. .. , 94 10.2 SEM images of disk-shaped of Bi 2 T e 2.85 Se 0, vol.15, p.94, 2018.

, And the porosity of the pressed sample is approximately 0.1. . . 95 10.4 Amplitude of PTR signal (blue circle) compared to the theoretical prediction (red curve) of Bi 2 T e 2.85 Se 0.15 alloy film. The inset figure highlights a calibration of the amplitude of the PTR signal of a 0.5 mm thick stainless steel, Analogical schematic of disk-shaped nanograins after pressing and drying. The thickness of the nanograins averages 10 nm

R. References-anufriev, J. Maire, and M. Nomura, Reduction of thermal conductivity by surface scattering of phonons in periodic silicon nanostructures, Physical Review B, vol.93, issue.4, p.39, 2016.

R. Anufriev, A. Ramiere, J. Maire, and M. Nomura, Heat guiding and focusing using ballistic phonon transport in phononic nanostructures, Nature communications, vol.8, p.44, 2017.

R. Anufriev, R. Yanagisawa, and M. Nomura, Aluminium nanopillars reduce thermal conductivity of silicon nanobeams, Nanoscale, vol.9, issue.39, pp.15083-15088, 2017.

A. A. Balandin and D. L. Nika, Phononics in low-dimensional materials, Materials Today, vol.15, issue.6, p.7, 2012.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus et al., Nanoscale design to enable the revolution in renewable energy, Energy & Environmental Science, vol.2, issue.6, p.559, 2009.

K. Biswas, J. He, I. D. Blum, C. Wu, T. P. Hogan et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature, vol.489, issue.7416, p.5, 2012.

R. Bude, Synthèses et caractérisations de matériaux thermoélec-triques nanostructurés, 2018.

K. J. Button, Electromagnetic waves in matter. Part I, vol.8, p.26, 1983.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar et al., Nanoscale thermal transport, Journal of applied physics, vol.93, issue.2, p.5, 2003.

G. Cataldo, J. A. Beall, H. Cho, B. Mcandrew, M. D. Niemack et al., Infrared dielectric properties of low-stress silicon nitride, p.26, 2012.

D. Chen and G. Chen, Heat flow in thin films via surface phononpolaritons, Frontiers in Heat and Mass Transfer (FHMT), issue.2, p.7, 2010.

D. A. Chen and G. Chen, Measurement of silicon dioxide surReferences face phonon-polariton propagation length by attenuated total reflection, Applied Physics Letters, vol.91, issue.12, p.7, 2007.

D. A. Chen, A. Narayanaswamy, and G. Chen, Surface phononpolariton mediated thermal conductivity enhancement of amorphous thin films, Physical Review B, vol.72, issue.15, p.10, 2005.

D. A. Chen, A. Narayanaswamy, and G. Chen, Surface phonon-polariton mediated thermal conductivity enhancement of amorphous thin films, Phys. Rev. B, vol.72, p.29, 2005.

J. Cuffe, J. K. Eliason, A. A. Maznev, K. C. Collins, J. A. Johnson et al., Reconstructing phonon mean-freepath contributions to thermal conductivity using nanoscale membranes, Physical Review B, vol.91, issue.24, p.78, 2015.

V. Dusastre, Materials for sustainable energy: a collection of peerreviewed research and review articles from, Nature Publishing Group. World Scientific, p.5, 2011.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz et al., Terahertz Polaritonics. Annual Review of Materials Research, vol.37, issue.1, p.10, 2007.

S. Gluchko, B. Palpant, S. Volz, R. Braive, and T. Antoni, Thermal excitation of broadband and long-range surface waves on sio2 submicron films, Applied Physics Letters, vol.110, issue.26, p.5, 1996.
URL : https://hal.archives-ouvertes.fr/hal-01558508

B. Graczykowski, A. E. Sachat, J. S. Reparaz, M. Sledzinska, M. R. Wagner et al., Thermal conductivity and air-mediated losses in periodic porous silicon membranes at high temperatures, Nature Communications, vol.8, issue.1, p.415, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01631287

J. Greffet, R. Carminati, K. Joulain, J. Mulet, S. Mainguy et al., Coherent emission of light by thermal sources, Nature, vol.416, issue.6876, p.19, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01626213

A. Griffin, F. Brotzen, and P. Loos, The effective transverse thermal conductivity of amorphous si3n4 thin films, Journal of applied physics, vol.76, issue.7, pp.4007-4011, 1994.

K. Huang, Lattice Vibrations and Optical Waves in Ionic Crystals, Nature, vol.167, issue.4254, p.9, 1951.

F. J. Joseph, Théorie analytique de la Chaleur, p.3, 1822.

K. Joulain, J. Mulet, F. Marquier, R. Carminati, and J. Greffet, Surface Electromagnetic Waves Thermally Excited: Radiative Heat Transfer, Coherence Properties and Casimir Forces, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00004659

K. Kadoya, N. Matsunaga, and A. Nagashima, Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase, Journal of Physical and Chemical Reference Data, vol.14, issue.4, p.72, 1985.

S. Lee and D. G. Cahill, Heat transport in thin dielectric films, Journal of applied physics, vol.81, issue.6, pp.2590-2595, 1997.

G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis et al., Room-temperature superfluidity in a polariton condensate, Nature Physics, vol.13, issue.9, p.10, 2017.

C. H. Mastrangelo, Y. Tai, and R. S. Muller, Thermophysical properties of low-residual stress, silicon-rich, lpcvd silicon nitride films, Sensors and Actuators A: Physical, vol.23, issue.1-3, p.466, 1990.

J. Mulet, K. Joulain, R. Carminati, and J. Greffet, Nanoscale radiative heat transfer between a small particle and a plane surface, Applied Physics Letters, vol.78, p.7, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01626070

M. Nomura, Control of Phonon Transport by Phononic Crystals and Application to Thermoelectric Materials *, 2016.

J. Ordonez-miranda, M. Hermens, I. Nikitin, V. G. Kouznetsova, O. Van-der-sluis et al., Measurement and modeling of the effective thermal conductivity of sintered silver pastes, International Journal of Thermal Sciences, vol.108, p.95, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01336753

J. Ordonez-miranda, L. Tranchant, T. Tokunaga, B. Kim, B. Palpant et al., Anomalous thermal conductivity by surface phonon-polaritons of polar nano thin films due to their asymmetric surrounding media, Journal of Applied Physics, vol.113, issue.8, p.25, 2013.
DOI : 10.1063/1.4793498

URL : https://hal.archives-ouvertes.fr/hal-00833017

A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Zeitschrift für Physik A Hadrons and nuclei, vol.216, issue.4, p.9, 1968.

E. D. Palik, Handbook of optical constants of solids, p.26, 1998.

E. Pokatilov, D. Nika, and A. Balandin, Acoustic-phonon propagation in rectangular semiconductor nanowires with elastically dissimilar barriers, Physical Review B, vol.72, issue.11, p.113311, 2005.
DOI : 10.1103/physrevb.72.113311

E. P. Pokatilov, D. L. Nika, and A. A. Balandin, A phonon depletion effect in ultrathin heterostructures with acoustically mismatched layers, Applied Physics Letters, vol.85, issue.5, pp.825-827, 2004.
DOI : 10.1063/1.1775033

E. P. Pokatilov, D. L. Nika, and A. A. Balandin, Acoustic phonon engineering in coated cylindrical nanowires. Superlattices and Microstructures 38, pp.168-183, 2005.
DOI : 10.1016/j.spmi.2005.06.001

D. Queen and F. Hellman, Thin film nanocalorimeter for heat capacity measurements of 30 nm films, Review of Scientific Instruments, vol.80, issue.6, p.35, 2009.

J. S. Reparaz, E. Chavez-angel, M. R. Wagner, B. Graczykowski, J. Gomisbresco et al., A novel contactless technique for thermal field mapping and thermal conductivity determination: Two-Laser Raman Thermometry, REVIEW OF SCIENTIFIC INSTRU-MENTS, vol.85, p.70, 2014.
DOI : 10.1063/1.4867166

URL : https://digital.csic.es/bitstream/10261/126815/1/Two-Laser%20Raman%20Thermometry.pdf

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin et al., Radiative heat transfer at the nanoscale, Nature Photonics, vol.3, issue.9, pp.514-517, 2009.
DOI : 10.1038/nphoton.2009.144

URL : https://hal.archives-ouvertes.fr/hal-00545171

M. Sledzinska, B. Graczykowski, F. Alzina, J. S. Lopez, and C. Torres, Fabrication of phononic crystals on freestanding silicon membranes, Microelectronic Engineering, vol.149, p.69, 2016.
DOI : 10.1016/j.mee.2015.09.004

URL : https://digital.csic.es/bitstream/10261/159458/1/accesoRestringido.pdf

I. Staude and C. Rockstuhl, To scatter or not to scatter, Nature Materials, vol.15, issue.8, p.7, 2016.

T. Ha, D. , D. Thuy, V. Hoa, T. Van et al., On the theory of three types of polaritons (phonon, exciton and plasmon polaritons), J. Phys, vol.865, p.10, 2017.


S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, A GaAs polariton light-emitting diode operating near room temperature, Nature, vol.453, issue.7193, p.10, 2008.
DOI : 10.1038/nature06979

S. Volz, J. Ordonez-miranda, A. Shchepetov, M. Prunnila, J. Ahopelto et al., Nanophononics: state of the art and perspectives, The European Physical Journal B, vol.89, issue.1, p.5, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01336733

S. Volz, J. Shiomi, M. Nomura, and K. Miyazaki, Heat conduction in nanostructured materials, Journal of Thermal Science and Technology, vol.11, issue.1, p.5, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01336742

V. Lukowicz, M. , E. Abbe, T. Schmiel, M. Tajmar et al., Thermoelectric Generators on Satellitesâ"An Approach for Waste Heat Recovery in Space, Energies, vol.9, issue.7, p.12, 2016.

F. Yang, J. R. Sambles, and G. W. Bradberry, Long-range surface modes supported by thin films, Physical Review B, vol.44, issue.11, p.25, 1991.
DOI : 10.1103/physrevb.44.5855

C. Yeh and F. I. Shimabukuro, The Essence of Dielectric Waveguides, p.25, 2008.

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, p.10, 2010.

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, , p.105, 2002.

, ZnO as a material mostly adapted for the realization of roomtemperature polariton lasers, Physical Review B, vol.65, issue.16, p.10

T. Zeng and G. Chen, Phonon Heat Conduction in Thin Films: Impacts of Thermal Boundary Resistance and Internal Heat Generation, Journal of Heat Transfer, vol.123, issue.2, p.5, 2001.