingly, éhregional distributions of glucog202] in mice brain have been found
varying with a 3fold amplitude, and-2old for lactate205] and glycogen

Such concentration variations per brain regicgrevalso found in our 3D IR images. When we
considered the distribution of absorption intensities for glucose, glycogen, and lactate IR absorption
we observed that 95% of spectra ranged withirBad@d intensity scale values.

Extreme values were rejed from calculations (notably the 0 values, representing 86% of rejected
spectra, probably due to noisy signal or to distorted baseline preventing the (1$eleivative

spectra absorptions).

Spectraincluded in this study (>95% for each anatomregjion)allowed to define a distribution of
concentrations in accordance with enzymatic assays performed on brain regions, glucose sc:
ranging 1.3 to 3.5 $mol/g, glycogen 3.6 to 8.4 $mol/g, and lactate 0.7 to 1.9 $mol/g (basically, eacl
metabolite has 2.5-fold concentration variation in the brain).
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These concentration variations in the mouse brain are thus consistent with previoud2d@dlies
although not fully comparable since microscopic studies of metabolic cortcadra brain have

never been done previously on fré&snapfrozen only- tissues.

It is also important to note that the tumor exhibited a significantly lower glucose (0.8 = 0.1 $mol/g;
P<0.05) and glycogen (1.2 + 0.1 $mol/g; P<0.05) concentratiompa®@d to the healthy tissue
counterpart in left hemisphere (considering similar locations), while the lactate concentration wa
much higher (2.4 + 0.2 $mol/g; P<0.05).

With respect to the healthy brain tissues, these metabolic changes in tumor nigpgaref a
Warburg effect, where glycolysis is increased and thus depletes the ghlyosgen stores and
consequently raises the production of lactate as-praguct[206]. However, the distributions of
metabolic oncentréions in the tumor massvere found very homogeneous, which is also

characteristic for that size of glioma solid tunf@®7].

Importantly, a direct quantitative visualization of brain metabolism could be achieved-bBy 3D
imagng, where internal anatomy and quantitative molecular concentrations were revealed through

transparenbased 3D volume rendering.

4.3. Discussion

A classical view of the advantage of 3D pathology over standard 3D histological examinations is the
it allows a direct visualization tissue features, particularly those involving structural changes or thos
in which the spatial relationship of disease features is important. But, this is restrictive since tissue
are not only defined by structures; their chegthicontents play a major role in the homeostasis of
organs, notably within extracellular space.

3D pathology will thus make sense once the anatomical (estsutture networks) and chemical
features of a tissue block are revealed jointly. Howeveryaimgl the chemical parameters of the
tissue (which can be translated as molecular, biochemical, etc. parameters) would require developi

a quantitative method for 3D reconstruction and visualization on a common intensity scale.

Until now, the use of 3D gihology has not been routine in research and clinics due to technical
difficulties in reconstructing 3D tissue blocks from 2D images of seriated sec@timsrs have
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developed methods for a 3D reconstruction of tissue blocks, but these ones wewrarfed{1€19]
or used bck-face photographic volume registratifri0] with MRI to help maintain the shape of

very soft tissues, such as brain

But still, the use of labeling and staining methodgadolinium injections for MRI prevent further
OunalteredO chemical analysihius developed a nemethodology to overcomsuch bottleneck,
providing both an image registration and correction method for reconstructing 3D tissue blocks, an

achieving tadetermine molecular concentrations in 3D at microscopic resolution.

The key advantage was the development of a gencambination ofin vivo 3D imaging with
guantitative spectrmicroscopy for producing a 3D quantitative chemical image of a tissue, block
here a mouse brain. Our technique requires only a-frezln tissue block to obtain a 3D image
made extremely rich of chemical information thanks to the spectral data it contains. And the use (
high-resolution Xxray tomograms of the mouse head to nstauct a brain volume intended to

histological analyses from only 3 projections ensured to limit tnayXdose to the minimum.

Otherin vivotechniques might be used for obtaining similarly the actual shape of the brain without
the use of imaging coratst agent$195], but $CT is well known and accessible to most of modern
research laboratories and pathology services. Furthermore, since we are not using either labeling ¢
staining procedures for histology or contrast agémtin vivoimaging, the chemical contents of the
tissue are not alterd@0], which is the mandatory condition to expect further quantitative chemical

analyses.

| first demonstrated that the 3D spectrum matrix formed bghpdt 2DIR images can be used for
many different data extractions from the same datasested the Allen brain atlas as a worldwide

recognized reference for the mouse brain anatomy.

Using the full spectral intensity 3D image of the brain, we could segamsl mesh many different
anatomical regions. It is noteworthy that the full spectral intensity images of the brain were alread
delineating many different brain regions comparable to what is usually observed from coloration o
IHC images (hippocampus,redral cortex, hippocampal regions, cerebellum lobules, hypothalamus
and thalamus, etc.).
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| separated the right (with tumor) and left (healthy) hemispheres to segment anatomical regions on
based on spectral data and that was perfectly matching thenedeatlases for the mouse brain. The
3D spectrum matrix of the tumor could be also extracted and its chemical contents analyze

separately.

It is therefore possible to separate tissue regions, analyze their chemical content variations, chan¢
inducedby borders or interface between anatomical regions, compare healthy and pathologice

specimens, and many more.

The second major objective of this methodology development for 3D pathology was to extract an
reconstruct quantitative chemical informationnfroelevant tissue parameters. To date, quantitative
histology has remained limited to the quantitation of obj&€8] and substructure§209] in tissue
sections, but not to its chemical contef®8]. | demonstrated that a 3D quantitative chemical image
provided by IR spectrmicroscopy is able to solve one of the most limiting aspect of conventional

histological methods: the lack of quantitative analysis of molecolatents in tissues.

| focused on tissue metabolic parameters which regulation is deeply altered by growind19¢hors
200], such as gliomasfirst calibrated the absorption values for glucose, glycogen, araddacting
their 2 derivative spectra with respect to biochemical assays performed on brain homogenate

obtained in parallel.

| used welknown procedures for extraction of IR absorptipt@3, 2] that we could traslate as
concentrationg210]. The variations in metabolic molecule absorptions are consistent with the
literature [188], where a ZB-fold concentration change can be observed for these afietab
paameters between regionhe brain regions exhibit important glucose concentrations changes
[202].

Therefore, we used the meshed anatomical regions of the brain as previously defined to determi
their glucose, glycogen, amgctate concentration variations. Our results were found very similar to
the few other studies available, i.e., which analyzed brain tissue areas separately (by microdissecti
[201, 202, 205]and used quanative methods (enzymatic assays).

Interestingly, the tumor volume exhibited more homogeneous metabolic concentrations, but witl

glucose and glycogen 6% lower and lactate 110% higher than the brain healthy tissues
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counterpart. This example of qudative anatomanetabolic analysis shows the potential of the
method for 3D pathology in general.

| have thus combined an efficient anatomical rendering of the mouse brain with a quantitative
chemical analysis of its contents from the same dataset. ThelBDe renderings for anatomical,
chemical and metabolic contents of the mouse brain with a tumor reached an incomparable level

information for a 3D microscopy analysis.

It was also shown that aegistration betweeim vivoand histological analysesuld be enriched by
existing anatomical atlases. The quantitative volume rendering with transparency allows a direct 3
visualization of internal anatomy of the brain with concurrent quantitative analysis of its molecular

concentrations.

This new methoology opens a new era for histology since two major features can be developed now
the 3D study of tissues/organs and their quantitative chemical analysis fofirgie range of
possibilities, as much as chemigaformation canbe produced fromR spectal datato create

relevant metadata.

| can assert thahis methodology is the first realistic candidate for the development of 3D pathology
as a routine for biomedical research, and possibly also for clinical applicatidesd, all thesteps
of theimageacquisitionand data treatments can be automated for a standardized output of results.

Thanks to the chemical information that IR spectroscopy provides, it will be feasible to extract man»
different features of a tissue block, such as the bloodelewtwork[26], its biochemistry, its
metabolism, for instance. The development of sophisticated spectral data treatments will allo
defining the chemical (spectral) profile of these tissue features for 3D reconstructimnostopic
resolution.

As we demonstrated for anatomical and metabolic features of a mouse brain, the exploitation of tt
whole spectral information, call€dspectromicsitom a tissue blockvill expand tremendously the
possible applications of this meitology This is also opening the way to multimodal data
treatments, where machine learning algorithms will be able to-coveslate events from different
sources: anatomical, metalwoéind biochemical, with omids improvemy knowledge in health and
disease.
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CHAPTER 5: 3D Anatomo-Chemistry of
mouse brain

In this chapter, we introduce a broader application of our methodology in the reconstruction of th
anatomy of mouse braihpropose the use of IR imaging to reconstruct the anatomy of the mouse
brainbased on the chemical composition of different anatomical regions.

As demonstrated in the previous chapter, our methods can be used to resolve anatomical structure
mouse brains based on their chemical proflewever, esolving the whole anatomy tfe mouse

brain comes with a lot of complexity due to subtler chemical variations between anatomical regions
thus leading to more accurate internal segmentation, which in turn requires more accurate correctio
of anatomical modifications induced by ongextraction from skull, sectioning/deposit procedures,

and signal intensity normalization over the 3D spectrum matrix.

While resolvinga full anatomical atlas of the mouse brhased on the chemical profiles of different
anatomical region is feasiblepWwever, it was out of the scope of this study due to the constraint of
time. It remains an elusive task due to the complexity of resolving to precision every subtle differenc
in chemical profile identifiedthus leading to more accurate internal segntemawhich in turn
requires moreaccurate corrections of anatomical modifications induced by organ extraction from

skull, sectioning/deposit procedures, and signal intensity normalization over the 3D spectrum matri

Our willingness was rather to demaiagé that we could analyze a large tissue block at the scale of
an organ like the mouse brain. Consequeniéypresent in this chapter, the results of resolving salient

anatomical regions based on their chemical profile.

Figure 51 showsthe overviewof our experiment! aimto resolvespectradatato anatomicakections
andthereaftereconstructhewholethe anatomicaktructuresn 3D.
Our aim can be summarized as follow:
al To demonstrate that 3D chemical imagiusing IR spectrmicroscopy can be used
investigate large tissue blocks.
b.! To demonstrate that 3D chemical imaging using IR speuicooscopy can be used
differentiate anatomical regions in the mouse brain based on their chemical profile.
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Figure 51 Overview of 3D anatomohemistry of mouse bra[i11]

Here, we present the methods used in our experiments and thereafter the results and perspecti

drawn from our experimentssing ahealthymousebrain.

5.1. Methods

Below are the methods used in our experiments from sample preparation to 3D reconstruction

anatomical regions of the mouse brain:

5.1.1. Sample preparations

Full brainswere removed from sacrificed mice. The sample holder witm lwaire inserted in a
plastic tube and plunged into liquid; for instant freezingThe frozen brain was deposited in the
upright position (with cerebellum on the bottom) on cooled glue (polyvinyl alcohol for cryestat,

20iC) to avoid tissue embedding.

The total duration from the death of animal to the complete freezing of brain was &asyisan
two minutes, whiclguaranty that degradation in brain cell and tissue contents was limited.
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After freezing, additional glue was used to homogenize the saamperegular block intended for
cryosections (CryostafM190Q LeicaMicrosystems, France). A complete sectioning of the brain
was performed at 26m thickness. A total of 22dections was obtainethd weredeposited on CaF

windows.

5.1.2. Xray image a@uisitions

Microradiology was performed with unmonochromatized (white) synchrotroayX emitted at the

01-A beamline wavelength shifter of the National Synchrotron Radiation Research Center (NSRRC
Hsinchu, Taiwan). The photon energy ranged from 4 ke30tkeV withcritical energyat ~12 keV;,

the beam current was kept constant at 360 mA with thepopperation mode all over acquisition
periods.

To obtain5.59&3.43 mm images-Kays were converted into visible light using a Cd\\&ihgle
crystal scintilator and then detecting the photons with an optical microscope equipped with a 1600 ¢
1200 pixel CCD camera (model 211, Diagnostic Instrumehtsdduced the radiation dose by

attenuating the Xay beam with two 550 pum silicon wafers.

The dose was 33.9 Gy per 100 ms for a specimen thickness of 1 cm placed before the sample. 1
samplescintillator distance was 5 crhused a 2& lens in the opticaicroscope to obtain the desired

field of view; the pixel size in the final image was 2&2 pm).

A simple background flattening image filter was used for large areaqn@drology images. The
conceptual details of synchrotrsased microtomography, indung absorption and phase contrast,

have been discussed in previous sttidy

The highresolution tomographic images were captured with 360 angles over 18@siefne low
resolution (and low Xay dose) images were captured with 3 angiéeg, (0, 90 degrees) and
reconstructed using the higlsolution models.

5.1.3.IR acquisitions for 20-!m spatial resolution imaging

| analyzed the mouse brain tissue sectiopdR microscopy. The QCGLR microscope (Spero’,
DaylightSolutions, CA, USA) is equipped with 4 IR lasers providing wavelengths every dlong
the 18008900 cm' spectral interval, thus 225 absorption values.
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The microscope is constantly purged wdtty air and sample compartment is isolated from ambient
air by a plastic box. The detector is a fdqiquid frozen focal plane array (FPA) detector with
480x480 elements.

A total of 214IR images was obtained for the 3R image The microscope was irld in a
thermally controlled room (20;C) for standardizing the ambient conditions during acquisitions over
the ptal duration of acquisitions (@onths).

Raw IR image data were stored on server and duplicated for saving a seloir2&ges at ~2&m
resolution.The 2142D-IR images were obtaga and represented a matrix of Xthlion IR spectra

and 248Gb of raw data on a storage server.

5.1.4.IR spectra data treatments

(a) IR image postprocessing:

The corrected 2BR images were cropped to reme pixels (and thus IR spectra) out of the brain
section (containing OCT glue and other features that could bring artefactual data after spectra de
treatments, and thus alter the quality of the final 3D images derived from the 3D IR spectrum matrix
andthe 3DIR image was patched as a 3D &pem matrix of the brain only.

All IR spectra were baseline corrected using a standard procedure (elastic correction based on n
absorption at 1800 ch). Absorbance spectra were first used to check that spetenasity scale was
consistent between IR images.

(b) Anatomical regions:

As stated in the aim of our experiments, we do not seek to resolve the whole anatomy of the mou
brain. Thus, we chose to resolve large myelinated anatomical regions of theebrains In order to
resolve these regions,ewperformedthe segmentationof anatomical regionsfter a classical
spectroscopic analysis, i.e., by calculating the preteiipid absorption ratio17061480 cm
/417601710 cni). Due to the high lipid composition of myelin, these regions are well delineated
and can thus be extracted by segmentation

To extract the different salient regions obtained after spectrosanplgsis, we exploit the intensity
scale to initially eliminate smaller regions and thereafter perform a topographical analysis to segme
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the different regionsFor every 2BIR image, weperformed a topographical analysis to identify
discrete anatomicatructures with the anatomical regions and this is followed by a parameterized
shape segmentation procedure in order extract each structure as an independent shape as we

control the minimum size of anatomical structures resolved.

Once an anatomicaltructure could be highlighted, it was extracted and saved as annddape
image for separate analysis. The anatomical strucexgacted from each 2[R image were
systematically comparewith each other to establish correlation between similar stegtin
subsequent structure&’/hen a correspondence is established, the similar structures are assigned th

same color for proper visualization.

5.1.5.3D-IR image reconstruction

| applied our hierarchical 3D reconstruction method for the 3D recatistiuof the extracted
anatomical structures. This procedure is divided into 3 major parts, the global volume correctior

global slice corrections and local structures correction.

The#1800-900 cm') spectral intensity integration was calculated fotRapectra and the 3D image
was reconstructed (full spectral intensity 3D image of the brain). The full spectral interedity
typically ranges between 0 and 300, and this scale was applied to-HR Riages before 3D

reconstruction.

The 3D patch oRD-IR images was first performed with eorrected 2BIR images Figure48) to
show the mediocre volume rendering induced by the multiple tissue sections shape alterations due
surgery, sample deposition on sample holder, anshaigrotomy

To correct the shape aberrations duestogery, sample deposition on sample holder, and
cryomicrotomy firstly, we performed a slieslice registration in order to correct global alignment
problems. The aligned 2[R images were then reconstted to show that this procedure only solves
the global alignment problem that results from cryomicrotomy. However, the problem of relaxation
and shape loss due to sample extraction from its micro environment still persists. Thus the need fol

global shae correction by Xay imaging is highlighted.
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The X-ray images of the skull were reconstructed into a 3D volume and this is followed by virtually
sectioning the Xay tomogram in order to correct the global shape of eaelRABage. The mask

of the shap of each 2EIR image was matched with a virtual section of tirayxtomogram.

A threshold of 98% correlation was set to ensure the best match is selected for each section. In ca
of no appropriate match, the correlation between preceding and sulis@fudR image was

computed and the virtual section corresponding to the best correlated image was used.

The mask of each 2[R image was subsequently mapped to the corresponding virtual section from
the xray tomogram. Each 2[R image was then fittechio the new mask, thereby adjusting the

internal structures proportionately to the difference between the old mask and the new mask.

The same 3D patalas therperformed witlthe corrected 2BIR imagedy X-ray imagingallowing

to align properly each 2IR imageand recovering the distorted global shape of the sample due to
sample preparation. However, the problem of alignment of anatomical regions and structures
highlighted at this stage due to the innate aberrations from sample preparation aragndvednby

the global corrections in the previous step.

Finally, to correct the anatomical structure aberrations, a local correction is performed on each slic
while preserving the global shape correction by introducing a constraint with the masiglobtde
shape. Each anatomical structure was corrected from slice to slice; the structures were corrected

alignment and shape mismatch.

5.2. Results

Below is a step by step presentation of the results of our experiments on a healthy mouse brain 1
3D reconstruction of anatomical structures based on their chemical profile.

5.2.1.Acquisition of the actual 3D shape of the brain

| first used mice heads for-bay tomographic analysis of the brain volume. Heads were analyzed
with and without brain insle the skull to obtain the actual brain volume by subtraction of segmented
3D images. The segmentation method we used allowed to obtain the meshing of brain-$rth a 2

accuracy.
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The highresolution images were used as models for resizing thedd®e 3projections Xray
images. The objective was to obtain a 3D image of the brain without altering its contents due to X
rays, and the choice of-May microscopy is also to avoid the use of contrast agents or labeling
methods (as for MRI), which modify the ¢higal contents of the tissues.

It would have thus affected the chemical analyses by IR microscopy after histology. The volume
rendering from 3 axial absorption projections allowed to obtain a realistic CT shape of the mous
brain that was used to virtuzé all tissue sections and create a 2D mask of their planar limits.

The main issue following the acquisition of a brain volume from 3 axial absorption projections was
to determine the beginning and ending point of brain sectioning as well as the aduaf a
sectioning. This issue was solved by using an available anatomical atlas of the mouse brain, the All
Developing Mouse Brain Atld$

| resized the atlasith respect to the actual volume of the mouse braised a graptheoretic slice

to-slice reconstruction with a global histolegyCT reconstruction to achieve high accuracy, both in
the alignment of features between slices and in the 3D shaperetdmstructed brain.
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Figure 52 X-ray tomographic reconstruction of the mouse skull from 12 different projections

5.2.2.Acquisition of a 3D IR spectrum matrix of the brain

After acquisition of thehree X-ray projectiongor volume rendering of the brain, the organ was
removed from skull and deposited in the upright position (with cerebellum on the bottom) on sampl
holder for continuous cryomicrotomy at a8 thickness.

An example of 2D IR image of the mouse brain vijtpical IR spectra from different anatomical

regions is shown ifigure53.
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Figure 53 Mouse brain anatomy IR metadata image showing different labelled anatomical regions.

Figure53 show a 3BIR image obtained from a mouse brain:

A.! The 2DIR image of the section shown is approximatively located at Bre§@d mm /
internaural0.24 mm. The mouse brain has been sectioned-&2bickness (370 sections).
The IR image is shown asfull spectral absorbance (in a.u.)).

B.! ThelR spectran corresponding to the-4 positionsmarked in (A)are shown in the central
panel. They show important absorbance intensity variations throughout the spectral interve
(1800900 cn', also called thdingerprint region). These absorbance intensity variations
allow recognizing the major anatomical regions of the mouse brain, which can be used fo
proper alignment using anatomical atlas of the brain (such as the Allen Developing Mouse
Brain Atlas).

C.! For the 3BIR image reconstruction, the full spectral absorbance intensity scale was set free
(set at O for artefactual pixels in 2D images, <1.5% of pixels for all images) for the 185 raw
2D-IR images obtained from mouse brain sectioning. The 3D patch shatunany tissue

shape alterations where present onlRDmages.

IR spectra from different regions of the brain show quite different absorption profile, thus confirming
that variations of chemical contents are significkot.individual 2DIR images, he 1800900 cm
1) intensity scale ranged102to 0-331for the whole set of 214 images

The intensity scale was set free tbe 3D-IR image reconstruction. The first reconstruction of the

3D-IR image from 2D raw IR images (without any planar shapescton) was just centeligned

using the central axis between lobes as anatomical reference.
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As shown inFigure 48, the general shape of the 3R image of the brain contains numerous
distortions. They came from organ shaperalions during surgery (due to the relapse of the brain
volume once extracted from the skull, which exerts a pressure on brain tissues, and also due to i

gravity-related collapse of this very soft tissue at deposition on the sample holder).

This is abo due to the weknown tissue alterations during cryomicrotomy, where tears, bends,
cracks, etc. appear at the tissue sectioning or deposition process. This is showing clearly the relevai
of using a 3Din situ (or in vivo) imaging method for obtaining realistic volume rendering of the
mouse brain before histological analyses. This is atsitieal to ensurdurtherquantitative chemical
analysis fronthe 3D-IR image.

5.2.3. Anatomical Region Extraction

An important objective of our study was to demstrate that 3D chemical imaging by IR spectro
microscopy can be used differentiate different anatomical regions in the mouse brlowever, it
was out of the scope of this study due to the constraint of time to extract all the possible anatomic

regons and structures in the mouse brain.

To this end, we chose to resolve large myelinated anatomical regions of the mouse brain. In order
resolve these regions,ewperformedthe segmentationof anatomical regionsfter a classical
spectroscopic analigs i.e., by calculating the proteto-lipid absorption ratio17001480 cm
/417601710 cni). Due to the high lipid composition of myelin, these regions are well delineated
and can thus be extracted by segmentation

To extract the anatomical struatgy a topological analysis is made in order to determine connected
componentskigure54 shows the extraction of the possible anatomical structures in the-Ealge
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Figure 54 Extraction of anatomicatructures from IR metadata image of prot&t{00-1480 crit)) to lipid §1760-1710 cn) ratio

by topographical analysis.

Once an anatomical structure could be highlighted, it was extracted and saved as amdemiepe

image for separate analysis.

Figure 55 Consistent exaction of different anatomical structures come consecutive slices in the dataset with a color code assigned

to each structure..

The anatomical structurestracted from each 2IR imagewere systematically comparedth
each other to establish correlatibetween similar structures in subsequent structwhen a
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correspondence is established, the similar structures are assigned the same color for proper
visualization.

Figure 56 Similar structures extracted to establish corresgence and assign similar color codes for visualization.

5.2.5.3D-IR image reconstruction

The#1800-:900 cnm') spectral intensity integration was calculated for all IR spectra and the 3D image
was reconstructed (full spectral intensity 3D image oftitaen). The full spectral intensitycale
typically ranges between 0 and 300, and this scale was applied to-HR Rbiages before 3D
reconstruction.

The 3D patch of 2BR images was first performed with eorrected 2BIR images Figure57) to

show the mediocre volume rendering induced by the multiple tissue sections shape alterations due
surgery, sample deposition on sample holder, and cryomicrotomy
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Figure 57 3D reconstruction of unaligned tissuéss.

To correct the shape aberrations duestogery, sample deposition on sample holder, and
cryomicrotomy firstly, we performed a slieslice registration in order to correct global alignment
problems. The aligned 2[R images were then reconstructedhow that this procedure only solves
the global alignment problem that results from cryomicrotomy. However, the problem of relaxation
and shape loss due to sample extraction from its micro environment still persists. Thus the need fol

global shape aoection by Xray imaging is highlighted.

Figure 58 3D reconstruction after global tissue shape alignment
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The X-ray images of the skull were reconstructed into a 3D volume and this is followed by virtually
sectioning the Xay tomogram in order to correct the global shape of eachilmage. The mask
of the shape of each 2IR image was matched with a virtual section of thrayxtomogram.

Figure 59 Virtual section from 3D xay reference model

A threshold of 98% correlation was set to ensure the best match is selected for each section. In ca:
of no appropriate match, the correlation between preceding and subsequihtirBBge was
computed and the virtual section corresponding to the best corriehetgd was used.

The mask of each 2[R image was subsequently mapped to the corresponding virtual section from

the xray tomogram. Each 2[R image was then fitted into the new mask, thereby adjusting the
internal structures proportionately to the difiece between the old mask and the new mask.
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Figure 60 Global shape correction usingray model. (a) Mask of virtual section fronray model. (b) IR metadata image mapped

and deformed to fit virtual section mask. (c) Recawsé&d volume after correction usingay model.

The same 3D patalas therperformed witlthecorrected 2BIR imagedy X-ray imagingallowing

to align properly each 2IR imageand recovering the distorted global shape of the sample due to
sample prepation. However, the problem of alignment of anatomical regions and structures is
highlighted at this stage due to the innate aberrations from sample preparation and now magnified
the global corrections in the previous step.

Finally, to correct the ananical structure aberrations, a local correction is performed on each slice
while preserving the global shape correction by introducing a constraint with the mask of the globe
shape. Each anatomical structure was corrected from slice to slice; theresruatve corrected for
alignment and shape mismatch.
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Figure 61 Local aberration correction showing the correction of some local shape distortion on the tissue slice in (b). (2) and (c) are

reference slices used for the cartien of (c).

To reconstruct specific anatomical structures, we perform segmentation on the global shape and lot
aberrations corrected IR metadata images. Segmentation is performed using a topological analy
segmentation. The tissue slices are segrdeint® different shapes based on the variations of
absorption intensity.

Similar structures are then matched to assign the same color code for visualization before stackil

into a 3D volumeFigure62 shows an example of extragy and reconstructing the corpus callosum
and the basal ganglia region of the mouse brain.
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Figure 62 3D Reconstruction of the corpus callosum and basal ganglia region of mouse brain. (a) IR metadata image of the protein
to lipid absorption ratio§1700-1480 cm')/%1760-1710 cnT). (b) Segmentation of the corpus callosum and basal ganglia based on
the topological analysis of tissue slices. (c) Different views of the 3D reconstructed corpus callosum and the baseggjangfia

the mouse brain.

5.3. Discussion

3D histologyis a powerfulapproactor imagingbiological specimenss the nextfrontier for
modernhistopathology3D histologyoffersa significantadvantagever 2D becauséissueblocks
arenot naturallytransparat, andthey containcomplex3D networks(bloodandlymph systems,
membranesyervesandotherfibers,etc.),a 3D arrangemenof differentcell phenotypeshatis not
homogeneougndanextracellularspacehatis composewf manyothercompoundsand
filamentoustructuresFromageometrigpoint of view, it is possiblein principleto instantly

visualizetissueabnormalitiesusing3D histology.

3D anatomechemistryasthe nameimpliesaimsto combinethe studyof theanatomyof bio
samplesn relationto their chemicalcompositionsUntil now, theanatomyandquantitative
chemicalcompositionof biologicalsampleshavebeenstudiedindependentlyTo the bestof my
knowledgethisis becausehereis noin-vivo imagingmethodableto resolvethe anatomyarnd

guantitativechemicalcompositionof biological samplesimultaneously.

3D IR spectremicroscopyoffersa uniqueadvantagelueto its ability to resolvetheanatomyand
chemistryof biologicalsamplesTheuseof a stainfree methodsuchasIR microscopy is essential

for 3D anatomechemistryasit leavethe chemistryof thetissuesunalteredThe 3D spectrum
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matrix providesa molecularOfingerprintfiom spectrahatcanbe usedto delineatedifferent

anatomicategions.

The key advantage was the deveilognt of a genuineombination ofin vivo 3D imaging with
guantitative spectrmicroscopy for producing a 3D quantitative chemical image of a tissue block,
here a mouse brain. Our technique requires only a-frezln tissue block to obtain a 3D image
madeextremely rich of chemical information thanks to the spectral data it contains. And the use o
high-resolution Xxray tomograms of the mouse head to reconstruct a brain volume intended tc
histological analyses from only 3 projections ensured to limit tnayXdose to the minimum.

Otherin vivotechniques might be used for obtaining similarly the actual shape of the brain without
the use of imaging contrast agents, but $CT is well known and accessible to most of modern
research laboratories and patholegyvices. Furthermore, since we are not using either labeling
and staining procedures for histology or contrast agents fovoimaging, the chemical contents

of the tissue are not alterédwhich is the mandatory condition to expect further quantitative

chemical analyses.

| first demonstrated that the 3D spectrum matrix formed by patchd® 2Dages can be used for
many different dat extractions from the same dataskding the full spectral intensity 3D image of

the brain, we could segment and mesh many different anatomical regions.

It is noteworthy that the full spectral intensity images of the brain were already delineating many
different brain regions comparable to what is usually observed from coloration of IHC images
(hippocampus, cerebral cortex, hippocampal regions, cerebellum lobules, hypothalamus ar
thalamus, etc.).

The second objective of this methodology was to dematesthat we can extract anatomical
structures of interest from the 3D spectrum matrix formed byR2nages. IR micrepectroscopy

is able to segment tissue block based on their chemical prafiilewed this by extracting myelinated

structures from thenouse brain usingvell-known procedures for extraction of IR absorptions in
order to segment the lipid rich myelinated regions of the brain.

As expected, we were able to resolve lipid rich fibre tracts such as the corpus callosum and b
anatomical regions of the mouse brain such as the basal ganglia, hippocampus and thalzawves.
also demonstrated that these anatomical structures of interest can be reconstructed in 3D by usin

combination of quantitative chemical analysis anglivo x-ray imaging.
146



| showed that we can resolve some of the bottlenecks associated with 3D histology thereby achievil
3D reconstruction similar to the ones obtainable byiwo techniques such as MRI.have thus
combined an efficient anatomical rendering of the mouai bvith a quantitative chemical analysis

of its contents from the same dataset.

This new methodology opens a new era for histology since two major features can be developed no
the 3D study of tissues/organs and their quantitative chemical analysa fofinite range of
possibilities, as much as chemigaformation canbe produced fromR spectal datato create

relevant metadata.

While we were unable to resolve all the possible anatomical structures in the brain due to the constre
of time, thismethodology is readily applicable for use in 3D pathology which does not require
resolving all the complex anatomy of the brain.

| can assert thahis methodology is the first realistic candidate for the development of 3D pathology
as a routine for biosdical research, and possibly also for clinical applications. This methodology
can be easily adapted to extract any anatomical structure including pathological strucdesss.

all thestepsof theimageacquisitionand data treatments can be autométed standardized output

of results in clinical applications.

Thanks to the chemical information that IR spectroscopy provides, it will be feasible to extract man»
different features of a tissue block, such as the blood vessel n&titsribiochemistry, its

metabolism, forinstance. The development of sophisticated spectral data treatments will allow
defining the chemical (spectral) profile of these tissue features for 3D reconstruction at microscopi

resolution.
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Conclusion and Perspectives.

3D histologyoffersa powerful approacHor imagingbiological specimensndis the nextfrontier
for modernhistopathologylt offersasignificantadvantag@ver 2D becausgissueblocksarenot
naturallytransparentandthey containcomplex3D networks(bloodandlymph systens,
membranesyervesandotherfibers,etc.),a 3D arrangementf differentcell phenotypeshatis not
homogeneougndanextracellularspacehatis composewf manyothercompoundsand
filamentousstructuresFroma geometrigpoint of view, it is possble in principleto instantly
visualizetissueabnormalitiesusing3D histology.

A classicabpplicationof 3D histology is in the area plathologywhereit allows a direct visualization

of tissue features, particularly those involving structural chamgethose in which the spatial
relationship of disease features is important. But, this is restrictive since tissues are not only define
by structures; their chemical contents play a major role in the homeostasis of orgdotg,withan

extracellular spce.

3D pathology will thus make sense once the anatomical (estsutture networks) and chemical
features of a tissue block are revealed jointly. However, analyzing the chemical parameters of tf
tissue (which can be translated as molecular, biochémicaparameters) would require developing

a quantitative method for 3D reconstruction and visualization on a common intensity scale.

Until now, the use of 3D pathology has not been routine in research and clinics due to technic:
difficulties in reconsucting 3D tissue locks from 2D images of seriaections Others have
developed methods for a 3D reconstruction of tissue blocks, but these ones were firs{l€8ined

or used bck-face photographic volume registratifiri0] with MRI to help maintain the shape of

very soft tissues, such as brain

Consequently, the use of labeling and staining methodsdwolinium injections for MRI prevent
further OunalteredO chemical analyEigseconvenional methodsarealso OblindO to the spatially
ordered metabolic dhamics within tissues. Furthmore, multiple immunostaining cannot identify
more than four different antigens on a same saf@ple Thus, it is important toevelop techniques

which are able to analyse simultaneously the chemical and anatomical features tissue blocks.
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Spectrosopic techniques offer quantitative measurementof tissue contens. Combining a
spectrometeanda microscopsds in a setupcalledspedro-microscopy.Thesesetupsoffer a global
view of thesamplechemicakontentswhichcanbefurtheranalyzedor extractingrelevanimolecular
parameterdor diagnosis[27]. 3D chemicalimagingis achievedby severalspectremicroscopic
methods.Theseprovide a quantitativeanalysisof tissuecontentand substructuresvith a depthof

informationthatno otherhistologicaltechniquecandeteminefrom the samesample However they

arecurrentlyunderexploitedlespitetheir potential.

An emerging spectremicroscopic technique for histopathologicalexaminationis IR spectre
microscopyAs aresultof theadventof powerful IR sourcesvith quantumcas@delaser§QCLS)in
2014,IR spectremicroscopycannow producemillions of IR spectrgper hour with high S/N. This
innovationhasled to newdevelopments IR imageanalysedor biosamplessuchas3D-IR image
reconstruction$or the quantitativeanalysisof metabolc or biochemicalparameter§27].

3D reconstructionwas previously unnecessaryn IR spectremicroscopy.Acquisition of a 3D

histologicaldatasetvasnot feasibledueto bottleneckssuchasinability to maintainconsistentS/N

andrelatively slow acquisitiontime for largesamplesAs the new frontier of 3D chemicalimaging
by IR is justopeningup, thereis currentlyno standargrocessingequencer specializedlgorithms
for 3D reconstructiorof IR slices.Thus,thereis needto developa standardgrocessingequencéor

3D reconstructia of IR slices.

The objectiveof this thesiswasto developlR microscopyfor 3D pathologyand consequentlyse
thesemethodsfor 3D chemicalimaging of tumorsin the brain. However,in orderto developIR
microscopyfor 3D chemicalimaging, we identified the needto developan advancedorocessing
sequencdor 3D chemicalimaging by IR microscopy.This is necessaryn orderto standardize
experimentamethodsn IR datatreatmentind3D imagereconstructiorof tissuedor routineusein

clinics.

| thusdeveloped a new processing sequence for 3D chemical imaging by IR microscopy. This
processing sequence covers the procesaraplepreparationgdataacquisitionof tissuesamples|R
datatreatmenimethodsmetadataxtractionmethodsandthe 3D reconstration of tissueslices.Our
proposedD reconstructiortechniqguevasa combinationof in vivo 3D imagingwith quantitative
spectremicroscopy.
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The key advantagef this approaclwas the development of a genuic@mbination ofin vivo 3D
imaging with quantative spectramicroscopy for producing a 3D quantitative chemical image of a
tissue block, here a mouse brain. Our technique requires only drfsesh tissue block to obtain a

3D image made extremely rich of chemical information thanks to the spaataait contains. And

the use of highresolution Xxray tomograms of the mouse head to reconstruct a brain volume intended
to histological analyses from only 3 projections ensured to limit th@yXlose to the minimum.

Otherin vivotechniques might besed for obtaining similarly the actual shape of the brain without
the use of imaging contrast agefit8], but $CT is well known and accessible to most of modern
research laboratories and pathology services. Furthermorewsrare not using either labeling and
staining procedures for histology or contrast agentsfeivoimaging, the chemical contents of the
tissue are not alterd87], which is the mandatory condition to expect further quatnteé chemical
analyses.

Consequently, & first demonstrated that the 3D spectrum matrix formed by patchéid Ebages
can be used for many different data extractions from the same dhtess=t.the Allen brain atlas as

a worldwide recognized referenfog the mouse brain anatomy.

Using the full spectral intensity 3D image of the brain, we could segment and mesh many differer
anatomical regions. It is noteworthy that the full spectral intensity images of the brain were alread
delineating many diffent brain regions comparable to what is usually observed from coloration of
IHC images (hippocampus, cerebral cortex, hippocampal regions, cerebellum lobules, hypothalami
and thalamus, etc.).

| separated the right (with tumor) and left (healthy) hengsghto segment anatomical regions only
based on spectral data and that was perfectly matching the reference atlases for the mouse brain.
3D spectrum matrix of the tumor could be also extracted and its chemical contents analyze
separately.

It is therefore possible to separate tissue regions, analyze their chemical content variations, chang

induced by borders or interface between anatomical regions, compare healthy and pathologic

specimens, and many more.
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In addition, we demonstrate that we catr&ct and reconstruct quantitative chemical information
from relevant tissue parameters. To date, quantitative histology has remained limited to th
guantitation of object$208] and substructures[209] in tissue sections, but not to its chemical
contents[90]. | demonstrated that a 3D quantitative chemical image provided by IR spectro
microscopy is able to solve one of the most limiting aspect of conventional histédlogithods: the

lack of quantitative analysis of molecular contents in tissues.

| focused on tissue metabolic parameters which regulation is deeply altered by growind19¢hors
200], such as gliomasfirst calibrated the absorption values for glucose, glycogen, and lactate using
their 2 derivative spectra with respect to biochemical assays performed on brain homogenate

obtained in parallel.

| used welknown procedures for extraction of IR absorptigt@3, 2]that we could translate as
concentrationg210]. The variations in metabolic molecule absorptions are consistent with the
literature [188], where a ZB-fold concentration change can be observed for these metabolic
parameters beteen regionsThe brain regions exhibit important glucose concentrations changes
[202].

Therefore, we used the meshed anatomical regions of the braievésusly defined to determine
their glucose, glycogen, and lactate concentration variations. Our results were found very similar t
the few other studies available, i.e., which analyzed brain tissue areas separately (by microdissecti
[201, 202, 205]and used quantitative methods (enzymatic assays).

| showed that the tumor volume exhibited more homogeneous metabolic concentrations, but wit
glucose and glycogen &% lower and lactate 110% higher thame thrain healthy tissues
counterpart. This example of quantitative anateneiabolic analysis shows the potential of the
method for 3D pathology in general while aissessing theell-studied Warburg effect in tumors

| have thus combined an efficientaaomical rendering of the mouse brain with a quantitative
chemical analysis of its contents from the same dataset. The 3D volume renderings for anatomic:
chemical and metabolic contents of the mouse brain with a tumor reached an incomparable level

information for a 3D microscopy analysis.
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It was also shown that aegistration betweeim vivoand histological analyses could be enriched by
existing anatomical atlases. The quantitative volume rendering with transparency allows a direct 3
visualizationof internal anatomy of the brain with concurrent quantitative analysis of its molecular

concentrations.

Finally, we showedthatour methodologycanbe extendedeyondtumorsto analysethe anatomyof
themousebrain.| attemptedo developwhatwe calledthe 3D-anatomachemistryof the brain.3D
anatomechemistryasthe nameimpliesaimsto combinethe studyof theanatomyof bio samplesn
relationto their chemicalcompositions.

Until now, theanatomyandquantitativechemicalcompositionof biological sampleshavebeen
studiedindependentlyTo the bestof my knowledgethisis because¢hereis noin-vivo imaging
methodableto resolvethe anatomyandquantitativechemicalcompositionof biologicalsamples

simultaneously.

| demonstrated that we caxtract anatomical structures of interest from the 3D spectrum matrix
formed by 2DIR images. IR microscopy is able to segment tissue block based on their chemica
profile. | showed this by extracting myelinated structures from the mouse brainwsliAghown
procedures for extraction of IR absorptions in order to segment the lipid rich myelinated regions o

the brain.

As expected, we were able to resolve lipid rich fibre tracts such as the corpus callosum and b
anatomical regions of the mouse brainrsas the basal ganglia, hippocampus and thalanaliso
demonstrated that these anatomical structures of interest can be reconstructed in 3D by usinc

combination of quantitative chemical analysis anglivo x-ray imaging.

| showed that we can resolseme of the bottlenecks associated with 3D histology thereby achieving
3D reconstruction similar to the ones obtainable byiwo techniques such as MRI.have thus
combined an efficient anatomical rendering of the mouse brain with a quantitative alremaiysis

of its contents from the same dataset.

While we were unable to resolve all the possible anatomical structures in the brain due to the constre
of time, this methodology is readily applicable for use in 3D pathology which does not require

relving all the complex anatomy of the brain.
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As we demonstrated for anatomical and metabolic features of a mouse brain, the exploitation of tt
whole spectral information, call€dspectromicsitom a tissue blockvill expand tremendously the
possible aplcations of this methodologyThis is also opening the way to multimodal data
treatments, where machine learning algorithms will be able to-corsslate events from different
sources: anatomical, metabolic and biochemical, with oBitesimprovemy knowledge in health

and disease.

This new methodology opens a new era for histology since two major features can be developed no
the 3D study of tissues/organs and their quantitative chemical analysis fofirgie range of
possibilities, as much as ceheal information canbe produced fromR spectal datato create

relevant metadata.

| can assert thahis methodology is the first realistic candidate for the development of 3D pathology
as a routine for biomedical research, and possibly also focaliapplicationsindeed, all thesteps
of theimageacquisitionand data treatments can be automated for a standardized output of results.

Thanks to the chemical information that IR spectroscopy provides, it will be feasible to extract man»
different features of a tissue block, such as the blood vessel nef&6fkits biochemistry, its
metabolism, for instance. The development of sophisticated spectral data treatments will allo
defining the chemical (spectral) profile diese tissue features for 3D reconstruction at microscopic

resolution.
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APPENDIX

Harris corner detection

Cornersare regions in the image with large variation in intensity in all the direclitvesHarris
corner detectomethod was proposed timdl whether a point shows significaftange in all
direction or no{151]. If yes, then point is marked as a corner point.

Harris corner detector is based on the auto correlation function itémsities It basically find
the difference in intensity for a displacement@£JOH+in all directions. This is expressed as

below:

2
WEEH) ( #Z X EH \[-(:5 0=JH5 OH) 1 -*=JI—HJ
<Z yez{ly #fzq~elz € e}~ { #z~z€e~Z ez~z€e

The window function is either a rectangular window or Gaussian window which assigns weights to

pixels underneath.
By the definition of corners, in approximate the intensity variation in a given window, the local
maxima of the functiom*aJo+can be approximated. This can be done by applying Taylor

expansion as follow:

Lets. ande, be the partial derivatives of I, such that;

*(=50=JH5 OH) * *(=3H) 5 #.(=H)0=5 #,(=H)OH
Thus,w*=JHtcan be approximateda

W(=dH) #Z X (ZJH)\*s_ (=H)0= 5 #, (=JH)OH2##
<¥

This can be rewritten in matrix form as:
_ _ 0=
W=H) ( @= OH [OH]

Where
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<<(X(:JH)[<< <Z]

.<.Z .Z.Z

A Harris respons function is then computed to determine if the pbadttis a corner or not. The
Harris response function is defined as:

f (=)L #(ILOA(«))* ( #o' , 1 #O" 55 # 4

where k is an empirically determined const@#\9 J\° &

'L+, #,7are the eigen values of

Wherf | is small, which happens whér and# , are small, the region is considered flat.
Whenf 2, which happens when, 3 ', or vice versa, the region is considered an edge.
Wher¥f large, which happens whén andt , are large and,” ' , , the region is considered a
corner.

The Harris corner detector is invariant to translation, rotation and illumination cl&®&jeThis
detector ignost repetitive and most informative. The disadvantage of this detector is it is not
invariant to large scale changes3].

Scale invariant feature transform (SIFT)

Scale invariance is an important factor in ensuring thebitiaof extracted features in a series of
2D histological slices. It is important that the features extracted can be detectable even under
changes in image scale, noise and illuminafidre deformation of tissue slices after histological

sectioning contbutes to the change of scale of salient features in successive tissue slices.

The SIFTmethod is robust and invariant to scaling, orientation, illumination changes, and partially
invariant to affine distortion. This is achieved by decomposing imagesiultiple resolutions and
performing the registration from low resolutions to high resolutions, hierarchal registration speed,
avoid local minima, and therefore improve registration performgiries.

A SIFT keypoint as show in (figure) is a circular image region with an orientation. It is described
by a geometric frame of four parameters: the-geyt center coordinates x and vy, its scale (the
radius of the region), and its orientation (an angle expressed in rgdisbk)
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There are four main steps in SIFT feature extraction:

ScaleSpace Extrema Detection

The first stage of kepoint detection is to identify locations and scales that can be assigned under
differing views of the same object. eting locations that are invariant to scehange of the

image can be accomplished by searching for stable features across all possible scales, using a
continuous function of scale known as scale spate]. It has been shen that under a variety of
reasonable assumptions the only possible sgee kernel is the Gaussian func{dh2, 213]

Therefore, the scale space of an image is defined as a functmdtl], + that is produced from the
convolution of a variablscale Gaussian,*=#HJ, +, with an input imagey,*=#Ht:

L(=HL,) (# (SHD,) T #R=dH
wherei is the convolution operation in x and y,

S
N (= 3*<ﬂ/ iﬂ+/ Al
(=8HJ,) ( #md

To efficiently detect stable keyoint locations in scale space, Loji®6] proposed using scale
space extrema in the differeroeGaussian function convolved with the imagés=#HJ, ) which
can be computed from the difference of two nearby scales separated by a constant multiplicative
factorQ This scale space extrema is computed from the expression:

L EBHL) (F (=8H0,) 1 # (=HHD, )+ #F=dH

. (=8H],) ( ..(=H1Q,) 1 #.(=RH],)

It is a particularly efficient function to compute the smoothed imagesny case for scale space
feature description. And can therefore be computed by simple image subtraction. As shown in
Fig. 2* for each octave (eight pixele&?) of scale space, the initial image is repeatedly convolved
with Gaussians to produce the set of scale space images shown on the left. Adjacent Gaussian
images are subtracted to produce the differ@iggaussian images on the right. After each octave,
the Gaussian image is dovgsampled by a factor of 2, and the process repeated.

Keypoint Localization
In order to detect the local maxima and minima bf#HJ, +, each sample point is compared to its
eight neighbors (pixels) in the current image and nine neigibthe scale above and below (Fig.
5). It is selected only if it is larger than all of theseghbbrs or smaller than all of them. The
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images shown in the Fig. 5 are detected by comparing a pixel (marked with X) to its 26 neighbors i
3 & 3 regions at the current and adjacent scales (marked with circles). Ongaoankegndidate

has been found by comparing a pixel to its neighbors,akestep is to perform a detailed fit to the
nearby data for location, scale, and ratio of principal curvatures. This information allows points to
be rejected that have low contrast (and are therefore sensitive to noise) or are poorly localized alot

an ede. Fig. 6 shows some of the detected Beints from tested imade12].

Orientation Assignment

By assigning a consistent orientation to eachp@wyt based on local image properties, the-key
point descriptor can be represeashrelative to this orientation and therefore achieve invariance to
image rotation. This approach contrasts with the orientatiariant descriptors of [1], in which
each image property is based on a rotationally invariant measure. The disadvantageppfrdach
is that it limits the descriptors that can be used and discards image information by not requiring all
measures to be based on a consistent rotation.

The scale of the kepoint is used to select the Gaussian smoothed imageth the closestcale,

so that all computations are performed in a sgalariant manner. For each image samgteJHt,

at this scale, the gradient magnitudeJH+, and orientationK*=JHt, are computed using pixel
differenceqd156].

Feature Description

To generate a vector that describes a SIFTdant, orientation histograms are created over 4x4
sample regions. The figure shows 8 directions for each orientation histogram with the length of eac
arrow corresponding to the matyde of that histogram entf{f214]. A gradient sample on the left

can shift up to 4 sample positions while still contributing to the same histogram on the right. So,
4&4 array location grid and 8 orientation bins in each sarfipét.is 128element dimension of key

point descriptof155].
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Speeded up robust features (SURF)

SURF as the name implies, is a speeddersion of SIFTIn SIFT, Lowe[156] approximated
Laplacian of Gaussian (LoG) with Difference of Gaussian for finding sxadee. SURF goes a
little further and approximates LoG with Box Fil{@57].

SUREF is based on mulsicale space theory and the feature detector is basddssian matrix and
also rely on the determinant of Hessian matrix for both syzdee detection and k@pint

localization.

Since Hessian matrix has good performance and accuracy. Indnige *=JHtis the given
point, the Hessian matrx*PJ, +in P at scale, , it can be define as:

<P+ P+
¢ (P t{--zJPJ,, + .zz*PJ, +

Where. ...*PJ, +is the convolution result of the second order derivative of Gaussian filter with the

image | in pointP, and similarly for. .,*PJ, +and..zz*PJ, +

SURF creates a OstackO without 2:1 down sampling for higher levels in the pyramid resulting in
images of the same resolution. Due to the use of integral images, SURF filters the stackasing a b
filter approximation of secomrder Gaussian partial derivatives as shown in figure (2). Since

integral images allow the computation of rectangular box filters in near constait 5&je

Due to the use of box filters amtegral images, we do not have to iteratively apply the same filter

to the output of a previously filtered layer, but instead can apply box filters of any size at exactly the
same speed directly on the original image and even in parallel. Thereforealthepmace is

analyzed by wscaling the filter size rather than iteratively reducing the imagd Xizé

For orientation assignment, SURF uses the Haar wavelet resporsasdhl direction within a

circular neighbourhoodf radius® Naround the interest point, witlithe scale at which the interest
point was detected. The sampling step is scale dependent and chosBnltokdeeping with the

rest, also the size of the wavelets are scale dependent and set to regsidef N

Only six operations are needed to compute the response in x or y direction at any scale. Once the

wavelet responses are calculated and weighted with a Gatisqia#Nt+centred at the interest
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point, the responses are represented as paiatspace with the horizontal response strength along
the abscissa and the vertical response strength along the ordinate. The dominant orientation is

estimated by calculating the sum of all responses within a sliding orientation window%qfsm‘zee

Fig. 10.

The horizontal and vertical responses within the window are summed. The two summed responses
then yield a local orientation vector. The longest such vector over all windows defines the
orientation of the interest point. The size of the slidingdeiv is a parameter which had to be

chosen carefully. Small sizes fire on single dominating gradients, large sizes tend to yield maxima

in vector length that are not outspoken. Both result in a misorientation of the intereft pojint

In order to describe SURF features, the first step consists of constructing a square region centerec
around the interest point and oriented along the orientation selected in previous section. The size ¢
this window is 20s. Examples of such sgueegions are illustrated in Fig. [157]. The region is
split up regularly into smaller 4x4 square selgions. This preserves important spatial information.
For each subbegion, the horizontal, .+and vertical, ,+Haar wavelet responses at 5x5 regularly
spaced sample points is computed.
Then, the wavelet responsesand, ; are summed up over each segion and form a first set of
entries in the feature vector. In order tin in information about the polarity of the intensity
changes, the sum of the absolute values of the responses is also extracted|, ;|. Hence,
each subregion has a 4D descriptor vectofor its underlying intensity structure;

b ( *»# Do#  o#, | D, 7|+
Concatenating this for all 4x4 subgions, this results in a descriptor vector of length 64. The
wavelet responses are invariant to a bias in illumination. Invariance to contrast (a scale factor) is

achieved B turning the descriptor into a unit vector.

Feature matching
The problem ofeaturematching can be formulated as follows, supposeitigt point detected by
a feature detector in an image associated with a descriptor

T(H) ( {E-*%HO( SHX YE

where for allY, the feature vector provided by thétkdescriptor is
2D D092k Jpn, +
The aim is to find the best correspondehde another image from the setdfinterest points #(

#1,d ,A\\J . @by comparing the feature vectbr *t+with those of the points in the det To this
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end, a distance measure between the two interest points desdriptbrandt- *1 +can be
defined as
D) CHAE- (D 1#- ()]
A match between the pair of interest poifitdl +is accepted only if is the best match fdrin
relation to all the other points in the first image &nd the best match farin relation to all the
other points in the second image. listcontext, it is very important to devise an efficient algorithm
to perform this matching process as quickly as possible. The nearglsbor matching in the
feature space of the image descriptors in Euclidean norm can be used for matching vector based
featureq159].

Optical flow method

The notion of optical flow literally refers to the displacements of intensity patterns. This definition
originates from a physiological description of the visual perception of the worlaytihimage

formation on the retina. In that sense, while optical flow is necessarily caused by relative motion
between the observer and the objects of the observed scene, it only represents motion of intensitie
in the image plane, and not necessarily antofor the actual 3D motion in the physical scene

[161].

Computation of optical flow means computation of two vectoesd’ . Vector® represents
horizontal velocity of motion and represents vertical velocity of motion. Usuadllyand’ are
computed using the concepts of energy functional. And the main aim is to minimize this energy

functional. Energy functionalomsists of two terms: data term and smoothness|[t58).

To determine optical flow, there is need to track some properties of images. Two key problems in
optical flow estimation are: 1) Determine what image property to #aEletermine how to track it
[162]. Some features of the images are assumed to stay constant among multiple frames during

optical flow estimation. Generally used constancy assumptions are discussed below:

Brightness Constancy Asumption
The most common assumption used in optical flow estimation is the brightness constancy
assumption. It states that the gray value of corresponding pixels in the two consecutive frames
should be the same.
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Assume*=JHJ +is the center pixehia n&n neighbourhood and movesioy mHn time m[to
o*=5 mIH5 mH[ 5 mft Sinces*=JH] +ande*=#5 #MIHH MIBI[#5 #nfrare the images of the
same point (and therefore the same) we have:

F=JHI+H #*=#5 #nIH5 K[ Anf

This can also be extended to 3D applications. Given a small 3D n & n & n BledkJ&t at time[
moving by*m=ImHm¥4to *=#5 MIHHE M5 #nvkover timem[O

F=JHII +H #*=H#5 H#nIHES A5 G HS M
Gradient Constancy Assumption
The brightness constancy assumption has one decisive drawback: It is quite susceptible to slight
changes in brightness, which often appear in natural scenes. Therefore, it is useful to allow some
small varations in the grey value and help to determine the displacement vector by a criterion that
is invariant under grey value changes. Such a criterion is the gradient of the image grey value,
which can also be assumed not to vary due to the displacement.
| can perform a T order Taylor series expansion abettJH] +in the brightness constancy

eqguation to obtain:

«(=5 mIH5 #H[#5 #n]) ( #(= JI-U[)S#/—#n—S I_i#nl#S #tnﬁ#S #£\FA\

Ve[
where H.O.T. are the Higher Order Terms, which we assume are small asafedgrbe ignored.
Using the above two equations we obtain:

A2 4n=5 2 4nH5 £4n[( ~or

MA< # AZ¢5 #ﬁ“#é ( ~ and finally,

A A~
e Lo Lpe
ppm o< O F o 5 1/[#(

Herea. ( #%i andb; ( #% are the= andH components of image velocity or optical flow aﬁ{ﬁ
,#ﬁ—;\ andﬁ—fare image intensity derivatives*atJH] A
These partial derivates are normally written as:

o ( #,Z(#and ( —

Thus, the gradient constancy equation could be rewritten as:
.<a< 5 #sz?% #R.# -
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The optical flow constraint has one inherent problieryields only one constraint to solve for two
variables. It is well known that such an undetermined equation system yields an infinite number
of solutions. For every fixed. a validb, can be found fulfilling the constraint. This is as sute

of an optical flow problem called the aperture problem.

The aperture problem defines that there is usually insufficient local image intensity structure to
measure full image velocity, but sufficient structure to measure the component normal talthe loc
intensity structure.

Smoothness Assumption

The smoothness term stands for the assumption that the neighboring regions belong to the same
object and thus these regions have similar depth. The main role of the smoothness term is the
redistribution of theeomputed information and smoothing of depth outliers. In case we get no
reliable information from the data term, the smoothness term will realize its smoothing effect by
filling in the problem region with data, calculated from neighboring regions.
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RZsumZ

Cetravail aZtZmenZauseindu groupeObiophysiquel@ plasticitZvasculairede IOunitdle
recherchalelOangiogeneset du micro-environnementlestumeursJOINSERMJ1029situZ”
IOUniversitde Bordeaux L'objectif principal de cetterechercheestde dZveloppetne
mZthodologial'imagerie3D pourla caractZrisatioshimiquedestumeurscZrZbraled! s'agitd'un
domainederecherchesurle cancemui n'estpasencoredZvelopp£t qui pourraitdevenirtres utile

pouramZlioren'outil dediagnosic existantpourlestumeurscZrZbrales.

L'histologie tridimensionnelle (3D) est un nouvel outil avancZ de cancZrologie. L'ensemble du profi
chimique et des caractZristiques physiologiques d'un tissu est essentiel pour comprendre la logiqu
du dZveloppernt d'une pathologie. Cependant, il n'existe aucune technique analytique, in vivo ou
histologique, capable de dZcouvrir de telles caractZristiques anormales et de fournir une distributic
3D " une rZsolution microscopique.

Nous prZsentons ici une mZthaniéque de microscopie infrarouge (IR) ~ haut dZbit combinant une
correction d'image automatisZe et une analyse ultZrieure des donnZes spectrales pour la
reconstruction d'image 3IR. Nous avons effectuZ I'analyse spectrale d'un organe complet pour un
petit modele animal, un cerveau de souris avec une tumeur de gliome implantZe. L'iriRyesSD
reconstruite ~ partir de 370 coupes de tissus consZcutives et corrigZe " I'aide du tomogramme "
rayons X de l'organe pour une analyse quantitative prZcise dmeahienique. Une matrice 3D de
spectres IR 89 x f@st gZnZrZe, ce qui nous permet de sZparer la masse tumorale des tissus

cZrZbraux sains en fonction de divers parametres anatomiques, chimiques et mZtaboliques.

Nous dZmontrons pour la premiere fois gles parametres mZtaboliques quantitatifs (glucose,
glycogene et lactate) peuvent «tre extraits et reconstruits en 3D ~ partir des spectres IR pour la
caractZrisation du mZtabolisme cZrZbral / tumoral (Zvaluation de I'effet de Warburg dans les
tumeurs). Nore mZthode peut «tre davantage exploitZe en recherchant I'ensemble du profil spectra
en distinguant diffZrents points de repere anatomiques dans le cerveau. Nous le dZmontrons par I
reconstruction du corps calleux et de la rZgion des noyaux griswedtr@erveau.

Danscettethese,desmZthodesivancZesetraitementdesdonnZespectralesnt ZtZdZveloppZes
pourla caractZrisatiodestumeurscZrZbraledJne sZquenceetraitementavancZ@stZgalement
dZveloppZeourla reconstructioruantitative3D de coupedR. Uneapplicationde nosmZthodes
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dZveloppZesstmontrZedansunereconstructiorBD quantitatived'unetumeurdansun cerveawude
sourisbasZesurla caractZrisatiochimiquede la tumeuret du mZtabolismelestissusnormaux.
Cettethese prZsent&galementa reconstructiorBD del'anatomiedu cerveawe souris™ I'aidede

notresZquenceetraitementavancZeourla reconstructiomguantitative3D de coupedR.

NousavonsdOabordZmontrAjuela matricespectrale8D constituZelOimage2D-IR patinZepeut
stre utilisZepourde nombreusesxtractionsde donnZesliffZrentes partir du meme jeude
donnZesNousavonsutilisZ I'atlasdu cerveauAllen commerZfZrencenondialementeconnugpour

l'anatomiedu cerveaudesouris.

En utilisantl'intZgralitZde 'image3D d'intensitZpectraledu cerveaunouspourrionssegmenteet
mailler de nombreusesZgionsanatomiquesliffZrentesll est™ noterquelesimagesd'intensitZ
spectraleompletedu cerveaudZlimitaientdZj” de nombreusesZgionsdu cerveaucomparables
cequel'on observehabituellement partir dela colorationd'imagedHC (hippocampegortex

cZrZbralyZgionsde I'hippocampelobulesde cervelethypothalamugt thalamusegtc.).

NousavonssZparZeshZmispheresiroit (avecla tumeur)et gauchgenbonnesantZpour
segmentelesrZgionsanatomiquesiniquemensurla basede donnZespectralesge qui
correspondaiparfaitementuxatlasderZfZrencelu cerveawe souris.La matricespectrale3D de

la tumeurpourraitZgalementtr e extraiteet soncontenuchimiqueanalysZZparZment.

Il estdoncpossiblede sZpareftesrZgiongissulairesd'analyseteursvariationsde contenu
chimique les modificationsinduitesparlesfrontisres ou l'interfaceentrelesrZgionsanatomiques,

de comparedesZchantillonsainset pathologiqueset biend'autres.

De plus, nousdZmontrongjuenouspouvonsextraireet reconstruiredesinformationschimiques
quantitative$ partir de paramstredissulairegertinentsE cejour, I'histologiequantiative est
restZdimitZe " la quantificationd'objets[208] et de sousstructure§209] dansdescoupegietissus,
maispas” soncontenuchimique[87]. NousavonsdZmotrZ qu'uneimagechimiquequantitative
3D fournie parspectroscopi¢R permettaitderZsoudrd'un desaspectsespluslimitantsdes
mZthodesistologiquesonventionnellesie manqued'analysequantitativedu contenumolZculaire
danslestissus.

164



NousnoussommesoncentrZsurlesparamstresnZtaboliqueslestissus,dontla rZgulationest
profondZmenaltZrZear la croissancelestumeurs194, 200], telsquelesgliomes.Nousavons
dOabordalibrZlesvaleursdOabsption du glucose du glycogeneet du lactateen utilisantleurs
spectresie 2sme dZrivZparrapportauxessaidiochimiquesZalisZsurdeshomogZnatge cerveau
obtenusnparallsle.

NousavonsutilisZ desprocZduredienconnuesi'extration desabsoptionsIR [193, 2] quenous
pourrionstraduireparconcentration§210]. Lesvariationsd'absorptiordesmolZculesnZtaboliques
sontconformes la littZrature[188], o+ un changementle concentratiorde2 ~ 3 fois peutstre
observourcesparametresnZtaboliquegntrelesrZgions LesrZgionsdu cerveawyprZsentent

d'importantchangementdansles concentrationsle glucose[202].

ParconsZquentousavonsutilisZ lesrZgionsanatomiquesnaillZesdu cerveauellesquedZfinies
prZcZdemmemour dZtermineteursvariationsde concentratiorenglucose glycogeneet lactate.
NosrZsultatont ZtZtrouvZstres similairesaux quelquesautresZtudeglisponiblesg.-”-d. Qui
analysaiensZparZmeneészonesdutissucZrZlal (parmicrodissectioj201, 202,205]) et
utilisaientdesmZthodesgjuantitativegdosage®nzymatiques).

NousavonsmontZ quele volumedela tumeurprZsentaitiesconcentrationsnZtaboliqueglus
homogenesmaisavecdu glucoseet du glycogeneinfZrieursde 60"~ 70%etun lactatede 110%
supZrieuf celuidestissussainspourle cerveauCetexempled'analyseanatomemZabolique
quantitativemontrele potentieldela mZthodepourla pathologie3D engZnZratout enZvaluant

I'effet Warburgbien ZtudiZsurlestumeurs.

Nousavonsdoncassocidin renduanatomiqueefficacedu cerveawle souris™ uneanalyse
chimiquequantifitive de soncontenu’ partir du meme ensemblale donnZeslesrendus
volumiques3D de contenusanatomiques;himiqueset mZtaboliqueslu cerveaude souris
prZsentaninetumeuront atteintun niveaud'informationsncomparablgouruneanalysepar

microsopie 3D.

Il aZgalemenZtZdZmontrAjuele co-enregistremergntreanalysesn vivo etanalyses
histologiquegouvaitetre enrichipardesatlasanatomiquegxistantsLe renduquantitatifen
volumeavectransparencpermetunevisualisation3D directede 'anatomieinternedu cerveawavec

uneanalysequantitativesimultanZele sesconcentrationsnolZculaires.
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