N. W. Ashcroft and N. D. Mermin, Solid State Physics, p.27, 1976.

R. D. King-smith and D. Vanderbilt, Phys. Rev. B, vol.47, p.4442, 1993.

R. Resta, Rev. Mod. Phys, vol.66, p.899, 1994.

R. Resta and D. Vanderbilt, Physics of Ferroelectrics: A Modern Perspective, Topics in Applied Physics, vol.105, pp.21-68, 2007.

N. A. Spaldin, J. Solid State Chem, vol.195, issue.2, 2012.

J. Zak, Phys. Rev. Lett, vol.62, p.2747, 1989.

A. Raoux, F. Piéchon, J. Fuchs, and G. Montambaux, Phys. Rev. B, vol.91, p.85120, 2015.

G. H. Wannier, Phys. Rev, vol.117, p.432, 1960.

J. Zak, Phys. Rev. Lett, vol.20, p.1477, 1968.

R. Resta, J. Phys.: Condens. Matter, vol.12, p.107, 2000.

D. Xiao, M. Chang, and Q. Niu, Rev. Mod. Phys, vol.82, p.1959, 2010.

R. W. Nunes and D. Vanderbilt, Phys. Rev. Lett, vol.73, p.712, 1994.

R. W. Nunes and X. Gonze, Phys. Rev. B, vol.63, p.155107, 2001.

I. Souza, J. Iñiguez, and D. Vanderbilt, Phys. Rev. Lett, vol.89, p.117602, 2002.

P. Umari and A. Pasquarello, Phys. Rev. Lett, vol.89, p.157602, 2002.

M. Springborg and B. Kirtman, Phys. Rev. B, vol.77, p.45102, 2008.

B. Kirtman, M. Ferrero, M. Rérat, and M. Springborg, J. Chem. Phys, vol.131, p.44109, 2009.

R. Nourafkan and G. Kotliar, Phys. Rev. B, vol.88, p.155121, 2013.

S. D. Swiecicki and J. E. Sipe, Phys. Rev. B, vol.90, p.125115, 2014.

, We make the hypothesis that the electric field seen by ions and electrons is identical to the macroscopic field present in the crystal

, The choice of this gauge is motivated by the fact that we want to access the energies of the system through the Hamiltonian. In the time-dependent vector potential gauge A = ?tE, any static electric field would lead to a time dependence through the Peierls substitution

T. Combes, P. Fuchs, and . Review-b, , vol.94, p.155109, 2016.

K. Leo, Semicond. Sci. Technol, vol.13, p.249, 1998.

, Bloch eigenvectors are defined up to a gauge choice, which is the phase they come with, and two different choices of phases will lead to two different sets of Wannier functions. By suitable choice of phases

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, vol.8, p.14, 1960.

M. J. Rice and E. J. Mele, Phys. Rev. Lett, vol.49, p.1455, 1982.

W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett, vol.42, p.1698, 1979.

K. Chen and P. A. Lee, Phys. Rev. B, vol.84, p.113111, 2011.

, In 1D, the maximally localized Wannier function is also obtained as the eigenstate of the projected position operator onto the occupied band

S. Kivelson, Phys. Rev. B, vol.26, p.4269, 1982.

N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Rev. Mod. Phys, vol.84, p.1419, 2012.

K. Chen and P. A. Lee, Phys. Rev. B, vol.84, p.205137, 2011.

F. Piéchon,

. Interferometer-publié and . Dans, Phys. Rev. Lett, vol.117, p.16, 2016.

P. We and . Rosenbusch, Wilfried Maineult, and Kurt Gibble for useful discussions. We also acknowledge financial support by the IDEX PSL

H. Katori, M. Takamoto, V. G. Palchikov, and V. D. Ovsiannikov, Phys. Rev. Lett, vol.91, p.173005, 2003.

H. Katori, K. Hashiguchi, E. Y. Ilinova, and V. D. Ovsiannikov, Phys. Rev. Lett, vol.103, p.153004, 2009.

A. Kaplan, M. F. Andersen, and N. Davidson, Phys. Rev. A, vol.66, p.45401, 2002.

H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, Phys. Rev. Lett, vol.88, p.70403, 2002.

E. L. Hahn, Phys. Rev, vol.80, p.580, 1950.

M. F. Andersen, A. Kaplan, and N. Davidson, Phys. Rev. Lett, vol.90, p.23001, 2003.

M. Kasevich and S. Chu, Phys. Rev. Lett, vol.67, p.181, 1991.

I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido-alzar et al., Phys. Rev. Lett, vol.116, p.183003, 2016.

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling et al., J. Phys. Conf. Ser, vol.723, p.12050, 2016.

P. Gillot, O. Francis, A. Landragin, F. Pereira-dos-santos, and S. Merlet, Metrologia, vol.51, p.15, 2014.

Z. Hu, B. Sun, X. Duan, M. Zhou, L. Chen et al., Phys. Rev. A, vol.88, p.43610, 2013.

F. Sorrentino, Q. Bodart, L. Cacciapuoti, Y. Lien, M. Prevedelli et al., Phys. Rev. A, vol.89, p.23607, 2014.

G. W. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy et al., Phys. Rev. A, vol.91, p.33629, 2015.

A. Clairon, A. Landragin, S. Merlet, F. Pereira, and . Santos, New J. Phys, vol.13, p.65025, 2011.

A. Hilico, C. Solaro, M. Zhou, M. Lopez, F. Pereira et al., Phys. Rev. A, vol.91, p.53616, 2015.

D. M. Harber, H. J. Lewandowski, J. M. Mcguirk, and E. A. Cornell, Phys. Rev. A, vol.66, p.53616, 2002.

C. Deutsch, F. Ramirez-martinez, C. Lacroûte, F. Reinhard, T. Schneider et al., Phys. Rev. Lett, vol.105, p.20401, 2010.

C. Lhuillier and F. Laloë, J. Phys, vol.43, p.197, 1982.

, ¼ 99.427a 0 as calculated by C. Williams and found in Y. R. P. Sortais, 2001.

Y. Sagi, I. Almog, and N. Davidson, Phys. Rev. Lett, vol.105, p.93001, 2010.

A. Widera, F. Gerbier, S. Fölling, T. Gericke, O. Mandel et al., Phys. Rev. Lett, vol.95, p.190405, 2005.

A. Clairon, P. Laurent, G. Santarelli, S. Ghezali, S. Lea et al., IEEE Trans. Instrum. Meas, vol.44, p.128, 1995.

G. K. Büning, J. Will, W. Ertmer, E. Rasel, J. Arlt et al., Phys. Rev. Lett, vol.106, p.240801, 2011.

,

F. Piéchon, J. N. Fuchs, and F. Laloë, Phys. Rev. Lett, vol.102, p.215301, 2009.

K. Gibble, Physics, vol.3, p.55, 2010.

S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko et al., Phys. Rev. A, vol.72, p.23406, 2005.

S. Trotzky, S. Beattie, C. Luciuk, S. Smale, A. B. Bardon et al., Phys. Rev. Lett, vol.114, p.15301, 2015.

A. J. Leggett and M. J. Rice, Phys. Rev. Lett, vol.20, p.586, 1968.

B. Pelle, A. Hilico, G. Tackmann, Q. Beaufils, F. Pereira et al., Phys. Rev. A, vol.87, p.23601, 2013.

T. Engl, J. D. Urbina, K. Richter-;-p-h-y-s-i-c-a-l-r-e-v-i-e-w-l-e-t-t-e-r-s-week, and . Ending, , vol.117, p.163003, 2016.

O. Syrte, . De-paris, C. Psl-research-university, and S. Universités, UPMC Université Paris 06, LNE, 61 Avenue de l'Observatoire, 75014 Paris, France 2 Laboratoire de Physique des Solides, CNRS UMR, vol.8502

, CNRS UMR, vol.7600, 2016.

R. P. Feynman, Feynman lectures on physics, Mainly electromagnetism and matter chap, vol.2, pp.10-11, 1964.

N. W. Ashcroft and N. D. Mermin, Solid state physics chap, vol.27, 1976.

R. D. King-smith and D. Vanderbilt, Theory of polarization of crystalline solids, Phys. Rev. B, vol.47, pp.1651-1654, 1993.

D. Vanderbilt and R. D. King-smith, Electric polarization as a bulk quantity and its relation to surface charge, Phys. Rev. B, vol.48, pp.4442-4455, 1993.

P. Umari and A. Pasquarello, Ab initio Molecular Dynamics in a Finite Homogeneous Electric Field, Phys. Rev. Lett, vol.89, p.157602, 2002.

B. A. Bernevig and T. L. Hughes, Topological insulators and topological superconductors, 2013.

M. V. Berry, The quantum phase, five years after, Geometric phases in physics, vol.7, 1989.

F. D. Haldane, Model for a Quantum Hall Effect without Landau Levels: CondensedMatter Realization of the "Parity Anomaly, Phys. Rev. Lett, vol.61, pp.2015-2018, 1988.

A. Raoux, Orbital magnetism and geometrical aspects of band theory Thèse, 2017.

H. Fukuyama, R. A. Bari, and H. C. Fogedby, Tightly Bound Electrons in a Uniform Electric Field, Phys. Rev. B, vol.8, pp.5579-5586, 1973.

C. Zener, A theory of the electrical breakdown of solid dielectrics, Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.145, pp.523-529, 1934.

N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B, vol.56, pp.12847-12865, 1997.

F. Domínguez-adame, Beyond the semiclassical description of Bloch oscillations, European Journal of Physics, vol.31, p.639, 2010.

S. D. Swiecicki and J. E. Sipe, Linear response of crystals to electromagnetic fields: Microscopic charge-current density, polarization, and magnetization, Phys. Rev. B, vol.90, p.125115, 2014.

J. E. Sipe and A. I. Shkrebtii, Second-order optical response in semiconductors, Phys. Rev. B, vol.61, pp.5337-5352, 2000.

D. Emin and C. F. Hart, Existence of Wannier-Stark localization, Phys. Rev. B, vol.36, pp.7353-7359, 1987.

D. N. Maksimov, E. N. Bulgakov, and A. R. Kolovsky, Wannier-Stark states in double-periodic lattices. I. One-dimensional lattices, Phys. Rev. A, vol.91, p.53631, 2015.

H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Wannier-Stark states of graphene in strong electric field, Phys. Rev. B, vol.90, p.85313, 2014.

D. N. Maksimov, E. N. Bulgakov, and A. R. Kolovsky, Wannier-Stark states in double-periodic lattices. II. Two-dimensional lattices, Phys. Rev. A, vol.91, p.53632, 2015.

M. J. Rice and E. J. Mele, Elementary Excitations of a Linearly Conjugated Diatomic Polymer, Phys. Rev. Lett, vol.49, pp.1455-1459, 1982.
URL : https://hal.archives-ouvertes.fr/jpa-00222817

W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in Polyacetylene, Phys. Rev. Lett, vol.42, pp.1698-1701, 1979.

D. J. Thouless, Quantization of particle transport, Phys. Rev. B, vol.27, pp.6083-6087, 1983.

M. Switkes, C. M. Marcus, K. Campman, and A. C. Gossard, An Adiabatic Quantum Electron Pump, Science, vol.283, pp.1905-1908, 1999.

R. Resta, Quantum-Mechanical Position Operator in Extended Systems, Phys. Rev. Lett, vol.80, pp.1800-1803, 1998.

S. Kivelson, Wannier functions in one-dimensional disordered systems: Application to fractionally charged solitons, Phys. Rev. B, vol.26, pp.4269-4277, 1982.

J. E. Avron, The lifetime of Wannier ladder states, Annals of Physics, vol.143, pp.33-53, 1982.

M. Glück, A. R. Kolovsky, and H. J. Korsch, Lifetime of Wannier-Stark States, Phys. Rev. Lett, vol.83, pp.891-894, 1999.

Q. Niu and M. G. Raizen, How Landau-Zener Tunneling Takes Time, Phys. Rev. Lett, vol.80, pp.3491-3494, 1998.

A. Maiti and L. M. Falicov, Local-chemical-potential approach to small-cluster manybody systems, Phys. Rev. B, vol.43, pp.788-795, 1991.

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. Den-nijs, Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Phys. Rev. Lett, vol.49, pp.405-408, 1982.

Y. Hatsugai, Chern number and edge states in the integer quantum Hall effect, Phys. Rev. Lett, vol.71, pp.3697-3700, 1993.

S. Coh and D. Vanderbilt, Electric Polarization in a Chern Insulator, Phys. Rev. Lett, vol.102, p.107603, 2009.

A. A. Soluyanov and D. Vanderbilt, Wannier representation of Z 2 topological insulators, Phys. Rev. B, vol.83, p.35108, 2011.

T. Thonhauser and D. Vanderbilt, Insulator/Chern-insulator transition in the Haldane model, Phys. Rev. B, vol.74, p.235111, 2006.

K. Niizeki and A. Matsumura, Stark ladder in a one-dimensional quasiperiodic system, Phys. Rev. B, vol.48, pp.4126-4129, 1993.

F. Salazar and G. Naumis, Electric fields on quasiperiodic potentials, Journal of Physics : Condensed Matter, vol.22, p.115501, 2010.

C. Cohen-tannoudji, J. Dupont-roc, and G. Grynberg, Photons and Atoms-Introduction to Quantum Electrodynamics, p.486, 1997.

E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell et al., Correlations, and Collisions: What One Learns about BoseEinstein Condensates from Their Decay, Phys. Rev. Lett, vol.79, pp.337-340, 1997.

D. M. Stamper-kurn and M. Ueda, Spinor Bose gases: Symmetries, magnetism, and quantum dynamics, Rev. Mod. Phys, vol.85, pp.1191-1244, 2013.

B. Naylor, M. Brewczyk, M. Gajda, O. Gorceix, E. Maréchal et al., Competition between Bose-Einstein Condensation and Spin Dynamics, Phys. Rev. Lett, vol.117, p.185302, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01347485

H. Katori, M. Takamoto, V. G. Pal'chikov, and V. D. Ovsiannikov, Ultrastable Optical Clock with Neutral Atoms in an Engineered Light Shift Trap, Phys. Rev. Lett, vol.91, p.173005, 2003.

H. Katori, K. Hashiguchi, E. Y. Il'inova, and V. D. Ovsiannikov, Magic Wavelength to Make Optical Lattice Clocks Insensitive to Atomic Motion, Phys. Rev. Lett, vol.103, p.153004, 2009.

A. Kaplan, M. Fredslund-andersen, and N. Davidson, Suppression of inhomogeneous broadening in rf spectroscopy of optically trapped atoms, Phys. Rev. A, vol.66, p.45401, 2002.

H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, Observation of Anomalous Spin-State Segregation in a Trapped Ultracold Vapor, Phys. Rev. Lett, vol.88, p.70403, 2002.

M. F. Andersen, A. Kaplan, and N. Davidson, Echo Spectroscopy and Quantum Stability of Trapped Atoms, Phys. Rev. Lett, vol.90, p.23001, 2003.

M. Kasevich and S. Chu, Atomic interferometry using stimulated Raman transitions, Phys. Rev. Lett, vol.67, pp.181-184, 1991.

A. Hilico, C. Solaro, M. Zhou, M. Lopez, and F. Pereira-dos-santos, Contrast decay in a trapped-atom interferometer, Phys. Rev. A, vol.91, p.53616, 2015.

S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko et al., Analysis of dephasing mechanisms in a standingwave dipole trap, Phys. Rev. A, vol.72, p.23406, 2005.

C. Solaro, A. Bonnin, F. Combes, M. Lopez, X. Alauze et al., Competition between Spin Echo and Spin Self-Rephasing in a Trapped Atom Interferometer, Phys. Rev. Lett, vol.117, p.163003, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01324582

J. Fuchs, F. Piéchon, F. Laloë, and P. Rosenbusch, Spin kinetic equation in energy space : application to spin synchronisation in a trapped ultracold gas (unpublished)

J. D. Jackson and . Electrodynamics, The Optics Encyclopedia, 1975.

C. Fabre, Atomes et Lumière -Interaction matière-rayonnement, 2006.

C. Solaro, Trapped atom interferometers : from low to high density regime Thèse, 2016.

W. K. Wooters, A Wigner-function formulation of finite-state quantum mechanics, Annals of Physics, vol.176, pp.1-21, 1987.

A. Polkovnikov, Phase space representation of quantum dynamics, Annals of Physics, vol.325, pp.1790-1852, 2010.

J. Fuchs, Contribution à la mécanique statistique quantique des gaz froids Theses, 2003.

C. Cohen-tannoudji, J. Dupont-roc, and G. Grynberg, Atom-photon interactions : basic processes and applications, p.678, 1998.

L. Pucci, A. Roy, and M. Kastner, Simulation of quantum spin dynamics by phase space sampling of Bogoliubov-Born-Green-Kirkwood-Yvon trajectories, Phys. Rev. B, vol.93, p.174302, 2016.

J. Yvon, Compte-Rendus de l'Académie des Sciences, vol.264, p.2858, 1958.

R. F. Snider, Quantum-Mechanical Modified Boltzmann Equation for Degenerate Internal States, The Journal of Chemical Physics, vol.32, pp.1051-1060, 1960.

Y. B. Band and P. S. Julienne, Optical-Bloch-equation method for cold-atom collisions: Cs loss from optical traps, Phys. Rev. A, vol.46, pp.330-343, 1992.

H. Smith and H. Jensen, Transport Phenomena chap, issue.1, 1989.

A. Widera, F. Gerbier, S. Fölling, T. Gericke, O. Mandel et al., Coherent Collisional Spin Dynamics in Optical Lattices, Phys. Rev. Lett, vol.95, p.190405, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00116289

F. Piéchon, J. N. Fuchs, and F. Laloë, Cumulative Identical Spin Rotation Effects in Collisionless Trapped Atomic Gases, Phys. Rev. Lett, vol.102, p.215301, 2009.

Y. Sagi, I. Almog, and N. Davidson, Universal Scaling of Collisional Spectral Narrowing in an Ensemble of Cold Atoms, Phys. Rev. Lett, vol.105, p.93001, 2010.

M. Prentiss, A. Cable, J. E. Bjorkholm, S. Chu, E. L. Raab et al., Atomic-density-dependent losses in an optical trap, Opt. Lett, vol.13, pp.452-454, 1988.

P. S. Julienne and J. Vigué, Cold collisions of ground-and excited-state alkali-metal atoms, Phys. Rev. A, vol.44, pp.4464-4485, 1991.

D. Sesko, T. Walker, C. Monroe, A. Gallagher, and C. Wieman, Collisional losses from a light-force atom trap, Phys. Rev. Lett, vol.63, pp.961-964, 1989.

A. Gallagher and D. E. Pritchard, Exoergic collisions of cold Na * -Na, Phys. Rev. Lett, vol.63, pp.957-960, 1989.

X. Du, Y. Zhang, J. Petricka, and J. E. Thomas, Controlling Spin Current in a Trapped Fermi Gas, Phys. Rev. Lett, vol.103, p.10401, 2009.

H. B. Casimir and D. Polder, The Influence of Retardation on the London-van der Waals Forces, Phys. Rev, vol.73, pp.360-372, 1948.

P. Wolf, P. Lemonde, A. Lambrecht, S. Bize, A. Landragin et al., From optical lattice clocks to the measurement of forces in the Casimir regime, Phys. Rev. A, vol.75, p.63608, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00088469

A. Clairon, P. Laurent, G. Santarelli, S. Ghezali, S. N. Lea et al., A cesium fountain frequency standard: preliminary results, IEEE Transactions on Instrumentation and Measurement, vol.44, pp.128-131, 1995.

K. Büning, G. Will, J. Ertmer, W. Rasel, E. Arlt et al., Extended Coherence Time on the Clock Transition of Optically Trapped Rubidium, Phys. Rev. Lett, vol.106, p.240801, 2011.

A. Bonnin, C. Solaro, X. Alauze, and F. Pereira-dos-santos, Magic density in a self-rephasing ensemble of trapped ultracold atoms, 2018.

J. Hubbard, Electron correlations in narrow energy bands, Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.276, pp.238-257, 1963.

J. Kanamori, Electron Correlation and Ferromagnetism of Transition Metals, Progress of Theoretical Physics, vol.30, pp.275-289, 1963.

M. C. Gutzwiller, Effect of Correlation on the Ferromagnetism of Transition Metals, Phys. Rev. Lett, vol.10, pp.159-162, 1963.

R. Nourafkan and G. Kotliar, Electric polarization in correlated insulators, Phys. Rev. B, vol.88, p.155121, 2013.

K. Wiesenfeld, P. Colet, and S. H. Strogatz, Synchronization Transitions in a Disordered Josephson Series Array, Phys. Rev. Lett, vol.76, pp.404-407, 1996.

J. A. Acebrón, L. L. Bonilla, C. J. Pérez-vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys, vol.77, pp.137-185, 2005.

M. P. Kwasigroch and N. R. Cooper, Synchronization transition in dipole-coupled two-level systems with positional disorder, Phys. Rev. A, vol.96, p.53610, 2017.

W. Maineult, C. Deutsch, K. Gibble, J. Reichel, and P. Rosenbusch, Spin Waves and Collisional Frequency Shifts of a Trapped-Atom Clock, Phys. Rev. Lett, vol.109, p.20407, 2012.

M. E. Hayden, E. Baudin, G. Tastevin, P. J. Nacher, and . Nmr, Time Reversal as a Probe of Incipient Turbulent Spin Dynamics, Phys. Rev. Lett, vol.99, p.137602, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00177851

M. Schmitt and S. Kehrein, Effective time reversal and echo dynamics in the transverse field Ising model, Europhysics Letters), vol.115, p.50001, 2016.

T. Engl, J. D. Urbina, K. Richter, and P. Schlagheck, Many-body spin echo, Phys. Rev. A, vol.98, p.13630, 2018.

W. Rhim, A. Pines, and J. S. Waugh, Time-Reversal Experiments in Dipolar-Coupled Spin Systems, Phys. Rev. B, vol.3, pp.684-696, 1971.

A. P. Koller, J. Mundinger, M. L. Wall, and A. M. Rey, Demagnetization dynamics of noninteracting trapped fermions, Phys. Rev. A, vol.92, p.33608, 2015.

S. Lepoutre, L. Gabardos, K. Kechadi, P. Pedri, O. Gorceix et al., Collective Spin Modes of a Trapped Quantum Ferrofluid, Phys. Rev. Lett, vol.121, p.13201, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02009595

C. Sommer, G. Pupillo, N. Takei, S. Takeda, A. Tanaka et al., Time-domain Ramsey interferometry with interacting Rydberg atoms, Phys. Rev. A, vol.94, p.53607, 2016.

Q. Beaufils, G. Tackmann, X. Wang, B. Pelle, S. Pelisson et al., Laser Controlled Tunneling in a Vertical Optical Lattice, Phys. Rev. Lett, vol.106, p.213002, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00568873

. Titre, Thermodynamique de la réponse électrique dans les isolants de bande -Synchronisation et écho de spin dans une horloge atomique

, Mots clés : diélectriques cristallins, échelle de Wannier-Stark, polarisation électrique, phase de Zak, susceptibilité électrique, atomes froids