J. Melrose, C. Shu, J. M. Whitelock, and M. S. Lord, The cartilage extracellular matrix as a transient developmental scaffold for growth plate maturation, Matrix Biol, pp.363-383, 2016.

J. Dubail and S. S. Apte, Insights on ADAMTS proteases and ADAMTS-like proteins from mammalian genetics, Matrix Biol. 44, vol.46, pp.24-37, 2015.

S. S. Apte, A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms, J. Biol. Chem, vol.284, pp.31493-31497, 2009.

S. Nandadasa, S. Foulcer, and S. S. Apte, The multiple, complex roles of versican and its proteolytic turnover by ADAMTS proteases during embryogenesis, Matrix Biol, vol.35, pp.34-41, 2014.

A. Colige, Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene, Am. J. Hum. Genet, vol.65, pp.308-317, 1999.

I. A. Kramerova, Papilin in development; a pericellular protein with a homology to the ADAMTS metalloproteinases, Development, vol.127, pp.5475-5485, 2000.

L. Goff and C. , ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-beta bioavailability regulation, Nat. Genet, vol.40, pp.1119-1123, 2008.

L. Goff and C. , Mutations in the TGF? binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias, Am. J. Hum. Genet, vol.89, pp.7-14, 2011.

D. Hubmacher, Adamtsl2 deletion results in bronchial fibrillin microfibril accumulation and bronchial epithelial dysplasia -a novel mouse model providing insights into geleophysic dysplasia, Dis. Model. Mech, vol.8, pp.487-499, 2015.

A. M. Mcinerney-leo, Mutations in LTBP3 cause acromicric dysplasia and geleophysic dysplasia, J. Med. Genet, vol.53, pp.457-464, 2016.

S. S. Chaudhry, Fibrillin-1 regulates the bioavailability of TGFbeta1, J. Cell. Biol, vol.176, pp.355-367, 2007.

K. K. Mak, H. M. Kronenberg, P. T. Chuang, S. Mackem, and Y. Yang, Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy, Development, vol.135, issue.11, pp.1947-56, 2008.

C. J. Liu, Transcriptional activation of cartilage oligomeric matrix protein by Sox9, Sox5, and Sox6 transcription factors and CBP/p300 coactivators, Front. Biosci, vol.12, pp.3899-3910, 2007.

G. B. Collin, Disruption of murine Adamtsl4 results in zonular fiber detachment from the lens and in retinal pigment epithelium dedifferentiation, Hum. Mol. Genet, vol.24, pp.6958-6974, 2015.

D. Ahram, A homozygous mutation in ADAMTSL4 causes autosomal-recessive isolated ectopia lentis, Am. J. Hum. Genet, vol.84, pp.274-278, 2009.

N. Dagoneau, ADAMTS10 mutations in autosomal recessive Weill-Marchesani syndrome, Am. J. Hum. Genet, vol.87, pp.801-806, 2004.

J. Morales, Homozygous mutations in ADAMTS10 and ADAMTS17 cause lenticular myopia, ectopia lentis, glaucoma, spherophakia, and short stature, Am. J. Hum. Genet, vol.85, pp.558-568, 2009.

C. J. Liu, ADAMTS-7: a metalloproteinase that directly binds to and degrades cartilage oligomeric matrix protein, FASEB J, vol.20, pp.988-990, 2006.

C. J. Liu, ADAMTS-12 associates with and degrades cartilage oligomeric matrix protein, J. Biol. Chem, vol.281, pp.15800-15808, 2006.

Y. Lai, ADAMTS-7 forms a positive feedback loop with TNF-? in the pathogenesis of osteoarthritis, Ann. Rheum. Dis, vol.73, pp.1575-1584, 2014.

S. L. Dallas, Fibronectin regulates latent transforming growth factor-beta (TGF beta) by controlling matrix assembly of latent TGF beta-binding protein-1, J. Biol. Chem, vol.280, pp.18871-18880, 2005.

R. Kinsey, Fibrillin-1 microfibril deposition is dependent on fibronectin assembly, Cell Sci, vol.121, pp.2696-2704, 2008.

D. Hubmacher and S. S. Apte, Genetic and functional linkage between ADAMTS superfamily proteins and fibrillin-1: a novel mechanism influencing microfibril assembly and function, Cell. Mol. Life Sci, vol.68, pp.3137-3148, 2011.

S. A. Cain, Fibrillin-1 mutations causing weill-marchesani syndrome and acromicric and geleophysic dysplasias disrupt heparan sulfate interactions, PLoS One, vol.7, p.48634, 2012.

D. A. Yadin, Structure of the fibrillin-1 N-terminal domains suggests that heparan sulfate regulates the early stages of microfibril assembly, Structure, vol.21, pp.1743-1756, 2013.

L. Ballut, Mapping of heparin/heparan sulfate binding sites on ?v?3 integrin by molecular docking, J. Mol. Recognit, vol.26, pp.76-85, 2013.

G. Sengle, Microenvironmental regulation by fibrillin-1, PLoS Genet, vol.8, p.1002425, 2012.

A. Aszodi, Beta1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis, Genes Dev, vol.17, pp.2465-2479, 2003.

M. Morikawa, R. Derynck, K. Miyazono, T. Tgf-?-and-the, and . Family, Context-Dependent Roles in Cell and Tissue Physiology, Cold Spring Harb. Perspect. Biol, vol.8, 2016.

K. A. Piróg-garcia, Reduced cell proliferation and increased apoptosis are significant pathological mechanisms in a murine model of mild pseudoachondroplasia resulting from a mutation in the C-terminal domain of COMP, Hum. Mol. Genet, vol.16, pp.2072-2088, 2007.

A. Jonquoy, A novel tyrosine kinase inhibitor restores chondrocyte differentiation and promotes bone growth in a gain-of-function Fgfr3 mouse model, Hum. Mol. Genet, vol.21, pp.841-851, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01019795

, Acknowledgments The work presented here was supported by ANR R09183KS and FP7 Sybil program

;. C. Cormier-daire, L. Goff, and . Delhon, This program has received a state subsidy managed by the National Research Agency under the "Investments for the future" program (ANR-A0-IAHU-01). We thank the animal facilities and histology platform from Imagine institute, FRM prix Pomaret de Lalande

L. Goff and C. , ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-beta bioavailability regulation, Nat. Genet, vol.40, pp.1119-1123, 2008.

L. Goff and C. , Mutations in the TGF? binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias, Am. J. Hum. Genet, vol.89, pp.7-14, 2011.

H. C. Dietz and R. E. Pyeritz, Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders, Hum. Mol. Genet. 4 Spec, pp.1799-1809, 1995.

D. Hubmacher, Adamtsl2 deletion results in bronchial fibrillin microfibril accumulation and bronchial epithelial dysplasia -a novel mouse model providing insights into geleophysic dysplasia, Dis. Model. Mech, vol.8, pp.487-499, 2015.
DOI : 10.1242/dmm.017046

URL : http://dmm.biologists.org/content/8/5/487.full.pdf

L. Zilberberg, Specificity of latent TGF-ß binding protein (LTBP) incorporation into matrix: role of fibrillins and fibronectin, J. Cell. Physiol, vol.227, pp.3828-3836, 2012.

S. S. Chaudhry, Fibrill in-1 regulates the bioavailability of TGFbeta1, J Cell Biol, vol.176, pp.355-367, 2007.

C. M. Dubois, Processing of transforming growth factor beta 1 precursor by human furin convertase, J Biol. Chem, vol.270, pp.10618-10624, 1995.
DOI : 10.1074/jbc.270.18.10618

J. Saharinen and J. Keski-oja, Specific sequence motif of 8-Cys repeats of TGF-? binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta, Mol Biol Cell, vol.11, pp.2691-2704, 2000.

Z. Isogai, R. N. Ono, S. Ushiro, D. R. Keene, Y. Chen et al., Latent transforming growth factor beta-binding protein 1 interacts with fibrillin and is a microfibril-associated protein, J Biol Chem, vol.278, pp.2750-2757, 2003.
DOI : 10.1074/jbc.m209256200

URL : http://www.jbc.org/content/278/4/2750.full.pdf

D. Sheppard, Integrin-mediated activation of latent transforming growth factor ?, Cancer Metastasis Rev, vol.24, pp.395-402, 2005.
DOI : 10.1007/s10555-005-5131-6

S. Smaldone and F. Ramirez, Fibrillin microfibrils in bone physiology, Matrix Biol. 52, vol.54, pp.191-197, 2016.
DOI : 10.1016/j.matbio.2015.09.004

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808491

H. Nistala, Differential effects of alendronate and losartan therapy on osteopenia and aortic aneurysm in mice with severe Marfan syndrome, Hum. Mol. Genet, vol.19, pp.4790-4798, 2010.

J. R. Cook, Generation of Fbn1 conditional null mice implicates the extracellular microfibrils in osteoprogenitor recruitment, Genes. N. Y. N, vol.50, pp.635-641, 2000.

L. Zhang, The stem cell niche of human livers: symmetry between development and regeneration, Hepatology, vol.48, pp.1598-607, 2008.

S. Smaldone, Fibrillin-1 Regulates Skeletal Stem Cell Differentiation by Modulating TGF? Activity Within the Marrow Niche, J. Bone Miner. Res. Off, vol.31, pp.86-97, 2016.
DOI : 10.1002/jbmr.2598

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/jbmr.2598

S. A. Cain, Fibrillin-1 mutations causing weill-marchesani syndrome and acromicric and geleophysic dysplasias disrupt heparan sulfate interactions, PLoS One, vol.7, p.48634, 2012.
DOI : 10.1371/journal.pone.0048634

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0048634&type=printable

L. Goff, C. Cormier-daire, and V. , Genetic and molecular aspects of acromelic dysplasia, Pediatr. Endocrinol. Rev. PER, vol.6, pp.418-423, 2009.

L. Goff and C. , ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTSlike proteins in TGF-beta bioavailability regulation, Nat. Genet, vol.40, pp.1119-1123, 2008.

S. Allali, Molecular screening of ADAMTSL2 gene in 33 patients reveals the genetic heterogeneity of geleophysic dysplasia, J. Med. Genet, vol.48, pp.417-421, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00614843

L. Goff and C. , Mutations in the TGF? Binding-Protein-Like Domain 5 of FBN1 Are Responsible for Acromicric and Geleophysic Dysplasias, Am. J. Hum. Genet, vol.89, pp.7-14, 2011.

A. M. Mcinerney-leo, Mutations in LTBP3 cause acromicric dysplasia and geleophysic dysplasia, J. Med. Genet, vol.53, pp.457-464, 2016.

P. Maroteaux, R. Stanescu, V. Stanescu, R. Rappaport, and . Dysplasia, Am. J. Med. Genet, vol.24, pp.447-459, 1986.

L. Faivre, In frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome, J. Med. Genet, vol.40, pp.34-36, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00143439

N. Dagoneau, ADAMTS10 mutations in autosomal recessive Weill-Marchesani syndrome, Am. J. Hum. Genet, vol.75, pp.801-806, 2004.

J. Morales, Homozygous mutations in ADAMTS10 and ADAMTS17 cause lenticular myopia, ectopia lentis, glaucoma, spherophakia, and short stature, Am. J. Hum. Genet, vol.85, pp.558-568, 2009.

R. Haji-seyed-javadi, LTBP2 mutations cause Weill-Marchesani and Weill-Marchesanilike syndrome and affect disruptions in the extracellular matrix, Hum. Mutat, vol.33, pp.1182-1187, 2012.

L. Goff and C. , Mutations at a single codon in Mad homology 2 domain of SMAD4 cause Myhre syndrome, Nat. Genet, vol.44, pp.85-88, 2011.

E. Zelzer and B. R. Olsen, The genetic basis for skeletal diseases, Nature, vol.423, pp.343-348, 2003.

V. Lefebvre and P. Bhattaram, Vertebrate skeletogenesis, Curr. Top. Dev. Biol, vol.90, pp.291-317

G. Karsenty, H. M. Kronenberg, and C. Settembre, Genetic Control of Bone Formation, Annu. Rev. Cell Dev. Biol, vol.25, pp.629-648, 2009.

E. M. Thompson, A. Matsiko, E. Farrell, D. J. Kelly, and F. J. O'brien, Recapitulating endochondral ossification: a promising route to in vivo bone regeneration, J. Tissue Eng. Regen. Med, vol.9, pp.889-902, 2015.

J. Martel-pelletier, Nat. Rev. Dis. Primer, vol.2, p.16072, 2016.

V. Abad, The role of the resting zone in growth plate chondrogenesis, Endocrinology, vol.143, pp.1851-1857, 2002.

P. Smits, The transcription factors L-Sox5 and Sox6 are essential for cartilage formation

, Dev. Cell, vol.1, pp.277-290, 2001.

C. Maes, Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels, Dev. Cell, vol.19, pp.329-344, 2010.

L. Yang, K. Y. Tsang, H. C. Tang, D. Chan, and K. S. Cheah, Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.12097-12102, 2014.

E. Kozhemyakina, A. B. Lassar, and E. Zelzer, A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation, Dev. Camb. Engl, vol.142, pp.817-831, 2015.

J. D. Green, Multifaceted signaling regulators of chondrogenesis: Implications in cartilage regeneration and tissue engineering, Genes Dis, vol.2, pp.307-327, 2015.

T. Wagner, Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9, Cell, vol.79, pp.1111-1120, 1994.

V. Lefebvre and P. Smits, Transcriptional control of chondrocyte fate and differentiation, Birth Defects Res. Part C Embryo Today Rev, vol.75, pp.200-212, 2005.

V. Lefebvre, P. Li, and B. De-crombrugghe, A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene, EMBO J, vol.17, pp.5718-5733, 1998.

H. Akiyama, M. Chaboissier, J. F. Martin, A. Schedl, and B. De-crombrugghe, The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6, Genes Dev, vol.16, pp.2813-2828, 2002.

D. M. Bell, SOX9 directly regulates the type-II collagen gene, Nat. Genet, vol.16, pp.174-178, 1997.

V. Y. Leung, SOX9 Governs Differentiation Stage-Specific Gene Expression in Growth

, Plate Chondrocytes via Direct Concomitant Transactivation and Repression, PLoS Genet, vol.7, 2011.

P. W. Ingham and A. P. Mcmahon, Hedgehog signaling in animal development: paradigms and principles, Genes Dev, vol.15, pp.3059-3087, 2001.

B. St-jacques, M. Hammerschmidt, and A. P. Mcmahon, Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation, Genes Dev, vol.13, pp.2072-2086, 1999.

F. Long, X. M. Zhang, S. Karp, Y. Yang, and A. P. Mcmahon, Genetic manipulation of hedgehog

, Dev. Camb. Engl, vol.128, pp.5099-5108, 2001.

A. Vortkamp, Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein, Science, vol.273, pp.613-622, 1996.

H. M. Kronenberg, Developmental regulation of the growth plate, Nature, vol.423, pp.332-336, 2003.

F. Otto, Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development, Cell, vol.89, pp.765-771, 1997.

J. Massagué, S. Cheifetz, F. T. Boyd, and J. L. Andres, TGF-beta receptors and TGF-beta binding proteoglycans: recent progress in identifying their functional properties, Ann. N. Y. Acad. Sci, vol.593, pp.59-72, 1990.

X. Yang, TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage, J. Cell Biol, vol.153, pp.35-46, 2001.
DOI : 10.1083/jcb.153.1.35

URL : http://jcb.rupress.org/content/153/1/35.full.pdf

C. M. Ferguson, Smad2 and 3 mediate transforming growth factor-beta1-induced inhibition of chondrocyte maturation, Endocrinology, vol.141, pp.4728-4735, 2000.

U. Valcourt, J. Gouttenoire, A. Moustakas, D. Herbage, and F. Mallein-gerin, Functions of transforming growth factor-beta family type I receptors and Smad proteins in the hypertrophic maturation and osteoblastic differentiation of chondrocytes, J. Biol. Chem, vol.277, pp.33545-33558, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00313311

K. W. Finnson, W. L. Parker, P. Ten-dijke, M. Thorikay, A. Philip et al.,

, ALK5/Smad3 signaling and expression of extracellular matrix components in human chondrocytes

, J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res, vol.23, pp.896-906, 2008.

E. N. Blaney-davidson, ALK1/ALK5 ratio as a cause for elevated MMP-13

, expression in osteoarthritis in humans and mice, J. Immunol. Baltim. Md, vol.182, pp.7937-7945, 1950.

E. Minina, C. Kreschel, M. C. Naski, D. M. Ornitz, and A. Vortkamp, Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation, Dev. Cell, vol.3, pp.439-449, 2002.

B. K. Zehentner, C. Dony, and H. Burtscher, The transcription factor Sox9 is involved in BMP-2

, J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res, vol.14, pp.1734-1741, 1999.

D. M. Ornitz and P. J. Marie, Fibroblast growth factor signaling in skeletal development and disease, Genes Dev, vol.29, pp.1463-1486, 2015.

K. Shimokawa, Cell surface heparan sulfate chains regulate local reception of FGF signaling in the mouse embryo, Dev. Cell, vol.21, pp.257-272, 2011.

D. M. Ornitz and N. Itoh, The Fibroblast Growth Factor signaling pathway

, Rev. Dev. Biol, vol.4, pp.215-266, 2015.

K. G. Peters, S. Werner, G. Chen, and L. T. Williams, Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse, Dev. Camb. Engl, vol.114, pp.233-243, 1992.

J. S. Colvin, B. A. Bohne, G. W. Harding, D. G. Mcewen, and D. M. Ornitz, Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3, Nat. Genet, vol.12, pp.390-397, 1996.

M. Bekhouche and A. Colige, The procollagen N-proteinases ADAMTS2, 3 and 14 in pathophysiology, Matrix Biol. J. Int. Soc. Matrix Biol. 44, vol.46, pp.46-53, 2015.

J. K. Mouw, G. Ou, and V. M. Weaver, Extracellular matrix assembly: a multiscale deconstruction, Nat. Rev. Mol. Cell Biol, vol.15, pp.771-785, 2014.

D. W. Rowe, J. R. Shapiro, M. Poirier, and S. Schlesinger, Diminished type I collagen synthesis and reduced alpha 1(I) collagen messenger RNA in cultured fibroblasts from patients with dominantly inherited (type I) osteogenesis imperfecta, J. Clin. Invest, vol.76, pp.604-611, 1985.

S. W. Li, Transgenic mice with targeted inactivation of the Col2 alpha 1 gene for collagen II develop a skeleton with membranous and periosteal bone but no endochondral bone

, Genes Dev, vol.9, pp.2821-2830, 1995.

A. Aszódi, D. Chan, E. Hunziker, J. F. Bateman, and R. Fässler, Collagen II Is Essential for the Removal of the Notochord and the Formation of Intervertebral Discs, J. Cell Biol, vol.143, pp.1399-1412, 1998.

T. Kirsch and K. Mark, Isolation of human type X collagen and immunolocalization in fetal human cartilage, Eur. J. Biochem, vol.196, pp.575-580, 1991.

Q. Zheng, Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo, J. Cell Biol, vol.162, pp.833-842, 2003.

M. L. Warman, A type X collagen mutation causes Schmid metaphyseal chondrodysplasia, Nat. Genet, vol.5, pp.79-82, 1993.

M. S. Ho, COL10A1 nonsense and frame-shift mutations have a gain-of-function effect on the growth plate in human and mouse metaphyseal chondrodysplasia type Schmid, Hum. Mol. Genet, vol.16, pp.1201-1215, 2007.

D. M. Ornitz and . Fgfs, heparan sulfate and FGFRs: complex interactions essential for development, BioEssays News Rev. Mol. Cell. Dev. Biol, vol.22, pp.108-112, 2000.

E. Ruoslahti and Y. Yamaguchi, Proteoglycans as modulators of growth factor activities, Cell, vol.64, pp.867-869, 1991.

B. Reinboth, E. Hanssen, E. G. Cleary, and M. A. Gibson, Molecular interactions of biglycan and decorin with elastic fiber components: biglycan forms a ternary complex with tropoelastin and microfibril-associated glycoprotein 1, J. Biol. Chem, vol.277, pp.3950-3957, 2002.

K. Tiedemann, B. Bätge, P. K. Müller, and D. P. Reinhardt,

, heparin/heparan sulfate, implications for microfibrillar assembly, J. Biol. Chem, vol.276, pp.36035-36042, 2001.

D. A. Yadin, Structure of the fibrillin-1 N-terminal domains suggests that heparan sulfate regulates the early stages of microfibril assembly, Struct. Lond. Engl, vol.21, pp.1743-1756, 1993.

D. V. Bax, Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation, J. Cell Sci, vol.120, pp.1383-1392, 2007.

L. Delhon, V. Cormier-daire, and C. L. Goff, Metalloproteinases and their inhibitors in the pathophysiology of heritable connective tissue disorders: current evidence, Metalloproteinases In Medicine, 2016.

A. Y. Strongin, Human 92kDa type IV collagenase: Functional analysis of fibronectin and carboxyl-end domains, Kidney Int, vol.43, pp.158-162, 1993.

H. R. Wiedemann and J. Spranger,

, Z. Kinderheilkd, vol.108, pp.171-186, 1970.

P. Maroteaux, A. Verloes, V. Stanescu, and R. Stanescu, Metaphyseal anadysplasia: a metaphyseal dysplasia of early onset with radiological regression and benign course, Am. J. Med. Genet, vol.39, pp.4-10, 1991.

A. W. Chung, Loss of elastic fiber integrity and reduction of vascular smooth muscle contraction resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in the thoracic aortic aneurysm in Marfan syndrome, Circ. Res, vol.101, pp.512-522, 2007.

A. C. Patel, W. H. Mcalister, and M. P. Whyte, Spondyloepimetaphyseal dysplasia: clinical and radiologic investigation of a large kindred manifesting autosomal dominant inheritance, and a review of the literature, Medicine (Baltimore), vol.72, pp.326-342, 1993.

P. Winchester, H. Grossman, W. N. Lim, and B. S. Danes, A new acid mucopolysaccharidosis with skeletal deformities simulating rheumatoid arthritis, Am. J. Roentgenol. Radium Ther. Nucl. Med, vol.106, pp.121-128, 1969.

B. R. Evans, Mutation of membrane type-1 metalloproteinase, MT1-MMP, causes the multicentric osteolysis and arthritis disease Winchester syndrome, Am. J. Hum. Genet, vol.91, pp.572-576, 2012.

K. Holmbeck, MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover, Cell, vol.99, pp.81-92, 1999.

A. Zankl, Torg syndrome is caused by inactivating mutations in MMP2 and is allelic to NAO and Winchester syndrome, J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res, vol.22, pp.329-333, 2007.

K. Inoue, A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism, J. Biol. Chem, vol.281, pp.33814-33824, 2006.

J. Oh, Mutations in two matrix metalloproteinase genes, MMP-2 and MT1-MMP, are synthetic lethal in mice, Oncogene, vol.23, pp.5041-5048, 2004.

K. Kuno, Molecular cloning of a gene encoding a new type of metalloproteinasedisintegrin family protein with thrombospondin motifs as an inflammation associated gene, J. Biol. Chem, vol.272, pp.556-562, 1997.

S. S. Apte, A Disintegrin-like and Metalloprotease (Reprolysin-type) with Thrombospondin Type 1 Motif (ADAMTS) Superfamily: Functions and Mechanisms, J. Biol. Chem, vol.284, pp.31493-31497, 2009.

G. C. Jones and G. P. Riley, ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis, Arthritis Res. Ther, vol.7, pp.160-169, 2005.

A. Colige, cDNA cloning and expression of bovine procollagen I N-proteinase: A new member of the superfamily of zinc-metalloproteinases with binding sites for cells and other matrix components, Proc. Natl. Acad. Sci. U. S. A, vol.94, pp.2374-2379, 1997.

K. Soejima, ADAMTS-13 cysteine-rich/spacer domains are functionally essential for von Willebrand factor cleavage, Blood, vol.102, pp.3232-3237, 2003.
DOI : 10.1182/blood-2003-03-0908

URL : http://www.bloodjournal.org/content/102/9/3232.full.pdf

R. Kelwick, I. Desanlis, G. N. Wheeler, and D. R. Edwards, The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family, Genome Biol, vol.16, p.113, 2015.

A. Hulin, Metallothionein-dependent up-regulation of TGF-?2 participates in the remodelling of the myxomatous mitral valve, Cardiovasc. Res, vol.93, pp.480-489, 2012.

T. Shindo, ADAMTS-1: a metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function, J. Clin. Invest, vol.105, pp.1345-1352, 2000.
DOI : 10.1172/jci8635

URL : http://www.jci.org/articles/view/8635/files/pdf

R. P. Somerville, Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1, J. Biol. Chem, vol.278, pp.9503-9513, 2003.

D. L. Silver, The Secreted Metalloprotease ADAMTS20 Is Required for Melanoblast Survival, PLoS Genet, vol.4, 2008.

P. Verma and K. Dalal, ADAMTS-4 and ADAMTS-5: key enzymes in osteoarthritis, J. Cell
DOI : 10.1002/jcb.23298

, Biochem, vol.112, pp.3507-3514, 2011.

J. Inagaki, ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor, Exp. Cell Res, vol.323, pp.263-275, 2014.

A. Colige, Domains and maturation processes that regulate the activity of ADAMTS-2, a metalloproteinase cleaving the aminopropeptide of fibrillar procollagens types I-III and V, J. Biol. Chem, vol.280, pp.34397-34408, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00314147

M. Bekhouche, Determination of the substrate repertoire of ADAMTS2, 3, and 14 significantly broadens their functions and identifies extracellular matrix organization and TGF-? signaling as primary targets, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.30, pp.1741-1756, 2016.

H. Ogino, Secreted Metalloproteinase ADAMTS-3 Inactivates Reelin, J. Neurosci. Off. J
DOI : 10.1523/jneurosci.3632-16.2017

URL : http://www.jneurosci.org/content/jneuro/37/12/3181.full.pdf

, Soc. Neurosci, vol.37, pp.3181-3191, 2017.

X. Zheng, Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura, J. Biol. Chem, vol.276, pp.41059-41063, 2001.

R. P. Somerville, ADAMTS7B, the full-length product of the ADAMTS7 gene, is a chondroitin sulfate proteoglycan containing a mucin domain, J. Biol. Chem, vol.279, pp.35159-35175, 2004.

C. Liu, ADAMTS-12 associates with and degrades cartilage oligomeric matrix protein
DOI : 10.1074/jbc.m513433200

URL : http://www.jbc.org/content/281/23/15800.full.pdf

, Biol. Chem, vol.281, pp.15800-15808, 2006.

Y. Luan, Inhibition of ADAMTS-7 and ADAMTS-12 degradation of cartilage oligomeric matrix protein by alpha-2-macroglobulin, Osteoarthritis Cartilage, vol.16, pp.1413-1420, 2008.

C. Liu, The role of ADAMTS-7 and ADAMTS-12 in the pathogenesis of arthritis, Nat. Clin

, Pract. Rheumatol, vol.5, pp.38-45, 2009.

L. Wang, X. Wang, and W. Kong, ADAMTS-7, a novel proteolytic culprit in vascular remodeling

, Sheng Li Xue Bao, vol.62, pp.285-294, 2010.

W. E. Kutz, Functional analysis of an ADAMTS10 signal peptide mutation in WeillMarchesani syndrome demonstrates a long-range effect on secretion of the full-length enzyme, Hum. Mutat, vol.29, pp.1425-1434, 2008.

W. E. Kutz, ADAMTS10 protein interacts with fibrillin-1 and promotes its deposition in extracellular matrix of cultured fibroblasts, J. Biol. Chem, vol.286, pp.17156-17167, 2011.

S. A. Cain, A. Mcgovern, A. K. Baldwin, C. Baldock, and C. M. Kielty, Fibrillin-1 Mutations Causing Weill-Marchesani Syndrome and Acromicric and Geleophysic Dysplasias Disrupt Heparan Sulfate Interactions, PLoS ONE, vol.7, 2012.

S. A. Cain, E. J. Mularczyk, M. Singh, T. Massam-wu, and C. M. Kielty, ADAMTS-10 and -6 differentially regulate cell-cell junctions and focal adhesions, Sci. Rep, vol.6, 2016.

A. Colige, Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene, Am. J. Hum. Genet, vol.65, pp.308-317, 1999.

C. M. Lapière and B. V. Nusgens, Ehlers-Danlos type VII-C, or human dermatosparaxis. The offspring of a union between basic and clinical research, Arch. Dermatol, vol.129, pp.1316-1319, 1993.

B. V. Nusgens, Evidence for a relationship between Ehlers-Danlos type VII C in humans and bovine dermatosparaxis, Nat. Genet, vol.1, pp.214-217, 1992.

R. J. Fernandes, Procollagen II amino propeptide processing by ADAMTS-3. Insights on dermatosparaxis, J. Biol. Chem, vol.276, pp.31502-31509, 2001.

A. Colige, Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3, J. Biol. Chem, vol.277, pp.5756-5766, 2002.

S. W. Li, Transgenic mice with inactive alleles for procollagen N-proteinase (ADAMTS-2) develop fragile skin and male sterility, Biochem. J, vol.355, pp.271-278, 2001.

A. L. Sieron, Structure and function of procollagen C-proteinase (mTolloid) domains determined by protease digestion, circular dichroism, binding to procollagen type I, and computer modeling, Biochemistry (Mosc.), vol.39, pp.3231-3239, 2000.

K. Takahara, Type I procollagen COOH-terminal proteinase enhancer protein: identification, primary structure, and chromosomal localization of the cognate human gene (PCOLCE), J. Biol. Chem, vol.269, pp.26280-26285, 1994.

M. A. Aldahmesh, The syndrome of microcornea, myopic chorioretinal atrophy, and telecanthus (MMCAT) is caused by mutations in ADAMTS18, Hum. Mutat, vol.34, pp.1195-1199, 2013.

M. A. Aldahmesh, Identification of ADAMTS18 as a gene mutated in Knobloch syndrome, J. Med. Genet, vol.48, pp.597-601, 2011.

I. A. Kramerova, Papilin in development; a pericellular protein with a homology to the ADAMTS metalloproteinases, Dev. Camb. Engl, vol.127, pp.5475-5485, 2000.

K. Hendee, Identification and functional analysis of an ADAMTSL1 variant associated with a complex phenotype including congenital glaucoma, craniofacial, and other systemic features in a three-generation human pedigree, Hum. Mutat, 2017.

B. Koo, ADAMTS-like 2 (ADAMTSL2) is a secreted glycoprotein that is widely expressed during mouse embryogenesis and is regulated during skeletal myogenesis, Matrix Biol, vol.26, pp.431-441, 2007.

G. Sengle, Microenvironmental regulation by fibrillin-1, PLoS Genet, vol.8, p.1002425, 2012.
DOI : 10.1371/journal.pgen.1002425

URL : https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1002425&type=printable

J. A. Aragon-martin, Role of ADAMTSL4 mutations in FBN1 mutation-negative ectopia lentis patients, Hum. Mutat, vol.31, pp.1622-1631, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00552405

L. A. Gabriel, ADAMTSL4, a secreted glycoprotein widely distributed in the eye, binds fibrillin-1 microfibrils and accelerates microfibril biogenesis, Invest. Ophthalmol. Vis. Sci, vol.53, pp.461-469, 2012.

H. L. Bader, A Disintegrin-Like and Metalloprotease Domain Containing Thrombospondin Type 1 Motif-like 5 (ADAMTSL5) is a novel fibrillin-1-, fibrillin-2-, and heparinbinding member of the ADAMTS superfamily containing a netrin-like module, Matrix Biol. J. Int. Soc. Matrix Biol, vol.31, pp.398-411, 2012.

K. Tsutsui, ADAMTSL-6 is a novel extracellular matrix protein that binds to fibrillin-1 and promotes fibrillin-1 fibril formation, J. Biol. Chem, vol.285, pp.4870-4882, 2010.

M. Saito, ADAMTSL6? protein rescues fibrillin-1 microfibril disorder in a Marfan syndrome mouse model through the promotion of fibrillin-1 assembly, J. Biol. Chem, vol.286, pp.38602-38613, 2011.

K. Janssens, P. Ten-dijke, S. Janssens, and W. Van-hul, Transforming growth factor-beta1 to the bone, Endocr. Rev, vol.26, pp.743-774, 2005.

T. Li, R. J. O'keefe, and D. Chen, TGF-beta signaling in chondrocytes, Front. Biosci. J. Virtual Libr, vol.10, pp.681-688, 2005.

D. B. Pateder, PTHrP expression in chondrocytes, regulation by TGF-beta, and interactions between epiphyseal and growth plate chondrocytes, Exp. Cell Res, vol.256, pp.555-562, 2000.

I. B. Robertson and D. B. Rifkin, Regulation of the Bioavailability of TGF-? and TGF-?-Related Proteins, Cold Spring Harb. Perspect. Biol, vol.8, 2016.

J. P. Annes, Y. Chen, J. S. Munger, and D. B. Rifkin, Integrin alphaVbeta6-mediated activation of latent TGF-beta requires the latent TGF-beta binding protein-1, J. Cell Biol, vol.165, pp.723-734, 2004.

J. S. Munger, J. G. Harpel, F. G. Giancotti, and D. B. Rifkin, Interactions between growth factors and integrins: latent forms of transforming growth factor-beta are ligands for the integrin alphavbeta1, Mol. Biol. Cell, vol.9, pp.2627-2638, 1998.

Y. Sato and D. B. Rifkin, Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture, J. Cell Biol, vol.109, pp.309-315, 1989.

Q. Yu and I. Stamenkovic, Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-? and promotes tumor invasion and angiogenesis, Genes Dev, vol.14, p.141, 2000.

G. Ge and D. S. Greenspan, BMP1 controls TGF?1 activation via cleavage of latent TGF?-binding protein, J. Cell Biol, vol.175, pp.111-120, 2006.

U. Valcourt, L. B. Alcaraz, J. Exposito, C. Lethias, and L. Bartholin, Tenascin-X: beyond the architectural function, Cell Adhes. Migr, vol.9, pp.154-165, 2015.

L. B. Alcaraz, Tenascin-X promotes epithelial-to-mesenchymal transition by activating latent TGF-?, J. Cell Biol, vol.205, pp.409-428, 2014.

R. O. Oreffo, G. R. Mundy, S. M. Seyedin, and L. F. Bonewald, Activation of the bone-derived latent TGF beta complex by isolated osteoclasts, Biochem. Biophys. Res. Commun, vol.158, pp.817-823, 1989.

J. Massagué, J. Seoane, and D. Wotton, Smad transcription factors, Genes Dev, vol.19, pp.2783-2810, 2005.

H. Zhang, W. Hu, and F. Ramirez, Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils, J. Cell Biol, vol.129, pp.1165-1176, 1995.

H. C. Dietz and R. E. Pyeritz, Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders, Hum. Mol. Genet. 4 Spec, pp.1799-1809, 1995.

M. Aubart, The clinical presentation of Marfan syndrome is modulated by expression of wild-type FBN1 allele, Hum. Mol. Genet, vol.24, pp.2764-2770, 2015.

E. A. Putnam, H. Zhang, F. Ramirez, and D. M. Milewicz, Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital contractural arachnodactyly, Nat. Genet, vol.11, pp.456-458, 1995.

E. Arteaga-solis, Regulation of limb patterning by extracellular microfibrils, J. Cell Biol, vol.154, pp.275-282, 2001.

S. Smaldone and F. Ramirez, Fibrillin microfibrils in bone physiology, Matrix Biol. J. Int. Soc. Matrix Biol, pp.191-197, 2016.
DOI : 10.1016/j.matbio.2015.09.004

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808491

F. Ramirez and L. Y. Sakai, Biogenesis and function of fibrillin assemblies, Cell Tissue Res, vol.339, pp.71-82, 2010.

C. M. Kielty and C. A. Shuttleworth, Fibrillin-containing microfibrils: structure and function in health and disease, Int. J. Biochem. Cell Biol, vol.27, pp.747-760, 1995.
DOI : 10.1016/1357-2725(95)00028-n

D. Hubmacher, Biogenesis of extracellular microfibrils: Multimerization of the fibrillin-1

, C terminus into bead-like structures enables self-assembly, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.6548-6553, 2008.

C. M. Kielty, Fibrillin: from microfibril assembly to biomechanical function, Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol.357, pp.207-217, 2002.
DOI : 10.1017/cbo9780511546327.007

G. Lin, Homo- and heterotypic fibrillin-1 and -2 interactions constitute the basis for the assembly of microfibrils, J. Biol. Chem, vol.277, pp.50795-50804, 2002.

A. Marson, Homotypic Fibrillin-1 Interactions in Microfibril Assembly, J. Biol. Chem, vol.280, pp.5013-5021, 2005.
DOI : 10.1074/jbc.m409029200

URL : http://www.jbc.org/content/280/6/5013.full.pdf

L. Sabatier, Fibrillin assembly requires fibronectin, Mol. Biol. Cell, vol.20, pp.846-858, 2009.
DOI : 10.1091/mbc.e08-08-0830

URL : http://europepmc.org/articles/pmc2633374?pdf=render

D. Hubmacher, K. Tiedemann, and D. P. Reinhardt, Fibrillins: from biogenesis of microfibrils to signaling functions, Curr. Top. Dev. Biol, vol.75, pp.93-123, 2006.

C. M. Kielty, Elastic fibres in health and disease, Expert Rev. Mol. Med, vol.8, pp.1-23, 2006.

N. L. Charbonneau, In vivo studies of mutant fibrillin-1 microfibrils, J. Biol. Chem, vol.285, pp.24943-24955, 2010.

K. E. Gregory, The prodomain of BMP-7 targets the BMP-7 complex to the extracellular matrix, J. Biol. Chem, vol.280, pp.27970-27980, 2005.

G. Sengle, Targeting of bone morphogenetic protein growth factor complexes to fibrillin, J. Biol. Chem, vol.283, pp.13874-13888, 2008.

L. R. Anderson, T. W. Owens, and M. J. Naylor, Integrins in development and cancer, Biophys. Rev, vol.6, pp.191-202, 2013.

M. Pfaff, D. P. Reinhardt, L. Y. Sakai, and R. Timpl, Cell adhesion and integrin binding to recombinant human fibrillin-1, FEBS Lett, vol.384, pp.247-250, 1996.

H. Sakamoto, Cell-type specific recognition of RGD-and non-RGD-containing cell binding domains in fibrillin-1, J. Biol. Chem, vol.271, pp.4916-4922, 1996.

D. V. Bax, Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by alpha 5 beta 1 and alpha v beta 3 integrins, J. Biol. Chem, vol.278, pp.34605-34616, 2003.

J. Jovanovic, alphaVbeta6 is a novel receptor for human fibrillin-1. Comparative studies of molecular determinants underlying integrin-rgd affinity and specificity, J. Biol. Chem, vol.282, pp.6743-6751, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00264692

E. Tsuruga, Integrin alphavbeta3 regulates microfibril assembly in human periodontal ligament cells, Tissue Cell, vol.41, pp.85-89, 2009.

E. El-hallous, Fibrillin-1 interactions with fibulins depend on the first hybrid domain and provide an adaptor function to tropoelastin, J. Biol. Chem, vol.282, pp.8935-8946, 2007.

J. E. Wagenseil and R. P. Mecham, New insights into elastic fiber assembly, Birth Defects Res. Part C Embryo Today Rev, vol.81, pp.229-240, 2007.

L. Carta, Fibrillins 1 and 2 perform partially overlapping functions during aortic development, J. Biol. Chem, vol.281, pp.8016-8023, 2006.
DOI : 10.1074/jbc.m511599200

URL : http://www.jbc.org/content/281/12/8016.full.pdf

B. A. Kozel, Elastic fiber formation: a dynamic view of extracellular matrix assembly using timer reporters, J. Cell. Physiol, vol.207, pp.87-96, 2006.

S. Hinderer, In vitro elastogenesis: instructing human vascular smooth muscle cells to generate an elastic fiber-containing extracellular matrix scaffold, Biomed. Mater. Bristol Engl, vol.10, p.34102, 2015.

B. L. Loeys, Mutations in fibrillin-1 cause congenital scleroderma: stiff skin syndrome, Sci. Transl. Med, vol.2, pp.23-43, 2010.

H. C. Dietz, Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene, Nature, vol.352, pp.337-339, 1991.

B. L. Loeys, The revised Ghent nosology for the Marfan syndrome, J. Med. Genet, vol.47, pp.476-485, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00557373

G. Jondeau, J. B. Michel, and C. Boileau, The translational science of Marfan syndrome, Heart Br. Card. Soc, vol.97, pp.1206-1214, 2011.

K. Miyazono, U. Hellman, C. Wernstedt, and C. H. Heldin, Latent high molecular weight complex of transforming growth factor beta 1. Purification from human platelets and structural characterization, J. Biol. Chem, vol.263, pp.6407-6415, 1988.

Y. Chen, Amino acid requirements for formation of the TGF-beta-latent TGF-beta binding protein complexes, J. Mol. Biol, vol.345, pp.175-186, 2005.

H. Troilo, R. Steer, R. F. Collins, C. M. Kielty, and C. Baldock, Independent multimerization of Latent TGF? Binding Protein-1 stabilized by cross-linking and enhanced by heparan sulfate, Sci. Rep, vol.6, 2016.

V. Todorovic and D. B. Rifkin, LTBPs, more than just an escort service, J. Cell. Biochem, vol.113, pp.410-418, 2012.
DOI : 10.1002/jcb.23385

URL : http://europepmc.org/articles/pmc3254144?pdf=render

C. Koski, J. Saharinen, and J. Keski-oja, Independent promoters regulate the expression of two amino terminally distinct forms of latent transforming growth factor-beta binding protein-1 (LTBP-1) in a cell type-specific manner, J. Biol. Chem, vol.274, pp.32619-32630, 1999.

R. Weiskirchen, M. Moser, K. Günther, S. Weiskirchen, and A. M. Gressner, The murine latent transforming growth factor-? binding protein (Ltbp-1) is alternatively spliced, and maps to a region syntenic to human chromosome 2p21-22, Gene, vol.308, pp.43-52, 2003.

A. Olofsson, Efficient association of an amino-terminally extended form of human latent transforming growth factor-beta binding protein with the extracellular matrix, J. Biol. Chem, vol.270, pp.31294-31297, 1995.

P. Colosetti, U. Hellman, C. Heldin, and K. Miyazono, Ca2+ binding of latent transforming growth factor-?1 binding protein, FEBS Lett, vol.320, pp.140-144, 1993.

M. A. Gibson, Bovine latent transforming growth factor beta 1-binding protein 2: molecular cloning, identification of tissue isoforms, and immunolocalization to elastin-associated microfibrils, Mol. Cell. Biol, vol.15, pp.6932-6942, 1995.

J. M. Shipley, Developmental Expression of Latent Transforming Growth Factor ? Binding Protein 2 and Its Requirement Early in Mouse Development, Mol. Cell. Biol, vol.20, pp.4879-4887, 2000.

B. Dabovic, Bone abnormalities in latent TGF-[beta] binding protein (Ltbp)-3-null mice indicate a role for Ltbp-3 in modulating TGF-[beta] bioavailability, J. Cell Biol, vol.156, pp.227-232, 2002.

C. Colarossi, Lung alveolar septation defects in Ltbp-3-null mice, Am. J. Pathol, vol.167, pp.419-428, 2005.

A. Sterner-kock, Disruption of the gene encoding the latent transforming growth factorbeta binding protein 4 (LTBP-4) causes abnormal lung development, cardiomyopathy, and colorectal cancer, Genes Dev, vol.16, pp.2264-2273, 2002.

A. F. Muro, Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan, J. Cell Biol, vol.162, pp.149-160, 2003.

R. Kinsey, Fibrillin-1 microfibril deposition is dependent on fibronectin assembly, J. Cell Sci, vol.121, pp.2696-2704, 2008.

S. Takahashi, The RGD motif in fibronectin is essential for development but dispensable for fibril assembly, J. Cell Biol, vol.178, pp.167-178, 2007.

S. L. Dallas, Fibronectin regulates latent transforming growth factor-beta (TGF beta) by controlling matrix assembly of latent TGF beta-binding protein-1, J. Biol. Chem, vol.280, pp.18871-18880, 2005.

E. L. George, H. S. Baldwin, and R. O. Hynes, Fibronectins are essential for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells, Blood, vol.90, pp.3073-3081, 1997.

B. L. Lima, A New Mouse Model for Marfan Syndrome Presents Phenotypic Variability Associated with the Genetic Background and Overall Levels of Fbn1 Expression, PLOS ONE, vol.5, p.14136, 2010.

L. Pereira, Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1, Proc. Natl. Acad. Sci. U. S. A, vol.96, pp.3819-3823, 1999.

D. P. Judge, Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome, J. Clin. Invest, vol.114, pp.172-181, 2004.

J. P. Habashi, Losartan, an AT1 Antagonist, Prevents Aortic Aneurysm in a Mouse Model of Marfan Syndrome, Science, vol.312, pp.117-121, 2006.

S. Chen, Losartan increases bone mass and accelerates chondrocyte hypertrophy in developing skeleton, Mol. Genet. Metab, vol.115, pp.53-60, 2015.

E. E. Gerber, Integrin-modulating therapy prevents fibrosis and autoimmunity in mouse models of scleroderma, Nature, vol.503, pp.126-130, 2013.

L. D. Siracusa, A tandem duplication within the fibrillin 1 gene is associated with the mouse tight skin mutation, Genome Res, vol.6, pp.300-313, 1996.

D. Hubmacher, L. W. Wang, R. P. Mecham, D. P. Reinhardt, and S. S. Apte, Adamtsl2 deletion results in bronchial fibrillin microfibril accumulation and bronchial epithelial dysplasia--a novel mouse model providing insights into geleophysic dysplasia, Dis. Model. Mech, vol.8, pp.487-499, 2015.

R. A. Packer, Clinical Phenotype of Musladin-Lueke Syndrome in 2 Beagles, J. Vet. Intern. Med, vol.31, pp.532-538, 2017.

G. B. Collin, Disruption of murine Adamtsl4 results in zonular fiber detachment from the lens and retinal pigment epithelium dedifferentiation, Hum. Mol. Genet, 2015.

Y. Lai, ADAMTS-7 forms a positive feedback loop with TNF-? in the pathogenesis of osteoarthritis, Ann. Rheum. Dis, vol.73, pp.1575-1584, 2014.

K. S. Cheah, E. T. Lau, P. K. Au, and P. P. Tam, Expression of the mouse alpha 1(II) collagen gene is not restricted to cartilage during development, Development, vol.111, pp.945-953, 1991.

S. Smaldone, Fibrillin-1 Regulates Skeletal Stem Cell Differentiation by Modulating TGF? Activity Within the Marrow Niche, J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res, vol.31, pp.86-97, 2016.

H. Nistala, Differential effects of alendronate and losartan therapy on osteopenia and aortic aneurysm in mice with severe Marfan syndrome, Hum. Mol. Genet, vol.19, pp.4790-4798, 2010.

J. R. Cook, Generation of Fbn1 conditional null mice implicates the extracellular microfibrils in osteoprogenitor recruitment, Genes. N. Y. N, vol.50, pp.635-641, 2000.

L. Zilberberg, Specificity of latent TGF-ß binding protein (LTBP) incorporation into matrix: role of fibrillins and fibronectin, J. Cell. Physiol, vol.227, pp.3828-3836, 2012.

S. S. Chaudhry, Mutation of the gene encoding fibrillin-2 results in syndactyly in mice, Hum. Mol. Genet, vol.10, pp.835-843, 2001.

P. Dijke and H. M. Arthur, Extracellular control of TGFbeta signalling in vascular development and disease, Nat. Rev. Mol. Cell Biol, vol.8, pp.857-869, 2007.

R. V. Lacro, Atenolol versus losartan in children and young adults with Marfan's syndrome, N. Engl. J. Med, vol.371, pp.2061-2071, 2014.

O. Milleron, Marfan Sartan: a randomized, double-blind, placebo-controlled trial, Eur. Heart J, vol.36, pp.2160-2166, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01201942

A. Page-mccaw, A. J. Ewald, and Z. Werb, Matrix metalloproteinases and the regulation of tissue remodelling, Nat Rev Mol Cell Biol, vol.8, issue.3, pp.221-233, 2007.

K. Maskos, Crystal structures of MMPs in complex with physiological and pharmacological inhibitors, Biochimie, vol.87, issue.3-4, pp.249-263, 2005.

H. Birkedal-hansen, W. G. Moore, and M. K. Bodden, Matrix metalloproteinases: a review, Crit Rev Oral Biol Med, vol.4, issue.2, pp.197-250, 1993.

Q. Yu and I. Stamenkovic, Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis, Genes Dev, vol.14, issue.2, pp.163-176, 2000.

S. S. Apte, A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motifs: the ADAMTS family, Intern J Biochem Cell Biol, vol.36, pp.981-985, 2004.

S. S. Apte, A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms, J Biol Chem, vol.284, pp.31493-31497, 2009.

M. Bekhouche and A. Colige, The procollagen N-proteinases ADAMTS2, 3 and 14 in pathophysiology, Matrix Biol, pp.46-53, 2015.

H. Stanton, F. M. Rogersoon, and C. J. East, ADAMTS5 is the major aggreganase in mouse cartilage in vivo and in vitro, Nature, vol.434, pp.648-652, 2005.

J. D. Sandy and C. Verscharen, Analysis of aggregan in human knee cartilage and synovial indicates that aggreganase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggregan whereas other protease activity is required for C-terminal processing in vivo, Biochem J, vol.358, pp.615-626, 2001.

Y. Asada, A. Sumiyoshi, T. Hayashi, J. Suzumiya, and K. Kaketami, Immunohistochemistry of vascular lesion in thrombotic thromcytopenic purpura with special reference to factor VIII related antigen, Thromb Res, vol.38, pp.469-479, 1985.

Y. Luan, L. Kong, and D. R. Howell, Inhibition of ADAMTS-7 and ADAMTS-12 degradation of cartilage oligomeric matrix protein by alpha-2-macroglobulin, Osteoarthritis Cartilage, vol.16, issue.11, pp.1413-1420, 2008.

C. J. Liu, W. Kong, and K. Ilalov, ADAMTS-7: a metalloproteinase that directly binds to and degrades cartilage oligomeric matrix protein, FASEB J, vol.20, issue.7, pp.988-990, 2006.

S. Hirohata, L. W. Wang, and M. Miyagi, Punctin, a novel ADAMTSlike molecule, ADAMTSL-1, in extracellular matrix, J Biol Chem, vol.277, pp.12182-12189, 2002.

N. G. Hall, P. Klenotic, B. Anand-apte, and S. S. Apte, ADAMTSL-3/punctin-2, a novel glycoprotein in extracellular matrix related to the ADAMTS family of metalloproteases, Matrix Biol, vol.22, pp.501-510, 2003.

B. H. Koo, L. Goff, C. Jungers, and K. A. , ADAMTS-like 2 (ADAMTSL2) is a secreted glycoprotein that is widely expressed during mouse embryogenesis and is regulated during skeletal myogenesis, Matrix Biol, vol.26, pp.431-441, 2007.

K. Tsutsui, R. Manabe, and T. Yamada, ADAMTSL-6 is a novel extracellular matrix protein that binds to fibrillin-1 and promotes fibrillin-1 fibril formation, J Biol Chem, vol.285, pp.4870-4882, 2010.

I. A. Kramerova, N. Kawaguchi, and L. I. Fessler, Papilin in development; a pericellular protein with a homology to the ADAMTS metalloproteinases, Development, vol.127, pp.5475-5485, 2000.

J. H. Fessler, I. Kramerova, A. Kramerov, Y. Chen, and L. I. Fessler, Papilin, a novel component of basement membranes, in relation to ADAMTS metalloproteases and ECM development, Int J Biochem Cell Biol, vol.36, issue.6, pp.1079-1084, 2004.

P. Maroteaux, A. Verloes, V. Stanescu, and R. Stanescu, Metaphysealanadysplasia: a metaphyseal dysplasia of early onset with radiological regression and benign course, Am J Med Genet, vol.39, pp.4-10, 1991.

H. Wiedemann and J. Spranger, Chondrodysplasia metaphysaria (Dysostosismetaphysaria) -ein neuer Typ?, Z Kinderheilk, vol.108, pp.171-186, 1970.

. Metalloproteinases, , vol.109, 2018.

. Delhon, Mutations in MMP9 and MMP13 determine the mode of inheritance and the clinical spectrum of metaphysealanadysplasia, Am J Hum Genet, vol.85, pp.168-178, 2009.

L. Bonafe, J. Liang, and M. W. Gorna, MMP13 mutations are the cause of recessive metaphyseal dysplasia, Spahr type, Am J Med Genet, vol.164, pp.1175-1179, 2014.

N. Ortega, D. J. Behonick, C. Colnot, D. N. Cooper, and Z. Werb, Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during endochondral bone formation, Mol Biol Cell, vol.16, issue.6, pp.3028-3039, 2005.

T. H. Vu, J. M. Shipley, and G. Bergers, MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes, Cell, vol.93, pp.411-422, 1998.

A. Chung, K. A. Yeung, and G. G. Sandor, Loss of elastic fiber integrity and reduction of vascular smooth muscle contraction resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in the thoracic aortic aneurysm in Marfan syndrome, Circ Res, vol.101, pp.512-522, 2007.

B. Dubois, S. Masure, and U. Hurtenbach, Resistance of young gelatinase B-deficient mice to experimental autoimmune encephalomyelitis and necrotizing tail lesions, J Clin Invest, vol.104, pp.1507-1515, 1999.

M. T. Engsig, Q. J. Chen, and T. H. Vu, Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones, J Cell Biol, vol.151, issue.4, pp.879-889, 2000.

P. G. Mitchell, H. A. Magna, and L. M. Reeves, Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage, J Clin Invest, vol.97, pp.761-768, 1996.

P. Reboul, J. Pelletier, G. Tardif, J. Cloutier, and J. Martel-pelletier, The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes: a role in osteoarthritis, J Clin Invest, vol.97, pp.2011-2019, 1996.
URL : https://hal.archives-ouvertes.fr/hal-01705146

D. Stickens, D. J. Behonick, and N. Ortega, Altered endochondral bone development in matrix metalloproteinase 13-deficient mice, Development, vol.131, issue.23, pp.5883-5895, 2004.

Z. U. Borochowitz, D. Scheffer, V. Adir, N. Dagoneau, A. Munnich et al., Spondylo-epi-metaphyseal dysplasia (SEMD) matrilin 3 type: homozygote matrilin 3 mutation in a novel form of SEMD, J Med Genet, vol.41, pp.366-372, 2004.

A. M. Kennedy, M. Inada, and S. M. Krane, MMP13 mutation causes spondyloepimetaphyseal dysplasia

, J Clin Invest, vol.115, pp.2832-2842, 2005.

A. C. Patel, W. H. Mcalister, and M. P. Whyte, Spondyloepimetaphyseal dysplasia: clinical and radiologic investigation of a large kindred manifesting autosomal dominant inheritance, and a review of the literature, Medicine, vol.72, pp.326-342, 1993.

P. Winchester, H. Grossman, W. N. Lim, and B. S. Danes, A new acid mucopolysaccharidosis with skeletal deformities simulating rheumatoid arthritis, Am J Roentgen, vol.106, pp.121-128, 1969.

B. R. Evans, R. A. Mosig, and M. Lobl, Mutation of membrane type-1 metalloproteinase, MT1-MMP, causes the multicentric osteolysis and arthritis disease Winchester syndrome, Am J Hum Genet, vol.91, pp.572-576, 2012.

K. Holmbeck, P. Bianco, and J. Caterina, MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover, Cell, vol.99, pp.81-92, 1999.

Z. Zhou, S. S. Apte, and R. Soininen, Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I, Proc Natl Acad Sci U S A, vol.97, issue.8, pp.4052-4057, 2000.

A. Zankl, L. Pachman, and A. Poznanski, Torg syndrome is caused by inactivating mutations in MMP2 and is allelic to NAO and Winchester syndrome, J Bone Miner Res, vol.22, pp.329-333, 2007.

J. S. Torg, A. M. Digeorge, J. A. Kirkpatrick, and M. M. Trujillo, Hereditary multicentric osteolysis with recessive transmission: a new syndrome, J Pediat, vol.75, pp.243-252, 1969.

D. M. Eisenstein, A. K. Poznanski, and L. M. Pachman, Torgosteolysis syndrome, Am J Med Genet, vol.80, pp.207-212, 1998.

K. Inoue, Y. Mikuni-takagaki, and K. Oikawa, A crucial role for matrix metalloproteinase 2 in osteocyticcanalicular formation and bone metabolism, J Biol Chem, vol.281, issue.44, pp.33814-33824, 2006.

J. Oh, R. Takahashi, and E. Adachi, Mutations in two matrix metalloproteinase genes, MMP-2 and MT1-MMP, are synthetic lethal in mice, Oncogene, vol.23, issue.29, pp.5041-5048, 2004.

C. J. Witkop, Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification, J Oral Path, vol.17, pp.547-553, 1989.

J. Kim, J. P. Simmer, and T. C. Hart, MMP-20 mutation in autosomal recessive pigmented hypomaturation amelogenesis imperfecta, J Med Genet, vol.42, pp.271-275, 2005.

D. Ozdemir, P. S. Hart, and O. H. Ryu, MMP20 active-site mutation in hypomaturation amelogenesis imperfecta, J Dent Res, vol.84, pp.1031-1035, 2005.

J. J. Caterina, Z. Skobe, and J. Shi, Enamelysin (matrix metalloproteinase 20)-deficient mice display an amelogenesis imperfecta phenotype, J Biol Chem, vol.277, pp.49598-49604, 2002.

M. Shin, Y. Hu, and C. E. Tye, Matrix metalloproteinase-20 over-expression is detrimental to enamel development: a Mus musculus model, PLoS One, vol.9, issue.1, p.86774, 2014.

C. M. Lapiere and B. V. Nusgens, Ehlers DAnlos type VIIC or human dermatosparaxis. The offspring of a union between basic and clinical research, Arch Dermatol, vol.129, pp.1316-1319, 1993.

B. V. Nusgens, C. Verellen-dumoulin, and T. Hermanns-le, Evidence for a relationship between Ehlers-Danlos type VII C in humans and bovine dermatosparaxis, Nat Genet, vol.1, pp.214-217, 1992.

F. Malfait and A. De-paepe, The Ehlers-Danlos syndrome, Adv Exp Med Biol, vol.802, pp.129-143, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01707177

A. Colige, A. L. Sieron, and S. W. Li, Human Ehlers-Danlos syndrome type VIIc and bovine dermatosparaxis are caused by mutations in the procollagen I N proteinase gene, Am J Hum Genet, vol.65, pp.308-317, 1999.

L. Goff, C. Somerville, R. P. Kesteloot, and F. , Regulation of procollagen amino-propeptide processing during mouse embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen biosynthesis and dermatosparaxis, Development, vol.133, pp.1587-1596, 2006.

S. W. Li, M. Arita, and A. Fertala, Transgenic mice with inactive alleles for procollagen N-proteinase (ADAMTS-2) develop fragile skin and male sterility, Biochem J, vol.355, issue.2, pp.271-278, 2001.

L. Goff, C. Cormier-daire, and V. , Genetic and molecular aspects of acromelic dysplasia, Pediatr Endocrinol Rev, vol.6, issue.3, pp.418-423, 2009.

G. Weill, Ectopie du cristallin et malformations générales, Ann Occul, vol.169, pp.21-44, 1932.

O. Marchesani, Brachydaktylie und angerobene kugellines als systemerkrnakung, Klin Mibl Augenheilk, vol.103, pp.392-406, 1939.

N. Dagoneau, C. Benoist-lasselin, and C. Huber, ADAMTS 10 mutations in autosomal recessive Weill-Marchesani syndrome, Am J Hum Genet, vol.75, pp.801-806, 2004.

L. Faivre, R. J. Gorlin, and M. W. Wirtz, In-frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome, J Med Genet, vol.240, pp.34-35, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00143439

R. Haji-seyed-javadi, S. Jelodari-mamaghani, and S. H. Paylakhi, LTBP2 mutations cause Weill-Marchesani and Weill-Marchesani-like syndrome and affect disruptions in the extracellular matrix, Hum Mutat, vol.33, issue.8, pp.1182-1187, 2012.

R. P. Somerville, K. A. Jungers, and S. S. Apte, Discovery and characterization of a novel, widely expressed metalloprotease, ADAMTS10, and its proteolytic activation, J Biol Chem, vol.279, issue.49, pp.51208-51217, 2004.

W. E. Kutz, L. W. Wang, and H. L. Bader, ADAMTS10 protein interacts with fibrillin-1 and promotes its deposition in extracellular matrix of cultured fibroblasts, J Biol Chem, vol.286, pp.17156-17167, 2011.

J. Morales, L. Al-sharif, and D. S. Khalil, Homozygous mutations in ADAMTS10 and ADAMTS17 cause lenticular myopia, ectopialentis, glaucoma, spherophakia, and short stature, Am J Hum Genet, vol.85, pp.558-568, 2009.

. Metalloproteinases, , vol.109, 2018.

J. W. Spranger, E. F. Gilbert, G. A. Tuffli, F. P. Rossiter, and J. M. Opitz, Geleophysic dwarfism -a "focal" mucopolysaccharidosis?, Lancet, vol.10, pp.97-98, 1971.

S. Allali, L. Goff, C. Pressac-diebold, and I. , Molecular screening of ADAMTSL2 gene in 33 patients reveals the genetic heterogeneity of geleophysic dysplasia, J Med Genet, vol.48, pp.417-421, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00614843

L. Goff, C. Morice-picard, F. Dagoneau, and N. , ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-beta bioavailability regulation, Nat Genet, vol.40, pp.1119-1123, 2008.

L. Goff, C. Mahaut, C. Wang, and L. W. , Mutations in the TGF? bindingprotein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias, Am J Hum Genet, vol.89, pp.7-14, 2011.

F. Ramirez and L. Y. Sakai, Biogenesis and function of fibrillin assemblies, Cell Tissue Res, vol.339, issue.1, pp.71-82, 2010.

S. A. Cain, A. Mcgovern, A. K. Baldwin, C. Baldock, and C. M. Kielty, Fibrillin-1 mutations causing Weill-Marchesani syndrome and acromicric and geleophysicdysplasias disrupt heparan sulfate interactions, PLoS One, vol.7, issue.11, p.48634, 2012.
DOI : 10.1371/journal.pone.0048634

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0048634&type=printable

D. Hubmacher, L. W. Wang, R. P. Mecham, D. P. Reinhardt, and S. S. Apte, Adamtsl2 deletion results in bronchial fibrillin microfibril accumulation and bronchial epithelial dysplasia -a novel mouse model providing insights into geleophysic dysplasia, Dis Model Mech, vol.8, issue.5, pp.487-499, 2015.

D. Ahram, T. S. Sato, and A. Kohilan, A homozygous mutation in ADAMTSL4 causes autosomal-recessive isolated ectopialentis, Am J Hum Genet, vol.84, pp.274-278, 2009.

L. Lonqvist, A. Child, K. Kainulainen, R. Davidson, L. Puhakka et al., A novel mutation of the fibrillin gene causing ectopialentis, Genomics, vol.19, pp.573-576, 1994.

H. C. Dietz, G. R. Cutting, and R. E. Pyeritz, Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene, Nature, vol.352, pp.337-339, 1991.

A. Chandra, J. A. Aragon-martin, S. Sharif, M. Parulekar, A. Child et al., Craniosynostosis with ectopialentis and a homozygous 20-base deletion in ADAMTSL4, Ophthalmic Genet, vol.34, issue.1-2, pp.78-82, 2013.

L. A. Gabriel, L. W. Wang, and H. Bader, ADAMTSL4, a secreted glycoprotein widely distributed in the eye, binds fibrillin-1 microfibrils and accelerates microfibril biogenesis, Invest Ophthalmol Vis Sci, vol.53, issue.1, pp.461-469, 2012.

A. O. Khan, Microcornea with myopic chorioretinal atrophy, telecanthus and posteriorly-rotated ears: a distinct clinical syndrome, Ophthalmic Genet, vol.33, pp.196-199, 2012.
DOI : 10.3109/13816810.2012.681097

M. A. Aldahmesh, M. J. Alshammari, A. O. Khan, J. Y. Mohamed, F. A. Alhabib et al., The syndrome of microcornea, myopic chorioretinal atrophy, and telecanthus (MMCAT) is caused by mutations in ADAMTS18, Hum Mutat, vol.34, pp.1195-1199, 2013.

I. Peluso, I. Conte, and F. Testa, The ADAMTS18 gene is responsible for autosomal recessive early onset severe retinal dystrophy, Orphanet J Rare Dis, vol.8, p.16, 2013.
DOI : 10.1186/1750-1172-8-16

URL : https://ojrd.biomedcentral.com/track/pdf/10.1186/1750-1172-8-16

A. Sorsby, M. Mason, and N. Gardner, A fundus dystrophy with unusual features (late onset and dominant inheritance of a central retinal lesion showing oedema, haemorrhage and exudates developing into generalized choroidal atrophy with massive pigment proliferation)

, Brit J Ophthal, vol.33, pp.67-97, 1949.

B. Weber, G. Vogt, R. C. Pruett, H. Stohr, and U. Felbor, Mutations in the tissue inhibitor metalloproteinases-3 (TIMP3) in patients with Sorsby's fundus dystrophy, Nature Genet, vol.8, pp.352-356, 1994.