W. Bockelmann, Secondary Cheese Starter Cultures, Technol. Cheesemaking Second Ed, pp.193-230, 2010.

F. Irlinger, S. Layec, S. Hélinck, and E. Dugat-bony, Cheese rind microbial communities: diversity, composition and origin, FEMS Microbiol. Lett, vol.362, pp.1-11, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01535274

C. Monnet, S. Landaud, P. Bonnarme, and D. Swennen, Growth and adaptation of microorganisms on the cheese surface, FEMS Microbiol. Lett, vol.362, pp.1-9, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01535275

N. M. Brennan, A. C. Ward, T. P. Beresford, P. F. Fox, M. Goodfellow et al., Biodiversity of the bacterial flora on the surface of a smear cheese, Appl. Environ. Microbiol, vol.68, pp.820-850, 2002.

C. Feurer, T. Vallaeys, G. Corrieu, and F. Irlinger, Does smearing inoculum reflect the bacterial composition of the smear at the end of the ripening of a French soft, red-smear cheese?, J. Dairy Sci, vol.87, pp.3189-97, 2004.

S. Goerges, J. Mounier, M. C. Rea, R. Gelsomino, V. Heise et al., Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a South german red smear cheese, Appl. Environ. Microbiol, vol.74, pp.2210-2217, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00557107

K. Gori, M. Ryssel, N. Arneborg, and L. Jespersen, Isolation and identification of the microbiota of Danish farmhouse and industrially produced surface-ripened cheeses, Microb. Ecol, vol.65, pp.602-617, 2013.

J. Mounier, R. Gelsomino, S. Goerges, M. Vancanneyt, K. Vandemeulebroecke et al., Surface microflora of four smear-ripened cheeses, Appl. Environ. Microbiol, vol.71, pp.6489-500, 2005.

M. C. Rea, S. Görges, R. Gelsomino, N. M. Brennan, J. Mounier et al., Stability of the biodiversity of the surface consortia of Gubbeen, a red-smear cheese, J. Dairy Sci, vol.90, pp.2200-2210, 2007.

F. P. Rattray and P. F. Fox, Aspects of enzymology and biochemical properties of Brevibacterium linens relevant to cheese ripening: a review, J. Dairy Sci, vol.82, pp.891-909, 1999.

M. Forquin-gomez, B. C. Weimer, L. Sorieul, J. Kalinowski, and T. Vallaeys, The Family Brevibacteriaceae, Prokaryotes Actinobacteria 4th Ed, pp.141-53, 2014.

A. Onraedt, W. Soetaert, and E. Vandamme, Industrial importance of the genus Brevibacterium, Biotechnol. Lett, vol.27, pp.527-560, 2005.

E. I. Gavrish, V. I. Krauzova, N. V. Potekhina, S. G. Karasev, E. G. Plotnikova et al., Three new species of brevibacteria, Brevibacterium antiquum sp. nov., Brevibacterium aurantiacum sp. nov. and Brevibacterium permense sp, nov. Mikrobiologiia, vol.73, pp.218-243, 2004.

M. Montel, S. Buchin, A. Mallet, C. Delbes-paus, D. A. Vuitton et al., Traditional cheeses: rich and diverse microbiota with associated benefits, Int. J. Food Microbiol, vol.177, pp.136-54, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02086940

S. Kumar, G. Stecher, and K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Mol. Biol. Evol, vol.33, pp.1870-1874, 2016.

B. Contreras-moreira and P. Vinuesa, GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis, Appl. Environ. Microbiol, vol.79, pp.7696-701, 2013.

L. Li, C. J. Stoeckert, and D. S. Roos, OrthoMCL: identification of ortholog groups for eukaryotic genomes, Genome Res, vol.13, pp.2178-89, 2003.

R. L. Tatusov, M. Y. Galperin, D. A. Natale, and E. V. Koonin, The COG database: a tool for genome-scale analysis of protein functions and evolution, Nucleic Acids Res, vol.28, pp.33-39, 2000.

E. Stackebrandt, W. Frederiksen, G. M. Garrity, P. Grimont, P. Kämpfer et al., Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology, Int. J. Syst. Evol. Microbiol, vol.52, pp.1043-1050, 2002.

K. T. Konstantinidis and J. M. Tiedje, Genomic insights that advance the species definition for prokaryotes, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.2567-72, 2005.

J. Goris, K. T. Konstantinidis, J. A. Klappenbach, T. Coenye, P. Vandamme et al., DNA-DNA hybridization values and their relationship to whole-genome sequence similarities, Int. J. Syst. Evol. Microbiol, vol.57, pp.81-91, 2007.

M. Richter and R. Rosselló-móra, Shifting the genomic gold standard for the prokaryotic species definition, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.19126-19157, 2009.

E. Stackebrandt and B. M. Goebel, Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology, Int. J. Syst. Evol. Microbiol, vol.44, pp.846-855, 1994.

V. Michel and F. G. Martley, Streptococcus thermophilus in cheddar cheese--production and fate of galactose, J. Dairy Res, vol.68, pp.317-342, 2001.

J. Mounier, M. C. Rea, O. Connor, P. M. Fitzgerald, G. F. Cogan et al., Growth characteristics of Brevibacterium, Corynebacterium, Microbacterium, and Staphylococcus spp. isolated from surface-ripened cheese, Appl. Environ. Microbiol, vol.73, pp.7732-7741, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00557184

T. Jiang, C. Gao, C. Ma, and P. Xu, Microbial lactate utilization: enzymes, pathogenesis, and regulation, Trends Microbiol, vol.22, pp.589-99, 2014.

G. E. Pinchuk, D. A. Rodionov, C. Yang, X. Li, A. L. Osterman et al., Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.2874-2883, 2009.

E. Jolkver, D. Emer, S. Ballan, R. Krämer, B. J. Eikmanns et al., Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum, J. Bacteriol, vol.191, pp.940-948, 2009.

M. Auchter, A. Arndt, and B. J. Eikmanns, Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB, J. Biotechnol, vol.140, pp.84-91, 2009.

T. Hajri and N. A. Abumrad, Fatty acid transport across membranes: relevance to nutrition and metabolic pathology, Annu. Rev. Nutr, vol.22, pp.383-415, 2002.

E. J. Muñoz-elías, A. M. Upton, J. Cherian, and J. D. Mckinney, Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence, Mol. Microbiol, vol.60, pp.1109-1131, 2006.

, Chapitre II-Résultats, vol.134

M. Bott and A. Niebisch, The respiratory chain of Corynebacterium glutamicum, J. Biotechnol, vol.104, pp.129-53, 2003.

N. D. Rawlings, A. J. Barrett, and R. Finn, Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors, Nucleic Acids Res, vol.44, pp.343-350, 2016.

F. P. Rattray, W. Bockelmann, and P. F. Fox, Purification and Characterization of an Extracellular Proteinase from Brevibacterium linens ATCC 9174, Appl. Environ. Microbiol, vol.61, pp.3454-3460, 1995.

M. Nomura, H. Kimoto, Y. Someya, S. Furukawa, and I. Suzuki, Production of gammaaminobutyric acid by cheese starters during cheese ripening, J. Dairy Sci, vol.81, pp.1486-91, 1998.

M. Miethke, C. G. Monteferrante, M. A. Marahiel, and J. M. Van-dijl, The Bacillus subtilis EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric iron, Biochim. Biophys. Acta, vol.1833, pp.2267-78, 2013.

A. G. Khan, S. R. Shouldice, S. D. Kirby, R. Yu, L. W. Tari et al., High-affinity binding by the periplasmic iron-binding protein from Haemophilus influenzae is required for acquiring iron from transferrin, Biochem. J, vol.404, pp.217-242, 2007.

T. Bernard, M. Jebbar, Y. Rassouli, S. Himdi-kabbab, J. Hamelin et al., Ectoine accumulation and osmotic regulation in Brevibacterium linens, Microbiology, vol.139, pp.129-165, 1993.

S. H. Zeisel, M. Mar, J. C. Howe, and J. M. Holden, Concentrations of choline-containing compounds and betaine in common foods, J. Nutr, vol.133, pp.1302-1309, 2003.

E. Frings, H. J. Kunte, and E. A. Galinski, Compatible solutes in representatives of the genera Brevibacterium and Corynebacterium: Occurrence of tetrahydropyrimidines and glutamine, FEMS Microbiol. Lett, vol.109, pp.25-32, 1993.

B. Kempf and E. Bremer, Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments, Arch. Microbiol, vol.170, pp.319-349, 1998.

T. H. Swartz, S. Ikewada, O. Ishikawa, M. Ito, and T. A. Krulwich, The Mrp system: a giant among monovalent cation/proton antiporters?, Extremophiles, vol.9, pp.345-54, 2005.

P. G. Arnison, M. J. Bibb, G. Bierbaum, A. A. Bowers, T. S. Bugni et al., Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature, Nat. Prod. Rep, vol.30, pp.108-60, 2013.

K. Meindl, T. Schmiederer, K. Schneider, A. Reicke, D. Butz et al., Labyrinthopeptins: a new class of carbacyclic lantibiotics, Angew. Chem. Int. Ed Engl, vol.49, pp.1151-1155, 2010.

G. Bierbaum and H. Sahl, Lantibiotics: mode of action, biosynthesis and bioengineering, Curr. Pharm. Biotechnol, vol.10, pp.2-18, 2009.

Q. Zhang, Y. Yu, J. E. Vélasquez, and W. A. Van-der-donk, Evolution of lanthipeptide synthetases, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.18361-18367, 2012.

W. M. Müller, P. Ensle, B. Krawczyk, and R. D. Süssmuth, Leader peptide-directed processing of labyrinthopeptin A2 precursor peptide by the modifying enzyme LabKC, Biochemistry (Mosc.), vol.50, pp.8362-73, 2011.

G. H. Völler, B. Krawczyk, P. Ensle, and R. D. Süssmuth, Involvement and unusual substrate specificity of a prolyl oligopeptidase in class III lanthipeptide maturation, J. Am. Chem. Soc, vol.135, pp.7426-7435, 2013.

, Chapitre II-Résultats, vol.135

D. Bi, Z. Xu, E. M. Harrison, C. Tai, Y. Wei et al., ICEberg: a web-based resource for integrative and conjugative elements found in Bacteria, Nucleic Acids Res, vol.40, pp.621-626, 2012.

B. Martínez, M. Fernández, J. E. Suárez, and A. Rodríguez, Synthesis of lactococcin 972, a bacteriocin produced by Lactococcus lactis IPLA 972, depends on the expression of a plasmid-encoded bicistronic operon, Microbiol. Read. Engl, vol.145, pp.3155-61, 1999.

C. Sánchez, A. Hernández-de-rojas, B. Martínez, M. E. Argüelles, J. E. Suárez et al., Nucleotide sequence and analysis of pBL1, a bacteriocin-producing plasmid from Lactococcus lactis IPLA 972, Plasmid, vol.44, pp.239-288, 2000.

D. H. Haft, M. K. Basu, and D. A. Mitchell, Expansion of ribosomally produced natural products: a nitrile hydratase-and Nif11-related precursor family, BMC Biol, vol.8, p.70, 2010.

S. W. Lee, D. A. Mitchell, A. L. Markley, M. E. Hensler, D. Gonzalez et al., Discovery of a widely distributed toxin biosynthetic gene cluster, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.5879-84, 2008.

J. Claesen and M. Bibb, Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.16297-302, 2010.

J. Claesen and M. J. Bibb, Biosynthesis and regulation of grisemycin, a new member of the linaridin family of ribosomally synthesized peptides produced by Streptomyces griseus IFO 13350, J. Bacteriol, vol.193, pp.2510-2516, 2011.

W. Liu, Y. , Y. Xu, Y. Lamsa, A. Haste et al., Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.16286-90, 2010.

P. Morales, T. G. Ho, T. D. Liu, W. Dorrestein, P. C. Ellermeier et al., Production of the cannibalism toxin SDP is a multistep process that requires SdpA and SdpB, J. Bacteriol, vol.195, pp.3244-51, 2013.

A. Price-whelan, L. Dietrich, and D. K. Newman, Rethinking "secondary" metabolism: physiological roles for phenazine antibiotics, Nat. Chem. Biol, vol.2, pp.71-79, 2006.

W. Whitman, M. Goodfellow, P. Kämpfer, H. Busse, M. Trujillo et al., Bergey's Manual of Systematic Bacteriology, vol.5, 2012.

F. P. Rattray, P. F. Fox, and A. Healy, Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine alpha s1-casein, Appl. Environ. Microbiol, vol.62, pp.501-507, 1996.

F. P. Rattray, P. F. Fox, and A. Healy, Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine beta-casein, Appl. Environ. Microbiol, vol.63, pp.2468-71, 1997.

W. Masoud and M. Jakobsen, The combined effects of pH, NaCl and temperature on growth of cheese ripening cultures of Debaryomyces hansenii and coryneform bacteria, Int. Dairy J, vol.15, pp.69-77, 2005.

W. H. Noordman, R. Reissbrodt, R. S. Bongers, J. Rademaker, W. Bockelmann et al., Growth stimulation of Brevibacterium sp. by siderophores, J. Appl. Microbiol, vol.101, pp.637-683, 2006.

C. Monnet, A. Back, and F. Irlinger, Growth of aerobic ripening bacteria at the cheese surface is limited by the availability of iron, Appl. Environ. Microbiol, vol.78, pp.3185-92, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004196

, Chapitre II-Résultats, vol.136

E. K. Kastman, N. Kamelamela, J. W. Norville, C. M. Cosetta, R. J. Dutton et al., Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species, mBio, vol.7, pp.1157-1173, 2016.

M. A. Riley and J. E. Wertz, Bacteriocins: evolution, ecology, and application, Annu. Rev. Microbiol, vol.56, pp.117-154, 2002.
DOI : 10.1146/annurev.micro.56.012302.161024

N. Valdés-stauber and S. Scherer, Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens, Appl. Environ. Microbiol, vol.60, pp.3809-3823, 1994.

I. Eppert, N. Valdés-stauber, H. Götz, M. Busse, and S. Scherer, Growth reduction of Listeria spp. caused by undefined industrial red smear cheese cultures and bacteriocin-producing Brevibacterium linens as evaluated in situ on soft cheese, Appl. Environ. Microbiol, vol.63, pp.4812-4819, 1997.

N. Valdes-stauber and S. Scherer, Nucleotide sequence and taxonomical distribution of the bacteriocin gene lin cloned from Brevibacterium linens M18, Appl. Environ. Microbiol, vol.62, pp.1283-1289, 1996.

F. Kato, Y. Eguchi, M. Nakano, T. Oshima, and A. Murata, Purification and Characterization of Linecin-A, a Bacteriocin of Brevibacterium linens, Agric. Biol. Chem, vol.55, pp.161-167, 1991.

S. Maisnier-patin and J. Richard, Activity and purification of linenscin OC2, an antibacterial substance produced by Brevibacterium linens OC2, an orange cheese coryneform bacterium, Appl. Environ. Microbiol, vol.61, pp.1847-52, 1995.

P. Kämpfer, J. Schäfer, N. Lodders, and H. Busse, Brevibacterium sandarakinum sp. nov., isolated from a wall of an indoor environment, Int. J. Syst. Evol. Microbiol, vol.60, pp.909-922, 2010.

D. Maizel, S. M. Utturkar, S. D. Brown, M. A. Ferrero, and B. P. Rosen, Draft Genome Sequence of Brevibacterium linens AE038-8, an Extremely Arsenic-Resistant Bacterium, Genome Announc, vol.3, pp.316-331, 2015.
DOI : 10.1128/genomea.00316-15

URL : https://mra.asm.org/content/ga/3/2/e00316-15.full.pdf

V. Roux, C. Robert, G. Gimenez, and D. Raoult, Draft genome sequence of Brevibacterium massiliense strain 541308T, J. Bacteriol, vol.194, pp.5151-5153, 2012.
DOI : 10.1128/jb.01182-12

URL : https://jb.asm.org/content/194/18/5151.full.pdf

S. Kokcha, D. Ramasamy, J. Lagier, C. Robert, D. Raoult et al., Non-contiguous finished genome sequence and description of Brevibacterium senegalense sp, nov. Stand. Genomic Sci, vol.7, pp.233-278, 2012.
DOI : 10.4056/sigs.3256677

URL : http://standardsingenomics.org/content/7/2/233/pdf

B. Ganesan, K. Seefeldt, and B. C. Weimer, Fatty acid production from amino acids and alphaketo acids by Brevibacterium linens BL2, Appl. Environ. Microbiol, vol.70, pp.6385-93, 2004.
DOI : 10.1128/aem.70.11.6385-6393.2004

URL : http://europepmc.org/articles/pmc525268?pdf=render

T. P. Beresford, N. A. Fitzsimons, N. L. Brennan, and T. M. Cogan, Recent advances in cheese microbiology, Int Dairy J, vol.11, pp.259-274, 2001.
DOI : 10.1016/s0958-6946(01)00056-5

F. Irlinger, S. Layec, S. Hélinck, and E. Dugat-bony, Cheese rind microbial communities: diversity, composition and origin, FEMS Microbiol Lett, vol.362, pp.1-11, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01535274

P. F. Fox, T. P. Guinee, T. M. Cogan, and P. Mcsweeney, Microbiology of Cheese Ripening, Fundamentals of Cheese Science, pp.333-390, 2017.

M. Rudolf and S. Scherer, High incidence of Listeria monocytogenes in European red smear cheese, Int J Food Microbiol, vol.63, pp.91-98, 2001.

W. Bockelmann and T. Hoppe-seyler, The surface flora of bacterial smear-ripened cheeses from cow's and goat's milk, Int Dairy J, vol.11, pp.307-314, 2001.

W. Bockelmann, Secondary Cheese Starter Cultures, Technology of Cheesemaking, pp.193-230, 2010.

J. Mounier, S. Goerges, R. Gelsomino, M. Vancanneyt, K. Vandemeulebroecke et al., Sources of the adventitious microflora of a smear-ripened cheese, J Appl Microbiol, vol.101, pp.668-681, 2006.

N. M. Brennan, A. C. Ward, T. P. Beresford, P. F. Fox, M. Goodfellow et al., Biodiversity of the bacterial flora on the surface of a smear cheese, Appl Environ Microbiol, vol.68, pp.820-830, 2002.

C. Feurer, T. Vallaeys, G. Corrieu, and F. Irlinger, Does smearing inoculum reflect the bacterial composition of the smear at the end of the ripening of a french soft, red-smear cheese?, J Dairy Sci, vol.87, pp.3189-3197, 2004.

S. Goerges, J. Mounier, M. C. Rea, R. Gelsomino, V. Heise et al., Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a south German red smear cheese, Appl Environ Microbiol, vol.74, pp.2210-2217, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00557107

K. Gori, M. Ryssel, N. Arneborg, and L. Jespersen, Isolation and identification of the microbiota of Danish farmhouse and industrially produced surface-ripened cheeses, Microb Ecol, vol.65, pp.602-615, 2013.

J. Mounier, R. Gelsomino, S. Goerges, M. Vancanneyt, K. Vandemeulebroecke et al., Surface microflora of four smearripened cheeses, Appl Environ Microbiol, vol.71, pp.6489-6500, 2005.

M. C. Rea, S. Gorges, R. Gelsomino, N. M. Brennan, J. Mounier et al., Stability of the biodiversity of the surface consortia of Gubbeen, a red-smear cheese, J Dairy Sci, vol.90, pp.2200-2210, 2007.

F. P. Rattray and P. F. Fox, Aspects of Enzymology and Biochemical Properties of Brevibacterium linens Relevant to Cheese Ripening: A Review, J Dairy Sci, vol.82, pp.891-909, 1999.

A. Onraedt, W. Soetaert, and E. Vandamme, Industrial importance of the genus Brevibacterium, Biotechnol Lett, vol.27, pp.527-533, 2005.

M. Forquin-gomez, B. C. Weimer, L. Sorieul, J. Kalinowski, and T. Vallaeys, The Family Brevibacteriaceae, The Prokaryotes, pp.141-153, 2014.

, Chapitre II-Résultats, vol.245

T. M. Cogan, Bacteria, Beneficial | Brevibacterium linens, Brevibacterium aurantiacum and Other Smear Microorganisms, pp.395-400, 2011.

E. Y. Gavrish, V. I. Krauzova, N. V. Potekhina, S. G. Karasev, E. G. Plotnikova et al., Three new species of brevibacteria, Brevibacterium antiquum sp nov., Brevibacterium aurantiacum sp nov., and Brevibacterium permense sp nov, Microbiology, vol.73, pp.176-183, 2004.

J. Mounier, M. Coton, F. Irlinger, S. Landaud, and P. Bonnarme, Smear-Ripened Cheeses, Cheese: Chemistry, Physics and Microbiology, pp.955-996, 2017.

C. Monnet, S. Landaud, P. Bonnarme, and D. Swennen, Growth and adaptation of microorganisms on the cheese surface, FEMS Microbiol Lett, vol.362, pp.1-9, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01535275

N. Pham, S. Layec, E. Dugat-bony, M. Vidal, F. Irlinger et al., Comparative genomic analysis of Brevibacterium strains: insights into key genetic determinants involved in adaptation to the cheese habitat, BMC Genomics, vol.18, p.955, 2017.

M. Purko, W. O. Nelson, and W. A. Wood, The associative action between certain yeasts and Bacterium linens, J Dairy Sci, vol.34, pp.699-705, 1951.

S. E. Beattie and G. S. Torrey, Toxicity of methanethiol produced by Brevibacterium linens toward Penicillium expansum, J Agr Food Chem, vol.34, pp.102-104, 1986.

E. K. Kastman, N. Kamelamela, J. W. Norville, C. M. Cosetta, R. J. Dutton et al., Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species, vol.7, pp.1157-1173, 2016.

Y. Zhang, E. K. Kastman, J. S. Guasto, and B. E. Wolfe, Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes, Nat Commun, vol.9, p.336, 2018.

T. Wolf, P. Kämmer, S. Brunke, and J. Linde, Two's company: studying interspecies relationships with dual RNA-seq, Curr Opin Microbiol, vol.42, pp.7-12, 2018.

D. M. Kagkli, M. Vancanneyt, P. Vandamme, C. Hill, and T. M. Cogan, Contamination of milk by enterococci and coliforms from bovine faeces, J Appl Microbiol, vol.103, pp.1393-1405, 2007.

D. Ercolini, F. Russo, I. Ferrocino, and F. Villani, Molecular identification of mesophilic and psychrotrophic bacteria from raw cow's milk, Food Microbiol, vol.26, pp.228-231, 2009.

S. Sablé, V. Portrait, V. Gautier, F. Letellier, and G. Cottenceau, Microbiological changes in a soft raw goat's milk cheese during ripening, Enzyme Microb Tech, vol.21, pp.212-220, 1997.

H. Abriouel, A. Martín-platero, M. Maqueda, E. Valdivia, and M. Martínez-bueno, Biodiversity of the microbial community in a Spanish farmhouse cheese as revealed by culture-dependent and culture-independent methods, Int J Food Microbiol, vol.127, pp.200-208, 2008.

M. Coton, C. Delbés-paus, F. Irlinger, N. Desmasures, L. Fleche et al., Diversity and assessment of potential risk factors of Gram-negative isolates associated with French cheeses, Food Microbiol, vol.29, pp.88-98, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01001502

L. Boucher, C. Courant, F. Jeanson, S. Chereau, S. Maillard et al., First mass spectrometry metabolic fingerprinting of bacterial metabolism in a model cheese, Food Chem, vol.141, pp.1032-1040, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01209434

C. Monnet, A. Back, and F. Irlinger, Growth of aerobic ripening bacteria at the cheese surface is limited by the availability of iron, Appl Environ Microbiol, vol.78, pp.3185-3192, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004196

, Chapitre II-Résultats, vol.246

C. Monnet, E. Dugat-bony, D. Swennen, J. Beckerich, F. Irlinger et al., Investigation of the Activity of the Microorganisms in a Reblochon-Style Cheese by Metatranscriptomic Analysis, Front Microbiol, vol.7, p.536, 2016.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet J, vol.17, pp.10-12, 2011.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol, vol.10, p.25, 2009.

S. Anders, P. T. Pyl, and W. Huber, HTSeq-a Python framework to work with highthroughput sequencing data, Bioinformatics, vol.31, pp.166-169, 2015.

M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, and M. Tanabe, KEGG for integration and interpretation of large-scale molecular data sets, Nucleic Acids Res, vol.40, pp.109-114, 2012.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J Roy Stat Soc B Met, vol.57, pp.289-300, 1995.

A. Arndt and B. J. Eikmanns, The Alcohol Dehydrogenase Gene adhA in Corynebacterium glutamicum Is Subject to Carbon Catabolite Repression, J Bacteriol, vol.189, p.7408, 2007.

M. Auchter, A. Arndt, and B. J. Eikmanns, Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB, J Biotechnol, vol.140, pp.84-91, 2009.

B. L. Schneider, S. Ruback, A. K. Kiupakis, H. Kasbarian, C. Pybus et al., The Escherichia coli gabDTPC Operon: Specific ?-Aminobutyrate Catabolism and Nonspecific Induction, J Bacteriol, vol.184, p.6976, 2002.
DOI : 10.1128/jb.184.24.6976-6986.2002

J. Hofman-bang, Nitrogen catabolite repression in Saccharomyces cerevisiae, Mol Biotechnol, vol.12, pp.35-71, 1999.
DOI : 10.1385/mb:12:1:35

K. S. Bonham, B. E. Wolfe, and R. J. Dutton, Extensive horizontal gene transfer in cheeseassociated bacteria, vol.6, 2017.
DOI : 10.7554/elife.22144

URL : https://doi.org/10.7554/elife.22144

S. C. Andrews, A. K. Robinson, and F. Rodríguez-quiñones, Bacterial iron homeostasis, FEMS Microbiol Rev, vol.27, pp.215-237, 2003.
DOI : 10.1016/s0168-6445(03)00055-x

URL : https://academic.oup.com/femsre/article-pdf/27/2-3/215/18127215/27-2-3-215.pdf

C. C. Philpott, Iron uptake in fungi: A system for every source, BBA-Mol Cell Res, vol.1763, pp.636-645, 2006.

M. Forquin, A. Hébert, A. Roux, A. J. Proux, C. Heilier et al., Global Regulation of the Response to Sulfur Availability in the Cheese-Related Bacterium Brevibacterium aurantiacum, Appl Environ Microbiol, vol.77, pp.1449-1459, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000027

W. Bockelmann, The production of smear cheeses, Dairy Processing: Improving Quality, pp.470-491, 2003.

A. Corsetti, J. Rossi, and M. Gobbetti, Interactions between yeasts and bacteria in the smear surface-ripened cheeses, Int J Food Microbiol, vol.69, pp.1-10, 2001.
DOI : 10.1016/s0168-1605(01)00567-0

J. Wennerhold and M. Bott, The DtxR Regulon of Corynebacterium glutamicum, J Bacteriol, vol.188, p.2907, 2006.

J. R. Sheldon and D. E. Heinrichs, Recent developments in understanding the iron acquisition strategies of gram positive pathogens, FEMS Microbiol Rev, vol.39, pp.592-630, 2015.

W. H. Noordman, R. Reissbrodt, R. S. Bongers, J. Rademaker, W. Bockelmann et al., Growth stimulation of Brevibacterium sp. by siderophores, J Appl Microbiol, vol.101, pp.637-646, 2006.

H. Inoue, K. Inagaki, S. I. Eriguchi, T. Tamura, N. Esaki et al., Molecular characterization of the mde operon involved in L-methionine catabolism of Pseudomonas putida, J Bacteriol, vol.179, p.3956, 1997.

I. V. Manukhov, D. V. Mamaeva, E. A. Morozova, S. M. Rastorguev, N. G. Faleev et al., L-methionine ?-lyase from Citrobacter freundii: Cloning of the gene and kinetic parameters of the enzyme, Biochem (Mosc), vol.71, pp.361-369, 2006.

P. Bonnarme, C. Lapadatescu, M. Yvon, and H. Spinnler, L-methionine degradation potentialities of cheese-ripening microorganisms, J Dairy Res, vol.68, pp.663-674, 2001.

C. Monnet, V. Loux, J. Gibrat, E. Spinnler, V. Barbe et al., The Arthrobacter arilaitensis Re117 genome sequence reveals its genetic adaptation to the surface of cheese, PLOS ONE, vol.5, p.15489, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01195440

H. Liu, K. Valdehuesa, K. Ramos, G. M. Nisola, W. Lee et al., larabonate and d-galactonate production by expressing a versatile sugar dehydrogenase in metabolically engineered Escherichia coli, Bioresource Technol, vol.159, pp.455-459, 2014.
DOI : 10.1016/j.biortech.2014.03.056

P. F. Fox and P. Mcsweeney, Cheese: An Overview, Chemistry, Physics and Microbiology, pp.5-21, 2017.
DOI : 10.1016/b978-0-12-417012-4.00001-6

M. Almena-aliste and B. Mietton, Cheese classification, characterization, and categorization: a global perspective, pp.39-71, 2014.
DOI : 10.1128/microbiolspec.cm-0003-2012

URL : http://www.asmscience.org/deliver/fulltext/microbiolspec/2/1/CM-0003-2012.pdf?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.CM-0003-2012&mimeType=pdf&isFastTrackArticle=

. Fao/who, General standard for cheese, Codex Alimentarius, 1978.

P. F. Fox, T. P. Guinee, T. M. Cogan, and P. Mcsweeney, Overview of Cheese Manufacture, Fundamentals of Cheese Science, pp.11-25, 2017.
DOI : 10.1007/978-1-4899-7681-9_2

F. Bertrand, Cheese, the masterpiece of microbes [study of the whole of cheese manufacture, nature and action of main micro-organisms

, Rev Gen Froid Fr, 1988.

J. Lenoir, G. Lamberet, J. L. Schmidt, and C. Tourneur, La maîtrise du bioréacteur fromage, Biofutur, pp.23-50, 1985.

F. Irlinger, J. Mounier, T. Vallaeys, C. Monnet, S. Landaud et al., Bactéries et champignons des fromages: Un travail d'équipe exemplaire, Biofutur, pp.24-31, 2007.

M. Montel, S. Buchin, A. Mallet, C. Delbes-paus, D. A. Vuitton et al., Traditional cheeses: Rich and diverse microbiota with associated benefits, Int J Food Microbiol, vol.177, pp.136-54, 2014.
DOI : 10.1016/j.ijfoodmicro.2014.02.019

URL : https://hal.archives-ouvertes.fr/hal-02086940

F. Irlinger, S. Layec, S. Hélinck, and E. Dugat-bony, Cheese rind microbial communities: diversity, composition and origin, FEMS Microbiol Lett, vol.362, pp.1-11, 2015.
DOI : 10.1093/femsle/fnu015

URL : https://hal.archives-ouvertes.fr/hal-01535274

G. H. Fleet, Yeasts in dairy products, J Appl Bacteriol, vol.68, pp.199-211, 1990.

M. Fröhlich-wyder, Yeasts in dairy products, Yeasts in Food, Beneficial and Detrimental Aspects, pp.209-246, 2003.

A. Corsetti, J. Rossi, and M. Gobbetti, Interactions between yeasts and bacteria in the smear surface-ripened cheeses, Int J Food Microbiol, vol.69, pp.1-10, 2001.
DOI : 10.1016/s0168-1605(01)00567-0

L. Vassal, V. Monnet, L. Bars, D. Roux, C. Gripon et al., Relation entre le pH, la composition chimique et la texture des fromages de type Camembert, Lait, vol.66, pp.341-51, 1986.
URL : https://hal.archives-ouvertes.fr/hal-00929074

J. Gripon, Microbiology and Biochemistry of Cheese and Fermented Milk, pp.193-206, 1997.

L. Graet, Y. Brule, G. Maubois, J. Oeuvrard, and G. , Répartition et évolution des éléments minéraux au cours de l'affinage des fromages à pâte cuite type Beaufort, Lait, vol.66, pp.391-404, 1986.

M. Jakobsen and J. Narvhus, Yeasts and their possible beneficial and negative effects on the quality of dairy products, Int Dairy J, vol.6, pp.755-68, 1996.

H. Spinnler, C. Berger, C. Lapadatescu, and P. Bonnarme, Production of sulfur compounds by several yeasts of technological interest for cheese ripening, Int Dairy J, vol.11, pp.245-52, 2001.

F. Fatichenti, J. L. Bergere, P. Deiana, and G. A. Farris, Antagonistic activity of Debaryomyces hansenii towards Clostridium tyrobutyricum and Cl. butyricum, J Dairy Res, vol.50, pp.449-57, 1983.
DOI : 10.1017/s0022029900032684

P. Deiana, F. Fatichenti, G. A. Farris, G. Mocquot, R. Lodi et al., Metabolization of lactic and acetic acids in Pecorino Romano cheese made with a combined starter of lactic acid bacteria and yeast, Lait, vol.64, pp.380-94, 1984.
URL : https://hal.archives-ouvertes.fr/hal-00929024

T. P. Beresford, N. A. Fitzsimons, N. L. Brennan, and T. M. Cogan, Recent advances in cheese microbiology, Int Dairy J, vol.11, pp.259-74, 2001.
DOI : 10.1016/s0958-6946(01)00056-5

C. Moreau, Nomenclature des Penicillium utiles à la préparation du Camembert, Lait, vol.59, pp.219-252, 1979.

C. Moreau, Le Penicillium roqueforti, morphologie, physiologie, intérêt en industrie fromagère, mycotoxines. (Révision bibliographique), Lait, vol.60, pp.254-71, 1980.

A. Halász, Lactic acid bacteria, Food Quality and Standards, pp.70-82, 2009.

E. Parente, T. M. Cogan, and I. B. Powell, Starter Cultures: General Aspects, Chemistry, Physics and Microbiology, pp.201-227, 2017.
DOI : 10.1016/s1874-558x(04)80065-4

G. Urbach, Contribution of lactic acid bacteria to flavour compound formation in dairy products, Int Dairy J, vol.5, pp.877-903, 1995.

J. L. Bergère and C. Tourneur, Les bactéries de surface des fromages, Groupes Microbiens D'intérêt Lait CEPIL Paris, pp.127-63, 1992.

N. M. Brennan, T. M. Cogan, M. Loessner, and S. Scherer, Bacterial surface-ripened cheeses, Chemistry, Physics, and Microbiology, pp.199-225, 2004.

J. Mounier, R. Gelsomino, S. Goerges, M. Vancanneyt, K. Vandemeulebroecke et al., Surface microflora of four smear-ripened cheeses, Appl Environ Microbiol, vol.71, pp.6489-500, 2005.
DOI : 10.1128/aem.71.11.6489-6500.2005

URL : https://aem.asm.org/content/71/11/6489.full.pdf

F. Irlinger, S. Yung, A. Sarthou, C. Delbès-paus, M. Montel et al., Ecological and aromatic impact of two Gram-negative bacteria (Psychrobacter celer and Hafnia alvei) inoculated as part of the whole microbial community of an experimental smear soft cheese, Int J Food Microbiol, vol.153, pp.332-340, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01001503

P. Morales, E. Fernández-garcía, and M. Nuñez, Caseinolysis in cheese by Enterobacteriaceae strains of dairy origin, Lett Appl Microbiol, vol.37, pp.410-414, 2003.

C. Chaves-lópez, D. Angelis, M. Martuscelli, M. Serio, A. Paparella et al., Characterization of the Enterobacteriaceae isolated from an artisanal Italian ewe's cheese (Pecorino Abruzzese), J Appl Microbiol, vol.101, pp.353-60, 2006.

B. E. Wolfe, J. E. Button, M. Santarelli, and R. J. Dutton, Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity, Cell, vol.158, pp.422-455, 2014.

J. M. Janda and S. L. Abbott, The Genus Hafnia: from Soup to Nuts, Clin Microbiol Rev, vol.19, pp.12-28, 2006.
DOI : 10.1128/cmr.19.1.12-28.2006

URL : https://cmr.asm.org/content/19/1/12.full.pdf

R. Sakazaki, W. B. Hafnia-;-whitman, F. Rainey, P. Kämpfer, M. E. Trujillo et al., Bergey's Manual of Systematics of Archaea and Bacteria, 2015.

J. E. Wertz and M. A. Riley, Chimeric Nature of Two Plasmids of Hafnia alvei Encoding the Bacteriocins Alveicins A and B, J Bacteriol, vol.186, pp.1598-605, 2004.

R. Mourgues, L. Vassal, J. Auclair, G. Mocquot, and J. Vandeweghe, Origine et développement des bactéries coliformes dans les fromages à pâte molle, Lait, vol.57, pp.131-180, 1977.

J. Richard and H. Zadi, Inventaire de la flore bactérienne dominante des Camemberts fabriqués avec du lait cru, Lait, vol.63, pp.25-42, 1983.

J. Mounier, C. Monnet, N. Jacques, A. A. Irlinger, and F. , Assessment of the microbial diversity at the surface of Livarot cheese using culture-dependent and independent approaches, Int J Food Microbiol, vol.133, pp.31-38, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00557000

M. Coton, C. Delbés-paus, F. Irlinger, N. Desmasures, L. Fleche et al., Diversity and assessment of potential risk factors of Gram-negative isolates associated with French cheeses, Food Microbiol, vol.29, pp.88-98, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01001502

J. Chataud, V. Martin, and J. Prigent, Composition pour l'aromatisation de fromages, 2003.

R. H. Dainty, R. A. Edwards, C. M. Hibbard, and J. J. Marnewick, Volatile compounds associated with microbial growth on normal and high pH beef stored at chill temperatures, J Appl Bacteriol, vol.66, pp.281-290, 1989.

C. Delbès-paus, S. Pochet, S. Helinck, P. Veisseire, C. Bord et al., Impact of Gram-negative bacteria in interaction with a complex microbial consortium on biogenic amine content and sensory characteristics of an uncooked pressed cheese, Food Microbiol, vol.30, pp.74-82, 2012.

M. Marino, M. Maifreni, S. Moret, and G. Rondinini, The capacity of Enterobacteriaceae species to produce biogenic amines in cheese, Lett Appl Microbiol, vol.31, pp.169-73, 2001.

C. Delbès-paus, S. Miszczycha, S. Ganet, S. Helinck, P. Veisseire et al., Behavior of Escherichia coli O26:H11 in the presence of Hafnia alvei in a model cheese ecosystem, Int J Food Microbiol, vol.160, pp.212-220, 2013.

C. Callon, C. Arliguie, and M. Montel, Control of Shigatoxin-producing Escherichia coli in cheese by dairy bacterial strains, Food Microbiol, vol.53, pp.63-70, 2016.

A. C. Baird-parker, The staphylococci: an introduction, J Appl Bacteriol, vol.69, pp.1-8, 1990.
DOI : 10.1111/j.1365-2672.1990.tb01793.x

P. Vos, G. Garrity, D. Jones, N. R. Krieg, W. Ludwig et al., Bergey's Manual of Systematic Bacteriology, The Firmicutes, vol.3, 2009.

F. Irlinger, Safety assessment of dairy microorganisms: Coagulase-negative staphylococci, Int J Food Microbiol, vol.126, pp.302-312, 2008.

W. Bockelmann, U. Krusch, G. Engel, N. Klijn, G. Smit et al., The microflora of Tilsit cheese. I. Variability of the smear flora, Nahr-Food, vol.41, pp.208-220, 1997.

N. M. Brennan, A. C. Ward, T. P. Beresford, P. F. Fox, M. Goodfellow et al., Biodiversity of the bacterial flora on the surface of a smear cheese, Appl Environ Microbiol, vol.68, pp.820-850, 2002.

Á. C. Curtin, M. Gobbetti, and P. Mcsweeney, Peptidolytic, esterolytic and amino acid catabolic activities of selected bacterial strains from the surface of smear cheese, Int J Food Microbiol, vol.76, pp.231-271, 2002.

A. Ruaro, C. Andrighetto, S. Torriani, and A. Lombardi, Biodiversity and characterization of indigenous coagulase-negative staphylococci isolated from raw milk and cheese of North Italy, Food Microbiol, vol.34, pp.106-117, 2013.

H. L. Jensen, The Coryneform Bacteria, Annu Rev Microbiol, vol.6, pp.77-90, 1952.
DOI : 10.1146/annurev.mi.06.100152.000453

G. L. Cure and R. M. Keddie, Methods for the morphological examination of aerobic coryneform bacteria, pp.123-158, 1973.

C. Denis and F. Irlinger, Safety assessment of dairy microorganisms: Aerobic coryneform bacteria isolated from the surface of smear-ripened cheeses, Int J Food Microbiol, vol.126, pp.311-316, 2008.

E. Stackebrandt, F. A. Rainey, and N. L. Ward-rainey, Proposal for a new hierarchic classification system, Actinobacteria classis nov, Int J Syst Bacteriol, vol.47, pp.479-91, 1997.

H. Busse, Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus, Int J Syst Evol Microbiol, vol.66, pp.9-37, 2016.

W. Bockelmann and T. Hoppe-seyler, The surface flora of bacterial smear-ripened cheeses from cow's and goat's milk, Int Dairy J, vol.11, pp.307-321, 2001.

L. Dufossé, P. Galaup, E. Carlet, C. Flamin, and A. Valla, Spectrocolorimetry in the CIE L*a*b* color space as useful tool for monitoring the ripening process and the quality of PDO redsmear soft cheeses, Food Res Int, vol.38, pp.919-943, 2005.

S. Landaud, S. Helinck, and P. Bonnarme, Formation of volatile sulfur compounds and metabolism of methionine and other sulfur compounds in fermented food, Appl Microbiol Biotechnol, vol.77, pp.1191-205, 2008.

, Références 265

F. Irlinger, F. Bimet, J. Delettre, M. Lefevre, and P. Grimont, Arthrobacter bergerei sp. nov. and Arthrobacter arilaitensis sp. nov., novel coryneform species isolated from the surfaces of cheeses, Int J Syst Evol Microbiol, vol.55, pp.457-62, 2005.

N. M. Brennan, R. Brown, M. Goodfellow, A. C. Ward, T. P. Beresford et al., Corynebacterium mooreparkense sp. nov. and Corynebacterium casei sp. nov., isolated from the surface of a smear-ripened cheese, Int J Syst Evol Microbiol, vol.51, pp.843-52, 2001.

N. M. Brennan, R. Brown, M. Goodfellow, A. C. Ward, T. P. Beresford et al., Microbacterium gubbeenense sp. nov., from the surface of a smear-ripened cheese, Int J Syst Evol Microbiol, vol.51, pp.1969-76, 2001.
DOI : 10.1099/00207713-51-6-1969

URL : http://ijs.microbiologyresearch.org/deliver/fulltext/ijsem/51/6/0511969a.pdf?itemId=/content/journal/ijsem/10.1099/00207713-51-6-1969&mimeType=pdf&isFastTrackArticle=

E. Y. Gavrish, V. I. Krauzova, N. V. Potekhina, S. G. Karasev, E. G. Plotnikova et al., Three new species of brevibacteria, Brevibacterium antiquum sp nov., Brevibacterium aurantiacum sp nov., and Brevibacterium permense sp nov, Microbiology, vol.73, pp.176-83, 2004.

P. Boyaval and M. J. Desmazeaud, Le point des connaissances sur Brevibacterium linens, Lait, vol.63, pp.187-216, 1983.
URL : https://hal.archives-ouvertes.fr/hal-00928975

M. Forquin-gomez, B. C. Weimer, L. Sorieul, J. Kalinowski, and T. Vallaeys, The Family Brevibacteriaceae, The Prokaryotes, pp.141-53, 2014.
DOI : 10.1007/978-3-642-30138-4_169

M. E. Trujillo, M. Goodfellow, W. B. Brevibacterium-;-whitman, F. Rainey, P. Kämpfer et al., Bergey's Manual of Systematics of Archaea and Bacteria, 2015.

M. E. Trujillo, M. Goodfellow, W. B. Genus-i-;-whitman, M. Goodfellow, P. Kämpfer et al., Bergey's Manual of Systematic Bacteriology, Brevibacterium Breed 1953a. 13AL emend. Colins, Jones, Keddie and Sneath, pp.685-700, 1980.

E. G. Mulder, A. D. Adamse, J. Antheunisse, M. H. Deinema, J. W. Woldendorp et al., The Relationship between Brevibacterium linens and Bacteria of the Genus Arthrobacter, J Appl Bacteriol, vol.29, pp.44-71, 1966.

W. Crombach, Morphology and physiology of coryneform bacteria, Antonie Van Leeuwenhoek, vol.40, pp.361-76, 1974.
DOI : 10.1007/bf00399348

M. Famelart, C. Bouillanne, A. Kobilinsky, and M. Desmazeaud, Studies on Brevibacterium linens metabolism in fermentor, Appl Microbiol Biotechnol, vol.26, pp.378-382, 1987.
DOI : 10.1007/bf00256674

M. Goodfellow, M. E. Trujillo, W. B. Brevibacteriaceae-;-whitman, F. Rainey, P. Kämpfer et al., Bergey's Manual of Systematics of Archaea and Bacteria, 2015.

S. D. Lee, Spelaeicoccus albus gen. nov., sp. nov., an actinobacterium isolated from a natural cave, Int J Syst Evol Microbiol, vol.63, pp.3958-63, 2013.

G. Zhang, S. Wang, and L. Wang, Sediminivirga luteola gen. nov., sp. nov., a member of the family Brevibacteriaceae, isolated from marine sediment, Int J Syst Evol Microbiol, vol.66, pp.1494-1502, 2016.

, Références 266

R. S. Breed, The Brevibacteriaceae fam. nov. of order Eubacteriales. Riassunti Delle Commun VI Congr Internazionale Microbiol Roma, vol.1, pp.13-17, 1953.

D. Jones, R. M. Keddie, P. Genus-brevibacterium-;-sneath, N. S. Mair, M. E. Sharpe et al., Bergey's Manual of Systematic Bacteriology, pp.1301-1314, 1986.

K. A. Bernard, D. Wiebe, T. Burdz, A. Reimer, B. Ng et al., Assignment of Brevibacterium stationis, 1944.

. Corynebacterium, Corynebacterium stationis comb. nov., and emended description of the genus Corynebacterium to include isolates that can alkalinize citrate, Int J Syst Evol Microbiol, vol.60, pp.874-883, 2010.

S. Tang, Y. Wang, P. Schumann, E. Stackebrandt, K. Lou et al., Brevibacterium album sp. nov., a novel actinobacterium isolated from a saline soil in China, Int J Syst Evol Microbiol, vol.58, pp.574-581, 2008.

J. Kim, S. Srinivasan, T. You, J. J. Bang, S. Park et al., Brevibacterium ammoniilyticum sp. nov., an ammonia-degrading bacterium isolated from sludge of a wastewater treatment plant, Int J Syst Evol Microbiol, vol.63, pp.1111-1119, 2013.

C. Pascual and M. D. Collins, Brevibacterium avium sp. nov., isolated from poultry, Int J Syst Evol Microbiol, vol.49, pp.1527-1557, 1999.

M. D. Collins, J. Farrow, M. Goodfellow, and D. E. Minnikin, Brevibacterium casei sp. nov. and Brevibacterium epidermidis sp. nov, Syst Appl Microbiol, vol.4, pp.388-95, 1983.

E. P. Ivanova, R. Christen, Y. V. Alexeeva, N. V. Zhukova, N. M. Gorshkova et al., Brevibacterium celere sp. nov., isolated from degraded thallus of a brown alga, Int J Syst Evol Microbiol, vol.54, pp.2107-2118, 2004.

Y. Cui, M. Kang, S. Woo, J. L. Kim, K. K. Park et al., Brevibacterium daeguense sp. nov., a nitrate-reducing bacterium isolated from a 4-chlorophenol enrichment culture, Int J Syst Evol Microbiol, vol.63, pp.152-159, 2013.

M. D. Collins, D. Jones, R. M. Keddie, and P. Sneath, Reclassification of Chromobacterium iodinum (Davis) in a Redefined Genus Brevibacterium (Breed) as Brevibacterium iodinum nom. rev.; comb, nov. Microbiology, vol.120, pp.1-10, 1980.

E. J. Choi, S. H. Lee, J. Y. Jung, and J. Co, Brevibacterium jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood, Int J Syst Evol Microbiol, vol.63, pp.3430-3436, 2013.

G. Wauters, V. Avesani, K. Laffineur, J. Charlier, M. Janssens et al., Brevibacterium lutescens sp. nov., from human and environmental samples, Int J Syst Evol Microbiol, vol.53, pp.1321-1326, 2003.

S. D. Lee, Brevibacterium marinum sp. nov., isolated from seawater, Int J Syst Evol Microbiol, vol.58, pp.500-504, 2008.

M. E. Mcbride, K. M. Ellner, H. S. Black, J. E. Clarridge, and J. E. Wolf, A new Brevibacterium sp. isolated from infected genital hair of patients with white piedra, J Med Microbiol, vol.39, pp.255-61, 1993.

, Références 267

B. Bhadra, C. Raghukumar, P. K. Pindi, and S. Shivaji, Brevibacterium oceani sp. nov., isolated from deep-sea sediment of the Chagos Trench, Indian Ocean, Int J Syst Evol Microbiol, vol.58, pp.57-60, 2008.

C. Pascual, M. D. Collins, G. Funke, and D. G. Pitcher, Phenotypic and genotypic characterisation of two Brevibacterium strains from the human ear: description of Brevibacterium otitidis sp, Med Microbiol Lett, vol.5, pp.113-136, 1996.

G. Wauters, J. Charlier, M. Janssens, and M. Delmée, Brevibacterium paucivorans sp. nov., from human clinical specimens, Int J Syst Evol Microbiol, vol.51, pp.1703-1710, 2001.

J. Heyrman, J. Verbeeren, P. Schumann, J. Devos, J. Swings et al., Brevibacterium picturae sp. nov., isolated from a damaged mural painting at the Saint-Catherine chapel (Castle Herberstein, Austria), Int J Syst Evol Microbiol, vol.54, pp.1537-1578, 2004.

H. Kat?, I. A. Ince, I. Demir, and Z. Demirba?, Brevibacterium pityocampae sp. nov., isolated from caterpillars of Thaumetopoea pityocampa (Lepidoptera, Thaumetopoeidae), Int J Syst Evol Microbiol, vol.60, pp.312-318, 2010.

I. S. Mages, R. Frodl, K. A. Bernard, and G. Funke, Identities of Arthrobacter spp. and Arthrobacter-Like Bacteria Encountered in Human Clinical Specimens, J Clin Microbiol, vol.46, pp.2980-2986, 2008.

T. Guan, K. Zhao, J. Xiao, Y. Liu, Z. Xia et al., Brevibacterium salitolerans sp. nov., an actinobacterium isolated from salt-lake sediment, Int J Syst Evol Microbiol, vol.60, pp.2991-2996, 2010.

S. D. Lee, Brevibacterium samyangense sp. nov., an actinomycete isolated from a beach sediment, Int J Syst Evol Microbiol, vol.56, pp.1889-92, 2006.

P. Kämpfer, J. Schäfer, N. Lodders, and H. Busse, Brevibacterium sandarakinum sp. nov., isolated from a wall of an indoor environment, Int J Syst Evol Microbiol, vol.60, pp.909-922, 2010.

G. Wauters, G. Haase, V. Avesani, J. Charlier, M. Janssens et al., Identification of a Novel Brevibacterium Species Isolated from Humans and Description of Brevibacterium sanguinis sp. nov, J Clin Microbiol, vol.42, pp.2829-2861, 2004.

P. Chen, L. Zhang, J. Wang, J. Ruan, X. Han et al., Brevibacterium sediminis sp. nov., isolated from deep-sea sediments from the Carlsberg and Southwest Indian Ridges, Int J Syst Evol Microbiol, vol.66, pp.5268-74, 2016.

S. Kokcha, D. Ramasamy, J. Lagier, C. Robert, D. Raoult et al., Non-contiguous finished genome sequence and description of Brevibacterium senegalense sp. nov, Stand Genomic Sci, vol.7, pp.233-278, 2012.

A. Kumar, ?. A. ?nce, A. Kat?, and R. Chakraborty, Brevibacterium siliguriense sp. nov., a facultatively oligotrophic bacterium isolated from river water, Int J Syst Evol Microbiol, vol.63, pp.511-516, 2013.

A. Tonouchi, K. Kitamura, and T. Fujita, Brevibacterium yomogidense sp. nov., isolated from a soil conditioner made from poultry manure, Int J Syst Evol Microbiol, vol.63, pp.516-536, 2013.

A. C. Parte, LPSN-list of prokaryotic names with standing in nomenclature, Nucleic Acids Res, vol.42, pp.613-619, 2014.

K. A. Bernard, A. L. Pacheco, T. Burdz, D. Wiebe, C. Huynh et al., Brevibacterium massiliense (Roux and Raoult 2009) is a later heterotypic synonym of Brevibacterium ravenspurgense (Mages, Frodl, Bernard and Funke 2009), using whole-genome sequence analysis as a comparative tool, Int J Syst Evol Microbiol, vol.66, pp.4440-4444, 2016.

T. M. Cogan and . Bacteria, Beneficial | Brevibacterium linens, Brevibacterium aurantiacum and Other Smear Microorganisms, pp.395-400, 2011.

N. Marcellino and D. R. Benson, The good, the bad and the ugly: tales of mold-ripened cheese, 2014.

J. O. Albert, H. F. Long, and B. W. Hammer, Classification of the organisms important in dairy products IV. Bacterium linens, Res Bull Iowa Agric Home Econ Exp Stn, vol.27, p.1, 1944.

H. Foissy, Examination of Brevibacterium linens by an electrophoretic zymogram technique, Microbiology, vol.80, pp.197-205, 1974.

E. Frings, C. Holtz, and B. Kunz, Studies about casein degradation by Brevibacterium linens, 1993.

H. Coskun and T. Sienkiewicz, Degradation of milk proteins by extracellular proteinase from Brevibacterium linens flk-61, Food Biotechnol, vol.13, pp.267-75, 1999.

M. Clancy and M. O'sullivan, Partial Purification and Characterisation of a Proteinase from Brevibacterium linens, Ir J Agric Food Res, vol.32, pp.185-94, 1993.

F. P. Rattray, W. Bockelmann, and P. F. Fox, Purification and Characterization of an Extracellular Proteinase from Brevibacterium linens ATCC 9174, Appl Environ Microbiol, vol.61, pp.3454-3460, 1995.

F. P. Rattray, P. F. Fox, and A. Healy, Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine alpha s1-casein, Appl Environ Microbiol, vol.62, pp.501-507, 1996.

F. P. Rattray, P. F. Fox, and A. Healy, Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine beta-casein, Appl Environ Microbiol, vol.63, pp.2468-71, 1997.

J. Tomaschova, W. Buchinger, W. Hampel, and J. Zemanovic, Purification and characterization of extracellular proteinase produced by Brevibacterium linens ATCC 9172, Food Chem, vol.63, pp.499-503, 1998.

M. E. Friedman, W. O. Nelson, and W. A. Wood, Proteolytic Enzymes from Bacterium linens, J Dairy Sci, vol.36, pp.1124-1158, 1953.

F. Tokita and A. Hosono, Studies on the extracellular protease produced by Brevibacterium linens. I. Production and some properties of the extracellular protease, Jpn J Zootech Sci, 1972.

J. Zemanovic and B. Skárka, Culture media for extracellular proteinases production by Brevibacterium linens, Proceedings, 4th European Congress on Biotechnology, pp.541-545, 1987.

K. Hayashi, A. J. Cliffe, and B. A. Law, Culture conditions of Brevibacterium linens for production of proteolytic enzymes, Nippon Shokuhin Kogyo Gakkaishi, vol.37, pp.737-746, 1990.

S. Strauss, A. Kopetcky, J. Zemanovic, and W. A. Hampel, Production of Proteases from Brevibacterium linens, Biocatalysis, vol.10, pp.317-340, 1994.

K. Shabbiri, A. A. Jamil, S. Ahmad, W. Noor, B. Rafique et al., Medium optimization of protease production by Brevibacterium linens DSM 20158, using statistical approach, Braz J Microbiol, vol.43, pp.1051-61, 2012.

H. Foissy, Some properties of aminopeptidase from Brevibacterium linens, FEMS Microbiol Lett, vol.3, pp.207-217, 1978.

P. Brezina, P. Musil, J. Kopecny, M. Plockovç, and P. Rauch, Isolation and properties of proteinases and aminopeptidases of Brevibacterium linens, Sci Pap Prague Inst Chem Technol, vol.61, pp.149-60, 1987.

K. Hayashi and B. A. Law, Purification and characterization of two aminopeptidases produced by Brevibacterium linens, Microbiology, vol.135, pp.2027-2061, 1989.

F. P. Rattray and P. F. Fox, Aspects of Enzymology and Biochemical Properties of Brevibacterium linens Relevant to Cheese Ripening: A Review, J Dairy Sci, vol.82, pp.891-909, 1999.

H. Torgersen and T. Sørhaug, Peptide hydrolases of Brevibacterium linens, FEMS Microbiol Lett, vol.4, pp.151-154, 1978.

F. P. Rattray and P. F. Fox, Purification and characterisation of an intracellular aminopeptidase from Brevibacterium linens ATCC 9174, Lait, vol.77, pp.169-80, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00929509

N. Ezzat, E. Soda, M. , E. Shafei, H. Olson et al., Cell-wall associated peptide hydrolase and esterase activities in several cheese-related bacteria, Food Chem, vol.48, pp.19-23, 1993.

W. Buchinger, J. Tomaschová, J. Zemanovic, and W. A. Hampel, Autodegradation of the extracellular proteases of Brevibacterium linens ATCC 9172, Food Chem, vol.74, pp.61-69, 2001.

O. Juhasz and B. ?kárka, Purification and characterization of an extracellular proteinase from Brevibacterium linens, Can J Microbiol, vol.36, pp.510-512, 1990.

K. Hayashi, A. J. Cliffe, and B. A. Law, Purification and preliminary characterization of five serine proteinases produced by Brevibacterium linens, Int J Food Sci Technol, vol.25, pp.180-187, 1990.

M. El-soda, A. Macedo, and N. Olson, Aminopeptidase and dipeptidylaminopeptidase activities of several cheese related microorganisms. Milchwissenschaft, 1991.

J. Fernández, A. F. Mohedano, P. Gaya, M. Medina, and M. Nuñez, Purification and properties of two intracellular aminopeptidases produced by Brevibacterium linens SR3, Int Dairy J, vol.10, pp.241-249, 2000.

S. Movsesian, T. Vaganova, Z. Za?stseva, R. Ovumian, E. Timokhina et al., Isolation and properties of intracellular peptidase from Brevibacterium, Biokhimiia, vol.57, pp.236-281, 1992.

Y. B. Ali, R. Verger, and A. Abousalham, Lipases or Esterases: Does It Really Matter? Toward a New Bio-Physico-Chemical Classification, pp.31-51, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00917264

C. Clemente and D. V. Vadehra, Instrumental Assay of Microbial Lipase at Constant pH, Appl Microbiol, vol.15, pp.110-113, 1967.

T. Sørhaug and Z. J. Ordal, Cell-Bound Lipase and Esterase of Brevibacterium linens, Appl Microbiol, vol.27, pp.607-615, 1974.

H. El-shafei and N. Ezzat, El-Soda M. The esterolytic activity of several strains of Brevibacterium linens, Egypt J Dairy Sci, vol.17, pp.171-180, 1989.

C. Lambrechts and P. Galzy, Esterase Activities of Brevibacterium sp. R312 and Brevibacterium linens 62, Biosci Biotechnol Biochem, vol.59, pp.1464-71, 1995.

B. F. Adamitsch and W. A. Hampel, Formation of lipolytic enzymes by Brevibacterium linens, Biotechnol Lett, vol.22, pp.1643-1649, 2000.

B. F. Adamitsch, F. Karner, and W. A. Hampel, High cell density cultivation of Brevibacterium linens and formation of proteinases and lipase, Biotechnol Lett, vol.25, pp.705-713, 2003.

B. Weimer, B. Dias, M. Ummadi, J. Broadbent, C. Brennand et al., Influence of NaCl and pH on intracellular enzymes that influence Cheddar cheese ripening, Lait, vol.77, pp.383-98, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00929533

C. Lambrechts, J. Escudero, and P. Galzy, Purification and properties of three esterases from Brevibacterium sp. R312, J Appl Bacteriol, vol.78, pp.180-188, 1995.

F. P. Rattray and P. F. Fox, Purification and characterization of an intracellular esterase from Brevibacterium linens ATCC 9174, Int Dairy J, vol.7, pp.273-281, 1997.

N. Grecz, R. O. Wagenaar, and G. M. Dack, Inhibition of Clostridium botulinum by culture filtrates of Brevibacterium linens, J Bacteriol, vol.78, pp.506-516, 1959.

F. Martin, K. Friedrich, F. Beyer, and G. Terplan, Antagonistic effects of strains of Brevibacterium linens against Listeria, Arch Leb, vol.46, pp.7-11, 1995.

F. Kato, Y. Eguchi, M. Nakano, T. Oshima, and A. Murata, Purification and Characterization of Linecin-A, a Bacteriocin of Brevibacterium linens, Agric Biol Chem, vol.55, pp.161-167, 1991.

N. Valdés-stauber and S. Scherer, Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens, Appl Environ Microbiol, vol.60, pp.3809-3823, 1994.

A. S. Motta and A. Brandelli, Characterization of an antibacterial peptide produced by Brevibacterium linens, J Appl Microbiol, vol.92, pp.63-70, 2002.

S. Maisnier-patin and J. Richard, Activity and purification of linenscin OC2, an antibacterial substance produced by Brevibacterium linens OC2, an orange cheese coryneform bacterium, Appl Environ Microbiol, vol.61, pp.1847-52, 1995.

C. Boucabeille, D. Mengin-lecreulx, G. Henckes, J. Simonet, and J. Van-heijenoort, Antibacterial and hemolytic activities of linenscin OC2, a hydrophobic substance produced by Brevibacterium linens OC2, FEMS Microbiol Lett, vol.153, pp.295-301, 1997.

C. Boucabeille, L. Letellier, J. M. Simonet, and G. Henckes, Mode of action of linenscin OC2 against Listeria innocua, Appl Environ Microbiol, vol.64, pp.3416-3437, 1998.

S. E. Beattie and G. S. Torrey, Toxicity of methanethiol produced by Brevibacterium linens toward Penicillium expansum, J Agric Food Chem, vol.34, pp.102-106, 1986.

B. A. Lewis, A study of the antifungal agent(s) produced by four strains of Brevibacterium. The University of Southern Mississippi, 1980.

M. M. Osman, Factors affecting the antifungal properties of Brevibacterium linens, Int Dairy J, vol.14, pp.713-735, 2004.

E. T. Ryser, S. Maisnier-patin, J. J. Gratadoux, and J. Richard, Isolation and identification of cheese-smear bacteria inhibitory to Listeria spp, Int J Food Microbiol, vol.21, pp.237-283, 1994.

H. P. Siswanto, J. J. Gratadoux, and J. Richard, Potentiel inhibiteur de la souche de Brevibacterium linens productrice de la linenscine OC2, vis-à-vis des listeria et de Staphylococcus aureus, Lait, vol.76, pp.501-513, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00929502

F. Kato, M. Yoshimi, K. Araki, Y. Motomura, Y. Matsufune et al., Screening of Bacteriocins in Amino Acid or Nucleic Acid Producing Bacteria and Related Species, Agric Biol Chem, vol.48, pp.193-200, 1984.

N. Valdes-stauber and S. Scherer, Nucleotide sequence and taxonomical distribution of the bacteriocin gene lin cloned from Brevibacterium linens M18, Appl Environ Microbiol, vol.62, pp.1283-1289, 1996.

N. Valdes-stauber, H. Götz, and M. Busse, Antagonistic effect of coryneform bacteria from red smear cheese against Listeria species, Int J Food Microbiol, vol.13, pp.119-149, 1991.

I. Eppert, N. Valdés-stauber, H. Götz, M. Busse, and S. Scherer, Growth reduction of Listeria spp. caused by undefined industrial red smear cheese cultures and bacteriocin-producing Brevibacterium linens as evaluated in situ on soft cheese, Appl Environ Microbiol, vol.63, pp.4812-4819, 1997.

A. S. Motta and A. Brandelli, Influence of growth conditions on bacteriocin production by Brevibacterium linens, Appl Microbiol Biotechnol, vol.62, pp.163-170, 2003.

H. Seiler, Identification of cheese-smear coryneform bacteria, J Dairy Res, vol.53, pp.439-488, 1986.

W. Kohl, H. Achenbach, and H. Reichenbach, The pigments of Brevibacterium linens: Aromatic carotenoids, Phytochemistry, vol.22, pp.207-217, 1983.

G. Britton and . Carotenoids, Natural Food Colorants, pp.197-243, 1996.

P. Krubasik and G. Sandmann, A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes involved in the synthesis of aromatic carotenoids, Mol Gen Genet, vol.263, pp.423-455, 2000.

L. Dufossé and M. C. De-echanove, The last step in the biosynthesis of aryl carotenoids in the cheese ripening bacteria Brevibacterium linens ATCC 9175 (Brevibacterium aurantiacum sp

, nov.) involves a cytochrome P450-dependent monooxygenase, Food Res Int, vol.38, pp.967-73, 2005.

M. Ferchichi, D. Hemme, and C. Bouillanne, Influence of Oxygen and pH on Methanethiol Production from l-Methionine by Brevibacterium linens CNRZ 918, Appl Environ Microbiol, vol.51, pp.725-734, 1986.

W. Masoud and M. Jakobsen, Surface ripened cheeses: the effects of Debaryomyces hansenii, NaCl and pH on the intensity of pigmentation produced by Brevibacterium linens and Corynebacterium flavescens, Int Dairy J, vol.13, pp.231-238, 2003.

G. F. De-valdez, G. S. De-giori, A. P. De-ruiz-holgado, and G. Oliver, An Orange-Reddish Pigmentation in Roquefort Cheese, J Food Prot, vol.49, pp.412-418, 1986.

. Guyomarc'h-f, A. Binet, and L. Dufossé, Characterization of Brevibacterium linens pigmentation using spectrocolorimetry, Int J Food Microbiol, vol.57, pp.201-211, 2000.

M. Leclercq-perlat, G. Corrieu, and H. Spinnler, The Color of Brevibacterium linens Depends on the Yeast Used for Cheese Deacidification, J Dairy Sci, vol.87, pp.1536-1580

. Guyomarc'h-f, A. Binet, and L. Dufossé, Production of carotenoids by Brevibacterium linens: variation among strains, kinetic aspects and HPLC profiles, J Ind Microbiol Biotechnol, vol.24, pp.64-70, 2000.

L. Dufossé, P. Mabon, and A. Binet, Assessment of the Coloring Strength of Brevibacterium linens Strains: Spectrocolorimetry Versus Total Carotenoid Extraction/Quantification, J Dairy Sci, vol.84, pp.354-60, 2001.

P. Deetae, P. Bonnarme, H. Spinnler, and S. Helinck, Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses, Appl Microbiol Biotechnol, vol.76, pp.1161-71, 2007.

P. Bonnarme, C. Lapadatescu, M. Yvon, and H. Spinnler, L-methionine degradation potentialities of cheese-ripening microorganisms, J Dairy Res, vol.68, pp.663-74, 2001.

G. Lamberet, B. Auberger, and J. L. Bergère, Aptitude of cheese bacteria for volatile S-methyl thioester synthesis. II. Comparison of coryneform bacteria, Micrococcaceae and some lactic acid bacteria starters, Appl Microbiol Biotechnol, vol.48, pp.393-400, 1997.

K. Arfi, F. Amárita, H. Spinnler, and P. Bonnarme, Catabolism of volatile sulfur compounds precursors by Brevibacterium linens and Geotrichum candidum, two microorganisms of the cheese ecosystem, J Biotechnol, vol.105, pp.245-53, 2003.

M. Forquin, A. Hébert, A. Roux, A. J. Proux, C. Heilier et al., Global Regulation of the Response to Sulfur Availability in the Cheese-Related Bacterium Brevibacterium aurantiacum, Appl Environ Microbiol, vol.77, pp.1449-59, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000027

M. Ferchichi, D. Hemme, and M. Nardi, Induction of Methanethiol Production by Brevibacterium linens CNRZ 918, Microbiology, vol.132, pp.3075-82, 1986.

M. Ferchichi, D. Hemme, and M. Nardi, Na+-Stimulated Transport of l-Methionine in Brevibacterium linens CNRZ 918, Appl Environ Microbiol, vol.53, pp.2159-64, 1987.

, Références 273

O. Cholet, A. Hénaut, and P. Bonnarme, Transcriptional analysis of L-methionine catabolism in Brevibacterium linens ATCC 9175, Appl Microbiol Biotechnol, vol.74, pp.1320-1352, 2007.

F. Amarita, M. Yvon, M. Nardi, E. Chambellon, J. Delettre et al., Identification and Functional Analysis of the Gene Encoding Methionine-?-Lyase in Brevibacterium linens, Appl Environ Microbiol, vol.70, pp.7348-54, 2004.

A. Cuer, G. Dauphin, A. Kergomard, J. P. Dumont, and J. Adda, Production of SMethylthioacetate by Brevibacterium linens, Appl Environ Microbiol, vol.38, pp.332-336, 1979.

K. Arfi, S. Landaud, and P. Bonnarme, Evidence for Distinct l-Methionine Catabolic Pathways in the Yeast Geotrichum candidum and the Bacterium Brevibacterium linens, Appl Environ Microbiol, vol.72, pp.2155-62, 2006.

F. Tokita and A. Hosono, Production of volatile sulfur compounds by Brevibacterium linens, Jpn J Zootech Sci, vol.39, pp.127-159, 1968.

G. Lamberet, B. Auberger, and J. L. Bergère, Aptitude of cheese bacteria for volatile S-methyl thioester synthesis I. Effect of substrates and pH on their formation by Brevibacterium linens GC171, Appl Microbiol Biotechnol, vol.47, pp.279-83, 1997.

A. M. Sourabié, H. Spinnler, M. Bourdat-deschamps, R. Tallon, S. Landaud et al.,

, S-methyl thioesters are produced from fatty acids and branched-chain amino acids by brevibacteria: focus on l-leucine catabolic pathway and identification of acyl-CoA intermediates, Appl Microbiol Biotechnol, vol.93, pp.1673-83, 2012.

B. Weimer, K. Seefeldt, and B. Dias, Sulfur metabolism in bacteria associated with cheese, Lactic Acid Bacteria: Genetics, Metabolism and Applications, pp.247-61, 1999.

C. Milo and G. A. Reineccius, Identification and Quantification of Potent Odorants in RegularFat and Low-Fat Mild Cheddar Cheese, J Agric Food Chem, vol.45, pp.3590-3594, 1997.

D. Hemme, C. Bouillanne, F. Metro, and M. J. Desmazeaud, Microbial catabolism of amino acids during cheese ripening, Sci Aliments, vol.2, pp.113-136, 1982.

M. Ferchichi, D. Hemme, M. Nardi, and N. Pamboukdjian, Production of Methanethiol from Methionine by Brevibacterium linens CNRZ 918, Microbiology, vol.131, pp.715-738, 1985.

B. Dias and B. Weimer, Conversion of Methionine to Thiols by Lactococci, Lactobacilli, and Brevibacteria, Appl Environ Microbiol, vol.64, pp.3320-3326, 1998.

P. Bonnarme, L. Psoni, and H. Spinnler, Diversity of l-Methionine Catabolism Pathways in Cheese-Ripening Bacteria, Appl Environ Microbiol, vol.66, pp.5514-5521, 2000.

H. Tanaka, N. Esaki, and K. Soda, A versatile bacterial enzyme: l-methionine ?-lyase, Enzyme Microb Technol, vol.7, pp.530-537, 1985.

J. C. Collin and B. A. Law, Isolation and characterization of the l-methionine-?-demethiolase from Brevibacterium linens NCDO 739, Sci Aliments, vol.9, pp.805-817, 1989.

B. Dias and B. Weimer, Purification and Characterization ofl-Methionine ?-Lyase from Brevibacterium linens BL2, Appl Environ Microbiol, vol.64, pp.3327-3358, 1998.

C. Lee and M. J. Desmazeaud, Partial Purification and Some Properties of an Aromaticamino-acid and an Aspartate Aminotransferase in Brevibacterium linens 47, Microbiology, vol.131, pp.459-67, 1985.

H. Chin and R. C. Lindsay, Ascorbate and transition-metal mediation of methanethiol oxidation to dimethyl disulfide and dimethyl trisulfide, Food Chem, vol.49, pp.387-92, 1994.

Y. Demarigny, C. Berger, N. Desmasures, M. Gueguen, and H. Spinnler, Flavour sulphides are produced from methionine by two different pathways by Geotrichum candidum, J Dairy Res, vol.67, pp.371-80, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02087619

F. Tokita, A. Hosono, T. Gojo, and M. Nakamura, Primary observation on the production of volatile substances by Brevibacterium linens, J Fac Agric Shinshu Univ, vol.4, pp.105-125, 1966.

A. Hosono and F. Tokita, Studies on the production of volatile carbonyl compounds by Brevibacterium linens, Jpn J Zootech Sci, 1969.

N. Jollivet, M. Bézenger, Y. Vayssier, and J. Belin, Production of volatile compounds in liquid cultures by six strains of coryneform bacteria, Appl Microbiol Biotechnol, vol.36, pp.790-794, 1992.

C. Feurer, T. Vallaeys, G. Corrieu, and F. Irlinger, Does smearing inoculum reflect the bacterial composition of the smear at the end of the ripening of a french soft, red-smear cheese?, J Dairy Sci, vol.87, pp.3189-97, 2004.

M. C. Rea, S. Gorges, R. Gelsomino, N. M. Brennan, J. Mounier et al., Stability of the biodiversity of the surface consortia of Gubbeen, a red-smear cheese, J Dairy Sci, vol.90, pp.2200-2210, 2007.

S. Goerges, J. Mounier, M. C. Rea, R. Gelsomino, V. Heise et al., Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a south German red smear cheese, Appl Environ Microbiol, vol.74, pp.2210-2217, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00557107

W. Bockelmann, T. Hoppe-seyler, U. Krusch, W. Hoffmann, and K. J. Heller, The microflora of Tilsit cheese. Part 2. Development of a surface smear starter culture, Nahr-Food, vol.41, pp.213-221, 1997.

H. Spinnler, Surface Mold-Ripened Cheeses, Chemistry, Physics and Microbiology, pp.911-939, 2017.

C. Monnet, S. Landaud, P. Bonnarme, and D. Swennen, Growth and adaptation of microorganisms on the cheese surface, FEMS Microbiol Lett, vol.362, pp.1-9, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01535275

H. K. Hall, K. L. Karem, and J. W. Foster, Molecular Responses of Microbes to Environmental pH stress, Advances in Microbial Physiology

R. Serrano, Structure and function of proton translocating ATPase in plasma membranes of plants and fungi, Biochim Biophys Acta -Rev Biomembr, vol.947, pp.1-28, 1988.

K. Sigler and M. Höfer, Mechanisms of acid extrusion in yeast, Biochim Biophys Acta -Rev Biomembr, vol.1071, pp.375-91, 1991.

T. A. Krulwich, G. Sachs, and E. Padan, Molecular aspects of bacterial pH sensing and homeostasis, Nat Rev Microbiol, vol.9, pp.330-373, 2011.

J. L. Slonczewski, M. Fujisawa, M. Dopson, and T. A. Krulwich, Cytoplasmic pH Measurement and Homeostasis in Bacteria and Archaea, Advances in Microbial Physiology, pp.1-79, 2009.

N. Beales, Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preservatives, Low pH, and Osmotic Stress: A Review, Compr Rev Food Sci Food Saf, vol.3, pp.1-20, 2004.

D. A. Cowan, A. Casanueva, and W. Stafford, Ecology and Biodiversity of Cold-Adapted Microorganisms, Physiology and Biochemistry of Extremophiles, pp.119-151, 2007.

A. Casanueva, M. Tuffin, C. Cary, and D. A. Cowan, Molecular adaptations to psychrophily: the impact of 'omic' technologies, Trends Microbiol, vol.18, pp.374-81, 2010.

M. R. Corbo, R. Lanciotti, M. Albenzio, and M. Sinigaglia, Occurrence and characterization of yeasts isolated from milks and dairy products of Apulia region, Int J Food Microbiol, vol.69, pp.147-52, 2001.

W. Masoud and M. Jakobsen, The combined effects of pH, NaCl and temperature on growth of cheese ripening cultures of Debaryomyces hansenii and coryneform bacteria, Int Dairy J, vol.15, pp.69-77, 2005.

P. Plaza, J. Usall, N. Teixidó, and I. Viñas, Effect of water activity and temperature on germination and growth of Penicillium digitatum, P. italicum and Geotrichum candidum, J Appl Microbiol, vol.94, pp.549-54, 2003.

M. Nuñez, A. M. Guillen, M. A. Rodriguez-marin, A. M. Marcilla, P. Gaya et al., Accelerated Ripening of Ewes' Milk Manchego Cheese: The Effect of Neutral Proteinases, J Dairy Sci, vol.74, pp.4108-4126, 1991.

A. Reps, Bacterial Surface-Ripened Cheeses, Chemistry, Physics and Microbiology, pp.137-72, 1993.

J. P. Ramet, V. Mandron, and M. Guiard, Comparing ripening technology of the various types of cheese, pp.418-464, 2000.

M. Hébraud and P. Potier, Cold shock response and low temperature adaptation in psychrotrophic bacteria, J Mol Microbiol Biotechnol, vol.1, pp.211-220, 1999.

T. P. Guinee and P. F. Fox, Salt in Cheese: Physical, Chemical and Biological Aspects, Chemistry, Physics and Microbiology, pp.317-75, 2017.

P. Mirade, T. Rougier, A. Kondjoyan, J. Daudin, D. Picque et al., Caractérisation expérimentale de l'aéraulique d'un hâloir de fromagerie et des échanges air-produit, Lait, vol.84, pp.483-500, 2004.

, Références 276

C. Choisy, M. Desmazeaud, J. C. Gripon, G. Lamberet, and J. Lenoir, The biochemistry of ripening, Cheesemaking: From Science to Quality Assurance, pp.82-151, 2000.

C. Bonaiti, M. Leclercq-perlat, E. Latrille, and G. Corrieu, Deacidification by Debaryomyces hansenii of smear soft cheeses ripened under controlled conditions: Relative humidity and temperature influences, J Dairy Sci, vol.87, pp.3976-88, 2004.

M. Leclercq-perlat, M. Sicard, I. C. Trelea, D. Picque, and G. Corrieu, Temperature and relative humidity influence the microbial and physicochemical characteristics of Camemberttype cheese ripening, J Dairy Sci, vol.95, pp.4666-82
URL : https://hal.archives-ouvertes.fr/hal-01004144

C. Callon, D. Picque, G. Corrieu, and M. Montel, Ripening conditions: A tool for the control of Listeria monocytogenes in uncooked pressed type cheese, Food Control, vol.22, pp.1911-1920, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000627

I. Haasum and P. V. Nielsen, Physiological Characterization of Common Fungi Associated with Cheese, J Food Sci, vol.63, pp.157-61, 1998.

T. Van-den-tempel and M. S. Nielsen, Effects of atmospheric conditions, NaCl and pH on growth and interactions between moulds and yeasts related to blue cheese production, Int J Food Microbiol, vol.57, pp.193-202, 2000.

D. Picque, M. Leclercq-perlat, and G. Corrieu, Effects of Atmospheric Composition on Respiratory Behavior, Weight Loss, and Appearance of Camembert-Type Cheeses During Chamber Ripening, J Dairy Sci, vol.89, pp.3250-3259

E. Dugat-bony, C. Straub, A. Teissandier, D. Onesime, V. Loux et al., Overview of a surface-ripened cheese community functioning by meta-omics analyses, PLOS ONE, vol.10, p.124360, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01195505

A. Zourari, J. P. Accolas, and M. J. Desmazeaud, Metabolism and biochemical characteristics of yogurt bacteria. A review, Lait, vol.72, pp.1-34, 1992.
URL : https://hal.archives-ouvertes.fr/hal-00929275

C. S. Kim, E. Ji, and D. Oh, Expression and characterization of Kluyveromyces lactis ?-galactosidase in Escherichia coli, Biotechnol Lett, vol.25, pp.1769-74, 2003.

G. G. Fonseca, E. Heinzle, C. Wittmann, and A. K. Gombert, The technological characteristics of Debaryomyces hansenii and Yarrowia lipolytica and their potential as starter cultures for production of Danablu, 238. van den Tempel T, Jakobsen M, vol.79, pp.263-70, 2000.

O. Cholet, A. Hénaut, S. Casaregola, and P. Bonnarme, Gene Expression and Biochemical Analysis of Cheese-Ripening Yeasts: Focus on Catabolism of l-Methionine, Lactate, and Lactose, Appl Environ Microbiol, vol.73, pp.2561-70, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00164069

R. Boutrou and M. Guéguen, Interests in Geotrichum candidum for cheese technology, Int J Food Microbiol, vol.102, pp.1-20, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01453979

M. Leclercq-perlat, D. Picque, C. Del, S. Barba, and C. Monnet, Dynamics of Penicillium camemberti growth quantified by real-time PCR on Camembert-type cheeses at different conditions of temperature and relative humidity, J Dairy Sci, vol.96, pp.4031-4071, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01564484

J. Mounier, M. C. Rea, O. Connor, P. M. Fitzgerald, G. F. Cogan et al., Growth characteristics of Brevibacterium, Corynebacterium, Microbacterium, and Staphylococcus spp. isolated from surface-ripened cheese, Appl Environ Microbiol, vol.73, pp.7732-7741, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00557184

M. W. Hickey, A. J. Hillier, and G. R. Jago, Transport and Metabolism of Lactose, Glucose, and Galactose in Homofermentative Lactobacilli, Appl Environ Microbiol, vol.51, pp.825-856, 1986.

J. Yang, C. Guo, W. Ge, Q. Wang, Y. Zhang et al., Isolation and identification of yeast in yak milk dreg of Tibet in China, Dairy Sci Technol, vol.94, pp.455-67, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01234873

A. G. Williams, S. E. Withers, and J. M. Banks, Energy sources of non-starter lactic acid bacteria isolated from Cheddar cheese, Int Dairy J, vol.10, pp.17-23, 2000.

F. Eliskases-lechner and W. Ginzinger, The bacterial flora of surface-ripened cheeses with special regard to coryneforms, Lait, vol.75, pp.571-84, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00929460

K. Gori, H. D. Mortensen, N. Arneborg, and L. Jespersen, Ammonia Production and Its Possible Role as a Mediator of Communication for Debaryomyces hansenii and Other CheeseRelevant Yeast Species, J Dairy Sci, vol.90, pp.5032-5073

T. Jiang, C. Gao, C. Ma, and P. Xu, Microbial lactate utilization: enzymes, pathogenesis, and regulation, Trends Microbiol, vol.22, pp.589-99, 2014.

M. Lessard, C. Viel, B. Boyle, D. St-gelais, and S. Labrie, Metatranscriptome analysis of fungal strains Penicillium camemberti and Geotrichum candidum reveal cheese matrix breakdown and potential development of sensory properties of ripened Camembert-type cheese, BMC Genomics, vol.15, p.235, 2014.

P. Mcsweeney, Biochemistry of cheese ripening, Int J Dairy Technol, vol.57, pp.2-3, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00930648

P. Mcsweeney and M. J. Sousa, Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review, Lait, vol.80, pp.293-324, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00895408

M. R. Ginger and M. R. Grigor, Comparative aspects of milk caseins, Comp Biochem Physiol B-Biochem Mol Biol, vol.124, pp.133-178, 1999.

T. Bintsis, A. Vafopoulou-mastrojiannaki, E. Litopoulou-tzanetaki, and R. Rk,

, Protease, peptidase and esterase activities by lactobacilli and yeast isolates from Feta cheese brine, J Appl Microbiol, vol.95, pp.68-77, 2003.

A. C. Freitas, A. E. Pintado, M. E. Pintado, and F. X. Malcata, Role of dominant microflora of Picante cheese on proteolysis and lipolysis, Int Dairy J, vol.9, pp.593-603, 1999.

M. Wyder, H. Bachmann, and Z. Puhan, Role of Selected Yeasts in Cheese Ripening: An Evaluation in Foil Wrapped Raclette Cheese, LWT -Food Sci Technol, vol.32, pp.333-376, 1999.

F. Gardini, R. Tofalo, N. Belletti, L. Iucci, G. Suzzi et al., Characterization of yeasts involved in the ripening of Pecorino Crotonese cheese, Food Microbiol, vol.23, p.641, 2006.

, Références 278

M. Wojtatowicz, J. Chrzanowska, P. Juszczyk, A. Skiba, and A. Gdula, Identification and biochemical characteristics of yeast microflora of Rokpol cheese, Int J Food Microbiol, vol.69, pp.135-175, 2001.

M. Wyder and Z. Puhan, Role of selected yeasts in cheese ripening:: an evaluation in aseptic cheese curd slurries, Int Dairy J, vol.9, pp.117-141, 1999.

M. De-wit, G. Osthoff, B. C. Viljoen, and A. Hugo, A comparative study of lipolysis and proteolysis in Cheddar cheese and yeast-inoculated Cheddar cheeses during ripening, Enzyme Microb Technol, vol.37, pp.606-622, 2005.

M. R. Atanassova, C. Fernández-otero, P. Rodríguez-alonso, F. Ic, J. I. Garabal et al., Characterization of yeasts isolated from artisanal short-ripened cows' cheeses produced in Galicia, Food Microbiol, vol.53, pp.172-81, 2016.

V. Gagnaire, D. Mollé, T. Sorhaug, and J. Léonil, Peptidases of dairy propionic acid bacteria, Lait, vol.79, pp.43-57, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00929636

M. J. Sousa, Y. Ardö, and P. Mcsweeney, Advances in the study of proteolysis during cheese ripening, Int Dairy J, vol.11, pp.327-372, 2001.

B. K. Ghosh, W. Bockelmann, and K. J. Heller, Casein degradation by enzymes of microorganisms isolated from surface-ripened smear cheese, Milchwissenschaft, vol.64, p.55, 2009.

E. Smacchi, P. F. Fox, and M. Gobbetti, Purification and characterization of two extracellular proteinases from Arthrobacter nicotianae 9458, FEMS Microbiol Lett, vol.170, pp.327-360, 1999.

E. Smacchi, M. Gobbetti, R. Lanciotti, and P. F. Fox, Purification and characterization of an extracellular proline iminopeptidase from Arthrobacter nicotianae 9458, FEMS Microbiol Lett, vol.178, pp.191-198, 1999.

M. Gobbetti, E. Smacchi, M. Semeraro, P. F. Fox, R. Lanciotti et al., Purification and characterization of an extracellular proline iminopeptidase from Corynebacterium variabilis NCDO 2101, J Appl Microbiol, vol.90, pp.449-56, 2002.

S. Mansour, J. Beckerich, and P. Bonnarme, Lactate and Amino Acid Catabolism in the Cheese-Ripening Yeast Yarrowia lipolytica, Appl Environ Microbiol, vol.74, pp.6505-6517, 2008.

J. Jauniaux and M. Grenson, GAP1, the general amino acid permease gene of Saccharomyces cerevisiae, Eur J Biochem, vol.190, pp.39-44, 2005.

H. Trip, N. L. Mulder, and J. S. Lolkema, Cloning, Expression, and Functional Characterization of Secondary Amino Acid Transporters of Lactococcus lactis, J Bacteriol, vol.195, pp.340-50, 2013.

M. Yvon and L. Rijnen, Cheese flavour formation by amino acid catabolism, Int Dairy J, vol.11, pp.185-201, 2001.

M. Yvon, S. Thirouin, L. Rijnen, D. Fromentier, and J. C. Gripon, An aminotransferase from Lactococcus lactis initiates conversion of amino acids to cheese flavor compounds, Appl Environ Microbiol, vol.63, pp.414-423, 1997.

S. Gao and J. L. Steele, Purification and characterization of oligomeric species of an aromatic amino acid aminotransferase from Lactococcus lactis subsp. lactis S3, J Food Biochem, vol.22, pp.197-211, 2007.

, Références 279

M. Yvon, E. Chambellon, and A. Bolotin, Roudot-Algaron F. Characterization and Role of the Branched-Chain Aminotransferase (BcaT) Isolated from Lactococcus lactis subsp. cremoris NCDO 763, Appl Environ Microbiol, vol.66, pp.571-578, 2000.

M. Yvon, S. Berthelot, and J. C. Gripon, Adding ?-Ketoglutarate to Semi-hard Cheese Curd Highly Enhances the Conversion of Amino acids to Aroma Compounds, Int Dairy J, vol.8, pp.889-98, 1998.

L. Rijnen, P. Courtin, J. Gripon, and M. Yvon, Expression of a Heterologous Glutamate Dehydrogenase Gene in Lactococcus lactis Highly Improves the Conversion of Amino Acids to Aroma Compounds, Appl Environ Microbiol, vol.66, pp.1354-1363, 2000.

Á. C. Curtin and P. Mcsweeney, Catabolism of amino acids in cheese during ripening, Chemistry, Physics and Microbiology, pp.435-54, 2004.

A. C. Alting, W. Engels, S. Van-schalkwijk, and F. A. Exterkate, Purification and Characterization of Cystathionine (beta)-Lyase from Lactococcus lactis subsp. cremoris B78 and Its Possible Role in Flavor Development in Cheese, Appl Environ Microbiol, vol.61, pp.4037-4079, 1995.

E. Smacchi and M. Gobbetti, Purification and characterization of cystathionine ?-lyase from Lactobacillus fermentum DT41, FEMS Microbiol Lett, vol.166, pp.197-202, 2006.
DOI : 10.1016/s0378-1097(98)00332-2

L. Boucher, C. Gagnaire, V. Briard-bion, V. Jardin, J. Maillard et al., Spatial Distribution of Lactococcus lactis Colonies Modulates the Production of Major Metabolites during the Ripening of a Model Cheese, Appl Environ Microbiol, vol.82, pp.202-212, 2016.

C. Monnet, V. Loux, J. Gibrat, E. Spinnler, V. Barbe et al., The Arthrobacter arilaitensis Re117 genome sequence reveals its genetic adaptation to the surface of cheese, PLOS ONE, vol.5, p.15489, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01195440

J. Schröder, I. Maus, E. Trost, and A. Tauch, Complete genome sequence of Corynebacterium variabile DSM 44702 isolated from the surface of smear-ripened cheeses and insights into cheese ripening and flavor generation, BMC Genomics, vol.12, p.545, 2011.

A. X. Roig-sagués, A. P. Molina, and M. Hernández-herrero, Histamine and tyramine-forming microorganisms in Spanish traditional cheeses, Eur Food Res Technol, vol.215, pp.96-100, 2002.

F. Gardini, M. Martuscelli, M. C. Caruso, F. Galgano, M. A. Crudele et al., Effects of pH, temperature and NaCl concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis, Int J Food Microbiol, vol.64, pp.105-122, 2001.

R. Leuschner and W. P. Hammes, Degradation of Histamine and Tyramine by Brevibacterium linens during Surface Ripening of Munster Cheese, J Food Prot, vol.61, pp.874-882, 1998.

R. G. Jensen, A. M. Ferris, and C. J. Lammi-keefe, The Composition of Milk Fat, J Dairy Sci, vol.74, pp.3228-3271, 1991.

D. D. Bills and E. A. Day, Determination of the Major Free Fatty Acids of Cheddar Cheese, J Dairy Sci, vol.47, pp.733-741

, Références 280

Y. F. Collins, P. Mcsweeney, and M. G. Wilkinson, Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge, Int Dairy J, vol.13, pp.841-66, 2003.

J. H. Nelson, R. G. Jensen, and R. E. Pitas, Pregastric Esterase and other Oral Lipases-A Review, J Dairy Sci, vol.60, pp.327-62, 1977.
DOI : 10.3168/jds.s0022-0302(77)83873-3

C. Dupuis, C. Corre, and P. Boyaval, Lipase and Esterase Activities of Propionibacterium freudenreichii subsp. freudenreichii, Appl Environ Microbiol, vol.59, pp.4004-4013, 1993.

A. Oterholm, Z. J. Ordal, and L. D. Witter, Purification and Properties of a Glycerol Ester Hydrolase (Lipase) from Propionibacterium shermanii, Appl Microbiol, vol.20, pp.16-22, 1970.

E. Kakariari, M. D. Georgalaki, G. Kalantzopoulos, and E. Tsakalidou, Purification and characterization of an intracellular esterase from Propionibacterium freudenreichii ssp. freudenreichii ITG 14, Lait, vol.80, pp.491-501, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00895441

A. Mukdsi, M. C. Falentin, H. Maillard, M. Chuat, V. Medina et al., The Secreted Esterase of Propionibacterium freudenreichii Has a Major Role in Cheese Lipolysis, Appl Environ Microbiol, vol.80, p.751, 2014.

G. Pignède, H. Wang, F. Fudalej, C. Gaillardin, M. Seman et al., Characterization of an Extracellular Lipase Encoded by LIP2 in Yarrowia lipolytica, J Bacteriol, vol.182, pp.2802-2812, 2000.

P. Fickers, F. Fudalej, L. Dall, M. T. Casaregola, S. Gaillardin et al., Identification and characterisation of LIP7 and LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica, Fungal Genet Biol, vol.42, pp.264-74, 2005.

M. Yu, S. Qin, and T. Tan, Purification and characterization of the extracellular lipase Lip2 from Yarrowia lipolytica, Process Biochem, vol.42, pp.384-91, 2007.

A. Menassa and G. Lamberet, Contribution à l'étude du système lipolytique de Penicillium roqueforti. Caractères comparés de deux activités exocellulaires, Lait, vol.62, pp.32-43, 1982.

G. Lamberet and J. Lenoir, Les caractères du système lipolytique de l'espèce Penicillium caseicolum. Purification et propriétes de la lipase majeure, Lait, vol.56, pp.622-666, 1976.

T. Hajri and N. A. Abumrad, Fatty Acid Transport Across Membranes: Relevance to Nutrition and Metabolic Pathology, Annu Rev Nutr, vol.22, pp.383-415, 2002.
DOI : 10.1146/annurev.nutr.22.020402.130846

T. Y. Fan, D. H. Hwang, and J. E. Kinsella, Methyl ketone formation during germination of Penicillium roqueforti, J Agric Food Chem, vol.24, pp.443-451, 1976.
DOI : 10.1021/jf60205a039

K. Richard, D. Clegg-geoffrey, and H. , The metabolism of fatty acids, methyl ketones and secondary alcohols by penicillium roqueforti in blue cheese slurries, J Sci Food Agric, vol.30, pp.197-202, 2006.

D. M. Irvine and W. V. Price, Influence of Salt on the Development of Acid by Lactic Starters in Skimmilk and in Curd Submerged in Brine, J Dairy Sci, vol.44, pp.243-251, 1961.

N. Empadinhas and M. S. Da-costa, Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes, Int Microbiol, vol.11, pp.151-61, 2008.

J. K. Lanyi, Salt-dependent properties of proteins from extremely halophilic bacteria, Bacteriol Rev, vol.38, pp.272-90, 1974.

H. Eisenberg and E. J. Wachtel, Structural Studies of Halophilic Proteins, Ribosomes, and Organelles of Bacteria Adapted to Extreme Salt Concentrations, Annu Rev Biophys Biophys Chem, vol.16, pp.69-92, 1987.

A. Oren, Microbial life at high salt concentrations: phylogenetic and metabolic diversity, Saline Syst, vol.4, issue.2, 2008.
DOI : 10.1186/1746-1448-4-2

URL : https://aquaticbiosystems.biomedcentral.com/track/pdf/10.1186/1746-1448-4-2

E. A. Galinski and H. G. Trüper, Microbial behaviour in salt-stressed ecosystems, FEMS Microbiol Rev, vol.15, pp.95-108, 2006.
DOI : 10.1016/0168-6445(94)90106-6

URL : https://academic.oup.com/femsre/article-pdf/15/2-3/95/18119724/15-2-3-95.pdf

L. N. Csonka and A. D. Hanson, Prokaryotic Osmoregulation: Genetics and Physiology, Annu Rev Microbiol, vol.45, pp.569-606, 1991.
DOI : 10.1146/annurev.micro.45.1.569

K. Lippert and E. A. Galinski, Enzyme stabilization be ectoine-type compatible solutes: protection against heating, freezing and drying, Appl Microbiol Biotechnol, vol.37, pp.61-66, 1992.
DOI : 10.1007/bf00174204

J. T. Mcgarrity and J. B. Armstrong, The effect of salt on phospholipid fatty acid composition in Escherichia coli K-12, Biochim Biophys Acta -Lipids Lipid Metab, vol.398, pp.258-64, 1975.

Y. Ohno, I. Yano, T. Hiramatsu, and M. Masui, Lipids and fatty acids of a moderately halophilic bacterium, Biochim Biophys Acta -Lipids Lipid Metab, vol.424, issue.101, pp.337-50, 1976.
DOI : 10.1016/0005-2760(76)90024-2

N. J. Russell, M. Kogut, and M. Kates, Phospholipid Biosynthesis in the Moderately Halophilic Bacterium Vibvio costicola During Adaptation to Changing Salt Concentrations, Microbiology, vol.131, pp.781-790, 1985.

T. Guinee, Salting and the role of salt in cheese, Int J Dairy Technol, vol.57, pp.99-109, 2004.

C. Prista, M. C. Loureiro-dias, V. Montiel, R. García, and J. Ramos, Mechanisms underlying the halotolerant way of Debaryomyces hansenii, FEMS Yeast Res, vol.5, pp.693-701, 2005.

C. Feurer, F. Irlinger, H. Spinnler, P. Glaser, and T. Vallaeys, Assessment of the rind microbial diversity in a farmhouse-produced vs a pasteurized industrially produced soft redsmear cheese using both cultivation and rDNA-based methods, J Appl Microbiol, vol.97, pp.546-56, 2004.

M. Ishikawa, K. Kodama, H. Yasuda, A. Okamoto-kainuma, K. Koizumi et al., Presence of halophilic and alkaliphilic lactic acid bacteria in various cheeses, Lett Appl Microbiol, vol.44, pp.308-321, 2006.

E. Roth, S. M. Schwenninger, E. Eugster-meier, and C. Lacroix, Facultative anaerobic halophilic and alkaliphilic bacteria isolated from a natural smear ecosystem inhibit Listeria growth in early ripening stages, Int J Food Microbiol, vol.147, pp.26-32, 2011.
DOI : 10.1016/j.ijfoodmicro.2011.02.032

S. C. Andrews and A. K. Robinson, Rodríguez-Quiñones F. Bacterial iron homeostasis, FEMS Microbiol Rev, vol.27, pp.215-252, 2003.

A. Flynn, Minerals and Trace Elements in Milk, Advances in Food and Nutrition Research, pp.209-52, 1992.
DOI : 10.1016/s1043-4526(08)60106-0

P. F. Levay and M. Viljoen, Lactoferrin: a general review, Haematologica, vol.80, p.252, 1995.

C. Monnet, A. Back, and F. Irlinger, Growth of aerobic ripening bacteria at the cheese surface is limited by the availability of iron, Appl Environ Microbiol, vol.78, pp.3185-92, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004196

R. C. Hider and X. Kong, Chemistry and biology of siderophores, Nat Prod Rep, vol.27, pp.637-57, 2010.

R. Saha, N. Saha, R. S. Donofrio, and L. L. Bestervelt, Microbial siderophores: a mini review, J Basic Microbiol, vol.53, pp.303-320, 2012.
DOI : 10.1002/jobm.201100552

M. Miethke and M. A. Marahiel, Siderophore-Based Iron Acquisition and Pathogen Control, Microbiol Mol Biol Rev, vol.71, pp.413-51, 2007.
DOI : 10.1128/mmbr.00012-07

URL : https://mmbr.asm.org/content/71/3/413.full.pdf

G. L. Challis, A Widely Distributed Bacterial Pathway for Siderophore Biosynthesis Independent of Nonribosomal Peptide Synthetases, ChemBioChem, vol.6, pp.601-612, 2005.

I. Schröder, J. E. De-vries, and S. , Microbial ferric iron reductases, FEMS Microbiol Rev, vol.27, pp.427-474, 2003.

L. J. Martins, L. T. Jensen, J. R. Simon, G. L. Keller, and D. R. Winge, Metalloregulation of FRE1 and FRE2 Homologs in Saccharomyces cerevisiae, J Biol Chem, vol.273, pp.23716-23737, 1998.

R. E. Cowart, Reduction of iron by extracellular iron reductases: implications for microbial iron acquisition, Arch Biochem Biophys, vol.400, pp.273-81, 2002.

M. Homuth, P. Valentin-weigand, M. Rohde, and G. Gerlach, Identification and Characterization of a Novel Extracellular Ferric Reductase from Mycobacterium paratuberculosis, Infect Immun, vol.66, pp.710-716, 1998.

H. Haas, Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage, Appl Microbiol Biotechnol, vol.62, pp.316-346, 2003.

W. Köster, ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12, Res Microbiol, vol.152, pp.291-301, 2001.

I. D. Kerr, Structure and association of ATP-binding cassette transporter nucleotidebinding domains, Biochim Biophys Acta -Biomembr, vol.1561, pp.47-64, 2002.

H. Ton-that, L. A. Marraffini, and O. Schneewind, Protein sorting to the cell wall envelope of Gram-positive bacteria, Biochim Biophys Acta -Mol Cell Res, vol.1694, pp.269-78, 2004.

M. L. Cartron, S. Maddocks, P. Gillingham, C. J. Craven, and S. C. Andrews, Feo -Transport of Ferrous Iron into Bacteria, Biometals, vol.19, pp.143-57, 2006.
DOI : 10.1007/s10534-006-0003-2

T. C. Marlovits, W. Haase, C. Herrmann, S. G. Aller, and V. M. Unger, The membrane protein FeoB contains an intramolecular G protein essential for Fe(II) uptake in bacteria, Proc Natl Acad Sci, vol.99, p.16243, 2002.

H. Kim, H. Lee, and D. Shin, The FeoA protein is necessary for the FeoB transporter to import ferrous iron, Biochem Biophys Res Commun, vol.423, pp.733-741, 2012.

K. Hung, J. Tsai, J. Hsu, Y. Hsiao, C. Huang et al., Crystal Structure of the Klebsiella pneumoniae NFeoB/FeoC Complex and Roles of FeoC in Regulation of Fe2+ Transport by the Bacterial Feo System, J Bacteriol, vol.194, pp.6518-6544, 2012.

M. B. Rajasekaran, S. Nilapwar, S. C. Andrews, and K. A. Watson, EfeO-cupredoxins: major new members of the cupredoxin superfamily with roles in bacterial iron transport, BioMetals, vol.23, p.1, 2009.

M. Miethke, C. G. Monteferrante, M. A. Marahiel, and J. M. Van-dijl, The Bacillus subtilis EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric iron, Biochim Biophys Acta -Mol Cell Res, vol.1833, pp.2267-78, 2013.

S. A. Ong and J. B. Neilands, Siderophores in microbially processed cheese, J Agric Food Chem, vol.27, pp.990-995, 1979.
DOI : 10.1021/jf60225a033

G. Winkelmann, Ecology of siderophores with special reference to the fungi, BioMetals, vol.20, p.379, 2007.

E. K. Kastman, N. Kamelamela, J. W. Norville, C. M. Cosetta, R. J. Dutton et al., Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species, mBio, vol.7, pp.1157-1173, 2016.

P. L. Blaiseau, A. Seguin, J. M. Camadro, and E. Lesuisse, Iron uptake in yeasts, Iron Uptake and Homeostasis in Microorganisms, pp.265-84, 2010.

W. H. Noordman, R. Reissbrodt, R. S. Bongers, J. Rademaker, W. Bockelmann et al., Growth stimulation of Brevibacterium sp. by siderophores, J Appl Microbiol, vol.101, pp.637-683, 2006.

R. Reissbrodt, W. Rabsch, A. Chapeaurouge, G. Jung, and G. Winkelmann, Isolation and identification of ferrioxamine G and E in Hafnia alvei, Biol Met, vol.3, pp.54-60, 1990.

F. Irlinger, V. Loux, P. Bento, J. Gibrat, C. Straub et al., Genome Sequence of Staphylococcus equorum subsp. equorum Mu2, Isolated from a French Smear-Ripened Cheese, J Bacteriol, vol.194, pp.5141-5143, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01019837

F. C. Beasley and D. E. Heinrichs, Siderophore-mediated iron acquisition in the staphylococci, J Inorg Biochem, vol.104, pp.282-290, 2010.
DOI : 10.1016/j.jinorgbio.2009.09.011

K. Faust and J. Raes, Microbial interactions: from networks to models, Nat Rev Microbiol, vol.10, p.538, 2012.
DOI : 10.1038/nrmicro2832

S. Sieuwerts, F. De-bok, J. Hugenholtz, and J. Van-hylckama-vlieg, Unraveling Microbial Interactions in Food Fermentations: from Classical to Genomics Approaches, Appl Environ Microbiol, vol.74, pp.4997-5007, 2008.
DOI : 10.1128/aem.00113-08

URL : https://aem.asm.org/content/74/16/4997.full.pdf

L. Herve-jimenez, I. Guillouard, E. Guedon, S. Boudebbouze, P. Hols et al.,

, Postgenomic Analysis of Streptococcus thermophilus Cocultivated in Milk with Lactobacillus delbrueckii subsp. bulgaricus: Involvement of Nitrogen, Purine, and Iron Metabolism, Appl Environ Microbiol, vol.75, pp.2062-73, 2009.

C. Gilbert, D. Atlan, B. Blanc, R. Portailer, J. E. Germond et al., A new cell surface proteinase: sequencing and analysis of the prtB gene from Lactobacillus delbruekii subsp. bulgaricus, J Bacteriol, vol.178, pp.3059-65, 1996.

, Références 284

P. Hols, F. Hancy, L. Fontaine, B. Grossiord, D. Prozzi et al., New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics, FEMS Microbiol Rev, vol.29, pp.435-63, 2005.

P. Courtin and F. Rul, Interactions between microorganisms in a simple ecosystem: yogurt bacteria as a study model, Lait, vol.84, pp.125-159, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00895516

R. G. Crittenden, N. R. Martinez, and M. J. Playne, Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria, Int J Food Microbiol, vol.80, pp.217-239, 2003.

S. Derzelle, A. Bolotin, M. Mistou, and F. Rul, Proteome Analysis of Streptococcus thermophilus Grown in Milk Reveals Pyruvate Formate-Lyase as the Major Upregulated Protein, Appl Environ Microbiol, vol.71, pp.8597-605, 2005.

F. M. Driessen, F. Kingma, and J. Stadhouders, Evidence that Lactobacillus bulgaricus in yogurt is stimulated by carbon dioxide produced by Streptococcus thermophilus. Neth Milk Dairy J, 1982.

L. Partanen, N. Marttinen, and T. Alatossava, Fats and Fatty Acids as Growth Factors for Lactobacillus delbrueckii, Syst Appl Microbiol, vol.24, pp.500-506, 2001.
DOI : 10.1078/0723-2020-00078

M. Van-de-guchte, S. Penaud, C. Grimaldi, V. Barbe, K. Bryson et al., The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution, Proc Natl Acad Sci, vol.103, p.9274, 2006.

A. Y. Tamime and V. Marshall, Microbiology and Biochemistry of Cheese and Fermented Milk, pp.57-152, 1997.

T. H. Gadaga, A. N. Mutukumira, and J. A. Narvhus, The growth and interaction of yeasts and lactic acid bacteria isolated from Zimbabwean naturally fermented milk in UHT milk, Int J Food Microbiol, vol.68, pp.21-32, 2001.

J. A. Narvhus and T. H. Gadaga, The role of interaction between yeasts and lactic acid bacteria in African fermented milks: a review, Int J Food Microbiol, vol.86, pp.51-60, 2003.

S. Condon, T. M. Cogan, P. Piveteau, J. O'callaghan, and B. Lyons, Stimulation of Propionic Acid Bacteria by Lactic Acid Bacteria in Cheese Manufacture. Cork: Teagasc, 2001.

F. Irlinger and J. Mounier, Microbial interactions in cheese: implications for cheese quality and safety, Curr Opin Biotechnol, vol.20, pp.142-150, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00557069

H. Brüssow, Phages of Dairy Bacteria, Annu Rev Microbiol, vol.55, pp.283-303, 2001.

J. M. Sturino and T. R. Klaenhammer, Bacteriophage defense systems and strategies for lactic acid bacteria, Adv Appl Microbiol, vol.56, pp.332-78, 2004.
DOI : 10.1016/s0065-2164(04)56011-2

S. E. Lindgren and W. J. Dobrogosz, Antagonistic activities of lactic acid bacteria in food and feed fermentations, FEMS Microbiol Lett, vol.87, pp.1-2, 1990.

P. D. Cotter, C. Hill, and R. P. Ross, Bacteriocins: developing innate immunity for food, Nat Rev Microbiol, vol.3, p.777, 2005.
DOI : 10.1038/nrmicro1273

G. V. Reddy and K. M. Shahani, Isolation of an antibiotic from Lactobacillus bulgaricus, J Dairy Sci, vol.54, p.748, 1971.

I. Ivanova, V. Miteva, T. S. Stefanova, A. Pantev, I. Budakov et al., Characterization of a bacteriocin produced by Streptococcus thermophilus 81, Int J Food Microbiol, vol.42, pp.147-58, 1998.

M. Loessner, S. Guenther, S. Steffan, and S. Scherer, A Pediocin-Producing Lactobacillus plantarum Strain Inhibits Listeria monocytogenes in a Multispecies Cheese Surface Microbial Ripening Consortium, Appl Environ Microbiol, vol.69, pp.1854-1861, 2003.

M. Begon, C. R. Townsend, and J. L. Harper, Ecology: from individuals to ecosystems, 2006.

D. Harrison, Mixed Cultures in Industrial Fermentation Processes, Advances in Applied Microbiology, pp.129-64, 1978.

P. M. Lewis, A note on the continuous flow culture of mixed populations of lactobacilli and streptococci, J Appl Microbiol, vol.30, pp.406-415, 1967.

J. M. Buchanan and S. C. Hartman, Enzymic reactions in the synthesis of the purines, Advances in Enzymology and Related Subjects of Biochemistry, pp.199-261, 1959.

F. Bringel, J. Hubert, L. Paraplantarum, and L. Casei, Extent of Genetic Lesions of the Arginine and Pyrimidine Biosynthetic Pathways in Lactobacillus plantarum, Appl Environ Microbiol, vol.69, pp.2674-83, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00112308

M. Purko, W. O. Nelson, and W. A. Wood, The associative action between certain yeasts and Bacterium linens, J Dairy Sci, vol.34, pp.699-705, 1951.

R. Roostita and G. H. Fleet, Growth of yeasts in milk and associated changes to milk composition, Int J Food Microbiol, vol.31, pp.205-224, 1996.

D. J. Lubert and W. C. Frazier, Microbiology of the Surface Ripening of Brick Cheese, J Dairy Sci, vol.38, pp.981-90, 1955.

J. Lecocq and M. Gueguen, Effects of pH and Sodium Chloride on the Interactions Between Geotrichum candidum and Brevibacterium linens, J Dairy Sci, vol.77, pp.2890-2899, 1994.

J. M. Sturino and T. R. Klaenhammer, Engineered bacteriophage-defence systems in bioprocessing, Nat Rev Microbiol, vol.4, p.395, 2006.

M. G. Weinbauer and F. Rassoulzadegan, Are viruses driving microbial diversification and diversity?, Environ Microbiol, vol.6, pp.1-11, 2003.

M. G. Weinbauer, Ecology of prokaryotic viruses, FEMS Microbiol Rev, vol.28, pp.127-81, 2004.

E. Caplice and G. F. Fitzgerald, Food fermentations: role of microorganisms in food production and preservation, Int J Food Microbiol, vol.50, pp.131-180, 1999.

W. H. Holzapfel, R. Geisen, and U. Schillinger, Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes, Int J Food Microbiol, vol.24, pp.343-62, 1995.

, Références 286

S. Benthin and J. Villadsen, Different inhibition of Lactobacillus delbrueckii subsp. bulgaricus by D-and L-lactic acid: effects on lag phase, growth rate and cell yield, J Appl Bacteriol, vol.78, pp.647-54, 1995.

M. R. Adams and C. J. Hall, Growth inhibition of food-borne pathogens by lactic and acetic acids and their mixtures, Int J Food Sci Technol, vol.23, pp.287-92, 1988.

P. Lavermicocca, F. Valerio, A. Evidente, S. Lazzaroni, A. Corsetti et al., Purification and Characterization of Novel Antifungal Compounds from the Sourdough Lactobacillus plantarum Strain 21B, Appl Environ Microbiol, vol.66, pp.4084-90, 2000.

D. Touati, Iron and Oxidative Stress in Bacteria, Arch Biochem Biophys, vol.373, pp.1-6, 2000.

E. Seifu, E. M. Buys, and E. F. Donkin, Significance of the lactoperoxidase system in the dairy industry and its potential applications: a review, Trends Food Sci Technol, vol.16, pp.137-54, 2005.

R. S. Dahiya and M. L. Speck, Hydrogen Peroxide Formation by Lactobacilli and Its Effect on Staphylococcus aureus, J Dairy Sci, vol.51, pp.1568-72, 1968.

R. J. Price and J. S. Lee, Inhibition of Pseudomonas species by hydrogen peroxide producing lactobacilli, J Milk Food Technol, vol.33, pp.13-21, 1970.

J. Cleveland, T. J. Montville, I. F. Nes, and M. L. Chikindas, Bacteriocins: safe, natural antimicrobials for food preservation, Int J Food Microbiol, vol.71, pp.1-20, 2001.

T. R. Klaenhammer, Genetics of bacteriocins produced by lactic acid bacteria, FEMS Microbiol Rev, vol.12, pp.1-3, 1993.

D. B. Diep and I. F. Nes, Ribosomally synthesized antibacterial peptides in Gram positive bacteria, Curr Drug Targets, vol.3, pp.107-129, 2002.

N. Heng, P. A. Wescombe, J. P. Burton, R. W. Jack, and J. R. Tagg, The Diversity of Bacteriocins in Gram-Positive Bacteria, Bacteriocins: Ecology and Evolution, pp.45-92, 2007.

P. G. Arnison, M. J. Bibb, G. Bierbaum, A. A. Bowers, T. S. Bugni et al., Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature, Nat Prod Rep, vol.30, pp.108-60, 2013.

P. D. Cotter, R. P. Ross, and C. Hill, Bacteriocins -a viable alternative to antibiotics?, Nat Rev Microbiol, vol.11, p.95, 2012.

L. J. De-arauz, A. F. Jozala, and P. G. Mazzola, Vessoni Penna TC. Nisin biotechnological production and application: a review, Trends Food Sci Technol, vol.20, pp.146-54, 2009.

F. Grattepanche, S. Miescher-schwenninger, L. Meile, and C. Lacroix, Recent developments in cheese cultures with protective and probiotic functionalities, Dairy Sci Technol, vol.88, pp.421-465, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00895785

M. C. Carnio, I. Eppert, and S. Scherer, Analysis of the bacterial surface ripening flora of German and French smeared cheeses with respect to their anti-listerial potential, Int J Food Microbiol, vol.47, pp.89-97, 1999.

, Références 287

R. Iseppi, F. Pilati, M. Marini, M. Toselli, S. De-niederhäusern et al., Antilisterial activity of a polymeric film coated with hybrid coatings doped with Enterocin 416K1 for use as bioactive food packaging, Int J Food Microbiol, vol.123, pp.281-288, 2008.

D. Bizani, J. Morrissy, A. Dominguez, and A. Brandelli, Inhibition of Listeria monocytogenes in dairy products using the bacteriocin-like peptide cerein 8A, Int J Food Microbiol, vol.121, pp.229-262, 2008.

E. Izquierdo, E. Marchioni, D. Aoude-werner, C. Hasselmann, and S. Ennahar, Smearing of soft cheese with Enterococcus faecium WHE 81, a multi-bacteriocin producer, against Listeria monocytogenes, Food Microbiol, vol.26, pp.16-20, 2009.

L. O'sullivan, O. Connor, E. B. Ross, R. P. Hill, and C. , Evaluation of live-culture-producing lacticin 3147 as a treatment for the control of Listeria monocytogenes on the surface of smearripened cheese, J Appl Microbiol, vol.100, pp.135-178, 2005.

C. Reviriego, L. Fernández, and J. M. Rodríguez, A Food-Grade System for Production of Pediocin PA-1 in Nisin-Producing and Non-Nisin-Producing Lactococcus lactis Strains: Application To Inhibit Listeria Growth in a Cheese Model System, J Food Prot, vol.70, pp.2512-2519, 2007.

L. Liu, P. O'conner, P. D. Cotter, C. Hill, and R. P. Ross, Controlling Listeria monocytogenes in Cottage cheese through heterologous production of enterocin A by Lactococcus lactis, J Appl Microbiol, vol.104, pp.1059-66, 2007.

J. E. Jameson, A discussion of the dynamics of salmonella enrichment, J Hyg (Lond), vol.60, pp.193-207, 1962.

L. Guillier, V. Stahl, B. Hezard, E. Notz, and R. Briandet, Modelling the competitive growth between Listeria monocytogenes and biofilm microflora of smear cheese wooden shelves, Int J Food Microbiol, vol.128, pp.51-58, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01606918

V. Juillard, L. Bars, D. Kunji, E. R. Konings, W. N. Gripon et al., Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk, Appl Environ Microbiol, vol.61, pp.3024-3054, 1995.

V. Juillard, C. Foucaud, M. Desmazeaud, and J. Richard, Utilization of nitrogen sources during growth of Lactococcus lactis in milk, Lait, vol.76, pp.13-24, 1996.

S. Mansour, J. Bailly, S. Landaud, C. Monnet, A. Sarthou et al., Investigation of Associations of Yarrowia lipolytica, Staphylococcus xylosus, and Lactococcus lactis in Culture as a First Step in Microbial Interaction Analysis, Appl Environ Microbiol, vol.75, pp.6422-6452, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01566309

M. Almeida, A. Hébert, A. Abraham, S. Rasmussen, C. Monnet et al., Construction of a dairy microbial genome catalog opens new perspectives for the metagenomic analysis of dairy fermented products, BMC Genomics, vol.15, p.1101, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01195502

H. Abriouel, A. Martín-platero, M. Maqueda, E. Valdivia, and M. Martínez-bueno, Biodiversity of the microbial community in a Spanish farmhouse cheese as revealed by culture-dependent and culture-independent methods, Int J Food Microbiol, vol.127, pp.200-208, 2008.

P. Dolci, A. Barmaz, S. Zenato, R. Pramotton, V. Alessandria et al., Maturing dynamics of surface microflora in Fontina PDO cheese studied by culture-dependent andindependent methods, J Appl Microbiol, vol.106, pp.278-87, 2009.

D. Ercolini, P. J. Hill, and C. Dodd, Bacterial Community Structure and Location in Stilton Cheese, Appl Environ Microbiol, vol.69, pp.3540-3548, 2003.
DOI : 10.1128/aem.69.6.3540-3548.2003

URL : https://aem.asm.org/content/69/6/3540.full.pdf

J. Barbier and G. , Culture-independent methods for identifying microbial communities in cheese, Food Microbiol, vol.25, pp.839-887, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00561679

T. Poga?i?, D. Samar?ija, V. Corich, D. 'andrea, M. Kagkli et al., Microbiota of Karaka?anski skakutanac, an artisanal fresh sheep cheese studied by cultureindependent PCR-ARDRA and PCR-DGGE, Dairy Sci Technol, vol.90, pp.461-469, 2010.

W. Masoud, M. Takamiya, F. K. Vogensen, S. Lillevang, A. Wa et al., Characterization of bacterial populations in Danish raw milk cheeses made with different starter cultures by denaturating gradient gel electrophoresis and pyrosequencing, Int Dairy J, vol.21, pp.142-150, 2011.

K. Van-hoorde, M. Heyndrickx, P. Vandamme, and G. Huys, Influence of pasteurization, brining conditions and production environment on the microbiota of artisan Gouda-type cheeses, Food Microbiol, vol.27, pp.425-458, 2010.

C. L. Randazzo, I. Pitino, A. Ribbera, and C. Caggia, Pecorino Crotonese cheese: Study of bacterial population and flavour compounds, Food Microbiol, vol.27, pp.363-74, 2010.

C. Fontana, F. Cappa, A. Rebecchi, and P. S. Cocconcelli, Surface microbiota analysis of Taleggio, Gorgonzola, Casera, Scimudin and Formaggio di Fossa Italian cheeses, Int J Food Microbiol, vol.138, pp.205-216, 2010.

P. Dolci, V. Alessandria, K. Rantsiou, M. Bertolino, and L. Cocolin, Microbial diversity, dynamics and activity throughout manufacturing and ripening of Castelmagno PDO cheese, Int J Food Microbiol, vol.143, pp.71-76, 2010.
DOI : 10.1016/j.ijfoodmicro.2010.07.007

URL : https://iris.unito.it/retrieve/handle/2318/81087/8501/Dolci_IJFM%202010_Castelmagno.pdf

Á. Alegría, R. González, M. Díaz, and B. Mayo, Assessment of Microbial Populations Dynamics in a Blue Cheese by Culturing and Denaturing Gradient Gel Electrophoresis, Curr Microbiol, vol.62, pp.888-93, 2011.

M. M. Fuka, M. Engel, A. Skelin, S. Red?epovi?, and M. Schloter, Bacterial communities associated with the production of artisanal Istrian cheese, Int J Food Microbiol, vol.142, pp.19-24, 2010.

L. Cocolin, D. Nucera, V. Alessandria, K. Rantsiou, P. Dolci et al., Microbial ecology of Gorgonzola rinds and occurrence of different biotypes of Listeria monocytogenes, Int J Food Microbiol, vol.133, pp.200-205, 2009.

E. Casalta, J. Sorba, M. Aigle, and J. Ogier, Diversity and dynamics of the microbial community during the manufacture of Calenzana, an artisanal Corsican cheese, Int J Food Microbiol, vol.133, pp.243-51, 2009.

Á. Alegría, P. Álvarez-martín, N. Sacristán, E. Fernández, S. Delgado et al., Diversity and evolution of the microbial populations during manufacture and ripening of Casín, a traditional Spanish, starter-free cheese made from cow's milk, Int J Food Microbiol, vol.136, pp.44-51, 2009.

, Références 289

K. Rantsiou, R. Urso, P. Dolci, G. Comi, and L. Cocolin, Microflora of Feta cheese from four Greek manufacturers, Int J Food Microbiol, vol.126, pp.36-42, 2008.

E. Gala, S. Landi, L. Solieri, M. Nocetti, A. Pulvirenti et al., Diversity of lactic acid bacteria population in ripened Parmigiano Reggiano cheese, Int J Food Microbiol, vol.125, pp.347-51, 2008.

S. Bonetta, S. Bonetta, E. Carraro, K. Rantsiou, and L. Cocolin, Microbiological characterisation of Robiola di Roccaverano cheese using PCR-DGGE, Food Microbiol, vol.25, pp.786-92, 2008.

G. El-baradei, A. Delacroix-buchet, and J. Ogier, Biodiversity of Bacterial Ecosystems in Traditional Egyptian Domiati Cheese, Appl Environ Microbiol, vol.73, pp.1248-55, 2007.

A. B. Flórez and B. Mayo, Microbial diversity and succession during the manufacture and ripening of traditional, Spanish, blue-veined Cabrales cheese, as determined by PCR-DGGE, Int J Food Microbiol, vol.110, pp.165-71, 2006.

J. C. Ogier, V. Lafarge, V. Girard, A. Rault, V. Maladen et al., Molecular Fingerprinting of Dairy Microbial Ecosystems by Use of Temporal Temperature and Denaturing Gradient Gel Electrophoresis, Appl Environ Microbiol, vol.70, pp.5628-5671, 2004.

C. L. Randazzo, S. Torriani, A. Akkermans, W. M. De-vos, and E. E. Vaughan, Diversity, Dynamics, and Activity of Bacterial Communities during Production of an Artisanal Sicilian Cheese as Evaluated by 16S rRNA Analysis, Appl Environ Microbiol, vol.68, pp.1882-92, 2002.

A. M. Martín-platero, M. Maqueda, E. Valdivia, J. Purswani, and M. Martínez-bueno, Polyphasic study of microbial communities of two Spanish farmhouse goats' milk cheeses from Sierra de Aracena, Food Microbiol, vol.26, pp.294-304, 2009.

A. M. Martín-platero, E. Valdivia, M. Maqueda, I. Martín-sánchez, and M. Martínez-bueno, Polyphasic Approach to Bacterial Dynamics during the Ripening of Spanish Farmhouse Cheese, Using Culture-Dependent and -Independent Methods, Appl Environ Microbiol, vol.74, pp.5662-73, 2008.

S. Parayre, H. Falentin, M. Madec, K. Sivieri, L. Dizes et al., Easy DNA extraction method and optimisation of PCR-Temporal Temperature Gel Electrophoresis to identify the predominant high and low GC-content bacteria from dairy products, J Microbiol Methods, vol.69, pp.431-472, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01454027

L. Bourhis, A. Doré, J. Carlier, J. Chamba, J. Popoff et al., Contribution of C. beijerinckii and C. sporogenes in association with C. tyrobutyricum to the butyric fermentation in Emmental type cheese, Int J Food Microbiol, vol.113, pp.154-63, 2007.

C. Andrighetto, G. Marcazzan, and A. Lombardi, Use of RAPD-PCR and TTGE for the evaluation of biodiversity of whey cultures for Grana Padano cheese, Lett Appl Microbiol, vol.38, pp.400-405, 2004.

M. Saubusse, L. Millet, C. Delbès, C. Callon, and M. Montel, Application of Single Strand Conformation Polymorphism -PCR method for distinguishing cheese bacterial communities that inhibit Listeria monocytogenes, Int J Food Microbiol, vol.116, pp.126-161, 2007.

C. Delbès, L. Ali-mandjee, and M. Montel, Monitoring Bacterial Communities in Raw Milk and Cheese by Culture-Dependent and -Independent 16S rRNA Gene-Based Analyses, Appl Environ Microbiol, vol.73, pp.1882-91, 2007.

C. Callon, C. Delbès, F. Duthoit, and M. Montel, Application of SSCP-PCR fingerprinting to profile the yeast community in raw milk Salers cheeses, Syst Appl Microbiol, vol.29, pp.172-80, 2006.

F. Duthoit, L. Tessier, M. Montel, and . Diversity, dynamics and activity of bacterial populations in 'Registered Designation of Origin' Salers cheese by single-strand conformation polymorphism analysis of 16S rRNA genes, J Appl Microbiol, vol.98, pp.1198-208, 2005.

M. Arteau, S. Labrie, and D. Roy, Terminal-restriction fragment length polymorphism and automated ribosomal intergenic spacer analysis profiling of fungal communities in Camembert cheese, Int Dairy J, vol.20, pp.545-54, 2010.

J. Rademaker, M. Peinhopf, L. Rijnen, W. Bockelmann, and W. H. Noordman, The surface microflora dynamics of bacterial smear-ripened Tilsit cheese determined by T-RFLP DNA population fingerprint analysis, Int Dairy J, vol.15, pp.785-94, 2005.

M. Gatti, J. Lindner, D. Lorentiis, A. Bottari, B. Santarelli et al., Dynamics of Whole and Lysed Bacterial Cells during Parmigiano-Reggiano Cheese Production and Ripening, Appl Environ Microbiol, vol.74, pp.6161-6168, 2008.

T. Poga?i?, A. Mancini, M. Santarelli, B. Bottari, C. Lazzi et al., Diversity and dynamic of lactic acid bacteria strains during aging of a long ripened hard cheese produced from raw milk and undefined natural starter, Food Microbiol, vol.36, pp.207-222, 2013.

D. Porcellato, C. Brighton, D. J. Mcmahon, C. J. Oberg, M. Lefevre et al., Application of ARISA to assess the influence of salt content and cation type on microbiological diversity of Cheddar cheese, Lett Appl Microbiol, vol.59, pp.207-223, 2014.

J. Handelsman and . Metagenomics, Application of Genomics to Uncultured Microorganisms, Microbiol Mol Biol Rev, vol.68, pp.669-85, 2004.

J. F. Petrosino, S. Highlander, R. A. Luna, R. A. Gibbs, and J. Versalovic, Metagenomic Pyrosequencing and Microbial Identification, Clin Chem, vol.55, pp.856-66, 2009.

L. Quigley, O. O'sullivan, T. P. Beresford, R. P. Ross, G. F. Fitzgerald et al., HighThroughput Sequencing for Detection of Subpopulations of Bacteria Not Previously Associated with Artisanal Cheeses, Appl Environ Microbiol, vol.78, pp.5717-5740, 2012.

N. A. Bokulich and D. A. Mills, Facility-Specific "House" Microbiome Drives Microbial Landscapes of Artisan Cheesemaking Plants, Appl Environ Microbiol, vol.79, pp.5214-5237, 2013.

T. C. Glenn, Field guide to next-generation DNA sequencers, Mol Ecol Resour, vol.11, pp.759-69, 2011.

D. Ercolini, D. Filippis, F. , L. Storia, A. Iacono et al., Remake" by High-Throughput Sequencing of the Microbiota Involved in the Production of Water Buffalo Mozzarella Cheese, Appl Environ Microbiol, vol.78, pp.8142-8147, 2012.

, Références 291

T. S. Lusk, A. R. Ottesen, J. R. White, M. W. Allard, E. W. Brown et al., Characterization of microflora in Latin-style cheeses by next-generation sequencing technology, BMC Microbiol, vol.12, p.254, 2012.

Á. Alegría, P. Szczesny, B. Mayo, J. Bardowski, and M. Kowalczyk, Biodiversity in Oscypek, a Traditional Polish Cheese, Determined by Culture-Dependent and -Independent Approaches, Appl Environ Microbiol, vol.78, pp.1890-1898, 2012.

M. M. Fuka, S. Wallisch, M. Engel, G. Welzl, J. Havranek et al., Dynamics of bacterial communities during the ripening process of different Croatian cheese types derived from raw ewe's milk cheeses, PLOS ONE, vol.8, p.80734, 2013.

F. De-filippis, L. Storia, A. Stellato, G. Gatti, M. Ercolini et al., A selected core microbiome drives the early stages of three popular Italian cheese manufactures, PLOS ONE, vol.9, p.89680, 2014.

I. De-pasquale, M. Calasso, L. Mancini, D. Ercolini, L. Storia et al., Causal Relationship between Microbial Ecology Dynamics and Proteolysis during Manufacture and Ripening of Protected Designation of Origin (PDO) Cheese Canestrato Pugliese, Appl Environ Microbiol, vol.80, pp.4085-94, 2014.

I. De-pasquale, D. Cagno, R. Buchin, S. , D. Angelis et al., Microbial Ecology Dynamics Reveal a Succession in the Core Microbiota Involved in the Ripening of Pasta Filata Caciocavallo Pugliese Cheese, Appl Environ Microbiol, vol.80, pp.6243-55, 2014.

P. Dolci, D. Filippis, F. , L. Storia, A. Ercolini et al., rRNA-based monitoring of the microbiota involved in Fontina PDO cheese production in relation to different stages of cow lactation, Int J Food Microbiol, vol.185, pp.127-162, 2014.

C. Riquelme, S. Câmara, E. Dapkevicius-m-de, L. N. Vinuesa, P. Da-silva et al., Characterization of the bacterial biodiversity in Pico cheese (an artisanal Azorean food), Int J Food Microbiol, vol.192, pp.86-94, 2015.

A. Aldrete-tapia, M. C. Escobar-ramírez, M. L. Tamplin, and M. Hernández-iturriaga, Highthroughput sequencing of microbial communities in Poro cheese, an artisanal Mexican cheese, Food Microbiol, vol.44, pp.136-177, 2014.

V. Delcenserie, B. Taminiau, L. Delhalle, C. Nezer, P. Doyen et al., Microbiota characterization of a Belgian protected designation of origin cheese, Herve cheese, using metagenomic analysis, J Dairy Sci, vol.97, pp.6046-56, 2014.

G. Stellato, D. Filippis, F. , L. Storia, A. Ercolini et al., Coexistence of Lactic Acid Bacteria and Potential Spoilage Microbiota in a Dairy Processing Environment, Appl Environ Microbiol, vol.81, pp.7893-904, 2015.

D. J. O'sullivan, P. D. Cotter, O. O'sullivan, L. Giblin, P. Mcsweeney et al., Temporal and Spatial Differences in Microbial Composition during the Manufacture of a Continental-Type Cheese, Appl Environ Microbiol, vol.81, pp.2525-2558, 2015.

A. Guidone, T. Zotta, A. Matera, A. Ricciardi, F. De-filippis et al., The microbiota of high-moisture mozzarella cheese produced with different acidification methods, Int J Food Microbiol, vol.216, pp.9-17, 2016.

V. Alessandria, I. Ferrocino, D. Filippis, F. Fontana, M. Rantsiou et al., Microbiota of an Italian Grana-Like Cheese during Manufacture and Ripening, Unraveled by 16S rRNA-Based Approaches, Appl Environ Microbiol, vol.82, pp.3988-95, 2016.

M. Calasso, D. Ercolini, L. Mancini, G. Stellato, F. Minervini et al., Relationships among house, rind and core microbiotas during manufacture of traditional Italian cheeses at the same dairy plant, Food Microbiol, vol.54, pp.115-141, 2016.

I. De-pasquale, D. Cagno, R. Buchin, S. , D. Angelis et al., Spatial distribution of the metabolically active microbiota within Italian PDO ewes' milk cheeses, PLOS ONE, vol.11, p.153213, 2016.

E. Dugat-bony, L. Garnier, J. Denonfoux, S. Ferreira, A. Sarthou et al., Highlighting the microbial diversity of 12 French cheese varieties, Int J Food Microbiol, vol.238, pp.265-73, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01389685

T. Silvetti, E. Capra, S. Morandi, P. Cremonesi, M. Decimo et al., Microbial population profile during ripening of Protected Designation of Origin (PDO) Silter cheese, produced with and without autochthonous starter culture, LWT -Food Sci Technol, vol.84, pp.821-852, 2017.

A. Ceugniez, B. Taminiau, F. Coucheney, P. Jacques, V. Delcenserie et al., Use of a metagenetic approach to monitor the bacterial microbiota of "Tomme d'Orchies" cheese during the ripening process, Int J Food Microbiol, vol.247, pp.65-74, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01600950

I. C. Duru, P. Laine, M. Andreevskaya, L. Paulin, S. Kananen et al., Metagenomic and metatranscriptomic analysis of the microbial community in Swiss-type Maasdam cheese during ripening, Int J Food Microbiol, vol.281, pp.10-22, 2018.

A. S. Bertuzzi, A. M. Walsh, J. J. Sheehan, P. D. Cotter, F. Crispie et al., Omics-Based Insights into Flavor Development and Microbial Succession within SurfaceRipened Cheese. mSystems, vol.3, 2018.

A. Escobar-zepeda, A. Sanchez-flores, Q. Baruch, and M. , Metagenomic analysis of a Mexican ripened cheese reveals a unique complex microbiota, Food Microbiol, vol.57, pp.116-143, 2016.

M. Schirmer, D. 'amore, R. Ijaz, U. Z. Hall, N. Quince et al., Illumina error profiles: resolving fine-scale variation in metagenomic sequencing data, BMC Bioinformatics, vol.17, p.125, 2016.

M. Garber, M. G. Grabherr, M. Guttman, and C. Trapnell, Computational methods for transcriptome annotation and quantification using RNA-seq, Nat Methods, vol.8, p.469, 2011.

C. Soneson and M. Delorenzi, A comparison of methods for differential expression analysis of RNA-seq data, BMC Bioinformatics, vol.14, p.91, 2013.

M. L. Wong and J. F. Medrano, Real-time PCR for mRNA quantitation, BioTechniques, vol.39, pp.75-85, 2005.

W. Ablain, H. Soulier, S. Causeur, D. Gautier, M. Baron et al., A simple and rapid method for the disruption of Staphylococcus aureus, optimized for quantitative reverse transcriptase applications: Application for the examination of Camembert cheese, Dairy Sci Technol, vol.89, pp.69-81, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01454051

, Références 293

M. Cretenet, V. Laroute, V. Ulvé, S. Jeanson, S. Nouaille et al., Dynamic Analysis of the Lactococcus lactis Transcriptome in Cheeses Made from Milk Concentrated by Ultrafiltration Reveals Multiple Strategies of Adaptation to Stresses, Appl Environ Microbiol, vol.77, pp.247-57, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01454152

M. Duquenne, I. Fleurot, M. Aigle, C. Darrigo, E. Borezée-durant et al., Tool for Quantification of Staphylococcal Enterotoxin Gene Expression in Cheese, Appl Environ Microbiol, vol.76, pp.1367-74, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02001274

H. Falentin, F. Postollec, S. Parayre, N. Henaff, L. Bivic et al., Specific metabolic activity of ripening bacteria quantified by real-time reverse transcription PCR throughout Emmental cheese manufacture, Int J Food Microbiol, vol.144, pp.10-19, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01454117

L. Gioia, F. Rizzotti, L. Rossi, F. Gardini, F. Tabanelli et al., Identification of a Tyrosine Decarboxylase Gene (tdcA) in Streptococcus thermophilus 1TT45 and Analysis of Its Expression and Tyramine Production in Milk, Appl Environ Microbiol, vol.77, pp.1140-1144, 2011.

C. Monnet, V. Ulvé, A. Sarthou, and F. Irlinger, Extraction of RNA from Cheese without Prior Separation of Microbial Cells, Appl Environ Microbiol, vol.74, pp.5724-5754, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01195423

F. Rossi, F. Gardini, L. Rizzotti, L. Gioia, F. Tabanelli et al., Quantitative Analysis of Histidine Decarboxylase Gene (hdcA) Transcription and Histamine Production by Streptococcus thermophilus PRI60 under Conditions Relevant to Cheese Making, Appl Environ Microbiol, vol.77, pp.2817-2839, 2011.

A. Taïbi, N. Dabour, M. Lamoureux, D. Roy, and G. Lapointe, Comparative transcriptome analysis of Lactococcus lactis subsp. cremoris strains under conditions simulating Cheddar cheese manufacture, Int J Food Microbiol, vol.146, pp.263-75, 2011.

A. Trm?i?, C. Monnet, and I. Rogelj, Bogovi? Matija?i? B. Expression of nisin genes in cheese-A quantitative real-time polymerase chain reaction approach, J Dairy Sci, vol.94, pp.77-85, 2011.

V. M. Ulve, C. Monnet, F. Valence, J. Fauquant, H. Falentin et al., RNA extraction from cheese for analysis of in situ gene expression of Lactococcus lactis, J Appl Microbiol, vol.105, pp.1327-1360, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01195424

M. J. Heller, DNA Microarray Technology: Devices, Systems, and Applications, Annu Rev Biomed Eng, vol.4, pp.129-53, 2002.

J. Wolf, Principles of transcriptome analysis and gene expression quantification: an RNA-seq tutorial, Mol Ecol Resour, vol.13, pp.559-72, 2013.

O. Cholet, A. Hénaut, A. Hébert, and P. Bonnarme, Transcriptional Analysis of l-Methionine Catabolism in the Cheese-Ripening Yeast Yarrowia lipolytica in Relation to Volatile Sulfur Compound Biosynthesis, Appl Environ Microbiol, vol.74, pp.3356-67, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00417171

S. Nouaille, S. Even, C. Charlier, L. Loir, Y. Cocaign-bousquet et al., Transcriptomic Response of Lactococcus lactis in Mixed Culture with Staphylococcus aureus, Appl Environ Microbiol, vol.75, pp.4473-82, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01454086

M. Dalmasso, A. J. Even, S. Falentin, H. Maillard, M. Parayre et al., Accumulation of Intracellular Glycogen and Trehalose by Propionibacterium freudenreichii Références 294

, under Conditions Mimicking Cheese Ripening in the Cold, Appl Environ Microbiol, vol.78, pp.6357-64, 2012.

M. Dalmasso, A. J. Briard-bion, V. Chuat, V. Deutsch, S. Even et al., A Temporal -omic Study of Propionibacterium freudenreichii CIRM-BIA1T Adaptation Strategies in Conditions Mimicking Cheese Ripening in the Cold, PLOS ONE, vol.7, p.29083, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01189567

F. Ozsolak and P. M. Milos, Single-molecule direct RNA sequencing without cDNA synthesis, Wiley Interdiscip Rev RNA, vol.2, pp.565-70, 2011.

J. C. Marioni, C. E. Mason, S. M. Mane, M. Stephens, and Y. Gilad, RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays, Genome Res, vol.18, pp.1509-1526, 2008.

N. Cloonan, A. Forrest, G. Kolle, B. Gardiner, G. J. Faulkner et al., Stem cell transcriptome profiling via massive-scale mRNA sequencing, Nat Methods, vol.5, p.613, 2008.

M. Sultan, M. H. Schulz, H. Richard, A. Magen, A. Klingenhoff et al., A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the Human Transcriptome, Science, vol.321, p.956, 2008.

C. Monnet, E. Dugat-bony, D. Swennen, J. Beckerich, F. Irlinger et al., Investigation of the Activity of the Microorganisms in a Reblochon-Style Cheese by Metatranscriptomic Analysis, Front Microbiol, vol.7, p.536, 2016.

F. De-filippis, A. Genovese, P. Ferranti, J. A. Gilbert, and D. Ercolini, Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate, Sci Rep, vol.6, p.21871, 2016.

T. Ojala, P. Laine, T. Ahlroos, J. Tanskanen, S. Pitkänen et al., Functional genomics provides insights into the role of Propionibacterium freudenreichii ssp. shermanii JS in cheese ripening, Int J Food Microbiol, vol.241, pp.39-48, 2017.

T. Wolf, P. Kämmer, S. Brunke, and J. Linde, Two's company: studying interspecies relationships with dual RNA-seq, Curr Opin Microbiol, vol.42, pp.7-12, 2018.

J. A. Martin and Z. Wang, Next-generation transcriptome assembly, Nat Rev Genet, vol.12, p.671, 2011.

H. Cai, R. Thompson, M. F. Budinich, J. R. Broadbent, and J. L. Steele, Genome Sequence and Comparative Genome Analysis of Lactobacillus casei: Insights into Their Niche-Associated Evolution, Genome Biol Evol, vol.1, pp.239-57, 2009.

K. Cheeseman, J. Ropars, P. Renault, J. Dupont, J. Gouzy et al., Multiple recent horizontal transfers of a large genomic region in cheese making fungi, Nat Commun, vol.5, p.2876, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01302473

V. Loux, M. Mariadassou, S. Almeida, H. Chiapello, A. Hammani et al., Mutations and genomic islands can explain the strain dependency of sugar utilization in 21 strains of Propionibacterium freudenreichii, BMC Genomics, vol.16, p.296, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01209851

E. Stefanovic and O. Mcauliffe, Comparative genomic and metabolic analysis of three Lactobacillus paracasei cheese isolates reveals considerable genomic differences in strains from the same niche, BMC Genomics, vol.19, p.205, 2018.

J. Mounier, M. Coton, F. Irlinger, S. Landaud, and P. Bonnarme, Smear-Ripened Cheeses, Chemistry, Physics and Microbiology, pp.955-96, 2017.

K. S. Bonham, B. E. Wolfe, and R. J. Dutton, Extensive horizontal gene transfer in cheeseassociated bacteria, vol.6, 2017.

B. E. Wolfe, Using Cultivated Microbial Communities To Dissect Microbiome Assembly: Challenges, Limitations, and the Path Ahead. mSystems, vol.3, pp.161-178, 2018.

H. Lv, C. S. Hung, and J. P. Henderson, Metabolomic Analysis of Siderophore Cheater Mutants Reveals Metabolic Costs of Expression in Uropathogenic Escherichia coli, J Proteome Res, vol.13, pp.1397-404, 2014.

A. S. Griffin, S. A. West, and A. Buckling, Cooperation and competition in pathogenic bacteria, Nature, vol.430, p.1024, 2004.