H. Fukuda, A. Kondo, and H. Noda, Biodiesel fuel production by transesterification of oils, J. Biosci. Bioeng, vol.92, issue.5, pp.405-416, 2001.

T. Issariyakul and A. K. Dalai, Biodiesel from vegetable oils, Renew. Sustain. Energy Rev, vol.31, pp.446-471, 2014.

A. Sivasamy, K. Y. Cheah, P. Fornasiero, F. Kemausuor, S. Zinoviev et al., Catalytic applications in the production of biodiesel from vegetable oils, ChemSusChem, vol.2, issue.4, pp.278-300, 2009.

A. Tamo?i?nas, P. Valatkevi?ius, D. Gim?auskait?, V. Valin?ius, and M. Jeguirim, Glycerol steam reforming for hydrogen and synthesis gas production, Int. J. Hydrog. Energy, vol.42, issue.17, pp.12896-12904, 2017.

B. Jiang, Highly dispersed Ni/montmorillonite catalyst for glycerol steam reforming: Effect of Ni loading and calcination temperature, Appl. Therm. Eng, vol.109, pp.99-108, 2016.

C. Acar and I. Dincer, Comparative assessment of hydrogen production methods from renewable and non-renewable sources, Int. J. Hydrog. Energy, vol.39, issue.1, pp.1-12, 2014.

L. Pastor-pérez and A. Sepúlveda-escribano, Low temperature glycerol steam reforming on bimetallic PtSn/C catalysts: On the effect of the Sn content, Fuel, vol.194, pp.222-228, 2017.

D. P. Debecker, E. M. Gaigneaux, and G. Busca, Exploring, Tuning, and Exploiting the Basicity of Hydrotalcites for Applications in Heterogeneous Catalysis, Chem. -Eur. J, vol.15, issue.16, pp.3920-3935, 2009.

C. C. Silva, N. F. Ribeiro, M. M. Souza, and D. A. Aranda, Biodiesel production from soybean oil and methanol using hydrotalcites as catalyst, Fuel Process. Technol, vol.91, issue.2, pp.205-210, 2010.

A. Ballarini, P. Benito, G. Fornasari, O. Scelza, and A. Vaccari, Role of the composition and preparation method in the activity of hydrotalcite-derived Ru catalysts in the catalytic partial oxidation of methane, Int. J. Hydrog. Energy, vol.38, issue.35, pp.15128-15139, 2013.

D. M. Marinkovi?, Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives, Renew. Sustain. Energy Rev, vol.56, pp.1387-1408, 2016.

W. Xie, H. Peng, and L. Chen, Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil, J. Mol. Catal. Chem, vol.246, issue.1-2, pp.24-32, 2006.

T. Saba, Biodiesel production from refined sunflower vegetable oil over KOH/ZSM5 catalysts, Renew. Energy, vol.90, pp.301-306, 2016.

L. Gao, G. Teng, G. Xiao, and R. Wei, Biodiesel from palm oil via loading KF/Ca-Al hydrotalcite catalyst, Biomass Bioenergy, vol.34, issue.9, pp.1283-1288, 2010.

I. A. Musa, The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process, Egypt. J. Pet, vol.25, issue.1, pp.21-31, 2016.

H. Ma, Efficient hydrogen production from ethanol steam reforming over La-modified ordered mesoporous Ni-based catalysts, Appl. Catal. B Environ, vol.181, pp.321-331, 2016.

R. Yang, C. Xing, C. Lv, L. Shi, and N. Tsubaki, Promotional effect of La2O3 and CeO2 on Ni/?-Al2O3 catalysts for CO2 reforming of CH4, Appl. Catal. Gen, vol.385, issue.1, pp.92-100, 2010.

S. Veiga and J. Bussi, Steam reforming of crude glycerol over nickel supported on activated carbon, Energy Convers. Manag, vol.141, pp.79-84, 2017.

S. Veiga, R. Faccio, D. Segobia, C. Apesteguía, and J. Bussi, Hydrogen production by crude glycerol steam reforming over Ni-La-Ti mixed oxide catalysts, Int. J. Hydrog. Energy, vol.42, issue.52, pp.30525-30534, 2017.

C. A. Franchini, W. Aranzaez, A. M. Duarte-de-farias, G. Pecchi, and M. A. Fraga, Cesubstituted LaNiO3 mixed oxides as catalyst precursors for glycerol steam reforming, Appl. Catal. B Environ, vol.147, pp.193-202, 2014.

J. Vicente, C. Montero, J. Ereña, M. J. Azkoiti, J. Bilbao et al., Coke deactivation of Ni and Co catalysts in ethanol steam reforming at mild temperatures in a fluidized bed reactor, Int. J. Hydrog. Energy, vol.39, issue.24, pp.12586-12596, 2014.

S. Bepari, N. C. Pradhan, and A. K. Dalai, Selective production of hydrogen by steam reforming of glycerol over Ni/Fly ash catalyst, Catal. Today, vol.291, pp.36-46, 2017.

A. Senseni, M. Rezaei, and F. Meshkani, Glycerol steam reforming over noble metal nanocatalysts, Chem. Eng. Res. Des, vol.123, pp.360-366, 2017.

L. F. Bobadilla, Glycerol steam reforming on bimetallic NiSn/CeO2-MgO-Al2O3 catalysts: Influence of the support, reaction parameters and deactivation/regeneration processes, Appl. Catal. Gen, vol.492, pp.38-47, 2015.

S. Adhikari, S. D. Fernando, and A. Haryanto, Hydrogen production from glycerol: An update, Energy Convers. Manag, vol.50, issue.10, pp.2600-2604, 2009.

K. S. Avasthi, R. N. Reddy, and S. Patel, Challenges in the Production of Hydrogen from Glycerol -A Biodiesel Byproduct Via Steam Reforming Process, Procedia Eng, vol.51, pp.423-429, 2013.

J. M. Silva, M. A. Soria, and L. M. Madeira, Challenges and strategies for optimization of glycerol steam reforming process, Renew. Sustain. Energy Rev, vol.42, pp.1187-1213, 2015.

A. Demirbas, Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods, Prog. Energy Combust. Sci, vol.31, issue.5, pp.466-487, 2005.

I. Ambat, V. Srivastava, and M. Sillanpää, Recent advancement in biodiesel production methodologies using various feedstock: A review, Renew. Sustain. Energy Rev, vol.90, pp.356-369, 2018.

A. P. Soares-dias, J. Bernardo, P. Felizardo, and M. J. Correia, Biodiesel production over thermal activated cerium modified Mg-Al hydrotalcites, Energy, vol.41, issue.1, pp.344-353, 2012.

, International Energy Statistics, p.15, 2018.

H. Fukuda, A. Kondo, and H. Noda, Biodiesel fuel production by transesterification of oils, J. Biosci. Bioeng, vol.92, issue.5, pp.405-416, 2001.

T. Issariyakul and A. K. Dalai, Biodiesel from vegetable oils, Renew. Sustain. Energy Rev, vol.31, pp.446-471, 2014.

, "lipid | Definition, Structure, Examples, Functions, Types, & Facts | Britannica.com, p.28, 2018.

A. Sivasamy, K. Y. Cheah, P. Fornasiero, F. Kemausuor, S. Zinoviev et al., Catalytic applications in the production of biodiesel from vegetable oils, ChemSusChem, vol.2, issue.4, pp.278-300, 2009.

M. E. Borges and L. Díaz, Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review, Renew. Sustain. Energy Rev, vol.16, issue.5, pp.2839-2849, 2012.

A. K. Endalew, Y. Kiros, and R. Zanzi, Inorganic heterogeneous catalysts for biodiesel production from vegetable oils, Biomass Bioenergy, vol.35, issue.9, pp.3787-3809, 2011.

P. M. Schenk, Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production, BioEnergy Res, vol.1, issue.1, pp.20-43, 2008.

W. Xie, H. Peng, and L. Chen, Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil, J. Mol. Catal. Chem, vol.246, issue.1-2, pp.24-32, 2006.

M. C. Albuquerque, CaO supported on mesoporous silicas as basic catalysts for transesterification reactions, Appl. Catal. Gen, vol.334, issue.1, pp.35-43, 2008.

M. Canakci and J. V. Gerpen, Biodiesel production from oils and fats with high free fatty acids, Trans ASAE, 2001.

J. Nowicki, J. Lach, M. Organek, and E. Sabura, Transesterification of rapeseed oil to biodiesel over Zr-dopped MgAl hydrotalcites, Appl. Catal. Gen, vol.524, pp.17-24, 2016.

I. Reyero, I. Velasco, O. Sanz, M. Montes, G. Arzamendi et al., Structured catalysts based on Mg-Al hydrotalcite for the synthesis of biodiesel, Catal. Today, vol.216, pp.211-219, 2013.

M. G. Álvarez, R. J. Chimentão, F. Figueras, and F. Medina, Tunable basic and textural properties of hydrotalcite derived materials for transesterification of glycerol, Appl. Clay Sci, vol.58, pp.16-24, 2012.

T. Saba, Biodiesel production from refined sunflower vegetable oil over KOH/ZSM5 catalysts, Renew. Energy, vol.90, pp.301-306, 2016.
DOI : 10.1016/j.renene.2016.01.009

J. Sun, J. Yang, S. Li, and X. Xu, Basicity-FAME yield correlations in metal cation modified MgAl mixed oxides for biodiesel synthesis, Catal. Commun, vol.52, pp.1-4, 2014.
DOI : 10.1016/j.catcom.2014.03.023

K. Colombo, L. Ender, and A. A. Barros, The study of biodiesel production using CaO as a heterogeneous catalytic reaction, Egypt. J. Pet, vol.26, issue.2, pp.341-349, 2017.

D. Vujicic, D. Comic, A. Zarubica, R. Micic, and G. Boskovic, Kinetics of biodiesel synthesis from sunflower oil over CaO heterogeneous catalyst, Fuel, vol.89, issue.8, pp.2054-2061, 2010.

T. Witoon, S. Bumrungsalee, P. Vathavanichkul, S. Palitsakun, M. Saisriyoot et al., Biodiesel production from transesterification of palm oil with methanol over CaO supported on bimodal meso-macroporous silica catalyst, Bioresour. Technol, vol.156, pp.329-334, 2014.

A. Tamo?i?nas, P. Valatkevi?ius, D. Gim?auskait?, V. Valin?ius, and M. Jeguirim, Glycerol steam reforming for hydrogen and synthesis gas production, Int. J. Hydrog. Energy, vol.42, issue.17, pp.12896-12904, 2017.

Y. Lin, Catalytic valorization of glycerol to hydrogen and syngas, Int. J. Hydrog. Energy, vol.38, issue.6, pp.2678-2700, 2013.

K. Takamura, H. Fischer, and N. R. Morrow, Physical properties of aqueous glycerol solutions, J. Pet. Sci. Eng, pp.50-60, 2012.
DOI : 10.1016/j.petrol.2012.09.003

Y. Gu and F. Jérôme, Glycerol as a sustainable solvent for green chemistry, Green Chem, vol.12, issue.7, pp.1127-1138, 2010.
DOI : 10.1039/c001628d

G. P. , Association, Physical Properties of Glycerine and Its Solutions. Glycerine Producers' Association, 1963.

B. Jiang, Highly dispersed Ni/montmorillonite catalyst for glycerol steam reforming: Effect of Ni loading and calcination temperature, Appl. Therm. Eng, vol.109, pp.99-108, 2016.
DOI : 10.1016/j.applthermaleng.2016.08.041

C. Acar and I. Dincer, Comparative assessment of hydrogen production methods from renewable and non-renewable sources, Int. J. Hydrog. Energy, vol.39, issue.1, pp.1-12, 2014.
DOI : 10.1016/j.ijhydene.2013.10.060

B. C. Enger, R. Lødeng, and A. Holmen, A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts, Appl. Catal. Gen, vol.346, issue.1, pp.1-27, 2008.

R. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright, and J. A. Dumesic, A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueousphase reforming of oxygenated hydrocarbons over supported metal catalysts, Appl. Catal. B Environ, vol.56, issue.1, pp.171-186, 2005.

R. D. Cortright, R. R. Davda, and J. A. Dumesic, Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water, Nature, vol.418, issue.6901, pp.964-967, 2002.

A. J. Byrd, K. K. Pant, and R. B. Gupta, Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst, Fuel, vol.87, issue.13, pp.2956-2960, 2008.

F. J. Ortiz, F. J. Campanario, P. G. Aguilera, and P. Ollero, Supercritical water reforming of glycerol: Performance of Ru and Ni catalysts on Al2O3 support, Energy, vol.96, pp.561-568, 2016.

L. Pastor-pérez and A. Sepúlveda-escribano, Low temperature glycerol steam reforming on bimetallic PtSn/C catalysts: On the effect of the Sn content, Fuel, vol.194, pp.222-228, 2017.

X. Wang, S. Li, H. Wang, B. Liu, and X. Ma, Thermodynamic Analysis of Glycerin Steam Reforming, Energy Fuels, vol.22, issue.6, pp.4285-4291, 2008.

H. Chen, A comparative study on hydrogen production from steam-glycerol reforming: thermodynamics and experimental, Renew. Energy, vol.36, issue.2, pp.779-788, 2011.

S. Adhikari, S. Fernando, and A. Haryanto, A Comparative Thermodynamic and Experimental Analysis on Hydrogen Production by Steam Reforming of Glycerin, Energy Fuels, vol.21, issue.4, pp.2306-2310, 2007.

H. Chen, Thermodynamic analyses of adsorption-enhanced steam reforming of glycerol for hydrogen production, Int. J. Hydrog. Energy, vol.34, issue.17, pp.7208-7222, 2009.

E. Y. García and M. A. Laborde, Hydrogen production by the steam reforming of ethanol: Thermodynamic analysis, Int. J. Hydrog. Energy, vol.16, issue.5, pp.307-312, 1991.

C. Wang, Hydrogen production from steam reforming of glycerol by Ni-Mg-Al based catalysts in a fixed-bed reactor, Chem. Eng. J, vol.220, pp.133-142, 2013.

K. N. Papageridis, Comparative study of Ni, Co, Cu supported on ?-alumina catalysts for hydrogen production via the glycerol steam reforming reaction, Fuel Process. Technol, vol.152, pp.156-175, 2016.

P. D. Vaidya and A. E. Rodrigues, Glycerol Reforming for Hydrogen Production: A Review, Chem. Eng. Technol, vol.32, issue.10, pp.1463-1469, 2009.

T. Hirai, N. Ikenaga, T. Miyake, and T. Suzuki, Production of Hydrogen by Steam Reforming of Glycerin on Ruthenium Catalyst, Energy Fuels, vol.19, issue.4, pp.1761-1762, 2005.

H. D. Demsash, K. V. Kondamudi, S. Upadhyayula, and R. Mohan, Ruthenium doped nickel-alumina-ceria catalyst in glycerol steam reforming, Fuel Process. Technol, vol.169, pp.150-156, 2018.

D. Li, R. Li, M. Lu, X. Lin, Y. Zhan et al., Carbon dioxide reforming of methane over Ru catalysts supported on Mg-Al oxides: A highly dispersed and stable Ru/Mg(Al)O catalyst, Appl. Catal. B Environ, vol.200, pp.566-577, 2017.

J. Kim and D. Lee, Glycerol steam reforming on supported Ru-based catalysts for hydrogen production for fuel cells, Int. J. Hydrog. Energy, vol.38, issue.27, pp.11853-11862, 2013.

A. Gallo, Influence of reaction parameters on the activity of ruthenium based catalysts for glycerol steam reforming, Appl. Catal. B Environ, pp.40-49, 2012.

J. A. Calles, A. Carrero, A. J. Vizcaíno, and L. García-moreno, Hydrogen production by glycerol steam reforming over SBA-15-supported nickel catalysts: Effect of alkaline earth promoters on activity and stability, Catal. Today, vol.227, pp.198-206, 2014.

M. L. Dieuzeide, M. Jobbagy, and N. Amadeo, Glycerol steam reforming over Ni/?-Al2O3 catalysts, modified with Mg(II), Catal. Today, vol.213, pp.50-57, 2013.

X. Yu, N. Wang, W. Chu, and M. Liu, Carbon dioxide reforming of methane for syngas production over La-promoted NiMgAl catalysts derived from hydrotalcites, Chem. Eng. J, vol.209, pp.623-632, 2012.

A. F. Lucrédio, J. M. Assaf, and E. M. Assaf, Reforming of a model sulfur-free biogas on Ni catalysts supported on Mg(Al)O derived from hydrotalcite precursors: Effect of La and Rh addition, Biomass Bioenergy, vol.60, pp.8-17, 2014.

A. Serrano-lotina, A. J. Martin, M. A. Folgado, and L. Daza, Dry reforming of methane to syngas over La-promoted hydrotalcite clay-derived catalysts, Int. J. Hydrog. Energy, vol.37, issue.17, pp.12342-12350, 2012.

A. Serrano-lotina, L. Rodríguez, G. Muñoz, and L. Daza, Biogas reforming on Lapromoted NiMgAl catalysts derived from hydrotalcite-like precursors, J. Power Sources, vol.196, issue.9, pp.4404-4410, 2011.

E. Dahdah, CO2 reforming of methane over NixMg6?xAl2 catalysts: Effect of lanthanum doping on catalytic activity and stability, Int. J. Hydrog. Energy, vol.42, issue.17, pp.12808-12817, 2017.

W. Fang, Highly loaded well dispersed stable Ni species in NiXMg2AlOY nanocomposites: Application to hydrogen production from bioethanol, Appl. Catal. B Environ, pp.485-496, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01772463

J. Shah, M. R. Jan, and A. , Catalytic activity of metal impregnated catalysts for degradation of waste polystyrene, J. Ind. Eng. Chem, vol.20, issue.5, pp.3604-3611, 2014.

A. Ballarini, P. Benito, G. Fornasari, O. Scelza, and A. Vaccari, Role of the composition and preparation method in the activity of hydrotalcite-derived Ru catalysts in the catalytic partial oxidation of methane, Int. J. Hydrog. Energy, vol.38, issue.35, pp.15128-15139, 2013.

S. K. Sharma, K. B. Sidhpuria, and R. V. Jasra, Ruthenium containing hydrotalcite as a heterogeneous catalyst for hydrogenation of benzene to cyclohexane, J. Mol. Catal. Chem, vol.335, issue.1-2, pp.65-70, 2011.

K. Motokura, T. Mizugaki, K. Ebitani, and K. Kaneda, Multifunctional catalysis of a ruthenium-grafted hydrotalcite: one-pot synthesis of quinolines from 2-aminobenzyl alcohol and various carbonyl compounds via aerobic oxidation and aldol reaction, Tetrahedron Lett, vol.45, issue.31, pp.6029-6032, 2004.

S. Adhikari, S. D. Fernando, S. D. To, R. M. Bricka, P. H. Steele et al., Conversion of Glycerol to Hydrogen via a Steam Reforming Process over Nickel Catalysts, Energy Fuels, vol.22, issue.2, pp.1220-1226, 2008.

V. Nichele, Glycerol steam reforming for hydrogen production: Design of Ni supported catalysts, Appl. Catal. B Environ, pp.225-232, 2012.

H. D. Demsash and R. Mohan, Steam reforming of glycerol to hydrogen over ceria promoted nickel-alumina catalysts, Int. J. Hydrog. Energy, vol.41, issue.48, pp.22732-22742, 2016.

A. Senseni, F. Meshkani, and M. Rezaei, Steam reforming of glycerol on mesoporous nanocrystalline Ni/Al2O3 catalysts for H2 production, Int. J. Hydrog. Energy, vol.41, issue.44, pp.20137-20146, 2016.

M. Benito, R. Padilla, L. Rodríguez, J. L. Sanz, and L. Daza, Zirconia supported catalysts for bioethanol steam reforming: Effect of active phase and zirconia structure, J. Power Sources, vol.169, issue.1, pp.167-176, 2007.

A. Iriondo, Influence of La2O3 modified support and Ni and Pt active phases on glycerol steam reforming to produce hydrogen, Catal. Commun, vol.10, issue.8, pp.1275-1278, 2009.

A. Iriondo, Glycerol steam reforming over Ni catalysts supported on ceria and ceriapromoted alumina, Int. J. Hydrog. Energy, vol.35, issue.20, pp.11622-11633, 2010.

A. Iriondo, Effect of ZrO2 addition on Ni/Al2O3 catalyst to produce H2 from glycerol, Int. J. Hydrog. Energy, vol.37, issue.8, pp.7084-7093, 2012.

D. P. Debecker, E. M. Gaigneaux, and G. Busca, Exploring, Tuning, and Exploiting the Basicity of Hydrotalcites for Applications in Heterogeneous Catalysis, Chem. -Eur. J, vol.15, issue.16, pp.3920-3935, 2009.

F. Cavani, F. Trifirò, and A. Vaccari, Hydrotalcite-type anionic clays: Preparation, properties and applications, Catal. Today, vol.11, issue.2, pp.173-301, 1991.

A. B. Jean-françois and . Lamonier, Catalytic Removal of Toluene in Air over Co-Mn-Al Nano-oxides Synthesized by Hydrotalcite Route, Catal. Lett, vol.118, issue.3, pp.165-172, 2007.

A. Vaccari, Clays and catalysis: a promising future, Appl. Clay Sci, vol.14, issue.4, pp.161-198, 1999.

H. Zeng, Z. Feng, X. Deng, and Y. Li, Activation of Mg-Al hydrotalcite catalysts for transesterification of rape oil, Fuel, vol.87, issue.13, pp.3071-3076, 2008.

J. F. Gomes, J. F. Puna, L. M. Gonçalves, and J. C. Bordado, Study on the use of MgAl hydrotalcites as solid heterogeneous catalysts for biodiesel production, Energy, vol.36, issue.12, pp.6770-6778, 2011.

Y. Ma, Q. Wang, L. Zheng, Z. Gao, Q. Wang et al., Mixed methanol/ethanol on transesterification of waste cooking oil using Mg/Al hydrotalcite catalyst, Energy, vol.107, pp.523-531, 2016.

L. Gao, G. Teng, G. Xiao, and R. Wei, Biodiesel from palm oil via loading KF/Ca-Al hydrotalcite catalyst, Biomass Bioenergy, vol.34, issue.9, pp.1283-1288, 2010.

W. Xu, L. Gao, F. Jiang, and G. Xiao, In situ synthesis and characterization of Ca-Mg-Al hydrotalcite on ceramic membrane for biodiesel production, Chin. J. Chem. Eng, vol.23, issue.6, pp.1035-1040, 2015.

C. Wang, Renewable hydrogen production from steam reforming of glycerol by NiCu-Al, Ni-Cu-Mg, Ni-Mg catalysts, Int. J. Hydrog. Energy, vol.38, issue.9, pp.3562-3571, 2013.

S. M. De-rezende, C. A. Franchini, M. L. Dieuzeide, A. M. Duarte-de-farias, N. Amadeo et al., Glycerol steam reforming over layered double hydroxide-supported Pt catalysts, Chem. Eng. J, vol.272, pp.108-118, 2015.

J. A. Moulijn, A. E. Van-diepen, and F. Kapteijn, Catalyst deactivation: is it predictable?: What to do?, Appl. Catal. Gen, vol.212, issue.1, pp.3-16, 2001.

C. H. Bartholomew, Mechanisms of catalyst deactivation, Appl. Catal. Gen, vol.212, issue.1, pp.17-60, 2001.

X. Yang, An experimental investigation on the deactivation and regeneration of a steam reforming catalyst, Renew. Energy, vol.112, pp.17-24, 2017.

C. H. Bartholomew, Carbon Deposition in Steam Reforming and Methanation, Catal. Rev, vol.24, issue.1, pp.67-112, 1982.

E. Dahdah, Glycerol steam reforming over Ru-Mg-Al hydrotalcite-derived mixed oxides: Role of the preparation method in catalytic activity, Int. J. Hydrog. Energy, 2018.

C. S. Castro, L. C. Garcia, and J. M. Assaf, The enhanced activity of Ca/MgAl mixed oxide for transesterification, Fuel Process. Technol, vol.125, pp.73-78, 2014.

X. Kou, C. Li, Y. Zhao, S. Wang, and X. Ma, CO2 sorbents derived from capsule-connected Ca-Al hydrotalcite-like via low-saturated coprecipitation, Fuel Process. Technol, vol.177, pp.210-218, 2018.

R. Galindo, A. López-delgado, I. Padilla, and M. Yates, Hydrotalcite-like compounds: A way to recover a hazardous waste in the aluminium tertiary industry, Appl. Clay Sci, vol.95, pp.41-49, 2014.

D. M. Marinkovi?, Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives, Renew. Sustain. Energy Rev, vol.56, pp.1387-1408, 2016.

R. Naureen, M. Tariq, I. Yusoff, A. J. Chowdhury, and M. A. Ashraf, Synthesis, spectroscopic and chromatographic studies of sunflower oil biodiesel using optimized base catalyzed methanolysis, Saudi J. Biol. Sci, vol.22, issue.3, pp.332-339, 2015.

C. C. Silva, N. F. Ribeiro, M. M. Souza, and D. A. Aranda, Biodiesel production from soybean oil and methanol using hydrotalcites as catalyst, Fuel Process. Technol, vol.91, issue.2, pp.205-210, 2010.

M. Kouzu, T. Kasuno, M. Tajika, S. Yamanaka, and J. Hidaka, Active phase of calcium oxide used as solid base catalyst for transesterification of soybean oil with refluxing methanol, Appl. Catal. Gen, vol.334, issue.1, pp.357-365, 2008.

I. A. Musa, The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process, Egypt. J. Pet, vol.25, issue.1, pp.21-31, 2016.

M. Kong, Effect of Calcination Temperature on Characteristics and Performance of Ni/MgO Catalyst for CO2 Reforming of Toluene, Chin. J. Catal, vol.33, issue.9, pp.1508-1516, 2012.

B. Zhang, X. Tang, Y. Li, Y. Xu, and W. Shen, Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts, Int. J. Hydrog. Energy, vol.32, issue.13, pp.2367-2373, 2007.

C. Lin, C. Zhang, and J. Lin, Sol-gel derived Y2O3 as an efficient bluish-white phosphor without metal activator ions, J. Lumin, vol.129, issue.12, pp.1469-1474, 2009.

E. B. Silveira, R. C. Rabelo-neto, and F. B. Noronha, Steam reforming of toluene, methane and mixtures over Ni/ZrO2 catalysts, Catal. Today, vol.289, pp.289-301, 2017.

Y. Wang, X. Hong, B. Li, W. Wang, and D. Wang, Yttria promoted metallic nickel catalysts for the partial oxidation of methane to synthesis gas, J. Nat. Gas Chem, vol.17, issue.4, pp.344-350, 2008.

H. Liu and D. He, Properties of Ni/Y2O3 and its catalytic performance in methane conversion to syngas, Int. J. Hydrog. Energy, vol.36, issue.22, pp.14447-14454, 2011.

L. O. Costa, A. M. Silva, L. E. Borges, L. V. Mattos, and F. B. Noronha, Partial oxidation of ethanol over Pd/CeO2 and Pd/Y2O3 catalysts, Catal. Today, vol.138, issue.3-4, pp.147-151, 2008.

S. Aouad, E. Abi-aad, and A. Aboukaïs, Simultaneous oxidation of carbon black and volatile organic compounds over Ru/CeO2 catalysts, Appl. Catal. B Environ, vol.88, issue.3, pp.249-256, 2009.

G. B. Sun, K. Hidajat, X. S. Wu, and S. Kawi, A crucial role of surface oxygen mobility on nanocrystalline Y2O3 support for oxidative steam reforming of ethanol to hydrogen over Ni/Y2O3 catalysts, Appl. Catal. B Environ, vol.81, issue.3-4, pp.303-312, 2008.

U. Oemar, K. Hidajat, and S. Kawi, Pd-Ni catalyst over spherical nanostructured Y2O3 support for oxy-CO2 reforming of methane: Role of surface oxygen mobility, Int. J. Hydrog. Energy, vol.40, issue.36, pp.12227-12238, 2015.

H. Liu, H. Wu, and D. He, Methane conversion to syngas over Ni/Y2O3 catalysts -Effects of calcination temperatures of Y2O3 on physicochemical properties and catalytic performance, Fuel Process. Technol, vol.119, pp.81-86, 2014.

W. Nabgan, T. A. Tuan-abdullah, R. Mat, B. Nabgan, Y. Gambo et al., Influence of Ni to Co ratio supported on ZrO2 catalysts in phenol steam reforming for hydrogen production, Int. J. Hydrog. Energy, vol.41, issue.48, pp.22922-22931, 2016.

M. Shishkin and T. Ziegler, Hydrogen Oxidation at the Ni/Yttria-Stabilized Zirconia Interface: A Study Based on Density Functional Theory, J. Phys. Chem. C, vol.114, issue.25, pp.11209-11214, 2010.

L. F. Bobadilla, Influence of the shape of Ni catalysts in the glycerol steam reforming, Appl. Catal. B Environ, pp.379-390, 2012.

N. D. Charisiou, The influence of SiO2 doping on the Ni/ZrO2 supported catalyst for hydrogen production through the glycerol steam reforming reaction, Catal. Today, 2018.

L. Li, D. Tang, Y. Song, B. Jiang, and Q. Zhang, Hydrogen production from ethanol steam reforming on Ni-Ce/MMT catalysts, Energy, vol.149, pp.937-943, 2018.

N. D. Charisiou, Hydrogen production via the glycerol steam reforming reaction over nickel supported on alumina and lanthana-alumina catalysts, Int. J. Hydrog. Energy

H. Ma, R. Zhang, S. Huang, W. Chen, and Q. Shi, Ni/Y2O3-Al2O3 catalysts for hydrogen production from steam reforming of ethanol at low temperature, J. Rare Earths, vol.30, issue.7, pp.683-690, 2012.

S. Li, M. Li, C. Zhang, S. Wang, X. Ma et al., Steam reforming of ethanol over Ni/ZrO2 catalysts: Effect of support on product distribution, Int. J. Hydrog. Energy, vol.37, issue.3, pp.2940-2949, 2012.

J. Vicente, J. Ereña, C. Montero, M. J. Azkoiti, J. Bilbao et al., Reaction pathway for ethanol steam reforming on a Ni/SiO2 catalyst including coke formation, Int. J. Hydrog. Energy, vol.39, issue.33, p.179, 2014.

C. Montero, A. Ochoa, P. Castaño, J. Bilbao, and A. G. Gayubo, Monitoring Ni 0 and coke evolution during the deactivation of a Ni/La2O3-?Al2O3 catalyst in ethanol steam reforming in a fluidized bed, J. Catal, vol.331, pp.181-192, 2015.

A. Gohier, C. P. Ewels, T. M. Minea, and M. A. Djouadi, Carbon nanotube growth mechanism switches from tip-to base-growth with decreasing catalyst particle size, Carbon, vol.46, issue.10, pp.1331-1338, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00396601

T. Yamaguchi, Application of ZrO2 as a catalyst and a catalyst support, Catal. Today, vol.20, issue.2, pp.199-217, 1994.

V. G. Deshmane and Y. G. Adewuyi, Synthesis of thermally stable, high surface area, nanocrystalline mesoporous tetragonal zirconium dioxide (ZrO2): Effects of different process parameters, Microporous Mesoporous Mater, vol.148, issue.1, pp.88-100, 2012.

L. Souza, A. Suchopar, K. Zhu, D. Balyozova, M. Devadas et al., Preparation of thermally stable high surface area mesoporous tetragonal ZrO2 and Pt/ZrO2: An active hydrogenation catalyst, Microporous Mesoporous Mater, vol.88, issue.1-3, pp.22-30, 2006.

G. Balakrishnan, P. Kuppusami, D. Sastikumar, and J. I. Song, Growth of nanolaminate structure of tetragonal zirconia by pulsed laser deposition, Nanoscale Res. Lett, vol.8, issue.1, p.82, 2013.

N. H. Zamzuri, R. Mat, N. A. Saidina-amin, and A. Talebian-kiakalaieh, Hydrogen production from catalytic steam reforming of glycerol over various supported nickel catalysts, Int. J. Hydrog. Energy, vol.42, issue.14, pp.9087-9098, 2017.

X. Liu, Y. Zhang, M. A. Nahil, P. T. Williams, and C. Wu, Development of Ni-and Febased catalysts with different metal particle sizes for the production of carbon nanotubes and hydrogen from thermo-chemical conversion of waste plastics, J. Anal. Appl. Pyrolysis, vol.125, pp.32-39, 2017.

M. Yamasaki, H. Habazaki, K. Asami, K. Izumiya, and K. Hashimoto, Effect of tetragonal ZrO2 on the catalytic activity of Ni/ZrO2 catalyst prepared from amorphous Ni-Zr alloys, Catal. Commun, vol.7, issue.1, pp.24-28, 2006.

R. D?bek, M. Motak, M. E. Galvez, T. Grzybek, and P. Costa, Promotion effect of zirconia on Mg(Ni,Al)O mixed oxides derived from hydrotalcites in CO2 methane reforming, Appl. Catal. B Environ, vol.223, pp.36-46, 2018.

J. Vicente, C. Montero, J. Ereña, M. J. Azkoiti, J. Bilbao et al., Coke deactivation of Ni and Co catalysts in ethanol steam reforming at mild temperatures in a fluidized bed reactor, Int. J. Hydrog. Energy, vol.39, issue.24, pp.12586-12596, 2014.

S. K. Sharma, P. A. Parikh, and R. V. Jasra, Ruthenium containing hydrotalcite as a solid base catalyst for >CC< double bond isomerization in perfumery chemicals, J. Mol. Catal. Chem, vol.317, issue.1-2, pp.27-33, 2010.

K. Kousi, D. I. Kondarides, X. E. Verykios, and C. Papadopoulou, Glycerol steam reforming over modified Ru/Al2O3 catalysts, Appl. Catal. Gen, vol.542, pp.201-211, 2017.

H. Yi, S. Zhao, X. Tang, P. Ning, H. Wang et al., Influence of calcination temperature on the hydrolysis of carbonyl sulfide over hydrotalcite-derived Zn-Ni-Al catalyst, Catal. Commun, vol.12, issue.15, pp.1492-1495, 2011.

M. Li, L. Collado, F. Cárdenas-lizana, and M. A. Keane, Role of Support Oxygen Vacancies in the Gas Phase Hydrogenation of Furfural over Gold, Catal. Lett, vol.148, issue.1, pp.90-96, 2018.

K. Kousi, N. Chourdakis, H. Matralis, D. Kontarides, C. Papadopoulou et al., Glycerol steam reforming over modified Ni-based catalysts, Appl. Catal. Gen, vol.518, pp.129-141, 2016.

J. Chen, L. Zhang, X. Zheng, and Y. Zheng, Revealing ruthenium and basicity synergetic effects in Ru-MgAl catalysts for isomerization of linoleic acid to conjugated linoleic acid, RSC Adv, vol.7, issue.86, pp.54747-54755, 2017.

H. D. Demsash, K. V. Kondamudi, S. Upadhyayula, and R. Mohan, Ruthenium doped nickel-alumina-ceria catalyst in glycerol steam reforming, Fuel Process. Technol, vol.169, pp.150-156, 2018.

A. L. Silva, J. P. Den-breejen, L. V. Mattos, J. H. Bitter, K. P. De-jong et al., Cobalt particle size effects on catalytic performance for ethanol steam reforming -Smaller is better, J. Catal, vol.318, pp.67-74, 2014.

J. Wei and E. Iglesia, Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium, J. Catal, vol.225, issue.1, pp.116-127, 2004.

S. L. Tait, Z. Dohnálek, C. T. Campbell, and B. D. Kay, Methane adsorption and dissociation and oxygen adsorption and reaction with CO on Pd nanoparticles on MgO(100) and on Pd, vol.591, pp.90-107, 2005.

J. Wang, S. Shen, B. Li, H. Lin, and Y. Yuan, Ruthenium Nanoparticles Supported on Carbon Nanotubes for Selective Hydrogenolysis of Glycerol to Glycols, Chem. Lett, vol.38, issue.6, pp.572-573, 2009.

Y. Wang, Cu and Zn) supported on attapulgite as catalysts for hydrogen production from glycerol steam reforming, Bimetallic Ni-M (M = Co, vol.550, pp.214-227, 2018.
DOI : 10.1016/j.apcata.2017.11.014

J. Estephane, CO2 reforming of methane over Ni-Co/ZSM5 catalysts, Int. J. Hydrog. Energy, vol.40, issue.30, pp.9201-9208, 2015.

A. Senseni, M. Rezaei, and F. Meshkani, Glycerol steam reforming over noble metal nanocatalysts, Chem. Eng. Res. Des, vol.123, pp.360-366, 2017.

S. Veiga, R. Faccio, D. Segobia, C. Apesteguía, and J. Bussi, Hydrogen production by crude glycerol steam reforming over Ni-La-Ti mixed oxide catalysts, Int. J. Hydrog. Energy, vol.42, issue.52, pp.30525-30534, 2017.
DOI : 10.1016/j.ijhydene.2017.10.118

C. A. Franchini, W. Aranzaez, A. M. Duarte-de-farias, G. Pecchi, and M. A. Fraga, Cesubstituted LaNiO3 mixed oxides as catalyst precursors for glycerol steam reforming, Appl. Catal. B Environ, vol.147, pp.193-202, 2014.
DOI : 10.1016/j.apcatb.2013.08.036

V. Chiodo, S. Freni, A. Galvagno, N. Mondello, and F. Frusteri, Catalytic features of Rh and Ni supported catalysts in the steam reforming of glycerol to produce hydrogen, Appl. Catal. Gen, vol.381, issue.1-2, pp.1-7, 2010.

M. A. Goula, N. D. Charisiou, K. N. Papageridis, and G. Siakavelas, Influence of the synthesis method parameters used to prepare nickel-based catalysts on the catalytic performance for the glycerol steam reforming reaction, Chin. J. Catal, vol.37, issue.11, pp.1949-1965, 2016.

L. Chmielarz, P. Ku?trowski, A. Rafalska-?asocha, and R. Dziembaj, Influence of Cu, Co and Ni cations incorporated in brucite-type layers on thermal behaviour of hydrotalcites and 181 reducibility of the derived mixed oxide systems, Thermochim. Acta, vol.395, issue.1, pp.225-236, 2002.

Z. Wang, Lanthanum-promoted copper-based hydrotalcites derived mixed oxides for NOx adsorption, soot combustion and simultaneous NOx-soot removal, Mater. Res. Bull, vol.51, pp.119-127, 2014.
DOI : 10.1016/j.materresbull.2013.12.003

Z. Wang, P. Fongarland, G. Lu, and N. Essayem, Reconstructed La-, Y-, Ce-modified MgAl-hydrotalcite as a solid base catalyst for aldol condensation: Investigation of water tolerance, J. Catal, vol.318, pp.108-118, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01277446

R. Bîrjega, O. D. Pavel, G. Costentin, M. Che, and E. Angelescu, Rare-earth elements modified hydrotalcites and corresponding mesoporous mixed oxides as basic solid catalysts, Appl. Catal. Gen, vol.288, issue.1-2, pp.185-193, 2005.

R. D?bek, Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature -On the effect of basicity, Catal. Today, vol.257, pp.59-65, 2015.

J. Lamonier, A. Boutoundou, C. Gennequin, M. J. Pérez-zurita, S. Siffert et al., Catalytic Removal of Toluene in Air over Co-Mn-Al Nano-oxides Synthesized by Hydrotalcite Route, Catal. Lett, vol.118, issue.3-4, pp.165-172, 2007.

Q. Zhou, Nano La2O3 as a heterogeneous catalyst for biodiesel synthesis by transesterification of Jatropha curcas L. oil, J. Ind. Eng. Chem, vol.31, pp.385-392, 2015.

L. A. Palacio, J. Velásquez, A. Echavarría, A. Faro, F. R. Ribeiro et al., Total oxidation of toluene over calcined trimetallic hydrotalcites type catalysts, J. Hazard. Mater, vol.177, issue.1-3, pp.407-413, 2010.
DOI : 10.1016/j.jhazmat.2009.12.048

X. A. Xie, Preparation, Characterization and Application of ZnAlLaHydrotalcite-Like Compounds

M. Mousavi-kamazani, S. Alizadeh, F. Ansari, and M. Salavati-niasari, A controllable hydrothermal method to prepare La(OH)3 nanorods using new precursors, J. Rare Earths, vol.33, issue.4, pp.425-431, 2015.
DOI : 10.1016/s1002-0721(14)60436-1

A. V. Lino, E. M. Assaf, and J. M. Assaf, Hydrotalcites derived catalysts for syngas production from biogas reforming: Effect of nickel and cerium load, Catal. Today, vol.289, pp.78-88, 2017.
DOI : 10.1016/j.cattod.2016.08.022

P. Wu, J. Wu, L. Xia, Y. Liu, L. Xu et al., Adsorption of fluoride at the interface of water with calcined magnesium-ferri-lanthanum hydrotalcite-like compound, RSC Adv, vol.7, issue.42, pp.26104-26112, 2017.

M. L. Dieuzeide, M. Jobbagy, and N. Amadeo, Glycerol steam reforming over Ni/mg/?-Al2O3 catalysts effect of Ni(II) content, Int. J. Hydrog. Energy, vol.39, issue.30, pp.16976-16982, 2014.

Z. Jiang, Catalytic combustion of methane over mixed oxides derived from CoMg/Al ternary hydrotalcites, Fuel Process. Technol, vol.91, issue.1, pp.97-102, 2010.

D. Wierzbicki, R. Debek, M. Motak, T. Grzybek, M. E. Gálvez et al., Novel Ni-La-hydrotalcite derived catalysts for CO2 methanation, Catal. Commun, vol.83, pp.5-8, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01318308

A. F. Lucrédio, J. D. Bellido, and E. M. Assaf, Effects of adding La and Ce to hydrotalcite-type Ni/Mg/Al catalyst precursors on ethanol steam reforming reactions, Appl. Catal. Gen, vol.388, issue.1-2, pp.77-85, 2010.

H. Liu, La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures, Fuel, vol.182, pp.8-16, 2016.

H. Ma, Efficient hydrogen production from ethanol steam reforming over Lamodified ordered mesoporous Ni-based catalysts, Appl. Catal. B Environ, vol.181, pp.321-331, 2016.

R. Yang, C. Xing, C. Lv, L. Shi, and N. Tsubaki, Promotional effect of La2O3 and CeO2 on Ni/?-Al2O3 catalysts for CO2 reforming of CH4, Appl. Catal. Gen, vol.385, issue.1, pp.92-100, 2010.

S. Veiga and J. Bussi, Steam reforming of crude glycerol over nickel supported on activated carbon, Energy Convers. Manag, vol.141, pp.79-84, 2017.

Y. Wang, Cu and Zn) supported on attapulgite as catalysts for hydrogen production from glycerol steam reforming, Bimetallic Ni-M (M = Co, vol.550, pp.214-227, 2018.

J. A. Calles, A. Carrero, A. J. Vizcaíno, and L. García-moreno, Hydrogen production by glycerol steam reforming over SBA-15-supported nickel catalysts: Effect of alkaline earth promoters on activity and stability, Catal. Today, vol.227, pp.198-206, 2014.

S. Bepari, N. C. Pradhan, and A. K. Dalai, Selective production of hydrogen by steam reforming of glycerol over Ni/Fly ash catalyst, Catal. Today, vol.291, pp.36-46, 2017.

L. F. Bobadilla, Glycerol steam reforming on bimetallic NiSn/CeO2-MgO-Al2O3 catalysts: Influence of the support, reaction parameters and deactivation/regeneration processes, Appl. Catal. Gen, vol.492, pp.38-47, 2015.