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NOMENCLATURE 

Latin letters 

𝐴            Surface area                                                                                                             𝑚−2 

𝑎 (𝑑)      Pattern size                                                                                                                  𝑚 

𝑎𝑠          Puissance law                                                                                                                

𝐴𝑑𝑟𝑜𝑝     Contact area of the drop                                                                                            𝑚2 

𝑐𝑚𝑝          Fitting constant 

𝐶𝑆          Cylindrical pillars in square arrangement                                                    

𝐶𝐻𝑟𝑒𝑔    Cylindrical pillars in regular hexagonal arrangement 

𝐶𝐻𝑖𝑟𝑟𝑒𝑔  Cylindrical pillars in irregular hexagonal arrangement 

𝐷            Drop diameter                                                                                                             𝑚 

𝑑𝑠           Diameter of the sphere                                                                                                𝑚 

𝐷𝑐           Critical diameter of the drop                                                                                       𝑚 

𝐷𝑙           Diameter of the solidified drop in lateral view                                                           𝑚 

𝐷𝑡           Diameter of the solidified drop in top view                                                               𝑚         

𝑑1 (𝑑2)  Spreading direction of the triple contact line                                       

𝑑𝑚          Molecular dimension                                                                                                  𝑚 

𝐸             Energy                                                                                                                          𝐽 

𝐸𝑑𝑖𝑠𝑠       Dissipated energy                                                                                                         𝐽 

𝐹             Force                                                                                                                           𝑁  

𝑓, 𝑓𝑠        Surface fraction or Cassie fraction                                                                                                         

𝐹𝐻          Helmholtz free energy                                                                                                   𝐽 

𝐹𝑃           Pinning force per unit length                                                                              𝑁.𝑚−1 

𝐺            Gibbs free energy of the system                                                                                   𝐽 
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𝑔             Gravity                                                                                                                𝑚. 𝑠−2 

 𝐺𝑓           Geometric factor of the pillars                                                 

𝐺𝑑𝑟𝑜𝑝       Position of the centre of the drop                                                                       𝑝𝑖𝑥𝑒𝑙𝑠                                                 

 𝐻             Reduced contact angle hysteresis                

ℎ              Texture (or pattern) height                                                                                        𝑚 

𝐻𝑑            Maximal height of the drop                                                                                       𝑚          

ℎ𝑑           Drop thickness                                                                                                            𝑚                                           

𝑘𝐵            Boltzmann constant                                                                                            𝐽. 𝐾−1  

𝐿              Liquid phase                                                                                 

𝑚𝑃𝑏         Mass of the lead drop                                                                                               𝑘𝑔 

𝑁             Number of molecules                                                                               

𝑛𝑑            Number of defects per unit area                                                                            𝑚−2                                                

𝑛𝑝            Number of pixels                                                 

𝑂ℎ           Ohnesorge number                                                 

𝑃              Pressure                                                                                                             𝑁.𝑚−2        

𝑃𝐼             Impact number                                                                                                                                    

𝑝𝑠𝑖𝑚         Image scale                                                                                               𝑝𝑖𝑥𝑒𝑙𝑠/𝑚𝑚  

𝑝.             Pinning effect 

𝑅              Surface or contact radius                                                                                           𝑚  

𝑟𝑎                      Average surface roughness                                                                                       𝑚 

𝑅𝑒             Reynolds number                                                              

𝑟𝑊             Surface roughness or Wenzel roughness                                                                     

𝑆               Solid phase 
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𝑠                Distance between pillars of the texture                                                                    𝑚 

𝑠𝑝𝑙.            Drop splitting 

𝑆𝑤             Wetting parameter                                                                                            𝑁.𝑚−1 

𝑠𝑓𝑝𝑎𝑐𝑘        Packing limit                                                                                              

𝑆𝑆              Square pillars in square arrangement                                                    

𝑆𝐻𝑟𝑒𝑔        Square pillars in regular hexagonal arrangement 

𝑆𝐻𝑖𝑟𝑟𝑒𝑔     Square pillars in irregular hexagonal arrangement 

𝑇                Temperature                                                                                                             𝐾 

𝑡                 Spreading time                                                                                                          𝑠 

𝑡𝑖                Inertial time                                                                                                              𝑠 

𝑡𝑓𝑎𝑙𝑙            Fall time of the drop                                                                                                 𝑠 

𝑡𝑠𝑎𝑡𝑏
𝑎            Stabilization time of drop contact angle                                                                   𝑠 

𝑡𝑠𝑎𝑡𝑏
𝑎            Stabilization time of drop contact diameter                                                             𝑠 

𝑇𝐶𝐿            Tripe Contact Line  

𝑈                Spreading velocity of the triple contact line                                                    𝑚. 𝑠−1 

𝑉                Vapour phase 

𝑉0               Impact velocity of the drop on the solid surface                                             𝑚. 𝑠−1 

𝑉𝐿 , 𝑉𝑑𝑟𝑜𝑝    Drop or liquid volume                                                                                           𝑚3 

𝑉𝑓𝑎𝑙𝑙            Average velocity of the dispensed drop                                                          𝑚. 𝑠−1 

𝑉𝑢               The unsupported volume                                                                                       𝑚3 

𝑊               Work                                                                                                                         𝐽 

𝑊𝑒            Weber number  

𝑥                 Small displacement of the triple contact line                                                         𝑚    
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𝑧̅                 Position of the drop center of mass                                                                         𝑚     

𝑧𝐶𝑀             Altitude of the position of the drop center of mass                                                𝑚                                                                                                                                                                                           

Greek letters 

𝛼𝑐𝑎𝑚         Tilted angle of the camera                                                                                          ° 

𝛼𝑚𝑝           Fitting parameter                                                                          

𝛼𝑇𝐶𝐿          Tilted angle of the triple contact line                                                                         ° 

𝛽                Slope angle of the solid surface                                                                                ° 

𝛾, 𝛾𝐿𝑉         Surface tension of the liquid drop                                                                   𝑁.𝑚−1 

𝛾𝑆𝐿             Surface tension of the interface solid-liquid                                                   𝑁.𝑚−1 

𝛾𝑆𝑉             Surface tension of the interface solid-vapour                                                 𝑁.𝑚−1 

𝛿𝑝              Maximum drooping depth                                                                                       𝑚      

∆𝜃             Contact angle hysteresis                                                                                             °    

𝜀                Hypothetical displacement of the TCL                                                                    𝑚 

Ԑ𝑒𝑙              Elastic energy                                                                                                           𝐽 

𝜃 (𝜃∗)        Apparent contact angle                                                                                              °   

𝜃𝑎               Advancing contact angle                                                                                          °    

𝜃𝐶                Cassie contact angle                                                                                                 °   

𝜃𝐸                Equilibrium contact angle                                                                                        °    

𝜃𝐿               Left contact angle of the drop                                                                                   °    

𝜃𝑟               Receding contact angle                                                                                             °   

𝜃𝐿               Right contact angle of the drop                                                                                 °    

𝜃𝐿               Contact angle of the solidified drop in lateral view                                                 °    

𝜃𝑡               Contact angle of the solidified drop in top view                                                       °                                                                    
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𝜃𝑊              Wenzel contact angle                                                                                                ° 

𝜃𝑌               Young contact angle                                                                                                 °                                                                    

𝜅−1             Capillary length                                                                                                      𝑚 

𝑘𝐵               Boltzmann constant                                                                                         𝐽. 𝐾−1                        

𝛬                 Contact line density                                                                                            𝑚−1 

𝜆                  Feature size of the texture                                                                                      𝑚 

𝜇                 Dynamic viscosity of the fluid                                                                           𝑃𝑎. 𝑠 

 𝜆𝑎             Average wavelength of asperities 

𝜆𝑖                 Linear fraction 

𝜌                  Drop density                                                                                                𝑘𝑔.𝑚−3 

𝜏∗                 Spreading time                                                                                                        𝑠 

𝜏𝑟                 Characteristic time of the first receding                                                                 𝑠 

 𝛹𝑑𝑖𝑓𝑓         Set of pixel in the symmetrical difference  

 𝛹𝑑𝑟𝑜𝑝        Set of pixel in the drop contact surface  

 𝛹𝑐𝑡ℎ        Set of pixel in the optimal circle 
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Introduction 

Wetting is a common phenomenon in industrial processes where a liquid is brought into contact 

with a solid surface, including coatings, drying, cleaning, painting, adhesion, solidification and 

galvanization.  

The latter is a process that protects industrial steel sheets against corrosion. This protection is 

provided by a thin layer of zinc alloy obtained by immersion into a liquid bath. During this 

immersion, the zinc liquid must wet the steel for the most uniform coating. The steel sheet is 

then removed from the bath by entraining a layer of zinc liquid. Before immersion in the zinc 

alloy bath, the steel sheets are annealed at temperature of more than 750°C in a reducing 

atmosphere composed of nitrogen and hydrogen.  This annealing has two main objectives: the 

recrystallization of steel sheet and the reduction of surface oxides. 

The recrystallization of steel eliminates strain hardening from cold rolling and thus improves 

the formability of steel sheet. The reducing atmosphere reduces surface iron oxides and thus 

promotes good wetting by liquid zinc. 

However, the new steel sheets contain addition elements with higher contents.  These so-called 

high yield strength steels, both high strength and good ductility, are intended to reduce the mass 

of car body.  

On the other hand, the less-noble elements such as silicon and manganese in the steel sheet 

diffuse to the surface during the annealing process to form oxide particles or films. These oxides 

do not promote the wettability of the steel sheet and can lead to defects in the quality of the 

final coating. 

To study the influence of these oxides on wetting, several authors studied the wettability of 

binary alloys of iron after annealing (Fe-Si [1], [2]). 

In these studies, iron alloys first undergo an annealing process. Then different oxides of addition 

elements are obtained on the surfaces. The oxides are of different sizes, shapes and 

distributions. Also, the shape of the oxides and the surface covered by the oxides vary 

depending on the orientation of the steel grains.  

The study of these surfaces allows to understand the influence of the oxide surface on wetting. 

However, a detailed wettability study of these surfaces is particularly complex given the 
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anisotropy of the surface and the non-uniformity of the oxides. This would be easier by using 

model surfaces with controlled oxide shape and distribution.  

These so-called patterned surfaces are widely used in the literature for wettability studies. Most 

of the surfaces are hydrophobic or super-hydrophobic (not wet by water). They are thus studied 

for their ability to repel water. In addition, they are also homogeneous, i.e. composed of a single 

chemical element.  

Few wettability studies are devoted to heterogeneous patterned surfaces: substrate-defects by 

liquid metals at high temperatures. This is due to experimental difficulties and the difficulty of 

designing these heterogeneous surface types. 

One of the design techniques for heterogeneous patterned surfaces is plasma enhanced chemical 

vapour deposition (PECVD) followed by a photolithographic process.  

This technique was used to create patterned surfaces of Fe/silica with defects composed of 

amorphous silicon dioxide (SiO2), whose lateral dimensions vary from 5 × 5 μm2 to 500 × 500 

μm2 and the distances between defects vary from 5 μm to 500 μm [3].  

The patterned surfaces reproduce well the type and chemistry of the silicon oxide layer formed 

during recrystallization annealing process: stoichiometric film and amorphous silicon dioxide. 

In this work, these surfaces are used for a detailed study of the wettability: influence of the size 

of the oxides, the distribution of oxides, the direction of spreading and the surface of the oxides.   

Furthermore, the galvanization of steel sheets is carried out in a zinc alloy bath. The involved 

wetting is reactive. It leads to the formation of intermetallic compounds at the iron-zinc 

interface. These reactions modify the solid-liquid interface and add an additional complexity to 

the spreading dynamics of the zinc layer on the steel sheet. For these reasons, we do not provide, 

in this work, experiments with liquid zinc alloys. We were interested in a non-reactive liquid 

metal: lead. This allowed us to focus our study on the physical (non-reactive) wetting of 

textured iron-oxide surfaces by liquid metals. 

Thus, this thesis work is divided into four parts or chapters. 

The first chapter is devoted to the literature review. We will present the fundamental laws of 

capillarity and wetting. We will review some theoretical and experimental studies on the 

wetting of rough or heterogeneous surfaces. Then we will briefly present some general models 
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of wetting phenomena: contact angle, contact angle hysteresis and wetting transition (presence 

of gas under the drop or not). Concerning homogeneous and hydrophobic textured surfaces, we 

analysed about ten experiments published in the literature. We end with a summary of the rare 

experiments on heterogeneous textured surfaces at low and high temperatures. 

The second chapter is devoted to the experimental devices and methods for characterizing the 

experimental tests performed. First, we will present the materials used: iron-silica patterned 

surfaces and lead metal. Then, the device of the dispensed drop technique. This device allows 

wettability tests to be carried out in a reducing environment composed of nitrogen (N2) and 5 

vol. % of hydrogen. The fall of the drop and the spreading dynamics are then recorded using a 

high-resolution and high-speed camera. The images obtained are then processed by image 

processing methods, in order to reduce the time required for the treatment. 

We will present the implemented automated procedures using MATLAB software. 

The third chapter will discuss the main experimental results obtained by the dispensed drop 

technique. For that, we will first present the results obtained on pure substrates: pure iron and 

pure silica. The obtained results are considered as a reference for the study of textured surfaces. 

Then, the results of textured surfaces will be divided into several parts. First we will present the 

spreading dynamics of lead drop on surfaces of different pattern sizes and surface fractions. 

Then, we will focus on the phenomena of stick-slip motion often observed on surfaces with low 

silica coverage. The influence of this phenomenon will be studied at two different levels: during 

the spreading of the drop and on the solidified drop. 

Afterwards, given the square shape of the oxides, the influence of the spreading direction of the 

drop will be studied, but also the shape of the solidified drop on the textured surfaces. 

We will then discuss the influence of the size and distribution of silica patterns on wetting.  

We will end this chapter by studying the influence of the oxide surface on wetting. 

The last chapter will be concerned on the modelling of the observed different phases of the 

spreading dynamics. Given the complexity of the involved phenomena: rapid spreading 

dynamics, limitation of existing models. We will limit ourselves to the spreading diameter of 

the drop and its height and the involved oscillation of the drop. 

In a first step, the drop advances and its spreading diameter increases. We will compare the 

evolution of the drop contact diameter during this phase with the classical laws of literature. At 
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the end of the first spreading, the drop is blocked for a few milliseconds at its maximum 

spreading diameter. We will see that this maximum diameter is a function of the impact velocity 

of the drop but also of the surface wettability. Then, the drop will recede and will oscillate 

before to stabilize. We will try to model the two observed oscillations of the drop: oscillation 

with mobile or fixed diameter. Furthermore, on surfaces with low silica coverage rates, the drop 

often splits when receding due to the stick-slip motion, we will try to explain this phenomenon 

from an energy point of view. 

This work will end with a synthesis of the main results obtained and we will propose some 

suggestions which could help to answer some questions raised by this work.
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 General view on wetting and capillarity [4], [5] 

  Surface or interfacial tension  

Inside a liquid phase, molecules are surrounded by other molecules and are subjected to 

cohesive interaction forces. At the interface with another medium (e.g., a vapour V), the 

interface molecules lose half of their neighbouring molecules, i.e. half of its cohesive 

interactions. The increase 𝑑𝐴 of the surface of the liquid 𝐿 in contact with a vapour 𝑉 thus 

requires 𝛿𝑊 work so that: 

 𝛿𝑊 =  𝛾𝐿𝑉 . 𝑑𝐴 (I.1.1) 

The surface (or interfacial) tension 𝛾𝐿𝑉 of liquid 𝐿 in contact with vapour 𝑉 is then defined as 

the work per unit area (in mJ.m-2) required to increase the liquid surface.  

If the cohesion energy per molecule is 𝐸 inside the liquid, the energy lost by a molecule located 

at the surface is about 𝐸/2. Then, the order of magnitude of the surface tension 𝛾𝐿𝑉 is: 

 
𝛾𝐿𝑉 ≈  

𝐸

2 . 𝑑𝑚
2 

(I.1.2) 

 

with 𝑑𝑚 a molecule characteristic dimension. 𝛾𝐿𝑉  is expressed in J.m-2 or N.m-1. 

For typical liquids, the cohesion energy 𝐸 ranges from 𝑘𝐵𝑇 (for Van der Waals interactions) to 

100 𝑘𝐵𝑇 (for metallic bonds), leading to 𝛾𝐿𝑉 from 20 mJ m-2 (oils) and 72 mJ.m-2 (water at 

20°C) to a few hundred mJ.m-2 (liquid metals) [5]. 

The surface tension can also be defined as the increase in Helmholtz free energy 𝐹𝐻 due to the 

increase in the surface area, at constant volume 𝑉𝐿, temperature T and number of molecules 𝑁. 

 
𝛾𝐿𝑉 = (

𝜕𝐹𝐻
𝜕𝐴

)
𝑇,𝑉𝐿,𝑁

 
(I.1.3) 

 

Surface energies are defined in the same way for solid / vapour and solid / liquid interfaces. 

They are called interfacial tensions and noted 𝛾𝑆𝑉 and 𝛾𝑆𝐿  respectively. 

 Surface curvature and pressure difference: Young-Laplace law 

The shape of a liquid surface corresponds to the smallest possible surface area (Eq. (I.1.1)), due 

to the minimization of energy. For this reason, small drops and gas bubbles are almost spherical. 

In fluid dynamics calculations, the liquid surfaces taken into account are generally large enough 



Chapter I: Literature review 

 

[29] 

 

 

to be considered perfectly flat (e.g., in a tank). In this case, if the liquid is stagnant and in 

mechanical equilibrium, the pressure is the same on both sides of its surface. 

The Young-Laplace law describes the case of the curved liquid surface. In fact, in the early 

nineteenth century, Thomas Young and Pierre-Simon Laplace discovered that there is a 

discontinuity in pressure through a non-planar interface. 

Let us consider the curved surface element 𝑑𝑆⃗⃗⃗⃗  of a liquid as shown in Notations used for the 

Young-Laplace law on a curved surface [6]. in Figure I.1-1 [3]. This surface element is 

described by its two principal curvature radii 𝑅1 and 𝑅2 and its surface tension 𝛾𝐿𝑉. The pressure 

inside and outside the liquid is 𝑃𝑖𝑛 and 𝑃𝑜𝑢𝑡 respectively. At equilibrium, the resultant forces 

acting on the surface element, i.e. the pressure forces and the surface forces acting on its sides, 

are zero. The tangential component of the force balance includes only the surface forces. Then, 

the normal component of the force balance is given by: 

 −𝛾𝐿𝑉𝑑𝜃1𝑑𝜃2𝑅1 − 𝛾𝐿𝑉𝑑𝜃2𝑑𝜃1𝑅2 + (𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡) 𝑥 𝑑𝜃1𝑅1 𝑥 𝑑𝜃2𝑅2 = 0  (I.1.4) 

The pressure difference across the surface can then be written as: 

 
𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡 = 𝛾𝐿𝑉 (

1

𝑅1
+

1

𝑅2
)   

(I.1.5) 

It is the Young-Laplace law. For a spherical interface, the two principal curvature radii are the 

same, i.e. 𝑅1 = 𝑅2 = 𝑅 and the pressure difference across the surface is given by Laplace’s 

Law: 

 
𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡 =

2 𝛾𝐿𝑉
𝑅

 
(I.1.6) 
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Figure I.1-1. Notations used for the Young-Laplace law on a curved surface [6]. 

 Capillary length [7] 

As is commonly observed, the shape of a drop depends on its size. The small drops are spherical, 

while the larger ones are flattened by the effect of gravity. A characteristic length, called 

capillary length 𝜅−1, can be estimated by comparing Laplace pressure 
𝛾𝐿𝑉

𝜅−1 and hydrostatic 

pressure  𝜌 𝑔 𝜅−1 (at the depth  𝜅−1 in the liquid, with 𝜌 the liquid density and g the acceleration 

of gravity): 

 

𝜅−1 = √
𝛾𝐿𝑉
𝜌𝑔

    
(I.1.7) 

 

The effect of gravity can thus be neglected when the drop size is less than the capillary length. 

The capillary length is of the order of a few mm for most systems. 

 Contact angle of a liquid on a solid surface 

Wetting refers to the study of the spreading of a liquid deposited on a solid (or liquid) substrate. 

As a result of Eq. (I.1.1), a small droplet placed on a solid surface takes the shape of a spherical 

cap in order to minimize system energy. The rim of the droplet where the three phases (solid, 

liquid and vapour) are in contact is called the triple contact line (𝑇𝐶𝐿). And the wetting or 

contact angle 𝜃 is defined by the tangent to the droplet at the triple contact line. 

𝑃𝑖𝑛𝑡 

𝑃𝑜𝑢𝑡 

𝑅1 

𝑅2 

𝑑𝜃2 
𝑑𝜃1 

𝑑𝑆⃗⃗ ⃗⃗   
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The surface energies involved in wetting problems, can be compared by introducing the wetting 

parameter 𝑆𝑤. 

 𝑆𝑤 = 𝛾𝑆𝑉 − 𝛾𝑆𝐿 − 𝛾𝐿𝑉 (I.1.8) 

Depending on the value of the wetting parameter, different configurations are possible (Figure 

I.1-2). The liquid drop can spread completely over the solid surface and form a continuous layer 

if  𝑆𝑤 > 0 (i.e. the surface energy of the solid alone is higher than the surface energy of the 

wetted solid). This configuration is called perfect or complete wetting (e.g., water on very clean 

glass [4]). In this case, the contact angle 𝜃 is close to zero (Figure I.1-2c). However, perfect 

wetting is not the most common case. In most cases, 𝑆𝑤 < 0 and the drop forms at equilibrium 

a spherical cap resting on the solid substrate with a contact angle 𝜃. The wetting is then called 

partial and, three cases are possible depending on the value of the contact angle: 

- High partial wetting if 𝜃 < 900, the surface is said to be wetted by the liquid (or 

hydrophilic for water) (Figure I.1-2b) (e.g., lead / pure iron system [1], [8]); 

- Low partial wetting if 𝜃 > 900, the surface is not wetted by the liquid (or hydrophobic 

for water) (Figure I.1-2a) (e.g. lead / silica [1], [8]); 

- No wetting if 𝜃 = 180°, the substrate is said to be superhydrophobic for water like 

Setcreasea or lotus leafs [9]. 

 

Figure I.1-2. Different wetting cases: non-wetted surface a) wetted surface b)  perfect or 

complete wetted surface c) and non-wetted surface [10]. 

  

𝛾𝐿𝑉 

γ
𝑆𝑉

 𝛾𝑆𝐿 
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a) b) Liquid 
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 Contact angle on ideal solid substrates 

At equilibrium, the contact angle of a drop on an ideal surface (i.e. homogeneous and smooth) 

can be determined by calculating the variation in surface energy associated with an infinitesimal 

displacement 𝑑𝑥 of the contact line (Figure I.1-3). If the drop volume is supposed to be 

unchanged, then: 

 𝑑𝐹 = (𝛾𝐿𝑆 − 𝛾𝑆𝑉)𝑑𝑥 + 𝛾𝐿𝑉 𝑐𝑜𝑠 𝜃 𝑑𝑥   (I.1.9) 

where 𝑑𝐹 is the variation of Helmholtz free energy per unit length of the triple line. 

At equilibrium, 𝑑𝐹 is equal to zero. Thus, the contact angle obtained on an ideal surface, 

denoted by 𝜃𝑌, is called the Young contact angle and is given by [11]: 

 𝑑𝐹 = 0 → 𝑐𝑜𝑠 𝜃𝑌 =
𝛾𝑆𝑉 − 𝛾𝑆𝐿

𝛾𝐿𝑉
  (I.1.10) 

 

Figure I.1-3. The TCL displacement on an ideal surface modifies the surfaces of each interface 

(solid / liquid, solid / vapour and liquid / vapour) 

We have therefore demonstrated that a droplet placed on an ideal surface forms a unique contact 

angle at equilibrium. This thermodynamic contact angle is the Young contact angle. However, 

most of the time, real surfaces cannot be considered as ideal, i.e. homogeneous and smooth. 

The following section will present the case of real surfaces.  

Solid 

Liquid 

Vapour 

𝜃 

𝑑𝑥 
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 Contact angle on real solid substrates [4], [8] 

I.1.6.1.  Contact angle hysteresis [4] 

The determination of the thermodynamic contact angle requires very clean experimental 

conditions, i.e. homogeneous and smooth surface. In many practical situations, the triple line is 

pinned and immobile, not only for 𝜃 =  𝜃𝑌, but whenever 𝜃 lies within a finite interval 

around 𝜃𝑌: 

 𝜃𝑟 < 𝜃𝑌 < 𝜃𝑎 (I.1.11) 

The advancing contact angle 𝜃𝑎 is measured when the solid / liquid contact surface increases, 

while the receding contact angle 𝜃𝑟 is measured when the solid / liquid contact surface shrinks 

(section I.1.6.2). 

The contact angle hysteresis is defined as the difference between the advancing and receding 

contact angles. However, two definitions of the contact angle hysteresis (∆𝜃 or 𝐻) are often 

used in the literature [4], [5], [8], [12]: 

 ∆𝜃 =  𝜃𝑎 −  𝜃𝑟  (I.1.12) 

 
𝐻 =

 𝜃𝑎 −  𝜃𝑟 
 𝜃𝑎

  
(I.1.13) 

The value of contact angle hysteresis ∆𝜃 is commonly between 5 and 50° on real surfaces [13]. 

I.1.6.2.  Measurements of advancing and receding contact angles  

Contact angle hysteresis can be measured by means of a drop placed on a solid substrate (Figure 

I.1-4): 

- The advancing contact angle  𝜃𝑎 is obtained when the drop volume is increased. The 

contact line remains pinned and the contact angle increases. The largest static contact 

angle, observed just before the TCL suddenly jumps, is the advancing contact angle. 

- The receding contact angle  𝜃𝑟 is measured when the drop volume is decreased. The 

contact line remains pinned and the contact angle decreases. The smallest contact angle, 

below which the contact line recedes, is the receding contact angle. 
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Figure I.1-4. Contact angle hysteresis measurement a) advancing, b) receding contact angles 

[4]. 

Another way to measure the contact angle hysteresis is to place a drop on the initially horizontal 

substrate. The substrate is then tilted at a rate of approximately 0.1 to 0.7°s-1 until the drop 

begins to slide [12]. By taking numerous images of the drop on the surface, the advancing and 

receding contact angles can be determined, as shown in Figure I.1-5, as the droplet begins to 

slide. 

 

Figure I.1-5. Advancing and receding contact angles of a liquid drop on a tilted substrate [12]. 

Contact angle hysteresis can also be determined by the ‘‘sandwich drop’’ method. A liquid 

bridge, located between two parallel plates, is compressed and stretched successively very 

slowly. The two plates are identical and made of the solid substrate on which contact angles are 

studied [14], [15]. The advancing contact angle 𝜃𝑎 is measured during compression and the 

receding contact angle 𝜃𝑟 during stretching (Figure I.1-6). In this method, the equilibrium 

contact angle can also be obtained for the smooth homogeneous substrate during the 

spontaneous spreading of the drop on the surface. 

 

a) Advancing contact angle b) Receding contact 

angle 

Receding angle 

Advancing angle 

Tilting angle 

𝜃𝑟 

𝜃𝑎 
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Figure I.1-6. Principle of the sandwich drop method, the a) equilibrium, b) advancing, and c) 

receding contact angles are measured [14], [15]. 

The macroscopic contact angles (including the Young contact angle) are measured from the 

shadow images of the sessile drop or liquid bridge, in the plane perpendicular to the substrate 

and to the triple line.  

The macroscopic contact angles also depend on how the drop spreads over the surface. The 

measured contact angle will depend on the metastable state in which the triple line is trapped. 

Thus, the correct interpretation of the contact angle measurement requires a careful 

characterization of the drop and the solid substrate, but also of how the triple line reached its 

position on the substrate [16]. 

I.1.6.3.  Source of the contact angle hysteresis 

A real solid surface is generally macroscopically rough (physical defects) and spotted with 

chemical heterogeneities (chemical defects). The triple line can be pinned to these defects, 

leading to multiple values for the observed contact angle. 

The two examples described in Figure I.1-7 and Figure I.1-8 could explain the hysteresis 

mechanism. In the first example of a physical defect (Figure I.1-7), the triple line moves on a 

homogeneous solid and encounters a surface defect on which the opening angle is β. At point 

A, the apparent contact angle can take any value between 𝜃𝑌 and 𝜃𝑌 + (𝜋 − 𝛽) with 𝜃𝑌 the 

intrinsic contact angle on the surface (or Young angle). 

a) c) b) 
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Figure I.1-7. Pinning of contact line on an angular defect [4], [8]. 

In the second example of a chemical defect (Figure I.1-8), the liquid recedes on a solid (from 

left to right) that contains a defect better wetted than the rest of the surface. The triple line thus 

moves to the right and meets the defect (Figure I.1-8a) which holds it, leading to the triple line 

corrugation (Figure I.1-8b). If the line still recedes, it will eventually detach from the defect 

(Figure I.1-8c). 

Quantitatively, to detach the triple line from the defect, it is necessary to increase the force 𝐹𝑃 

(per unit length) applied to the triple line, i.e. to reduce the apparent angle 𝜃∗. Thus, the triple 

line remains pinned by the defect for a certain range of angles below 𝜃𝑌. 

 𝐹𝑃 = 𝛾𝐿𝑉(𝑐𝑜𝑠𝜃
∗ − 𝑐𝑜𝑠𝜃𝑌)   (I.1.14) 

 

Figure I.1-8. Pinning of a contact line on a chemical defect [4]. 

These two examples show that on real surfaces, the observed static contact angle is not unique 

and can take any value within a certain range called contact angle hysteresis. 
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I.1.6.4.  Effect of defect size 

The effect of defect size on contact angles and contact angle hysteresis is not well known. 

Notwithstanding, it is important to note that the classical laws of contact angle are valid if the 

characteristic length of roughness or heterogeneity of the surface is much smaller than the size 

of the drop. In experiments, it is generally preferred to use drops smaller than the capillarity 

length (𝜅−1 ≈ 2.7 𝑚𝑚 for water at 25°C, i.e. with a drop volume less than 80 µl). The 

characteristic length of surface defects is in the order of a few tens of µm. The effect of defect 

sizes on tailored surfaces will be discussed deeply in chapter III. 

For rough surfaces, the width of the hysteresis domain depends on the mean roughness value 

𝑟𝑎  (arithmetic average of the absolute values of the vertical deviations of the roughness profile 

from the mean plane) and the average wavelength 𝜆𝑎 of asperities ([9], [17]–[19]). According 

to experiments conducted by Hitchcock et al. [19], the effect of roughness on the contact angle 

is negligible when 

 𝑟𝑎
𝜆𝑎

<  10−3   (I.1.15) 

When the average surface roughness is low, contact angle hysteresis of only a few degrees can 

be expected and the Young contact angle can then be measured. For example, this was the case 

in the Hg / Al2O3 system when 𝑟𝑎 < 5 𝑛𝑚 [20]. 

When the average surface roughness is high (𝑟𝑎 > 1000 𝑛𝑚 [20]), the hysteresis domain is also 

reduced to a few degrees. In this case, a drop of non-wetting liquid cannot infiltrate into the 

surface cavities, resulting in the formation of a composite interface with air trapped under the 

liquid (see more details in section I.2.2). 

With chemical heterogeneities, the triple line can be pinned to very small defects. µm-sized 

heterogeneities were shown to pin the triple contact line at the macroscopic scale [21]. 

I.1.6.5. Shape of the triple line 

Case of regular patterned homogeneous surfaces 

Chatain et al. [14] studied the wetting of liquid lead on regular patterned silica surfaces with 

cylindrical pillars (Figure I.1-9). Due to heterogeneity, the triple contact line is distorted. The 

TCL preferably extends to areas where the contact angle is the lowest, here the top of the pillars, 
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as has been obtained in other experiments [22]. This phenomenon causes a TCL deformation 

which is different when the drop advances or recedes on the substrate. When air is trapped 

under the drop, the TCL appears to be strongly pinned when receding while the deformation is 

low when the TCL advances [14], [15], [22], [23]. 

 

Figure I.1-9. Triple line position of a liquid lead droplet on pillar-textured surfaces [14]. 

Case of regular patterned heterogeneous surfaces 

The macroscopic contact angle of a drop deposited on a heterogeneous surface depends strongly 

on the location of the triple contact line. Here again, the triple line is affected differently when 

it advances or recedes: the receding TCL is pinned by the more wetting defects while the 

advancing TCL is pinned by the less wetting defects [14], [24]–[31]. As on homogeneous 

patterned surfaces, the triple contact line can be pinned on micron-sized defects, for example 

as shown in Figure I.1-10 for the wetting of silicon / silica substrates by liquid lead. Silicon is 

wetted by liquid lead whereas silica is not. The triple contact line remains pinned on the silicon 

squares leading to the TCL deformation [16]. 

 

Figure I.1-10.  Triple contact line (TCL) of a tin droplet pinned on silicon squares organized 

on a silica surface. The inset shows a lower magnification micrograph where the silicon 

squares are white, the silica surface is dark, and the edge of the drop with its wandering triple 

line is light grey [16]. 
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 Models proposed for the wetting of non-ideal surfaces 

  Equilibrium contact angle 

I.2.1.1. Wenzel and Cassie equations 

As mentioned above, the Young's equation is only valid for a smooth and chemically 

homogeneous surface. Wenzel [32] in 1936 and Cassie [33] in 1944 were among the first to be 

interested in the equilibrium contact angle obtained on rough and heterogeneous surfaces 

(Figure I.2-1), respectively.  

Figure I.2-1. A droplet on a) a rough surface and b) a composite surface. 

Wenzel’s law 

On a randomly rough substrate, the local contact angle corresponds to the Young contact angle 

obtained on the smooth solid substrate. While the apparent contact angle at the macroscopic 

scale 𝜃𝑊 is given by Wenzel’s law. 

Let us consider an infinitesimal displacement 𝑑𝑥 of the triple contact line on the homogeneous 

rough surface of Figure I.2-1a. The variation of the Helmholtz free energy 𝑑𝐹 per unit length 

associated with this infinitesimal displacement is given by: 

 𝑑𝐹 = (𝛾𝑆𝐿 − 𝛾𝑆𝑉)𝑟𝑊𝑑𝑥 + 𝛾𝐿𝑉 𝑐𝑜𝑠 𝜃𝑊 𝑑𝑥 (I.2.1) 

with 𝑟𝑊 the surface roughness, also called Wenzel’s roughness. It is defined by the ratio 

between the actual surface area and its apparent value obtained in the horizontal plane (𝑟𝑊 ≥

1). 

At equilibrium (𝑑𝐹 = 0) and taking into account Young’s equation (Eq.(I.1.10)), the 

macroscopic contact angle 𝜃𝑤 is given by Wenzel’s law: 

 𝑐𝑜𝑠𝜃𝑊 = 𝑟𝑊 × 𝑐𝑜𝑠𝜃𝑌  (I.2.2) 
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This energy minimization is valid for drops much larger than the characteristic length scale of 

the solid texture [7]. 

As Wenzel’s law shows, a liquid will tend to spread more on a rough hydrophilic substrate. 

Conversely, a rough hydrophobic material appears more hydrophobic. 

Cassie’s law 

Let us consider the case of a smooth and randomly heterogeneous surface, as shown in Figure 

I.2-1b, consisting of two different solids 1 and 2, with Young contact angles 𝜃𝑌1 and 𝜃𝑌2 and 

surface area fractions 𝑓1 and 𝑓2 = 1 − 𝑓1. An infinitesimal displacement 𝑑𝑥 of the triple contact 

line on the surface causes a change in the Helmholtz free energy 𝑑𝐹 per unit length of the triple 

contact line: 

 𝑑𝐹 = (𝛾𝑆𝐿1 − 𝛾𝑆𝑉1) 𝑓1𝑑𝑥 + (𝛾𝑆𝐿2 − 𝛾𝑆𝑉2) 𝑓2𝑑𝑥 + 𝛾𝐿𝑉 𝑐𝑜𝑠 𝜃𝐶 𝑑𝑥 (I.2.3) 

where 𝛾𝑆𝐿𝑖 and 𝛾𝑆𝑉𝑖 are the surface energies for the solid/liquid and solid/vapour interfaces of 

solid i (i = 1 or 2). 

At equilibrium, the apparent contact angle is given by Cassie’s relation: 

 𝑐𝑜𝑠𝜃𝐶 = 𝑓1𝑐𝑜𝑠𝜃𝑌1 + 𝑓2𝑐𝑜𝑠𝜃𝑌2  (I.2.4) 

For a heterogeneous surface composed of several different solids, the equilibrium contact angle 

is given by the generalized Cassie equation [14][33] [34]: 

 𝑐𝑜𝑠𝜃𝐶 = ∑𝑓𝑖𝑐𝑜𝑠𝜃𝑌𝑖

𝑖

  (I.2.5) 

with  ∑ 𝑓𝑖𝑖 = 1, 𝑓𝑖   the surface area fraction and 𝜃𝑌𝑖 the Young contact angle of the ith solid. 

I.2.1.2. Other laws using linear or surface fractions at the triple line 

Different modified Cassie equations were proposed in order to take into account the interactions 

of the liquid and the solid at the triple contact line only [21] [35][36].  

For a two-phase heterogeneous surface, the apparent contact angle can be expressed using the 

Young contact angles on the two solids (𝜃𝑌1 and 𝜃𝑌2) and the mean values of the line fractions 

of solid 1 and 2 along the triple contact line (𝜆1 and 𝜆2) [21] [35][36]. 

 𝑐𝑜𝑠𝜃∗ = 𝜆1𝑐𝑜𝑠𝜃𝑌1 + 𝜆2𝑐𝑜𝑠𝜃𝑌2  (I.2.6) 

with 𝜆1 + 𝜆2 = 1. 
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The same equations were also proposed with the local surface area fractions of solid 1 and 2 

near the triple contact line [37][38][39]. 

For heterogeneous surfaces composed of more than two solids, a generalized modified Cassie 

equation can also be found involving the linear fractions 𝜆𝑖 of the different solids i at the triple 

contact line: 

 𝑐𝑜𝑠𝜃∗ = ∑𝜆𝑖𝑐𝑜𝑠𝜃𝑌𝑖

𝑖

  (I.2.7) 

with ∑ 𝜆𝑖 = 1𝑖 . 

I.2.1.3. Discussion on the validity of Wenzel and Cassie’s law 

Of course, the contact angle at equilibrium is determined by the interactions of liquid and solid 

at the triple contact line. If the solid surface at the triple contact line is different from the solid 

surface under the liquid drop, the apparent contact angle cannot be calculated by Wenzel or 

Cassie’s laws, which take into account the surface area under the liquid drop (see for example 

the experiments from [40], [41]). Pease [36] was one of the first in 1945 to suggest that the 

contact angles on a surface are given only by interactions at the triple contact line. After this 

work, many other authors proposed that the contact angles and the shape of the drop are 

determined solely by the TCL and are not altered by surface irregularities under the drop [18], 

[19], [35], [38]–[45]. 

At the same time, other surface scientists have suggested that the classical Cassie and Wenzel 

laws are valid if the drop is large enough compared with the wavelength of roughness or 

chemical heterogeneity [37], [39], [47]–[52]. Roughness and heterogeneity parameters should 

be uniformly constant and should not depend on droplet location or droplet contact surface size. 

Then, the deviation of the measured contact angles from the Cassie and Wenzel predictions 

may be explained by uncertainties in the measurements related to various experimental 

techniques and distortions of actual contact lines. 

Currently, it is clear that the contact angle and hysteresis are governed by the events that occur 

at TCL. It is generally expected that the Young equation is locally valid and that the macroscopic 

contact angle is determined by the shape of the contact line. However, most of the time, 

experimental conditions are chosen to be in the case of the validity of Wenzel and Cassie’s laws 
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because the contact area fraction can be easily evaluated while the actual form of the TCL is 

very difficult to know. 

 Wetting transition 

Two different wetting regimes are possible when a liquid drop is deposited on a rough and 

homogeneous solid. In fact, if the solid substrate is not well wetted by the liquid (Young contact 

angle higher than 90°): the liquid drop can completely fill the texture (Wenzel regime) or sit on 

a composite surface composed of solid and air (Cassie regime) (Figure I.2-2). 

 

Figure I.2-2. Liquid deposited on a model surface with spikes: for contact angles larger than 

90°, the liquid drop can completely fill the texture (left) or air can be trapped below the liquid, 

inducing a composite interface between the solid and the drop (right). 

Even if there is a hot debate [53] on the role of the triple line or the contact surface of the drop 

on the apparent angle (section I.2.1.3), it is widely admitted that the wetting regime is 

characterized by the physical and chemical properties of whole surface under the droplet [4], 

[5], [54]. 

We are interested here in the transition from the Wenzel regime to the Cassie regime in the case 

of low partial wetting (Young contact angle higher than 90°). 

Wenzel regime 

In the case of the Wenzel regime, the apparent contact angle at equilibrium is given by Wenzel’s 

law (Eq. (I.2.2)). 

Cassie regime 

When the Young contact angle is larger than 90°, the liquid drop deposited on the solid with a 

very high surface roughness cannot follow all the irregularities of the solid (𝛾𝑆𝑉 < 𝛾𝑆𝐿). Air can 

remain trapped inside the texture and the liquid drop rests on a composite surface composed of 

𝑑𝑥 𝑑𝑥 
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solid and air [33]. In this case, the apparent contact angle 𝜃∗ at equilibrium is given by Cassie’s 

equation with 𝜃𝑌𝑎𝑖𝑟 = 180° (the shape of a small liquid drop in air is spherical, corresponding 

to a contact angle of 180°). 

 𝑐𝑜𝑠𝜃∗ = 𝑓𝑆  𝑐𝑜𝑠𝜃𝑌𝑆 − 1 + 𝑓𝑆    (I.2.8) 

where 𝑓𝑆 is the surface area fraction of the solid in direct contact with the liquid and 𝜃𝑌𝑆 is the 

Young contact angle of the liquid on the solid. 

The air/liquid interfaces under the liquid drop are nearly flat as their curvature is the same as 

the drop of larger size than the size of the asperities [4],[7]. 

Cassie to Wenzel transition: classical law [4], [8], [34]. 

To find the condition for air entrapment under the liquid drop, the change in Helmholtz free 

energy associated with an infinitesimal displacement 𝑑𝑥 of the triple contact line on the surface 

is estimated in the Wenzel regime (Figure I.2-2 left) and in the Cassie regime (Figure I.2-2 

right). The Cassie state is selected when: 

 (𝛾𝑆𝐿 − 𝛾𝑆𝑉)𝑓𝑆𝑑𝑥 + 𝛾𝐿𝑉(1 − 𝑓𝑆)𝑑𝑥 < (𝛾𝑆𝐿 − 𝛾𝑆𝑉)𝑟𝑊𝑑𝑥  (I.2.9) 

i.e., knowing that 𝛾𝑆𝐿 − 𝛾𝑆𝑉 = −𝛾𝐿𝑉𝑐𝑜𝑠𝜃𝑌 (Eq. (I.1.10)), 

 
𝜃𝑌 > 𝜃𝑐𝑟𝑖𝑡 > 90° 𝑤𝑖𝑡ℎ 𝑐𝑜𝑠𝜃𝑐𝑟𝑖𝑡 =

𝑓𝑆 − 1

𝑟𝑊 − 𝑓𝑆
 

(I.2.10) 

In Figure I.2-3, 𝑐𝑜𝑠𝜃∗ is plotted as a function of 𝑐𝑜𝑠𝜃𝑌  in the case of Wenzel state (𝜃𝑌 < 𝜃𝑐𝑟𝑖𝑡) 

and in the case of Cassie state (𝜃𝑌 > 𝜃𝑐𝑟𝑖𝑡, Eq. (I.2.10)). 
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Figure I.2-3. Possible configurations of a droplet on a surface as a function of Young contact 

angle (higher than 90°), a) the drop rests on a composite surface with air trapped under the 

droplet, b) the texture is filled with liquid under the droplet [9]. 

In our work, the studied solid samples are made of iron covered with square-based and regularly 

spaced silica pillars. For this reason, the following discussion will be restricted to the tailored 

surface configuration. Let us consider the case of a crenelated substrate in contact with a liquid 

drop, exhibiting a low partial wetting (Young contact angle higher than 90°). Both Wenzel and 

Cassie states are possible (Figure I.2-2). 

If one considers a homogeneous textured surface composed of square-based pillars in a square 

distribution (Figure I.2-4), then: 

𝑓𝑆 =
1

(1 +
𝑠
𝑑
)
2  𝑎𝑛𝑑 𝑟𝑊 = 1 +

4 ∗
ℎ
𝑑

(1 +
𝑠
𝑑
)
2 

(I.2.11) 

The geometrical parameters are 𝑑 the side length of the square pillars, ℎ their height and 𝑠 the 

distance between them. In the plane (
𝑠

𝑑
,
ℎ

𝑑
), the transition from the Cassie regime to the Wenzel 

regime (C-W) is calculated from Eq. (I.2.9) and occurs when: 

 
(
𝑠

𝑑
)
𝐶−𝑊

> [1 − 4 (
ℎ

𝑑
)

𝑐𝑜𝑠 𝜃𝑌

1 + 𝑐𝑜𝑠 𝜃𝑌
]
1/2

− 1 
(I.2.12) 

 

Wenzel regime 

Cassie regime 

−1 + 𝑓𝑆 

cos(𝜃𝑐𝑟𝑖𝑡) 0 
𝑐𝑜𝑠𝜃𝑌 

𝑐𝑜𝑠𝜃∗ 

−1 

−1 

𝑏) 

𝑎) 
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Figure I.2-4: Definitions of parameters for a textured square pillars in a square arrangement 

[35]. 

Although the Cassie state is often observed even if the condition given by Eq. (I.2.12) is not 

fulfilled (see section I.3.4), in experimental studies using water drops gently deposited on 

textured surfaces. This means that the Cassie state might be metastable, i.e. it might exist instead 

of the stable Wenzel state. The metastable Cassie state is represented in Figure I.2-3 by the 

dotted black line. In the case of a crenelated solid, the existence of air/liquid interfaces below 

the drop might be due to the pinning of the triple line on the sharp edges of the surface [7]. 

Many models have been proposed to more accurately predict this wetting transition (see for 

example [55], [56], [57], [60]). Since only one regime (the Wenzel regime) was observed in our 

experiments, these models are detailed only in appendix C of this report. 

 Contact angle hysteresis 

On real surfaces, the equilibrium contact angle is not easy to measure because the static contact 

angle can take all the values in the hysteresis range. It is therefore more relevant to determine 

the contact angle hysteresis, which is more characteristic of droplet wetting on non-ideal 

surfaces. 

Many models have been developed to predict the contact angle hysteresis of a liquid drop 

advancing or receding on rough or heterogeneous substrate. 

A first family of models is based on free energy thermodynamic analysis (see for example [17], 

[59]-[60]). The total Helmholtz free energy of the system can be estimated by the sum of three 

terms, corresponding to the energy of each interface multiplied by its area. The evolution of 

Helmholtz free energy as a function of the macroscopic contact angle 𝜃 of the drop is a 

succession of local minima and local maxima (sawtooth curve). The absolute minimum of the 

curve corresponds to the stable Wenzel or Cassie contact angle. The local minima (resp. 

  

𝑠 𝑠 

ℎ 

𝑑 

𝑑 
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maxima) correspond to the metastable (resp. unstable) positions of the triple line on the 

substrate. The difference between two successive minimum and maximum is the energy barrier 

to overcome when the drop advances or recedes. With such an approach, the prediction of the 

contact angle hysteresis needs the value of these energy barriers, which are not very well-known 

at present [59], [60], [61]. 

A second family of models attempts to link the contact angle hysteresis to the distortion of the 

contact line on the heterogeneities of the substrate. For pinning defects far apart from each 

other, the contact angle hysteresis is generally evaluated using the approach proposed by Joanny 

and de Gennes [62]. For the advancing contact angle, this approach leads to the following 

equation [4], [62], [63]: 

 𝛾(𝑐𝑜𝑠𝜃𝐸 − 𝑐𝑜𝑠𝜃𝑎) = 𝑛𝑑  𝐸𝑑𝑖𝑠𝑠  (I.2.13) 

where 𝜃𝐸  is the equilibrium contact angle on the hererogeneous or rough substrate, 𝑛𝑑 is the 

number of defects per unit area and 𝐸𝑑𝑖𝑠𝑠 is the dissipated energy for a single pinning defect as 

the triple line advances. 𝐸𝑑𝑖𝑠𝑠 is related to the shape of the triple line among other physical and 

geometrical parameters. 

A third and final family of models combines the two approaches, namely thermodynamic 

analysis and the contribution of the triple line. Among the proposed models [64], [65], we will 

detail the one we have chosen to compare with our results because the demonstration presented 

in the publication is the most complete [65]. The equations are established in the case of a 

substrate (subscript 2) covered by discrete defects (subscript 1). Defects 1 are better wetted by 

the liquid than substrate 2, i.e. 𝜃𝑌1 < 𝜃𝑌2. A droplet whose volume decreases and which 

consequently recedes is considered. In this case, the volume loss is compensated either by a 

decrease in the contact angle when the contact line remains pinned (pinning mode, subscript P) 

or by the receding of the triple line with a constant receding contact angle (receding angle mode, 

subscript R). 

In the first step of the demonstration, the behaviour of a model droplet without contact line 

distortion is studied. If the contact line is pinned, the variation in the Gibbs free energy of the 

system due to volume loss depends only on the variation of the liquid/vapour surface and is 

given by: 
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𝑑𝐺𝑃 = 2𝜋𝑅2𝛾𝐿𝑉

1 − 2 𝑐𝑜𝑠 𝜃 + 𝑐𝑜𝑠2 𝜃

𝑠𝑖𝑛 𝜃
𝑑𝜃 

(I.2.14) 

where 𝜃 is the instantaneous contact angle that the droplet makes with the surface and R is the 

radius of curvature of the droplet, assumed to be in the shape of a spherical cap. 

If the contact line recedes, the variation in the Gibbs free energy of the system due to volume 

loss involves a solid-liquid area change and is given by: 

 𝑑𝐺𝑅 = 2𝜋𝑅𝛾𝐿𝑉(− 𝑠𝑖𝑛2 𝜃. 𝑐𝑜𝑠 𝜃𝐶 + 2(1 − 𝑐𝑜𝑠 𝜃))𝑑𝑅 (I.2.15) 

where 𝜃𝐶  is the Cassie contact angle given by Eq. (I.2.4). 

Finally, the pinning mode and the constant receding angle mode can be compared using the 

ratio between the Gibbs free energy variations described above: 

  𝑑𝐺𝑃

 𝑑𝐺𝑅
=

2 − 3 𝑐𝑜𝑠 𝜃 + 𝑐𝑜𝑠3 𝜃

− 𝑠𝑖𝑛2 𝜃. 𝑐𝑜𝑠 𝜃𝐶 + 2(1 − 𝑐𝑜𝑠 𝜃)
 

(I.2.16) 

For a receding droplet, when 𝜃 > 𝜃𝐶 ,  𝑑𝐺𝑃 <  𝑑𝐺𝑅 < 0 and the pinning mode is 

thermodynamically favoured. The instantaneous contact angle continues to decrease until it 

reaches 𝜃𝐶  at which  𝑑𝐺𝑃 =  𝑑𝐺𝑅. The constant receding angle mode is then thermodynamically 

favoured, resulting in the contact line depinning. In this analysis, the receding contact angle is 

given by the Cassie contact angle because the distortion of the triple line is not taken into 

account. 

In the second step of the demonstration, the contact line is considered to be tortuous because it 

is distorted along the more hydrophilic defects. The energy ratio defined in Eq. (I.2.16) 

becomes: 

  𝑑𝐺𝑃

 𝑑𝐺𝑅
=

2 − 3 𝑐𝑜𝑠 𝜃 + 𝑐𝑜𝑠3 𝜃

− 𝑠𝑖𝑛2 𝜃(𝜆1 𝑐𝑜𝑠 𝜃𝑌1 +(1 − 𝜆1) 𝑐𝑜𝑠 𝜃𝑌2) + 2(1 − 𝑐𝑜𝑠 𝜃)
 

(I.2.17) 

where 𝜆1 is the contact line fraction on the defects. 

The droplet will be pinned during its receding until the maximum possible deformation of the 

triple line is reached. At this point, the contact line fraction on the defects is noted 𝜆1𝑚𝑎𝑥 and 

 𝑑𝐺𝑃 =  𝑑𝐺𝑅 with 𝜃 = 𝜃𝑟 leading to: 

 𝑐𝑜𝑠 𝜃𝑟 = 𝜆1𝑚𝑎𝑥 𝑐𝑜𝑠 𝜃𝑌1 +(1 − 𝜆1𝑚𝑎𝑥) 𝑐𝑜𝑠 𝜃𝑌2 (I.2.18) 

The same reasoning can be done for an advancing contact line. 
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 𝑐𝑜𝑠 𝜃𝑎 = 𝜆2𝑚𝑎𝑥 𝑐𝑜𝑠 𝜃𝑌2 +(1 − 𝜆2𝑚𝑎𝑥) 𝑐𝑜𝑠 𝜃𝑌1 (I.2.19) 

Until now, substrate 2 and defects 1 were assumed to be perfectly smooth. In the third step of 

the demonstration, they are expected to display an intrinsic contact angle hysteresis. In this case, 

the last two relationships can be rewritten as: 

 𝑐𝑜𝑠 𝜃𝑟 = 𝜆1𝑚𝑎𝑥 𝑐𝑜𝑠 𝜃𝑟1 +(1 − 𝜆1𝑚𝑎𝑥) 𝑐𝑜𝑠 𝜃𝑟2 (I.2.20) 

 𝑐𝑜𝑠 𝜃𝑎 = 𝜆2𝑚𝑎𝑥 𝑐𝑜𝑠 𝜃𝑎2 +(1 − 𝜆2𝑚𝑎𝑥) 𝑐𝑜𝑠 𝜃𝑎1 (I.2.21) 

where 𝜃𝑟1 (resp. 𝜃𝑟2) and 𝜃𝑎1(resp. 𝜃𝑎2) are the receding and advancing contact angles on the 

surface of defect 1 (resp. substrate 2). 

This model [65] will be compared to our experimental results in section III.7.2. 

The aim of this work is to study the wetting of heterogeneous iron/silica substrates with liquid 

lead. The silica, in the form of square prisms, will be distributed regularly in a square 

arrangement on iron. Iron is wetted by liquid lead while silica is not. For this reason, the 

literature review presented here is limited to the wetting of solid substrates with regular patterns 

by liquids. At first, we will focus in section I.3 on textured homogeneous solids with low partial 

wetting to understand the influence of defect network. Then, section I.4 will be devoted to 

heterogeneous textured substrates. 

 Wetting of textured homogeneous surfaces 

 Geometry of the solid substrates considered 

We will focus on the results obtained for six types of homogeneous patterned solid substrates, 

with different shapes and distributions of the pillars (Table I.3-1 and Table I.3-2). The selected 

surfaces are composed of square or cylindrical pillars in a square or hexagonal distribution. The 

hexagonal distribution can be regular or irregular (made of isosceles triangles). The patterned 

solid surfaces will be denoted as 𝑆𝑆, 𝑆𝐻𝑟𝑒𝑔, 𝑆𝐻𝑖𝑟𝑟𝑒𝑔 for square pillars in a square, regular 

hexagonal and irregular hexagonal arrangement respectively and 𝐶𝑆, 𝐶𝐻𝑟𝑒𝑔, 𝐶𝐻𝑖𝑟𝑟𝑒𝑔 for 

cylindrical pillars in a square, regular hexagonal and irregular hexagonal arrangement 

respectively. The geometrical parameters are d the side length of the square pillars or the 

diameter of the cylindrical pillars, h their height and s the distance between them.  
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Table I.3-1: Different textures with square pillars and corresponding surface parameters 

Texture 

Cassie 

fraction 

Wenzel 

roughness 

Geometrical 

factor 

Refs. 

𝑆𝑆 (a) 

 

𝑓 =
1

(1 +
𝑠
𝑑
)
2 𝑟𝑤 = 1 +

4 ×
ℎ
𝑑

(1 +
𝑠
𝑑
)
2 

𝐺𝑓 = 1 

𝑑𝑒𝑞 = 𝑑 

[66]–[73] 

𝑆𝐻𝑟𝑒𝑔 (b) 

 

𝑓 =
2

√3

1

(1 +
𝑠
𝑑
)
2 𝑟𝑤 = 1 +

8

√3

ℎ
𝑑

(1 +
𝑠
𝑑
)
2  

𝐺𝑓 =
2

√3 
 

𝑑𝑒𝑞 = 𝑑 

[74]  

𝑆𝐻𝑖𝑟𝑟𝑒𝑔 (c) 

 

𝑓 =
1

(1 +
𝑠
𝑑
)
2 𝑟𝑤 = 1 +

4 ×
ℎ
𝑑

(1 +
𝑠
𝑑
)
2 

𝐺𝑓 = 1 

𝑑𝑒𝑞 = 𝑑 

[23] 

(a) SS: square pillars, square arrangement; (b) SHreg: square pillars, regular hexagonal arrangement; (c) SHirreg: square pillars, 

irregular hexagonal arrangement. 

 

Table I.3-2: Different textures with cylindrical pillars and corresponding surface parameters. 

Texture 

Cassie 

fraction 

Wenzel roughness 

Geometrical 

factor 

Refs. 

𝐶𝑆 (a) 

 

𝑓 =
𝜋/4

(1 +
𝑠
𝑑
)
2 𝑟𝑤 = 1 +

𝜋 ×
ℎ
𝑑

(1 +
𝑠
𝑑
)
2 

𝐺𝑓 =
𝜋

4
 

𝑑𝑒𝑞 =
√𝜋

2
𝑑 

[55], [56], 

[73], [75], 

[76] 

𝐶𝐻𝑟𝑒𝑔 (b) 𝑓 =
𝜋

2√3

1

(1 +
𝑠
𝑑
)
2 𝑟𝑤 = 1 +

2𝜋

√3

ℎ
𝑑

(1 +
𝑠
𝑑
)
2  𝐺𝑓 =

𝜋

2√3
 

[15], [71], 

[77] 

𝑠 𝑑 

𝑠 

𝑠 𝑑 
𝑠
+ 𝑑 

𝑠 𝑑 

𝑠 

𝑠 𝑑 

𝑠 



Chapter I: Literature review 

 

[50] 

 

 

 

𝑑𝑒𝑞 =
√𝜋

2
𝑑 

𝐶𝐻𝑖𝑟𝑟𝑒𝑔 (c) 

 

𝑓 =
𝜋/4

(1 +
𝑠
𝑑
)
2 𝑟𝑤 = 1 +

𝜋 ×
ℎ
𝑑

(1 +
𝑠
𝑑
)
2 

𝐺𝑓 =
𝜋

4
 

𝑑𝑒𝑞 =
√𝜋

2
𝑑 

[15] 

(a) CS: cylindrical pillars, square arrangement; (b) CHreg: cylindrical pillars, regular hexagonal arrangement; (c) CHirreg: cylindrical 

pillars, irregular hexagonal arrangement. 

For these textured surfaces, the Wenzel roughness 𝑟𝑊 and the surface area fraction of the pillar 

tops 𝑓𝑆 (section I.2.1.1) can be calculated as follows: 

 

𝑟𝑊 = 1 +
4 × 𝐺𝑓 ×

ℎ
𝑑

(1 +
𝑠
𝑑
)
2 ,         𝑓𝑆 =

𝐺𝑓

(1 +
𝑠
𝑑
)
2        

(I.3.1) 

where 𝐺𝑓 is a geometrical factor characteristic of pillar shapes (Table I.3-1 and Table I.3-2). 

If one considers a dimensionless analysis, the apparent contact angle 𝜃∗ of a drop deposited on 

a solid surface depends on three groups of variables: 

- Surface wettability: interfacial energies involved in the system (𝛾𝐿𝑉, 𝛾𝑆𝑉, 𝛾𝑆𝐿) or the 

associated Young’s angle and the interfacial energy of the liquid phase (𝛾𝐿𝑉). 

- Hydrostatic parameters: drop density (𝜌), gravity acceleration (𝑔) and drop size (𝑅). 

- Surface geometry: ℎ, 𝑑, 𝑠. 

The systems considered here can therefore be described by nine physical variables, two of 

which are non-dimensional (𝜃∗, 𝜃𝑌𝑆), the other seven are expressed by three physical 

dimensions (𝑘𝑔,𝑚, 𝑠). From the Buckingham  theorem, it can be deduced that the system 

under consideration can be described by six non-dimensional numbers, namely 𝜃∗,  𝜃𝑌𝑆 ,

ℎ

𝑑
,
𝑠

𝑑
,
𝑅

𝑠
,
𝑅𝑑

𝜅−2  (appendix A). 

The liquid drops considered in the literature review are much larger than the texture dimensions. 

The influence of  
𝑅

𝑠
 can therefore be neglected. The influence of the hydrostatic pressure of the 

drop compared to the wetting properties of the system, given by a criterion on the dimensionless 

𝑠 𝑑 
𝑠 + 𝑑 

𝑠 𝑑 

𝑠 
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number 
𝑅𝑑

𝜅−2 (in the order of 10-4, for a millimetre drop) can also be neglected. Finally, only two 

dimensionless lengths 
ℎ

𝑑
, 

𝑠

𝑑
 will be used to allow comparisons between the different 

experimental studies. 

To compare the different geometries considered here, the regular arrangement with square 

pillars is chosen as the reference geometry. The other geometries are converted to this reference 

geometry using an equivalent side length (𝑑𝑒𝑞), equivalent height (ℎ𝑒𝑞) and equivalent distance 

between them (𝑠𝑒𝑞). These three geometrical parameters are calculated by keeping constant all 

surfaces in contact with the liquid, i.e., the surface area of the pillar tops, the lateral surface area 

of the pillars and the surface area of the elementary cell of the two-dimensional network. The 

equivalent side length is unchanged for square pillar and for a cylindrical pillar, it is given by: 

 𝜋𝑑2

4
= 𝑑𝑒𝑞

2 
(I.3.2) 

The equivalent distance between pillar and their height can be calculated from Eq. (I.3.1), 

 

𝐺𝑓

(1 +
𝑠
𝑑
)
2 =

1

(1 + 
𝑠𝑒𝑞
𝑑𝑒𝑞

)
2 ,             

4 × 𝐺𝑓 ×
ℎ
𝑑

(1 +
𝑠
𝑑
)
2 =

4 ×
ℎ𝑒𝑞

𝑑𝑒𝑞

(1 +
𝑠𝑒𝑞
𝑑𝑒𝑞

)
2 

(I.3.3) 

Then, we obtain, after some manipulations: 

 𝑠𝑒𝑞

𝑑𝑒𝑞
=

1

√𝐺𝑓

(1 +
𝑠

𝑑
) − 1 ;      

ℎ𝑒𝑞

𝑑𝑒𝑞
=

ℎ

𝑑
 

(I.3.4) 

 Wetting conditions 

The main objective of our research work is to study the wetting of regular silica-patterned iron 

by liquid lead. In this system, the contact angle on silica is around 120° [1], [78]. In the review 

presented here, the wetting conditions were chosen to allow comparison with these experiments. 

The selected publications therefore focused on systems exhibiting a Young contact angle on the 

smooth surface of about 𝜃𝑌~120°. 

Many authors [15], [23], [56], [66]-[77] have studied the wetting of homogeneous textured 

surfaces at low temperatures, often to study their super-hydrophobicity. In the field of liquid 

metals, we found only two references [14], [15] on the physical wetting (without any chemical 

reactions between liquid and solid components) of homogeneous patterned surfaces. The 
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systems used (liquid and solid) and the Young contact angle are given in Table I.3-3 for each 

selected experiment and the corresponding pillar dimensions are presented in Table I.3-4. 

Table I.3-3: Liquid / solid systems for each experiment from the literature presented in this 

work. 

Ref. Liquid Solid Texture Contact angle 

1 [66] Water (1µl) Fluorosilane 𝑆𝑆 𝜃𝑌 = 114° 

2 [67] Water FT silane 𝑆𝑆 𝜃𝑎 = 120°, 𝜃𝑟 = 80° 

3 [69] Water PFA polymer 𝑆𝑆 𝜃𝑎 = 120°, 𝜃𝑟 = 71° 

4 [70] Water (4-10µl) PFO silane 𝑆𝑆 𝜃𝑌 = 115° 

5 [71] Water (6µl) PFT silane 𝑆𝑆 𝜃𝑌 = 107° 

6 [72] Water (2-6µl) OT silane 𝑆𝑆 𝜃𝑌 = 111.8° 

8 [73] Water (3.5-8.5 µl) DMDC silane 𝑆𝑆, 𝐶𝑆 𝜃𝑌 = 106° 

7 [74] Water (8µl) OT silane 
𝑆𝑆, 𝑆𝐻𝑟𝑒𝑔 

𝐶𝑆, C𝐻𝑟𝑒𝑔 
𝜃𝑌 = 107 

8 [23] Water (5-15µl) Silane agents 𝑆𝐻𝑖𝑟𝑟𝑒𝑔 
𝜃𝑎 = 107 − 119° 

𝜃𝑟 = 94 − 110° 

9 [55] Water (2-10µl) PDM silane 𝐶𝑆 𝜃𝑎 = 116°, 𝜃𝑟 = 104° 

10 [75] Water (3-15µl) PF3 silane 𝐶𝑆 𝜃𝑌 = 109° 

11 [56] Water (6µl) PDM silane 𝐶𝑆 𝜃𝑌 = 110° 

12 [77] Water (25-75µl) TPF silane 𝐶𝐻𝑟𝑒𝑔 𝜃𝑎 = 113°, 𝜃𝑟 = 91° 

13 [14] Lead (54 mm3) Silica C𝐻𝑖𝑟𝑟𝑒𝑔 𝜃𝑌𝑆 = 110° 

14 [15] Tin (1 cm3) Silica C𝐻𝑟𝑒𝑔 𝜃𝑌,𝑆𝑖𝑙𝑖𝑐𝑎 = 124 − 129° 

Table I.3-4: Pillar dimensions for each selected experiment. 

Ref. Texture type 
Pillar size 

𝑑 (𝜇𝑚) 

Pillar space 

𝑠 (𝜇𝑚) 

Pillar height 

ℎ(𝜇𝑚) 

1 [66] 𝑆𝑆 50 100 10-282 

2 [67] 𝑆𝑆 3-9 3-20 0.04-18.59 

3 [69] 𝑆𝑆 8, 16, 32 4.17, 8, 16 40 

4 [70] 𝑆𝑆 12, 18 18-48 30 

5 [71] 𝑆𝑆 2.44-4.93 0.07-256 2 
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6 [72] 𝑆𝑆 9-85.8 5.74-31.61 16 

8 [73]  𝑆𝑆, 𝐶𝑆 8-100 8-50 30-34 

7 [74] 
𝑆𝑆, 𝑆𝐻𝑟𝑒𝑔 

𝐶𝑆, C𝐻𝑟𝑒𝑔 
56-60 _ _ 

8 [23] 𝑆𝐻𝑖𝑟𝑟𝑒𝑔 2-126 2-128 20-140 

9 [55] 𝐶𝑆 10 5-140 40 

10 [75] 𝐶𝑆 5, 14 2-198 30 

11 [56] 𝐶𝑆 5 5-50 5-25 

12 [77] 𝐶𝐻𝑟𝑒𝑔 20.9-42.3 2-92 30 

13 [14] C𝐻𝑖𝑟𝑟𝑒𝑔 30 7, 13 3, 30 

14 [15] C𝐻𝑟𝑒𝑔 60 40, 130 0.00335 

 

 Measured contact angles 

In this section, the evolution of the advancing (section I.3.3.1) and receding (section I.3.3.2) 

contact angles will be studied as a function of the two dimensionless lengths mentioned before 

(
𝑠𝑒𝑞

𝑑𝑒𝑞
, 
ℎ𝑒𝑞

𝑑𝑒𝑞
), for the six types of textured surfaces shown in Table I.3-1 and Table I.3-2. The review 

is intentionally focused on publications that present measurements of advancing and receding 

contact angles. When a single contact angle is measured with the sessile drop technique, this 

contact angle is not necessarily the equilibrium contact angle, since the liquid drop can be 

pinned at any contact angle in the range of the contact angle hysteresis (section I.1.6). From 

these experimental points, the wetting transition from Wenzel state to Cassie state will be 

investigated (section I.3.4). 

I.3.3.1. Advancing contact angle 

For clarity, we will present here the results in the case of square pillars in a square distribution 

(SS). The evolution of the advancing contact angle as a function of 
𝑠𝑒𝑞

𝑑𝑒𝑞
 (top) and 

ℎ𝑒𝑞

𝑑𝑒𝑞
 (bottom) is 

shown in Figure I.3-1. Overall, the experimental points are consistent with each other. And that 

for all the data taken from different references [67], [69], [70], [73]. 
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When s/d is increased, a increases to a maximum of about 160° and then gradually decreases. 

This decrease begins at a larger s/d when h/d is increased (see for example h/d = 0.5 to 1.5, 

Figure I.3-1 top). 

When h/d is increased, a significantly increases and then remains stable at about 160°. The 

advancing contact angle increases more rapidly with h/d when s/d is lower (Figure I.3-1 

bottom). 

The evolution of the advancing contact angle can therefore be divided into two zones. The 

boundary between them depends on the values of s/d and h/d. At the highest values of s/d or 

the lowest values of h/d, i.e. the highest values of the spacing between pillars or the lowest 

values of their height, the liquid drop completely fills the hydrophobic texture and is in the 

Wenzel regime. In the other hand, at the lowest values of s/d or the highest values of h/d, the 

liquid drop rests on a composite surface composed of solid and air. This wetting state is called 

the Cassie regime.  

The comparison between the experimental points and the Wenzel and Cassie’s laws are detailed 

in appendix C.1 and to the models of contact angle hysteresis in appendix C.3. 
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Figure I.3-1. Advancing contact angle as a function of the dimensionless lengths s/d (top) and 

h/d (bottom) [67], [69], [70], [73]. 

I.3.3.2. Receding contact angle and contact angle hysteresis 

Square pillars in a square distribution 

The evolution of the receding contact angle (empty points) as a function of s/d (top) and h/d 

(bottom) is represented with the corresponding advancing contact angles (full points) in Figure 

I.3-2. The dispersion of the experimental points obtained for the receding contact angle is much 

larger than that of the advancing contact angle. This could be explained by a stick-slip 

movement of the triple line pinned by the top of the pillars when it recedes. This is not the case 

when it advances because the drop slips on the air entrapped in between the pillars [23], [59], 

[65]. 

As a general trend, the receding contact angles are smaller than the advancing contact angles 

and the contact angle hysteresis is larger in the Wenzel regime than in the Cassie one. 

When ℎ/𝑑 is increased from 0 to 7, i.e. Wenzel roughness is increased, 𝜃𝑟 decreases to a contact 

angle of about 60° and then discontinuously jumps to a value higher than 120° (Figure I.3-2 

bottom). This evolution is in excellent agreement with the experiments of Johnson and Dettré 
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[79]1 (Figure I.3-3). This example is often chosen to illustrate the concept of contact angle 

hysteresis [7], [59], [62], [80]–[82]. 

 

                                                 

1 Johnson and Dettré measured the advancing and receding contact angles of water on wax substrates. The surface 

roughness of the wax samples was reduced by means of successive heat treatments. The surface roughness is only 

qualitative in this paper. 
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Figure I.3-2. Advancing (full points) and receding (empty points) contact angles as a function 

of the dimensionless lengths s/d (top) and h/d (bottom) [67], [69], [70], [73]. 
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Figure I.3-3:  Advancing and receding contact angles of water on wax substrates, depending 

on the substrate roughness [79]. 

In the Wenzel regime, the advancing contact angle increases with surface roughness, which 

means that the hydrophobicity of the solid increases as predicted by Wenzel (Eq. (I.2.2)). At 

the same time, the receding contact angle is reduced and exhibits a surprising hydrophilic 

behaviour (r < 90°) despite the hydrophobic nature of the smooth substrate. This is explained 

by Quéré [7]. As the contact line recedes, some of the liquid may remain trapped in the cavities 

of the solid surface, resulting in a significant decrease in the contact angle, as the drop is in 

contact with both the hydrophobic solid and the liquid at the triple line. In this condition, the 

greater the amount of liquid trapped in the texture, i.e. the higher the surface roughness, the 

smaller the receding contact angle. 

Metastable Cassie state can also be observed in the range of stable Wenzel regime (see for 

example the receding contact angles of 120° when ℎ/𝑑 is less than 1.0. The coexistence of the 

two regimes has already been demonstrated by Lafuma and Quéré [83] in the case of moderately 
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rough substrates and by Park et al. [56] for the wetting of micro-structured surfaces with 

hydrophobic and hydrophilic materials. 

Other geometries: the influence of the shape and distribution of textures 

Figure I.3-4 shows the influence of pattern shape (SS and CS) on the equilibrium (), advancing 

() and receding () contact angles. In this figure, the data are collected from different 

references [56], [66], [67], [71]–[73]. Despite the discrepancy of the data due to the differences 

in the used materials of each reference, the influence of pattern shape is not evident.  

Moreover, the influence of pattern shape and distribution is not well-known. Yu et al [74] 

studied the influence of the four types of homogeneous textured surface (SS, SHreg, CS and 

CHreg). The contact angle hysteresis on all the four studied textures follow the same trends in 

agreement of the classical laws, Figure I.3-5. Also, the advancing contact angles are nearly 

constant where the receding contact angle decreases when the Cassie fraction increases.  

The contact angle seems to be different from a texture to another, at a given area fraction of the 

patterns. This can be explained by the fact that the triple contact line is not affected in the same 

manner when advancing or receding from a texture type to another. McCarthy and Öner [23] 

suggested the TCL to be more pinned to the indented square pillars than to the staggered 

rhombus pillars and then the receding contact angle weaker.  

In the case of textured surfaces with square and cylindrical pillars of our analysis (Figure I.3-5) 

any significant difference can be noticed. However, it seems that the advancing and receding 

contact angles depend on texture shape and distribution, but the difference is relatively small 

compared to the experimental errors (more than ±5°). 
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Figure I.3-4: Influence of the shape and distribution of textures at given (s/d)eq. Equilibrium 

(empty circle, ), advancing (full square, ) and receding (empty square, ) contact angles 

as a function of the equivalent dimensionless lengths s/d. SS surfaces are in square marks and 

CS in circle marks [56], [66], [67], [71]–[73]. 
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Figure I.3-5: Influence of patterns shape and distribution at given area fraction of pillars. 

Advancing contact angles are in full marks and receding contact angles in empty marks [74]. 

I.3.3.3. Equilibrium contact angle 

In some references [55], [66], [71], [72], [75], a single contact angle, generally called 

equilibrium contact angle, is measured with the sessile drop technique. The evolution of these 

so-called equilibrium contact angles 𝜃𝐸() as a function of 𝑠/𝑑 (top) and ℎ/𝑑 (bottom) is 

shown in  

Figure I.3-6: Equilibrium (), advancing () and receding () contact angles as a function of 

the dimensionless lengths s/d (top) and h/d (bottom) [55], [66], [67], [69]–[73], [75]. 

with the corresponding advancing () and receding () contact angles from other references 

[67], [69], [70], [73]. As expected, the equilibrium contact angles are located between the 

advancing and receding contact angles. Most of the time, the so-called equilibrium contact 

angle 𝜃𝐸  is of the same order of magnitude as the advancing contact angle, which could be 

explained by the technique used to measure it: In the sessile drop technique, the drop is 

deposited on the solid substrate and spreads on it.  
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Figure I.3-6: Equilibrium (), advancing () and receding () contact angles as a function 

of the dimensionless lengths s/d (top) and h/d (bottom) [55], [66], [67], [69]–[73], [75]. 
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 Wetting transition 

The experimental results obtained for the advancing contact angle are divided into two zones, 

as in Figure I.3-1: Wenzel regime and Cassie regime. When h/d is increased, a significantly 

increases (Wenzel regime) and then remains stable at about 160° (Cassie regime). The boundary 

between the two regimes corresponds to a pair {h/d; s/d} which can be derived from the curves 

in Figure I.3-1 for each set of experimental points. This was done for the references presented 

in Table I.3-3 at low temperature (water): [23], [55], [56], [73], [75], [77]. Figure I.3-7 shows 

all the experimental pairs recorded, corresponding to the liquid / solid () (Wenzel state) or 

liquid / air / solid () (Cassie state) interfaces in a {h/d; s/d} plane.  

The experimental transition from the Cassie state to the Wenzel state (dashed line in Figure 

I.3-7) is then deducted from the data of wetting by water. The experimental curve significantly 

deviates from the theoretical Wenzel/Cassie transition of Eq. (I.2.12) (full line in Figure I.3-7). 

Indeed, as explained in section I.2.2 Cassie state could be observed even if the thermodynamic 

condition is not fulfilled in the case of a drop gently deposited on textured surfaces: metastable 

Cassie state.  

Further, the experimental transition suggests the existence of a minimum value of h/d (around 

0.4) for the Cassie regime. Under this minimum value, the Cassie regime should not exist, as 

explained by Extrand [58]. In fact, while suspended on textured surfaces, a drop tends to 

protrude between pillars. The protruding depth is function of surface wettability and increases 

with the distance between pillars s/d. Then, the pillar height should be greater than this 

protruding depth of the drop to completely maintain the drop on the top of pillars (see appendix 

C.2, for more details). 

We plotted in the same figure (Figure I.3-7) the data collected on the wetting at high temperature 

on homogeneous textured surfaces : SiO2/Pb [14], SiO2/Sn [15] and on heterogeneous textured 

surfaces: Si-SiO2/Pb [15], Mo-Oxides/Sn [84], Fe-Al2O3/Zn [85]. In these experiments, the 

wetting regime was identified by the authors. The obtained results are in good agreement with 

those at low temperature. 

Finally, the pairs {h/d; s/d} of the Fe-SiO2 textured surfaces used in the present work (Table 

II.1-3) show that our experimental study will be in the Wenzel state (Figure I.3-7), i.e. the drop 

lead will be only in contact with the heterogeneous surface Fe-SiO2.  
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Figure I.3-7: Wenzel (full marks) and Cassie (empty marks) state as a function of h/d and s/d, 

experimental transition (solid line) with different wetting systems: homogeneous textured 

surfaces/water (, ) [23], [55], [56], [73], [75], [77], SiO2/Sn () [15], Si-SiO2/Pb () [15], 

Mo-Oxides/Sn () [84], SiO2/Pb () [14], Fe-Al2O3/Zn () [85], Fe-Si02/Pb () [this work]. 

Our work is focused on the wetting of heterogeneous iron/silica substrates with liquid lead. The 

silica, in the form of square prisms, will be distributed regularly in a square arrangement on 

iron. Silica is not wetted by liquid lead. For this reason, section I.3 was focused on textured 

homogeneous solids with low partial wetting to understand the influence of the silica pillar 

network. The main conclusion of the section I.3 is that a drop of liquid lead put on the silica/iron 

substrates with the geometrical parameters chosen here will be in Wenzel state. In other words, 

wetting will depend mainly on the chemical heterogeneity of the substrates. Section I.4 will 

therefore be devoted to the wetting of heterogeneous textured substrates with non-wetting 

pillars. 

ℎ/𝑑 

𝑠/
𝑑
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 Wetting of chemically patterned surfaces 

 Geometry of the solid substrates and wetting conditions 

We are now interested in chemically patterned heterogeneous substrates composed of two 

phases: pattern and substrate. Subsequently noted pattern/substrate as shown in Figure I.4-1. 

The patterns are square or cylindrical (with a size 𝑑 and height ℎ) in a square or hexagonal 

distribution (with 𝑠 the distance between the patterns). 

 

Figure I.4-1: Optical micrographs of a substrate with chemically heterogeneous square 

patterns [3] and of the two directions of contact angle measurement (d1 and d2). 

There is a small number of experiments in literature made in the case of chemically patterned 

surfaces with square or cylindrical patterns. We found only three sets of experiments at low 

[65] and  high [15], [84] temperature (Table I.4-1 and Table I.4-2).  

Table I.4-1: Liquid / solid systems selected for the literature review presented in this work. The 

solid substrates are heterogeneous textured substrates with non-wetting pillars. 

Ref. Liquid Solids Pattern type Contact angle 

[65] Water (25 nl) SiO2 

Silane 

𝐶𝑆 𝜃𝑌,𝑠𝑖𝑙𝑖𝑐𝑎 < 80° 

 𝜃𝑌,𝑠𝑖𝑙𝑎𝑛𝑒 ≈ 100° 

[15] Tin (1 𝑐𝑚3) Si 

Silica 

𝐶𝐻𝑟𝑒𝑔, 𝑆𝐻𝑟𝑒𝑔  𝜃𝑌,𝑆𝑖 ≈ 40° 

𝜃𝑌,𝑆𝑖𝑙𝑖𝑐𝑒 ≈ 120° 

Substrate 

Pattern 

𝑠 

𝑎 𝑑2 
𝑑1 

500 µm 

TCL spreading in d2 TCL spreading in d1 
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[84] Tin (25 𝑚𝑚3) Molybdenum (Mo) 

oxide glass ceramic (GC) 

𝑆𝑆 5 < 𝜃𝑌,𝑀𝑜 < 18° 

 115 < 𝜃𝑌 < 125° 

CS: Cylindrical pillars, Square arrangement, CHreg: Cylindrical pillars, Regular Hexagonal arrangement, SHreg: 

Square pillars, regular hexagonal arrangement, SS: Square pillars, square arrangement. 

Table I.4-2: Geometrical parameters of the solid systems selected for the literature review 

presented in this work. 

Ref. Pattern type Pattern size 𝑑 (𝜇𝑚) Pattern space 

𝑠 (𝜇𝑚) 

Pattern height ℎ(𝜇𝑚) 

[65] 𝐶𝑆 3,4 2-13 0.8-0.003 

[15] 𝐶𝐻𝑟𝑒𝑔, 𝑆𝐻𝑟𝑒𝑔  60 40, 120 0.0028 

[84] 𝑆𝑆 60 2.5-60 0.1 

 

For the three studies considered [15], [65], [84] (Table I.4-2), the value of ℎ/𝑑 does not 

exceed 0.1. This means that the liquid drop will be in Wenzel state (Figure I.3-7). In addition, 

the influence of pillar height is negligible and only the chemical heterogeneity of the substrate 

will have an influence on wetting.  

In these experiments, two different cases should be distinguished depending on whether the 

pattern is the less wetting substrate or not. 

 Measured contact angles 

The advancing and receding contact angles presented in [15], [65], [84] are shown in Figure 

I.4-2 and Figure I.4-3 as a function of the surface fraction of the less wetting phase. In Figure 

I.4-2, patterns are the less wetting phase while in Figure I.4-3 the substrates are the less wetting 

phase. Beyond the packing limit 𝑠𝑓𝑝𝑎𝑐𝑘 [65], the pattern and substrate are inverted. The packing 

limit is the surface fraction of tangent patterns on substrate: inversion of discontinuity, the 

patterns begin continuous and substrate begins discontinuous. The packing limit is equal to 1 

for square patterns and 0.79 for cylindrical patterns. 

First let us consider the case where the patterns are the less wetting phase, Figure I.4-2. In this 

case, the wettest part of the substrate is continuous and its least wetted part consists of discrete 

pillars. The receding contact angle is almost constant and is equal to the receding contact angle 

on the wettest solid. This is because the TCL is pinned by the most wetting part of the substrate, 
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which is continuous. While the advancing contact angle depends on the surface density of the 

patterns. 

In the second case (Figure I.4-3), the least wetted part of the substrate is continuous and its 

wettest part consists of discrete pillars. In this case, the advancing contact angle is nearly 

constant, the TCL being pinned by the least wetted part of the substrate. While the receding 

contact angle depends on the surface density of the patterns or the substrate. 

Figure I.4-2: Patterns are less wetting than substrate. Advancing (full marks) and receding 

(empty marks) contact angles on a chemically pattern surfaces according to the density of the 

less wetting solid. Data collected from references Naidich et al [84], De Jonghe and Chatain 

[15] and Raj et al[65]. 
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Figure I.4-3: Substrate are less wetting than patterns. Advancing (full marks) and receding 

(empty marks) contact angles on a chemically pattern surfaces according to the density of less 

wetting solid. Data collected from references Naidich et al [84], De Jonghe and Chatain [15] 

and Raj et al[65]. 

 Influence of measurement direction 

In the case of square patches, the triple line can be observed in different directions with respect 

to the pattern. For example, Naidich et al. [84] studied the influence of the measurement 

direction on the wetting of patterned surfaces with liquid tin. The triple line was observed in 

the direction along the side (direction 1, d1, Figure I.4-1) and in the diagonal (direction 2, d2, 

Figure I.4-1) of the square patches. The contact angle hysteresis was measured using the 

sandwich drop method (Figure I.1-6). 𝑆𝑆 type patterned surfaces were composed of non-wetting 

oxide glass ceramic pillars on a wetting molybdenum substrate (Table I.4-1 and Table I.4-2). 

Values of contact angles in directions 1 and 2 do not coincide (Figure I.4-4). The advancing 

contact angles measured are a little higher when the triple line is perpendicular to direction d2 

than to direction d1 but the difference in the receding contact angle is negligible. 
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In our tests, we will measure the contact angles for different positions of the triple line with 

respect to the substrate pattern, to better understand the influence of texture on the macroscopic 

contact angle all around the drop. 

 

Figure I.4-4: Influence of measurement directions: direction 1, d1 (circle mark) and direction 

2, d2 (triangle mark) on advancing (full marks) and receding (empty marks) contact angles of 

liquid tin on a chemically oxide glass ceramic / molybdenum surfaces. 
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 Objectives of our work 

Our work is devoted to the study of the heterogeneous wetting of iron-silica textured surfaces 

by liquid lead. In the field of wetting of textured surfaces, the majority of studies in the literature 

are devoted to the liquid water wetting on homogeneous surfaces. Then, literature review 

mainly based on the wetting at low temperature was needed. 

First, we recalled some general principles that govern wetting as well as the fundamental laws 

of the wetting phenomenon. We showed that wetting is described mainly by the angle of the 

drop on the surface at the triple contact line. On non-ideal surfaces (heterogeneous and/or 

rough), the static contact angle is not unique and in this case, the phenomenon of contact angle 

hysteresis (advancing and receding contact angles) is important. 

Then, we analysed experimental data of wetting of homogeneous and hydrophobic textured 

surfaces with a contact angle close to 120° (close to that of the Silica/lead system which is 

around 130°).  This analysis showed that contact angle depends on two dimensionless lengths 

characteristic of the surface texture: the ratio of pillar height and pillar diameter (h/d) and the 

ratio of the distance between pillars and the pillar diameter (s/d). On the basis of the values of 

these parameters, all the experimental points follow the same trend and allow to define the two 

wetting regimes: namely the Cassie state (drop base in contact with the solid surface and gas) 

and the Wenzel state (drop base in contact only with the solid surface). The clear distribution 

of experimental data between the two states led us to highlight the experimental transition from 

one state to another. This experimental wetting transition is the same at high temperature.  

According to that experimental transition drawn from literature, only the Wenzel state is 

possible with our textured surfaces, given the couples (s/d, h/d) of the surfaces. 

Afterwards, we showed that the size of the pillars and their shape have little influence on the 

wetting at a given surface fraction of the pillars. 

In contrast, there are very few studies on wetting at high temperature on textured surfaces and 

even fewer on heterogeneous textured surfaces [14], [15], [65]. These studies confirmed the 

influence of the surface fraction of the defects on wetting and showed a slight influence of the 

spreading direction on the contact angle. 
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Thus, the phenomenon of wetting of heterogeneous textured surfaces at high temperature is still 

a little studied subject and further work is needed.  

In this work, we hope to bring some elements likely to advance this subject, or at least to provide 

some food for thought.
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The experimental wetting studies were carried out using an experimental setup based on the 

dispensed drop technique [1]. A systematic protocol for the preparation and characterization of 

our samples was set up in order to precisely study the involved parameters in wetting. 

In this chapter, the different materials used and the method of their preparation are presented in 

section II.1. Then, the experimental device used in the wetting experiments (section II.2) will 

be presented. Afterwards, different techniques and methods to characterize the wetting results 

will be described (section II.3 and section II.4). The chapter ends with a summary of the 

different parameters measured for each sample. 

 Materials 

  Liquid metal preparation 

As mentioned earlier, the main objective of this thesis is to study the non-reactive wetting of 

silica / iron patterned surfaces by liquid lead (Pb), which is non-reactive on both iron and silica. 

The weight of the metal used is determined by the droplet generator of the experimental device. 

This droplet generator is composed of a cylindrical alumina crucible and a capillary at its bottom 

with an internal diameter of 2.0 ± 0.1 mm (section II.2.1 for more details). Therefore, the metal 

weight was chosen to form a liquid droplet with a diameter slightly greater than 2 mm. 

The metal lead was supplied by Alfa Aesar in the form of a shot (99.9999 wt. %, the principal 

impurities being silver, calcium and copper). The metal shot is mechanically polished to remove 

the oxide layers on its surface and to obtain a round lead sphere of mass 𝑚𝑃𝑏 =100 ± 5 mg (i.e., 

with a diameter of 𝐷0=2.63 ± 0.02 mm). 

The physical properties of lead at 450°C used in our experiments are given in Table II.1-1 [86], 

[87]. 

Table II.1-1: Physicochemical properties of lead at 450°C [86], [87]. 

 Melting 

point (°𝐶) 

Density, 𝜌𝑃𝑏  

(𝑘𝑔/𝑚3) 

Viscosity, 𝜇𝑃𝑏 

(𝑚𝑃𝑎. 𝑠) 

Interfacial tension, 

𝛾𝑃𝑏 (𝑚𝐽.𝑚−2) 

Lead (Pb) 327.4 10509 2.02 443 
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 Solid substrates: tailored model surfaces 

In the previous studies performed in our laboratory [1], [2], industrial steels or binary 

iron / silicon alloys were used for wetting by liquid metals. After annealing and depending on 

the selected experimental conditions, silicon oxide particles or films were formed on the 

surfaces by selective oxidation. However, these annealed steel surfaces were too complex to 

study precisely the influence of the oxide geometrical parameters on wetting by liquid metals. 

In fact, in this case, the particle sizes and distances between particles are not identical. The 

shape of the oxide particles and the surface area covered by the oxides also vary according to 

the orientation of steel grains. 

To avoid the influence of the above-mentioned factors on the wettability of steel surfaces by 

liquid metals, we use model surfaces with controlled distribution of oxide patterns. 

In addition to these well-controlled surfaces, pure materials (iron and silica) were also used as 

references in the experiments. 

II.1.1.1) Pure materials 

Pure iron 

The pure iron used in this study was provided by Goodfellow (99.99 wt.%). Its chemical 

composition is given in Table II.1-2. 

As shown by the Fe-Pb phase diagram (Figure II.1-1), liquid lead does not form intermetallic 

compounds with iron. In addition, lead and iron are immiscible at the temperature chosen for 

the wetting experiments, which is 450°C (723 K). The solubility of iron in lead at this 

temperature is less than 1 ppm. 

Table II.1-2: Chemical composition of pure iron used in the experiments as surface reference. 

 Manganese 

(Mn) 

Silicon 

(Si) 

Chromium 

(Cr) 

Titanium 

(Ti) 

Pure iron 

(99.99 wt.%) 
1 ppm 2 ppm 4 ppm 4 ppm 

 

Thin layer of silica 

In addition to pure iron, pure silica was also used as a reference case for wetting of patterned 

surfaces. For this purpose, a thin 50 nm silica layer was deposited by Plasma Enhanced 
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Chemical Vapour Deposition (PECVD) on a pure recrystallized iron (99.99 wt.%, Goodfellow) 

in the same way as when preparing patterned surfaces (section II.1.1.2)). 

 

Figure II.1-1: Fe–Pb binary phase diagram [88]. 

II.1.1.2) Tailored surfaces 

Fe / silica patterned surfaces were designed to better understand the influence of the surface 

area fraction covered by silica and the size of oxide particles on wetting. 

The method used is composed of several steps. First, a silicon oxide layer of about 70 nm 

(amorphous SiO2 nanofilm), similar to that obtained during recrystallization annealing, was 

deposited by PECVD on a pure recrystallized iron (99.99 wt. %, Goodfellow). The composition 

of the pure iron used is given in Table II.1-2. To obtain the silica patches, a positive 

Temperature of wetting experiment 

723 
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photosensitive resin (photoresist) and then a photomask with holes corresponding to the 

targeted pattern were deposited on this silica film. Using UV light treatment, the geometric 

pattern is transferred to the photoresist by removing it on the exposed area (the mask holes). 

Subsequently, a chemical etching was performed to remove the silica layer in the same exposed 

area. Finally, the protective resin was removed from the silica patterns to obtain the desired 

Fe/silica patterned surface. 

This method makes it possible to produce heterogeneous surfaces composed of silica squares, 

well defined in nature, morphology and stoichiometry. The different tailored surfaces obtained 

are designated {𝑑;  𝑠} in the following, with 𝑑(𝜇𝑚) the size of the silica pillars and 𝑠(𝜇𝑚) the 

distance between the pillars in the square arrangement (Figure II.1-2). 

More information on the method used to fabricate these patterned surfaces can be found in 

Koltsov et al. [3]. 

 

Figure II.1-2: Optical micrographs of Fe / silica tailored surfaces with different square silica 

pillars’ size and distribution: (a) {500; 100}, (b) {500; 500}, (c) {100; 100}, (d) {100; 500}. 

Images gathered from [3]. 

𝑑 

𝑠 
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II.1.1.3) Characterization of the patterned surfaces 

Different analytical techniques were carried out by Koltsov et al. [3] to characterize the 

Fe / silica patterned surfaces. The results showed good agreement with the desired surfaces in 

terms of silica nature and stoichiometry, as well as pattern size, thickness and distribution 

(Figure II.1-2). 

Furthermore, analytical techniques showed the presence of a polycrystalline 25–30 nm thick 

layer of magnetite (Fe3O4) beneath a SiO2 layer (about 70 nm thick) as shown in Figure II.1-3. 

This magnetite layer was supposed to be produced by the slight oxidation of the iron substrate 

during silicon oxide deposition. However, this magnetite sublayer between silica and iron does 

not change the wetting properties of the pattern substrates, because, like silica, magnetite is not 

wetted by liquid lead [89]. 

The height of the silicon oxide pillars was found to be slightly higher than the total thickness 

of SiO2 and Fe3O4 layers, varying from 95 to 120 nm depending on the sample. The difference 

was explained to be related to some over pickling of the Fe surface during etching. 

 

 

Figure II.1-3: Schematic representation of elaborated tailored surfaces: iron/silicon dioxide 

[3]. 

This technique provides tailored surfaces which well reproduce the type and chemistry of 

silicon oxide layer formed during recrystallization annealing: stoichiometric and amorphous 

silicon dioxide film. The obtained film thickness is slightly higher, but close enough to the one 

observed during recrystallization annealing. 

Total thickness 
70 nm 

30 nm 
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II.1.1.4) Geometrical parameters of the investigated silica-patterned iron 

substrates 

Using the above-described technique, ten patterned surfaces with different silica surface 

coverages have been used for the wetting experiments. The samples can be classified into three 

groups: low (3%), moderate (25%) and high (~70%) silica surface coverage f: 

 
𝑓 =

1

(1 +
𝑠
𝑑
)
2 

(II.1.1) 

For each surface coverage, three to four different patterns were considered (Table II.1-3). Thus, 

the influence of the oxides’ surface coverage and size on wetting by liquid lead can be studied 

with these samples. 

Table II.1-3: Fe/silica tailored surfaces elaborated by the PECVD method and used in this 

work: silica pillar size, inter-pillar distance and surface coverage. A {d; s} patterned sample 

has a pillar size of d μm and an inter-pillar distance of s μm. 

Patterning samples 

{d, s} 

Pillar size 

d(µm) 

Inter-pillar 

distance s(µm) 

Silica covering 

yield, f (%) 

{5; 20} 5 20 4 

{20; 100} 20 100 3 

{100; 500} 100 500 3 

{5; 5} 5 5 25 

{20; 20} 20 20 25 

{100; 100} 100 100 25 

{500; 500} 500 500 25 

{20; 5} 20 5 64 

{100; 20} 100 20 69.4 

{500; 100} 500 100 69 
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In the following chapters, we will describe the experimental device used in our tests: the wetting 

experiments were performed by means of the dispensed drop technique. 

 Experimental device 

We performed dynamic wettability experiments using the dispensed drop technique, a 

widespread method in wettability studies [4], [90]. We used the experimental device (Figure 

II.2-1), set up and used by Zaïdi [1] and Diawara [2] during their PhD thesis. 

 

 

  Description of the experimental setup 

The experimental device (Figure II.2-1) mainly consists of a resistance furnace (Pyrox), a gas 

supply, a liquid metal generator and a high-speed CMOS camera (pco.1200 hs). The camera is 

connected to a computer allowing to film and record the dynamic spreading of the liquid drop. 

Chamber Pressure sensor 

Valve V2 

Flowmeter 

Lighting 

Valve 

 

Saphir* 

gas 

Vacuum pump 

Water cooling system 

Thermocouple 

acquisition 

Temperature 

regulator 

(Pyrox) 

Thermocouple 

Resistance 

Image acquisition 

Substrate support 

Pressure sensor (vacuum 

measurement) 

Crucible 

Display 

Frost point probe 

Gas 

outlet 

Pressure sensor 

Spherical valve V4 

*Saphir: N2 + 5 vol.% H2 

Figure II.2-1: Schematic representation of the wettability experimental device (dispensed drop 

method) [93]. 
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The reducing gas atmosphere needed for the wetting experiments is first prepared. A vacuum 

pump is used to evacuate the air initially present in the furnace chamber and to establish a 

primary vacuum (approximately 3.10-2 mbar). A reducing atmosphere is then introduced in the 

device, by means of a sweep gas composed of nitrogen (N2) and 5 vol.% hydrogen (H2) and 

containing less than 3 ppm of water and 2 ppm of oxygen (supplied by Air Liquide). The 

flowrate of this sweep gas was maintained at 1.25 x 10-5 m3 s-1 at standard conditions of pressure 

and temperature (0°C, 100 kPa) for 2 h, before the beginning of the experiments. With this 

preparation, the reached partial pressure of water in the gaseous atmosphere was as low as 

possible (of the order of 2 Pa, i.e. a frost point of -55°C). 

The temperature of the sample is measured by two type-K thermocouples located under the 

sample holder (Figure II.2-1). The frost point of the gas is measured at the furnace outlet using 

an alumina moisture probe (Panametrics). 

The whole wetting experiments are carried out with the constant flowrate of the sweep gas 

described before. In this reducing atmosphere, a liquid metal droplet is formed at the wetting 

temperature by means of a drop generator. It consists of a cylindrical crucible made of alumina. 

It is equipped at its bottom by an alumina capillary, measuring 10 mm in length, 2 ± 0.1 mm in 

internal diameter and 4.15 ± 0.01 mm in external diameter. The liquid metal is dispensed on the 

sample placed on the sample holder under the drop generator, using an overpressure of N2-H2 

gas. 

The furnace is equipped with two viewing ports on both sides. On one side, a constant light 

source is provided by means of a lamp (KL 2500, liquid-crystal display, LCD). On the other 

side, the camera is set to film the whole wetting experiment inside the furnace. The high-speed 

CMOS camera is programmed with a recording speed of 1000 frames per second and a 

resolution of 780 x 501 pixels for each image. 
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  Experimental procedure 

Before each experiment, the desired temperature profile is set up using a programmable 

temperature controller (Pyrox). 

Before introducing the sample in the furnace, the horizontality of the sample holder is adjusted 

and checked using a spirit level. Then, the sample is placed on this sample holder in two 

different ways with respect to the camera axis (Figure II.2-3): the movement of the triple contact 

line (TCL) can be filmed in a direction parallel to the side of the squares (direction d1) or to the 

diagonal of the squares (direction d2). 
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Figure II.2-2: Sample temperature and furnace frost point as a function of time during an 

experiment: the metal to be melted is introduced into the crucible at point 1 and the formed 

metal drop is extruded at point 2 [93]. 
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Figure II.2-3: The two positions of the sample relative to the camera axis before the experiment. 

Afterwards, the metal shot is introduced in the spherical valve V4 located outside the furnace 

and directly connected to the drop generator (Figure II.2-1). 

The sample temperature and the furnace frost point are measured during the whole experiment 

(Figure II.2-2). The experimental protocol can be divided into three different stages: preparation 

of the gas atmosphere, annealing at 850°C and dynamic wetting at 450°C. 

In the first stage, a primary vacuum with a pressure of about 3.10-2 mbar was established using 

the vacuum pump (Figure II.2-1). The sweep reducing atmosphere composed of N2 and 5 vol. 

% H2 is introduced in the furnace chamber at a flowrate of 1.25 x 10-5 m3 s-1 at standard 

conditions of pressure and temperature (0°C, 100 kPa) and maintained until the end of the 

wetting experiment. After 2 h, the frost point in the furnace is less than -50 °C. 
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The sample then undergoes a series of heat treatments according to the temperature profile 

given in Figure II.2-2. The sample is annealed at a temperature of 850°C in one hour. During 

this step, the furnace frost point increases when the temperature reaches about 200°C. This is 

attributed to the water desorption initially present on the furnace walls. The aim of this 

annealing at high temperature is to reduce the native iron oxide film. After the annealing 

process, the sample is cooled down to a temperature of about 450°C and maintained at this 

temperature for 25 min to ensure isothermal conditions in the system. At the end of this stage, 

the furnace frost point is about -60°C (Figure II.2-2). 

Then, the dynamic wetting experiment is carried out at a constant temperature of 450°C, as in 

industrial conditions. The metal shot is brought into the drop generator in the furnace by 

opening the spherical valve V4 (point 1 in Figure II.2-2). The metal shot is completely melted 

after about 5 min. An overpressure is applied above the crucible to dispense the liquid metal 

drop. The higher the overpressure, the higher the impact velocity of the liquid metal on the 

sample (point 2 in Figure II.2-2). An overpressure of 6-10 mbar was used to dispense the drop 

in our experiments. 

Due to this overpressure, the liquid metal drop is released on the sample. The whole dynamic 

wetting, from the drop fall, the spreading to the final state, are filmed and recorded using the 

high-speed camera, at 1000 images per second. Figure II.2-4 illustrates an example of a 

spreading sequence of a liquid lead on a {100; 100} patterned surface. 
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Figure II.2-4: Sequence of a liquid lead spreading on a {100, 100} patterned surface. 
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 Image treatment methods 

At the end of each experiment, the camera recorded hundreds of images (several hundred 

megabytes in size) with a resolution of 501x780 pixels for each image. These images are then 

processed to obtain the macroscopic wetting parameters, namely the spreading diameter D, the 

maximum height 𝐻𝑑, the left and right contact angles 𝜃𝐿 and 𝜃𝑅. The processing of these images 

by hand can be time consuming and very tedious. In addition, depending on the experimenter's 

capabilities and environmental conditions (light in the room, screen quality), the results of 

manual measurement may vary. Thus, to reduce errors related to the experimenter, several 

algorithms have been developed with the MATLAB® software and its image processing 

toolbox to automate the measurements of wetting parameters. 

  Image pre-processing 

Before processing each series of images, the image scale (𝑝𝑠𝑖𝑚) in pixels / mm is measured 

using as a reference the external diameter of the capillary at the bottom of the drop generator 

(size 4.15 ± 0.02 mm). 

In our experiments, the camera was positioned with a slight inclination 𝛼𝑐𝑎𝑚 (less than 3°, 

measured with a Bosch inclinometer, DNM 60 L Professional) with respect to the plane parallel 

to the sample surface, so that the drop and its reflection are filmed to facilitate the determination 

of the drop contact line on the sample (Figure II.3-1a). In the image plane, the triple line can be 

slightly tilted 𝛼𝑇𝐶𝐿 (less than 4°) due to a slight tilt of the camera or sample holder. 

Consequently, the precise position of the triple line is determined using the drop reflection 

(Figure II.3-1a). In the following image processing, the triple line is considered as a straight 

line of equation: 

 𝑌 = 𝑎𝑡𝑐𝑙𝑋 + 𝑏𝑡𝑐𝑙  (II.3.1) 

Once the drop and its triple line were identified, the image was processed to extract the drop 

contour (Figure II.3-1b). To do this, an edge method was used that follows a path of rapid 

change in image intensity. To date, the most powerful method of edge-detection that 

MATLAB® provides is the ‘‘Canny” method. In this method, two different thresholds are used 

to detect strong and weak edges. In our case, strong edges are taken into account but also weak 

edges if they are connected to strong edges. This method provides the complete drop contour 

as shown in Figure II.3-1b. 
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Then, the geometric parameters of the drop were calculated: spreading diameter and maximum 

height (section II.3.2), impact velocity (section II.3.3), mean spreading velocity (section II.3.4) 

and left and right contact angles (section II.3.5). 

 

Figure II.3-1: Image pre-processing for length measurements. a) Initial image with the 

capillary, b) Drop contour (obtained using the ‘‘Canny” method of MATLAB® software) with 

the triple line position, the two extreme points on the contour and the highest point. In b), there 

are 52 pixels per 1 mm. 
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  Spreading diameter and height of the droplet 

Method of measurement 

If the solid substrate is homogeneous or heterogeneous with small defects compared to the 

capillary length, the contact surface between the droplet and the solid substrate is a circle, in 

the case of a low droplet spreading velocity. The spreading diameter is the diameter of this 

contact surface. The location of the triple line is used to determine the two extreme points to 

the left and right of the triple line, with the pixel coordinates (𝑋𝑙𝑇𝐶𝐿, 𝑌𝑙𝑇𝐶𝐿) and (𝑋𝑟𝑇𝐶𝐿, 𝑌𝑟𝑇𝐶𝐿) 

respectively. The spreading diameter is therefore given by a simple distance calculation: 

 
𝐷 = √(𝑋𝑟𝑇𝐶𝐿 − 𝑋𝑙𝑇𝐶𝐿)2 + (𝑌𝑟𝑇𝐶𝐿 − 𝑌𝑙𝑇𝐶𝐿)2 ×

1

𝑝𝑠𝑖𝑚
 

(II.3.2) 

In addition, the drop shape is used to determine the highest point of the drop (𝑋ℎ𝑑𝑟𝑜𝑝, 𝑌ℎ𝑑𝑟𝑜𝑝). 

The slight inclination of the triple line with respect to the horizontal plane is taken into account 

in the calculation of the droplet maximal height (Figure II.3-1b): 

 
𝐻𝑑 =

|𝑎𝑡𝑐𝑙 × 𝑋ℎ𝑑𝑟𝑜𝑝 − 𝑌ℎ𝑑𝑟𝑜𝑝 + 𝑏𝑡𝑐𝑙|

√1 + 𝑎𝑡𝑐𝑙
2

×
1

𝑝𝑠𝑖𝑚
 

(II.3.3) 

The droplet diameter and maximum height are made dimensionless using a reference 

diameter 𝐷0 (mm). This reference diameter corresponds to the diameter of the liquid metal 

droplet supposed to be spherical (density 𝜌𝑃𝑏) with the same weight (𝑚𝑃𝑏) as the solid metal 

shot used in the wetting experiments. 

 
𝐷0 = (

6 ×𝑚𝑃𝑏

𝜋 × 𝜌𝑃𝑏
)
1/3

 
(II.3.4) 

Error measurements linked to the slight inclination of the camera 

If the inclination of the triple line is negligible (𝑌𝑟𝑇𝐶𝐿 ≈ 𝑌𝑙𝑇𝐶𝐿) in the image plane, the droplet 

maximal height is simply given by: 

 
𝐻𝑑

′ = |𝑌𝑟𝑇𝐶𝐿 − 𝑌ℎ𝑑𝑟𝑜𝑝| ×
1

𝑝𝑠𝑖𝑚
 

(II.3.5) 

For a tilted contact line of 𝛼𝑇𝐶𝐿, the two expressions of the maximal heights of the droplet (Eq. 

(II.3.3) and Eq.(II.3.5)) are related: 

 𝐻𝑑
′

𝐻𝑑
= 𝑐𝑜𝑠  𝛼𝑇𝐶𝐿 

(II.3.6) 
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In our experiments, the tilt angle of the contact line was less than 4°, 𝐻𝑑
′ = 0.9976𝐻𝑑, then the 

effect of the triple line inclination is negligible on the maximal height of the drop. 

Moreover, the effect of the camera inclination on the maximal height of the droplet is also 

negligible. In fact, the slight inclination of the camera ( 𝛼𝑐𝑎𝑚 = 3°) reduces the value of 

maximal height of 1 − cos  𝛼𝑐𝑎𝑚 ≈ 0.0013 and then will be neglected. 

Error measurements of the image processing 

In order to validate the image processing protocol, we filmed a spherical steel ball under the 

same conditions as in the wetting experiments. The diameter of this ball was 𝐷𝑏𝑎𝑙𝑙 = 3.28 ±

0.02 mm, which is close to the diameter of the lead drop 𝐷0 = 2.63 mm. The image obtained 

(first image in Figure II.3-2) is an almost perfect sphere (the diameter is 163 pixels in the 

horizontal direction and 165 pixels in the vertical direction, i.e. a distortion less than 2%). Then, 

the ball image was used to generate theoretical spherical caps with contact angles ranging from 

5° to 170° (Figure II.3-2). For a given contact angle θ, the height 𝐻𝑑 and diameter D of the 

spherical cap are given by: 

 
𝐻𝑑 =

𝐷𝑏𝑎𝑙𝑙

2
(1 − 𝑐𝑜𝑠 𝜃) 

𝐷 = 𝐷𝑏𝑎𝑙𝑙 𝑠𝑖𝑛 𝜃 

 

(II.3.7) 

Subsequently, we applied the algorithms developed to these images. The measurement 

uncertainty is illustrated in Figure II.3-3. For each spherical cap, the calculated diameter and 

height were compared to the target values given by Eq.(II.3.7). 

In Figure II.3-3a, the uncertainty in the contact diameter (∆𝐷/𝐷0) decreases when the contact 

surface increases and then the uncertainty depends strongly on the difficulty to position the 

triple contact line when the contact surface is small. An uncertainty greater than 0.08 was 

obtained for a small contact diameter (
𝐷

𝐷0
< 0.2). In our experiments on patterned surfaces, 

𝐷

𝐷0
> 0.2 and in this case, the maximum uncertainty is about 0.08 (Figure II.3-3a), which will 

be then considered as the uncertainty in the measurement of the drop diameter. 

As the measurement of the drop height is not related to the determination of the triple line, the 

uncertainty (∆𝐻𝑑/𝐷0) is therefore an order of magnitude less than the uncertainty on the 

diameter (Figure II.3-3b). The maximum uncertainty is 0.007, which will be considered as the 

uncertainty of the maximum height measurement. 
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Figure II.3-2: Theoretical drops for the validation of the measurement methods developed. The 

first image was recorded in the same conditions as in the wetting experiments. 
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Figure II.3-3: Uncertainty in the length measurements estimated with the reference images of 

spherical caps as a function of contact angle. (a) Dimensionless contact diameter, (b) 

dimensionless drop height. 
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  Impact velocity 

The impact velocity is the velocity of the droplet when it comes into contact with the solid 

surface after falling from the droplet generator. The initial kinetic energy of the droplet, which 

is a function of its impact velocity, is an important parameter for the study of dynamic wetting. 

 
𝑉𝑜 = 𝑉𝑓𝑎𝑙𝑙 +

1

2
𝑔𝑡𝑓𝑎𝑙𝑙 

(II.3.8) 

with 𝑉𝑓𝑎𝑙𝑙 the average velocity, 𝑡𝑓𝑎𝑙𝑙 the fall time and g the gravity acceleration. The average 

velocity (𝑉𝑓𝑎𝑙𝑙) is determined from the images of the film. In the example of Figure II.3-4, the 

average velocity is measured from the position of the droplet when it exits the capillary tube 

(𝑡 =  1 ms) and the position of the droplet just before its contact with the solid substrate (𝑡 =

 4 ms): 𝑉𝑓𝑎𝑙𝑙 =
−ℎ1+ℎ5

4−1
. The uncertainty in the measurement of the impact velocity is estimated 

to ± 0.02 m/s from the uncertainty in the measurement of ℎ5 (linked to the uncertainty in the 

pixels’ number and size). 

 

Figure II.3-4: Example of an image sequence used in the determination of the impact velocity 

of the droplet. 

The contribution of gravity to the impact velocity is negligible compared to the droplet velocity 

at the capillary tube outlet (less than 5% in all cases). In the case of Figure II.3-4, 𝑉𝑜 = 0.78 m/s 

with 0.03 m/s due to the contribution of gravity or 3.8%. Therefore, in the experiments 

performed here, the impact velocity and then the kinetic energy will depend mainly on the 

overpressure applied in the droplet generator. 
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Capillary 
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  Mean spreading velocity 

For continuous displacement, the mean spreading velocity of the triple line is the derivative of 

the spreading radius 
1

2
 𝐷(𝑡) with respect to time 𝑡. Since we only have discrete data, i. e. two 

consecutive images of the film being separated by 1 ms, the spreading velocity 𝑈, at time 𝑡𝑖, is 

given by the following equation: 

 
𝑈(𝑡𝑖) =

𝑑𝐷(𝑡)

2𝑑𝑡
|
𝑡=𝑡𝑖

≈   
𝐷(𝑡𝑖+1) − 𝐷(𝑡𝑖−1)

2(𝑡𝑖+1 − 𝑡𝑖−1)
 

(II.3.9) 

Considering a two-pixel error in the measurement of the spreading diameter, the uncertainty in 

the measurement of the spreading velocity is estimated to be ± 0.02 m/s. An example of the 

evolution of the spreading velocity versus time is given in Figure II.3-5. 

 

Figure II.3-5: Spreading velocity of liquid lead on {20, 20} patterned-surfaces as function of 

time and droplet initial impact velocity.  
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  Left and right contact angles 

High-speed camera operating conditions 

For liquids with a low viscosity like liquid metals, the contact angle measurements can be 

obtained precisely, only in the case of low spreading velocity of the triple line. In the case of 

rapid spreading, the contact angle measurements are more difficult and often lead to 

uncertainties of several degrees. This may be due to a number of factors, including the 

deformation of the liquid surface and the difficulty in detecting correctly the triple contact line 

position due to its high spreading rate (about 1 m s-1, Figure II.3-5). 

In order to detect the position of the triple line as well as possible, the distance travelled by the 

triple line during the camera exposure time must be less than the size of one image pixel. If 

these two distances are of the same order of magnitude, a systematic error of one pixel is made, 

causing a high uncertainty in the contact angle. In order to solve this problem, a high-speed 

camera with a reduced exposure time can be used. In our experiments, the exposure time of the 

camera was set at 0.5 µs. Since the maximum initial velocity of the triple line is around 1 m/s, 

the triple line crosses 0.5 μm during this time, which is much less than the pixel size of around 

15 μm of the produced image from our camera. 

Notwithstanding, the image should also be centred on the triple line, with a large magnification 

to obtain the highest possible image resolution. In our experiments, the left and right contact 

angles must be determined at the same time as the spreading diameter of the droplet. Therefore, 

it is not possible to zoom in on the moving contact line at only one side. However, with the 

conditions chosen, the pixel size of 15 µm is sufficient to measure an apparent macroscopic 

contact angle, as in conventional wetting experiments.  

Image processing to determine the left and right contact angles 

The method used to measure the left and right contact angles was developed and explained by 

Vadillo [91]. To reduce the calculation time, a limited number of pixels close to the triple line 

are taken into account on the drop contour when measuring the contact angle (5-30 pixels 

corresponding to 0.1 to 0.5 mm of contour length). An example of the pixels selected near the 

triple line is shown in red in Figure II.3-6b. Then, all possible lines that cross all selected pixels 

are determined. The mean contact angles are calculated on the left and right. The mean contact 

angle corresponds to the mean tangent (in blue in Figure II.3-6b) between the two extreme lines 

(lines with minimum and maximum slopes) of all lines crossing the selected pixels. 
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Figure II.3-6: Image pre-processing for contact angle measurements. (a) Initial image with the 

capillary, (b) Drop contour with the triple line position, the part of contour considered in the 

measurement (in red), and the two mean tangents on the left and right (blue lines). In (b), there 

are about 52 pixels per 1 mm. 

Error measurements of the image processing 

To validate the contact angle measurement method, the contact angles were measured on 

reference images of spherical caps (Figure II.3-2). For each spherical cap, the calculated angle 

was compared to that of the target. The measurement uncertainties on the left and right are 

shown in Figure II.3-7. 
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In Figure II.3-7, the uncertainties on measurements at low (5°) and high (>150°) contact angles 

are high and the measurements are not accurate. However, in our experiments, the contact 

angles are between 20° and 150°. In this case, the difference between the calculated contact 

angle and the target contact angle is between +5° and -6°. Thus, a systematic error of ±5 is 

considered on the measurement of the left and right contact angles and then on the mean contact 

angle. 

 

Figure II.3-7: Uncertainty in the measurements of left and right contact angles estimated from 

the reference images of spherical caps. 

Figure II.3-8: Comparison of dynamic contact angle measurements obtained from the 

developed algorithms (in blue) and by hand with the ImageJ software (in red). Two different 

iron / silica patterned surfaces are used for this validation: {20; 20} with a silica surface 

coverage of 25% (full marks) and {20; 5} with 64% silica surface coverage (empty marks). 

 presents two examples of the wetting of patterned surfaces {20; 20} and {20; 5} by liquid lead. 
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the two measurements lie in the uncertainties of the measurements determined in Figure II.3-7 

(± 5°). 

 

Figure II.3-8: Comparison of dynamic contact angle measurements obtained from the 

developed algorithms (in blue) and by hand with the ImageJ software (in red). Two different 

iron / silica patterned surfaces are used for this validation: {20; 20} with a silica surface 

coverage of 25% (full marks) and {20; 5} with 64% silica surface coverage (empty marks). 

 Contact angle hysteresis 

The experimental device used in this work was designed to study the dynamic spreading of 

liquid metals at high temperature but not specifically to measure the contact angle hysteresis 

with the methods described in section I.1.6.2. However, the change in spreading diameter and 

contact angle over time can be used to determine this contact angle hysteresis 𝜃𝑎 and 𝜃𝑟 . 

In our tests, during the first milliseconds, the spreading diameter increases up to its maximum 

value and then decreases, indicating a receding of the droplet triple line. After that, the 

spreading diameter increases again. Finally, it reaches its final value after approximatively 100 

ms of oscillations (Figure II.3-9). The contact angle hysteresis can be determined using the 

corresponding variation of the contact angle over time.  

0

20

40

60

80

100

120

140

160

180

1 10 100 1000

C
o
n
ta

ct
 a

n
g
le

 (
°)

Time (ms)



Chapter II: Experimental apparatus and methods 

[98] 

 

 

Two methods were evaluated, the first one using the droplet behaviour at the maximum 

spreading diameter and the second one using contact angles during the drop receding and 

advancing. 

 

Figure II.3-9: Contact diameter and angle of lead drop on {100; 20} patterned surface. 

Method using the maximum spreading diameter 

A first approach is to examine what happens at the maximum spreading diameter. Indeed, at 

this moment, the droplet is pinned at its maximal spreading diameter for a few milliseconds 

while the contact angle takes several values. There is therefore a variation of the contact angle 

at zero spreading velocity, i.e. a contact angle hysteresis. 

This contact angle hysteresis can be determined directly from the film images or the graph of 

the evolution of the dynamic contact angle as a function of spreading velocity for U = 0 (Figure 

II.3-10). 
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Figure II.3-10: Overall shape of dynamic contact angle as a function of spreading velocity. 

Inspired by [92]. 

For the wetting of heterogeneous patterned surfaces by liquid lead, this technique does not 

always give satisfactory results. Indeed, due to the specific shape of the texture, during the first 

step of spreading, the triple contact line mainly spreads on pure iron and the hysteresis thus 

measured is close to that of pure iron. 

Method using the stick-slip motion of the triple line 

The contact angle hysteresis can be determined using the stick-slip motion of the triple contact 

line. Chatain et al. [14] have already described this stick-slip motion for surfaces with regular 

patterns, highlighted by the sandwich drop method. 

Figure II.3-11 shows the wetting of the {5; 20} sample by liquid lead. After impact on the 

sample, the droplet spreads to its maximum spreading diameter and then recedes. During its 

receding, the droplet stops at t = 16 ms. The spreading diameter remains constant while the 

contact angle decreases to reach the receding contact angle. At this point, the spreading diameter 

decreases again. In addition, around t = 25 ms, the drop stops again and the contact angle 

increases and reaches the advancing contact angle. The spreading diameter then increases. 

Thus, the receding and advancing contact angles can be determined using this technique. 

However, as discussed in chapter III, the stick slip motion is not evident on some patterned 

surfaces, particularly on samples with high silica coverage. In this case, the receding 𝜃𝑑𝑟 and 
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advancing 𝜃𝑑𝑎 contact angles are measured only by considering the first receding and second 

advancing of the drop.  

 

Figure II.3-11: Example of contact angle hysteresis measurement using the stick-slip motion. 

The drop undergoes a series of stick-slip phenomena. The case of {5; 20} patterned sample. 

The contact angle hysteresis obtained by the mean of the two procedure will be compared in 

chapter III. 
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 Characterization of the solidified droplets 

Due to the heterogeneity of patterned surfaces, the shape of the droplet and therefore its 

spreading diameter and contact angle may vary from one point to another on the surface. The 

shape of the solidified droplets was observed in order to investigate the influence of the position 

of the triple line with respect to the texture. Lateral (section II.4.1) and top (section II.4.2) views 

of the droplets were observed. 

  Lateral view of the solidified droplets  

The droplet shape and the left and right contact angles are measured as a function of the angle 

of view using the solidified droplet. To do this, after the wetting experiments at high 

temperature, the sample with the liquid lead droplet is cooled to room temperature. It is then 

placed on a rotating microscope stage and a lateral view of the drop is recorded for different 

angles of view using a high-resolution camera (v310, Phantom), a macro lens (AF Zoom-Micro 

Nikkor 70-180 mm f/4.5-5.6D ED, Nikon) and a light source (lamp KL 2500 LCD) (Figure 

II.4-1). Forty images with a resolution of 800 x 1280 pixels were taken, corresponding to angles 

of view 𝛼𝑣 from 0° (when the side of the silica pattern is perpendicular to the camera axis) to 

360° with a 9° step. 

 

Figure II.4-1: Setup for the measurements of the spreading diameter and left and right contact 

angles of the solidified droplet. 
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The recorded images are processed to measure the spreading diameter 𝐷𝑙 and the mean contact 

angle 𝜃𝑙 of the solidified drop. The effect of the observation direction on the droplet shape can 

then be visualized, as shown in Figure II.4-2 for a {5; 5} patterned surface. 

These measurements will then allow to study the elongation of the drop in several directions as 

well as the dispersion of the contact angle on the solidified drop. 

 

Figure II.4-2: View of the drop shape in lateral view on the {5, 5} sample. (a) Dimensionless 

drop diameter, (b) drop contact angle as a function of angle of view. 
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Measurement uncertainty of contact diameter 

An uncertainty of two (2) pixels is considered in the measurement of the contact diameter. On 

these images, the scale is about 45 pixels/mm. Then the measurement uncertainty of the contact 

diameter is about ±0.04 mm. Subsequently the maximum uncertainty in D/D0 at lateral view is 

fixed to ±0.04. 

The uncertainty in the measurement of contact angle remains to ±5 as in the images from the 

spreading dynamics. 

  Top view of the solidified droplets 

The lateral view of the solidified droplet makes it possible to obtain its shape, but, due to the 

heterogeneity of our surfaces, the triple line of the droplet does not remain perfectly circular. A 

top view of the drop is therefore required to calculate the circularity of the triple line (section 

II.4.2.1) and to obtain the position of the triple line with respect to the texture (section II.4.2.2). 

This top view is relevant only when the contact angle is lower than 90°. 

II.4.2.1. Criterion of the drop circularity 

Figure 4.3a shows the example of a solidified lead drop on a patterned surface {500; 500}. The 

image is obtained by means of a modular stereo microscope (Zeiss Stereo Discovery V12 with 

motorized 12x zoom). The image is zoomed as much as possible (with more than 100 

pixels/mm) to extract both the drop shape and a position of the square silica. 

The top view of the droplet (Figure II.4-3a) is processed as before (section II.3.1) to obtain the 

triple line contour as a set of discrete pixel points of coordinates (𝑥𝑖, 𝑦𝑖) (Figure II.4-3b). Then, 

the contact surface area 𝐴𝑑𝑟𝑜𝑝 of the drop on the solid sample is calculated with the number of 

pixels on the contact surface. 

Knowing the coordinates of the discrete points of the triple line, the coordinates of the centre 

of mass of the contact surface of the drop 𝐺𝑑𝑟𝑜𝑝 (Figure II.4-3c) are given by: 

 
𝐺𝑑𝑟𝑜𝑝(𝑥) =

∑ (𝑥𝑖 + 𝑥𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑦𝑖𝑥𝑖+1)
𝑛𝑝−1

𝑖=0

3∑ (𝑥𝑖𝑦𝑖+1 − 𝑦𝑖𝑥𝑖+1)
𝑛𝑝−1

𝑖=0

 

𝐺𝑑𝑟𝑜𝑝(𝑦) =
∑ (𝑦𝑖 + 𝑦𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑦𝑖𝑥𝑖+1)

𝑛𝑝−1

𝑖=0

3∑ (𝑥𝑖𝑦𝑖+1 − 𝑦𝑖𝑥𝑖+1)
𝑛𝑝−1

𝑖=0

 

 

(II.4.1) 
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where 𝑛𝑝 is the number of pixels on the drop contact line. 

The centre of mass is then used to determine the circle closest to the triple line, called the 

optimal circle. First, the minimum 𝐷𝑚𝑖𝑛
𝑡  and maximum 𝐷𝑚𝑎𝑥

𝑡  Feret diameters of the drop 

contact line are calculated. Then, the optimal circle diameter 𝐷𝑜𝑝𝑡
𝑡 within the minimum-

maximum Feret diameters (Figure II.4-3c), is obtained by minimizing the area of the 

symmetrical difference between the drop contact area and the circle surface (Figure II.4-3d). 

 

Figure II.4-3: Drop shape in top view for calculating the circularity criterion. Case of a lead 

drop on a {500; 500} patterned surface. a) Original drop image using an optical microscope, 

b) extraction of the drop shape with pixel coordinates, c) contour of the triple line and optimal 

circle obtained, d) symmetrical difference between the optimal circle and the drop contact line. 

Solidified drop on {500; 500} Extracted drop shape 

Drop triple line 

Optimal circle,  𝛹𝑐𝑡ℎ   

(a) (b) 

(c) (d) 

Symmetrical difference,  𝛹𝑑𝑖𝑓𝑓  

𝐺𝑑𝑟𝑜𝑝 

1 mm 

1 

mm 
1 mm 

1 mm 
𝑥 (mm) 

1 2 3 4 0 

𝑦 (mm) 

1 

2 

3 

0 

4 Triple contact line,  𝛹𝑑𝑟𝑜𝑝 
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If the drop contact area and the optimal circle are defined with a set of pixels 𝛹𝑑𝑟𝑜𝑝  and  𝛹𝑐𝑡ℎ 

respectively, the symmetrical difference 𝛹𝑑𝑖𝑓𝑓 between the two sets of pixels is defined as the 

set of pixels that belong to one and only one of the two sets of pixels ( 𝛹𝑑𝑖𝑓𝑓 =  𝛹𝑑𝑟𝑜𝑝  ∆  𝛹𝑐𝑡ℎ) 

(Figure II.4-3d). Then, the area of this symmetrical difference  𝐴𝑑𝑖𝑓𝑓  is calculated again with 

the number of pixels it contains.  

The circularity criterion  𝜏𝑐  is defined as the ratio between the area of the symmetrical 

difference  𝐴𝑑𝑖𝑓𝑓  and the area of the drop contact on the solid sample 𝐴𝑑𝑟𝑜𝑝 .  

 
 𝜏𝑐 =

 𝐴𝑑𝑖𝑓𝑓 

 𝐴𝑑𝑟𝑜𝑝 
 

(II.4.2) 

If the contact surface between the droplet and the solid substrate is a circle, the symmetrical 

difference does not contain pixels, i.e.  𝐴𝑑𝑖𝑓𝑓 = 0 and consequently the circularity 

criterion 𝜏𝑐 = 0. Conversely, this criterion tends towards 1 in the case of an ellipse with very 

distant foci. The latter case corresponds to a drop very spread in one direction on the solid. 

Table II.4-1 shows the initial diameter  𝐷0, the maximum 𝐷𝑚𝑎𝑥
𝑡  and minimum 𝐷𝑚𝑖𝑛

𝑡  Feret 

diameters of the drop, the diameter of the optimal circle diameter 𝐷𝑜𝑝𝑡
𝑡 , the area of the 

symmetrical difference 𝛹𝑑𝑖𝑓𝑓 as well as the circularity criterion 𝜏𝑐 for two cases: a perfect circle 

of 2.50 mm diameter and the solidified drop of the example in Figure II.4-3 (liquid lead on 

{500; 500} sample). 

Table II.4-1: An example of the results of the calculation of the circularity criterion (perfect 

circle and drop on {500; 500} sample) 

 

As expected, the circularity criterion is close to zero for the reference case of the perfect circle, 

whereas the triple line of the example which seems well deformed has a circularity criterion of 

0.1. 

Sample 
𝐷0 

(mm) 

 𝐷𝑚𝑎𝑥
𝑡   

(mm) 

 𝐷𝑚𝑖𝑛
𝑡   

(mm) 

 𝐷𝑜𝑝𝑡
𝑡  

(mm) 

 𝛹𝑑𝑖𝑓𝑓  

(mm2) 

𝜏𝑐 

Perfect circle 2.50 2.50 2.50 2.50 0.0043 8.69.10-04 

{500; 500} 2.63 3.78 3.59 3.65 1.1252 0.1074 
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Measurement uncertainty 

An uncertainty of 5 pixels is considered in the detection of the drop shape due to the difficulty 

to extract the drop shape from top images. On these images, the scale is at least 100 pixels/mm. 

Then the maximum uncertainty of the contact diameter measurement is about ±0.05 mm. 

Subsequently the maximum uncertainty in D/D0 measurement at top view is fixed to ±0.04. 

II.4.2.2. Position of the triple line on the textured surface 

The contact angles measured on patterned samples, with a low or moderate silica surface 

fraction, were found to be very close to the contact angle on pure iron. This behaviour could be 

explained by the fact that the drop is pinned by pure iron during spreading (chapter III). To 

prove this, it is necessary to position the triple contact line with respect to the surface patterns. 

The position of the droplet triple line on patterned surfaces is reconstructed from the top view. 

Let us take again the case of the solidified drop on the patterned surface {500; 500} (Figure 

II.4-3). In Figure II.4-3a, it is possible to distinguish both the contact surface between the drop 

and the solid substrate and the patterns of the surface. Both are extracted from the photograph 

by image analysis (Figure II.4-4a). As the silica pillars are evenly distributed over the surface, 

the position of the liquid metal droplet with respect to the texture can be precisely reconstructed. 

Figure II.4-4 shows the reconstruction of the drop contact line with respect to the texture 

together with the optimal circle calculated as explained in section II.4.2.2. 

From this reconstruction, the surface area fraction covered by silica (𝑓𝑠𝑖𝑙𝑖𝑐𝑎)𝑠𝑢𝑟𝑓, the triple 

contact line fraction on silica  (𝑓𝑠𝑖𝑙𝑖𝑐𝑎)𝑡𝑐𝑙 and the corresponding contact angles 𝜃𝑠𝑢𝑟𝑓 and 𝜃𝑡𝑐𝑙 

(Eq. (I.2.4) and Eq. (I.2.6)) are calculated in Table II.4-2. 

However, this reconstruction is very tedious for small patterns where it is almost impossible to 

have both the whole drop shape and a silica pattern. Therefore, this reconstruction was only 

performed on the samples with enough large pattern size: {100; 500}, {100; 100} and {500; 

500}. And, as we will explain later in chapter III, if the drop is large enough in relation to the 

texture size, the effect of the pattern size is negligible at equilibrium.  
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Table II.4-2: Fractions of silica and corresponding angles on reconstructed triple contact line 

on {500; 500} patterned surface. 

 

 

Figure II.4-4: Reconstruction of a solidified metal drop and the corresponding optimal circle 

on a patterned surface. Position of the triple contact line of a drop on {500; 500} patterned 

surface. 

Sample  (𝑓𝑠𝑖𝑙𝑖𝑐𝑎)𝑠𝑢𝑟𝑓  (𝑓𝑠𝑖𝑙𝑖𝑐𝑎)𝑡𝑐𝑙  𝜃𝑠𝑢𝑟𝑓(°)  𝜃𝑡𝑐𝑙(°) 

{500; 500} 0.20 0.29 71 77 

Optimal circle 0.24 0.19 74 70 

Contour of the 

solidified drop 

Optimal 

circle 

Silica pattern 

Iron substrate 

1 

2 

3 

4 

0 

𝑦 (mm) 

𝑥 (mm) 
1 2 3 4 0 

b

) 

a) 

1 

mm 

𝐺𝑑𝑟𝑜𝑝 
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 Conclusion 

To study the influence of oxide size and distribution on non-reactive wetting by liquid metal, 

we used well-defined surfaces. A lead drop was used because it does not react with both iron 

(substrate) and silica (pattern). In addition to patterned surfaces with different sizes and 

distributions, pure materials were used. These choices led to oxide surface fractions ranging 

from 0 to 1. 

For the experimental wetting study, the dispensed drop technique was used in order to 

investigate the entire dynamic spreading of the drop from its fall to its final state. Dynamic 

spreading was recorded using a high speed-camera with 1000 images per second for 750 x 500 

pixels in each frame. 

Then, the different image processing methods were used to characterize the images obtained, 

such as the spreading diameter and the contact angle and the maximum droplet height. The 

solidified drops were also characterized. The circularity criterion of the drop / substrate contact 

surface was estimated and the triple contact line was positioned on the sample with respect to 

the patterns, on as many samples as possible. 

For each sample, the measured parameters are summarized in Table II.5-1. 

Table II.5-1: Summary of the parameters measured for each sample and for the different silica 

area fractions. 

Samples with low silica area fraction 

                                     Samples 

 

Fe 

0 

{5; 20} 

4% 

{20; 100} 

3% 

{100; 500} 

3% 

Dynamic parameters 

Spreading direction, d1 and d2 - Y1 Y Y 

Impact velocity, 𝑉0 Y Y Y Y 

Contact diameter, (𝐷/𝐷0)(𝑡) Y Y Y Y 

Maximal height, (𝐻𝑑/𝐷0)(𝑡) Y Y Y Y 

Contact angle, 𝜃(𝑡) (°) Y Y Y Y 

Spreading velocity, 𝑈(𝑡) (m/s) Y Y Y Y 

Contact angle hysteresis, 𝜃𝑟, 𝜃𝑎 (°) Y Y Y Y 
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Lateral view 

Contact diameter, (𝐷𝑙/𝐷0)(𝛼𝑣) Y Y Y Y 

Contact angle, 𝜃𝑙(𝛼𝑣) (°) Y Y Y Y 

Top view 

Circularity criterion, 𝜏𝑐 Y Y Y Y 

TCL reconstruction relative to the 

sample pattern 

- N2 N Y 

Samples with moderate silica area fraction 

                                     Samples 

 

{5; 5} 

25% 

{20; 20} 

25% 

{100; 100} 

25% 

{500; 500} 

25% 

Dynamic parameters 

Spreading direction, d1 and d2 Y Y Y Y 

Impact velocity, 𝑉0 Y Y Y Y 

Contact diameter, (𝐷/𝐷0)(𝑡) Y Y Y Y 

Maximal height, (𝐻𝑑/𝐷0)(𝑡) Y Y Y Y 

Contact angle, 𝜃(𝑡) (°) Y Y Y Y 

Spreading velocity, 𝑈(𝑡) (m/s) Y Y Y Y 

Contact angle hysteresis, 𝜃𝑟, 𝜃𝑎 (°) Y Y Y Y 

Lateral view 

Contact diameter, (𝐷𝑙/𝐷0)(𝛼𝑣) Y Y Y Y 

Contact angle, 𝜃𝑙(𝛼𝑣) (°) Y Y Y Y 

Top view 

Circularity criterion, 𝜏𝑐 Y Y Y Y 

TCL reconstruction relative to the 

sample pattern 

N N Y Y 

Samples with high silica area fraction 

                                     Samples 

 

{20; 5} 

64% 

{100; 20} 

69% 

{500; 100} 

69% 

Silica 

100% 

Dynamic parameters 

Spreading direction, d1 and d2 Y Y Y Y 
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Impact velocity, 𝑉0 Y Y Y Y 

Contact diameter, (𝐷/𝐷0)(𝑡) Y Y Y Y 

Maximal height, (𝐻𝑑/𝐷0)(𝑡) Y Y Y Y 

Contact angle, 𝜃(𝑡) (°) Y Y Y Y 

Spreading velocity, 𝑈(𝑡) (m/s) Y Y Y Y 

Contact angle hysteresis, 𝜃𝑟, 𝜃𝑎 (°) Y Y Y Y 

Lateral view 

Contact diameter, (𝐷𝑙/𝐷0)(𝛼𝑣) Y Y Y Y 

Contact angle, 𝜃𝑙(𝛼𝑣) (°) Y Y Y Y 

Top view 

Circularity criterion, 𝜏𝑐 N N N N 

TCL reconstruction relative to the 

sample pattern 

N N N N 

1 Y: Yes, measurement done 
2 N: No, not measured 
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 Introduction 

The dynamic wetting of silica-patterned iron surfaces by liquid lead was investigated using the 

techniques and materials presented in chapter II. Our aim was to better understand the effect of 

oxide size, distance between oxides and surface area fraction covered by oxides on wetting by 

a non-reactive metal. 

Thus, for each lead droplet, the spreading diameter 𝐷, maximum height 𝐻𝑑 and mean contact 

angle 𝜃 were measured as function of time. In order to compare the results obtained, the first 

two parameters are made dimensionless using the reference diameter 𝐷0 ≈ 2.63 𝑚𝑚, the 

diameter of the liquid metal drop supposed to be spherical with the same weight as the metal 

ball. The mean contact angle is the average of the left and right contact angles. It should be 

noted that the difference between the left and right contact angles is neglected in this study 

because it is included in the measurement errors. The contact angle hysteresis was then deduced 

from these measurements (section II.3.6). 

For each textured surface, at least two tests were performed under the same operating 

conditions, to ensure repeatability and consistency of measurements. 

The experimental results obtained are presented and discussed in this chapter. First, the dynamic 

wetting of liquid lead on pure substrates (iron and silica) is presented and discussed (section 

III.2). These are the reference systems. Then, the dynamic wetting on the patterned surfaces is 

described and analysed to derive the main wetting parameters (section III.3). 

Afterwards, it will presented a theoretical analysis of the influence of drop size and its position 

on the wetting. This analyse is then followed by an experimental study of the influence of 

pattern size and their distribution on the wetting. 

At the end, the influence of silica covering yield on wetting is discussed. The influence is 

analysed on the final wetting state mainly characterized by the final contact angle and on the 

contact angle hysteresis. 
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 Pure substrates 

  Pure iron 

III.2.1.1. Dynamic spreading 

General description 

Figure III.2-1 shows the evolution of the dimensionless spreading diameter (a) and maximum 

height (b) of liquid lead on pure iron substrate as a function of spreading time and impact 

velocity. Figure III.2-2 shows the evolution of the mean contact angle as a function of spreading 

time (a) and spreading velocity (b). The three tests performed in this study are compared with 

the results from [1]. For each trial, the dispersion of the contact angles (standard deviation of 

the angles measured on the left and right) is indicated by means of error bars (Figure III.2-2a). 

As shown in the figures, our measurements are in good agreement with the results obtained by 

Zaïdi [1]. They are also in good agreement with the experimental results presented in the 

literature for the same system (liquid lead / iron) [93]–[97]. Furthermore, the three tests give 

similar results with some differences which will be described and explained in the following. 

In fact, the spreading of the liquid lead drop on pure iron at 450°C can be divided into several 

stages. 

At first, the drop diameter increases and reaches a maximum value 𝐷𝑚𝑎𝑥 after a spreading 

time 𝜏∗ between 10 ms and 12 ms. During this phase, the drop advances with an almost constant 

contact angle of a mean value 𝜃𝑖 (around 45°). The drop maximum height decreases during this 

stage before stabilizing when the spreading diameter becomes close to the maximum spreading 

diameter. 

In the second stage, the droplet diameter decreases to a minimum diameter after 20-27 ms. In 

the meantime, the maximum height of the droplet increases, and the contact angle decreases 

sharply before stabilizing at a mean value of  𝜃𝑑𝑟 (around 30°, Table III.2-1). At this stage, the 

spreading diameter and maximum height obtained for the impact velocity 𝑉0 of 0.73 m/s (red 

points) deviate from the other tests: the drop receding is slowed down, the maximum height 

does not increase as much, and the contact angle decreases again to the minimum contact angle. 

The same phenomenon was observed on patterned surfaces with low silica coverage and will 

be discussed later. In addition, for all tests, there is a dispersion of the left and right contact 
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angle of more than 10° (Figure III.2-2a). This dispersion is due to the oscillations of the liquid 

lead drop when receding. 

In the third stage of spreading, the droplet undergoes a series of advancing and receding, leading 

to oscillations of the spreading diameter, maximum height and contact angle. In this stage, a 

maximum contact angle of  𝜃𝑑𝑎~57° is reached. These oscillations do not exist for the impact 

velocity of  𝑉0 = 0.73 𝑚/𝑠. This can be explained by the triple line pinning during the receding 

step. 

Then, after a spreading time 𝑡𝑠𝑡𝑎𝑏
𝑑  of less than 60 ms, the contact diameter of the drop stabilizes. 

At the beginning of this last stage, the drop height oscillates and the drop contact angle varies 

slightly. The drop height oscillation (not clearly shown in Figure III.2-1b) will be explained in 

more detail in chapter IV. Later, after a spreading time 𝑡𝑠𝑡𝑎𝑏
𝑎  of more than 100 ms, the 

oscillations of the maximum drop height are damped. The spreading diameter and the contact 

angle of the drop become constant at the mean value 𝐷𝑓 and 𝜃𝑓 respectively. Table III.2-1 shows 

the wetting parameters obtained, namely the mean initial contact angle 𝜃𝑖, the receding contact 

angle 𝜃𝑑𝑟, the advancing contact angle 𝜃𝑑𝑎, the final contact angle 𝜃𝑓, the stabilization times 

𝑡𝑠𝑡𝑎𝑏
𝑑  and 𝑡𝑠𝑡𝑎𝑏

𝑎 , the initial spreading time 𝜏∗, the dimensionless maximal spreading diameter 

𝐷𝑚𝑎𝑥/𝐷0 and the final spreading diameter 𝐷𝑓/𝐷0. The minimum receding (𝜃𝑟) and maximum 

advancing (𝜃𝑎) contact angles measured at zero velocity (Figure III.2-2b) are also shown in the 

table. 

In addition, the mean values of the spreading diameter, height and contact angle of the lead 

drop on pure iron are shown in Figure III.2-1 and Figure III.2-2 (solid black lines). These 

average curves are obtained by simply taking at each spreading time the mean value of the 

parameters for the three experiments. The wetting parameters estimated from these average 

curves are given in Table III.2-1. Subsequently, the average curves of liquid lead on pure iron 

will be used as a reference for the wetting on patterned surfaces. 

The standard deviations related to the dispersion of the left and right contact angles are shown 

in Figure III.2-1. This standard deviation is often less than the measurement uncertainties that 

can be seen from one test to another. Thus, for greater clarity in the figures, dispersions related 

to differences in the left and right contact angles will not be displayed in the next graphs. Only 

the average value of the contact angle will be plotted for each test. 
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Table III.2-1: Wetting parameters of liquid lead spreading on pure iron. 

𝑉0 

(m/s) 

𝜃𝑖 

(°) 

𝜃𝑑𝑟  

(°) 

𝜃𝑑𝑎 

(°) 

𝜃𝑓 

(°) 

𝑡𝑠𝑡𝑎𝑏
𝑑   

(ms) 

𝑡𝑠𝑡𝑎𝑏
𝑎  

(ms) 

𝜏∗ 

(ms) 

𝐷𝑚𝑎𝑥

𝐷0
 

𝐷𝑓

𝐷0
 

𝜃𝑟 

(°) 

𝜃𝑎 

(°) 

0.75 39±6 31±3 60±3 52±1 66 100 11 3.71 1.81 46 57 

0.73 48±6 30±4 50±4 55±3 48 100 9 3.44 1.62 44 56 

0.60 50±7 30±3 62±2 55±1 50 100 10 3.19 1.63 52 59 

Mean 

0.69 

±0.08 

45±6 30±3 57±3 54±1 55±2 100 10 3.44±

0.18 

1.69±

0.08 

47±3 57±2 

0.50 

[1] 

50±2 38±2 56±2 50±1 57±2 100 

±10 

13±1 3.05 1.75 45±5 55±5 
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Figure III.2-1: Dynamic wetting of lead on pure iron as function of spreading time and droplet 

impact velocity: (a) Dimensionless spreading diameter, (b) dimensionless droplet height. 
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Figure III.2-2: Mean dynamic contact angle of liquid lead on pure iron as function of (a) 

spreading time and (b) spreading velocity for different impact velocities. The errors described 

in (a) are the standard deviations estimated from the left and right contact angles. 

Non-reactive wetting 

The difference between the initial 𝜃𝑖 and the final 𝜃𝑓 contact angles is very small (less than 7°C) 

(Figure III.2-2 and Table III.2-1). This difference is in the same order as the measurement error 

of the contact angle in our experiments. This shows and confirms that there is no change in the 

chemical nature of the interface during spreading, i.e., the iron / lead system is not reactive (see 

section II.1.1).  

Influence of the impact velocity 

In our experiments, the weight of lead shot was kept constant at around 100 mg, then the kinetic 

energy depends only on the impact velocity 𝑉0. The latter varies from 0.60 to 0.75 m/s in pure 

iron experiments. This impact velocity is consistent with the maximum spreading diameter 

𝐷𝑚𝑎𝑥 reached at the spreading time 𝜏∗: the higher the velocity, the larger the spreading diameter 

(Figure III.2-1a). After this first spreading phase, the impact velocity has a very small influence 
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on the parameters obtained, more particularly on the final spreading diameter 𝐷𝑓 and the final 

contact angle 𝜃𝑓. 

Contact angle hysteresis 

Figure III.2-2b shows the evolution of the mean contact angle as a function of spreading 

velocity 𝑈. The receding (𝜃𝑟) and advancing contact angle (𝜃𝑎) are respectively the minimum 

and maximum contact angle at zero spreading velocity (chosen here in the interval [-0.02 m/s, 

0.02 m/s]). The measured contact angle hysteresis is given in𝜃𝑟) and maximum advancing (𝜃𝑎) 

contact angles measured at zero velocity (Figure III.2-2b) are also shown in the table. 

In addition, the mean values of the spreading diameter, height and contact angle of the lead 

drop on pure iron are shown in Figure III.2-1 and Figure III.2-2 (solid black lines). These 

average curves are obtained by simply taking at each spreading time the mean value of the 

parameters for the three experiments. The wetting parameters estimated from these average 

curves are given in Table III.2-1. Subsequently, the average curves of liquid lead on pure iron 

will be used as a reference for the wetting on patterned surfaces. 

The standard deviations related to the dispersion of the left and right contact angles are shown 

in Figure III.2-1. This standard deviation is often less than the measurement uncertainties that 

can be seen from one test to another. Thus, for greater clarity in the figures, dispersions related 

to differences in the left and right contact angles will not be displayed in the next graphs. Only 

the average value of the contact angle will be plotted for each test. 

Table III.2-1 for each impact velocity. The hysteresis of about 10° obtained on pure iron is low 

and consistent with the results found in the literature [1]–[6]. The contact angle hysteresis is 

related to the presence of physical or chemical defects on the surface. In our experiments, after 

annealing at high temperature, the iron surface is facetted and slightly oxidized, with oxide 

particles of about a few nm in diameter (Figure III.2-3). The average roughness is less than 6 

nm and its effect is negligible on wetting. The grain-boundary grooves formed do not cause any 

distortion of the triple line2. Finally, the low presence of defects on pure iron samples after 

annealing explains the low hysteresis obtained. 

                                                 

2The roughness parameters were measured by means of atomic force microscopy (AFM Digital Instruments 

Nanoscope IIIa): the average roughness 𝑅𝑎 defined as the average of the absolute value of the height of the points 

measured on the surface compared to the average plane was about 2 nm. In addition, the maximum roughness 
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Figure III.2-3: Iron surface after annealing at 850°C. 

III.2.1.2. Droplet shape after solidification 

Due to the pinning effects on pure iron during spreading, the triple line of liquid lead can deform 

and the contact angle can vary from one point to another on the triple contact line. The shape 

of the solidified lead drops was analysed from a lateral and a top view. 

Lateral view 

The solidified drop shape for the three tests performed on pure iron was reconstructed from the 

lateral view, using the technique presented in section II.4.1. This gives the dimensionless 

spreading diameter and contact angle around the periphery of the triple line (Figure III.2-4). 

The triple line is not perfectly circular, unlike what one would expect for a pure substrate. There 

is therefore a dispersion of the spreading diameter and contact angles due to surface defects (the 

                                                 

𝑅𝑚𝑎𝑥 corresponding to the difference in height between the highest point and the lowest point of the annealed iron 

surface was around 200 nm [93]. 
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triple line can be pinned by these defects when moving) and possibly drop deposition 

conditions. It is the measurement error related to our experimental conditions.  

The maximum, maximum and mean values of both contact diameter (𝐷𝑚𝑎𝑥
𝑙 , 𝐷𝑚𝑖𝑛

𝑙 , 𝐷𝑚
𝑙 ) and 

contact angle (𝜃𝑚𝑎𝑥
𝑙 , 𝜃𝑚𝑖𝑛

𝑙 , 𝜃𝑚
𝑙 ) can then be determined (Table III.2-2). The final spreading 

diameter (𝐷𝑓) and contact angle (𝜃𝑓) measured at high temperature are between the maximum 

and minimum values obtained in lateral view, in the experimental errors.  

Table III.2-2: Main parameters of the solidified lead drop on pure iron from the lateral views. 

Impact velocity 

𝑉0 (m/s) 

𝐷𝑚𝑎𝑥
𝑙

𝐷0
 
𝐷𝑚𝑖𝑛

𝑙

𝐷0
 

𝐷𝑚
𝑙

𝐷0
 

𝐷𝑓

𝐷0
 

𝜃𝑚𝑎𝑥
𝑙

(°) 

𝜃𝑚𝑖𝑛
𝑙

(°) 

𝜃𝑚
𝑙  

(°) 

 𝜃𝑓 

(°) 

0.75 1.89 1.64 1.75±0.07 1.81 53 35 41±3 52 

0.73 1.90 1.48 1.66±0.14 1.62 61 33 46±7 55 

0.60 1.66 1.46 1.58±0.05 1.63 60 47 52±4 56 
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Figure III.2-4: Lateral view of the solidified lead drops on pure iron. (a) Dimensionless 

spreading diameter, (b) drop contact angle as a function of angle of view.  

Top view 

If the lateral view gives details on the contact angle around the drop perimeter, a top view is 

more interesting for detailed characterizations of the drop surface contact. For that, the shape 

of the triple contact line was extracted by image analysis from the top view (section II.4.2). The 

algorithms presented in section II.4.2.1 were used to calculate the circularity criterion 𝜏𝑐 and 
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the corresponding optimal circle of diameter 𝐷𝑜𝑝𝑡
𝑡 . The main results are summarized in Table 

III.2-3, i.e., the maximum and minimum Feret diameters (𝐷𝑚𝑎𝑥
𝑡 , 𝐷𝑚𝑖𝑛

𝑡 ) of the triple contact line, 

the diameter of the optimal circle, the final spreading diameter measured at high temperature 𝐷𝑓 

and the circularity criterion 𝜏𝑐.  

First of all, there is consistency between the two characterization techniques of the drop shape. 

The small differences between the spreading diameter results obtained in lateral and top views 

(Table III.2-2 and Table III.2-3) are due to measurement errors associated with both techniques. 

In fact, the maximum difference in diameter measurement obtained from the two views 0.07 

(
𝐷𝑚𝑖𝑛

𝑡

𝐷0
−

𝐷𝑚𝑖𝑛
𝐿

𝐷0
 , for 𝑉0 = 0.60 𝑚/𝑠 ) is in the measurement errors of about ±0.04 for both views. 

 Figure III.2-5 shows the shape of the surface contact of the lead drop and compares it to the 

optimal circle for the three tests performed on pure iron. The shape of the surface contact 

obtained for both tests with an impact velocity 𝑉0 = 0.60 𝑚/𝑠 and 𝑉0 = 0.75 𝑚/𝑠 is quite well 

described by a circle, with a circularity criterion of less than 0.1. With regard to the impact 

velocity 𝑉0 of 0.73 m/s (red dots, Figure III.2-1, Figure III.2-2 and Figure III.2-4), the shape of 

the triple line differs slightly from the other tests: the triple contact line is further from the shape 

of a circle, with a circularity criterion of about 0.2. This can be explained by the fact that the 

triple line was pinned during its receding (Figure III.2-1). 

One of the main results here is that the triple line can be deformed by pinning effects, even in 

the case of pure iron. In this case, the circularity criterion can be as high as 0.2. Therefore, for 

patterned surfaces, the values of circularity criterion less than 0.2 cannot be explained by the 

presence of silica pillars on iron. 
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Figure III.2-5: Shape of the triple line obtained for the solidified lead droplets on pure iron as 

function of droplet impact velocity. a) Experimental shape obtained from top view, b) Triple 

line contour and optimal circle, c) Difference between the optimal circle an 

Table III.2-3: Parameters characterizing the triple line of the solidified lead droplet on pure 

iron from a top view. 

The investigation of the wetting of pure iron by liquid lead will be a reference system in the 

work presented here. The tests performed on the silica patterned iron will be compared to this 

reference system. We also conducted experiments on pure silica (actually thin layer of silica 

deposited on pure iron, section II.1.1.1)) as another reference. 

Impact velocity 

𝑉0 (m/s) 

𝐷𝑚𝑎𝑥
𝑡

𝐷0
 

𝐷𝑚𝑖𝑛
𝑡

𝐷0
 

𝐷𝑜𝑝𝑡
𝑡

𝐷0
 

𝐷𝑓

𝐷0
 𝜏𝑐 

0.75 1.87 1.61 1.69 1.81 0.07 

0.73 1.90 1.46 1.62 1.62 0.17 

0.60 1.67 1.53 1.60 1.63 0.06 

𝑉0 = 0.60 𝑚/𝑠 𝑉0 = 0.73 𝑚/𝑠 𝑉0 = 0.75 𝑚/𝑠 

a) 

b) 

c) 

1 mm 
1 mm 1 mm 
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 Pure silica 

III.2.2.1. Dynamic spreading 

Figure III.2-6 shows the evolution of the dimensionless spreading diameter (a) and maximum 

height (b) of liquid lead on pure silica substrate as a function of spreading time and impact 

velocity. The evolution of the mean contact angle as a function of spreading time (a) and 

spreading velocity (b) is also shown in Figure III.2-7. The two tests performed for this system 

are compared with the results from [1]. The wetting parameters obtained are given in Table 

Table III.2-4 (with the same notation as above for the case of pure iron). 

The dynamic wetting of lead on pure silica observed is consistent with the results published in 

the literature [1], [89], [98], [99] (Figure III.2-6 and Figure III.2-7). As in these previous 

experiments, the spreading of the liquid lead drop on silica can be divided into several steps as 

observed on pure iron. 

First, the droplet spreading diameter increases and reaches a maximum value 𝐷𝑚𝑎𝑥 after a 

spreading time 𝜏∗ of about 10 ms and the drop advances with an almost constant contact angle 

( 𝜃𝑖). The maximum droplet height decreases during the first ms and then remains constant. 

In the second stage, the drop recedes. The maximum height increases to a maximal value and 

the contact angle decreases sharply before increasing. At the end of this step, the droplet 

bounces back (V0 = 0.60 m/s and [1]). The rebound is due to the high initial kinetic energy of 

the droplet. The forced wetting leads to an initial contact angle much lower than the contact 

angle obtained at thermodynamic equilibrium (about 135°). When the triple line recedes, the 

surface energy at the maximum diameter is then mainly converted into kinetic energy. This 

explains why the dewetting step is followed by a rebound. It should be noted that the rebound 

was not observed in the second test (V0 = 0.86 m/s, red marks in Figure III.2-6). In this case, 

the maximum spreading diameter is smaller. This implies that the surface energy stored in the 

deformation of the liquid surface at this point is smaller and then the kinetic energy recovered 

during receding does not allow a rebound. This is a surprising result because the impact velocity 

is higher. This means that the energy dissipation is higher than in the first case (the reason is 

not understood, perhaps small defects in the silica layer that hold the drop in motion). 

In the third stage of spreading, the droplet undergoes a series of advancing and receding, leading 

to oscillations of the spreading diameter, maximum height and contact angle. These oscillations 
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last much longer than on pure iron. The dissipation of kinetic energy takes longer on less 

wettable surfaces because the triple line slides more freely on the substrate. At the end of the 

third stage, the spreading diameter, maximum height and contact angle of the drop are nearly 

constant at the mean values 𝐷𝑓 and 𝜃𝑓 respectively, after a spreading time 𝑡𝑠𝑡𝑎𝑏
𝑎  of more than 

500 ms. 

Table III.2-4:  Parameters of wetting dynamics of liquid lead on pure silica. 

𝑉0 

(m/s) 

𝜃𝑖 

(°) 

𝜃𝑑𝑟  

(°) 

𝜃𝑑𝑎 

(°) 

𝜃𝑓 

(°) 

𝑡𝑠𝑡𝑎𝑏
𝑑   

(ms) 

𝑡𝑠𝑡𝑎𝑏
𝑎  

(ms) 

𝜏∗ 

(ms) 

𝐷𝑚𝑎𝑥

𝐷0
 

𝐷𝑓

𝐷0
 

𝜃𝑟 

(°) 

𝜃𝑎 

(°) 

0.60 121 

±4 

85 

±5 

149 

±8 

134 

±2 

400 

 

700 10 2.75 0.77 122 145 

0.86 118 

±8 

100 

±6 

155 

±6 

137 

±3 

200 600 9 2.39 0.79 124 150 

Mean:

0.73 

±0.13 

120 

±6 

93 

±5 

152 

±7 

136 

±2 

300 

±100 

650 

±50 

9 

±1 

2.57 

±0.18 

0.78 

±0.01 

123 

±1 

147 

±3 

0.54 

[1] 

147 

±2 

112 

±4 

129 

±6 

129 

±3 

150 

±5 

750 

±10 

7 1.70 0.88 116 

±3 

144 

±3 
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Figure III.2-6: Dynamic wetting of lead on pure silica as function of spreading time and initial 

velocity: (a) Dimensionless spreading diameter, (b) dimensionless drop height. 
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Figure III.2-7: Mean contact angle of liquid lead on pure silica as function of (a) spreading 

time and (b) spreading velocity for different impact velocities. 
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Non-reactive wetting 

The difference between the initial 𝜃𝑖 and the final 𝜃𝑓 contact angles in Table III.2-4 is small, 

confirming that the iron / silica system is not reactive [14], [93], [100].  

Contact angle hysteresis 

Figure III.2-7b shows the evolution of the mean contact angle as a function of spreading 

velocity 𝑈. The contact angle hysteresis is measured at zero spreading velocity (chosen here in 

the interval [-0.02 m/s, 0.02 m/s]). The hysteresis of about 20° is in agreement with the results 

of the literature [14], [15]. The contact angle hysteresis is related to the presence of physical or 

chemical defects on the surface.  

I.1.1. Droplet shape after solidification 

At the end of the experiment, the solidified drop on pure silica was also analysed. However, 

since pure silica is not wetted by liquid lead (contact angle greater than 130°), only the drop 

shape obtained from a lateral view is relevant. 

The shape of the solidified drop for both tests was reconstructed from the lateral view, using 

the technique presented in section II.4.1. Figure III.2-4 shows the dimensionless contact 

diameter and contact angle of the solidified drop depending on the angle of view 𝛼𝑣. As for 

pure iron, the main dimensions and contact angles of the solidified drop are given in Table 

III.2-5. There is a good agreement between the measured values at high temperature and on the 

solidified drop. 

In both cases, the surface contact of the drop on pure silica is circular. The dispersion on 

spreading diameter and contact angle is the measurement error. 

Table III.2-5: Main parameters of the solidified lead drop on pure silica from a lateral view. 

Impact velocity 

𝑉0 (m/s) 

𝐷𝑚𝑎𝑥
𝑙

𝐷0
 
𝐷𝑚𝑖𝑛

𝑙

𝐷0
 

𝐷𝑚
𝑙

𝐷0
 

𝐷𝑓

𝐷0
 

𝜃𝑚𝑎𝑥
𝑙

(°) 

𝜃𝑚𝑖𝑛
𝑙

(°) 

𝜃𝑚
𝑙  

(°) 

 𝜃𝑓 

(°) 

0.60 0.75 0.67 0.70±0.02 0.77 143 132 137±3 134 

0.86 0.77 0.68 0.73±0.03 0.79 143 130 136±4 137 
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Figure III.2-8: Lateral view of solidified lead drop on pure silica. (a) Dimensionless spreading 

diameter, (b) contact angle as a function of angle of view. 

  

0.0
0.5
1.0
1.5
2.0
2.5

3.0
3.5
4.0

0
9 18

27
36

45
54

63

72

81

90

99

108

117

126
135

144
153

162171
180

189198
207

216
225

234

243

252

261

270

279

288

297

306
315

324
333

342351
(a) V0=0.60 m/s

V0=0.86 m/s

𝐷𝑙

𝐷 0

𝛼𝑣

𝐷𝑓

𝐷0

0
20
40
60
80

100
120
140
160
180

0
9 18

27
36

45
54

63

72

81

90

99

108

117

126
135

144
153

162171
180

189198
207

216
225

234

243

252

261

270

279

288

297

306
315

324
333

342351(b)
V0=0.60 m/s

V0=0.86 m/s

𝑙ߠ (°)

𝛼𝑣

𝜃𝑓



Chapter III: Wetting of liquid lead on patterned surfaces 

[130] 

 

 

  Recapitulation 

Before investigating the wetting of liquid lead on patterned surfaces, we analysed the wetting 

of reference surfaces: pure iron and silica. 

The dynamic wetting of liquid lead on pure substrates was consistent with the experiments 

presented in the literature for spreading diameter, contact angle and contact angle hysteresis.  

Experiments with impact velocities ranging from 0.6 m/s to 0.75 m/s were carried out on pure 

iron (silica surface fraction close to zero). Note that this difference in impact velocity is not 

well controlled with our device, since the pressure exerted for dropping is poorly controlled. 

From the experiments, an average evolution of spreading diameters, drop heights and contact 

angles as a function of time was calculated, which would correspond to the case of an average 

impact velocity of 𝑉0 = 0.69 ± 0.08 𝑚/𝑠. It will be our reference for wetting on pure iron. 

Similarly, the average evolution of the above-mentioned parameters on pure silica (100% of 

silica surface fraction) will be our reference for pure silica. The average impact velocity is V0 =

0.71 ± 0.15 m/s for this substrate. 

The results confirmed that the dynamic wetting of liquid lead on pure iron and pure silica is a 

non-reactive wetting, as the initial and final contact angles are of the same order of magnitude.  

At zero spreading velocity, a contact angle hysteresis of about 10° was measured on pure iron 

and about 20° on pure silica. 

In addition, we analysed the shape of the solidified drop in lateral view (on pure iron and pure 

silica) and in top view (only on pure iron). The triple line is generally not a perfect circle on 

pure iron, with a circularity criterion up to 0.17. This is due to pinning effects of liquid lead on 

pure iron with a contact angle of 46±7°. On pure silica, an almost circular shape of the solidified 

drop was obtained, because liquid lead does not wet pure silica (contact angle of 135°±5). 

In the following, pure iron and pure silica are used as references with silica surface fractions of 

0 and 1. The wetting of patterned surfaces (silica surface fraction from 3% to 70%) will be 

compared to that of pure substrates at high and low temperatures. 
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 Dynamic spreading on patterned surfaces 

  General description 

Figure III.3-1 and Figure III.3-2 show the evolution of the dimensionless spreading diameter, 

maximum height and mean contact angle of liquid lead on textured surfaces compared to pure 

substrates. The impact velocity is almost identical, about 0.70 m/s (the difference is due to the 

difficulty of controlling this impact velocity). The patterned surfaces considered have the same 

length of the side of the silica pillars (𝑑 = 20 𝜇𝑚) but a different distance between them and 

therefore a different silica surface fraction: 64% for the {20; 5} samples, 25% for the {20; 20} 

samples and 3% for the {20; 100} samples. The results presented in the figures are average 

behaviours obtained from the two tests performed on each patterned surface (see section III.3.2 

for more details on each test,). For reasons of clarity, the errors are not shown in these figures. 

The dynamic wetting shown in Figure III.3-1 and Figure III.3-2 is similar during the first 

milliseconds for all samples.  After impact, the drop advances and reaches the maximum 

spreading diameter 𝐷𝑚𝑎𝑥 after a spreading time between 𝜏∗ = 8 ms to 𝜏∗ = 10 ms (Figure 

III.3-1a). The maximum spreading diameter increases as the silica surface fraction increases. 

The effect of surface wettability on the maximum spreading diameter will be discussed in more 

detail in chapter IV. As the drop advances, its maximum height decreases rapidly before 

stabilizing (Figure III.3-1b). At the same time, the drop contact angle increases slightly (Figure 

III.3-2a). The mean initial contact angle  𝜃𝑖 obtained during this first step increases as the silica 

surface fraction increases. 

In the second stage, differences are observed between patterned samples during drop receding. 

On the {20; 5} sample with a high silica surface fraction (64%), the dynamic wetting is identical 

to that on pure silica: the drop recedes easily, the spreading diameter and the contact angle 

decrease rapidly before increasing. The large dispersion of the contact angle during this step is 

due to the oscillations of the drop caused by the dissipation of the initial kinetic energy. The 

second step is then followed by damped advancing and receding cycles. 

On {20; 20} and {20; 100} samples (with low and moderate silica area fractions), the receding 

of the liquid lead drops is different. Indeed, the triple line is pinned during receding at 16 ms 

(i.e. the spreading diameter is fixed) and the maximum height does not increase. The same 

results were obtained in one of the pure iron tests (Figure III.2-1a, V0 = 0.73 m/s). Regardless 
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of the silica surface fraction, the dynamic contact angles on these two samples and on pure iron 

are very close (Figure III.3-2) due to this pinning effect. At the end of this stage, the drop does 

not have enough energy to advance again, it stabilizes and rapidly reaches its final stage. 

The pinning effect of the liquid lead drop on the part occupied by metallic iron can lead to its 

division into two smaller droplets ({20; 100} sample, full and empty black circles, Figure III.3-1 

and Figure III.3-2). Our results suggest that the pinning effect of liquid drops occurs on 

patterned samples with low and moderate silica area fractions: in 6 out of 7 tests or 68% tests 

on surfaces with low silica area fraction (3-4%), 3 out of 7 tests or 43% on surfaces with 

moderate silica area fraction (25%) and only 1 out of 8 tests or 13% tests on surfaces with high 

silica area fraction (more than 64%). This phenomenon will be more analysed in section III.4. 
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Figure III.3-1: Dynamic wetting of liquid lead on pure substrates and patterned surfaces with 

different silica surface fractions: (a) Dimensionless spreading diameter, (b) Maximum 

dimensionless droplet height. 
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Figure III.3-2: Mean dynamic contact angle of liquid lead on pure substrates and patterned 

surfaces with different silica surface fractions as a function of (a) spreading time and (b) 

spreading velocity. 

  Main wetting parameters 

The wetting parameters obtained for each trial in the measurement direction d1 or d2 are given 

in Table III.3-1, with the same notations as in Table III.2-1: the mean initial contact angle 𝜃𝑖, 

the first receding contact angle  𝜃𝑑𝑟, the first advancing contact angle  𝜃𝑑𝑎, the final contact 

angle  𝜃𝑓, the stabilization time of spreading diameter (𝑡𝑠𝑡𝑎𝑏
𝑑  ) and contact angle (𝑡𝑠𝑡𝑎𝑏

𝑎  ), the 

initial spreading time  𝜏∗, the dimensionless maximum spreading diameter 𝐷𝑚𝑎𝑥/𝐷0 and final 

spreading diameter. The minimum receding (𝜃𝑟) and maximum advancing (𝜃𝑎) contact angles 

measured at zero velocity are also shown in Table III.3-1 (see section II.3.6, for more 

information on the measurement of contact angle hysteresis). 

In most tests, there is small difference (less than 10°) between the initial and final contact 

angles, considering the measurement errors of contact angle. This result confirms the wetting 

of the systems studied is non-reactive. 

Subsequently, these wetting parameters will be analysed to infer the characteristics and 

mechanisms of wetting of silica-iron surfaces by liquid lead.  
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Table III.3-1: Wetting parameters of liquid lead on patterned surfaces. 

𝑽𝟎 

(m/s) 

d1 or 

d2 

𝜽𝒊 

(°) 

𝜽𝒅𝒓 

(°) 

𝜽𝒅𝒂 

(°) 

𝜽𝒇 

(°) 

𝒕𝒔𝒕𝒂𝒃
𝒅  

(ms) 

𝒕𝒔𝒕𝒂𝒃
𝒂  

(ms) 

𝝉∗ 

(ms) 

𝑫𝒎𝒂𝒙

𝑫𝟎
 

𝑫𝒇

𝑫𝟎
 

𝜽𝒓 

(°) 

𝜽𝒂 

(°) 

Pure iron (𝒇𝑺𝒊𝑶𝟐
= 𝟎%) 

0.69 - 45±6 30±3 57±3 54±1 55±2 100 10 3.44 1.69 47 57 

{5; 20}, (𝒇𝑺𝒊𝑶𝟐
= 𝟒%) 

0.81 d1 71±3 38±4 63±6 56±1 111 100 10 3.60 1.67 39 70 

0.91 d2 30±3 22±2 - 48±1 37 71 8 3.82 - 21 50 

{20; 100}, (𝒇𝑺𝒊𝑶𝟐
= 𝟑%) 

0.78 d1 73±8 44±2 - 63±1 55 55 9 3.48 - 47 72 

0.83 d2 60±2 42±2 60±3 58±1 36 55 9 3.75 - 48 63 

{100; 500}, (𝒇𝑺𝒊𝑶𝟐
= 𝟑%) 

0.70 d1 42±5 26±4 59±4 59±2 58 100 10 3.55 1.47 39 63 

0.48 d2 65±6 50±4 89±5 69±1 51 91 8 2.50 1.47 61 101 

0.70 d1 53±5 40±6 51±3 56±1 91 91 10 3.59 - 48 57 

{5; 5}, (𝒇𝑺𝒊𝑶𝟐
= 𝟐𝟓%) 

0.69 d1 53±5 36±6 76±4 61±2 55 100 9 2.86 1.56 56 73 

{20; 20}, (𝒇𝑺𝒊𝑶𝟐
= 𝟐𝟓%) 

0.90 d1 61±8 37±5 50±5 55±1 53 100 9 3.24 1.59 27 70 

0.71 d2 59±3 37±4 - 55±1 45 100 10 2.86 1.29 30 57 

{100; 100}, (𝒇𝑺𝒊𝑶𝟐
= 𝟐𝟓%) 

0.75 d1 66±6 47±5 88±6 69±3 34 100 8 3.05 1.47 56 97 

0.32 d2 39±2 31±6 58±3 55±1 35 100 13 2.60 1.11 35 61 

{500; 500}, (𝒇𝑺𝒊𝑶𝟐
= 𝟐𝟓%) 

0.54 d1 65±3 35±4 84±6 67±1 63 100 8 2.68 1.48 53 86 

0.59 d2 
54 

±11 
36±5 64±5 70±5 45 100 11 3.02 1.47 49 68 

{20; 5}, (𝒇𝑺𝒊𝑶𝟐
= 𝟔𝟒%) 

0.72 d1 83±5 66±5 105 99±1 101 300 8 2.33 1.01 80 109 
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±5 

0.70 d2 74±6 61±5 
114 

±4 
99±2 101 300 7 2.61 1.09 89 114 

{100; 20}, (𝒇𝑺𝒊𝑶𝟐
= 𝟔𝟗%) 

0.76 d1 76±6 54±4 
111 

±4 

108 

±1 
101 300 8 2.42 1.12 77 111 

0.79 d2 75±7 62±4 
121±

6 

125 

±3 
110 300 6 2.74 0.79 95 139 

{500; 100}, (𝒇𝑺𝒊𝑶𝟐
= 𝟔𝟗%) 

0.66 d1 98±4 59±4 
112 

±4 

104 

±2 
94 300 7 2.40 1.00 70 118 

0.39 d2 
88 

±10 
62±4 

106 

±6 
91±2 92 300 8 1.98 1.22 73 111 

Pure silica (𝒇𝑺𝒊𝑶𝟐
= 𝟏𝟎𝟎%) 

0.71 - 
120 

±6 
93±5 

152 

±7 

136 

±2 

300 

±100 

650 

±50 

9 

±1 

2.57 

±0.18 

0.78 

±0.01 

123 

±1 

147 

±3 

 Stick – slip motion 

When the fraction of the surface occupied by silica is low (3%) and moderate (25%), the triple 

line advances by stick-slip motions (section III.4.1). During its receding, the drop is strongly 

pinned by the parts of the surface occupied by pure iron: sticking phase (fixed contact diameter 

of the drop). Then when it is favourable, the drop continues its receding: slipping phase. As a 

result, the triple contact line of the drop is deformed and surrounds the silica pillars to remain 

preferably on pure iron, which leads to different solidified drop shape (sections III.4.2). 

  Evidence of stick-slip motion during spreading 

Figure III.4-1a shows the change in the spreading diameter over time for liquid lead droplets 

on patterned surfaces with low silica area fraction (4%) together with the mean spreading on 

pure iron. The stick-slip motion of the triple line is highlighted for three patterned substrates at 

approximately the same spreading times. For all the three tests, at the first seconds of spreading, 

the lead drop on the patterned substrates behaves like on pure iron. Then, the droplet spreading 

diameter deviates from the case of pure iron: the spreading diameter on patterned substrates 
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remains constant for a few ms (sticking phase). This is because the triple line is pinned by the 

metallic iron parts of the substrate during its receding. The triple line can then move back  

(slipping phase) before being pinned again at around 26 ms. In a final step, the drop moves back 

again and can either reach its final spreading diameter ({5; 20} and {100; 500} black circles) 

or be divided into two or more droplets ({100; 500} red circles). 

The mean contact angle is also shown in Figure III.4-1b. The evolution of this contact angle is 

very similar for all the three textures and very close to the case of pure iron. On the patterned 

substrates, when the drop remains pinned to a constant diameter as it recedes, the contact angle 

decreases for the first diameter level and increases slightly for the second level. This could be 

explained by an overlapping of the receding movement of the drop triple line and oscillations 

of the whole drop. 

In Table III.4-1, the behaviour of the drop (followed according to the direction d1 or d2) when 

it recedes is summarized for all our tests: p. is used if the drop is pinned and the spl. if the drop 

is divided into several drops. In the case the drop splits, the number in brackets indicates the 

number of the small droplets obtained. 
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Figure III.4-1: Stick slip motion of liquid lead on patterned samples with low silica area 

fraction: (a) Dimensionless spreading diameter, (b) Mean dynamic contact angle. 

Table III.4-1: Summary of the stick-slip motion on silica patterned surfaces. Measurement 

direction is marked with d1 (direction 1) and d2 (direction 2). Pinning effects were observed 

on the experiment with the mark p. and drop splitting by the mark spl.. 

Pure iron 

(𝒇𝑺𝒊𝑶𝟐
= 𝟎%) 

{5; 20} 

(𝒇𝑺𝒊𝑶𝟐
= 𝟒%) 

{20; 100} 

(𝒇𝑺𝒊𝑶𝟐
= 𝟑%) 

{100; 500} 

(𝒇𝑺𝒊𝑶𝟐
= 𝟒%) 

- - - d1 d2 d1 d2 d1 d2 d1 

0.75 

m/s 

0.73 

m/s 

0.60 

m/s 

0.81 

m/s 

0.91 

m/s 

0.78 

m/s 
0.83 m/s 

0.70 

m/s 

0.48 

m/s 

0.70 

m/s 

- 

- 

p. 

- 

- 

- 

p. 

- 

p. 

spl.(4) 

p. 

 spl.(2) 

p. 

 spl.(2) 

p. 

- 

- 

- 

p. 

spl.(2) 

{5; 5} 

(𝒇𝑺𝒊𝑶𝟐
= 𝟐𝟓%) 

{20; 20} 

(𝒇𝑺𝒊𝑶𝟐
= 𝟐𝟓%) 

{100; 100} 

(𝒇𝑺𝒊𝑶𝟐
= 𝟐𝟓%) 

{500; 500} 

(𝒇𝑺𝒊𝑶𝟐
= 𝟐𝟓%) 

d1 d1 d2 d1 d2 d1 d2 
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0.69 

m/s 

0.90 

m/s 

0.71 

m/s 

0.75 

m/s 
0.32 m/s 

0.54 

m/s 

0.59 

m/s 

- p. p. - p. - - 

{20; 5} 

(𝒇𝑺𝒊𝑶𝟐
= 𝟔𝟒%) 

{100; 20} 

(𝒇𝑺𝒊𝑶𝟐
= 𝟔𝟗%) 

{500; 100} 

(𝒇𝑺𝒊𝑶𝟐
= 𝟔𝟗% 

Pure silica 

(𝒇𝑺𝒊𝑶𝟐
= 𝟏𝟎𝟎%) 

d1 d2 d1 d2 d1 d2 - - 

0.72 

m/s 

0.71 

m/s 

0.76 

m/s 

0.79 

m/s 

0.66 

m/s 
0.39 m/s 

0.55 

m/s 

0.86 

m/s 

p. - - - - - - - 

III.4.1.1. Influence of silica patterns 

As shown in Table III.4-1, the drop remains pinned when it recedes in almost all cases (6 out 

of 7 tests) when the silica surface fraction is low (3-4%). The drop is divided into several 

droplets in more than half of the tests (4 out of 7 tests). As mentioned in section III.2.1.1, the 

drop can also remain pinned in the case of the pure iron substrates but it is rarer (1 test out of 

3). This shows that silica pillars are involved in the pinning and division of the drop. In fact, on 

these patterned substrates, stick-slip motion is favourable due to the large distance between 

patterns compared to the pattern size. With regard to the moderate silica surface fraction (25%), 

the drop can remain pinned during receding (3 out of 7 tests) but never splits into several 

droplets. When the silica surface fraction is high (64%), the drop almost never gets pinned 

during receding (1 trial out of 8). 

III.4.1.2. Influence of spreading direction 

Table III.4-1 shows the stick-slip motion on patterned surfaces depending on the measurement 

direction (d1 or d2). On patterned surfaces with silica area fraction of 3% or 25%, eight (8) 

experiments were done in the direction d1 and six (6) in the direction d2. Stick-slip motion was 

observed for five (5) experiments in direction d1 and for four (4) experiments in the direction 

d2. Stick-slip motion leading to drop splitting was observed on two experiments in both 

directions. Then, these results do not show any influence of the measurement direction on the 

stick-slip phenomenon or on the drop division. 
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III.4.1.3. Drop splitting during the sticking phase 

During the sticking phase, the diameter of the drop is nearly constant but the interface liquid-

gas oscillates (Figure III.4-2). This oscillation may lead to the splitting of the drop into two or 

several droplets, when energetic condition is satisfied (section IV.6).   

 

Figure III.4-2: Example of stick slip motion leading to drop splitting: the case of {100; 500} 

sample with V0=0.70 m/s. 

As result, the triple contact line of the small droplets were observed to rest mainly on pure iron 

avoiding silica patterns (Figure III.4-4).  
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Figure III.4-3: SEM images of lead droplet shape and TCL position on {100; 500} patterned 

surfaces. 

 The shape of the triple contact line 

Due to the adhesion of the drop to the metallic iron parts of the surface, the dynamic contact 

angle is close to that obtained on pure iron. Consequently, the stick-slip motion can influence 

the solidified drop shape. In the case of the undivided drops, we used two approaches: first, a 

study of the macroscopic shape of the drop through a top view, and then, the determination of 

the position of the triple line of the drop in relation to the silica patterns.  
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III.4.2.1. Circularity criterion 

The shape of the triple line has been reconstructed from the top view (section II.4.2.1), for 

patterned surfaces wetted by liquid lead (contact angle less than 90°) and when the drop is not 

divided during spreading. The numerical procedure makes it possible to calculate the maximum 

diameter (𝐷𝑚𝑎𝑥
𝑡 ), minimum diameter (𝐷𝑚𝑖𝑛

𝑡 ), optimal diameter (𝐷𝑜𝑝𝑡
𝑡 ) and circularity criterion 

(𝜏𝑐) of the reconstructed drop shape (Table III.4-2). 

In all cases, the circularity criterion obtained is less than 0.17, which corresponds to the 

maximum circularity criterion obtained for pure iron (Table III.2-3). These results show that 

the effect of silica patterns on the macroscopic shape of the triple line is of the same order of 

magnitude as the effect of other defects that may be present on surfaces (grain boundaries, 

metallic steps, nanometric oxide particles). 

The circularity criterion alone is not sufficient to predict whether the droplet has been trapped 

during its spreading. However the majority of droplets that were pinned during receding are 

characterized by a circularity criterion greater than 0.1 (5 out of 6 trials including pure iron, or 

83%) while the majority of droplets that were not pinned during receding are characterized by 

a circularity criterion less than 0.1 (5 out of 7 trials including iron, or 71%). The circularity 

criterion is less than 0.05 if the triple line is less retained by the metallic iron parts. This shows 

that the stick-slip motion effectively causes a greater deformation of the drop shape. 

The circularity criterion provides macroscopic information on the drop shape but not on the 

deformation of the triple contact line on patterned surfaces. It is then necessary to position the 

triple contact line in relation to the silica pillars. 

Table III.4-2: Parameters characterizing the triple line of the undivided solidified lead droplet 

on patterned surfaces from a top view. p. indicates the stick-slip motion and spl. the split drops. 

𝑉0 (
𝑚

𝑠
); 

d1/d2 
p., spl. 

𝐷𝑚𝑎𝑥
𝑡

𝐷0
 

𝐷𝑚𝑖𝑛
𝑡

𝐷0
 

𝐷𝑜𝑝𝑡
𝑡

𝐷0
 

𝐷𝑓

𝐷0
 𝜏𝑐 

{5; 20}, (𝑓𝑆𝑖𝑂2
= 4%) 

0.81; d1 p. 1.65 1.39 1.55 1.62 0.12 
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III.4.2.2. Lead drop position with respect to silica patterns 

The effect of the silica pillars can be observed with the triple contact line deformation. The 

triple line (blue line) and the contact surface of the corresponding optimal circle (light blue) are 

positioned with respect to the texture patterns (red squares). We can only conduct this analysis 

on textures with sufficiently large patterns (more than 100 µm). 

For example, the position of lead drops at the end of spreading on {100; 500} and {100; 100} 

samples is shown in Figure III.4-4. As indicated in Table III.4-2 and Table III.4-3, we chose to 

represent two trials for each texture: the drop underwent stick-slip movements for the first trial 

(Figure III.4-4.a and Figure III.4-4.d) and did not undergo stick-slip movement for the second 

{100; 500}, (𝑓𝑆𝑖𝑂2
= 3%) 

0.7; d1 p. 1.82 1.50 1.63 1.49 0.12 

0.48; d2 - 1.44 1.37 1.40 1.46 0.03 

{5; 5}, (𝑓𝑆𝑖𝑂2
= 25%) 

0.69; d1 - 1.63 1.60 1.61 1.56 0.02 

{20; 20}, (𝑓𝑆𝑖𝑂2
= 25%) 

0.90; d1 p. 1.74 1.38 1.55 1.59 0.17 

0.71; d2 p. 1.67 1.29 1.43 1.29 0.17 

{100; 100}, (𝑓𝑆𝑖𝑂2
= 25%) 

0.75; d1 - 1.40 1.37 1.38 1.47 0.04 

0.32; d2 p. 1.66 1.55 1.60 1.71 0.05 

{500; 500}, (𝑓𝑆𝑖𝑂2
= 25%) 

0.54; d1 - 1.44 1.36 1.39 1.48 0.11 

0.59; d2 - 1.46 1.39 1.41 1.47 0.13 
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(Figure III.4-4.b and Figure III.4-4.c). This choice makes it possible to compare the effect of 

the triple line pinning on its final shape. 

Table III.4-3 shows the silica surface fraction  (𝑓𝑆𝑖𝑂2
 
𝑠𝑢𝑟𝑓

 and the silica linear fraction 

 (𝑓𝑆𝑖𝑂2
 
𝑇𝐶𝐿

 at the triple contact line calculated using the precise position of the triple contact 

line. The corresponding equilibrium contact angles  𝜃𝑠𝑢𝑟𝑓 and  𝜃𝑡𝑐𝑙 calculated with Eqs. (I.2.4) 

and (I.2.6) are also given. These calculations were made for both the solidified drop and its 

optimal circle. The values in brackets indicate the results obtained with the optimal circle. 

In all cases, whether or not the triple line is pinned during receding, the surface fraction of silica 

under the drop remains constant and equal to the average surface fraction of silica: ̴ 0.03 for 

{100; 500} samples and ̴ 0.25 for {100; 100} samples. This result is not surprising, as discussed 

in Section III.5.1, because at these pattern sizes and distances between patterns, the volume of 

the drop is large enough that these surface fractions do not change when the position of the TCL 

changes. 

As far as concerned the silica linear fraction, two conclusions can be drawn about the real shapes 

of the triple line depending on whether they are compared to their optimal circle or whether 

they are compared with each other. 

When the triple line is pinned during receding, the silica linear fraction at the triple line is lower 

for the real triple line than for the optimal circle only for {100; 500} sample (Figure III.4-4.a) 

( (𝑓𝑆𝑖𝑂2
 
𝑡𝑐𝑙

= 0.005 against 0.023). This difference does not exist for the {100; 100} sample 

because the deformation of the triple line is small and the comparison is therefore not relevant. 

The result is more interesting by comparing the drops with each other according to whether 

they were retained or not during the receding. Indeed, the TCL of the drops that were retained 

by pure iron (indicated by p. in Table III.4-3) are mainly on pure iron compared to the one 

where the drops were not. 
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Table III.4-3: Linear and area fraction of the reconstructed TCL of lead drop on patterned 

surfaces. 

 𝑉0 (
𝑚

𝑠
);  

d1/d2 

Pinning, 

p. 
 (𝑓𝑆𝑖𝑂2

 
𝑠𝑢𝑟𝑓

  (𝑓𝑆𝑖𝑂2
 
𝑡𝑐𝑙

  𝜃𝑠𝑢𝑟𝑓(°)  𝜃𝑡𝑐𝑙(°) 

{100; 500}, (𝑓𝑆𝑖𝑂2
= 0.03) 

{100; 100} 

𝑐) 𝑉0 = 0.75 𝑚/𝑠 𝑑) 𝑉0 = 0.32 𝑚/𝑠 

{100; 500} 

𝑎)  𝑉0 = 0.70 𝑚/𝑠 𝑏) 𝑉0 = 0.48 𝑚/𝑠 

Figure III.4-4: TCL positioning of lead drop toward silica patterns on two different patterned 

surfaces: {100; 100} and {100; 500}. Pinning effect was observed for the images in a) and d). 
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 Recapitulation 

A liquid lead drop deposited on an iron surface covered with silica pillars remains pinned when 

it recedes, when the silica surface fraction is low (3-4%), and the drop can be divided into 

several droplets. With regard to the moderate silica surface fraction (25%), the drop can remain 

pinned during receding but never splits into several droplets (section III.4.1). The triple contact 

line of the drop is deformed and surrounds the silica pillars to remain preferably on pure iron 

(section III.4.2). We can therefore assume that the triple line remains pinned to metallic iron 

when it recedes. 

On the other hand, silica pillars seems to be involved in the pinning and division of the drop. 

This point will be further investigated in energetic view in section IV.6. 

 Influence of spreading directions 

  Critical drop size 

In sections I.1.6.4 and I.1.6.5, we have shown the influence of the size of the substrate defect 

on the shape of the drop contact line [14], [15], [22], [23]. Depending on the defect scale in 

relation to the drop size, different contact angles can be obtained. However, for a surface 

covered with defects whose distribution is isotropic [37], [39], [47]–[52], there is a critical drop 
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size (𝐷𝑐) beyond which the contact angle becomes independent of the location of the drop triple 

contact line and the size of the drop contact area. 

Critical spreading diameter 

For the patterned surfaces studied here, simple calculations for the critical drop size are 

possible. And first, patterned surfaces with different square silica size and area fraction were 

reproduced as a simple image using MATLAB. Then for different theoretical drop size 

(considered as spherical) deposited on each patterned surface, the linear and area fractions of 

the drop on silica were calculated using techniques of image comparisons (developed under 

MATLAB). 

To study the influence of the position of the triple line, five positions of the drop were 

considered as indicated in Figure III.5-1. The blue disk correspond to the contact surface 

between the drop and the patterned substrate. Its diameter is representative of the so-called 

spreading diameter D in our experiments. 

 

Figure III.5-1: The five different positions (cases) of the drop centre toward patterns selected 

for calculations. 
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Figure III.5-2 shows triple contact line (TCL) fraction and contact area fraction on silica of the 

theoretical spherical drops deposited on patterned surfaces depending on the centre of the drops 

(indicates as ‹‹case›› in Figure III.5-2 and Figure III.5-1). Patterned surfaces with the same 

silica area fraction than our experimental study (3%, 25% and 70%) are considered. It should 

be noticed that, at a given silica area of patterned surfaces, results depend only on the ratio of 

the drop size (𝐷) to the size of the patterns (𝑎 + 𝑠).  

The figure also shows the influence of the position of the drop centre. Depending on the drop 

size and the position of its centre, linear fraction of the triple contact line on silica is different. 

A periodic variation of the linear fraction was obtained (Figure III.5-2.a). These variations of 

the linear fraction is another explanation of the origin of the contact angle hysteresis on the 

patterned surfaces due to its heterogeneity. 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L
in

ea
r 

T
C

L
fr

ac
ti

o
n
 o

n
 s

il
ic

a

Spreading diameter of the drop, D/(a+s)

(a)

70%

25%

3%



Chapter III: Wetting of liquid lead on patterned surfaces 

[149] 

 

 

 

Figure III.5-2: TCL linear and surface fractions of silica under theoretical spherical drops 

(contact surface diameter 𝐷) placed on silica-patterned iron surfaces {a; s}. Three surface 

groups with different silica area fractions (3%, 25% and 70%) were tested. Each colour 

corresponds to a different position of the theoretical drop centre (Figure III.5-1). 

However, the variation in the surface area fraction occupied by silica under the drop is smaller 

than the linear fraction of silica at the triple line. For small drops, this silica surface fraction 

varies greatly with the diameter of the drop / substrate contact surface and the position of its 

centre. For large drops, it tends towards the silica area fraction of the patterned surfaces (Figure 

III.5-2b). The critical value of the drop contact size is found to be around 5 (with calculation 

errors of area fraction of ± 0.005):  

 𝐷𝑐

𝑎 + 𝑠
= 5 

(III.5.1) 

Then, the size of the drop contact surface must be equal to at least five times the pattern size 

(𝑎 + 𝑠) so that its position has no influence on wetting. 

Comparison between experimental and critical spreading diameter 

This criterion is calculated for all the textures studied here and compared to the dimensionless 

spreading diameter measured at 1 ms and at the end of the spreading in our experiments (Table 

III.5-1). 
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For the smallest pattern sizes, i.e. {5; 20}, {20; 100}, {5; 5}, {20; 20}, {100; 100}, {20; 5}, 

{100; 20}, the dimensionless spreading diameters are larger than the critical dimensionless 

diameter for any spreading time. We can then expect a limited influence of the direction of the 

triple line compared to the direction of the texture. 

On the other hand, for the largest pattern sizes, i.e. {100; 500}, {500; 500}, {500; 100}, the 

initial and final spreading diameters are of the same order of magnitude as the critical 

dimensionless diameter, which could lead to differences in behaviour depending on the 

direction of spreading. These three cases will be discussed in more detail in section III.5.2. 

Table III.5-1: Dimensionless critical drop size compared to dimensionless spreading diameter 

at 1 ms and at the end of spreading (𝐷𝑓/𝐷0). 

{d; s} 𝐷𝑐 =  5. (𝑑 + 𝑠) 

[µm] 

𝐷𝑐  / 𝐷0 𝐷 / 𝐷0   

(at 1 ms) 

𝐷𝑓/𝐷0 

{5; 20} 125 0.05 ~ 0.7 ~ 1.7 

{20; 100} 600 0.23 1 – 1.3 - 

{100; 500} 3000 1.15 0.8 – 1.2 ~ 1.5 

{5; 5} 50 0.02 ~ 0.5 ~ 1.6 

{20; 20} 200 0.08 1.1 – 1.2 ~ 1.6 

{100; 100} 1000 0.38 1.2 – 1.4 ~ 1.1 

{500; 500} 5000 1.92 ~ 0.5 ~ 1.5 

{20; 5} 125 0.05 ~ 0.8 ~ 1.0 

{100; 20} 600 0.23 ~ 1.0 0.8 – 1.1 

{500; 100} 3000 1.15 0.4 – 0.7 1.0 - 1.2 

As an example of what happens when the drop is too small for the size of the patterns, we can 

look at the drop obtained on the the {500; 500} sample. The final drop diameter is 𝐷𝑓 =

1.48𝐷0~4 𝑚𝑚, then 
𝐷𝑐

𝑑+𝑠
= 4 < 5. In this case, the drop size is not sufficient for isotropic 

wetting. This result is in agreement with the deformed shape of the solidified drop obtained 

(Figure III.5-3). 
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Figure III.5-3: Anisotropic solidified lead drop on {500; 500} sample. 

Theoretical error on the contact angle 

This discussion is based on a calculation of the equilibrium contact angle estimated for any 

spreading diameter. Obviously, the reality is more complex since the contact angle is dynamic. 

The drop surface contact is often not circular and the TCL is tortuous even for the smallest 

pattern sizes due to stick-slip motion for instance (section III.4). 

  Influence of spreading direction 

III.5.2.1. High temperature 

At high temperature, wetting experiments were performed following two different directions 

for each patterned samples, direction d1 (parallel to the sides of the silica pillars) and direction 

d2 (along the diagonal of the silica pillars) (section II.2.2, Figure II.2-3). 

Figure III.5-4 shows the dynamic contact angle of liquid lead on {20; 20} and {500; 500} 

samples in both directions d1 and d2. These two textures are such that the spreading diameter 

is respectively greater and smaller than the critical diameter. In both case, the dynamic contact 

angle evolves in the same way in any direction but with some differences. Most of the time, the 

dynamic contact angle obtained is greater in direction d1 than in direction d2. 

Table III.5-2 shows the main contact angles as a function of the spreading direction (with the 

same notation as in Table III.3-1) for the different substrates. The difference between the angles 

measured in both directions (d1-d2) is given in the lines with a yellow background. The 
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measured initial contact angle 𝜃𝑖 and the advancing contact angle 𝜃𝑎 are in most cases (6 out of 

9 patterned surfaces or 67%) higher in the direction d1 than in the direction d2. However the 

differences in the receding contact angles are less important and do not highlight the evidence 

of the influence of the measurement direction. 
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Figure III.5-4: Influence of spreading direction on dynamic contact angle of lead drop on a) 

{20; 20} substrates and b) {500; 500} substrates.  
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Table III.5-2: Contact angle of lead drop on patterned surfaces depending on spreading 

direction. 

𝑉0 

(m/s) 
d1; d2 

𝜃𝑖 

(°) 

𝜃𝑑𝑟 

(°) 

𝜃𝑑𝑎 

(°) 

𝜃𝑓 

(°) 

𝜃𝑟 

(°) 

𝜃𝑎 

(°) 

{5; 20}, (𝑓𝑆𝑖𝑂2
= 4%) 

0.81 d1 71±3 38±4 63±6 56±1 39 70 

0.91 d2 30±3 22±2 - 48±1 21 50 

 d1-d2 41±4 16±3 - 8±1 18 20 

{20; 100}, (𝑓𝑆𝑖𝑂2
= 3%) 

0.78 d1 73±8 44±2 - 63±1 47 72 

0.83 d2 60±2 42±2 60±3 58±1 48 63 

 d1-d2 13±4 ̴ 0 - 5±1 -1 9 

{100; 500}, (𝑓𝑆𝑖𝑂2
= 3%) 

0.70 1-d1 42±5 26±4 59±4 59±2 39 63 

0.48 d2 65±6 50±4 89±5 69±1 61 101 

0.70 2-d1 53±5 40±6 51±3 56±1 48 57 

 2-d1-d2 -12±8 -10±7 -38±6 -13±1 -13 -44 

{5; 5}, (𝑓𝑆𝑖𝑂2
= 25%) 

0.69 d1 53±5 36±6 76±4 61±2 56 73 

{20; 20}, (𝑓𝑆𝑖𝑂2
= 25%) 

0.90 d1 61±8 37±5 50±5 55±1 27 70 

0.71 d2 59±3 37±4 - 55±1 30 57 

 d1-d2 ̴ 0 ̴ 0 - ̴ 0 -3 13 

{100; 100}, (𝑓𝑆𝑖𝑂2
= 25%) 

0.75 d1 66±6 47±5 88±6 69±3 56 97 

0.32 d2 39±2 31±6 58±3 55±1 35 61 

 d1-d2 27±4 16±8 30±7 14±3 21 36 

{500; 500}, (𝑓𝑆𝑖𝑂2
= 25%) 

0.54 d1 65±3 35±4 84±6 67±1 53 86 
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0.59 d2 54±11 36±5 64±5 70±5 49 68 

 d1-d2 11±11 ̴ 0 20±8 ̴ 0 4 18 

{20; 5}, (𝑓𝑆𝑖𝑂2
= 64%) 

0.72 d1 83±5 66±5 105±5 99±1 80 109 

0.70 d2 74±6 61±5 114±4 99±2 89 114 

 d1-d2 9±8 ̴ 0 -9±6 ̴ 0 -9 -5 

{100; 20}, (𝑓𝑆𝑖𝑂2
= 69%) 

0.76 d1 76±6 54±4 111±4 108±1 77 111 

0.79 d2 75±7 62±4 121±6 125±3 95 139 

 d1-d2 ̴ 0 -8±6 -10±7 -17±3 -18 -28 

{500; 100}, (𝑓𝑆𝑖𝑂2
= 69%) 

0.66 d1 98±4 59±4 112±4 104±2 70 118 

0.39 d2 88±10 62±4 106±6 91±2 73 111 

 d1-d2 10±11 ̴ 0 6±7 13±3 -3 7 

III.5.2.2. Solidified drops 

At high temperatures, the final contact angle can only be observed in one direction for each 

experiment, due to the limitations of our experimental set-up. On the contrary, on the solidified 

drop, the influence of the spreading direction can be observed over the entire contour of the 

drop. 

For this reason, the influence of the measurement direction on the spreading diameter and 

contact angle of the drop was studied on the solidified drop. The spreading diameters and 

contact angles were measured in forty directions around the drop in lateral view (section II.4.1). 

Figure III.5-5 shows the influence of the measurement direction on the spreading diameter and 

contact angle of the drop on the {20; 20} sample (25% of silica area fraction) and on the {20; 

5} sample (64% of silica area fraction) compared to pure substrates. The tests where the triple 

line was pinned during spreading are marked with the letter p. 

Table III.5-3 summarizes the maximum, minimum and average values of the spreading 

diameter and contact angle of all undivided lead drops on patterned surfaces. In addition, the 

table shows (on a yellow background) the maximum spreading diameter of the drops in the 
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directions d1 (angle of view 𝛼𝑣 =0°, 90°, 180°, 270°) and d2 (angle of view 𝛼𝑣 =45°, 135°, 

225°, 315°) in the lateral view. 

As explained in section III.4, the effect of the stick-slip motion of the triple line during 

spreading leads to the elongated shape of the solidified drop on {20; 20} sample as on pure iron 

with 𝑉0 = 0.73 𝑚/𝑠. On the other hand, the solidified drop on the {20; 5} sample is less 

deformed. The contact surface of the drop on the substrates almost circular. The same result is 

obtained for all surfaces with a high silica area fraction (64 to 69%). This is even the case for 

the {500,100} sample which could be subjected to deformation (section III.5.1). 

The maximum spreading diameters are in most cases larger in the d1 direction than d2, 

especially when the triple line is pinned during receding at high temperature. The deformation 

of the triple line and therefore its pinning during receding seems to depend on the direction of 

the triple line in relation to the patterns. However, the differences are small and not far from the 

experimental error (±0.04). These deformations could also depend on the fall of the lead drop 

(which is not perfectly identical for each test)  

In Figure III.5-5 and Table III.5-3, the differences in the contact angle around the drop are less 

important compared to the measurement uncertainty and contact angle hysteresis. In fact, the 

differences in contact angle around the drop are related to the contact angle hysteresis. 
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Figure III.5-5: Lateral view of solidified lead drop shape on patterned surfaces compared to 

the case of pure substrates. (a) Dimensionless drop diameter, (b) drop Contact angle depending 

on the angle of view 𝛼𝑣. 
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Table III.5-3: Main parameters of the solidified lead drop shape from a lateral view on 

patterned surfaces. 

𝑉0 

(m/s) 

𝐷𝑚𝑎𝑥
𝑙

𝐷0
 

𝐷𝑚𝑎𝑥
𝑙

𝐷0
 

(d1) 

𝐷𝑚𝑎𝑥
𝑙

𝐷0
 

(d2) 

𝐷𝑚𝑖𝑛
𝑙

𝐷0
 

𝐷𝑚
𝑙

𝐷0
 

𝐷𝑓

𝐷0
 

𝜃𝑚𝑎𝑥
𝑙

(°) 

𝜃𝑚𝑖𝑛
𝑙

(°) 

𝜃𝑚
𝑙  

(°) 

 𝜃𝑓 

(°) 

{5; 20}, (𝒇𝑺𝒊𝑶𝟐
= 𝟒%) 

0.81 1.70 1.65 1.67 1.39 1.57 1.67 65 46 55±4 56±1 

{100; 500}, (𝒇𝑺𝒊𝑶𝟐
= 𝟑%) 

0.7 1.81 1.81 1.61 1.42 1.58±0.11 1.47 66 47 56±5 59±2 

0.48 1.49 1.44 1.43 1.32 1.38±0.04 1.47 76 61 69±4 69±1 

{5; 5}, (𝒇𝑺𝒊𝑶𝟐
= 𝟐𝟓%) 

0.69 1.65 1.62 1.64 1.56 1.61±0.03 1.56 62 49 54±2 61±2 

{20; 20}, (𝒇𝑺𝒊𝑶𝟐
= 𝟐𝟓%) 

0.90 1.69 1.66 1.61 1.30 1.53±0.12 1.59 71 52 57±4 55±1 

0.71 1.74 1.74 1.60 1.29 1.49±0.13 1.29 75 54 61±5 55±1 

{100; 100}, (𝒇𝑺𝒊𝑶𝟐
= 𝟐𝟓%) 

0.75 1.42 1.42 1.37 1.24 1.35±0.05 1.47 78 65 73±3 69±3 

0.32 1.70 1.70 1.60 1.52 1.60±0.05 1.71 59 45 51±3 55±1 

{500; 500}, (𝒇𝑺𝒊𝑶𝟐
= 𝟐𝟓%) 

0.54 1.42 1.39 1.39 1.27 1.34±0.04 1.48 70 62 67±2 67±1 

0.59 1.52 1.45 1.47 1.32 1.42±0.06 1.47 71 53 62±5 70±5 

{20; 5}, (𝒇𝑺𝒊𝑶𝟐
= 𝟔𝟒%) 

0.72 1.12 1.11 1.11 1.00 1.08±0.03 1.01 112 99 102±3 99±1 

0.71 1.17 1.14 1.12 0.94 1.08±0.06 1.09 113 94 105±4 99±2 

{100; 20}, (𝒇𝑺𝒊𝑶𝟐
= 𝟔𝟗%) 



Chapter III: Wetting of liquid lead on patterned surfaces 

[159] 

 

 

 

  Recapitulation 

It is well known that the wetting of a heterogeneous surface can vary according to the size of 

the drop in relation to the size of the defects. We estimated the surface area fraction covered by 

silica under the drop and the linear fraction of silica at the triple line for a circular contact 

surface of diameter D and patterned surfaces {d; s}. This theoretical calculation makes it 

possible to represent the ideal spreading of the drop, with the strong assumption that the drop 

is in thermodynamic equilibrium at all times. This calculation shows that the drop contact 

diameter must be at least five times larger than the size of the patterns (d+s) for the wetting to 

be independent of the position of the drop on the surface and of the spreading direction. 

During the drop spreading, the advancing contact angles are more often larger in the spreading 

direction d1 than in the spreading direction d2. This result is surprising. Indeed, Naidich et al 

[84] also studied the influence of the spreading direction on the advancing and receding contact 

angles. If on the receding contact angles, the influence of the spreading direction is negligible 

in accordance with our result, they obtained larger advancing contact angles in the direction d2 

than in the direction d1 (Figure I.4-4). The difference may be related to the difference in the 

method of measuring the advancing contact angles. In the work of Naidich et al, they were 

measured by heating up to the prescribed temperature the metal placed on the target surface. 

On the solidified drop, deformations related to stick-slip motion phenomena were also found 

through a reconstruction of the drop in lateral view. When the drops are less circular, they are 

more elongated in the direction d1 than in the direction d2. This result is consistent with those 

obtained by Naidich et al.  

0.76 1.11 1.08 1.10 0.98 1.05±0.03 1.12 124 101 109±5 
108±

1 

0.79 0.87 0.86 0.81 0.72 0.79±0.04 0.79 135 121 128±3 
125±

3 

{500; 100}, (𝒇𝑺𝒊𝑶𝟐
= 𝟔𝟗%) 

0.39 1.18 1.09 1.16 1.01 1.10±0.04 1.22 107 86 100±6 91±2 
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Since the influence of the spreading direction is small and of the order of magnitude of the 

uncertainty of our measurements (due to different initial kinetic energies for example), we will 

only use an average of the data obtained on each texture in section III.6.  
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 Influence of pattern size {d; s} at fixed silica area fraction 

It is well-known that the area fraction of defects influence wetting of non-ideal surfaces (section 

I.1.6). However, the influence on the wetting of the defect size is not well-known. The surfaces 

studied in this work are made of silica of different sizes between 5 and 500 µm. This gives the 

ability to study the influence of the size of the defects at high temperature. 

Figure III.6-1 shows the dynamic contact angles of each patterned surface (3-4%, 25%, 64-

70%) as a function of spreading time in relation to pure substrates (pure iron and pure silica). 

It should be noted that the results presented in this figure are average dynamic contact angles 

obtained from the two tests performed on each patterned surface (for more details see section 

III.3.2). For reasons of clarity, the errors are not shown. 
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Figure III.6-1: Influence of pattern size at fixed silica area fraction on dynamic contact angle: 

a) samples with low silica area fraction (3-4%), b) samples with moderate silica area fraction 

(25%) and c) samples with high silica area fraction.  
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From the images in Figure III.6-1, two main conclusions can be deduced. 

First, at given silica area fraction, the dynamic contact angle is very close for all the patterned 

surfaces regardless of the size of the patterns (d) and their spacing (s). This shows that these 

two dimensional parameters of the patterned surfaces (d and s) have negligible effect on the 

wetting by liquid lead. 

Then, we notice an influence of the silica area fraction. The dynamic contact angle on patterned 

samples with high silica area fraction is higher and closer to that of silica. 

 Influence of silica surface coverage 

It has been demonstrated in the literature that the defects on the surface influence wetting 

(section I.1.6). In this section, the influence of the defect (silica) area fraction is studied on the 

final contact angles and on the contact angle hysteresis. 

  Final contact angle 

In Figure III.7-1, the final contact angles obtained in our experiments are compared with the 

Cassie contact angle (Eq. (I.3.4)) as a function of the silica area fraction. 

For surfaces with high silica area fraction (64 - 70%), the contact angle is close to the 

equilibrium contact angle predicted by Cassie's relationship: the drop is therefore close to its 

thermodynamic equilibrium state. For samples with a silica area fraction of 3% and 25%, the 

final contact angle is less than that predicted by the Cassie equation. On these samples, the drop 

appears to be retained in the contact angle hysteresis. The energy of the drop is not high enough 

to overcome the obstacles represented by silica pillars. 
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Figure III.7-1 Comparison between the Cassie contact angle (blue line) and the final contact 

of the tests presented in this work as a function of the surface fraction covered by silica. The 

textured iron / silica surfaces are represented by red squares, pure iron by a purple square and 

silica by a blue square. 

 Contact angle hysteresis on silica patterned surfaces 

The contact angle hysteresis on patterned surfaces was measured using two methods (section 

II.3.6). In the first method, contact angle hysteresis were measured from the minimum contact 

angle (𝜃𝑑𝑟) reached during the first receding of the liquid lead drop and the maximum contact 

angle (𝜃𝑑𝑎) when it advances again. In the second method, contact angle hysteresis (𝜃𝑟 and 𝜃𝑎) 

were measured at zero spreading velocity, taking into account all experimental points (e.g., 

Figure III.3-2b). The contact angle hysteresis obtained by both methods is given in Table III.3-1 

for each sample and for each test. 

In Figure III.7-2, these four contact angles measured on the patterned surfaces are compared to 

Cassie’s contact angle and the advancing and receding contact angles predicted by Raj et al. 

[65] (section I.2.3). In the patterned surfaces {d; s} of this work, the most wetting defect (pure 
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iron) is interconnected. Therefore, according to Raj et al. 𝜆1𝑚𝑎𝑥 = 1 for undistorted triple 

contact line and 𝜆2𝑚𝑎𝑥 =
𝑑

𝑑+𝑠
. With Eqs. (I.2.20) and (I.2.21), this leads to: 

 𝑐𝑜𝑠 𝜃𝑟 = 𝑐𝑜𝑠 𝜃𝐹𝑒  (III.7.1) 

 
𝑐𝑜𝑠 𝜃𝑎 =

𝑑

𝑑 + 𝑠
𝑐𝑜𝑠 𝜃𝑆𝑖𝑂2𝑎

+ (1 −
𝑑

𝑑 + 𝑠
) 𝑐𝑜𝑠 𝜃𝐹𝑒𝑎  

(III.7.2) 

𝜃𝐹𝑒𝑟 and 𝜃𝐹𝑒𝑎 are the receding and advancing contact angles on pure iron and 𝜃𝑆𝑖𝑂2𝑎
 is the 

advancing contact angle on pure silica. 

The receding contact angles are almost constant for the low (3%) and moderate (25%) silica 

surface fractions. The dynamic receding contact angles 𝜃𝑑𝑟 with high silica area fraction (~ 

70%) remains of the same order of magnitude as that measured on pure iron. The same 

observation has been demonstrated by several authors in the literature (section I.4.2 [15], [65], 

[84]). 

On patterned surfaces, one of the parameters that governs the contact angle hysteresis is the 

wetting of the solid, which is continuous. If the interconnected solid is the wettest one, the 

receding contact angle is constant up to a high area fraction occupied by the less wetted solid 

[23]. In our study, metallic iron is the interconnected solid, it is well wetted by liquid lead, 

which explains why the receding contact angle is of the same order of magnitude as the receding 

contact angle measured on pure iron. Indeed, when the liquid lead drop recedes on these 

samples, it remains pinned to the metallic iron parts as shown by the observations of the drop 

triple contact line (section III.4.2). 

The receding contact angles measured at the end of the first receding step of the drop are in 

very good agreement with the model of Raj et al. [23]. It should be noted that the receding 

contact angles measured by the two methods are slightly different. This may be related to the 

dispersion of the contact angle and the difficulty to accurately measure the contact angle 

hysteresis. 

The advancing contact angles are closer to the equilibrium contact angle predicted by Cassie’s 

model and therefore slightly overestimated by Raj et al.  
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Figure III.7-2: Contact angle hysteresis of liquid lead on silica-patterned iron surface relative 

to the Cassie contact angle (blue line) and the prediction of Raj et al. [65], as a function of 

silica surface fraction. The receding contact angles are found in empty squares and the 

advancing contact angles in solid black squares.  

 Conclusion 

Using the dispensed drop technique, wetting experiments by liquid lead on heterogeneous 

surfaces were performed at 450°C. The heterogeneous surfaces were silica-patterned surfaces 

composed of regular silica-patterned high-purity iron with different pillar sizes (from 5 to 500 

µm) and spacing (from 5 to 500 µm). In this solid/iron system, iron is wetted by liquid lead 

(equilibrium contact angle of 55°) whereas silica is not (equilibrium contact angle of 135°). 

First, for all samples, the drop spreads and a maximum spreading diameter is reached. The lead 

drop then recedes and different wetting types have been observed. In some cases, the drop 

advances again before oscillating and stabilizing to its final state. In other cases, the drop is 

pinned during its receding and the triple line spreads by stick-slip motion on the sample.  
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Only the first case was observed on surfaces with high silica surface coverage. The lead drop 

was close to the most stable contact angle or equilibrium contact angle. 

On surfaces with moderate silica area fraction, both cases of wetting (stick-slip motion or not) 

were observed. Stick-slip motion was commonly observed on samples with low silica surface 

coverage. In this case, the triple line can be strongly deformed during its receding, which can 

lead to its division into several droplets. Image processing and scanning electron microscopy 

showed that the triple contact line was mainly on pure iron, avoiding silica pillars. 

When the drop is strongly deformed, it is more elongated in the direction d1 than in the direction 

d2. But the influence of the spreading direction of the triple contact line relative to the patterns 

on the wetting was found to be small. The spreading diameter and contact angle measured at 

low and high temperatures were in good agreement, which led us to conclude that the drop 

remains representative of the high temperature wetting parameters after solidification.  

With respect to the effect of oxide size and their distribution, the same spreading dynamics was 

observed on the different patterned surfaces for a given oxide area fraction. In addition, the 

same results were observed on the solidified drop. These results confirm that the defect area 

fraction plays a key role in wetting but not the size or distribution of defects. 

Finally, we analysed the influence of the surface area fraction covered by silica on the final 

contact angle and on the contact angle hysteresis. The final contact angle, especially for samples 

with a moderate silica surface fraction is close to a receding contact angle due to the pinning 

effect. The receding contact angles were almost constant, in agreement with literature results. 

Indeed, it is generally admitted that the receding contact angle is constant on the patterned 

sample where the more wetting solid is interconnected [14], [15], [65], [84] due to the pinning 

effect on the most wetting defect during the receding phase. 
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 Introduction 

As explained in Chapter 3, the wetting dynamics of liquid lead on silica patterned iron surfaces 

can be divided into four different phases (Figure IV.1-1). First, the drop spreads upon impact 

until it reaches its maximum spreading diameter (1). Then, the drop recedes (2). Last, it 

undergoes some oscillations of lower amplitude until rest. At the beginning of this relaxation, 

the contact line moves as the drop oscillates (3). This motion is affected by pinning and 

depinning events:  a stick-slip motion is observed. Finally, the contact line stops permanently 

and the drop oscillates with fixed contact line (4) until resting state.  
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Figure IV.1-1: Spreading contact diameter of lead droplets normalized by that of the spherical 

droplets before impact. The inserted pictures show the shape of the droplets at the different 

stages of spreading: (a) pure iron, (b) patterned surface {500; 100}. In (a) the different phases 

of the spreading dynamics are delimited: (1) Spreading phase, (2) first receding, (3) oscillations 

with moving contact line, (4) oscillations with fixed contact line 

Figure IV.1-2 shows that the receding and the relaxation of the drop depend on the surface 

wettability. We may distinguish two cases: 

- Relaxation with moderate damping. This case is often observed on patterned surfaces 

with high silica area fraction, characterized by a high contact angle (low wettability, 

{500; 100} in Figure IV.1-2 ). 

- Relaxation with high damping. This case was observed on samples with low and 

moderate silica area fractions: wetting of {20; 20} and {100; 500} samples in Figure 

IV.1-2. This high damping is due to strong pinning effects. Because of the pinning 

events, the drop can split into two or more droplets ({100; 500}). 
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Figure IV.1-2: Different relaxation cases observed on patterned surfaces. 

In this chapter, we aim to model the different phases of the drop dynamics. We are looking for 

simple analytical models. Our approach is based on simplified mass and energy balances. This 

requires some simplifying assumptions:  

(i) The wetting phenomena associated with the spreading/retraction of the drop on the 

patterned surfaces are described from a macroscopic point of view.  

(ii) We neglect the distortions of the contact line and assume that the line is 

axisymmetric and solely characterized by its radius. 

(iii) The drop takes simple axisymmetric shapes such as pancake or spherical cap shape. 

We emphasize that the details of the silica patterns are missed in the present approach. The 

wetting is solely described by three angles: the equilibrium contact angle 𝜃𝐸 , the advancing 

contact angle 𝜃𝑎 and the receding contact angle 𝜃𝑟.  

The theoretical equilibrium contact angle satisfies Cassie’s law: 
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 𝑐𝑜𝑠 𝜃𝐸 = 𝑓𝑠 𝑐𝑜𝑠 𝜃𝑆𝑖𝑂2 + (1 − 𝑓𝑠) 𝑐𝑜𝑠 𝜃𝐹𝑒  (IV.1.1) 

where the silica area fraction on {d; s} patterned surfaces reads: 

 
𝑓𝑠 = (

𝑑

𝑑 + 𝑠
)
2

 
(IV.1.2) 

The advancing and receding contact angles are either measured or estimated from Raj et al. 

model [65]. Since Raj et al. consider heterogeneous surfaces patterned with discs, we may 

approximate the squares of the silica patterned iron surfaces either with the circle inscribed in 

the square or with the circumscribed circle. In the former case, the silica linear fraction is given 

by: 

 
𝜆𝑠 =

𝑑

𝑑 + 𝑠
 

(IV.1.3) 

In the latter case, the silica linear fraction is given by: 

 
𝜆𝑠 =

√2𝑑

√2𝑑 + 𝑠
 

(IV.1.4) 

According to Raj et al. model, the advancing contact angle reads, in the case of non-wetting 

defects: 

 𝑐𝑜𝑠 𝜃𝑎 = 𝜆𝑠 𝑐𝑜𝑠 𝜃𝑆𝑖𝑂2 + (1 − 𝜆𝑠) 𝑐𝑜𝑠 𝜃𝐹𝑒  (IV.1.5) 

The receding contact angle is given by: 

 𝑐𝑜𝑠 𝜃𝑟 = 𝑐𝑜𝑠 𝜃𝐹𝑒  (IV.1.6) 

We note that this expression is no more valid when the silica surface fraction tends to 1. 

 Spreading phase 

In this section, we first identify the regime and the characteristic time scale of the spreading 

phase. Then, we determine the scaling law verified by the maximum spreading diameter. 

Finally, these results are aggregated to describe the evolution of the spreading diameter over 

time. 

  Characteristic time scale [1] 

In the wetting device used here, the liquid metal drop is dispensed on the solid substrate at an 

impact velocity V0 of about 0.7 m.s-1. Based on the forces that promote and oppose drop 
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spreading during the first spreading phase, Schiaffino and Sonin [101] proposed a classification 

of the different types of liquid drop impact according to two dimensionless numbers: the 

Ohnesorge number (Oh) and the Weber number (We): 

 
𝑂ℎ =

𝜇

√𝜌𝐷0𝛾
=

√𝑊𝑒

𝑅𝑒
 

(IV.2.1) 

 
𝑊𝑒 =

𝜌𝐷0𝑉0
2

𝛾
 

(IV.2.2) 

The Weber number We compares inertial and capillary forces and scales the driving force for 

the droplet’s spreading. The Ohnesorge number Oh is the ratio of the viscous force to the inertia 

and surface forces and scales the force that resists the spreading.  

It should be noted Vadillo [91] and Laan et al. [102] use the drop initial diameter 𝐷0 whereas  

Bartolo et al. and Schiaffino and Sonin use the drop initial radius. 

When the liquid spreads with a moderate contact angle, i.e., angles that are not too close to 0 or 

, the plane (We, Oh) can be divided into four asymptotic regions (Figure IV.2-1). In the case 

of a high We, the liquid drop is driven radially outward by the dynamic pressure gradient 

induced by the impact; in the case of a low We, it is pulled out by the capillary force at the 

contact line. At high Oh, the resistance is caused by viscous friction and at low Oh, the 

resistance is due to the inertia. 

Our experimental data (𝑂ℎ = 5.8 × 10−4,𝑊𝑒 = 6 − 49) are in region I of the plane (Oh, We). 

In this region, the droplet spreading upon impact (phase 1) is mainly driven by the impact 

velocity and the spreading resistance is due to inertia. Thus, the characteristic time scale for 

spreading is the inertial time 𝑡𝑖: 

 
 𝑡𝑖 =

𝐷0

𝑉0
 

(IV.2.3) 
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Figure IV.2-1: Our experimental data in the classification of drop impact proposed by [101] 

 Maximum spreading diameter 

At the end of the spreading phase, the drop reaches its maximal diameter. The maximum 

spreading diameter depends on the impact velocity. When a droplet is put in contact with a 

solid, its initial kinetic energy can be dissipated by viscosity or stored in deformation during 

the impact. The spreading diameter can be calculated by writing the energy conservation from 

the time of impact to the time the drop reaches its maximum spreading diameter. The maximum 

spreading diameter is found to be a function of two dimensionless numbers: the Weber number 

(We) which is the ratio between the inertial and the capillary force and the Reynold number 

(Re) which is the ratio between the inertial and the viscous force. 

 
 
𝐷𝑚𝑎𝑥

𝐷0
= 𝑓 (𝑊𝑒 =

𝜌𝐷0𝑉0
2

𝛾
, 𝑅𝑒 =

𝜌𝐷0𝑉0
𝜇

) 
(IV.2.4) 
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Depending on the value of these dimensionless numbers, two asymptotic regimes can be 

distinguished: 

- the viscous regime when  𝑊𝑒 ≫ √𝑅𝑒 

- the capillary regime when 𝑊𝑒 ≪ √𝑅𝑒 

In the viscous regime, the initial kinetic energy of the drop is mainly dissipated by viscosity. 

The maximal spreading diameter scales as D0 Re¼ or D0 Re⅕ as often proposed in the literature 

[103]–[105]. In the capillary regime, i.e. when the initial kinetic energy of the drop is 

completely converted into surface energy, the maximal spreading diameter scales as D0We1/2. 

Figure IV.2-2 shows the maximum spreading diameter as a function of (a) Reynolds number 

(Re) and (b) Weber number (We) in comparison with the scaling laws. The figure also shows 

earlier data from Laan et al [102] and Clanet et al [105]. In the work of Laan et al the solid 

surfaces were partially wettable: rolled stainless-steel surfaces with a contact angle θ between 

80° and 90°. The liquid drops were either viscous (water-glycerol 51 mPas) or inviscid (water). 

Clanet et al studied inviscid drop (water or mercury) on super-hydrophobic surfaces (θ ̴ 160°) 

and partially wettable surfaces (θ ̴ 90°). 

In Figure IV.2-2a, the data of the viscous drop of water-glycerol 51 mPas (full red circles) fit 

quite well to the model. However, our experimental points (µ = 2 mPas) in full purple circles 

as well as the data of inviscid drop [102] are not described by the two viscous scaling laws. 

This suggests that other forms of non-viscous dissipation occur during the spreading of inviscid 

drops. 

In the capillary regime (Figure IV.2-2b), the classical scaling law in D0We1/2 also poorly 

predicts the data of inviscid drops. While, the scaling law in D0We¼ proposed by Clanet et al 

[105] predicts quite well the experimental points of both our data and those of Clanet et al. 

Notwithstanding this result, we can observe a dispersion of the experimental points around the 

model.  
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Figure IV.2-2: Dimensionless maximum contact diameter as function of: (a) Reynold number 

in the viscous regime and (b) Weber number in the capillary regime. Our experimental data 

are shown together with the work of Laan et al [102] and Clanet et al [105]. 

This discrepancy could be explained by the fact that the model does not account for the 

wettability of the surfaces. In fact, it has been well demonstrated that the wettability of the 

surface influences the maximum spreading diameter [103], [104], [106]–[108]. 

Thus, we rewrote the model in capillary regime by considering the surface wettability. It led in 

a correction of the Weber number 𝑊𝑒′ =
𝑊𝑒

(1−cos𝜃)
, where 𝜃 is the equilibrium contact angle. 

The same correction was proposed by M. Zaidi [1] and J. Diawara [2] in their thesis works 

(appendix D). In Figure IV.2-3, the revisited model with the final contact angle 𝜃𝑓 correctly 

describes the maximum spreading diameter of inviscid drops. 

 

Figure IV.2-3: Maximum spreading diameter as a function of the Weber number modified to 

consider the contact angle of the drop on the substrate. 
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𝐷𝑚𝑎𝑥

𝐷0
= 𝑐𝑑𝑚 (

𝑊𝑒

1 − 𝑐𝑜𝑠 𝜃
)
1/4

 
(IV.2.5) 

Where 𝑐𝑑𝑚 is a fitting constant obtained by means of a least-squares fit. It is equal to 𝑐𝑑𝑚 =

1.07 with the coefficient of determination 𝑅2 = 0.75 for our experimental points and  𝑐𝑑𝑚 =

1.01 with the coefficient of determination 𝑅2 = 0.93 for the data of Clanet et al [105]. 

If the maximum dimensionless spreading diameter scales as We¼, it means that all three forces 

(inertial, viscous and capillary) are important. For this reason, neither a simple viscous nor a 

capillary scaling is observed. Laan et al [102] developed a crossover model between the two 

regimes. In their model, the maximum spreading diameter is written according to a single 

dimensionless number called the impact number, 𝑃𝐼: 

 
𝑃𝐼 =

𝑊𝑒

𝑅𝑒
2
5

 
(IV.2.6) 

which scales the Weber number and Reynolds number. 

By using an interpolation between the We½ and Re1/5 classical laws, we can write: 

 𝐷𝑚𝑎𝑥

𝐷0
∝ 𝑅𝑒

1
5ℱ (𝑊𝑒𝑅𝑒−

2
5) = 𝑅𝑒

1
5ℱ(𝑃𝐼) 

(IV.2.7) 

where ℱ is a function of the parameter 𝑊𝑒𝑅𝑒−
2

5. Within the high-viscosity limit (𝑃𝐼 ≫ 1), 

ℱ(𝑃)~1 should be found to satisfy the relationship 𝐷𝑚𝑎𝑥/𝐷0 ∝  𝑅𝑒1/5. Whereas, in the 

capillary regime (𝑃𝐼 ≪ 1), ℱ(𝑃) must scale as  ℱ(𝑃) ∝ 𝑃𝐼
1/2 to recover the law 𝐷𝑚𝑎𝑥/𝐷0 ∝

 𝑊𝑒1/2. 

In the intermediate regime (impact number around unit), Laan et al [102] calculated the 

crossover model between the two asymptotic regimes using a Padé approximant. 

 
ℱ(𝑃) =

𝑃𝐼
1/2

𝑃𝐼
1/2 + 𝑐𝑚𝑝

 
(IV.2.8) 

where 𝑐𝑚𝑝 is a fitting constant obtained by means of a least-squares fit. 

Then, the model reads as follows: 

 𝐷𝑚𝑎𝑥

𝐷0
𝑅𝑒−

1
5 =

𝑃𝐼
1/2

𝑃𝐼
1/2 + 𝑐𝑚𝑝

     𝑐𝑚𝑝 ≈ 1 
(IV.2.9) 
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However, this model originally developed for partially wetting surfaces is not suitable for drops 

that wet substrates with a low contact angle. Then, to take into account for surface wettability, 

Eq.(IV.2.9) can be modified by analogy with the energy model (Figure 2.4): 

 𝐷𝑚𝑎𝑥

𝐷0
𝑅𝑒−

1
5 =

𝑃𝐼
′1/2

𝑃𝐼
′1/2 + 𝑐𝑚𝑝

;      𝑃𝐼
′ =

𝑃𝐼
1 − 𝑐𝑜𝑠𝜃

 , 𝑐𝑚𝑝 ≈ 1 
(IV.2.10) 

The fit of Eq. (IV.2.10) is consistent with our data but also with those of Bartolo et al [109] of 

water glycerol mixtures on non-wetting surfaces and Laan et al [102] of water droplets 

deposited on partially non-wetting surfaces, in Figure IV.2-4. Originally the contact angle in 

the model is the equilibrium contact angle (given by the classical law of Cassie), however for 

our data the best fitting was obtained with the final contact angle. 

These analyses show that the initial spreading of the liquid lead drop is neither in the viscous 

nor in the capillary regime. The droplet spreading on impact is dominated by the three forces 

of inertia, viscosity and capillarity [102], [105].  
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Figure IV.2-4: Rescaled maximum spreading ratio as function of impact number for our data 

and those of Bartolo et al [109] (water glycerol mixtures on nonwetting surfaces) and Laan et 

al [102] (water droplets deposited on rolled stainless-steel surfaces with a contact angle 

between 80° and 90°). The solid line shows the Padé approximant function Eq. (IV.2.10) fitted 

to the experimental data with 𝑐𝑚𝑝 = 1.05. 

 Model of spreading diameter 

During the spreading phase for which 𝑡 < 𝑡𝑖, several authors have reported that the transient 

spreading diameter evolves roughly as the square root of time [106], [110]–[112]. 

In fact, in this phase, the drop could be considered as a spherical cap of liquid spreading into a 

cylindrical disk of diameter D and thickness ℎ𝑑.  
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The Liquid flows from the drop, shaped like a truncated sphere, into the film through an area 

of diameter 𝑑𝑠 with velocity 𝑉0. 

 

Figure IV.2-5: A model of a drop spreading. Inspired from [103].  

Using mass conservation, the velocity at the edge of the cylindrical disk is given by the relation: 

 𝑉0𝑑𝑠
2 = 4𝐷ℎ𝑑𝑈 (IV.2.11) 

Assuming the thickness ℎ𝑑 of the cylindrical disk constant during the spreading (in the case of 

very small contact angle), at the maximum spreading diameter, we can write: 

 
ℎ𝑑 =

2𝐷0
3

3𝐷𝑚𝑎𝑥
2

 
(IV.2.12) 

Moreover, the diameter 𝑑𝑠 of the spherical part of the drop varies from 0 to D0 during the 

spreading with a mean value of D0/2. 

Then, setting 𝑈 =
𝑑𝐷

2𝑑𝑡
 and combining Eq.(IV.2.11) and Eq.(IV.2.12), we obtain a scaling power 

law as: 

 
𝐷

𝐷𝑚𝑎𝑥
= √

3

8

𝑡

𝑡𝑖
= √

𝑡

𝑡𝑖
′                   𝑡𝑖

′ =
8

3
𝑡𝑖  

(IV.2.13) 

The maximum spreading diameter is given by Eq.(IV.2.5), then the last equation becomes 

 𝐷

𝐷0
≈ 𝑐𝑚𝑝 (

𝑊𝑒

1 − 𝑐𝑜𝑠 𝜃
)
1/4

√
𝑡

𝑡𝑖
′ = 𝛼𝑚𝑝 (

𝑡

𝑡𝑖
′)

𝑎𝑠

, 𝑎𝑠 = 1/2 
(IV.2.14) 

where 

𝑑𝑠 

𝐷 

𝑉0 

ℎ𝑑 

𝐷0 

𝑈 =
1

2

𝑑𝐷

𝑑𝑡
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𝛼𝑚𝑝 = 𝑐𝑚𝑝 (

𝑊𝑒

1 − 𝑐𝑜𝑠 𝜃
)
1/4

 
(IV.2.15) 

This time evolution in square root of the drop contact diameter during the first spreading phase 

has been widely validated [104], [107], [108], [110], [91], [145].  

If the effect of surface wettability is negligible on the spreading which is mainly driven by the 

impact pressure, the drop is slowed at the end of the spreading by viscous and capillarity effects 

until the maximum spreading diameter is reached. 

 

Figure IV.2-6. A drop spreading on solid surface a) just after the impact, b) at maximum 

spreading diameter. 

To analyse the applicability of this model in power ½ to our experimental data, we plotted the 

dimensionless spreading diameter of the drop as a function of the dimensionless time 
𝑡

𝑡𝑖
′ for 

each set of our study, in Figure IV.2-7. On the same figure, we also reported data from Vadillo 

et al [106] and Rioboo et al [112]. Both studied the wetting of water on the glass at velocity 

impact close to ours. For each set of data in the Figure IV.2-7, the obtained fitting parameters 

(𝛼, 𝑎𝑠) of Eq. (IV.2.14) and the corresponding standard deviation are shown in Table IV.2-1. 

The fitting is significantly good (coefficient of correlation R2 > 0.97, in most of cases). In all 

cases,  𝑎𝑠 was found to be of the order of magnitude of ½. These results confirm that, in the 

first spreading phase, the power law t1/2 correctly describes the drop spreading diameter.  
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Table IV.2-1: Fitting parameters of the power law model Eq. (IV.2.14). Comparison between 

our data and the low temperature data from Vadillo et al [91][106] and Rioboo et al [112]. 

Sample 
𝑉0 

(m/s) 
θ (°) 𝑎𝑠 

Standard 

deviation of 

𝑎𝑠 

𝛼𝑚𝑝 

Standard 

deviation 

of 𝛼𝑚𝑝 

R2 

Fe 0.75 52 0.55 0.02 3.78 1.02 0.99 

Fe 0.73 55 0.49 0.03 3.56 1.02 0.97 

Fe 0.60 55 0.68 0.02 3.78 1.02 0.99 

{5; 20} 0.81 56 0.60 0.05 3.71 1.03 0.95 

{5; 20} 0.91 48 0.55 0.04 4.22 1.03 0.97 

{20; 100} 0.78 63 0.49 0.04 3.71 1.03 0.97 

{20; 100} 0.83 58 0.45 0.03 3.97 1.02 0.98 

{100; 500} 0.70 59 0.52 0.03 3.78 1.02 0.98 

{100; 500} 0.48 69 0.69 0.08 3.53 1.08 0.95 

{100; 500} 0.70 56 0.45 0.02 3.78 1.02 0.98 

{5; 5} 0.69 61 0.64 0.06 3.25 1.04 0.96 

{20; 20} 0.90 55 0.47 0.03 3.35 1.03 0.98 

{20; 20} 0.71 55 0.36 0.01 2.66 1.01 0.99 

{100; 100} 0.75 69 0.59 0.06 3.63 1.05 0.95 

{100; 100} 0.32 55 0.52 0.08 3.03 1.06 0.92 

{500; 500} 0.54 67 0.57 0.05 3.74 1.06 0.96 

{500; 500} 0.59 70 0.62 0.04 3.67 1.04 0.97 
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However, the coefficient 𝛼 is not well determined as the corresponding standard deviation for 

each set of data is not negligible (Table IV.2-1). In addition, in Figure IV.2-7, on can observe 

the influence of the surface wettability. This influence could be modelled by Eq.(IV.2.15). 

To study the relevance of this model, Figure IV.2-8 shows the dimensionless spreading 

diameter divided by the theoretical coefficient 𝛼𝑚𝑝 (given by Eq.(IV.2.15)): (
𝐷

𝐷0
)

1

𝛼𝑚𝑝
  as 

function of dimensionless time 
𝑡

𝑡𝑖
′ , in a logarithmic scale. In this figure, all the studied data 

collapse on the same line of slope 1.2.  

{20; 5} 0.72 99 0.42 0.03 2.66 1.02 0.98 

{20; 5} 0.70 99 0.51 0.03 3.22 1.03 0.98 

{100; 20} 0.76 108 0.64 0.03 2.80 1.03 0.99 

{100; 20} 0.79 125 0.49 0.04 3.53 1.04 0.98 

{500; 100} 0.66 104 0.61 0.13 3.82 1.02 0.85 

{500; 100} 0.39 91 0.64 0.06 2.59 1.06 0.96 

Silica 0.60 134 0.47 0.01 3.03 1.01 0.99 

Silica 0.86 137 0.56 0.1 3.16 1.12 0.83 

Water/glass 

[91][106] 
1.00 50 0.48 0.01 4.10 1.02 0.98 

Water/glass 

[112] 
0.82 58 0.35 0.01 3.00 1.02 0.98 
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Figure IV.2-7: Spreading diameter as function of time in ln-ln scale. 
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Figure IV.2-8: Dimensionless spreading diameter divided by the theoretical coefficient α as 

function of dimensionless time, in logarithmic scale. 

 First receding 

At the onset of retraction, we observe that the drops are shaped like a pancake (see Figure 

IV.1-1). This shape differs from the one reported by Bartolo et al. [109] in region I of the 

(𝑂ℎ,𝑊𝑒)-plane. In the latter case, the drop consists of a thin liquid film surrounded by a donut-

shaped rim which contains most of the liquid. This difference is attributed to stronger inertial 

effects in Bartolo et al. experiments. Indeed, Bartolo et al. experiments (for the part performed 

in region I) are characterized by higher values of the Weber number, i.e. from about 15 to about 

320 whereas 𝑊𝑒 ranges from 6 to 49 in the present experiments. 

As a result, the Taylor-Culick approach used by Bartolo et al. to describe the drop retraction 

cannot be applied to our experiments. 

0.1

1.0

10.0

0.01 0.1 1

(D
/D

0
)/

α
m

p

t/ti
'

Pure iron

{5; 20}

{20; 100}

{100; 500}

{5; 5}

{20; 20}

{100; 100}

{500; 500}

{20; 5}

{100; 20}

{500; 100}

Pure silica

Water/glass

[Vadillo et al]
Water/glass

[Rioboo et al]

𝐷

𝐷0

1

𝛼𝑚𝑝
= 1.2

𝑡

ti
′

0.5



Chapter IV: Wetting dynamics and discussions 

[188] 

 

 

Our goal is now to describe the receding of a pancake-shaped drop. The total energy of the drop 

is the sum of gravitational energy 𝐸𝑔, surface energy 𝐸𝑠 and kinetic energy 𝐸𝑐. Dissipation 

results from viscous effect (𝐸𝑣) and contact angle hysteresis (𝐸ℎ).  

Hence, the energy balance reads: 

 𝑑

𝑑𝑡
(𝐸𝑠 + 𝐸𝑔 + 𝐸𝑐 = −

𝑑

𝑑𝑡
(𝐸𝑣 + 𝐸ℎ) 

(IV.3.1) 

Gravitational effect can be reasonably neglected since the typical film thickness at the onset of 

retraction is about one order of magnitude lower than the critical thickness 𝜀𝑐 =

2𝜅−1 sin(𝜃𝐸 2⁄ ) where 𝜅−1 = √𝛾 (𝜌𝑔)⁄  is the capillary length. 𝜀𝑐 is the thickness of a liquid 

puddle flattened by gravity [4]. As an example, for a 5; 20 sample, the film thickness at the 

onset of retraction is equal to 𝐻 = 0.38 𝑚𝑚 whereas the critical thickness is equal to 𝜀𝑐 ≈

2 𝑚𝑚. Viscous effects are negligible since (i) the Ohnesorge number is very low, i.e. 𝑂ℎ =

5.8 × 10−4, (ii) hysteresis dissipation dominates over viscous dissipation. These assumptions 

will be further checked in the section IV.4. 

So the energy balance is written: 

 𝑑

𝑑𝑡
(𝐸𝑠 + 𝐸𝑐) = −

𝑑

𝑑𝑡
(𝐸ℎ) 

(IV.3.2) 

Surface energy 𝐸𝑠 

For a displacement 𝑑𝑅 of the drop contact line, the associated variation of the surface energy is 

given by: 

 𝑑𝐸𝑠 ≅ 2𝜋𝑅𝑑𝑅𝛾𝑆𝐿 + 2𝜋𝑅𝑑𝑅𝛾 − 2𝜋𝑅𝑑𝑅𝛾𝑆𝑉 (IV.3.3) 

as long as the puddle thickness remains low compared to its diameter. 

By introducing 𝜃𝐸  the equilibrium contact angle of the drop on the solid surface, Eq. (IV.3.3) 

reads: 

 𝑑𝐸𝑠 ≅ 2𝜋𝑅𝑑𝑅𝛾(1 − 𝑐𝑜𝑠 𝜃𝐸) (IV.3.4) 

Kinetic energy 𝐸𝑐 

We express the kinetic energy in the limit of a puddle-shaped drop, i.e. 𝐻 ≪ 𝑅. We consider 

the same simple flow as Noblin et al. [115] did to study the oscillations of a puddle flattened 

by gravity. In the present case, the puddle is not flattened by gravity but by the impact of the 
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drop on the solid surface. The radial and vertical velocities of the liquid (of density 𝜌) expresses 

as follows: 

 
𝑣𝑟 =

𝑟

𝑅

𝑑𝑅

𝑑𝑡
 ,     𝑣𝑧 = −2

𝑧

𝑅

𝑑𝑅

𝑑𝑡
 

(IV.3.5) 

where the velocity field satisfies the continuity equation and the no-slip condition at the 

solid/liquid interface. Then, the kinetic-energy density reads: 

 
𝑒𝑐 =

1

2

𝜌

𝑅2
(
𝑑𝑅

𝑑𝑡
)
2

(𝑟2 + 4𝑧2) 
(IV.3.6) 

By integrating this equation over the entire volume of the drop, we obtain: 

 
𝐸𝑐 =

1

4
 𝜌𝑉𝑑𝑟𝑜𝑝 (

𝑑𝑅

𝑑𝑡
)
2

[1 +
8

3
(
𝐻

𝑅
)
2

] 
(IV.3.7) 

In the puddle limit, i.e. 𝐻(𝑡) ≫ 𝑅(𝑡), the kinetic energy reduces to: 

 
𝐸𝑐 ≈

1

4
 𝜌𝑉𝑑𝑟𝑜𝑝 (

𝑑𝑅

𝑑𝑡
)
2

 
(IV.3.8) 

Hysteretic dissipation 𝐸ℎ 

During receding, a part of the drop energy is lost due to the contact angle hysteresis:  

 𝑑𝐸ℎ = 2𝜋𝑅 𝑠𝑔(𝑑𝑅) 𝛾(𝑐𝑜𝑠 𝜃𝑟 − 𝑐𝑜𝑠 𝜃𝐸) = 2𝜋𝑅𝑑𝑅𝛾(𝑐𝑜𝑠 𝜃𝐸 − 𝑐𝑜𝑠 𝜃𝑟) (IV.3.9) 

where 𝜃𝑟 is the receding angle. 𝜃𝑟 is either measured or estimated using the Raj et al. model 

[65] (see chapter I, section 3.3). 

Using Eqs. (IV.3.4), (IV.3.8) and (IV.3.9), the energy balance becomes: 

 1

2
𝜌𝑉𝑑𝑟𝑜𝑝

𝑑2𝑅

𝑑𝑡2
+ 2𝜋𝑅𝛾(1 − 𝑐𝑜𝑠 𝜃𝑟) = 0 

(IV.3.10) 

The solution of this equation reads: 

 
𝐷

𝐷𝑚𝑎𝑥
=

𝑅

𝑅𝑚𝑎𝑥
= 𝑐𝑜𝑠 (√

4𝜋𝛾(1 − 𝑐𝑜𝑠 𝜃𝑟)

𝜌𝑉𝑑𝑟𝑜𝑝
𝑡) 

(IV.3.11) 

where the origin of time coincides with the time when the spreading is maximal. We emphasize 

that expression of Eq.(IV.3.11) is valid as long as the thickness of the drop remains small in 

front of its diameter, i.e. at the beginning of the first receding.  

We deduce the characteristic time 𝜏𝑟 of the first receding: 
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𝜏𝑟 = √
𝜋𝜌𝑉𝑑𝑟𝑜𝑝

𝛾(1 − 𝑐𝑜𝑠 𝜃𝑟)
 

(IV.3.12) 

This time corresponds to the inertial-capillary timescale of the drop in contact with the solid 

surface. It is identical to the characteristic time found by Bartolo et al. [109] using Taylor-

Culick approach. 𝜏𝑟 ranges between 24 ms for lead drop receding on 20;5 silica-patterned 

iron surface up to 40 ms on pure iron surface. 

Figure IV.3-1 shows the variations of the acosine of the dimensioless drop diameter 

acos(𝐷 𝐷𝑚𝑎𝑥⁄ ) as a function of 𝑡 𝜏𝑟⁄ , i.e. the time made dimensioless by 𝜏𝑟. These variations 

are reported for liquid lead drops spread upon impact on the different surfaces studied in this 

work: pure iron and silica and patterned surfaces iron-silica. The origin of time coincides 

systematically with the time when the spreading is maximal and 𝜏𝑟 is calculated according to 

Eq.(IV.3.12) with 𝜃𝑟 the receding angle measured in the experiments. First, it appears that all 

the data collapse onto the same curve from the onset of retraction up to 𝑡 ≅ 0.1 × 𝜏𝑟. We 

conclude that 𝜏𝑟 (as given by Eq.(IV.3.12)) is the appropriate timescale at the beginning of the 

first receding. In the other hand, a single straight line obtained from the onset of retraction up 

to 𝑡 ≅ 0.1 × 𝜏𝑟 confirm that Eq.(IV.3.11) correctly describes drop contact diameter in the first 

moments of the receding. After that, the puddle approximation used to estimate the variations 
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of the drop surface energy is no more valid (the shape of the drop is then closer to a spherical 

cap than to a puddle) and the model no longer correctly reproduces the behaviour of the drop.  

 

Figure IV.3-1: Variations of 𝑎𝑐𝑜𝑠(𝐷 𝐷𝑚𝑎𝑥⁄ ) as a function of  𝑡 𝜏𝑟⁄  for liquid lead drops spread 

upon impact each patterned surface studied in this work: first moments of the receding. 
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 Drop oscillations with moving contact line 

As a liquid drop relaxes toward equilibrium, it first undergoes oscillations with moving contact 

line (1st kind), followed by oscillations with fixed contact line (2nd kind) until rest. Figure IV.4-1 

shows that the number of the oscillations of the 1st kind increases as the wettability of the solid 

surface decreases. Furthermore, these oscillations exhibit a stick-slip motion. This motion is 

clearly visible for the drops relaxing on silica-patterned iron surface. In this case, the stick 

events are due to the contact line anchorage on the pure iron strips.  

 

Figure IV.4-1: Relaxation of liquid lead drops spread upon impact on pure substrates (iron and 

silica) and two patterned surfaces ({500; 500} and {20; 5}): oscillations with moving contact 

line (1st kind). 

We would like to determine (i) the pulsation of the oscillations of the 1st kind and (ii) the 

transition criterion between the oscillations of 1st kind and the oscillations of 2nd kind. To our 

knowledge, this configuration has been studied very little, with the notable exception of the 

article by Noblin et al. [115]: they investigated the effects of vertical vibrations on non-wetting 

large water drops flattened by gravity and further examined the transition between pinned and 

mobile contact line oscillations. 
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We presently consider the simple case of a sessile drop in the shape of a spherical cap and focus 

on the first mode (𝑛 = 1) of these oscillations. We will see that the spherical cap assumption is 

valid for some motions of the drop if the drop is small enough (i.e if the gravity effects are 

negligible in front of the capillary effects).  

We remind that the drop energy balance reads 

 𝑑

𝑑𝑡
(𝐸𝑠 + 𝐸𝑔 + 𝐸𝑐 = −

𝑑

𝑑𝑡
(𝐸𝑣 + 𝐸ℎ) 

(IV.4.1) 

where the total energy of the drop is the sum of the surface energy 𝐸𝑠, the gravitational 

energy 𝐸𝑔 and the kinetic energy 𝐸𝑐, and the energy losses result from viscous dissipation (𝐸𝑣) 

within the liquid phase and contact angle hysteresis (𝐸ℎ).  

In the following, we first report some useful mathematical relationships associated with the 

spherical cap geometry [116]. Then, we express each of the terms of Eq. (IV.4.1) and finally 

we derive the dynamic equation of the oscillating drop with mobile contact line. 

 Spherical cap 

Throughout its relaxation, the drop is approximated as a spherical cap with a varying radius and 

a constant volume 𝑉𝑑𝑟𝑜𝑝 (Figure IV.4-2). The spherical cap is characterized by its contact 

radius 𝑅 = 𝐷/2, its height 𝐻, its geometric contact angle 𝜃 and its radius of curvature 𝑅𝑠. 

 

Figure IV.4-2: Geometric parameters of a spherical cap. 

These geometrical parameters are related through the following equations: 

𝜃 

𝜃 

𝑅𝑠 

𝑅 

𝐻 𝑧𝐶𝑀 



Chapter IV: Wetting dynamics and discussions 

[194] 

 

 

 
𝑠𝑖𝑛 𝜃 =

𝑅

𝑅𝑠
 

(IV.4.2) 

 
𝑐𝑜𝑠 𝜃 =

1 − (𝐻2/𝑅2)

1 + (𝐻2/𝑅2)
 

(IV.4.3) 

 𝐻 = 𝑅𝑠(1 − 𝑐𝑜𝑠 𝜃) (IV.4.4) 

 𝑉𝑑𝑟𝑜𝑝 =
𝜋

6
𝐻(3𝑅2 + 𝐻2) (IV.4.5) 

Then, we may express the radius 𝑅 of the spherical cap as a function of the geometric contact 

angle 𝜃: 

𝑅 = (
3𝑉𝑑𝑟𝑜𝑝

𝜋
)
1/3 (1 + 𝑐𝑜𝑠 𝜃)1/2

(2 + 𝑐𝑜𝑠 𝜃)1/3(1 − 𝑐𝑜𝑠 𝜃)1/6
 

(IV.4.6) 

The position 𝑧̅ of the center of mass with respect to the center of the sphere (radius 𝑅𝑠) is given 

by: 

𝑧̅ =
3

4

(2𝑅𝑠 − 𝐻)2

3𝑅𝑠 − 𝐻
 

(IV.4.7) 

Thus, the altitude 𝑧𝐶𝑀 of the center of mass above the solid surface reads: 

𝑧𝐶𝑀 =
3

4

(2𝑅𝑠 − 𝐻)2

3𝑅𝑠 − 𝐻
+ 𝐻 − 𝑅𝑠 

(IV.4.8) 

 Energy contributions 

Surface energy 𝐸𝑠 

For a displacement 𝑑𝑅 of the drop contact line, the associated variation of the surface energy 

reads: 

 𝑑𝐸𝑠 = 2𝜋𝑅𝑑𝑅𝛾𝑆𝐿 + 2𝜋𝑅𝑑𝑅𝛾 𝑐𝑜𝑠 𝜃 − 2𝜋𝑅𝑑𝑅𝛾𝑆𝑉 (IV.4.9) 

where the geometric contact angle of the spherical cap is the dynamic contact angle of the drop. 

It should be noted that the variation of the liquid/vapor interface area is exactly equal to 

2𝜋𝑅𝑑𝑅𝛾 cos 𝜃 for a spherical cap of constant volume [117]. 

We introduce the equilibrium contact angle 𝜃𝐸  of the system. 𝜃𝐸  is given by the Young-Dupré 

law for liquid lead on pure iron or pure silica surfaces, and by the Cassie law (see chapter 1, 

section 3.1) for liquid lead on silica-patterned iron surfaces. Then, Eq. (IV.4.9) becomes: 

 𝑑𝐸𝑠 = 2𝜋𝑅𝑑𝑅𝛾(𝑐𝑜𝑠 𝜃 − 𝑐𝑜𝑠 𝜃𝐸) (IV.4.10) 
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It should be noted that the spherical cap assumption is relevant as long as the drop recedes (resp. 

advances) with a contact radius greater (resp. lower) than the equilibrium contact radius 𝑅𝐸. 

The drop cannot strictly keep its spherical cap shape when it recedes (resp. advances) with a 

contact radius lower (resp. greater) than 𝑅𝐸. Indeed, the geometric contact angle of the cap is 

then greater (lower) than 𝜃𝐸  whereas the receding (advancing) dynamic contact angle has to be 

lower (greater) than 𝜃𝐸 . 

Gravitational energy 𝐸𝑔 

The gravitational energy rate is related to the drop center of mass motion and is given by: 

 𝑑𝐸𝑔

𝑑𝑡
= 𝜌𝑉𝑑𝑟𝑜𝑝

𝑑𝑧𝐶𝑀
𝑑𝑡

𝑔 
(IV.4.11) 

Kinetic energy 𝐸𝑐 

The kinetic energy of the drop is simply expressed in the limit of small contact angles. In that 

case, the contact radius of the drop is much greater than its height and we can reasonably use 

the puddle approximation set out in section IV.3: 

 
𝐸𝑐 ≅

1

4
 𝜌𝑉𝑑𝑟𝑜𝑝 (

𝑑𝑅

𝑑𝑡
)
2

 
(IV.4.12) 

The kinetic energy rate reads: 

 𝑑𝐸𝑐

𝑑𝑡
≅

1

2
 𝜌𝑉𝑑𝑟𝑜𝑝

𝑑𝑅

𝑑𝑡

𝑑2𝑅

𝑑𝑡2
 

(IV.4.13) 

Viscous dissipation 𝐸𝑣 

According to [118], the viscous dissipation rate reads in cylindrical coordinates: 

 
𝛷 = 𝜇 (2 [(

𝜕𝑣𝑟
𝜕𝑟

)
2

+ (
1

𝑟

𝜕𝑣𝜃

𝜕𝜃
+

𝑣𝑟
𝑟
)
2

+ (
𝜕𝑣𝑧
𝜕𝑧

)
2

] + [𝑟
𝜕

𝜕𝑟
(
𝑣𝜃

𝑟
) +

1

𝑟

𝜕𝑣𝑟
𝜕𝜃

]
2

+ [
1

𝑟

𝜕𝑣𝑧
𝜕𝜃

+
𝜕𝑣𝜃

𝜕𝑧
]
2

+ [
𝜕𝑣𝑟
𝜕𝑧

+
𝜕𝑣𝑧
𝜕𝑟

]
2

) 

 

(IV.4.14) 

In the limit of small contact angles, we assume the simple velocity field of Eq. (IV.3.5) 

It results: 
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𝛷 = 12𝜇 (

𝑑𝑅
𝑑𝑡
𝑅

)

2

 (IV.4.15) 

And the total viscous dissipation reads: 

 
𝑑𝐸𝑣

𝑑𝑡
= 12𝜇𝑉𝑑𝑟𝑜𝑝 (

𝑑𝑅
𝑑𝑡
𝑅

)

2

 (IV.4.16) 

Hysteretic dissipation 𝐸ℎ 

As the drop spreads or retracts on a non-ideal surface, a part of the total energy of the drop is 

lost due to the contact angle hysteresis. The hysteretic dissipation for a displacement 𝑑𝑅 of the 

contact line reads [115]: 

- for an advancing contact line  (
𝑑𝑅

𝑑𝑡
> 0) 

 𝑑𝐸ℎ = 2𝜋𝑅 𝑠𝑔(𝑑𝑅) 𝛾(𝑐𝑜𝑠 𝜃𝐸 − 𝑐𝑜𝑠 𝜃𝑎) = 2𝜋𝑅𝑑𝑅 𝛾(𝑐𝑜𝑠 𝜃𝐸 − 𝑐𝑜𝑠 𝜃𝑎) (IV.4.17) 

- for a receding contact line (
𝑑𝑅

𝑑𝑡
< 0) 

 𝑑𝐸ℎ = 2𝜋𝑅 𝑠𝑔(𝑑𝑅) 𝛾(𝑐𝑜𝑠 𝜃𝑟 − 𝑐𝑜𝑠 𝜃𝐸) = 2𝜋𝑅𝑑𝑅𝛾(𝑐𝑜𝑠 𝜃𝐸 − 𝑐𝑜𝑠 𝜃𝑟) (IV.4.18) 

The contact angle hysteresis (advancing 𝜃𝑎 and receding 𝜃𝑟) is either measured or calculated 

using the model of Raj et al [65] (see chapter I, section I.2.3). 

 Harmonic oscillator with solid friction 

Our aim is to establish the dynamic equation of a sessile drop when its contact line is mobile. 

Figure III.3-1b shows that after one oscillation, the drop height is of the order of the equilibrium 

height 𝐻𝐸, i.e. the height of the spherical cap when the contact angle is equal to 𝜃𝐸 . We calculate 

𝐻𝐸 for the mass of liquid lead used in our experiments (𝜌𝑉𝑑𝑟𝑜𝑝 = 100 mg). It is approximately 

equal to 𝐻𝐸 ≅ 0.5𝜀𝑐 where 𝜀𝑐 is the critical thickness, i.e. the height of a puddle flattened by 

gravity (see section IV.3). Since 𝐻𝐸 is significantly lower than 𝜀𝑐, the effect of gravity on the 

drop final shape is negligible. More generally, we will neglect the effect of gravity on the drop 

dynamics. 

The potential energy of the drop is the sum of surface energy and gravitational energy, i.e. 𝐸 =

𝐸𝑠 + 𝐸𝑔. Since we neglect gravity effects, the drop potential energy reduces to 𝐸 = 𝐸𝑠. The 

final shape of the drop results from a minimum of potential energy at equilibrium. In absence 
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of gravity, the equilibrium shape is a spherical cap and its geometric contact angle is equal to 

the (thermodynamic) equilibrium contact angle. 

Under small oscillations assumption, the 2nd order Taylor series expansion of 𝐸 about the 

equilibrium contact radius 𝑅𝐸 reads: 

 
𝐸(𝑅) = 𝐸𝑠(𝑅) ≅ 𝐸𝑠(𝑅𝐸) + [

𝑑𝐸𝑠

𝑑𝑅
]
𝑅=𝑅𝐸

(𝑅 − 𝑅𝐸) +
1

2
[
𝑑2𝐸𝑠

𝑑𝑅2
]
𝑅=𝑅𝐸

(𝑅 − 𝑅𝐸)
2 

(IV.4.19) 

We remind that the equilibrium contact radius 𝑅𝐸 is the contact radius of the cap when its 

geometric contact angle is equal to the equilibrium contact angle. 

The first derivative of the surface energy with respect to the contact radius reads: 

 𝑑𝐸𝑠

𝑑𝑅
= 2𝜋𝑅𝛾(𝑐𝑜𝑠 𝜃 − 𝑐𝑜𝑠 𝜃𝐸) 

(IV.4.20) 

At equilibrium: 

 
[
𝑑𝐸𝑠

𝑑𝑅
]
𝑅=𝑅𝐸

= 0 
(IV.4.21) 

The second derivative of the surface energy with respect to the contact radius reads: 

 𝑑2𝐸𝑠

𝑑𝑅2
= 2𝜋𝛾(𝑐𝑜𝑠 𝜃 − 𝑐𝑜𝑠 𝜃𝐸) + 2𝜋𝛾𝑅

𝑑 𝑐𝑜𝑠 𝜃

𝑑𝑅
 

(IV.4.22) 

At equilibrium: 

 
[
𝑑2𝐸𝑠

𝑑𝑅2
]
𝑅=𝑅𝐸

= 2𝜋𝛾𝑅𝐸 [
𝑑 𝑐𝑜𝑠 𝜃

𝑑𝑅
]
𝑅=𝑅𝐸

= 2𝜋𝛾 [
𝑑𝑅

𝑑 𝑐𝑜𝑠 𝜃
𝑅⁄ ]

𝑅=𝑅𝐸

−1

 
(IV.4.23) 

The first derivative of the contact radius with respect to the cosine of the geometric contact 

angle can be easily calculated from the relationships of the spherical cap reported in section 

IV.4.1. Figure IV.4-3 presents the variations of (
𝑑𝑅

𝑑 𝑐𝑜𝑠 𝜃
) R⁄  as a function of the geometric 

contact angle of the cap at fixed volume. 



Chapter IV: Wetting dynamics and discussions 

[198] 

 

 

 

Figure IV.4-3: variations of (
𝑑𝑅

𝑑 𝑐𝑜𝑠 𝜃
) 𝑅⁄  as a function of the geometric contact angle of the 

spherical cap (at constant volume). 

Then: 

𝑑𝐸𝑠

𝑑𝑡
= 2𝜋𝛾𝑅𝐸 [

𝑑 𝑐𝑜𝑠 𝜃

𝑑𝑅
]
𝑅=𝑅𝐸

(𝑅 − 𝑅𝐸) 
(IV.4.24) 

We combine Eqs. (IV.4.19), (IV.4.21), (IV.4.23) and (IV.4.24), we neglect the gravity effects 

(since 𝐻𝐸 < 𝜀𝑐) and the viscous effects within the liquid (since 𝑂ℎ ≪ 1) and we obtain the 

dynamic equation of the oscillating drop with mobile contact line 

- when the drop recedes 

 1

2
𝜌𝑉𝑑𝑟𝑜𝑝

𝑑2𝑅

𝑑𝑡2
+ 2𝜋𝛾𝑅𝐸 [

𝑑 𝑐𝑜𝑠 𝜃

𝑑𝑅
]
𝑅=𝑅𝐸

(𝑅 − 𝑅𝐸) + 2𝜋𝑅𝐸𝛾 (𝑐𝑜𝑠 𝜃𝐸 − 𝑐𝑜𝑠 𝜃𝑟)

= 0 

(IV.4.25) 

- when the drop advances 
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 1

2
𝜌𝑉𝑑𝑟𝑜𝑝

𝑑2𝑅

𝑑𝑡2
+ 2𝜋𝛾𝑅𝐸 [

𝑑 𝑐𝑜𝑠 𝜃

𝑑𝑅
]
𝑅=𝑅𝐸

(𝑅 − 𝑅𝐸) + 2𝜋𝑅𝐸𝛾 (𝑐𝑜𝑠 𝜃𝐸 − 𝑐𝑜𝑠 𝜃𝑎)

= 0 

(IV.4.26) 

This dynamic equation is similar to the equation of a harmonic oscillator with solid friction 

except that the value of the solid friction coefficient depends on the sign of the contact line 

velocity.  

The pulsation of the harmonic oscillator is given by: 

 

𝜔1 = 2𝜋𝑓1 =
√
4𝜋𝛾𝑅𝐸 [

𝑑 𝑐𝑜𝑠 𝜃
𝑑𝑅

]
𝑅=𝑅𝐸

𝜌𝑉𝑑𝑟𝑜𝑝
 

(IV.4.27) 

This expression slightly differs from the eigenpulsation of large drops flattened by gravity as 

derived by Noblin et al. [115], i.e. 

 

𝜔1 = √
16𝜋𝛾(1 − 𝑐𝑜𝑠 𝜃𝐸)

𝜌𝑉𝑑𝑟𝑜𝑝
 

(IV.4.28) 

The solid friction coefficient is given by 

- when the drop recedes 

 
𝜇𝑟 =

4𝜋𝑅𝐸𝛾(𝑐𝑜𝑠 𝜃𝑟 − 𝑐𝑜𝑠 𝜃𝐸)

𝜌𝑉𝑑𝑟𝑜𝑝
 

(IV.4.29) 

- when the drop advances 

 
𝜇𝑎 =

4𝜋𝑅𝐸𝛾(𝑐𝑜𝑠 𝜃𝐸 − 𝑐𝑜𝑠 𝜃𝑎)

𝜌𝑉𝑑𝑟𝑜𝑝
 

(IV.4.30) 

Using these parameters, we may rewrite the dynamic equation of the oscillating drop as follows:  

 𝑥̈ + 𝜔1
2𝑥 + 𝜇 𝑠𝑔(𝑥̇) = 0 (IV.4.31) 

where 𝑥 = 𝑅 − 𝑅𝐸, 𝜇 = 𝜇𝑟 if sg(𝑥̇) = −1 and 𝜇 = 𝜇𝑎 if sg(𝑥̇) = 1. 

Let make coincide the time origin with the moment when the drop undergoes an oscillation 

peak. We denote 𝑥0 the position of the contact radius at 𝑡 = 0 with respect to the equilibrium 

contact radius. 
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The contact line motion on time interval [(𝑘 − 1)
𝜋

𝜔1
; 𝑘

𝜋

𝜔1
] (where 𝑘 is the number of elapsed 

half periods since the time origin) is given by 

- if 𝑘 is even 

 
𝑥(𝑡) = (𝑥0 − 𝑘 (

𝜇𝑟 + 𝜇𝑎

𝜔1
2 ) +

𝜇𝑎

𝜔1
2) 𝑐𝑜𝑠(𝜔1𝑡) − (−1)𝑘

𝜇𝑎

𝜔1
2 

(IV.4.32) 

- if 𝑘 is odd 

 
𝑥(𝑡) = (𝑥0 − 𝑘 (

𝜇𝑟 + 𝜇𝑎

𝜔1
2 ) +

𝜇𝑎

𝜔1
2) 𝑐𝑜𝑠(𝜔1𝑡) − (−1)𝑘

𝜇𝑟

𝜔1
2 

(IV.4.33) 

In order to examine when the oscillator comes to rest permanently, we simply take a unique 

friction coefficient equal to: 

 
𝜇 =

𝜇𝑟 + 𝜇𝑎

2
=

2𝜋𝑅𝐸𝛾(𝑐𝑜𝑠 𝜃𝑟 − 𝑐𝑜𝑠 𝜃𝑎)

𝜌𝑉𝑑𝑟𝑜𝑝
 

(IV.4.34) 

This expression is the same as the one obtained by Noblin et al.[115] for large drops flattened 

by gravity. 

Following Lapidus [119], we define the critical displacement 𝑥𝑐 and the factor 𝛼: 

 𝑥𝑐 =
𝜇

𝜔1
2 = 𝛼𝑥0 (IV.4.35) 

𝛼 expresses as 

 
𝛼 = (𝑐𝑜𝑠 𝜃𝑟 − 𝑐𝑜𝑠 𝜃𝑎) (

1

𝑅𝐸
[

𝑑𝑅

𝑑 𝑐𝑜𝑠 𝜃
]
𝑅=𝑅𝐸

)(
𝑥0

𝑅𝐸
)
−1

 
(IV.4.36) 

Then, the position of the contact line is given by: 

 𝑥(𝑡) = 𝑥0{(1 − (2𝑘 − 1)𝛼) 𝑐𝑜𝑠(𝜔1𝑡) − (−1)𝑘𝛼} (IV.4.37) 

We define 𝑥𝑘 the position of the contact line at the end of the kth half-period. 𝑥𝑘 is given by:  

 𝑥𝑘 = (−1)𝑘(1 − 2𝛼𝑘)𝑥0 (IV.4.38) 

The contact line get permanently stuck at the location 𝑥𝑛 when 

 |𝑥𝑛| ≤ 𝑥𝑐 < |𝑥𝑛−1| (IV.4.39) 

The number 𝑛 of half-periods before the contact line immobilization is given by [119]: 
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 1 − 𝛼

2𝛼
≤ 𝑛 <

1 + 𝛼

2𝛼
 

(IV.4.40) 

From Eqs. (IV.4.36) and (IV.4.40), we deduce that the number of oscillations with moving 

contact line, until the contact line gets permanently stuck, is all the greater when (i) the 

hysteresis is low, (ii) the equilibrium contact angle is close to 90° (see Figure IV.4-3) and (iii) 

the initial deviation from equilibrium (𝑥0 𝑅𝐸⁄ ) is large. 

Note: We also considered the case where the drop potential energy is not expanded into Taylor 

series. Then, the model is no more linear and there is no analytical solution. Thus, we 

implemented this model on Scilab sotfware and solved it using the 4th order Runge-Kutta 

method (RK4). We found that the results of the non-linear model are close to those provided by 

the linear one. 

 Comparison with experiments 

Sessile drop natural frequency? 

As already mentioned, the sessile drop oscillations with mobile contact line are affected by 

strong and erratic pinning and depinning events. In order to identify the sessile drop 

eigenpulsation from this “noisy motion”, we performed a spectral analysis of the variations of 

the contact radius as a function of time using Fast Fourier Transform.  

We first determined the eigenfrequency of sessile drops with moving contact line on pure silica 

surfaces. Figure IV.4-4a shows the variations of the contact line radius as a function of time for 

a sessile drop on pure silica (𝑉0 = 0.55 𝑚/𝑠) and Figure IV.4-4b presents the corresponding 

periodogram. We note that the periodogram exhibits a predominant peak at 23.42 Hz. This 

frequency is associated with the oscillations of the sessile drop. Table IV.4-1 reports the 

frequency of the predominant peak for two samples as well as the theoretical eigenfrequency 

as calculated by Eq. (IV.4.27). The agreement between the measured values and the theoretical 

ones is satisfactory (even though the model has been developed under the assumption of small 

equilibrium contact angle). We note that the agreement is better for the experiment 

characterized by a greater initial kinetic energy: in that case, the drop undergoes a larger number 

of oscillations before contact line immobilization. 

We then analyzed the contact radius temporal fluctuations of the drops deposited on silica-

patterned iron surfaces: the periodograms do not reveal any predominant frequency that could 

be related to the theoretical eigenfrequency 𝑓1 (as given by Eq. (IV.4.27)). We attributed this 

result to the characteristic scale of the surface pattern only one or two orders of magnitude 



Chapter IV: Wetting dynamics and discussions 

[202] 

 

 

smaller than the scale of the drop. We concluded that the present model based on (i) the 

spherical cap assumption and (ii) a “macroscopic” description of the wetting (Cassie contact 

angle, advancing and receding angles), is not suitable for the present patterned surface, a 

“microscopic” description of  (i) the surface defects and (ii) the induced contact line distortions 

is needed.  

Hence, we analyzed the experiments of Zaïdi et al. [93] performed on metallic iron partially 

covered by silicon oxides particles or films (the oxides were obtained after annealing process 

of binary alloy iron-silicon. In that case, the oxide particles are five orders of magnitude smaller 

that the drop size. However, the periodograms do not reveal any predominant frequency that 

could be related to 𝑓1. We conclude that the model presented in section IV.4.3 is not relevant 

for sessile drops on chemically heterogeneous surfaces: the advancing and receding contact 

angles are definitely not sufficient to account for the influence of the surface defects on the 

sessile drop dynamics when the drop kinetic energy is not large compared to the hysteretic 

dissipation. 

Note: For the experiments carried out on silica-patterned surfaces, the term “oscillation” is 

abusive since the drop dynamics is not characterized by a predominant frequency. In this case, 

the term “fluctuation” is more appropriate. 
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Figure IV.4-4: Contact diameter oscillation on pure silica: (a) signal of the experimental data, 

(b) periodogram of the signal using the Fast Fourier Transform (FFT). 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 100 200 300 400 500

D
/D

0

Spreading time, t (ms)

(a) signal of drop diameter oscillation on pure silica

Pure silica

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0 100 200 300 400 500

P
o
w

er
/F

re
q
u
en

cy
 (

d
B

/H
z)

Frequency (Hz)

(b) Periodogram of the signal

Estimated Mean frequency

𝑓1
𝑒𝑥𝑝

= 23.42 𝐻𝑧



Chapter IV: Wetting dynamics and discussions 

[204] 

 

 

Table IV.4-1: Experimental and theoretical eigenfrequencies of a sessile drop with moving line 

on pure silica. 

 

Hysteretic dissipation 

We theoretically established that the number of oscillations with mobile contact line 

experienced by a sessile drop before contact line immobilization is related to the parameter 𝛼. 

We remind that 𝛼 depends on (i) the equilibrium contact angle, (ii) the contact angle hysteresis 

and (iii) the initial deviation of the contact radius from its equilibrium value. 

We counted for each experiment the number of half-oscillations with mobile contact line until 

the contact line gets permanently stuck. Figure IV.4-5 presents the variations of the 

experimental number of half-oscillations with moving contact line as a function of 1 𝛼⁄ . The 

theoretical number of half-oscillations is actually of the order of 1 (2𝛼)⁄ . For our experiments, 

𝛼 is essentially affected by the contact angle hysteresis. The equilibrium contact angle has only 

a slight effect on 𝛼. 

Silica 

𝑉0 

(m/s) 

𝜃𝐸  

(°) 

Experimental frequency 

𝑓1
𝑒𝑥𝑝 (Hz) 

Theoretical frequency 

𝑓1
𝑡ℎ (Hz) 

Sample 1 0.55 134 23.42 30.8 

Sample 2 0.86 137 28.01 28.9 
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Figure IV.4-5: Number of drop oscillations with mobile contact line (before contact line 

permanent immobilization) as a function of the dimensionless number 𝛼. 

We observe that the number of oscillations with mobile contact line on silica patterned surfaces 

is correlated with the dimensionless number 𝛼. However, the number of oscillations decreases 

with 1 𝛼⁄  whereas the inverse is theoretically expected.  

These discrepancies can be attributed to the strong assumptions of the model. In that respect, 

the spherical cap assumption impacts the values taken by the dynamic contact angle and 

therefore the drop dynamics. 

We also believe that the dissipation effects are not properly described in the present model: 

damping seems underestimated for the patterned surfaces with low silica area fractions whereas 

it seems overestimated for the patterned surfaces characterized by high silica area fractions. The 

energy losses associated with the pinning and depinning events need to be properly described. 

We conclude that the present model fails to describe the drop relaxation when its contact line 

is mobile. 
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 Drop oscillations with fixed contact radius 

While the drop contact line has stopped permanently, the drop height still fluctuates for a certain 

time before the drop reaches its final resting state. These fluctuations correspond to the phase 

(4) of the drop dynamics as defined in section IV.1. 

Figure IV.5-1 shows the drop height fluctuations with fixed contact line on four different 

substrates, i.e. pure iron surface, pure silica surface and two different silica-patterned iron 

surfaces. We observe that the drop height fluctuations are periodic. In order to precisely 

determine the frequency of these oscillations, we estimated the power spectrum density (PSD) 

of the drop height fluctuations as a function of frequency using Fast Fourier Transform (FFT). 

A typical estimate of the PSD is reported in Figure IV.5-2 for a sessile drop on {100; 100} 

silica-patterned surface: we note that the periodogram exhibits a predominant peak at 73.85 Hz. 

This frequency corresponds to the natural frequency of the sessile drop when its contact line is 

fixed. Table IV.5-1 reports the measured final contact angle 𝜃𝑓, the measured final contact 

radius 𝑅𝑓 (made dimensionless by 𝑅0) and the frequency 𝑓1
𝑒𝑥𝑝

 of the predominant peak as 

identified by FFT for the different experiments carried out in the present work. It appears that 

for a liquid lead drop of fixed mass, the sessile drop eigenfrequency increases as the final 

contact radius increases, i.e., as the final contact angle decreases, i.e., as the wettability of the 

substrate increases. 

The oscillations of sessile drops with fixed contact line can be compared to the axisymmetric 

oscillations of drops partially bound to a rod (Bisch et al. [120]) or to a spherical bowl (Strani 

and Sabetta [121]). Bisch et al. [120] studied the case of drops partially bound to a rod, 

submitted to controlled vibrations and immersed in immiscible liquids of equal density (Figure 

IV.5-3). They established a simple empirical expression of the mode 1 eigenfrequency 𝑓1 

[130; 172]: 

 

𝑓1 =
1

2𝜋
√
3𝐾𝛾

4𝜋𝜌

√𝑅

𝑅𝑠
2 

(IV.5.1) 

where 𝐾 is a constant that should depend on the fluid density ratio (𝐾 =  9 for fluids of equal 

densities). 𝑅 is the contact radius of the drop and 𝑅𝑠 is its curvature radius. This law has been 

validated for 𝑅𝑠 𝑅⁄  of 1.3 to 7. We underline that the eigenfrequency of the first mode 𝑓1 scales 

as 𝑅𝑠
−2: it differs from the eigenfrequency of a free drop which scales as 𝑅𝑠

−3/2
 as predicted by 
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L. Rayleigh [122]. However, the simple equation of Bisch et al. cannot be applied to our 

experiments since the inner to outer fluid density ratio is presently very large, i.e., of the order 

of 104. 

Strani and Sabetta [121] (thereafter noted S&S) theoretically analyzed the linear oscillations of 

a liquid drop in an outer fluid in partial contact with a spherical bowl under inviscid and zero-

gravity assumptions (Figure IV.5-3). The calculated mode 1 eigenfrequency 𝑓1 of vibration 

reads: 

 

𝑓1 =
1

2𝜋
√

𝛾

𝑅𝑠
3𝜌𝜆1

 
(IV.5.2) 

with 𝜆1 the eigenvalue for mode 1 which depends on the geometric contact angle 𝜃 and on the 

phase density ratio. This equation is theoretically valid for arbitrary contact angle and density 

ratio.  

Table IV.5-1 reports the geometric contact angle 𝜃𝑐𝑎𝑝 that the drop would have if it had the 

shape of a perfect spherical cap with contact radius 𝑅𝑓, the ratio of the curvature radius to the 

final contact radius 𝑅𝑠 𝑅𝑓⁄  (where 𝑅𝑠 is calculated under the assumption of perfect spherical 

cap with contact radius 𝑅𝑓) and the theoretical mode 1 eigenfrequency 𝑓1
𝑆&𝑆 computed using 

Strani and Sabetta’s model (Eq. (IV.5.2)). As in the work of Bertrandias et al [123], we 

calculated the first eigenvalue 𝜆1 using the method of Smithwick and Boulet [124]. 

Overall, there is a good agreement between the measured and calculated frequencies when the 

drop is actually in the shape of a spherical cap, i.e. 𝜃𝑐𝑎𝑝 ≅ 𝜃𝑓. However, for liquid lead drop on 

pure silica surfaces, even if 𝜃𝑐𝑎𝑝 ≅ 𝜃𝑓 is satisfied, the measured frequencies are significantly 

lower than the predictions of S&S model. It is not due to a weakness in S&S model since 

Smithwick and Boulet found a very good agreement between S&S model and the measured 

eigenfrequencies of mercury droplets on glass surface (contact angle near 130° as for liquid 

lead on pure silica). 

Figure IV.5-4 compares the experimental eigenvalues derived from the experimental 

eigenfrequencies reported in Table IV.5-1 to the prediction of Strani and Sabetta’s model. The 

lower branch of the curve corresponds to the geometric contact angle lower than 90° and the 

upper branch to contact angle greater than 90°. As mentioned above, Strani and Sabetta’s model 

does not reflect our experiments for large contact angle values (in particular for silica sample). 
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Figure IV.5-1: Height oscillations of lead drop on pure substrates and patterned surfaces. 
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Figure IV.5-2: Periodogram of the drop height oscillations with fixed contact diameter on 

patterned sample {100; 100} obtained by Fast Fourier Transform (FFT). 

Table IV.5-1: Mode 1 eigenfrequency of drop with fixed contact line on pure substrates and 

patterned surfaces: 𝜃𝑓 is the final contact angle, 𝑅𝑓 is the final contact radius, 𝑓1
𝑒𝑥𝑝

 is the 

measured eigenfrequency, 𝜃𝑐𝑎𝑝 in the contact angle of the perfect spherical cap with contact 

radius 𝑅𝑓, 𝑅𝑠 is the drop curvature radius under spherical cap assumption, 𝑓1
𝑆&𝑆 is the 

theoretical mode 1 eigenfrequency as predicted by Strani and Sabetta’s model. 
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(Hz) 𝜃𝑐𝑎𝑝 (°) 𝑅𝑠/𝑅𝑓 𝑓1
𝑆&𝑆(Hz) 

Pure iron 55.00 1.69 77.08 53.9 1.24 77.03 

{5; 20} 58.13 1.67 67.86 55.4 1.22 77.13 

{100; 500} 57.07 1.47 86.96 71.3 1.05 75.58 

{100; 500} 70.90 1.47 76.92 71.3 1.05 75.58 
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{5; 5} 61.78 1.56 79.77 63.8 1.11 76.94 

{20; 20} 51.21 1.59 79.84 61.4 1.14 77.15 

{20; 20} 49.71 1.29 80 87.3 1.00 69.77 

{100; 100} 57.36 1.47 73.85 71.3 1.05 75.58 

{100; 100} 54.48 1.11 73.85 104 1.03 61.03 

{500; 500} 65.52 1.48 71.86 70.4 1.06 75.78 

{500; 500} 61.35 1.47 71.86 71.3 1.05 75.58 

{20; 5} 106.32 1.01 61.88 112 1.08 55.67 

{20; 5} 103.87 1.09 59.88 105 1.04 59.96 

{100; 20} 106.36 1.12 59.88 103 1.02 61.55 

{100; 20} 125.26 0.79 55.00 130 1.30 44.36 

{500; 100} 103.78 1.00 57.88 113 1.09 55.13 

{500; 100} 88.10 1.22 59.88 93.6 1.00 66.61 

Pure silica 137 0.78 28.01 131 1.32 43.88 

Pure silica 134 0.79 23.42 130 1.3 44.36 
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Figure IV.5-3: Drop in partial contact with a spherical bowl as defined by Strani and Sabetta 

[121], [125]. 

 

Figure IV.5-4: First mode eigenvalue: comparison between our experimental data (empty black 

marks) and the calculations of Strani and Sabetta [121] (full red lines). 
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 Drop splitting 

As already shown, a liquid lead drop retracting on a silica-patterned iron surface undergoes a 

series of pinning and depinning events on the pure iron stripes. We observed that a strong 

pinning event may result in the splitting of the drop into several droplets (see Figure IV.1-2). 

Unexpectedly, drop rupture only occurred on patterned surfaces characterized by low silica area 

fraction. 

The following mechanism is advanced: as the drop is pinned during its retraction, a part of the 

liquid kinetic energy is “converted” into free surface oscillations. We expect that the drop splits 

if the amplitude of the vertical oscillations (while the contact line remains pinned) is of the 

order of the drop height. The lower the silica area fraction, the lower the equilibrium contact 

angle, the greater the contact radius, the lower the height of the drop. Thus, drop rupture appears 

more probable on surfaces characterized by low silica area fraction since lower oscillation 

amplitudes are required. Furthermore, the higher the kinetic energy of the drop, the higher the 

amplitude of the oscillations when the drop stops. Thus, drop rupture is more probable during 

the first or the second receding. 

In order to substantiate this scenario, we express the vibrational energy required for the drop to 

split and then compare this energy to the kinetic energy of the drop just before pinning. 

 Splitting energy 

We are looking for a simple approximation of the splitting energy. We suppose that the pinned 

drop has a pancake shape. This assumption seems reasonable since drop splitting often occurs 

early in the receding. In order to determine the vibration modes of a drop with fixed contact 

radius, we followed the approach of Noblin et al. [115] for a puddle flattened by gravity with 

immobile contact line.  

We first consider the capillary-gravity waves of a liquid bath of height 𝐻. If the viscous effects 

are negligible, the pulsation associated with wave vector 𝑞 is given by [126]: 

 𝜔2 = (𝑞𝑔 +
𝛾

𝜌
𝑞3) 𝑡𝑎𝑛ℎ 𝑞𝐻 (IV.6.1) 

Noblin et al. [115] found that the wavelength associated with the 𝑗th vibration mode of a puddle 

drop satisfies (see Figure IV.6-1): 
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(𝑗 −

1

2
) 𝜆𝑗 = 2𝑝 

(IV.6.2) 

where 𝑝 is the arc length of the meridian curve from the center to the edge of the drop (when 

the drop is at rest). If the radius of the drop is large enough compare to its height, a first order 

approximation of 𝑝 is given by 𝑝 ≅ 𝑅 where 𝑅 is the contact radius. 

Then, the wave vector 𝑞𝑗 is given by: 

 

𝑞𝑗 =
2𝜋

𝜆𝑗
≅

𝜋 (𝑗 −
1
2)

𝑅
 

(IV.6.3) 

 

 

Figure IV.6-1: Effective wavelength for the third mode (j=3) [127]. 

Noblin et al. found that the eigenpulsations of a puddle drop are actually well described by Eq. 

(IV.6.1) with 𝑞 satisfying Eq.(IV.6.3). 

If gravitational effects are negligible, the dispersion relation becomes: 

 

𝜔𝑗
2 ≅

𝛾

𝜌
(
𝜋 (𝑗 −

1
2)

𝑅
)

3

𝑡𝑎𝑛ℎ
𝜋𝐻 (𝑗 −

1
2)

𝑅
 

(IV.6.4) 

where 𝐻 would be the height of the drop if it was at rest with contact radius 𝑅. 

The peak vibrational energy associated with mode 𝑗 reads: 

 
𝐸𝑗 =

1

2
𝜌𝑉𝑑𝑟𝑜𝑝𝜔𝑗

2𝐴2 
(IV.6.5) 

 

 

𝑝 
𝜆𝑠 = 2𝜋/𝑞 

𝑅 
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where 𝐴 is the amplitude of the vibrations. Splitting occurs when 𝐴 ≅ 𝐻. Then, the splitting 

energy when the 𝑗th mode is excited, reads: 

 

𝐸𝑠𝑝𝑙𝑖𝑡 ≅
1

2
𝜌𝑉𝑑𝑟𝑜𝑝𝜔𝑗

2𝐻2 =
1

2
𝛾𝐻2𝑉𝑑𝑟𝑜𝑝 (

𝜋 (𝑗 −
1
2)

𝑝
)

3

𝑡𝑎𝑛ℎ
𝜋𝐻 (𝑗 −

1
2)

𝑅
 

(IV.6.6) 

We consider the second mode (𝑗 = 2) since in that case, splitting energy is minimal. 

Under puddle approximation, the height of the drop is: 

 

𝐸𝑠𝑝𝑙𝑖𝑡 ≅
1

2
𝜌𝑉𝑑𝑟𝑜𝑝𝜔𝑗

2𝐻2 =
1

2
𝛾𝐻2𝑉𝑑𝑟𝑜𝑝 (

𝜋 (𝑗 −
1
2
)

𝑝
)

3

𝑡𝑎𝑛ℎ
𝜋𝐻 (𝑗 −

1
2
)

𝑅
 

(IV.6.7) 

 
𝐻 =

𝑉𝑑𝑟𝑜𝑝

𝜋𝑅2
 

(IV.6.8) 

So the minimal splitting energy is given by: 

 
𝐸𝑠𝑝𝑙𝑖𝑡 ≅

27

16
𝜋𝛾

𝑉𝑑𝑟𝑜𝑝
3

𝑅7
𝑡𝑎𝑛ℎ

3𝑉𝑑𝑟𝑜𝑝

2𝑅3
 

(IV.6.9) 

We emphasize that Eq.(IV.6.9) is a rough estimate of the splitting energy since splitting 

typically occurs for large oscillations, when the regime is most likely non-linear. 

 Kinetic energy of the drop 

Under puddle assumption, the kinetic energy of the drop reads (section IV.3) 

 
𝐸𝑐 ≅

1

4
 𝜌𝑉𝑑𝑟𝑜𝑝 (

𝑑𝑅

𝑑𝑡
)
2

 
(IV.6.10) 

Splitting criterion 

We expect the drop to split into droplets if the two following conditions are together satisfied: 

(i) The drop contact line is strongly pinned  

(ii) The energetic criterion is satisfied: the energy ratio is greater than 1 just before 

pinning, i.e. 
𝐸𝑐(𝑡0

−)

𝐸𝑠𝑝𝑙𝑖𝑡(𝑡0
− 

> 1  if pinning occurred at 𝑡0. 

 Application of the model 

To verify if the splitting criterion defined above is relevant, we select four samples from our 

experimental data: 
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- Two samples of patterned surfaces where splitting never occurred: {20; 5} and {20; 20} 

- Two samples of {5; 20} where splitting may occur. 

In Figure IV.6-2, for the patterned surfaces {20; 5} and {20; 20}, we can see that the energetic 

criterion is never satisfied when the drops get pinned: the energy ratio is systematically much 

lower than 1 just prior to the pinning events.   

On the contrary, on patterned surfaces {5; 20}, the energetic criterion is satisfied just before the 

first pinning events. According to the defined splitting criterion, the drop should split in both 

experiments. Nevertheless, the drop splits only in the second one. Indeed, in the present 

experiments, we do not control the way the vibrational modes are excited when the drop gets 

pinned. However, these aspects also condition the breaking or the non-breaking of the drop. 

We conclude that the above criterion only informs us about the risk that the drop splits on a 

given patterned surface. We expect that the higher the energetic criterion, the higher the 

probability that the drop will split. 
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Figure IV.6-2: Ratio of drop kinetic energy to theoretical splitting energy. (a) and (b): patterned 

surfaces where drop splitting never occurred. (c) two samples of {5; 20} patterned surface: 

drop splits in (d) but does not in (c). 

 Conclusion 

In this chapter, we examined the different phases of the sessile drop dynamics, i.e. from the 

initial spreading upon impact until the final resting state. When it was relevant, we applied 

analytical models already available in the literature. Otherwise, we developed our own models. 

The values of the Weber and Ohnesorge numbers characterizing the drop impact states that the 

spreading is impact driven: the droplet spreading is mainly driven by the impact velocity and 

the spreading resistance is due to inertia. Thus the spreading timescale is the inertial time 

defined by 𝑡𝑖 = 𝐷0 𝑉0⁄ .  

To account for the substrate wettability, we introduced a modified Weber number  𝑊𝑒′ =

𝑊𝑒/(1 − cos 𝜃𝐸) and a modified impact parameter 𝑃𝐼 = 𝑊𝑒′ 𝑅𝑒
2

5⁄ . Our data are located in a 

𝑃𝐼 range where the initial spreading is not solely controlled by inertia and capillarity. It is also 

affected by viscous effects. Consistently we found that the maximal spreading diameter is well 

described by Clanet et al. scaling law, i.e. 𝐷𝑚𝑎𝑥 𝐷0 ∝ 𝑊𝑒′1 4⁄⁄ . 
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During this phase, the spreading diameter evolves as the square root of time: 

 𝐷(𝑡)

𝐷0
= 𝛼2 (

𝑡

𝑡𝑖
)
1 2⁄

 
(IV.7.1) 

where 𝛼2 depends on the modified Weber number. 

The spreading phase is followed by the receding phase. The timescale at the beginning of the 

first receding is the inertial capillary time given by: 

 

𝜏𝑟 = √
𝜋𝜌𝑉𝑑𝑟𝑜𝑝

𝛾(1 − 𝑐𝑜𝑠 𝜃𝑟)
 

(IV.7.2) 

And the contact radius of the receding drop is well described by:  

 
𝑅

𝑅𝑚𝑎𝑥
= 𝑐𝑜𝑠 (√

4𝜋𝛾(1 − 𝑐𝑜𝑠 𝜃𝑟)

𝜌𝑉𝑑𝑟𝑜𝑝
𝑡) 

(IV.7.3) 

This law holds only at the beginning of the receding.  

When a liquid lead drop further retracts on a silica patterned iron surface, it undergoes a series 

of pinning and depinning events on the pure iron stripes. In a few cases, a strong pinning event 

may result in the splitting of the drop into several droplets. Indeed, as a drop is pinned during 

its receding, its kinetic energy is partially converted into free surface oscillations. If the potential 

energy associated with these oscillations exceeds a certain threshold, the drop splits. The 

minimum energy required by the drop (of contact radius 𝑅) to divide was estimated at: 

 
𝐸𝑠𝑝𝑙𝑖𝑡 ≅

27

16
𝜋𝛾

𝑉𝑑𝑟𝑜𝑝
3

𝑅7
𝑡𝑎𝑛ℎ

3𝑉𝑑𝑟𝑜𝑝

2𝑅3
 

(IV.7.4) 

In most cases, the drop remains whole and relaxes as it is until rest. At the beginning of the 

relaxation, the drop oscillates with a stick-slip motion of the contact line. Finally, the contact 

line stops permanently and the drop oscillates with fixed contact line until resting state. 

We established a simple analytical model of oscillating drop with moving contact line. This 

model accounts for the mode 1 eigenfrequency of drops deposited on pure silica surfaces but it 

fails to describe the drop behavior on silica patterned surfaces. Indeed, the pinning and 

depinning events on the silica pillars are very dissipative and strongly affects the drop 

dynamics. The contact angle hysteresis only partially reflects these phenomena. They need to 

be described in more detail and require a modelling at the scale of the silica pillars. 
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Last, the drop oscillations with fixed contact line are well described by Strani and Sabetta’s 

model (S&S) originally established for a drop bound to a spherical bowl: the measured mode 1 

eigenfrequencies are in good agreement with the prediction of S&S model. 

Note: Figure IV.7-1 compares the mode 1 eigenfrequency of a drop (of volume 𝑉𝑑𝑟𝑜𝑝) with 

moving contact line (our model), the mode 1 eigenfrequency of a drop with fixed contact line 

(as given by S&S model), and the eigenfrequency of a free drop of double volume (2 × 𝑉𝑑𝑟𝑜𝑝). 

The latter frequency is identical to the eigenfrequency of a hemispherical sessile drop (of half 

volume, i.e. 𝑉𝑑𝑟𝑜𝑝) with a free contact line and a fixed contact angle equal to 90°. This frequency 

may be calculated from Lamb [128] 

 

𝜔𝑛 = 2𝜋𝑓𝑛 = √
(𝑛 − 1)𝑛(𝑛 + 1)(𝑛 + 2)𝛾

(𝜌(𝑛 + 1) + 𝜌𝑐𝑛)𝑅3
 

(IV.7.5) 

with 𝑛 = 2 and the density of the continuous phase 𝜌𝑐 ≈ 0. 

We observe that the variations of the eigenfrequency of the drop with free contact line are 

similar to the variations of the eigenfrequency provided by S&S model. Consistently, for the 

same curvature radius to contact radius ratio, the eigenfrequency of the drop with moving 

contact line is lower than the eigenfrequency with fixed contact line (S&S). We note that for 

𝑅𝑠 𝑅⁄ = 1 (𝜃𝐸 = 90°), the eigenfrequency of our model lies between S&S eigenfrequency and 

the eigenfrequency of a hemispherical sessile drop with free contact line and fixed contact 

angle. 
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Figure IV.7-1: Comparison of the different eigenfrequencies. Drop oscillation with a moving 

contact line (blue line), drop oscillation with a fixed contact line (red line), free drop oscillation 

(the cross mark)

0

10

20

30

40

50

60

70

80

90

1 1.1 1.2 1.3 1.4 1.5 1.6

E
ig

en
fr

eq
u
en

cy
 (

H
z)

Rs/R

Our model (moving contact line)

Calculations from S&S (fixed contact line)

Lamb's law (free drop)



Conclusion 

[221] 

 

Conclusion and perspective 

This work is a contribution to a better understanding of the wettability of heterogeneous iron-

oxide surfaces by liquid metals. It is devoted to the study of the influence of oxides during 

physical wetting and then bring a better understanding of the steel sheet wettability during 

galvanization process. In fact, since the oxides formed on industrial steel sheets do not allow a 

good wetting of the steel sheet, it is essential to understand the wetting phenomena of 

heterogeneous iron-oxide surfaces. However, most of the wettability studies were carried out 

on iron alloys after annealing. During this annealing process, addition elements such as silicon 

and manganese diffuse to the surface by selective oxidation to form particles or films. These 

oxides are generally of different shapes, sizes and distribution and then do not allow a detailed 

study. 

To answer this problem, we used iron-silica textured surfaces. These surfaces were designed by 

plasma-enhanced chemical vapour deposition followed by photolithographic process. That 

allow to made heterogeneous surfaces with square silica of size and inter-distance between 5 

µm and 500 µm. In addition to these textured surfaces, we also used pure iron and silica 

substrates as a reference for the study of textured surfaces. Then, we studied the wetting of 

heterogeneous iron-oxide surfaces from 0% to 100% of oxide covering rate. 

On the other hand, we used lead as a metal, instead of a zinc alloy. Indeed, the wetting of these 

heterogeneous iron-silica surfaces by zinc is reactive and modifies the liquid solid interface. 

This brings a new complexity to the study of wetting. The choice of lead allowed to study only 

the physical (non-reactive) wetting of the textured surfaces. 

The wetting experiments were carried out using the dispensed drop technique. First, the textured 

surfaces are annealed at high temperature in a reducing atmosphere (N2- 5 vol. % H2) to reduce 

surface iron oxides. Then, the drop is dispensed to the surface and spreads on it. This was filmed 

and recorded using a high-resolution and high-speed camera at 1000 frames/second. Then, we 

implemented image analysis techniques to characterize the wetting. These techniques allow to 

measure the three main wetting parameters: diameter and height of the drop and its contact 

angle. On the solidified drop, the circularity criterion of the drop contact on the patterned 

surface was estimated and the triple contact line was positioned with respect to the patterns, on 

as many samples as possible. From these experimental studies, different results were obtained.  
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Experimental results 

First, after the impact, the drop spreads to its maximum spreading diameter. This phase is called 

the spreading phase. It is followed by the first receding phase. Then two cases of drop behaviour 

were observed, depending on the silica area fraction. In the first case, the drop continues its 

receding before oscillating until its final state. This first case is most common on patterned 

surfaces with high silica area fraction (25%, 64% and 70%). In the second case, the drop is 

retained during its receding: stick-slip motion. This is most frequently encountered on surfaces 

with low silica coverage rates (3% and 4%). In some cases, the stick-slip motion leads to the 

split of the drop into several pieces. 

Then, stick-slip motion phenomenon leads to a deformation of the drop shape on the patterned 

surface. Image processing and scanning electron microscopy (SEM) showed that the triple 

contact line is mainly on pure iron, by bypassing silica patterns. 

The influence on the wetting of the spreading direction of the triple contact line in relation to 

the patterns was negligible. However, when the drop is strongly deformed, it is more elongated 

in direction d1 (parallel to the sides of the square patterns) than in direction d2 (parallel to the 

diagonal of the square patterns). In addition, we showed that the solidification of the drop does 

not change the spreading diameter and contact angle measured of the drop.  

On the influence of pattern size and distribution, we showed it is negligible on the wetting. In 

fact, the average dynamic of the drop spreading is very close on textured surfaces with the same 

silica fraction. This is true regardless of the size of the oxides and their distribution. Very few 

differences were also observed on the solidified drop, depending on the spreading direction. 

Differences were observed only from one silica surface fraction to another.  

This led us to the influence of the area fraction covered by silica on the final contact angle and 

on the contact angle hysteresis. Due to the stick-slip motion, the final contact angle of the drop 

on samples with low and moderate silica area fraction is close to a receding contact angle. The 

final angle only increases on surfaces with high silica area fraction.  

Consequently, we showed that the surface fraction of oxides plays a key role in wetting, 

contrary to their size and distribution. 
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We also showed that the receding contact angle (minimum angle during drop receding) is 

almost constant on all textured surfaces regardless of the silica surface fraction. These results 

are in agreement with those obtained by other authors in literature [14], [15], [65]. 

Modelling of the spreading dynamics 

We examined the different phases of the sessile drop dynamics, i.e. from the initial spreading 

upon impact until the final resting state. 

First, the values of the Weber and Ohnesorge numbers characterizing the drop impact states 

that the spreading is impact driven: the droplet spreading is mainly driven by the impact velocity 

and the spreading resistance is due to inertia. To account for the substrate wettability, we 

introduced a modified Weber number  𝑊𝑒′ = 𝑊𝑒/(1 − cos 𝜃𝐸) and a modified impact 

parameter 𝑃𝐼 = 𝑊𝑒′ 𝑅𝑒
2

5⁄ . Our data are located in a 𝑃𝐼 range where the initial spreading is not 

solely controlled by inertia and capillarity. It is also affected by viscous effects. Consistently 

we found that the maximal spreading diameter is well described by Clanet et al. scaling law, 

i.e. 𝐷𝑚𝑎𝑥 𝐷0 ∝ 𝑊𝑒′1 4⁄⁄ . During this phase, the spreading diameter evolves as the square root 

of time. 

At maximum spreading, the drop is out of thermodynamic equilibrium. Then, the spreading 

phase is followed by the receding phase. We showed that the timescale at the beginning of the 

first receding is the inertial capillary time 𝜏𝑟. We proposed a macroscopic model which well 

describes the contact radius of the receding drop until about 0.1𝜏𝑟. Beyond, the spreading 

dynamics undergo series of pinning and depinning events on the pure iron stripes.  

On iron-silica patterned surfaces with low silica area fraction, a strong pinning event may result 

in the splitting of the drop into several droplets. This splitting was studied and we proposed a 

criterion based involved energies: the kinetic energy which is partially converted into free 

surface oscillations and the potential energy associated with these oscillations. 

On iron-silica patterned surfaces with low and high silica area fraction, the drop remains whole 

and relaxes as it is until rest. First, the drop oscillation is damped by stick-slip motion of the 

contact line. Then, the contact line remains constant but the drop continues to oscillate with 

fixed contact line until resting state. 
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We established a simple analytical model of oscillating drop with moving contact line. This 

model successfully describes the mode 1 eigenfrequency of drops deposited on pure silica 

surfaces but not on silica patterned surfaces. Indeed, the pinning and depinning events on the 

silica pillars are very dissipative and strongly affects the drop dynamics. 

Finally, we showed that the drop oscillations with fixed contact line are well described by Strani 

and Sabetta’s model (S&S) originally established for a drop bound to a spherical bowl: the 

measured mode 1 eigenfrequencies are in good agreement with the prediction of S&S model. 

Perspective 

In addition to this thesis work, some axes of reflection may be considered. They could be 

divided into 3 main areas: 

Textured surfaces 

We used ten textures with patterned sizes between 5 μm to 500 μm, in addition to pure 

substrates. The surface fractions of oxides were as follow: 0%, 3%, 4%, 25%, 25%, 64%, 70% 

and 100%. It would be interesting to complete this study with textured surfaces of oxide area 

fraction around 10% and 40%. This would complete the influence of the oxide area fraction on 

the final contact angle and contact angle hysteresis.  

Furthermore, another initial objective of this work was to study the wetting transition: from 

wetting of liquid metal in base contact with the heterogeneous surface (Wenzel state) to the 

wetting of liquid with gas under the drop. This is in order to study the critical size of the oxides 

from which gas is trapped under the drop. Diawara [2], in his work, was able to study this 

wetting transition on alloy sample Fe-Si, after annealing. However, this wetting transition was 

not observed on the textured surfaces studied in this work, given the low height of the silica 

patterns (h/d ̴ 0) in accordance with the results of the literature. To be able to study such wetting 

transition surfaces with an h/d ratio greater than 1 are required.   

Contact angle hysteresis 

In this work, contact angle hysteresis was estimated from the spreading dynamics. However, 

the speed of this spreading does not allow a better estimation of the contact angle hysteresis. It 

would be interesting to measure contact angle hysteresis on our textured surfaces using more 

appropriate techniques such as the sandwich drop method. 
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Modelling of the spreading dynamics 

The spreading dynamics of the lead drop on iron-silica patterned surfaces are subject to pinning 

and depinning effects. We have not been able to model these phenomena in this work. Indeed, 

the scales involved (size of the plots compared to the drop size), the texturing of the surface and 

the spreading velocity require a more precise modelling at the scale of the silica pillars. Given 

the impact of these phenomena on spreading, it would be interesting to be able to model these 

phenomena. 
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A Dimensional analysis 

A.1. Static apparent contact angle. 

The variables involved to account for the apparent static contact angle 𝜃∗ are 𝜃𝑌𝑆, 𝛾𝐿𝑉, 𝜌, 𝑔, ℎ, 

𝑑, 𝑠 and 𝑅 the characteristic dimension of the liquid drop. The systems considered here can 

therefore be described by nine physical variables, two of them being non-dimensional (𝜃∗, 𝜃𝑌𝑆), 

the seven others being expressed by three physical dimensions (kg, m, s). From the Buckingham 

 theorem, it can be deduced that these systems are described by six non-dimensional numbers. 

Two of them are the apparent and Young contact angles (𝜃∗, 𝜃𝑌𝑆). 

The patterned surfaces under investigation are characterized by the Wenzel’s roughness and the 

surface area fraction of the pillar tops. 𝑟𝑊 and 𝑓𝑆 are function of two dimensionless parameters: 

𝑠

𝑑
 and 

ℎ

𝑑
. 

The characteristic dimension 𝑅 of the liquid drop can be compared to the distance 𝑠 between 

the pillars. In the systems under investigation, the liquid drop is much larger than the 

dimensions of the texture. If 𝑅 were of the same order of magnitude as 𝑠, 
𝑅

𝑠
 should be taken into 

account. 

The apparent contact angle is linked to the wetting of the solid by the liquid. The penetration of 

the liquid inside the asperities of the solid can be enhanced when the size of the drop is 

increased. In other words, what is the influence of the hydrostatic pressure of the drop compared 

to the wetting properties of the system. Bico [9] proposed a simple model for a solid composed 

of cylindrical pillars in a square distribution. 

This model is tailored here to square pillars in a square distribution. Let’s consider a spherical 

liquid drop (𝑅 ≪ 𝜅−1) resting on a patterned solid. It is assumed that air remains trapped in the 

texture under the drop. The contact between the solid and the liquid is a disk of radius 𝑟𝐶 (Figure 

A1.1). 

rC = Rsinθ∗ (A.1) 

When the solid is not wetted by the liquid, 𝑟𝐶 ≪ 𝑅 and the volume of the liquid drop is about 

the volume of a sphere of radius 𝑅. 
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Figure A1.1.  A spherical liquid drop resting on a patterned solid 

The surface area fraction of the pillar tops is given by: 

𝑓𝑆 = 𝑛𝑑2 (A.2) 

where n is the number of pillars per unit surface area. 

The drop is in contact with 𝑛𝜋𝑟𝐶
2 pillars and the weight applied to one pillar is given by: 

𝑃 =
4𝑅3𝜌𝑔

3𝑛𝑟𝐶2
 

(A.3) 

The drop is maintained at the top of the pillars provided that:  

4𝑑𝛾𝐿𝑉|𝑐𝑜𝑠𝜃𝑌𝑆| >
4𝑅3𝜌𝑔

3𝑛𝑟𝐶2
 

(A.4) 

Or 

𝑅𝑑

𝜅−2
< 3𝑓𝑆𝑠𝑖𝑛

2𝜃∗|𝑐𝑜𝑠𝜃𝑌𝑆| 
(A.5) 

with 𝑠𝑖𝑛2𝜃∗ = 1 − 𝑐𝑜𝑠2𝜃∗ and 𝑐𝑜𝑠𝜃∗ = 𝑓𝑆 𝑐𝑜𝑠𝜃𝑌𝑆 − 1 + 𝑓𝑆. 

In most of the cases reviewed here, this inequality is verified, meaning that the influence of the 

dimensionless number 
𝑅𝑑

𝜅−2
 can be neglected. 
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B More information on the transition from the Cassie regime to the Wenzel 

regime 

B.1. Metastable states 

 

Figure B.1: Definitions of parameters for a textured square pillars in a square arrangement 

[35]. 

The Cassie state is often observed even if the condition given by Eq. (I.2.10) is not fulfilled. It 

means that the Cassie state might be metastable, i.e., exist instead of the stable Wenzel state. 

The metastable Cassie state is shown in Figure I.2-3 with the dotted line. 

The first condition permitting air entrapment under the drop is to obtain the Young contact 

angle at the different horizontal contact lines (with air trapped below). This condition can be 

achieved only if the local solid slopes are large enough. It means that there is a transition from 

the Wenzel to the Cassie regime when the roughness is increased. From Eq. (I.2.9), 

𝑟𝑊 > 𝑓𝑆 +
𝑓𝑆 − 1

𝑐𝑜𝑠𝜃𝑌𝑆
  

(B.1) 

Generally, the Young contact angle cannot be obtained for a crenelated solid. In this case, the 

existence of air / liquid interfaces below the drop is due to the pinning of the triple line on the 

edges of the spikes, leading to a metastable Cassie state [7]. 

[56], [57] also showed the existence of mixed Wenzel-Cassie state, i.e. the drop permeates the 

surface texture without touching the bottom and trapping some air pockets. In this situation, the 

measured contact angles are stronger than those predicted by the Wenzel relation due to the 

emergence of a mixed system between the regimes of Wenzel and Cassie. 

𝑑 

𝑠 𝑠 

ɸ 

𝜔 
ℎ 

ɸ 

ℎ 𝜃𝑎,0 

𝛿𝑝 
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B.2. Thermodynamic energy barrier 

The thermodynamic energy barrier of a smoothly deposited drop on textured can be calculated 

from the total free surface energy of the system [55]: 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝛾𝐿𝑉𝑆𝐿𝑉 + 𝛾𝑆𝑉𝑆𝑆𝑉 + 𝛾𝐿𝑆𝑆𝐿𝑆 (B.2) 

 

Figure B.2: A smoothly deposited drop on pillar textured surfaces [55]. 

Then, depending on the regime (Cassie or Wenzel states), the total free surface energy of the 

system can be written: 

𝐸𝑠𝑢𝑟𝑓(𝑥, 𝑦, 𝜃) = 𝛾𝐿𝑉𝑆𝑒𝑥𝑡 + 𝑐(𝑥, 𝑦, 𝜃)𝑆𝑏𝑎𝑠𝑒 + 𝑟𝑊𝛾𝑆𝑉𝑆𝑡𝑜𝑡𝑎𝑙 (B.3) 

Where c(𝑥, 𝑦, 𝜃) depends on the wetting regime. In the Cassie regime (drop suspended on the 

pillar tops), 

𝑐(𝑥, 𝑦, 𝜃) = 𝐶𝑐𝑜𝑚𝑝 = −𝛾𝐿𝑉 [𝑓𝑆 (1 +
4𝑑𝑥

𝑎2
) 𝑐𝑜𝑠 𝜃𝑌 + (1 − 𝑓𝑆)𝑦] 

(B.4) 

And in the Wenzel state, c(𝑥, 𝑦, 𝜃) = 𝐶𝑤𝑒𝑡 = −𝛾𝐿𝑉𝑟𝑊 cos 𝜃𝑌 

𝐸𝑠𝑢𝑟𝑓(𝑥, 𝑦, 𝜃) = 𝜋 (
3𝑉

𝜋
)
2/3

×
1

(2 − 3 𝑐𝑜𝑠 𝜃 + 𝑐𝑜𝑠3 𝜃)2/3
 [2𝛾𝐿𝑉(1 − 𝑐𝑜𝑠 𝜃) + 𝑐(𝑥, 𝑦, 𝜃) 𝑠𝑖𝑛2 𝜃]

+ 𝑟𝑊𝛾𝑆𝑉𝑆𝑡𝑜𝑡𝑎𝑙 

(B.5) 

Of course, the minimization of this energy gives the classical laws of Cassie and Wenzel. 

Moving from the Cassie state to the thermodynamic favoured Wenzel state requires that an 

energy barrier to overcome, due to the filling of the asperities with liquid. This energy barrier 

can be approximated to the differential energy in the Cassie (𝑥 = 0) state and the hypothetical 

Wenzel state corresponding to the Cassie state with 𝑥 = ℎ (non-composite state) at constant 

contact angle. 
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∆𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟 = 𝐸𝑐𝑜𝑚𝑝
𝑠𝑢𝑟𝑓(𝑥 = 0, 𝑦, 𝜃𝑐𝑜𝑚𝑝 − 𝐸𝑐𝑜𝑚𝑝

𝑠𝑢𝑟𝑓(𝑥 = ℎ, 𝑦, 𝜃𝑐𝑜𝑚𝑝  (B.6) 

With  

𝑐𝑜𝑠 𝜃𝑐𝑜𝑚𝑝 =𝑓𝑆 𝑐𝑜𝑠 𝜃𝑌 + (1 − 𝑓𝑆)𝑦 (B.7) 

Thus, the transition occurs at lower energy barrier or when the drop vibration energy balances 

is sufficiently large to balance this energy barrier  [55].  

B.3. Model based on drop pressure 

A drop of volume 𝑉𝐿 deposited on horizontal surface exercises on it a pressure 𝑃𝑖 , called 

internal drop pressure obtained from gravity and given by: 

𝑃𝑖 =
𝑉𝐿𝜌𝑔

𝜋(𝑅(𝜃))2
 , 𝑅(𝜃) = [

6𝑉

𝜋(1 − 𝑐𝑜𝑠𝜃)(3 𝑠𝑖𝑛2 𝜃 + (1 − 𝑐𝑜𝑠𝜃)2
]
1/3

  
(B.8) 

Where 𝑅(𝜃) is the radius of the droplet in contact with the surface of apparent contact angle 𝜃. 

Assuming the drop to be sufficiently small, the weight of the suspended drop 𝐹𝑤  is given by: 

 𝐹𝑤 = 𝜌𝑔𝑉𝑢    (B.9) 

The volume of the suspended drop (or unsupported drop)  𝑉𝑢 is: 𝑉𝑢 = 𝑉𝐿 − 𝑓𝑠ℎ𝑑𝐴, where the 

liquid drop has a density of 𝜌, a total volume of  𝑉𝐿, a height of  ℎ𝑑 with apparent contact area 𝐴 

and a surface tension of 𝛾. 

According to Extrand studies [12], [35], to suspend a drop on a textured surface, three 

conditions must be satisfied: 

1. The interaction of a drop with the roughness solid at the contact line must direct surface 

forces upward, i.e. 𝜃𝑌 > 90°, contrary to the some experimental results in literature 

[56], [73] where hydrophocity has been reached with homogeneous textured hydrophilic 

surface NOA. In our case, we will consider this condition always satisfied since we will 

deal with hydrophobic surfaces. 

2.  Surface forces must be able to maintain the drop against downward forces that favour 

drop drooping such as gravity called ‘‘contact line density criterion’’. 

3. The asperities should be higher than liquid protruding between the more distant 

successive pillars called ‘‘pillar height criterion’’. 
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If the surface is a homogeneous textured surface as in Figure I.2-4, the contact line density 𝛬 is 

defined by the relation: 

𝛬 =
4𝑑

(𝑠 + 𝑑)2
  

(B.10) 

We will notice by  𝑠𝑎𝑚𝑎𝑥 as greatest linear distance between adjacent pillars:2𝑠𝑎𝑚𝑎𝑥 = √2 𝑠, 

the advancing, receding and equilibrium contact angles on the smooth surface by 𝜃𝑎,0 and 𝜃𝑟,0, 

respectively, and 𝜃𝑎 and 𝜃𝑟  respectively the advancing and receding apparent contact angles 

on the textured surface. 

- Contact line density criterion 

The surface forces 𝐹 exerted by the surface to the drop depend on the surface tension 𝛾, the 

contact angle and the surface of solid-liquid contact area 𝐴: 

𝐹 = 4𝑑𝛼𝑎𝐴 𝛾 𝑐𝑜𝑠(𝜃𝑎,0 + 𝜔 − 90°    (B.11) 

With 𝛼𝑎the area density of the asperities: 𝛼𝑎 =
1

(𝑠+𝑑)2
. 

At the equilibrium, these two forces are equal, then we can obtain the critical value of the 

density contact line 𝛬𝒄 : 

𝛬𝑐 = −
𝜌𝑔𝑉 (1 −

𝛼𝑝ℎ𝑙𝐴
𝑉 )

𝐴𝛾 𝑐𝑜𝑠(𝜃𝑎,0 + 𝜔 − 90° 
  

(B.12) 

If the drop is small enough, it retains spherical proportions, and in this condition, it can been 

demonstrated from simple trigonometric calculations: 

ℎ𝑑 = [
3𝑉

𝜋
×

1 − 𝑐𝑜𝑠𝜃𝑎
2 + 𝑐𝑜𝑠𝜃𝑎

]
1/3

 , 𝐴

= 𝜋1/3(6𝑉)2/3 [𝑡𝑎𝑛 (
𝜃𝑎
2
) × (3 + 𝑡𝑎𝑛2

𝜃𝑎
2
)]

−2/8

   

(B.13) 
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Thus, the critical value of the contact line density becomes: 

𝛬𝑐 = −𝜌𝑔𝑉
1
3(1 −  𝑘𝑐𝑜𝑟𝑟)

[𝑡𝑎𝑛 (
𝜃𝑎
2 ) × (3 + 𝑡𝑎𝑛2 𝜃𝑎

2 )]

2
3

(36 × 𝜋)
1
3𝛾 𝑐𝑜𝑠(𝜃𝑎,0 +𝜔 − 90° 

  

(B.14) 

Where 𝑘𝑐𝑜𝑟𝑟 is a correction factor which is equal to zero pour small 𝛼𝑎 and for high apparent 

contact angle 𝜃𝑎: 

𝑘𝑐𝑜𝑟𝑟 = 𝛼𝑎 (
96(1 − 𝑐𝑜𝑠𝜃𝑎)

2 + 𝑐𝑜𝑠𝜃𝑎
)

1/3

× [𝑡𝑎𝑛 (
𝜃𝑎
2
) × (3 + 𝑡𝑎𝑛2

𝜃𝑎
2
)]

−2/3

   
(B.15) 

The drop is suspended on the top of pillars, if 𝛬 > 𝛬𝑐. Then at the transition point 𝛬 = 𝛬𝑐, 

equations give the dimensionless critical distance between pillars (
𝑠

𝑑
)
𝑐
 beyond which the 

wetting regime will switch from Cassie to Wenzel states. 

(
𝑠

𝑑
)
𝑐
= (

4

𝛬𝑐 × 𝑑
)
1/2

− 1 
(B.16) 

This last relation shows that for a given critical line density, the dimensionless critical distance 

depends on the pillar size and it is as great as the pillar size is smaller. 

Other authors have found analogical results [56], [57], where the critical pressure 𝑃𝑐 of the 

Cassie regime which is the maximum possible pressure of the drop to be maintained on the 

pillar top is inversely proportional to pillar size for a given Cassie fraction. 

𝑃𝑐 =
4𝛾𝑓𝑆𝑐𝑜𝑠𝜃𝑌

(1 − 𝑓𝑆)𝑑
      

(B.17) 

But this analysis is only valid if the pillar height has no effect on the transition regime (pillar 

height sufficiently large). 

- Pillar height criterion 

When one deposits a liquid on textured surfaces, the liquid can protrude downward between 

successive pillars (in order to locally respect Young relation on asperity sides). That creates a 

drop extension of diameter 𝛿𝑝 (or protrusion depth), depending on the contact angle and the 

distance between pillars: 

𝛿𝑝 = 𝑠𝑎𝑚𝑎𝑥𝑡𝑎𝑛 (
𝜃𝑎,0 + 𝜔 − 180

2
) 

(B.18) 
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Thus, the drop will still maintained on the top of pillar if the protrusion depth 𝑑 is less than the 

pillar height ℎ: ℎ > 𝛿𝑝 with a transition point expression: 

(
ℎ

𝑑
)
𝑐
= √2 × 𝑡𝑎𝑛 (

𝜃𝑎,0 + 𝜔 − 180

2
) ×

𝑠

𝑎
       

(B.19) 

Finally, the drop is suspended as long as the two criteria are verified. This model has been 

successfully applied to several experimental results [17][29][30][129].  
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C Patterned surfaces: comparison with published models 

In this part, the experimental points extracted from the literature for textured surfaces (section 

I.3) are compared to the different models presented in section I.2: Cassie's and Wenzel's laws 

for the equilibrium contact angle, the wetting transition and the model of Raj et al. [69] for the 

contact angle hysteresis. 

C.1. Equilibrium contact angle 

We are interested here in the contact angles obtained at low temperature for homogeneous 

textured surfaces that were collected in Table I.3-1 and Table I.3-2. In Figure C.1, the 

advancing, receding and equilibrium contact angles are plotted together with the evolution of 

Wenzel’s and Cassie’s laws as a function of s/d (Figure top) and h/d (Figure bottom). In this 

case, as explained above, air can be trapped under the droplet and, for this reason, the contact 

angle is estimated with Cassie’s law for an air/solid composite surface. 

As expected, the equilibrium contact angle, estimated with Wenzel’s and Cassie’s laws, is 

located between the corresponding advancing and receding contact angles in the ranges of s/d 

and h/d investigated. 

The value of the theoretical angle is closer to the advancing and equilibrium contact angles than 

to the receding contact angle. Wenzel’s and Cassie’s laws are qualitatively consistent with the 

main observations obtained for the advancing and equilibrium contact angles, namely the 

evolution of 𝜃𝑎, 𝜃𝑒𝑞 when s/d or h/d is increased. 
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Figure C.1: Equilibrium (), advancing () and receding () contact angles as a function of 

the dimensionless lengths s/d (top) and h/d (bottom). Comparison with the Wenzel and Cassie 

models [67]–[69],[70], [72], [74]. 
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C.2. Wetting transition 

Figure C.2 shows the experimental transition for the collected data. This is compared to the 

transition predicted by Wenzel and Cassie in Eq. (I.2.12). Note that, we built the map of Figure 

C-2 by taking the transition obtained on the evolution of the advancing contact angle. 

The theoretical transition predicted with Wenzel and Cassie’s laws (solid line in Figure C.2) 

does not correspond to the experimental transition (dotted line) and therefore does not predict 

the wetting transition quite well. This means that thermodynamic equilibrium is generally not 

achieved for composite surfaces. In fact, the figure shows that, for a given dimensionless 

height 
ℎ

𝑑
, the transition from Cassie to Wenzel regimes occurs for a dimensionless spacing 

𝑠

𝑑
 

higher than the one predicted by the models. And for a given dimensionless spacing, the 

transition from the Cassie regime to the Wenzel regime occurs at a lower dimensionless height. 

Thus, surface hydrophobicity tends to favour the metastable Cassie regime [13] or a mixed 

Cassie and Wenzel states [56], [83], by the entrapment of air pockets under the drop. 

 

Figure C.2: Wenzel (●) and Cassie (○) states as a function of h/d and s/d, liquid metal case in 

red. Experimental transition (dotted line), theoretical Wenzel / Cassie transition (black solid 

line), data collected from references [14], [15], [23], [55], [56], [66]–[70], [72]–[75], [77]. 
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Comparison with models 

The energy barrier of the transition from Cassie to Wenzel state can be estimated from 

thermodynamic study of the liquid-solid system. Figure C-3 shows the evolution of this energy 

barrier in function of dimensionless pillar distance (s/d) and for each pillar size d, showing that 

the minimum of the energy barrier falls at smaller ratio (s/d) when d is higher. Then, one can 

calculate for each pillar size the corresponding (
𝑠

𝑑
)
𝑐
 beyond which the drop will fall to the 

Wenzel state from Cassie one.  

 

Figure C-3: Energy barrier with h/d=3, 𝜃𝑌 = 105 as function of dimensionless pillar distance 

s/d for a given pillar size. The minima of the energy barriers are marked by X. 

The two (Energy barrier and Extrand) models are compared to some experimental literature 

data, in Figure C.4. The two model’s predictions are very similar and there is a right sense of 

the transition. In these models, energies and forces balances are used which are known to be 

interchangeable. Also, a quantitative agreement with experimental data is found.  
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Figure C.4:  Wenzel (●) and Cassie (○) states as a function of d and s/d, thermodynamic energy 

barrier model [55] (red dotted line), model of Extrand [58] (blue dotted line). With h/d=3, 𝜃𝑌 =

105, 𝜃𝑎0 = 120 and 𝜃𝑎 = 155. Data collected from references [23], [55], [56], [69]–[72], [75], 

[77]. 

At a given high pillar height (h=60 µm, in our calculation), one can compute from Extrand 

density criterion and the thermodynamic energy barrier, the transition in {(
ℎ

𝑑
)
𝑒𝑞

, (
𝑠

𝑑
)
𝑒𝑞

 plan, in 

Figure C.5. 

The minimum value of the dimensionless height of pillar (around 0.4) for entrapping air beneath 

the drop is not predicted by the two models. But the height criterion is expected to predict the 

transition at moderate pillar height where the transition is very sensitive to the pillar height. At 

large pillar height, one can expect the transition independent on pillar height and only be 

controlled by the balance between surface energy and the exerted pressure by the drop or by 

the energy barrier. In this case the model of Extrand [58]) and the thermodynamic energy barrier 

model well apply. 

0

2

4

6

8

10

12

14

16

18

(s
/d

) e
q

deq (µm)



Appendices 

[xv] 

 

 

 

Figure C.5: Wenzel (●) and Cassie (○) states as a function of h/d and s/d, metal liquids case in 

red. Experimental transition (black dotted line), theoretical Wenzel / Cassie transition (black 

solid line), Extrand [58] height criterion (blue solid line) and density criterion (blue dotted 

line), thermodynamic barrier model[55]. Data collected from references [14], [15], [23], [55], 

[56], [66]–[70], [72]–[75], [77] 

However, these models are very sensitive to the contact angles and drop volume. For instance, 

a small variation on the advancing contact angle induces large deviation on the predicted 

transition (Figure C.6).  
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Figure C-6: Contact angle influence on thermodynamic energy barrier model (dotted line), 

Extrand model (dotted line). For 𝜃𝑎 = 100°(black), 𝜃𝑎 = 120°(blue), 𝜃𝑎 = 130°(red) with 

h/d=3. 

C.3. Contact angle hysteresis 

As described in section I.2.3, the so called ‘‘Cassie on line’’ relations with the local line fraction 

factors along TCL have successfully predicted some experimental data [21], [62], [65], [74], 

[130]. One can compare some of them to the collected literature experimental data. In the 

composite regime (Cassie regime), the solid interconnectivity governs the hysteresis. It is well 

known that when the more wetting defects are interconnected then the receding contact angle 

is nearly constant and only the advancing one changes in function of Cassie fraction or the 

linear fraction along the TCL (Figure C.7). For our collected data (super-hydrophobic textured 

surfaces), it is the less wetting defect (air) which is interconnected, then the advancing contact 

angle is nearly constant as shown in Figure I.3-1 and only the receding angle undergoes a 

notable variation. 
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Figure C.7: Contact angle hysteresis in function of the Maximum pillar fraction of a non-

distorted TCL. Receding angle (empty mark) and advancing contact angle (full mark). Data 

collected from references [69] (●), [73] (●), [67] (●), [70] (●), [23] (●), [77] (●). 

Depending on the texture and the used experimental method, the drop will be pinned differently. 

In the ‘‘Cassie on line’’ models, the receding contact angle on a composite surface can be 

written as: 

 𝑐𝑜𝑠 𝜃𝑟 = 𝑓𝑒𝑓𝑓 𝑐𝑜𝑠 𝜃𝑟1 +(1 − 𝑓𝑒𝑓𝑓) 𝑐𝑜𝑠 𝜃𝑟2 (C.6) 

Where 𝑓𝑒𝑓𝑓 is the effective fraction of the pillars at the maximum possible deformation of the 

triple line when it recedes on the textured surface, 𝜃𝑟1 (𝜃𝑟2) the receding contact angle on the 

more wetting surface (less wetting surface which is interconnected). 

 
𝑓𝑒𝑓𝑓 =

𝑐𝑜𝑠 𝜃𝑟 − 𝑐𝑜𝑠 𝜃𝑟2

𝑐𝑜𝑠 𝜃𝑟1 −𝑐𝑜𝑠 𝜃𝑟2
 

(C.2) 

For super-hydrophobic surface, one can suppose 𝜃𝑟2 to be equal to 180°, then 
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𝑓𝑒𝑓𝑓 =

𝑐𝑜𝑠 𝜃𝑟 + 1

𝑐𝑜𝑠 𝜃𝑟1 +1
 

(C.3) 

 

Figure C.8: Effective fraction of the pillar in receding contact angle in function of the maximum 

pillar fraction of a non-distorted TCL compared to Raj et al model (black solid line). The purple 

dotted line is the estimated prediction of the data collected from references [23], [69], [70], 

[77]. 

Figure C.8 shows the evolution of the effective pillar fraction in function of the maximum pillar 

fraction of a non-distorted triple line. The effect of the pillar size per unit length of the TCL is 

correctly predicted by the Raj and al model. However, contrary to this model, it seems that from 

experimental data for 𝑓𝑒𝑓𝑓 = 0 (𝜃𝑟 = 𝜃𝑟𝑎𝑖𝑟 = 180) the corresponding pillar fraction is not null, 

supposing that the possibility to have super hydrophobic surface with contact angle near to 

180°. In fact some experiments have demonstrated this possibility with micro/nano-structured 

water-repellent surfaces [23], [64], [77], [131], [132]. 

In their model Reyssat and Quéré [63] proposed a simple model with diluted defects (pillar) to 

predict contact angle hysteresis on textured surfaces. Figure C.9 shows a good agreement with 

the collected experimental data.  
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Figure C.9: Contact angle hysteresis in function of solid fraction. Comparison between the 

prediction of Raj et al model [65] (blue solid line), Reyssat and Quéré model with 𝑎𝑟𝑞 [63] 

(black solid line) to some experimental data from references[23], [69], [70], [77]. 

Raj et al model predicts larger hysteresis in comparison to the experimental data at low Cassie 

fractions (𝑓𝑠 < 0.4), but there is a good agreement at high solid fractions ((𝑓𝑠 >0.4)). However, 

Reyssat and Quéré model predict more precisely contact angle hysteresis at low Cassie fraction 

but not at high Cassie fraction. In fact, Reyssat and Quéré incorporated in their model a fitting 

parameter (𝑎𝑟𝑞) to capture the details of the contact line with an assumption that the pillars are 

dilute such that each defect independently distorts the contact line. Thus, the model was 

specified to be valid only up to a certain critical solid density of 40%, which is in the same order 

than the collected data in this work (Figure C.9). At high Cassie fraction, Raj and al model 

which is a thermodynamic approach including the effect of the contact line distortion seems to 

be more relevant. 
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In this part, we have compared contact angle hysteresis of the collected data from literature. 

These experimental data for hydrophobic surface show that when the drop is in composite state 

(or fakir or Cassie state) then the advancing contact angles are nearly constant, due to the 

interconnectivity of the less wetting defect (air) that the drop will follow when advancing. 

The so called ‘‘Cassie on line’’ relations with the local line fraction factors along TCL which 

have successfully predicted some experimental data[21], [62], [65], [74], [130] have been 

applied and compared to the collected data. We conclude that the  model of Reyssat and Quéré 

[63] and based on the approach of Joanny and de Gennes [62] well predicts the contact angle 

hysteresis for low solid fraction (dilute defects) surfaces. But global thermodynamic approaches 

seem to be more relevant for surfaces with high solid fraction. 

C.4. Heterogeneous surfaces 

As in homogeneous textured surfaces, ‘‘Cassie on line’’ models can be applied to chemically 

patterned surfaces to predict contact angle hysteresis. Assuming that the contact angle 

hysteresis depends on how the triple contact line is pinned and deformed on patterned surfaces, 

one can calculate the effective fraction of the patterns corresponding to the measured contact 

angles.  

 
𝑓𝑒𝑓𝑓,𝑟𝑒𝑐 =

𝑐𝑜𝑠 𝜃𝑟 − 𝑐𝑜𝑠 𝜃𝑟2

𝑐𝑜𝑠 𝜃𝑟1 −𝑐𝑜𝑠 𝜃𝑟2
, 𝑓𝑒𝑓𝑓,𝑎𝑑𝑣

=
𝑐𝑜𝑠 𝜃𝑟 − 𝑐𝑜𝑠 𝜃𝑟2

𝑐𝑜𝑠 𝜃𝑟1 −𝑐𝑜𝑠 𝜃𝑟2
 

(C.4) 

With ‘1’ indicating the patterns and ‘2’ the substrate. 

The evolution of the effective area fraction in Figure C.10 is in good agreement with the model 

[63], [65]. The effective area fraction varies linearly with the linear fraction of the patterns. 
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Figure C.9: Effective fraction of the pattern in receding (empty marks) and advancing (full 

marks) contact angle in function of the maximum pattern linear fraction of a non-distorted TCL. 

Data collected from references [84] (in blue), [15] (in red) and [65] (in purple). 
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D Maximum spreading diameter  

The maximum spreading diameter can be calculated from an energy balance between the initial 

time (t=0) of the spreading with diameter  𝐷0 and velocity 𝑈0 and the instant 𝑡 = 𝜏∗ of the order 

  
𝐷0

𝑈0
 where the drop reaches it maximum diameter  𝐷𝑚𝑎𝑥  at zero speed (𝑈 = 0). 

 1

2
𝜌𝑈0

2 (
𝜋

6
𝐷0

3) + 𝜋𝐷0
2𝛾𝐿𝑉 = 𝐸𝑠𝑚𝑎𝑥

+ 𝐸𝑑𝑖𝑠𝑠  
(D.1) 

Where 𝐸𝑠𝑚𝑎𝑥
 is the surface energy at the maximum spreading and 𝐸𝑑𝑖𝑠𝑠 the energy dissipated 

during the spreading. 

The major part of the energy dissipation occurs in the corners of the drop near the triple line 

(0.1 mm from the corners of the triple line), dissipation in the bulk is negligible. 

de Gennes [133] demonstrated that the dissipated energy 𝐸𝑑𝑖𝑠𝑠 depends on the dynamic 

viscosity of the fluid 𝜂, the triple line velocity 𝑈 =
𝑑𝑅

𝑑𝑡
  and the instantaneous contact angle 𝜃. 

 𝐸𝑑𝑖𝑠𝑠 = 𝑐
𝜂

𝑡𝑎𝑛𝜃
𝑈2 (D.2) 

The constant 𝑐 is in the order of 30. 

For highly viscous liquids, where the kinetic energy is completely dissipated by viscous effects, 

i.e. 𝑊𝑒 ≫ √𝑅𝑒 , or 𝑃 =
𝑊𝑒

𝑅𝑒
4/5 > 1. 

Chandra et al. [134] and Pasandideh-Fard et al. [103] proposed another relation for the viscous 

dissipation: 

 
𝐸𝑑𝑖𝑠𝑠 =

𝜋

3
𝜌𝑈0

2𝐷0𝐷𝑚𝑎𝑥
2

1

√𝑅𝑒 

 
(D.3) 

To calculate the surface energy 𝐸𝑠𝑚𝑎𝑥
 a model for a drop shape is needed. At the maximum 

spreading, the drop looks like a puddle of diameter superior to the capillarity length 𝜅−1 [135]. 

The drop thickness can be given by: 

 
ℎ𝑑 = 2𝜅−1𝑠𝑖𝑛 (

𝜃𝑌

2
) 

(D.4) 

Considering the drop accelerating 𝑎𝑔 =
𝑈0

2

𝐷0
 instead of gravity g, the drop thickness writes: 
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ℎ𝑑 = √2 (
𝛾𝐷0

𝜌𝑉0
2
(1 − 𝑐𝑜𝑠 𝜃𝑌))

1/2

 
(D.5) 

The surface energy  𝐸𝑠𝑚𝑎𝑥
 at the maximum spreading diameter is then given by [104]: 

  𝐸𝑠𝑚𝑎𝑥
=

𝜋

4
𝐷𝑚𝑎𝑥

2 𝛾𝐿𝑉(1 − 𝑐𝑜𝑠𝜃𝑌) + 𝜋𝐷𝑚𝑎𝑥ℎ𝑑𝛾𝐿𝑉   
(D.6) 

Taking into account the previous relationships, the maximum spreading diameter is given by 

the relation [103], [104]: 

 
(𝑊𝑒 + 12)

𝐷𝑚𝑎𝑥

𝐷0
= 8 + (

𝐷𝑚𝑎𝑥

𝐷0
)
3

(3(1 − 𝑐𝑜𝑠𝜃𝑌) + 4
𝑊𝑒

√𝑅𝑒 

)      
(D.7) 

If the part of the surface energy from the drop thickness ℎ𝑑 is negligible, then the maximum 

spreading diameter reduces: 

 𝐷𝑚𝑎𝑥

𝐷0
=

√

𝑊𝑒 + 12

3(1 − 𝑐𝑜𝑠𝜃𝑌) + 4(
𝑊𝑒

√𝑅𝑒 

)

        
(D.8) 

For highly viscous liquids ( 𝑊𝑒 ≫ √𝑅𝑒 ), the last equation results in the following relationship: 

 𝐷𝑚𝑎𝑥

𝐷0
≈ 𝑅𝑒1/4  

(D.9) 

Another formulation of viscous dissipation has been proposed by Clanet et al [105] which has 

been validated for silicone oils and aqueous solutions of glycerol. This formulation leads to the 

same relation that Eq. D.8 with different power law in 1/5. 

In the case of inviscid liquid (𝑊𝑒 ≪ √𝑅𝑒 ), Eq. D.7 leads to: 

 𝐷𝑚𝑎𝑥

𝐷0
≈ 𝑊𝑒1/2  

(D.10) 

However, experiments for low viscosity liquids [105] led to different power law. Indeed, the 

kinetic energy is not completely dissipated by viscous effects, the effects of inertia energy must 

be taken into considerations. Thus, using the mass conservation between the initial time (t=0 

second) and the instant 𝑡 = 𝜏∗ the drop reaches it maximum diameter, Clanet et al [105] 

proposed: 
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𝐷𝑚𝑎𝑥

𝐷0
= √

2

3 ℎ𝑑
𝐷0  

(D.11) 

Then 

 𝐷𝑚𝑎𝑥

𝐷0
≈ 𝑐 (

𝑊𝑒

1 − 𝑐𝑜𝑠 𝜃𝑌
)
1/4

  
(D.12) 
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Titre : Mouillage des surfaces hétérogènes texturées fer-silice par le plomb liquide. 

Mots clés : chute de goutte, surfaces texturées, métal liquide, dynamique de mouillage. 

Résumé : Dans la galvanisation à chaud, les 

aciers sont protégés contre la corrosion par une 

mince couche de zinc obtenue par immersion 

dans un bain d’alliage de zinc. Avant ce 

processus, les tôles d'acier subissent un recuit de 

recristallisation afin d'éliminer l’écrouissage 

après laminage à froid. Les conditions de recuit 

utilisées réduisent le film d'oxyde de fer natif, ce 

qui favorise la mouillabilité de la surface de 

l'acier par le zinc liquide. Cependant, les 

nouveaux aciers à haute résistance contiennent 

des quantités importantes d'éléments d’addition, 

tels que le silicium et le manganèse. Ces 

élements diffusent à la surface de l'acier pendant 

le recuit de recristallisation et forment des 

particules ou des films d'oxyde par oxydation 

sélective externe. Si le fer pur est bien mouillé 

par le zinc liquide, ces oxydes ne le sont pas et 

leur présence à la surface peut entraîner des 

défauts dans le revêtement final. 

Pour étudier l'influence de la taille et de la 

distribution des oxydes sur le mouillage par le 

métal liquide, nous avons étudié un mouillage 

non réactif du plomb liquide sur une surface 

hétérogène texturée Fe / silice en utilisant la 

technique de chute de goutte. 

Ces surfaces ont été conçues par dépôt chimique 

en phase vapeur assisté par plasma, suivi d'un 

procédé photolithographique.  

Après l'impact, la goutte s'étend jusqu'à son 

diamètre d'étalement maximal. S’ensuit une 

phase de recule de la goutte.  Pendant son recul, 

la goutte est plus ou moins retenue, en fonction 

du taux de couverture de silice, sur le fer pur: 

phénomène d’accrochage-glissement. Sur les 

surfaces à faible teneur en silice, ce phénomène 

entraîne une déformation de la forme de la 

goutte qui est plus allongée dans un sens et 

quelquefois à la division de la goutte.  

Il a été démontré que le mouillage est affecté 

principalement par la fraction de surface de la 

silice.  

Enfin, nous avons modélisé les différentes 

phases de l'étalement de la goutte sur ces 

surfaces hétérogènes. Des modèles de littérature 

ont été revus et adaptés et nous avons proposé 

des modèles macroscopiques de l'oscillation de 

la goutte pendant son étalement. 
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Title: Wetting on heterogeneous metal-oxides regular patterned surfaces by a non-reactive 

liquid metal (lead). 

Keywords: drop impact, tailored surfaces, liquid metal, wetting dynamics. 

Abstract: In hot-dip galvanizing, steel sheets 

are protected against corrosion by a thin layer of 

zinc obtained by immersion in a zinc alloy bath. 

Before this process, the steel sheets undergo 

recrystallization annealing to eliminate stresses 

after cold-rolling. The annealing conditions 

used reduce the native iron oxide film, which 

promotes the wettability of the steel surface with 

liquid zinc. However, new high-strength steels 

contain significant quantities of addition 

elements, such as silicon and manganese. These 

elements diffuse on the surface of the steel 

sheets during recrystallization annealing and 

form oxide particles or films by selective 

external oxidation. If pure iron is well wet with 

liquid zinc, these oxides are not and their 

presence on the surface can lead to defects in the 

final coating. 

To study the influence of oxide size and their 

distribution on liquid metal wetting, we studied 

a non-reactive wetting of liquid lead on a 

heterogeneous Fe / silica textured surface using 

the dispensed technique.  

These surfaces were designed by plasma-

assisted chemical vapour deposition followed 

by a photolithographic process. 

After impact, the drop extends to its maximum 

spreading diameter. This is followed by a phase 

of drop receding.  During this, the drop is more 

or less retained, depending on the silica 

coverage rate, on the pure iron: stick-slip 

motion. On surfaces with low silica content, this 

phenomenon causes a deformation of the drop 

shape which is more elongated in one direction 

and sometimes at the division of the drop.  

We showed that wetting is mainly affected by 

the surface fraction of silica.  

Finally, we modelled the different phases of 

drop spreading on these heterogeneous surfaces. 

Literature models were reviewed and adapted 

and macroscopic models of the oscillation of the 

drop during its spreading were proposed. 

 

 


