-. Cys,

. Leu-gln,

. Sp3-cs124-dapdota, Tb): Ac-Gly-Lys-Pro-Glu(Cs124)-Glu-Cys-Thr-Lys-Ser-Ala-Cys

. Gly-lys-lys,

. Sp3-cs124-dapdota, Eu): Ac-Gly-Lys-Pro-Glu(Cs124)-Glu-Cys-Thr-Lys-Ser-Ala-Cys

. Sp3-cs124-lysdota, Tb): Ac-Gly-Lys-Pro-Glu(Cs124)-Glu-Cys-Thr-Lys-Ser-Ala-Cys

. Sp3-cs124-lysdota, Eu): Ac-Gly-Lys-Pro-Glu(Cs124)-Glu-Cys-Thr-Lys-Ser-Ala-Cys

. Sp3-anthra-lysdota, Yb): Ac-Gly-Lys-Pro-Dap(Anthra)-Glu-Cys-Thr-Lys-Ser-Ala-Cys

. Sp3-anthra-lysdota, Ac-Gly-Lys-Pro-Dap(Cs124)-Glu-Cys-Thr-Lys-Ser-Ala-Cys

, SP3-CoumCF 3 -LysDOTA(Eu): Ac-Gly-Lys-Pro-Glu(CoumCF 3 )-Glu-Cys-Thr-Lys-Ser-Ala

, SP3-Cs124CF 3 -LysDOTA(Eu): Ac-Lys-Pro-Glu(Cs124CF 3 )-Glu-Cys-Thr-Lys-Ser-Ala

. Sp3-cs124-lysdota-pic, Eu): Ac-Gly-Lys-Pro-Glu(Cs124)-Glu-Cys-Thr-Lys-Ser-Ala

. Sp3-acri-lysdota-pic, Eu): Ac-Lys-Pro-Dap(Acri)-Glu-Cys-Thr-Lys-Ser-Ala-Cys-Gly

-. F1r-cs124, Glu-Cys(StBu)-Thr-Lys-Ser-Ala-SEAoff F1R(Tb)-Cs124-SEA: DOTA[Tb]-Gly-Lys-Pro-Glu(Cs124)-Glu-Cys(StBu)-Thr-Lys-SerAla-SEA-off F1R(Eu)-Cs124-SEA: DOTA[Eu]-Gly-Lys-Pro-Glu(Cs124)-Glu-Cys(StBu)-Thr-Lys-SerAla-SEA-off Pen-Cs124-SEA: 1-(Gly-Gly-Gly-Lys-Pro-Glu(Cs124)-Glu-Cys(StBu)-Thr-Lys-Ser-Ala

, SEA-off)-4

, Glu-Cys(StBu)-Thr-Lys-Ser-Ala-SEA-off)-4-((CH 2 )-CO-Arg-Arg-Arg-Arg-Trp-Trp-Trp-Trp-Arg-Arg-Arg-Arg-NH 2 )-1H

, Glu-Cys(StBu)-Thr-Lys-Ser-Ala-SEAoff)-4-((CH 2 )-CO-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Pro-Gln-NH 2 )-1H

, StBu)-Thr-Lys-Ser-Ala-SEAoff)-4, issue.2

, StBu)-Thr-Lys-Ser-Ala-SEA-off)-4, issue.2

-. Tat, Glu-Cys-Thr-Lys, p.1

. Ser-ala,

-. Tat, Glu-Cys-Thr-Lys, p.1

. Ser-ala,

P. , Glu-Cys-Thr-Lys, p.1

. Ser-ala,

P. , Glu-Cys-Thr-Lys, p.1

. Ser-ala,

. Rwr-sp3-cs124-lysdota, , p.1

. Rwr-sp3-cs124-lysdota, Glu-Cys-Thr-Lys, p.1

. Ser-ala,

-. Tat, Glu-Cys-Thr-Lys, p.1

. Ser-ala,

. Ser-ala,

. Rwr-sp3-acri-lysdota-pic, Glu-Cys-Thr, p.1

. Gly-gly-gly-lys, Pro-Dap(Acri)-Glu-Cys-Thr-Lys-Ser-Ala-Cys-Gly-Lys

-. Tat, Coum)-Glu-Cys-Thr, p.1

, centrifuged, dissolved in deionized water, lyophilized and purified by HPLC to give Cys-F2-DapDOTA (29.0 mg, 11% yield, 0.1 mmol scale). HPLC (anal.) t R = 5

. Esi-ms,

=. Ln, . Tb, and ). Eu, Compound Cys-F2-DapDOTA (1.5 µmol, 4 mg) was dissolved in H 2 O and the pH was adjusted to 6.5 using NaOH. Then, the lanthanide salt LnCl 3 (12 µmol) was added. The solution was stirred overnight under argon (after 1h, the pH was controlled and adjusted to 6.2 if needed). TCEP (35 µmol, 10 mg) was added prior to removal of excess Ln 3+ by HPLC purification, Formation of Ln 3+ complexes of C-terminal segment Cys-F2-DapDOTA(Ln

-. Cys, Tb): HPLC (anal.) t R = 5.2 min (method A)

, (5+), 467.6 (6+) / calculated av, ESI-MS: average m/z = 1400.3 (2+), 933.9 (3+), 700.7 (4+), vol.560

, 5+ , 467.49 [M+6H] 6+ for M = C 113 H 185 N 36 O 35 STb)

-. Cys, HPLC (anal.) t R = 5.2 min (method A)

, ESI-MS: average m/z = 1396.8 (2+), 931.7 (3+), 699.1 (4+), 559.5 (5+), p.39

-. Cys, HPLC (anal.) t R = 5.2 min (method A)

, (6+) / calculated av, ESI-MS: average m/z = 1392.5 (2+), 928.8 (3+), 696.9 (4+), 557.8 (5+), vol.465

M. and D. ,

, was dissolved in a small amount of DMF and added to the resin, then a solution of

, 4 eq) in DMF (2 mL) was added. Removal of the Allyl protecting group of the DOTA-pic tris(allyl) was performed using with Pd(PPh 3 ) 4 (0.05 mmol, 0.5 eq., 58 mg) and phenylsilane (5 mmol, 50 eq., 0.6 mL) in degassed anhydrous DCM (10 mL) for 1h in the dark. The resin was then washed successively with DCM (2×2 min), DMF (2×2 min), 1% H 2 O in DMF

M. and D. Min, The resin was dried. Removal of acid-labile side chain protecting groups and cleavage were performed using TFA/H 2 O/TIS/ DTT (9, p.25

, 150 mL), centrifuged, dissolved in deionized water, lyophilized and purified by HPLC to give Cys-F2-LysDOTA-pic

, HPLC (anal.) t R = 5.7 min (method A)

, 4 (5+), 461.4 (6+) / calculated av. m/z = 921, ESI-MS: average m/z = 921.7 (3+), 691.6 (4+), vol.553

, C 121 H 197 N 37 O 35 S)

, Formation of Ln 3+ complexes of C-terminal segment Cys-F2-LysDO3A-pic

, Then, the lanthanide salt LnCl 3 (12 µmol) was added. The solution was stirred overnight under argon (after 1h, the pH was controlled and adjusted to 6.2 if needed). TCEP (35 µmol, 10 mg) was added prior to removal of excess Ln 3+ by HPLC purification, Compound Cys-F2-LysDO3A-pic (1.5 µmol, 4 mg) was dissolved in H 2 O and the pH was adjusted to 6.5 using NaOH

, HPLC (anal.) t R = 6.1 min (method A)

. Esi-ms, , p.37

A. Tcep/, NaOH (2 N). Peptides F1-Cs124-SEA (0.7 µmol, 1 mg) and Cys-F2-DapDOTA(Ln) (0.8 µmol, 2.1 mg, 1.1 eq.) were dissolved in the TCEP/MPAA solution (197 µL, final peptide concentration 3.5 mM, pH 6.5). The native chemical ligation was performed at 37°C and monitored by RP-HPLC. At the end, the reaction mixture was C 170 H 270 N 50 O 52 S 2 Tb, MPAA solution was prepared by dissolving TCEP (28.7 mg, 0.1 mmol) and MPAA aq

. Sp3-cs124-lysdota, Isolated yield = 16%

, HPLC (anal.) t R = 7.1 min (method A)

, 3 (6+), 581.6 (6+), 509.0 (7+) / calculated av, ESI-MS: average m/z = 1016.8 (4+), 813.8 (5+), vol.678

A. Tcep/, NaOH (2 N). Peptides F1(Anthra)-SEA (0.56 µmol, 0.8 mg) and Cys-F2-LysDOTA(Ln) (0.62 µmol, 1.7 mg, 1.1 eq.) were dissolved in the TCEP/MPAA solution (170 µL, final peptide concentration 3.5 mM, pH 6.5). The native chemical ligation was performed at 37°C and monitored by RP-HPLC. At the end, the reaction mixture was diluted with water-TFA 5% (2 mL), MPAA was extracted by diethyl ether, MPAA solution was prepared by dissolving TCEP (28.7 mg, 0.1 mmol) and MPAA aq

-. Sp3-anthra-lys and . Dota, Isolated yield = 51%

, HPLC (anal.) t R = 8.9 min (method A)

. Esi-ms, 3 (5+), 670.5 (6+), vol.804

-. Sp3-anthra-lys and . Yb, Isolated yield = 50%

, HPLC (anal.) t R = 8.8 min (method A)

. Esi-ms, (5+), 675.4 (6+), 579.1 (7+) / calculated av. m/z = 810, vol.810, p.30

. Sp3-cs124cf3-lysdota,

A. Tcep/, NaOH (2 N). Peptides F1-Cs124CF 3 -SEA (0.7 µmol, 1 mg) and SP3-Cs124-LysDOTA(Eu) (0.8 µmol, 2.2 mg, 1.1 eq.) were dissolved in the TCEP/MPAA solution (197 µL, final peptide concentration 3.5 mM, pH 6.5). The native chemical ligation was performed at 37°C and monitored by RP-HPLC. At the end, the reaction mixture was diluted with water-TFA 5% (2 mL), MPAA was extracted by diethyl ether, MPAA solution was prepared by dissolving TCEP (28.7 mg, 0.1 mmol) and MPAA aq

. Sp3-cs124-lysdota, Isolated yield = 15%

, HPLC (anal.) t R = 8.0 min (method A)

, 1 (6+) / calculated av. m/z = 1015, ESI-MS: average m/z = 1015.9 (4+), 813.0 (5+), 677.8 (6+), vol.581

. Sp3-coumcf3-lysdota,

A. Tcep/, NaOH (2 N). Peptides F1-Cs124CF 3 -SEA (0.5 µmol, 1 mg) and SP3-Cs124-LysDOTA(Eu) (0.6 µmol, 1.5 mg, 1.1 eq.) were dissolved in the TCEP/MPAA solution (156 µL, final peptide concentration 3.5 mM, pH 6.5). The native chemical ligation was performed at 37°C and monitored by RP-HPLC. At the end, the reaction mixture was diluted with water-TFA 5% (2 mL), MPAA was extracted by diethyl ether, MPAA solution was prepared by dissolving TCEP (28.7 mg, 0.1 mmol) and MPAA aq

. Sp3-cs124-lysdota, Isolated yield = 31%

, HPLC (anal.) t R = 8.9 min (method A)

, 4 (6+) / calculated av. m/z = 1030, ESI-MS: average m/z = 1030.5 (4+), 824.7 (5+), 687.4 (6+), vol.589

, SP3-Cs124-LysDO3A-pic

A. Tcep/, NaOH (2 N). Peptides F1-Cs124-SEA (0.6 µmol, 0.9 mg) and Cys-F2-LysDO3A-pic(Eu) (0.7 µmol, 2 mg, 1.1 eq.) were dissolved in the TCEP/MPAA solution (177 µL, final peptide concentration 3.5 mM, pH 6.5). The native chemical ligation was performed at 37°C and monitored by RP-HPLC, MPAA solution was prepared by dissolving TCEP (28.7 mg, 0.1 mmol) and MPAA aq

, SP3-Cs124-LysDOTA-pic(Eu): Isolated yield = 22%

, HPLC (anal.) t R = 9.2 min (method A)

, 1 (5+), 691.2 (6+), 592.6 (7+) / calculated av. m/z = 1036, ESI-MS: average m/z = 1036.1 (4+), vol.829

. Sp3-acri-lysdo3a-pic,

A. Tcep/, MPAA solution was prepared by dissolving TCEP (28.7 mg, 0.1 mmol) and MPAA aq. NaOH (2 N). Peptides F1-Acri-SEA (0.4 µmol

, µmol, 1.3 mg, 1.1 eq.) were dissolved in the TCEP/MPAA solution (115 µL, final peptide concentration 3.5 mM, pH 6.5). The native chemical ligation was performed at 37°C and monitored by RP-HPLC. At the end, the reaction mixture was diluted with water-TFA 5% (2 mL), MPAA was extracted by diethyl ether

, SP3-Acri-LysDO3A-pic(Eu): Isolated yield = 41%

, HPLC (anal.) t R = 9.0 min (method A)

, 7 (6+), 589.6 (7+) / calculated av. m/z = 1030, ESI-MS: average m/z = 1030.8 (4+), vol.824

, Ratiomectric probe (SP3R)

, 16 mmol/g) after attachment of the first amino acid by double manual coupling (30 min) using 10-fold excess of Fmoc-Ala-OH, 9.5-fold excess of HATU and 10-fold excess of DIEA in DMF with pre-activation (5 min) followed by acetylation using (Ac 2 O/DIEA/DCM 2:1:17 by vol., 10 mL, 2×5 min). Nonstandard Fmoc-Glu(Cs124)-OH and Fmoc-Cys(StBu)-OH amino acid were used to introduce the antenna and the cysteine residue. Contrary to F1-Cs124-SEA the N-term glycine was coupled with commercial DOTA-tris(tBu)ester (3 eq, 3 eq PyBOP, 6 eq DIEA), SEA-off N-terminal segment F1R-Cs124-SEA: Peptide elongation was performed as described above on SEA-PS resin (0.025 mmol

, 100 mL), dissolved in deionized water, and lyophilized. The peptide was dissolved in H 2 O/AcOH and treated with a solution of I 2 (200 mM in DMSO) to oxidize the C-terminal SEA-on group into SEA-off group. After 30 s, DTT (65 mM in water, 500 ?l) was added to quench the excess of iodine. The oxidized peptide was immediately purified by HPLC, The peptide was then precipitated in ice-cold Et 2 O/heptane (1:1 by

, HPLC (anal.) t R = 10.3 min (method A)

. Esi-ms, 2+), 599.8 (3+) / calculated monoisotopic m/z = 898, monoisotopic m/z =, vol.898, p.90

, Eu): Compound F1R(Ln)(Cs124)-SEA (2.6 µmol, 5 mg) was dissolved in H 2 O and the pH reaction mixture was diluted with water-TFA 5% (2 mL), MPAA was extracted by diethyl ether, Formation of Ln 3+ complexes of N-terminal segment F1R(Ln 2 )-Cs124-SEA (Ln = Tb

. Sp3r-yb-anthra-nd,

, HPLC (anal.) t R = 9.9 min (method A)

. Esi-ms,

. Sp3r-nd-anthra-yb,

, HPLC (anal.) t R = 9.5 min (method A)

, (6+), 648.3 (7+), 567.5 (8+) / calculated av. m/z = 1133, ESI-MS: average m/z = 907.2 (5+), vol.756

, 1 mmol, 0.16 mmol/g) after attachment of the first amino acid by double manual coupling (30 min) using 10-fold excess of Fmoc-Ala-OH, 9.5-fold excess of HATU and 10-fold excess of DIEA in DMF with pre-activation (5 min) followed by acetylation using (Ac 2 O/DIEA/DCM 2:1:17 by vol., 10 mL, 2×5 min). Non-standard FmocCys(StBu)-OH, Fmoc-Glu(Cs124)-OH amino acid and 2-Azidoacetic acid were used to introduce the cysteine residue, the antenna and the azide function, CPP-containing probes SEA-off N-terminal segment F1-N 3 -Cs124-SEA: Peptide elongation was performed as described above on SEA-PS resin

, 10 mL) during 2 h. The peptide was then precipitated in ice-cold Et 2 O/heptane (1:1 by vol., 100 mL), dissolved in deionized water, and lyophilized. The peptide (5.8 µmol, 10 mg) was dissolved in phosphate buffer (1 mg.ml -1 ) and treated with a solution of diamide (29 µmol, 5 eq, 5 mg) to oxidize the C-terminal SEA-on group into SEA-off group

, HPLC (anal.) t R = 10.,5 min (method A)

. Esi-ms, monoisotopic m/z = 804.4 (2+), 536.8 (3+) / calculated monoisotopic m/z =, vol.804, p.33

, SEA: Peptide elongation was performed as described above on SEA-PS resin (0.1 mmol, 0.16 mmol/g) after attachment of the first amino acid by double manual coupling (30 min) using 10-fold excess of Fmoc-Ala-OH, 9.5-fold excess of HATU and 10-fold excess of DIEA in DMF with pre-activation (5 min) followed by (1:1 by vol., 150 mL), centrifuged, SEA-off N-terminal segment F1-N 3 -Acri

. F3-tat, 8 µmol, 33 mg, 12% yield, 0.1 mmol scale)

, HPLC (anal.) t R = 4.3 min (method A)

, ESI-MS: average m/z = 1187.4 (2+), vol.751

. F3-pen,

, HPLC (anal.) t R = 9.9 min (method A)

. Esi-ms, 3 (3+), 611.0 (4+), 489.1 (5+) / calculated av, vol.814

. F3-rwr, µmol, 15.5 mg, 5% yield, 0.1 mmol scale). HPLC (anal

. Esi-ms, , vol.386, p.6

P. , The peptide ligation was performed with F3-Pen (1.36 µmol, 4.4 mg) and F1-N 3 -Cs124-SEA (1.36 µmol, 2.2 mg) to give Pen-Cs124-SEA

, Yield : 30 % t R = 10.7 min (method A)

, ESI-MS: average m/z = 1012.8 (4+), 810.5 (5+), 675.7 (6+) / calculated av

-. Tat-cs124-sea:-rwr-acri and . Sea, The peptide ligation was performed with F3-Pen (1.22 µmol, 2.7 mg) and F1-N 3 -Acri-SEA (1.22 µmol, 2 mg) to give RWR-Acri-SEA

, Yield : 40% t R = 11.0 min (method A)

, 3 (6+), 699.3 (6+), 680.3 (6+), ESI-MS: average m/z = 816.3 (5+), vol.718

. C4-acri-sea, The peptide ligation was performed with F3-C4 (1.25 µmol, 0.6 mg) and F1-N 3 -Acri-SEA (1.22 µmol, 2 mg) to give

. Esi-ms,

. Tat-coum-sea, The peptide ligation was performed with F3-Tat (1.21 µmol, 2.3 mg) and F1-N 3 -Coum-SEA (1.21 µmol, 2 mg) Tat-Coum-SEA

, Yield : 53% t R = 11.2 min (method A)

, ESI-MS: average m/z = 920.2 (4+), 781.8 (5+), 759.1 (5+), 632.7 (6+), 613.8 (10+), vol.595

A. Tcep/, MPAA solution was prepared by dissolving TCEP (28.7 mg, 0.1 mmol) and MPAA aq. NaOH (2 N), Peptides CPP-Cs124-SEA and SP3-Cs124

, LysDOTA(Ln) (1.1 eq.) were dissolved in the TCEP/MPAA solution (final peptide concentration 3.5 mM, pH 6.5). The native chemical ligation was performed at 37°C and monitored by RP-HPLC, vol.5

, 12+ , 513.73 [M+13H] 13+ for M = C 287 H 455 N 92 O 76 S 3 Tb

P. ,

, The native ligation was performed with Pen-Cs124-SEA (0.34 µmol, 1.5 mg) and Cys-F2

, LysDOTA(Eu) (0.13 µmol, 0.9 mg) to give Pen-SP3-Cs124-LysDOTA(Tb) (0.1 µmol, 0.7 mg)

, Isolated yield = 38%

, HPLC (anal.) t R = 9.1 min (method A)

, (13+) / calculated av. m/z = 1110, ESI-MS: average m/z = 1110.7 (6+), 952.2 (7+), 833.3 (8+), 740.8 (9+), vol.666

. Rwr-sp3-cs124-lysdota,

, The native ligation was performed with RWR-Cs124-SEA (0.25 µmol, 1 mg) and Cys-F2

, LysDOTA(Tb) (0.28 µmol, 0.8 mg) to give RWR-SP3-Cs124-LysDOTA(Tb) (0.06 µmol, 0.4 mg)

, Isolated yield = 23%

, HPLC (anal.) t R = 8.7 min (method A)

. Esi-ms, , vol.460

. Rwr-sp3-cs124-lysdota,

, The native ligation was performed with RWR-Cs124-SEA (0.25 µmol, 1 mg) and Cys-F2

, HPLC (anal.) t R = 8.7 min (method A)

, 4 (12+) / calculated av. m/z = 714, ESI-MS: average m/z = 714.7 (9+), 643.3 (10+), 584.8 (11+), vol.536

-. Tat,

, The native ligation was performed with Tat-Acri-SEA (0.42 µmol, 1.5 mg) and Cys-F2

, LysDO3A-pic(Eu) (0.48 µmol, 1.4 mg) to give Tat-SP3-Acri-LysDO3A

, Isolated yield = 21%

, HPLC (anal.) t R = 7.0 min (method A)

, ESI-MS: average m/z = 809.7 (8+), 719.8 (9+), 694.8 (9+), vol.647

, The native ligation was performed with Pen-Acri-SEA (0.15 µmol, 0.6 mg) and Cys-F2

. Lysdo3a-pic, Eu) (0.17 µmol, 0.5 mg) to give Pen-SP3-Acri-LysDO3A-pic(Eu) (0.04 µmol, 0.27 mg)

, Isolated yield = 27%

, HPLC (anal.) t R = 9.3 min (method A)

. Esi-ms, , vol.565

. Rwr-sp3-acri-lysdota-pic,

, The native ligation was performed with RWR-Acri-SEA (0.42 µmol, 1.6 mg) and Cys-F2-LysDO3A-pic(Eu) (0.45 µmol, 1.3 mg) to give RWR-SP3-Acri

, HPLC (anal.) t R = 9.0 min (method A)

, ESI-MS: average m/z = 1015.9 (7+), vol.874

, 12+) / calculated av. m/z = 1016, 11+), 605.6 (11+), vol.615

. C4-sp3-acri-lysdota-pic,

, The native ligation was performed with C4-Acri-SEA (0.52 µmol, 1.1 mg) and Cys-F2

. Lysdo3a-pic, Eu) (0.55 µmol, 1.6 mg) to give C4-SP3-Acri-LysDO3A-pic(Eu) (0.2 µmol, 0.96 mg)

, Isolated yield = 38%

, HPLC (anal.) t R = 6.4 min (method B)

, 5 (6+), 686.5 (7+), 600.8 (8+) / calculated av, ESI-MS: average m/z = 1199.9 (4+), 960.8 (5+), vol.800

, The native ligation was performed with Tat-Acri-SEA (0.42 µmol, 1.5 mg) and Cys-F2-LysDO3A-pic(Eu) (0.45 µmol, 1.3 mg, 1.1 eq.) to give Tat-SP3-Coum-LysDO3A-pic

, 72 mg)

, SP3-Cs124-LysDO3A-pic(Eu): Isolated yield = 28%

, HPLC (anal.) t R = 8.0 min (method A)

, ESI-MS: average m/z = 942.6 (7+), 810.7 (8+), 720.7 (9+), 648.7 (10+), vol.637

, 5 (7+), 522.1 (12+) / calculated av. m/z =, vol.569

, Peptide Boc-Cys(Trt)-His(Trt)-Gly-Pro-Ile-Ala-Ala-Lys(Alloc)-Lys(Boc)-Trp

, The first amino acid, Fmoc-Gln(Trt)-OH was attached to the resin by double manual coupling (30 min) using 10-fold excess of Fmoc-Ala-OH, 9.5-fold excess of HATU and 10-fold excess of DIEA in DMF with pre-activation (5 min) followed by acetylation using, Glu(tBu)-Met-Thr(tBu)-Met-Aib-D Pro-Gln(Trt) was assembled on SEA-PS resin (135 µmol, 0.16 mmol/g), vol.10

. Cys, 82 mg) and phenylsilane (3.5 mmol, 25 eq., 0.44 mL) in degassed anhydrous DCM (15 mL) for 1h in the dark. The resin was then washed successively with DCM (2×2 min), DMF (2×2 min), 1% H 2 O in DMF (2×2 min), DMF (2×2 min), 1% DIEA in DMF (2×2 min), DMF (2×2 min), sodium diethyldithiocarbamate in DMF (0.12 M, 2×5 min) and DMF (2×2 min). A solution of DOTA-tris(tBu) ester (142 µmol, 2 eq., 81 mg), PyBOP (142 µmol, 2 eq., 74 mg) and DIEA (570 µmol, 4 eq., 100 µL) was added to the resin. The reaction mixture was stirred overnight at room temperature. The resin was washed with DMF, DCM and Et 2 O then dried. The peptide was released from the resin and the side-chain protecting groups were removed by treatment with a TFA, OH was used to introduce the final cysteine. Removal of the N-Alloc protecting group of the Lys(Alloc) residue was performed by treating the resin twice with Pd

, Gln-SEA was obtained as a white solid powder after precipitation with diethyl ether (386 mg)

, The cyclization was performed on portions corresponding to ca. one tenth of the crude linear peptide. A TCEP/MPAA solution was prepared by dissolving TCEP (57.4 mg

, HPLC (anal.) t R = 9.8 min (method A)

, ESI-MS: average m/z = 1190.0 (2+), 793.8 (3+), vol.595

, Formation of Ln 3+ complexes 1 Ln (Ln = Tb or Gd

, 4 mg) and LnCl 3 (50 µmol, 15 mg) were dissolved in H 2 O and the pH was adjusted to 6.2 using NaOH. The solution was stirred overnight under argon (after 1h, the pH was controlled and adjusted to 6.2 if needed), TCEP, issue.18

, Tb : HPLC (anal.) t R = 9.9 min (method A)

. Esi-ms,

, Gd : HPLC (anal.) t R = 9.9 min (method A)

. Esi-ms,

, LCC2 GdGd : HPLC (anal.) t R = 9, vol.9

, ESI-MS: average m/z = 1257.2 (3+), 943.3 (4+), 754.5 (5+) / calculated av

, LCC2? Ln1Ln2 (Ln1 = Tb or Gd

=. Ln2 and G. Eu-or, After HPLC purification and freeze-drying, LCC2? Ln1Ln2 was obtained as a white powder, analytical HPLC (ca

, LCC2? TbEu : HPLC (anal.) t R = 9

. Esi-ms, , vol.733

, 8 (5+) / calculated av. m/z = 1214, vol.736

, LCC2? TbGd : HPLC (anal.) t R = 9

, 3 (4+), 730.1 (5+) / calculated av. m/z = 1216, ESI-MS: average m/z = 1216.2 (3+), vol.912, p.33

, ESI-MS: average m/z = 1214.0 (3+), 910.7 (4+), 728.8 (5+) / calculated av

V. Chapitre,

F. P. Guengerich, J. Biol. Chem, vol.284, pp.709-709, 2009.

F. Vella, Biochem. Educ, vol.23, pp.115-115, 1995.

R. Portmann, M. Solioz, and . Lett, , vol.579, pp.3589-3595, 2005.

I. Voskoboinik, J. Mar, and J. Camakaris, Biochem. Biophys. Res. Commun, vol.301, pp.488-494, 2003.

M. Baharvand, S. Manifar, R. Akkafan, H. Mortazavi, S. Sabour et al., , vol.37, pp.331-336, 2014.

M. Foster and S. Samman, Nutrients, vol.4, pp.676-694, 2012.

A. Gaeta and R. C. Hider, Br. J. Pharmacol, vol.146, pp.1041-1059, 2005.

C. Andreini, L. Banci, I. Bertini, and A. Rosato, J. Proteome Res, vol.5, pp.196-201, 2006.

C. Castillo-durán and G. Weisstaub, J. Nutr, vol.133, pp.1494-1501, 2003.

T. Fukada, S. Yamasaki, K. Nishida, M. Murakami, and T. Hirano, J. Biol. Inorg. Chem, vol.16, pp.1123-1134, 2011.

T. Kocha?czyk, A. Drozd, and A. Kr??el, Metallomics, vol.7, pp.244-257, 2015.

C. J. Frederickson, S. W. Suh, D. Silva, C. J. Frederickson, and R. B. Thompson, J. Nutr, vol.130, pp.1471-83, 2000.

S. Yamasaki, K. Sakata-sogawa, A. Hasegawa, T. Suzuki, K. Kabu et al., J. Cell Biol, vol.177, pp.637-645, 2007.

D. J. Eide, Biochim. Biophys. Acta, vol.1763, pp.711-722, 2006.

P. Bonaventura, G. Benedetti, F. Albarède, and P. Miossec, Autoimmun. Rev, vol.14, pp.277-285, 2015.

G. A. Kerchner, L. M. Canzoniero, S. P. Yu, C. Ling, and D. W. Choi, J. Physiol, vol.528, issue.1, pp.39-52, 2000.

S. Yamasaki, A. Hasegawa, S. Hojyo, W. Ohashi, T. Fukada et al., PLoS One, vol.7, p.39654, 2012.

A. Bouron and J. Oberwinkler, Pflugers Arch, vol.466, pp.381-387, 2014.

L. M. Canzoniero, D. M. Turetsky, and D. W. Choi, J. Neurosci, vol.19, p.31, 1999.

D. Ragozzino, A. Giovannelli, V. Degasperi, F. Eusebi, and F. Grassi, J. Physiol, vol.529, issue.1, pp.83-91, 2000.

R. A. Festa and D. J. Thiele, Curr. Biol, vol.21, pp.877-883, 2011.

T. D. Rae, P. J. Schmidt, R. A. Pufahl, V. C. Culotta, and T. V. O'halloran, Science, vol.284, pp.805-808, 1999.

O. Bandmann, K. H. Weiss, and S. G. Kaler, Lancet Neurol, vol.14, pp.103-113, 2015.

J. , J. A. Cotruvo, A. T. Aron, K. M. Ramos-torres, and C. J. Chang, Chem. Soc. Rev, vol.44, pp.4400-4414, 2015.

S. Lutsenko, Curr. Opin. Chem. Biol, vol.14, pp.211-217, 2010.

J. T. Rubino and K. J. Franz, J. Inorg. Biochem, vol.107, pp.129-143, 2012.

M. Laitaoja, J. Valjakka, and J. Jänis, Inorg. Chem, vol.52, pp.10983-10991, 2013.

J. C. Smith, G. P. Butrimovitz, and W. C. Purdy, Clin. Chem, vol.25, pp.1487-1491, 1979.

D. Pröfrock and A. Prange, Appl. Spectrosc, vol.66, pp.843-868, 2012.

Z. Qin, J. A. Caruso, B. Lai, A. Matusch, and J. S. Becker, Metallomics, vol.3, pp.28-37, 2011.

R. J. Gillies, J. Cell. Biochem, vol.87, pp.231-238, 2002.

Y. Mikata, Y. Sato, S. Takeuchi, Y. Kuroda, H. Konno et al., , vol.42, pp.9688-9698, 2013.

G. K. Walkup, S. C. Burdette, S. J. Lippard, and R. Y. Tsien, J. Am. Chem. Soc, vol.122, pp.5644-5645, 2000.

T. Hirano, K. Kikuchi, Y. Urano, T. Higuchi, and T. Nagano, J. Am. Chem. Soc, vol.122, pp.12399-12400, 2000.

N. C. Lim, L. Yao, H. C. Freake, and C. Brückner, Bioorg. Med. Chem. Let, vol.13, pp.2251-2254, 2003.

N. C. Lim and C. Brückner, Chem. Commun, vol.0, pp.1094-1095, 2004.

Y. Wu, X. Peng, B. Guo, J. Fan, Z. Zhang et al., Org. Biomol. Chem, vol.3, pp.1387-1392, 2005.

H. Koutaka, J. Kosuge, N. Fukasaku, T. Hirano, K. Kikuchi et al., Chem. Pharm. Bull, vol.52, pp.700-703, 2004.

J. Wang, Y. Xiao, Z. Zhang, X. Qian, Y. Yang et al., J. Mater. Chem, vol.15, pp.2836-2839, 2005.

P. Du and S. J. Lippard, Inorg. Chem, vol.49, pp.10753-10755, 2010.

H. Sasaki, K. Hanaoka, Y. Urano, T. Terai, and T. Nagano, Bioorg. Med. Chem, vol.19, pp.1072-1078, 2011.

B. Tang, H. Huang, K. Xu, L. Tong, G. Yang et al., Chem. Commun, vol.0, pp.3609-3611, 2006.

K. P. Carter, A. M. Young, and A. E. Palmer, Chem. Rev, vol.114, pp.4564-4601, 2014.

K. R. Gee, Z. Zhou, D. Ton-that, S. L. Sensi, and J. H. Weiss, Cell Calcium, vol.31, pp.245-251, 2002.

M. Taki, J. L. Wolford, and T. V. O'halloran, J. Am. Chem. Soc, vol.126, pp.712-713, 2004.

S. Maruyama, K. Kikuchi, T. Hirano, Y. Urano, and T. Nagano, J. Am. Chem. Soc, vol.124, pp.10650-10651, 2002.

K. P. Divya, S. Sreejith, P. Ashokkumar, K. Yuzhan, Q. Peng et al., Chem. Sci, vol.5, pp.3469-3474, 2014.

N. Lin, Q. Zhang, X. Xia, M. Liang, S. Zhang et al., , vol.7, pp.21446-21451, 2017.

W. Qiao, M. Mooney, A. J. Bird, D. R. Winge, and D. J. Eide, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.8674-8679, 2006.

E. M. Van-dongen, L. M. Dekkers, K. Spijker, E. W. Meijer, L. W. Klomp et al., J. Am. Chem. Soc, vol.128, pp.10754-10762, 2006.

E. M. Van-dongen, T. H. Evers, L. M. Dekkers, E. W. Meijer, L. W. Klomp et al., J. Am. Chem. Soc, vol.129, pp.3494-3495, 2007.

J. L. Vinkenborg, T. J. Nicolson, E. A. Bellomo, M. S. Koay, G. A. Rutter et al., Nat. Methods, vol.6, pp.737-740, 2009.

I. A. Brand and J. Kleineke, J. Biol. Chem, vol.271, pp.1941-1949, 1996.

A. Krezel and W. Maret, J. Biol. Inorg. Chem, vol.11, pp.1049-1062, 2006.

R. A. Bozym, R. B. Thompson, A. K. Stoddard, and C. A. Fierke, ACS Chem. Biol, vol.1, pp.103-111, 2006.

P. J. Dittmer, J. G. Miranda, J. A. Gorski, and A. E. Palmer, J. Biol. Chem, vol.284, pp.16289-16297, 2009.

L. Yang, R. Mcrae, M. M. Henary, R. Patel, B. Lai et al., Proc Natl Acad Sci, vol.102, pp.11179-11184, 2005.

M. T. Morgan, P. Bagchi, and C. J. Fahrni, J. Am. Chem. Soc, vol.133, pp.15906-15909, 2011.

L. Zeng, E. W. Miller, A. Pralle, E. Y. Isacoff, and C. J. Chang, J. Am. Chem. Soc, vol.128, pp.10-11, 2006.

S. C. Dodani, D. W. Domaille, C. I. Nam, E. W. Miller, L. A. Finney et al., , vol.108, pp.5980-5985, 2011.

D. W. Domaille, L. Zeng, and C. J. Chang, J. Am. Chem. Soc, vol.132, pp.1194-1195, 2010.

S. V. Wegner, F. Sun, N. Hernandez, and C. He, Chem. Commun, vol.47, pp.2571-2573, 2011.

S. V. Wegner, H. Arslan, M. Sunbul, J. Yin, and C. He, J. Am. Chem. Soc, vol.132, pp.2567-2569, 2010.

M. S. Koay, B. M. Janssen, M. Merkx, and D. Trans, , vol.42, pp.3230-3232, 2013.

J. G. Bünzli, J. Coord. Chem, vol.67, pp.3706-3733, 2014.

P. Caravan, J. J. Ellison, T. J. Mcmurry, and R. B. Lauffer, Chem. Rev, vol.99, pp.2293-2352, 1999.

J. G. Bünzli, Coord. Chem. Rev, vol.293, pp.19-47, 2015.

F. J. Steemers, W. Verboom, D. N. Reinhoudt, E. B. Van-der-tol, and J. W. Verhoeven, J. Am. Chem. Soc, vol.117, pp.9408-9414, 1995.

M. Latva, H. Takalo, V. Mukkala, C. Matachescu, J. C. Rodríguez-ubis et al., J. Lumin, vol.75, pp.149-169, 1997.

A. Thibon and V. C. Pierre, Anal. Bioanal. Chem, vol.394, pp.107-120, 2009.

A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker et al., J. Chem. Soc, vol.0, pp.493-504, 21999.

O. Sénèque and J. Latour, J. Am. Chem. Soc, vol.132, pp.17760-17774, 2010.

S. Allen, A. Badarau, C. Dennison, and D. Trans, , vol.42, pp.3233-3239, 2013.

S. S. Krishna, I. Majumdar, and N. V. Grishin, Nucleic Acids Res, vol.31, pp.532-550, 2003.

G. K. Walkup and B. Imperiali, J. Am. Chem. Soc, vol.118, pp.3053-3054, 1996.

H. A. Godwin and J. M. Berg, J. Am. Chem. Soc, vol.118, pp.6514-6515, 1996.

S. Franke, G. Grass, C. Rensing, and D. H. Nies, J. Bacteriol, vol.185, pp.3804-3812, 2003.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin et al., Nat. Chem. Biol, vol.4, pp.107-109, 2008.

D. Bang and S. B. Kent, Angew. Chem. Int. Ed, vol.43, pp.2534-2538, 2004.

L. Raibaut, H. Adihou, R. Desmet, A. F. Delmas, V. Aucagne et al., Chem. Sci, vol.4, pp.4061-4066, 2013.

P. M. Gramlich, S. Warncke, J. Gierlich, and T. Carell, Angew. Chem. Int. Ed, vol.47, pp.3442-3444, 2008.

P. E. Dawson, T. W. Muir, I. Clark-lewis, and S. B. Kent, Science, vol.266, pp.776-779, 1994.

A. B. Clippingdale, C. J. Barrow, and J. D. Wade, J. Pept. Sci, vol.6, pp.225-234, 2000.

X. Li, T. Kawakami, and S. Aimoto, Tetrahedron Lett, vol.39, pp.8669-8672, 1998.

X. Li, T. Kawakami, and S. Aimoto, Peptide Science -Present and Future, pp.579-580, 1999.

J. Brask, F. Albericio, and K. J. Jensen, Org. Lett, vol.5, pp.2951-2953, 2003.

J. Tulla-puche and G. Barany, J. Org. Chem, vol.69, pp.4101-4107, 2004.

H. Hojo, Y. Onuma, Y. Akimoto, Y. Nakahara, and Y. Nakahara, Tetrahedron Lett, vol.48, pp.25-28, 2007.

N. Ollivier, L. Raibaut, A. Blanpain, R. Desmet, J. Dheur et al., J. Pept. Sci, vol.20, pp.92-97, 2014.

W. P. Jencks, J. Am. Chem. Soc, vol.81, pp.475-481, 1959.

K. Rose, J. Am. Chem. Soc, vol.116, pp.30-33, 1994.

V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, Angew. Chem. Int. Ed, vol.114, pp.2708-2711, 2002.

C. W. Tornøe, C. Christensen, and M. , J. Org. Chem, vol.67, pp.3057-3064, 2002.

S. Bräse, C. Gil, K. Knepper, and V. Zimmermann, Angew. Chem. Int. Ed, vol.44, pp.5188-5240, 2005.

V. Hong, S. I. Presolski, C. Ma, and M. G. Finn, Angew. Chem. Int. Ed, vol.48, pp.9879-9883, 2009.

D. Lin, S. Saleh, and D. C. Liebler, Chem. Res. Toxicol, vol.21, pp.2361-2369, 2008.

T. Sørensen, A. M. Kenwright, and S. Faulkner, Chem. Sci, vol.6, pp.2054-2059, 2015.

P. Ge, P. R. Selvin, and B. Chem, , vol.15, pp.1088-1094, 2004.

D. Kovacs, X. Lu, L. S. Mészáros, M. Ott, J. Andres et al., J. Am. Chem. Soc, vol.139, pp.5756-5767, 2017.

J. Farrera-sinfreu, M. Royo, and F. Albericio, Tetrahedron Lett, vol.43, pp.7813-7815, 2002.

N. Thieriet, J. Alsina, E. Giralt, F. Guibé, and F. Albericio, Tetrahedron Lett, vol.38, pp.7275-7278, 1997.

A. M. Reynolds, B. R. Sculimbrene, and B. Imperiali, Bioconjugate Chem, vol.19, pp.588-591, 2008.

E. Boll, H. Drobecq, N. Ollivier, A. Blanpain, L. Raibaut et al., Nat. Protocols, vol.10, pp.269-292, 2015.

N. Ollivier, J. Dheur, R. Mhidia, A. Blanpain, and O. Melnyk, Org. Lett, vol.12, pp.5238-5241, 2010.

J. Moreau, E. Guillon, J. Pierrard, J. Rimbault, M. Port et al., Chem. Eur. J, vol.10, pp.5218-5232, 2004.

M. Li and P. R. Selvin, J. Am. Chem. Soc, vol.117, pp.8132-8138, 1995.

Z. Xiao and A. G. Wedd, Nat. Prod. Rep, vol.27, pp.768-789, 2010.

M. Isaac, L. Raibaut, C. Cepeda, A. Roux, D. Boturyn et al., Chem. Eur. J, vol.23, pp.10992-10996, 2017.

D. Derossi, A. H. Joliot, G. Chassaing, and A. Prochiantz, J. Biol. Chem, vol.269, pp.10444-10450, 1994.

E. Vivès, P. Brodin, and B. Lebleu, J. Biol. Chem, vol.272, pp.16010-16017, 1997.

P. E. Thorén, D. Persson, P. Isakson, M. Goksör, A. Onfelt et al., Biochem. Biophys. Res. Commun, vol.307, pp.100-107, 2003.

S. Futaki, T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka et al., J. Biol. Chem, vol.276, pp.5836-5840, 2001.

J. Oehlke, A. Scheller, B. Wiesner, E. Krause, M. Beyermann et al., Biochim. Biophys. Acta, vol.1414, pp.127-139, 1998.

M. Pooga, M. Hällbrink, M. Zorko, L. Uuml, and F. J. Langel, , vol.12, pp.67-77, 1998.

A. Elmquist, M. Lindgren, T. Bartfai, U. Langel, and E. , Cell Res, vol.269, pp.237-244, 2001.

M. R. Yeaman and N. Y. Yount, Pharmacol. Rev, vol.55, pp.27-55, 2003.

O. Toke, Biopolymers, vol.80, pp.717-735, 2005.

Y. Shai and Z. Oren, Peptides, vol.22, pp.1629-1641, 2001.

T. Hara, Y. Mitani, K. Tanaka, N. Uematsu, A. Takakura et al., Biochemistry, vol.40, pp.12395-12399, 2001.

S. Deshayes, T. Plénat, P. Charnet, G. Divita, G. Molle et al., Biochim. Biophys. Acta, vol.1758, pp.1846-1851, 2006.

S. T. Henriques and M. A. Castanho, Biochemistry, vol.43, pp.9716-9724, 2004.

J. , Acta Physiol. Scand, vol.177, pp.437-447, 2003.

P. Lundberg and U. Langel, J. Mol. Recognit, vol.16, pp.227-233, 2003.

A. Aderem and D. M. Underhill, Annu. Rev. Immunol, vol.17, pp.593-623, 1999.

, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.4930-4934, 2006.

M. C. Kerr and R. D. Teasdale, Traffic, vol.10, pp.364-371, 2009.

J. Mercer and A. Helenius, Nat. Cell Biol, vol.11, pp.510-520, 2009.

S. D. Conner and S. L. Schmid, Nature, vol.422, pp.37-44, 2003.

S. R. Schwarze and S. F. Dowdy, Trends Pharmacol. Sci, vol.21, pp.45-48, 2000.

W. B. Kauffman, T. Fuselier, J. He, and W. C. Wimley, Trends Biochem. Sci, vol.40, pp.749-764, 2015.

E. Eiríksdóttir, K. Konate, U. Langel, G. Divita, and S. Deshayes, BBA Mol. Cell Res, vol.1798, pp.1119-1128, 2010.

J. P. Richard, K. Melikov, E. Vives, C. Ramos, B. Verbeure et al., J. Biol. Chem, vol.278, pp.585-590, 2003.

J. P. Richard, K. Melikov, H. Brooks, P. Prevot, B. Lebleu et al., J. Biol. Chem, vol.280, pp.15300-15306, 2005.

J. S. Wadia, R. V. Stan, and S. F. Dowdy, Nat. Med, vol.10, pp.310-315, 2004.

I. D. Alves, C. Bechara, A. Walrant, Y. Zaltsman, C. Jiao et al., PLoS One, vol.6, 2011.

C. Bechara, M. Pallerla, F. Burlina, F. Illien, S. Cribier et al., Cell. Mol. Life Sci, vol.72, pp.809-820, 2015.

W. Yau, W. C. Wimley, K. Gawrisch, and S. H. White, Biochemistry, vol.37, pp.14713-14718, 1998.

H. A. Rydberg, M. Matson, H. L. Åmand, E. K. Esbjörner, and B. Nordén, Biochemistry, vol.51, pp.5531-5539, 2012.

A. A. Stepanenko and V. V. Dmitrenko, Gene, vol.569, pp.182-190, 2015.

A. Dadabhoy, S. Faulkner, and P. G. Sammes, J. Chem. Soc, vol.0, pp.348-357, 2002.

H. Tsutsumi, S. Abe, T. Mino, W. Nomura, and H. Tamamura, Chembiochem, vol.12, pp.691-694, 2011.

G. Piszczek, B. P. Maliwal, I. Gryczynski, J. Dattelbaum, and J. R. Lakowicz, J. Fluoresc, vol.11, pp.101-107, 2001.

Z. Qian, J. R. Larochelle, B. Jiang, W. Lian, R. L. Hard et al., Biochemistry, vol.53, pp.4034-4046, 2014.

N. Nischan, H. D. Herce, F. Natale, N. Bohlke, N. Budisa et al., Angew. Chem. Int. Ed, vol.54, pp.1950-1953, 2015.

F. F. Hilário, M. D. Traoré, V. Zwick, L. Berry, C. A. Simões-pires et al., Org. Lett, vol.19, pp.612-615, 2017.

J. S. Appelbaum, J. R. Larochelle, B. A. Smith, D. M. Balkin, J. M. Holub et al., Chem. Biol, vol.19, pp.819-830, 2012.

S. Foillard, M. O. Rasmussen, J. Razkin, D. Boturyn, and P. Dumy, J. Org. Chem, vol.73, pp.983-991, 2008.

J. G. Cannon, J. Med. Chem, vol.40, pp.631-631, 1997.

Z. Xiao, L. Gottschlich, R. Van-der-meulen, S. R. Udagedara, and A. G. Wedd, Metallomics, vol.5, pp.501-513, 2013.

P. Kamau and R. B. Jordan, Inorg. Chem, vol.40, pp.3879-3883, 2001.

M. Montalti, A. Credi, L. Prodi, and M. T. Gandolfi, Handbook of Photochemistry, 2006.

Y. Kai and K. Imakubo, Photochem. Photobiol, vol.29, pp.261-265, 1979.

V. M. Mazhul, &. , A. V. Timoshenko, E. M. Zaitseva, S. G. Loznikova et al., Reviews in Fluorescence, pp.37-67, 2008.

J. G. Bünzli and S. V. Eliseeva, , pp.1-45, 2011.

B. D. Schlyer, D. G. Steel, and A. Gafni, J. Biol. Chem, vol.270, pp.22890-22894, 1995.

M. Isaac, S. A. Denisov, A. Roux, D. Imbert, G. Jonusauskas et al., Angew. Chem., Int. Ed, vol.54, pp.11453-11456, 2015.

T. J. Sørensen, A. M. Kenwright, and S. Faulkner, Chem. Sci, vol.6, pp.2054-2059, 2015.

A. Zaïm, S. V. Eliseeva, L. Guénée, H. Nozary, S. Petoud et al., Chem.-Eur. J, vol.20, pp.12172-12182, 2014.

W. D. Horrocks, J. P. Bolender, W. D. Smith, and R. M. Supkowski, J. Am. Chem. Soc, vol.119, pp.5972-5973, 1997.

H. Masuhara, H. Shioyama, T. Saito, K. Hamada, S. Yasoshima et al., J. Phys. Chem, vol.88, pp.5868-5873, 1984.

G. Schwarzenbach and H. Flaschka, Complexometric Titrations, 1969.

A. M. Brouwer, Pure Appl. Chem, vol.83, pp.2213-2228, 2011.

H. Ishida, J. G. Bünzli, and A. Beeby, Pure Appl. Chem, vol.88, pp.701-711, 2016.

R. M. Smith and A. E. Martell, Critical Stability Constants, pp.128-158, 1989.

R. M. Smith, A. E. Martell, and R. J. Motekaitis, Critically Selected Stability Constants of Metal Complexes Database, vol.46, 2001.

R. Czoika, A. Heintzb, E. Johna, and W. Marczaka, Acta Phys. Pol, vol.114, pp.52-56, 2008.