L. S. Kirschner, Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex, Nat. Genet, vol.26, pp.89-92, 2000.

F. Beuschlein, Constitutive activation of PKA catalytic subunit in adrenal Cushing's syndrome, N. Engl. J. Med, vol.370, pp.1019-1028, 2014.

G. Goh, Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors, Nat. Genet, vol.46, pp.613-617, 2014.

Y. Cao, Activating hotspot L205R mutation in PRKACA and adrenal Cushing's syndrome, Science, vol.344, pp.913-917, 2014.

Y. Sato, Recurrent somatic mutations underlie corticotropin-independent Cushing's syndrome, Science, vol.344, pp.917-920, 2014.

L. S. Weinstein, Activating Mutations of the Stimulatory G Protein in the McCuneAlbright Syndrome, N. Engl. J. Med, vol.325, pp.1688-1695, 1991.

H. Kobayashi, Mutation Analysis of Gs?, Adrenocorticotropin Receptor and p53 Genes in Japanese Patients with Adrenocortical Neoplasms: Including a Case of Gs? Mutation, Endocr. J, vol.47, pp.461-466, 2000.

F. Tissier, Mutations of ?-Catenin in Adrenocortical Tumors: Activation of the Wnt Signaling Pathway Is a Frequent Event in both Benign and Malignant Adrenocortical Tumors, Cancer Res, vol.65, pp.7622-7627, 2005.

S. Bonnet, Wnt/?-catenin pathway activation in adrenocortical adenomas is frequently due to somatic CTNNB1-activating mutations, which are associated with larger and nonsecreting tumors: a study in cortisol-secreting and -nonsecreting tumors, J. Clin. Endocrinol. Metab, vol.96, pp.419-426, 2011.

G. Assié, ARMC5 mutations in macronodular adrenal hyperplasia with Cushing's syndrome, N. Engl. J. Med, vol.369, pp.2105-2114, 2013.

C. L. Ronchi, Single Nucleotide Polymorphism Array Profiling of Adrenocortical Tumors -Evidence for an Adenoma Carcinoma Sequence?, PLOS ONE, vol.8, p.73959, 2013.

W. Roussel and H. , Identification of gene expression profiles associated with cortisol secretion in adrenocortical adenomas, J. Clin. Endocrinol. Metab, vol.98, pp.1109-1121, 2013.

C. L. Ronchi, Genetic Landscape of Sporadic Unilateral Adrenocortical Adenomas Without PRKACA p.Leu206Arg Mutation, J. Clin. Endocrinol. Metab, vol.101, pp.3526-3538, 2016.

G. Assié, Integrated genomic characterization of adrenocortical carcinoma, Nat. Genet, vol.46, pp.607-612, 2014.

K. Wang, M. Li, and H. Hakonarson, ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data, Nucleic Acids Res, vol.38, pp.164-164, 2010.

S. Garinet, Molecular and functional analysis of PRKAR1A and its locus (17q22-24) in sporadic adrenocortical tumors: 17q losses, somatic mutations, and protein kinase A expression and activity, Cancer Res, vol.63, pp.5308-5319, 2003.

M. C. Fragoso, S. Domenice, and A. C. Latronico, Cushing's syndrome secondary to adrenocorticotropin-independent macronodular adrenocortical hyperplasia due to activating mutations of GNAS1 gene, J Clin Endocrinol Metab, vol.88, pp.2147-2151, 2003.

A. Horvath, S. Boikos, and C. Giatzakis, A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia, Nat Genet, vol.38, pp.794-800, 2006.

A. Rothenbuhler, A. Horvath, and R. Libé, Identification of novel genetic variants in phosphodiesterase 8B (PDE8B), a cAMP-specific phosphodiesterase highly expressed in the adrenal cortex, in a cohort of patients with adrenal tumours, Clin Endocrinol (Oxf), vol.77, pp.195-199, 2012.

C. A. Stratakis, Adrenocortical tumors, primary pigmented adrenocortical disease (PPNAD)/Carney complex, and other bilateral hyperplasias: the NIH studies, Horm Metab Res, vol.39, pp.467-473, 2007.

F. Beuschlein, M. Fassnacht, and G. Assié, Constitutive activation of PKA catalytic subunit in adrenal Cushing's syndrome, N Engl J Med, vol.370, pp.1019-1028, 2014.

Y. Cao, M. He, and Z. Gao, Activating hotspot L205R mutation in PRKACA and adrenal Cushing's syndrome, Science, vol.344, pp.913-917, 2014.

D. Dalmazi, G. Kisker, C. Calebiro, and D. , Novel somatic mutations in the catalytic subunit of the protein kinase A as a cause of adrenal Cushing's syndrome: a European multicentric study, J Clin Endocrinol Metab, vol.99, pp.2093-2100, 2014.

G. Goh, U. I. Scholl, and J. M. Healy, Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors, Nat Genet, vol.46, pp.613-617, 2014.

Y. Sato, S. Maekawa, and R. Ishii, Recurrent somatic mutations underlie corticotropin-independent Cushing's syndrome, Science, vol.344, pp.917-920, 2014.

D. Calebiro, A. Hannawacker, and S. Lyga, PKA catalytic subunit mutations in adrenocortical Cushing's adenoma impair association with the regulatory subunit, Nat Commun, vol.5, p.5680, 2014.

G. Assié, E. Letouzé, and M. Fassnacht, Integrated genomic characterization of adrenocortical carcinoma, Nat Genet, vol.46, pp.607-612, 2014.

M. Tadjine, A. Lampron, L. Ouadi, and I. Bourdeau, Frequent mutations of -catenin gene in sporadic secreting adrenocortical adenomas, Clin Endocrinol (Oxf), vol.68, pp.264-270, 2008.

F. Tissier, C. Cavard, and L. Groussin, Mutations of -catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors, Cancer Res, vol.65, pp.7622-7627, 2005.

S. Bonnet, S. Gaujoux, and P. Launay, Wnt/-catenin pathway activation in adrenocortical adenomas is frequently due to somatic CTNNB1-activating mutations, which are associated with larger and nonsecreting tumors: a study in cortisol-secreting and -nonsecreting tumors, J Clin Endocrinol Metab, vol.96, pp.419-426, 2011.

C. L. Ronchi, E. Leich, and S. Sbiera, Single nucleotide polymorphism microarray analysis in cortisol-secreting adrenocortical adenomas identifies new candidate genes and pathways, Neoplasia, vol.14, pp.206-218, 2012.

C. L. Ronchi, S. Sbiera, and E. Leich, Single nucleotide polymorphism array profiling of adrenocortical tumors-evidence for an adenoma carcinoma sequence?, PLoS One, vol.8, p.73959, 2013.

L. M. Weiss, L. J. Medeiros, and A. L. Vickery, Pathologic features of prognostic significance in adrenocortical carcinoma, Am J Surg Pathol, vol.13, pp.202-206, 1989.

L. K. Nieman, B. M. Biller, and J. W. Findling, The diagnosis of Cushing's syndrome: an Endocrine Society Clinical Practice Guideline, J Clin Endocrinol Metab, vol.93, pp.1526-1540, 2008.

C. C. Juhlin, G. Goh, and J. M. Healy, Whole-exome sequencing characterizes the landscape of somatic mutations and copy number alterations in adrenocortical carcinoma, J Clin Endocrinol Metab, vol.100, pp.493-502, 2015.

S. Zheng, A. D. Cherniack, and N. Dewal, Comprehensive pangenomic characterization of adrenocortical carcinoma, Cancer Cell, vol.29, issue.5, pp.723-736, 2016.

A. Subramanian, P. Tamayo, and V. K. Mootha, Gene set enrichment analysis: a knowledge-based approach for interpreting genomewide expression profiles, Proc Natl Acad Sci USA, vol.102, pp.15545-15550, 2005.

I. A. Adzhubei, S. Schmidt, and L. Peshkin, A method and server for predicting damaging missense mutations, Nat Methods, vol.7, pp.248-249, 2010.

P. Kumar, S. Henikoff, and P. C. Ng, Predicting the effects of coding nonsynonymous variants on protein function using the SIFT algorithm, Nat Protoc, vol.4, pp.1073-1081, 2009.

A. De-reyniès, G. Assié, and D. S. Rickman, Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival, J Clin Oncol, vol.27, pp.1108-1115, 2009.

M. E. Ritchie, B. Phipson, and D. Wu, Limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, vol.43, p.47, 2015.

M. Choi, U. I. Scholl, and P. Yue, K channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension, Science, vol.331, pp.768-772, 2011.

E. Fischer and F. Beuschlein, Novel genes in primary aldosteronism, Curr Opin Endocrinol Diabetes Obes, vol.21, pp.154-158, 2014.

R. M. Gibson and S. S. Taylor, Dissecting the cooperative reassociation of the regulatory and catalytic subunits of cAMP-dependent protein kinase. Role of Trp-196 in the catalytic subunit, J Biol Chem, vol.272, pp.31998-32005, 1997.

S. J. Felizola, Y. Nakamura, and F. Satoh, Glutamate receptors and the regulation of steroidogenesis in the human adrenal gland: the metabotropic pathway, Mol Cell Endocrinol, vol.382, pp.170-177, 2014.

I. Kahr, K. Vandepoele, and F. Van-roy, Delta-protocadherins in health and disease, Prog Mol Biol Transl Sci, vol.116, pp.169-192, 2013.

F. Van-roy, Beyond E-cadherin: roles of other cadherin superfamily members in cancer, Nat Rev Cancer, vol.14, pp.121-134, 2014.

S. L. Hamilton and I. I. Serysheva, Ryanodine receptor structure: progress and challenges, J Biol Chem, vol.284, pp.4047-4051, 2009.

S. Komazaki, T. Ikemoto, H. Takeshima, M. Iino, M. Endo et al., Morphological abnormalities of adrenal gland and hypertrophy of liver in mutant mice lacking ryanodine receptors, Cell Tissue Res, vol.294, pp.467-473, 1998.

C. H. George, H. Jundi, and N. L. Thomas, Ryanodine receptor regulation by intramolecular interaction between cytoplasmic and transmembrane domains, Mol Biol Cell, vol.15, pp.2627-2638, 2004.

C. L. Ronchi, E. Peverelli, and S. Herterich, Landscape of somatic mutations in sporadic GH-secreting pituitary adenomas, Eur J Endocrinol, vol.174, pp.363-372, 2016.

N. Välimäki, H. Demir, and E. Pitkänen, Whole-genome sequencing of growth hormone (GH)-secreting pituitary adenomas, J Clin Endocrinol Metab, vol.100, pp.3918-3927, 2015.

. Genomes-project-consortium, A. Auton, L. D. Brooks, R. M. Durbin, E. P. Garrison et al., A global reference for human genetic variation, Nature, vol.526, pp.68-74, 2015.

J. C. Achermann, M. Ito, M. Ito, P. C. Hindmarsh, and J. L. Jameson, A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans, Nat. Genet, vol.22, pp.125-126, 1999.

S. Acton, A. Rigotti, K. T. Landschulz, S. Xu, H. H. Hobbs et al., Identification of scavenger receptor SR-BI as a high density lipoprotein receptor, Science, vol.271, pp.518-520, 1996.

I. Adzhubei, D. M. Jordan, and S. R. Sunyaev, Predicting Functional Effect of Human Missense Mutations Using PolyPhen-2, Curr. Protoc. Hum. Genet. Editor. Board Jonathan Haines Al, vol.7, 2013.

N. M. Albiger, D. Regazzo, B. Rubin, A. M. Ferrara, S. Rizzati et al., A multicenter experience on the prevalence of ARMC5 mutations in patients with primary bilateral macronodular adrenal hyperplasia: from genetic characterization to clinical phenotype, Endocrine, vol.55, pp.959-968, 2017.

F. Albright, A. M. Butler, A. O. Hampton, and P. Smith, Syndrome Characterized by Osteitis Fibrosa Disseminata, Areas of Pigmentation and Endocrine Dysfunction, with Precocious Puberty in Females, N. Engl. J. Med, vol.216, pp.727-746, 1937.

G. A. Alencar, A. M. Lerario, M. Y. Nishi, B. M. Mariani, P. De et al., ARMC5 mutations are a frequent cause of primary macronodular adrenal Hyperplasia, J. Clin. Endocrinol. Metab, vol.99, pp.1501-1509, 2014.

L. B. Alexandrov, S. Nik-zainal, D. C. Wedge, S. A. Aparicio, S. Behjati et al., Signatures of mutational processes in human cancer, ICGC Breast Cancer Consortium, vol.500, pp.415-421, 2013.

B. Allolio, S. Hahner, D. Weismann, and M. Fassnacht, Management of adrenocortical carcinoma, Clin. Endocrinol. (Oxf.), vol.60, pp.273-287, 2004.

M. Q. Almeida, M. F. Azevedo, P. Xekouki, E. I. Bimpaki, A. Horvath et al., Activation of Cyclic AMP Signaling Leads to Different Pathway Alterations in Lesions of the Adrenal Cortex Caused by Germline PRKAR1A Defects versus Those due to Somatic GNAS Mutations, J. Clin. Endocrinol. Metab, vol.97, 2012.

M. Q. Almeida and C. A. Stratakis, How does cAMP/Protein kinase A signaling lead to tumors in the adrenal cortex and other tissues?, Mol. Cell. Endocrinol, vol.336, pp.162-168, 2011.

M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium, Nat. Genet, vol.25, pp.25-29, 2000.

G. Assié, E. Letouzé, M. Fassnacht, A. Jouinot, W. Luscap et al., Integrated genomic characterization of adrenocortical carcinoma, Nat. Genet, vol.46, pp.607-612, 2014.

G. Assié, R. Libé, S. Espiard, M. Rizk-rabin, A. Guimier et al., ARMC5 mutations in macronodular adrenal hyperplasia with Cushing's syndrome, N. Engl. J. Med, vol.369, pp.2105-2114, 2013.

E. A. Azizan, B. Y. Lam, S. J. Newhouse, J. Zhou, R. E. Kuc et al., Microarray, qPCR, and KCNJ5 Sequencing of AldosteroneProducing Adenomas Reveal Differences in Genotype and Phenotype between Zona Glomerulosa-and Zona Fasciculata-Like Tumors, J. Clin. Endocrinol. Metab, vol.97, pp.819-829, 2012.

E. A. Azizan, H. Poulsen, P. Tuluc, J. Zhou, M. V. Clausen et al., Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension, Nat. Genet, vol.45, pp.1055-1060, 2013.

R. Bandiera, V. P. Vidal, F. J. Motamedi, M. Clarkson, I. Sahut-barnola et al., WT1 maintains adrenal-gonadal primordium identity and marks a population of AGP-like progenitors within the adrenal gland, Dev. Cell, vol.27, pp.5-18, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02108058

O. Barreau, G. Assié, H. Wilmot-roussel, B. Ragazzon, C. Baudry et al., Identification of a CpG island methylator phenotype in adrenocortical carcinomas, J. Clin. Endocrinol. Metab, vol.98, pp.174-184, 2013.

O. Barreau, A. De-reynies, H. Wilmot-roussel, M. Guillaud-bataille, C. Auzan et al., Clinical and pathophysiological implications of chromosomal alterations in adrenocortical tumors: an integrated genomic approach, J. Clin. Endocrinol. Metab, vol.97, pp.301-311, 2012.

D. P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, vol.116, pp.281-297, 2004.

L. Barzon, M. Chilosi, F. Fallo, G. Martignoni, L. Montagna et al., Molecular analysis of CDKN1C and TP53 in sporadic adrenal tumors, Eur. J. Endocrinol, vol.145, pp.207-212, 2001.

L. Barzon, N. Sonino, F. Fallo, G. Palu, and M. Boscaro, Prevalence and natural history of adrenal incidentalomas, Eur. J. Endocrinol, vol.149, pp.273-285, 2003.

K. J. Basham, H. A. Hung, A. M. Lerario, and G. D. Hammer, Mouse models of adrenocortical tumors, Mol. Cell. Endocrinol, vol.421, pp.82-97, 2016.

F. Batista, D. Vaiman, J. Dausset, M. Fellous, and R. A. Veitia, Potential targets of FOXL2, a transcription factor involved in craniofacial and follicular development, identified by transcriptomics, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.3330-3335, 2007.

S. Beck and V. K. Rakyan, The methylome: approaches for global DNA methylation profiling, Trends Genet, vol.24, pp.231-237, 2008.

Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J. R. Stat. Soc. Ser. B Methodol, vol.57, pp.289-300, 1995.

R. Benne, J. Van-den-burg, J. P. Brakenhoff, P. Sloof, J. H. Van-boom et al., Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA, Cell, vol.46, pp.819-826, 1986.

M. F. Berger, J. Z. Levin, K. Vijayendran, A. Sivachenko, X. Adiconis et al., Integrative analysis of the melanoma transcriptome, Genome Res, vol.20, pp.413-427, 2010.

S. Bernichtein, H. Peltoketo, and I. Huhtaniemi, Adrenal hyperplasia and tumours in mice in connection with aberrant pituitary-gonadal function, 13th Conference on the Adrenal Cortex, vol.300, pp.164-168, 2008.

J. Bertherat, L. Groussin, F. Sandrini, L. Matyakhina, T. Bei et al., Molecular and Functional Analysis of PRKAR1A and its Locus (17q22-24) in Sporadic Adrenocortical Tumors: 17q Losses, Somatic Mutations, and Protein Kinase A Expression and Activity, Cancer Res, vol.63, pp.5308-5319, 2003.

A. Berthon, C. Drelon, B. Ragazzon, S. Boulkroun, F. Tissier et al., WNT/?-catenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production, Hum. Mol. Genet, vol.23, pp.889-905, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02108060

A. Berthon, F. R. Faucz, S. Espiard, L. Drougat, J. Bertherat et al., Age-dependent effects of Armc5 haploinsufficiency on adrenocortical function, Hum. Mol. Genet, vol.26, pp.3495-3507, 2017.

A. Berthon, I. Sahut-barnola, S. Lambert-langlais, C. De-joussineau, C. Damon-soubeyrand et al., Constitutive beta-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development, Hum. Mol. Genet, vol.19, pp.1561-1576, 2010.

T. Bestor, A. Laudano, R. Mattaliano, and V. Ingram, Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases, J. Mol. Biol, vol.203, pp.971-983, 1988.

F. Beuschlein, S. Boulkroun, A. Osswald, T. Wieland, H. N. Nielsen et al., Somatic mutations in ATP1A1 and ATP2B3 lead to aldosteroneproducing adenomas and secondary hypertension, Nat. Genet, vol.45, pp.444-445, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01544147

F. Beuschlein, M. Fassnacht, G. Assié, D. Calebiro, C. A. Stratakis et al., Constitutive activation of PKA catalytic subunit in adrenal Cushing's syndrome, N. Engl. J. Med, vol.370, pp.1019-1028, 2014.

A. Biason-lauber and E. J. Schoenle, Apparently normal ovarian differentiation in a prepubertal girl with transcriptionally inactive steroidogenic factor 1 (NR5A1/SF-1) and adrenocortical insufficiency, Am. J. Hum. Genet, vol.67, pp.1563-1568, 2000.

G. R. Bignell, J. Huang, J. Greshock, S. Watt, A. Butler et al., HighResolution Analysis of DNA Copy Number Using Oligonucleotide Microarrays, Genome Res, vol.14, pp.287-295, 2004.

A. P. Bird, CpG-rich islands and the function of DNA methylation, Nature, vol.321, pp.209-213, 1986.

V. Boeva, T. Popova, K. Bleakley, P. Chiche, J. Cappo et al., Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data, Bioinformatics, vol.28, pp.423-425, 2012.

S. Bonnet, S. Gaujoux, P. Launay, C. Baudry, I. Chokri et al., Wnt/?-catenin pathway activation in adrenocortical adenomas is frequently due to somatic CTNNB1-activating mutations, which are associated with larger and nonsecreting tumors: a study in cortisol-secreting and -nonsecreting tumors, J. Clin. Endocrinol. Metab, vol.96, pp.419-426, 2011.

A. J. Borkowski, S. Levin, C. Delcroix, A. Mahler, and V. Verhas, Blood cholesterol and hydrocortisone production in man: quantitative aspects of the utilization of circulating cholesterol by the adrenals at rest and under adrenocorticotropin stimulation, J. Clin. Invest, vol.46, pp.797-811, 1967.

S. R. Bornstein, H. Rutkowski, and I. Vrezas, Cytokines and steroidogenesis, Mol. Cell. Endocrinol, vol.215, pp.135-141, 2004.

Y. Cao, M. He, Z. Gao, Y. Peng, Y. Li et al., Activating hotspot L205R mutation in PRKACA and adrenal Cushing's syndrome, Science, vol.344, pp.913-917, 2014.

J. A. Carney, H. Gordon, P. C. Carpenter, B. V. Shenoy, and V. L. Go, The complex of myxomas, spotty pigmentation, and endocrine overactivity, Medicine (Baltimore), vol.64, pp.270-283, 1985.

O. Chabre, R. Libé, G. Assie, O. Barreau, J. Bertherat et al., Serum miR-483-5p and miR-195 are predictive of recurrence risk in adrenocortical cancer patients, Endocr. Relat. Cancer, vol.20, pp.579-594, 2013.

N. Cherradi, M. Bideau, S. Arnaudeau, N. Demaurex, R. W. James et al., Angiotensin II Promotes Selective Uptake of High Density Lipoprotein Cholesterol Esters in Bovine Adrenal Glomerulosa and Human Adrenocortical Carcinoma Cells Through Induction of Scavenger Receptor Class B Type I, Endocrinology, vol.142, pp.4540-4549, 2001.

D. Chida, S. Nakagawa, S. Nagai, H. Sagara, H. Katsumata et al., Melanocortin 2 receptor is required for adrenal gland development, steroidogenesis, and neonatal gluconeogenesis, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.18205-18210, 2007.

M. Choi, U. I. Scholl, P. Yue, P. Björklund, B. Zhao et al., K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension, Science, vol.331, pp.768-772, 2011.

J. B. Collip, E. Anderson, and D. L. Thomson, THE ADRENOTROPIC HORMONE OF THE ANTERIOR PITUITARY LOBE. The Lancet, Originally published as, vol.2, pp.44463-44469, 1933.

M. Comb, N. C. Birnberg, A. Seasholtz, E. Herbert, and H. M. Goodman, A cyclic AMP-and phorbol ester-inducible DNA element, Nature, vol.323, pp.353-356, 1986.

A. J. Conley, R. M. Bernstein, and A. D. Nguyen, Adrenarche in nonhuman primates: the evidence for it and the need to redefine it, J. Endocrinol, vol.214, pp.121-131, 2012.

J. W. Conn, Primary aldosteronism, J. Lab. Clin. Med, vol.45, pp.661-664, 1955.

G. Constantopoulos, A. Carpenter, P. Satoh, and T. T. Tchen, Formation of isocaproaldehyde in the enzymatic cleavage of cholesterol side chain by adrenal extract, Biochemistry (Mosc.), vol.5, pp.1650-1652, 1966.

P. A. Crawford, C. Dorn, Y. Sadovsky, and J. Milbrandt, Nuclear receptor DAX-1 recruits nuclear receptor corepressor N-CoR to steroidogenic factor 1, Mol. Cell. Biol, vol.18, pp.2949-2956, 1998.

L. Crisponi, M. Deiana, A. Loi, F. Chiappe, M. Uda et al., The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome, Nat. Genet, vol.27, pp.159-166, 2001.

D. J. Cutler, M. E. Zwick, M. M. Carrasquillo, C. T. Yohn, K. P. Tobin et al., High-throughput variation detection and genotyping using microarrays, Genome Res, vol.11, pp.1913-1925, 2001.

F. De-fraipont, M. El-atifi, N. Cherradi, G. Le-moigne, G. Defaye et al., Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic Acid microarrays identifies several candidate genes as markers of malignancy, J. Clin. Endocrinol. Metab, vol.90, pp.1819-1829, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00343768

D. Martino, M. C. Al-ghuzlan, A. Aubert, S. Assié, G. Scoazec et al., Molecular screening for a personalized treatment approach in advanced adrenocortical cancer, J. Clin. Endocrinol. Metab, vol.98, pp.4080-4088, 2013.

A. De-reyniès, G. Assié, D. S. Rickman, F. Tissier, L. Groussin et al., Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.27, pp.1108-1115, 2009.

L. Ding, E. Rath, and Y. Bai, Comparison of Alternative Splicing Junction Detection Tools Using RNA-Seq Data, Curr. Genomics, vol.18, pp.268-277, 2017.

A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski et al., STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-21, 2013.

J. Dörner, V. Martinez-rodriguez, R. Ziegler, T. Röhrig, R. S. Cochran et al., GLI1(+) progenitor cells in the adrenal capsule of the adult mouse give rise to heterotopic gonadal-like tissue, Mol. Cell. Endocrinol, vol.441, pp.164-175, 2017.

C. Drelon, A. Berthon, I. Sahut-barnola, M. Mathieu, T. Dumontet et al., PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development, Nat. Commun, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02108042

L. Drougat, S. Espiard, and J. Bertherat, Genetics of primary bilateral macronodular adrenal hyperplasia: a model for early diagnosis of Cushing's syndrome?, Eur. J. Endocrinol, vol.173, pp.121-131, 2015.

P. Du, X. Zhang, C. Huang, N. Jafari, W. A. Kibbe et al., Comparison of Betavalue and M-value methods for quantifying methylation levels by microarray analysis, BMC Bioinformatics, vol.11, 2010.

J. Durand, A. Lampron, T. L. Mazzuco, A. Chapman, and I. Bourdeau, Characterization of Differential Gene Expression in Adrenocortical Tumors Harboring ?-Catenin (CTNNB1) Mutations, J. Clin. Endocrinol. Metab, vol.96, pp.1206-1211, 2011.

N. El-ghorayeb, I. Bourdeau, and A. Lacroix, Multiple aberrant hormone receptors in Cushing's syndrome, Eur. J. Endocrinol, vol.173, pp.45-60, 2015.

U. Elbelt, A. Trovato, M. Kloth, E. Gentz, R. Finke et al., Molecular and Clinical Evidence for an ARMC5 Tumor Syndrome: Concurrent Inactivating Germline and Somatic Mutations Are Associated With Both Primary Macronodular Adrenal Hyperplasia and Meningioma, J. Clin. Endocrinol. Metab, vol.100, pp.119-128, 2015.

A. R. Elhamamsy, Role of DNA methylation in imprinting disorders: an updated review, J. Assist. Reprod. Genet, vol.34, pp.549-562, 2017.

D. El-maouche, W. Arlt, and D. P. Merke, Congenital adrenal hyperplasia. The Lancet, pp.31431-31440, 2017.

S. Espiard, L. Drougat, R. Libé, G. Assié, K. Perlemoine et al., ARMC5 Mutations in a Large Cohort of Primary Macronodular Adrenal Hyperplasia: Clinical and Functional Consequences, J. Clin. Endocrinol. Metab, vol.100, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01813998

M. Fassnacht, S. Johanssen, M. Quinkler, P. Bucsky, H. S. Willenberg et al., Limited prognostic value of the 2004 International Union Against Cancer staging classification for adrenocortical carcinoma: proposal for a Revised TNM Classification, Cancer, vol.115, pp.243-250, 2009.

F. Favero, T. Joshi, A. M. Marquard, N. J. Birkbak, M. Krzystanek et al., Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data, Ann. Oncol. Off. J. Eur. Soc. Med. Oncol, vol.26, pp.64-70, 2015.

A. Feber, P. Guilhamon, M. Lechner, T. Fenton, G. A. Wilson et al., Using high-density DNA methylation arrays to profile copy number alterations, Genome Biol, vol.15, 2014.

C. M. Feek, D. J. Marante, and C. R. Edwards, The hypothalamic-pituitary-adrenal axis, Clin. Endocrinol. Metab, vol.12, pp.597-618, 1983.

A. P. Feinberg and B. Vogelstein, Hypomethylation distinguishes genes of some human cancers from their normal counterparts, Nature, vol.301, pp.89-92, 1983.

F. L. Fernandes-rosa, I. Giscos-douriez, L. Amar, C. E. Gomez-sanchez, T. Meatchi et al., Different Somatic Mutations in Multinodular Adrenals With Aldosterone-Producing Adenoma. Hypertens. Dallas Tex, vol.66, pp.1014-1022, 1979.

B. C. Figueiredo, L. R. Cavalli, M. A. Pianovski, E. Lalli, R. Sandrini et al., Amplification of the Steroidogenic Factor 1 Gene in Childhood Adrenocortical Tumors, J. Clin. Endocrinol. Metab, vol.90, pp.615-619, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00094598

M. C. Fragoso, M. Q. Almeida, T. L. Mazzuco, B. M. Mariani, L. P. Brito et al., Combined expression of BUB1B, DLGAP5, and PINK1 as predictors of poor outcome in adrenocortical tumors: validation in a Brazilian cohort of adult and pediatric patients, Eur. J. Endocrinol, vol.166, pp.61-67, 2012.

M. C. Fragoso, S. Domenice, A. C. Latronico, R. M. Martin, M. A. Pereira et al., Cushing's Syndrome Secondary to AdrenocorticotropinIndependent Macronodular Adrenocortical Hyperplasia due to Activating Mutations of GNAS1 Gene, J. Clin. Endocrinol. Metab, vol.88, pp.2147-2151, 2003.

B. D. Freedman, P. B. Kempna, D. L. Carlone, M. Shah, N. A. Guagliardo et al., Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells, Dev. Cell, vol.26, pp.666-673, 2013.

N. Frei, J. Weissenberger, A. G. Beck-sickinger, M. Höfliger, J. Weis et al., Immunocytochemical localization of angiotensin II receptor subtypes and angiotensin II with monoclonal antibodies in the rat adrenal gland, Regul. Pept, vol.101, pp.278-284, 2001.

L. Gagliardi, A. W. Schreiber, C. N. Hahn, J. Feng, T. Cranston et al., ARMC5 mutations are common in familial bilateral macronodular adrenal hyperplasia, J. Clin. Endocrinol. Metab, vol.99, pp.1784-1792, 2014.

W. F. Ganong, L. C. Alpert, and T. C. Lee, ACTH and the Regulation of Adrenocortical Secretion, N. Engl. J. Med, vol.290, pp.1006-1011, 1974.

S. Garinet, M. Néou, B. De-la-villéon, S. Faillot, J. Sakat et al., Calling Chromosome Alterations, DNA Methylation Statuses, and Mutations in Tumors by Simple Targeted Next-Generation Sequencing: A Solution for Transferring Integrated Pangenomic Studies into Routine Practice?, J. Mol. Diagn. JMD, vol.19, pp.776-787, 2017.

R. Gaujoux and C. Seoighe, A flexible R package for nonnegative matrix factorization, BMC Bioinformatics, vol.11, 2010.

S. Gaujoux, S. Pinson, A. Gimenez-roqueplo, L. Amar, B. Ragazzon et al., Inactivation of the APC Gene Is Constant in Adrenocortical Tumors from Patients with Familial Adenomatous Polyposis but Not Frequent in Sporadic Adrenocortical Cancers, Clin. Cancer Res, vol.16, pp.5133-5141, 2010.

E. Génin, A. Huebner, C. Jaillard, A. Faure, G. Halaby et al., Linkage of one gene for familial glucocorticoid deficiency type 2 (FGD2, p.141, 2002.

, chromosome 8q and further evidence of heterogeneity, Hum. Genet, vol.111, pp.428-434

C. Gicquel, X. Bertagna, H. Schneid, M. Francillard-leblond, J. P. Luton et al., Rearrangements at the 11p15 locus and overexpression of insulin-like growth factor-II gene in sporadic adrenocortical tumors, J. Clin. Endocrinol. Metab, 2009.

T. J. Giordano, R. Kuick, T. Else, P. G. Gauger, M. Vinco et al., Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.15, pp.668-676, 2009.

T. J. Giordano, D. G. Thomas, R. Kuick, M. Lizyness, D. E. Misek et al., Distinct Transcriptional Profiles of Adrenocortical Tumors Uncovered by DNA Microarray Analysis, Am. J. Pathol, vol.162, issue.10, pp.63846-63847, 2003.

G. Goh, U. I. Scholl, J. M. Healy, M. Choi, M. L. Prasad et al., Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors, Nat. Genet, vol.46, pp.613-617, 2014.

S. H. Golden, K. A. Robinson, I. Saldanha, B. Anton, and P. W. Ladenson, Clinical review: Prevalence and incidence of endocrine and metabolic disorders in the United States: a comprehensive review, J. Clin. Endocrinol. Metab, vol.94, pp.1853-1878, 2009.

G. A. Gonzalez and M. R. Montminy, Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133, Cell, vol.59, issue.89, pp.90013-90018, 1989.

R. J. Gorrigan, L. Guasti, P. King, A. J. Clark, and L. F. Chan, Localisation of the melanocortin-2-receptor and its accessory proteins in the developing and adult adrenal gland, J. Mol. Endocrinol, vol.46, pp.227-232, 2011.

S. Griffiths-jones, R. J. Grocock, S. Van-dongen, A. Bateman, and A. J. Enright, miRBase: microRNA sequences, targets and gene nomenclature, Nucleic Acids Res, vol.34, pp.140-144, 2006.

L. Groussin, L. S. Kirschner, C. Vincent-dejean, K. Perlemoine, E. Jullian et al., Molecular analysis of the cyclic AMP-dependent protein kinase A (PKA) regulatory subunit 1A (PRKAR1A) gene in patients with Carney complex and primary pigmented nodular adrenocortical disease (PPNAD) reveals novel mutations and clues for pathophysiology: augmented PKA signaling is associated with adrenal tumorigenesis in PPNAD, Am. J. Hum. Genet, vol.71, pp.1433-1442, 2002.

K. L. Gunderson, F. J. Steemers, G. Lee, L. G. Mendoza, and M. S. Chee, A genome-wide scalable SNP genotyping assay using microarray technology, Nat. Genet, vol.37, pp.549-554, 2005.

M. Haase, H. S. Willenberg, and S. R. Bornstein, Update on the corticomedullary interaction in the adrenal gland, Endocr. Dev, vol.20, pp.28-37, 2011.

N. A. Hanley, S. G. Ball, M. Clement-jones, D. M. Hagan, T. Strachan et al., Expression of steroidogenic factor 1 and Wilms' tumour 1 during early human gonadal development and sex determination, Mech. Dev, vol.87, pp.175-180, 1999.

N. A. Hanley, W. E. Rainey, D. I. Wilson, S. G. Ball, and K. L. Parker, Expression profiles of SF-1, DAX1, and CYP17 in the human fetal adrenal gland: potential interactions in gene regulation, Mol. Endocrinol. Baltim. Md, vol.15, pp.57-68, 2001.

H. Hao, Y. Xie, Y. Zhang, O. Charlat, E. Oster et al., ZNRF3 promotes Wnt receptor turnover in an R-spondinsensitive manner, Nature, vol.485, pp.195-200, 2012.

K. Harada, H. Matsuoka, N. Fujimoto, Y. Endo, Y. Hasegawa et al., Localization of type-2 angiotensin II receptor in adrenal gland, J. Histochem. Cytochem. Off. J. Histochem. Soc, vol.58, pp.585-593, 2010.

C. A. Harrington, C. Rosenow, and J. Retief, Monitoring gene expression using DNA microarrays, Curr. Opin. Microbiol, vol.3, pp.285-291, 2000.

O. Hatano, A. Takakusu, M. Nomura, and K. Morohashi, Identical origin of adrenal cortex and gonad revealed by expression profiles of Ad4BP/SF-1, Genes Cells Devoted Mol. Cell. Mech, vol.1, pp.663-671, 1996.

H. Hayatsu, Y. Wataya, K. Kai, and S. Iida, Reaction of sodium bisulfite with uracil, cytosine, and their derivatives, Biochemistry (Mosc.), vol.9, pp.2858-2865, 1970.

L. He, J. M. Thomson, M. T. Hemann, E. Hernando-monge, D. Mu et al., A microRNA polycistron as a potential human oncogene, Nature, vol.435, pp.828-833, 2005.

M. Heikinheimo, M. Ermolaeva, M. Bielinska, N. A. Rahman, N. Narita et al., Expression and hormonal regulation of transcription factors GATA-4 and GATA-6 in the mouse ovary, Endocrinology, vol.138, pp.3505-3514, 1997.

R. Holliday and J. E. Pugh, DNA modification mechanisms and gene activity during development, Science, vol.187, pp.226-232, 1975.

P. J. Hornsby, Regulation of adrenocortical cell proliferation in culture, Endocr. Res, vol.10, pp.259-281, 1984.

A. Horvath, S. Boikos, C. Giatzakis, A. Robinson-white, L. Groussin et al., A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia, Nat. Genet, vol.38, pp.794-800, 2006.

A. Horvath, V. Mericq, and C. A. Stratakis, Mutation in PDE8B, a cyclic AMP-specific phosphodiesterase in adrenal hyperplasia, N. Engl. J. Med, vol.358, pp.750-752, 2008.

B. Howard, Y. Wang, P. Xekouki, F. R. Faucz, M. Jain et al., Integrated analysis of genome-wide methylation and gene expression shows epigenetic regulation of CYP11B2 in aldosteronomas, J. Clin. Endocrinol. Metab, vol.99, pp.536-543, 2014.

R. Hrdlickova, M. Toloue, and B. Tian, RNA-Seq methods for transcriptome analysis, Wiley Interdiscip. Rev. RNA, vol.8, 2017.

H. Hsiao, L. S. Kirschner, I. Bourdeau, M. F. Keil, S. A. Boikos et al., Clinical and Genetic Heterogeneity, Overlap with Other Tumor Syndromes, and Atypical Glucocorticoid Hormone Secretion in Adrenocorticotropin-Independent Macronodular Adrenal Hyperplasia Compared with Other Adrenocortical Tumors, J. Clin. Endocrinol. Metab, vol.94, pp.2930-2937, 2009.

Y. Hu, L. Lao, J. Mao, W. Jin, H. Luo et al., Armc5 deletion causes developmental defects and compromises Tcell immune responses, Nat. Commun, vol.8, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01534656

O. Huber, R. Korn, J. Mclaughlin, M. Ohsugi, B. G. Herrmann et al., Nuclear localization of beta-catenin by interaction with transcription factor LEF-1, Mech. Dev, vol.59, pp.3-10, 1996.

J. H. Hurley, Structure, mechanism, and regulation of mammalian adenylyl cyclase, J. Biol. Chem, vol.274, pp.7599-7602, 1999.

P. Icard, P. Goudet, C. Charpenay, B. Andreassian, B. Carnaille et al., Adrenocortical carcinomas: surgical trends and results of a 253-patient series from the French Association of Endocrine Surgeons study group, World J. Surg, vol.25, pp.891-897, 2001.

D. J. Ingle and G. M. Higgins, AUTOTRANSPLANTATION AND REGENERATION OF THE ADRENAL GLAND, Endocrinology, vol.22, pp.458-464, 1938.

R. A. Irizarry, L. Gautier, and L. M. Cope, An R Package for Analyses of Affymetrix Oligonucleotide Arrays, in: The Analysis of Gene Expression Data, Statistics for Biology and Health, pp.102-119, 2003.

A. Israel, Y. Barbella, and J. M. Saavedra, Compensatory increase in adrenomedullary angiotensinconverting enzyme activity (kininase II) after unilateral adrenalectomy, Regul. Pept, vol.16, pp.97-105, 1986.

M. Ito, R. Yu, and J. L. Jameson, DAX-1 inhibits SF-1-mediated transactivation via a carboxyterminal domain that is deleted in adrenal hypoplasia congenita, Mol. Cell. Biol, vol.17, pp.1476-1483, 1997.

C. R. Jefcoate, M. J. Dibartolomeis, C. A. Williams, and B. C. Mcnamara, ACTH regulation of cholesterol movement in isolated adrenal cells, J. Steroid Biochem, vol.27, pp.721-729, 1987.

H. Jin, M. Won, S. E. Park, S. Lee, M. Park et al., FOXL2 Is an Essential Activator of SF-1-Induced Transcriptional Regulation of Anti-Müllerian Hormone in Human Granulosa Cells, PLoS ONE, vol.11, 2016.

A. Jouinot, G. Assie, R. Libe, M. Fassnacht, T. Papathomas et al., DNA Methylation Is an Independent Prognostic Marker of Survival in Adrenocortical Cancer, J. Clin. Endocrinol. Metab, vol.102, pp.923-932, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02049555

C. C. Juhlin, G. Goh, J. M. Healy, A. L. Fonseca, U. I. Scholl et al., Whole-exome sequencing characterizes the landscape of somatic mutations and copy number alterations in adrenocortical carcinoma, J. Clin. Endocrinol. Metab, vol.100, pp.493-502, 2015.

S. Karashima, M. Kometani, H. Tsujiguchi, H. Asakura, S. Nakano et al., Prevalence of primary aldosteronism without hypertension in the general population: Results in Shika study, Clin. Exp. Hypertens. N. Y. N, 1993.

T. M. Kerkhofs, R. H. Verhoeven, J. M. Van-der-zwan, J. Dieleman, M. N. Kerstens et al., Adrenocortical carcinoma: a population-based study on incidence and survival in the Netherlands since 1993, Eur. J. Cancer Oxf. Engl, vol.49, pp.2579-2586, 1990.

P. King, A. Paul, and E. Laufer, Shh signaling regulates adrenocortical development and identifies progenitors of steroidogenic lineages, Proc. Natl. Acad. Sci, vol.106, pp.21185-21190, 2009.

K. W. Kinzler, M. C. Nilbert, L. K. Su, B. Vogelstein, T. M. Bryan et al., Identification of FAP locus genes from chromosome 5q21, Science, vol.253, pp.661-665, 1991.

L. S. Kirschner, J. A. Carney, S. D. Pack, S. E. Taymans, C. Giatzakis et al., Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex, Nat. Genet, vol.26, pp.89-92, 2000.

L. S. Kirschner, D. F. Kusewitt, L. Matyakhina, W. H. Towns, J. A. Carney et al., A mouse model for the Carney complex tumor syndrome develops neoplasia in cyclic AMP-responsive tissues, Cancer Res, vol.65, pp.4506-4514, 2005.

M. A. Kirschner, R. D. Powell, and M. B. Lipsett, Cushing's Syndrome: Nodular Cortical Hyperplasia of Adrenal Glands with Clinical and Pathological Features Suggesting Adrenocortical Tumor, J. Clin. Endocrinol. Metab, vol.24, pp.947-955, 1964.

T. Kitamoto, S. Suematsu, Y. Matsuzawa, J. Saito, M. Omura et al., Comparison of cardiovascular complications in patients with and without KCNJ5 gene mutations harboring aldosterone-producing adenomas, J. Atheroscler. Thromb, vol.22, pp.191-200, 2015.

D. C. Koestler, C. J. Marsit, B. C. Christensen, K. T. Kelsey, and E. A. Houseman, A recursively partitioned mixture model for clustering time-course gene expression data, Transl. Cancer Res, vol.3, pp.217-232, 2014.

M. Kometani, T. Yoneda, M. Demura, H. Koide, K. Nishimoto et al., Cortisol overproduction results from DNA methylation of CYP11B1 in hypercortisolemia, Sci. Rep, vol.7, 2017.

B. Koo, M. Spit, I. Jordens, T. Y. Low, D. E. Stange et al., Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors, Nature, vol.488, pp.665-669, 2012.

F. Krueger and S. R. Andrews, Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications, Bioinforma. Oxf. Engl, vol.27, pp.1571-1572, 2011.

P. Kumar, S. Henikoff, and P. C. Ng, Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm, Nat. Protoc, vol.4, pp.1073-1081, 2009.

A. Lacroix, ACTH-independent macronodular adrenal hyperplasia, Best Pract. Res. Clin. Endocrinol. Metab, vol.23, pp.245-259, 2009.

A. Lacroix, E. Bolté, J. Tremblay, J. Dupré, P. Poitras et al., Gastric inhibitory polypeptide-dependent cortisol hypersecretion--a new cause of Cushing's syndrome, N. Engl. J. Med, vol.327, pp.974-980, 1992.

D. S. Lala, D. A. Rice, and K. L. Parker, Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I, Mol. Endocrinol. Baltim. Md, vol.6, pp.1249-1258, 1992.

C. A. Landis, S. B. Masters, A. Spada, A. M. Pace, H. R. Bourne et al., GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours, Nature, vol.340, pp.692-696, 1989.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol, vol.10, 2009.

A. Lecoq, C. A. Stratakis, S. Viengchareun, R. Chaligné, L. Tosca et al., Adrenal GIPR expression and chromosome 19q13 microduplications in GIP-dependent Cushing's syndrome, JCI Insight, vol.2, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01904330

H. Lefebvre, V. Contesse, C. Delarue, M. Feuilloley, F. Hery et al., Serotonin-induced stimulation of cortisol secretion from human adrenocortical tissue is mediated through activation of a serotonin4 receptor subtype, Neuroscience, vol.47, pp.999-1007, 1992.

H. Lefebvre, C. Duparc, G. Prévost, M. C. Zennaro, J. Bertherat et al., Paracrine control of steroidogenesis by serotonin in adrenocortical neoplasms, Mol. Cell. Endocrinol, vol.408, pp.198-204, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01931135

L. Lefèvre, H. Omeiri, L. Drougat, C. Hantel, M. Giraud et al., Combined transcriptome studies identify AFF3 as a mediator of the oncogenic effects of ?-catenin in adrenocortical carcinoma, Oncogenesis, vol.4, 2015.

A. Lefrançois-martinez, C. Tournaire, A. Martinez, M. Berger, S. Daoudal et al., Product of Side-chain Cleavage of Cholesterol, Isocaproaldehyde, Is an Endogenous Specific Substrate of Mouse Vas Deferens Protein, an Aldose Reductase-like Protein in Adrenocortical Cells, J. Biol. Chem, vol.274, pp.32875-32880, 1999.

M. Lek, K. J. Karczewski, E. V. Minikel, K. E. Samocha, E. Banks et al., Nature, vol.536, pp.285-291

L. Lenzini, T. M. Seccia, E. Aldighieri, A. S. Belloni, P. Bernante et al., Heterogeneity of Aldosterone-Producing Adenomas Revealed by a Whole Transcriptome Analysis, Hypertension, vol.50, pp.1106-1113, 2007.

J. Z. Levin, M. F. Berger, X. Adiconis, P. Rogov, A. Melnikov et al., Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts, Genome Biol, vol.10, 2009.

B. P. Lewis, C. B. Burge, and D. P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets, Cell, vol.120, pp.15-20, 2005.

F. P. Li and J. F. Fraumeni, Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome?, Ann. Intern. Med, vol.71, pp.747-752, 1969.

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinforma. Oxf. Engl, vol.25, pp.1754-1760, 2009.

J. Li and R. Tibshirani, Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data, Stat. Methods Med. Res, vol.22, pp.519-536, 2013.

Y. Li, T. T. Huang, E. J. Carlson, S. Melov, P. C. Ursell et al., Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase, Nat. Genet, vol.11, pp.376-381, 1995.

Y. Li, L. Zhang, Y. Hu, M. Chen, F. Han et al., Beta-catenin directs the transformation of testis Sertoli cells to ovarian granulosa-like cells by inducing Foxl2 expression, J. Biol. Chem, 2017.

C. H. Lin, S. Y. Hsieh, I. S. Sheen, W. C. Lee, T. C. Chen et al., Genome-wide hypomethylation in hepatocellular carcinogenesis, Cancer Res, vol.61, pp.4238-4243, 2001.

D. Lin, T. Sugawara, J. F. Strauss, B. J. Clark, D. M. Stocco et al., Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis, Science, vol.267, pp.1828-1831, 1995.

C. Liu, R. Spizzo, G. A. Calin, and C. M. Croce, Expression profiling of microRNA using oligo DNA arrays, Methods San Diego Calif, vol.44, pp.22-30, 2008.

J. Liu, R. Voutilainen, P. Heikkilä, and A. I. Kahri, Ribonucleic acid expression of the CLA-1 gene, a human homolog to mouse high density lipoprotein receptor SR-BI, in human adrenal tumors and cultured adrenal cells, J. Clin. Endocrinol. Metab, vol.82, pp.2522-2527, 1997.

D. J. Lockhart and E. A. Winzeler, Genomics, gene expression and DNA arrays, Nature, vol.405, pp.827-836, 2000.

B. D. Looyenga and G. D. Hammer, Genetic removal of Smad3 from inhibin-null mice attenuates tumor progression by uncoupling extracellular mitogenic signals from the cell cycle machinery, Mol. Endocrinol. Baltim. Md, vol.21, pp.2440-2457, 2007.

E. Louiset, C. Duparc, J. Young, S. Renouf, M. Tetsi-nomigni et al., Intraadrenal corticotropin in bilateral macronodular adrenal hyperplasia, N. Engl. J. Med, vol.369, pp.2115-2125, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01908272

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNAseq data with DESeq2, Genome Biol, vol.15, 2014.

G. Lughezzani, M. Sun, P. Perrotte, C. Jeldres, A. Alasker et al., The European Network for the Study of Adrenal Tumors staging system is prognostically superior to the international union against cancer-staging system: a North American validation, Eur. J. Cancer Oxf. Engl, vol.46, pp.713-719, 1990.

X. Luo, Y. Ikeda, and K. L. Parker, A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation, Cell, vol.77, pp.481-490, 1994.

D. Malkin, F. P. Li, L. C. Strong, J. F. Fraumeni, C. E. Nelson et al., Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms, Science, vol.250, pp.1233-1238, 1990.

P. Marchesa, V. W. Fazio, J. M. Church, and E. Mcgannon, Adrenal masses in patients with familial adenomatous polyposis, Dis. Colon Rectum, vol.40, pp.1023-1028, 1997.

Z. Marijanovic, D. Laubner, G. Moller, C. Gege, B. Husen et al., Closing the gap: identification of human 3-ketosteroid reductase, the last unknown enzyme of mammalian cholesterol biosynthesis, Mol. Endocrinol. Baltim. Md, vol.17, pp.1715-1725, 2003.

M. M. Matzuk, M. J. Finegold, J. P. Mather, L. Krummen, H. Lu et al., Development of cancer cachexia-like syndrome and adrenal tumors in inhibin-deficient mice, Proc. Natl. Acad. Sci. U. S. A, vol.91, pp.8817-8821, 1994.

S. A. Mccarroll, F. G. Kuruvilla, J. M. Korn, S. Cawley, J. Nemesh et al., Integrated detection and population-genetic analysis of SNPs and copy number variation, Nat. Genet, vol.40, pp.1166-1174, 2008.

D. J. Mccune and H. Bruch, OSTEODYSTROPHIA FIBROSA: REPORT OF A CASE IN WHICH THE CONDITION WAS COMBINED WITH PRECOCIOUS PUBERTY, PATHOLOGIC PIGMENTATION OF THE SKIN AND HYPERTHYROIDISM, WITH A REVIEW OF THE LITERATURE, Am. J. Dis. Child, vol.54, pp.806-848, 1937.

E. Meimaridou, J. Kowalczyk, L. Guasti, C. R. Hughes, F. Wagner et al., Mutations in NNT encoding nicotinamide nucleotide transhydrogenase cause familial glucocorticoid deficiency, Nat. Genet, vol.44, pp.740-742, 2012.

S. Mesiano, C. L. Coulter, and R. B. Jaffe, Localization of cytochrome P450 cholesterol side-chain cleavage, cytochrome P450 17 alpha-hydroxylase/17, 20-lyase, and 3 beta-hydroxysteroid dehydrogenase isomerase steroidogenic enzymes in human and rhesus monkey fetal adrenal glands: reappraisal of functional zonation, J. Clin. Endocrinol. Metab, vol.77, pp.1184-1189, 1993.

L. A. Metherell, J. P. Chapple, S. Cooray, A. David, C. Becker et al., Mutations in MRAP, encoding a new interacting partner of the ACTH receptor, cause familial glucocorticoid deficiency type 2, Nat. Genet, vol.37, pp.166-170, 2005.

W. L. Miller and R. J. Auchus, The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders, Endocr. Rev, vol.32, pp.81-151, 2011.

H. M. Miziorko, ENZYMES OF THE MEVALONATE PATHWAY OF ISOPRENOID BIOSYNTHESIS, Arch. Biochem. Biophys, vol.505, pp.131-143, 2011.

M. Molenaar, M. Van-de-wetering, M. Oosterwegel, J. Peterson-maduro, S. Godsave et al., XTcf-3 transcription factor mediates beta-catenininduced axis formation in Xenopus embryos, Cell, vol.86, pp.391-399, 1996.

S. Monticone, J. Burrello, D. Tizzani, C. Bertello, A. Viola et al., Prevalence and Clinical Manifestations of Primary Aldosteronism Encountered in Primary Care Practice, J. Am. Coll. Cardiol, vol.69, pp.1811-1820, 2017.

M. R. Montminy and L. M. Bilezikjian, Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene, Nature, vol.328, pp.175-178, 1987.

M. R. Montminy, K. A. Sevarino, J. A. Wagner, G. Mandel, and R. H. Goodman, Identification of a cyclic-AMP-responsive element within the rat somatostatin gene, Proc. Natl. Acad. Sci. U. S. A, vol.83, pp.6682-6686, 1986.

A. W. Moore, L. Mcinnes, J. Kreidberg, N. D. Hastie, and A. Schedl, YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis, Dev. Camb. Engl, vol.126, pp.1845-1857, 1999.

P. J. Morin, A. B. Sparks, V. Korinek, N. Barker, H. Clevers et al., Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC, Science, vol.275, pp.1787-1790, 1997.

K. Morohashi, S. Honda, Y. Inomata, H. Handa, and T. Omura, A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s, J. Biol. Chem, vol.267, pp.17913-17919, 1992.

S. Munemitsu, I. Albert, B. Souza, B. Rubinfeld, and P. Polakis, Regulation of intracellular betacatenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein, Proc. Natl. Acad. Sci, vol.92, pp.3046-3050, 1995.

M. Murakami, T. Yoshimoto, K. Nakabayashi, K. Tsuchiya, I. Minami et al., Integration of transcriptome and methylome analysis of aldosterone-producing adenomas, Eur. J. Endocrinol, vol.173, pp.185-195, 2015.

F. Muscatelli, T. M. Strom, A. P. Walker, E. Zanaria, D. Récan et al., Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism, Nature, vol.372, pp.672-676, 1994.

J. Newell-price, X. Bertagna, A. B. Grossman, and L. K. Nieman, Cushing's syndrome, The Lancet, vol.367, pp.68699-68705, 2006.

K. Nishimoto, S. A. Tomlins, R. Kuick, A. K. Cani, T. J. Giordano et al., Aldosteronestimulating somatic gene mutations are common in normal adrenal glands, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.4591-4599, 2015.

M. J. Nowaczyk, V. M. Siu, P. A. Krakowiak, and F. D. Porter, Adrenal insufficiency and hypertension in a newborn infant with Smith-Lemli-Opitz syndrome, Am. J. Med. Genet, vol.103, pp.223-225, 2001.

T. Ogishima, H. Suzuki, J. Hata, F. Mitani, and Y. Ishimura, Zone-specific expression of aldosterone synthase cytochrome P-450 and cytochrome P-45011 beta in rat adrenal cortex: histochemical basis for the functional zonation, Endocrinology, vol.130, pp.2971-2977, 1992.

M. Okano, S. Xie, and E. Li, Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases, Nat. Genet, vol.19, pp.219-220, 1998.

C. Olesen, N. J. Larsen, A. G. Byskov, T. L. Harboe, and N. Tommerup, Human FATE is a novel Xlinked gene expressed in fetal and adult testis, Mol. Cell. Endocrinol, vol.184, pp.25-32, 2001.

M. Pannetier, S. Fabre, F. Batista, A. Kocer, L. Renault et al., FOXL2 activates P450 aromatase gene transcription: towards a better characterization of the early steps of mammalian ovarian development, J. Mol. Endocrinol, vol.36, pp.399-413, 2006.

M. Park, E. Shin, M. Won, J. Kim, H. Go et al., FOXL2 Interacts with Steroidogenic Factor-1 (SF-1) and Represses SF-1-Induced CYP17 Transcription in Granulosa Cells, Mol. Endocrinol, vol.24, pp.1024-1036, 2010.

E. Pastel, J. Pointud, A. Martinez, and A. M. Lefrançois-martinez, Aldo-Keto Reductases 1B in, Adrenal Cortex Physiology. Front. Endocrinol, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02108043

E. E. Patterson, A. K. Holloway, J. Weng, T. Fojo, and E. Kebebew, MicroRNA profiling of adrenocortical tumors reveals miR-483 as a marker of malignancy, Cancer, vol.117, pp.1630-1639, 2011.

A. D. Pearson, A. W. Craft, J. M. Ratcliffe, J. M. Birch, P. Morris-jones et al., Two families with the Li-Fraumeni cancer family syndrome, J. Med. Genet, vol.19, pp.362-365, 1982.

E. Pettersson, J. Lundeberg, and A. Ahmadian, Generations of sequencing technologies, Genomics, vol.93, pp.105-111, 2009.

C. Pilon, M. Pistorello, A. Moscon, G. Altavilla, U. Pagotto et al., Inactivation of the p16 tumor suppressor gene in adrenocortical tumors, J. Clin. Endocrinol. Metab, vol.84, pp.2776-2779, 1999.

D. Pinkel, R. Segraves, D. Sudar, S. Clark, I. Poole et al., High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays, Nat. Genet, vol.20, pp.207-211, 1998.

M. D. Pisarska, J. Bae, C. Klein, and A. J. Hsueh, Forkhead l2 is expressed in the ovary and represses the promoter activity of the steroidogenic acute regulatory gene, Endocrinology, vol.145, pp.3424-3433, 2004.

T. Popova, E. Manié, D. Stoppa-lyonnet, G. Rigaill, E. Barillot et al., Genome Alteration Print (GAP): a tool to visualize and mine complex cancer genomic profiles obtained by SNP arrays, Genome Biol, vol.10, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00663915

L. Qin, H. Deng, S. Chen, W. Wei, and Y. Zhang, miR-139 acts as a tumor suppressor in Tcell acute lymphoblastic leukemia by targeting CX chemokine receptor 4, Am. J. Transl. Res, vol.9, pp.4059-4070, 2017.

B. Ragazzon, R. Libé, G. Assié, F. Tissier, O. Barreau et al., Massarray screening of frequent mutations in cancers reveals RB1 alterations in aggressive adrenocortical carcinomas, Eur. J. Endocrinol, vol.170, pp.385-391, 2014.

N. S. Rechache, Y. Wang, H. S. Stevenson, J. K. Killian, D. C. Edelman et al., DNA Methylation Profiling Identifies Global Methylation Differences and Markers of Adrenocortical Tumors, J. Clin. Endocrinol. Metab, vol.97, pp.1004-1013, 2012.

A. D. Riggs, X inactivation, differentiation, and DNA methylation, Cytogenet. Cell Genet, vol.14, pp.9-25, 1975.

A. Rigotti, E. R. Edelman, P. Seifert, S. N. Iqbal, R. B. Demattos et al., Regulation by adrenocorticotropic hormone of the in vivo expression of scavenger receptor class B type I (SR-BI), a high density lipoprotein receptor, in steroidogenic cells of the murine adrenal gland, J. Biol. Chem, vol.271, pp.33545-33549, 1996.

S. Robertson, S. M. Mackenzie, S. Alvarez-madrazo, L. A. Diver, J. Lin et al., MicroRNA-24 Is a Novel Regulator of Aldosterone and Cortisol Production in the Human Adrenal CortexNovelty and Significance, Hypertension, vol.62, pp.572-578, 2013.

J. T. Robinson, H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S. Lander et al., Integrative genomics viewer, Nat. Biotechnol, vol.29, pp.24-26, 2011.

C. L. Ronchi, S. Sbiera, E. Leich, K. Henzel, A. Rosenwald et al., Single Nucleotide Polymorphism Array Profiling of Adrenocortical Tumors -Evidence for an Adenoma Carcinoma Sequence?, PLOS ONE, vol.8, 2013.

B. Rubinfeld, I. Albert, E. Porfiri, C. Fiol, S. Munemitsu et al., Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly, Science, vol.272, pp.1023-1026, 1996.

I. Sahut-barnola, C. De-joussineau, P. Val, S. Lambert-langlais, C. Damon et al., Cushing's Syndrome and Fetal Features Resurgence in Adrenal Cortex-Specific Prkar1a Knockout Mice, PLoS Genet, vol.6, 2010.

Y. Sato, S. Maekawa, R. Ishii, M. Sanada, T. Morikawa et al., Recurrent somatic mutations underlie corticotropin-independent Cushing's syndrome, Science, vol.344, pp.917-920, 2014.

S. Sbiera, S. Schmull, G. Assie, H. Voelker, L. Kraus et al., High diagnostic and prognostic value of steroidogenic factor-1 expression in adrenal tumors, J. Clin. Endocrinol. Metab, vol.95, pp.161-171, 2010.

J. O. Scheys, J. H. Heaton, and G. D. Hammer, Evidence of Adrenal Failure in Aging Dax1-Deficient Mice, Endocrinology, vol.152, pp.3430-3439, 2011.

D. Schmidt, C. E. Ovitt, K. Anlag, S. Fehsenfeld, L. Gredsted et al., The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance, Dev. Camb. Engl, vol.131, pp.933-942, 2004.

U. I. Scholl, G. Goh, G. Stölting, R. C. De-oliveira, M. Choi et al., Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism, Nat. Genet, vol.45, pp.1050-1054, 2013.

U. I. Scholl, G. Stölting, C. Nelson-williams, A. A. Vichot, M. Choi et al., Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism, vol.4, 2015.

J. A. Sebag and P. M. Hinkle, Melanocortin-2 receptor accessory protein MRAP forms antiparallel homodimers, Proc. Natl. Acad. Sci, vol.104, pp.20244-20249, 2007.

S. P. Shah, M. Köbel, J. Senz, R. D. Morin, B. A. Clarke et al., Mutation of FOXL2 in granulosa-cell tumors of the ovary, N. Engl. J. Med, vol.360, pp.2719-2729, 2009.

J. M. Short, A. Wynshaw-boris, H. P. Short, and R. W. Hanson, Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region. II. Identification of cAMP and glucocorticoid regulatory domains, J. Biol. Chem, vol.261, pp.9721-9726, 1986.

P. S. Soon, L. J. Tacon, A. J. Gill, C. P. Bambach, M. S. Sywak et al., miR-195 and miR-483-5p Identified as Predictors of Poor Prognosis in Adrenocortical Cancer, Clin. Cancer Res, vol.15, pp.7684-7692, 2009.

J. L. Stamos and W. I. Weis, The ?-catenin destruction complex, Cold Spring Harb. Perspect. Biol, vol.5, 2013.

E. A. Stephan, T. Chung, C. S. Grant, S. Kim, D. D. Hoff et al., Adrenocortical carcinoma survival rates correlated to genomic copy number variants, Mol. Cancer Ther, vol.7, pp.425-431, 2008.

V. L. Stevens, T. Y. Aw, D. P. Jones, and J. D. Lambeth, Oxygen dependence of adrenal cortex cholesterol side chain cleavage. Implications in the rate-limiting steps in steroidogenesis, J. Biol. Chem, vol.259, pp.1174-1179, 1984.

D. Stone and O. Hechter, Studies on ACTH action in perfused bovine adrenals: failure of cholestenone to act as a corticosteroid precursor, Arch. Biochem. Biophys, vol.51, pp.246-250, 1954.

R. S. Struthers, W. W. Vale, C. Arias, P. E. Sawchenko, and M. R. Montminy, Somatotroph hypoplasia and dwarfism in transgenic mice expressing a non-phosphorylatable CREB mutant, Nature, vol.350, pp.622-624, 1991.

A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert et al., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci, vol.102, pp.15545-15550, 2005.

A. Tabarin, S. Bardet, J. Bertherat, B. Dupas, O. Chabre et al., Exploration and management of adrenal incidentalomas, Ann. Endocrinol, vol.69, pp.487-500, 2008.

F. Tissier, C. Cavard, L. Groussin, K. Perlemoine, G. Fumey et al., Mutations of ?-Catenin in Adrenocortical Tumors: Activation of the Wnt Signaling Pathway Is a Frequent Event in both Benign and Malignant Adrenocortical Tumors, Cancer Res, vol.65, pp.7622-7627, 2005.

M. Toyota, N. Ahuja, M. Ohe-toyota, J. G. Herman, S. B. Baylin et al., CpG island methylator phenotype in colorectal cancer, Proc. Natl. Acad. Sci. U. S. A, vol.96, pp.8681-8686, 1999.

M. Uda, C. Ottolenghi, L. Crisponi, J. E. Garcia, M. Deiana et al., Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development, Hum. Mol. Genet, vol.13, pp.1171-1181, 2004.

N. H. Uhlenhaut, S. Jakob, K. Anlag, T. Eisenberger, R. Sekido et al., Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation, Cell, vol.139, pp.1130-1142, 2009.

A. Vaidya, J. M. Brown, and J. S. Williams, The renin-angiotensin-aldosterone system and calciumregulatory hormones, J. Hum. Hypertens, vol.29, pp.515-521, 2015.

P. Val, J. Martinez-barbera, and A. Swain, Adrenal development is initiated by Cited2 and Wt1 through modulation of Sf-1 dosage, Development, vol.134, pp.2349-2358, 2007.

G. A. Van-der-auwera, M. O. Carneiro, C. Hartl, R. Poplin, G. Del-angel et al., From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline, Curr. Protoc. Bioinforma, vol.43, 2013.

V. Vidal and A. Schedl, Requirement of WT1 for gonad and adrenal development: insights from transgenic animals, Endocr. Res, vol.26, pp.1075-1082, 2000.

G. P. Vinson, Functional Zonation of the Adult Mammalian Adrenal Cortex, Front. Neurosci, vol.10, 2016.

E. M. Walczak, R. Kuick, I. Finco, N. Bohin, S. M. Hrycaj et al., Wnt signaling inhibits adrenal steroidogenesis by cell-autonomous and non-cell-autonomous mechanisms, Mol. Endocrinol. Baltim. Md, vol.28, pp.1471-1486, 2014.

K. Wang, M. Li, and H. Hakonarson, ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data, Nucleic Acids Res, vol.38, pp.164-164, 2010.

T. Wang, F. Satoh, R. Morimoto, Y. Nakamura, H. Sasano et al., Gene expression profiles in aldosterone-producing adenomas and adjacent adrenal glands, Eur. J. Endocrinol, vol.164, pp.613-619, 2011.

L. S. Weinstein, A. Shenker, P. V. Gejman, M. J. Merino, E. Friedman et al., Activating Mutations of the Stimulatory G Protein in the McCune-Albright Syndrome, N. Engl. J. Med, vol.325, pp.1688-1695, 1991.

M. D. Wilkerson and D. N. Hayes, ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking, Bioinforma. Oxf. Engl, vol.26, pp.1572-1573, 2010.

W. Roussel, H. Vezzosi, D. Rizk-rabin, M. Barreau, O. Ragazzon et al., Identification of gene expression profiles associated with cortisol secretion in adrenocortical adenomas, J. Clin. Endocrinol. Metab, vol.98, pp.1109-1121, 2013.

J. T. Winston, P. Strack, P. Beer-romero, C. Y. Chu, S. J. Elledge et al., The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro, Genes Dev, vol.13, pp.270-283, 1999.

G. W. Woolley, E. Fekete, and C. C. Little, Gonadectomy and Adrenal Neoplasms, Science, vol.97, pp.291-291, 1943.

Y. Xing, A. M. Lerario, W. Rainey, and G. D. Hammer, Development of adrenal cortex zonation, Endocrinol. Metab. Clin. North Am, vol.44, pp.243-274, 2015.

N. Yago and S. Ichii, Submitochondrial distribution of components of the steroid 11 betahydroxylase and cholesterol sidechain-cleaving enzyme systems in hog adrenal cortex, J. Biochem. (Tokyo), vol.65, pp.215-224, 1969.

W. Yang, N. M. Gutierrez, L. Wang, B. S. Ellsworth, and C. Wang, Synergistic activation of the Mc2r promoter by FOXL2 and NR5A1 in mice, Biol. Reprod, vol.83, pp.842-851, 2010.

R. Yates, H. Katugampola, D. Cavlan, K. Cogger, E. Meimaridou et al., Adrenocortical development, maintenance, and disease, Curr. Top. Dev. Biol, vol.106, pp.239-312, 2013.

E. Zanaria, F. Muscatelli, B. Bardoni, T. M. Strom, S. Guioli et al., An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita, Nature, vol.372, pp.635-641, 1994.

M. Zennaro, S. Boulkroun, and F. Fernandes-rosa, An update on novel mechanisms of primary aldosteronism, J. Endocrinol, vol.224, pp.63-77, 2015.

J. Zhao, J. Roth, B. Bode-lesniewska, M. Pfaltz, P. U. Heitz et al., Combined comparative genomic hybridization and genomic microarray for detection of gene amplifications in pulmonary artery intimal sarcomas and adrenocortical tumors, Genes. Chromosomes Cancer, vol.34, pp.48-57, 2002.

S. Zheng, A. D. Cherniack, N. Dewal, R. A. Moffitt, L. Danilova et al., Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma, Cancer Cell, vol.29, pp.723-736, 2016.

M. Terzolo, A. Pia, and G. Reimondo, Subclinical Cushing's syndrome: definition and management, Clinical Endocrinology, vol.2012, pp.76-88

C. A. Stratakis and S. A. Boikos, Genetics of adrenal tumors associated with Cushing's syndrome: a new classification for bilateral adrenocortical hyperplasias, Nature Clinical Practice. Endocrinology & Metabolism, vol.3, pp.748-757, 2007.

M. Fassnacht and B. Kroiss-m-&-allolio, Update in adrenocortical carcinoma, Journal of Clinical Endocrinology and Metabolism, vol.98, pp.4551-4564, 2013.

C. A. Stratakis, New genes and/or molecular pathways associated with adrenal hyperplasias and related adrenocortical tumors, Molecular and Cellular Endocrinology, vol.300, pp.152-157, 2009.

M. Choi, U. I. Scholl, P. Yue, P. Björklund, B. Zhao et al., K C channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension, Science, vol.331, pp.768-772, 2011.

M. C. Zennaro, S. Boulkroun, and F. Fernandes-rosa, An update on novel mechanisms of primary aldosteronism, Journal of Endocrinology, vol.2015, pp.224-63

F. Beuschlein, S. Boulkroun, A. Osswald, T. Wieland, H. N. Nielsen et al., Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension, Nature Genetics, vol.45, pp.440-444, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01544147

E. A. Azizan, H. Poulsen, P. Tuluc, J. Zhou, M. V. Clausen et al., Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension, Nature Genetics, pp.45-1055, 2013.

U. I. Scholl, G. Goh, G. Stölting, R. C. De-oliveira, M. Choi et al., Somatic and germline CACNA1D calcium channel mutations in aldosteroneproducing adenomas and primary aldosteronism, Nature Genetics, pp.45-1050, 2013.

U. I. Scholl, G. Stölting, C. Nelson-williams, A. A. Vichot, M. Choi et al., Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism, vol.4, p.6315, 2015.

F. L. Fernandes-rosa, I. Giscos-douriez, L. Amar, C. E. Gomez-sanchez, T. Meatchi et al., Different somatic mutations in multinodular adrenals with aldosterone-producing adenoma. Hypertension, vol.66, pp.1014-1022, 2015.

K. Nishimoto, S. A. Tomlins, R. Kuick, A. K. Cani, T. J. Giordano et al., Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands, PNAS, vol.2015, pp.112-4591

A. Berthon, C. Drelon, B. Ragazzon, S. Boulkroun, F. Tissier et al., WNT/bcatenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production, Human Molecular Genetics, pp.23-889, 2014.

A. Teo, S. Garg, L. H. Shaikh, J. Zhou, K. Frankl et al., Pregnancy, primary aldosteronism, and adrenal CTNNB1 mutations, New England Journal of Medicine, vol.2015, pp.373-1429

F. Beuschlein, M. Fassnacht, G. Assié, D. Calebiro, C. A. Stratakis et al., Constitutive activation of PKA catalytic subunit in adrenal Cushing's syndrome, New England Journal of Medicine, vol.370, pp.1019-1028, 2014.

G. Goh, U. I. Scholl, J. M. Healy, M. Choi, M. L. Prasad et al., Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors, Nature Genetics, vol.46, pp.613-617, 2014.

Y. Sato, S. Maekawa, R. Ishii, M. Sanada, T. Morikawa et al., Recurrent somatic mutations underlie corticotropin-independent Cushing's syndrome, Science, vol.344, pp.917-920, 2014.

Y. Cao, M. He, Z. Gao, Y. Peng, Y. Li et al., Activating hotspot L205R mutation in PRKACA and adrenal Cushing's syndrome, Science, vol.344, pp.913-917, 2014.

W. Roussel, H. Vezzosi, D. Rizk-rabin, M. Barreau, O. Ragazzon et al., Identification of gene expression profiles associated with cortisol secretion in adrenocortical adenomas, Journal of Clinical Endocrinology and Metabolism, pp.98-1109, 2013.

H. Kobayashi, T. Usui, J. Fukata, T. Yoshimasa, Y. Oki et al., Mutation analysis of Gsa, adrenocorticotropin receptor and p53 genes in Japanese patients with adrenocortical neoplasms: including a case of Gsa mutation, Endocrine Journal, vol.47, pp.461-466, 2000.

J. Bertherat, L. Groussin, F. Sandrini, L. Matyakhina, T. Bei et al., Molecular and functional analysis of PRKAR1A and its locus (17q22-24) in sporadic adrenocortical tumors: 17q losses, somatic mutations, and protein kinase A expression and activity, Cancer Research, pp.63-5308, 2003.

F. Tissier, C. Cavard, L. Groussin, K. Perlemoine, G. Fumey et al., Mutations of b-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors, Cancer Research, vol.65, pp.7622-7627, 2005.

S. Bonnet, S. Gaujoux, P. Launay, C. Baudry, I. Chokri et al., Wnt/b-catenin pathway activation in adrenocortical adenomas is frequently due to somatic CTNNB1-activating mutations, which are associated with larger and nonsecreting tumors: a study in cortisol-secreting and nonsecreting tumors, Journal of Clinical Endocrinology and Metabolism, pp.96-419, 2011.

L. Drougat, S. Espiard, and J. Bertherat, Genetics of primary bilateral macronodular adrenal hyperplasia: a model for early diagnosis of Cushing's syndrome?, European Journal of Endocrinology, vol.2015, pp.173-121

R. Correa, P. Salpea, and C. A. Stratakis, Carney complex: an update, European Journal of Endocrinology, pp.173-85, 2015.

G. Assié, R. Libé, S. Espiard, M. Rizk-rabin, A. Guimier et al., ARMC5 mutations in macronodular adrenal hyperplasia with Cushing's syndrome, New England Journal of Medicine, vol.369, pp.2105-2114, 2013.

G. A. Alencar, A. M. Lerario, M. Y. Nishi, B. M. Mariani, M. Q. Almeida et al., ARMC5 mutations are a frequent cause of primary macronodular adrenal hyperplasia, Journal of Clinical Endocrinology and Metabolism, pp.99-1501, 2014.

L. Gagliardi, A. W. Schreiber, C. N. Hahn, J. Feng, T. Cranston et al., ARMC5 mutations are common in familial bilateral macronodular adrenal hyperplasia, Journal of Clinical Endocrinology and Metabolism, pp.99-1784, 2014.

S. Espiard, L. Drougat, R. Libé, G. Assié, K. Perlemoine et al., ARMC5 mutations in a large cohort of primary macronodular adrenal hyperplasia: clinical and functional consequences, Journal of Clinical Endocrinology and Metabolism, pp.100-926, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01813998

E. Louiset, C. Duparc, J. Young, S. Renouf, T. Nomigni et al., Intraadrenal corticotropin in bilateral macronodular adrenal hyperplasia, New England Journal of Medicine, vol.369, pp.2115-2125, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01908272

N. El-ghorayeb, I. Bourdeau, and A. Lacroix, Multiple aberrant hormone receptors in Cushing's syndrome, European Journal of Endocrinology, 2015.

G. Assié, E. Letouzé, M. Fassnacht, A. Jouinot, W. Luscap et al., Integrated genomic characterization of adrenocortical carcinoma, Nature Genetics, vol.46, pp.607-612, 2014.

A. M. Lerario, T. Else, W. E. Rainey, S. Zheng, R. Verhaak et al., Endocrine Society Meeting, 2015.

C. C. Juhlin, G. Goh, J. M. Healy, A. L. Fonseca, U. I. Scholl et al., Whole-exome sequencing characterizes the landscape of somatic mutations and copy number alterations in adrenocortical carcinoma, Journal of Clinical Endocrinology and Metabolism, pp.100-493, 2015.

J. S. Ross, K. Wang, J. V. Rand, L. Gay, M. J. Presta et al., Next-generation sequencing of adrenocortical carcinoma reveals new routes to targeted therapies, Journal of Clinical Pathology, vol.67, pp.968-973, 2014.

D. Martino, M. C. , A. Ghuzlan, A. , A. S. Assié et al., Molecular screening for a personalized treatment approach in advanced adrenocortical cancer, Journal of Clinical Endocrinology and Metabolism, vol.98, pp.4080-4088, 2013.

H. X. Hao, Y. Xie, Y. Zhang, O. Charlat, E. Oster et al., ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner, Nature, vol.2012, pp.485-195

J. Zhao, J. Roth, B. Bode-lesniewska, M. Pfaltz, P. U. Heitz et al., Combined comparative genomic hybridization and genomic microarray for detection of gene amplifications in pulmonary artery intimal sarcomas and adrenocortical tumors, Genes. Chromosomes Cancer, pp.34-48, 2002.

B. Ragazzon, R. Libé, G. Assié, F. Tissier, O. Barreau et al., Mass-array screening of frequent mutations in cancers reveals RB1 alterations in aggressive adrenocortical carcinomas, European Journal of Endocrinology, vol.170, pp.385-391, 2014.

G. Ciriello, M. L. Miller, B. A. Aksoy, Y. Senbabaoglu, N. Schultz et al., Emerging landscape of oncogenic signatures across human cancers, Nature Genetics, pp.45-1127, 2013.

T. J. Giordano, D. G. Thomas, R. Kuick, M. Lizyness, D. E. Misek et al., Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis, American Journal of Pathology, vol.162, issue.10, pp.63846-63847, 2003.

A. De-reyniès, G. Assié, D. S. Rickman, F. Tissier, L. Groussin et al., Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival, Journal of Clinical Oncology, pp.27-1108, 2009.

F. De-fraipont, E. Atifi, M. Cherradi, N. , L. Moigne et al., Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic acid microarrays identifies several candidate genes as markers of malignancy, Journal of Clinical Endocrinology and Metabolism, vol.90, pp.1819-1829, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00343768

D. Velázquez-fernández, C. Laurell, J. Geli, A. Höög, J. Odeberg et al., Expression profiling of adrenocortical neoplasms suggests a molecular signature of malignancy, Surgery, vol.138, pp.1087-1094, 2005.

E. P. Slater, S. M. Diehl, P. Langer, B. Samans, A. Ramaswamy-a-&-zielke et al., Analysis by cDNA microarrays of gene expression patterns of human adrenocortical tumors, European Journal of Endocrinology, vol.154, pp.587-598, 2006.

G. G. Fernandez-ranvier, J. Weng, R. F. Yeh, E. Khanafshar, I. Suh et al., Identification of biomarkers of adrenocortical carcinoma using genomewide gene expression profiling, Archives of Surgery, pp.143-841, 2008.

Z. Tömböl, P. M. Szabó, V. Molnár, Z. Wiener, G. Tölgyesi et al., Integrative molecular bioinformatics study of human adrenocortical tumors: microRNA, tissue-specific target prediction, and pathway analysis, EndocrineRelated Cancer, vol.16, pp.895-906, 2009.

P. Soon, A. J. Gill, D. E. Benn, A. Clarkson, B. G. Robinson et al., Microarray gene expression and immunohistochemistry analyses of adrenocortical tumors identify IGF2 and Ki-67 as useful in differentiating carcinomas from adenomas. Endocrine-Related Cancer, pp.16-573, 2009.

C. Laurell, D. Velázquez-fernández, K. Lindsten, C. Juhlin, U. Enberg et al., Transcriptional profiling enables molecular classification of adrenocortical tumours, European Journal of Endocrinology, pp.161-141, 2009.

C. Gicquel, X. Bertagna, H. Schneid, M. Francillard-leblond, J. P. Luton et al., Rearrangements at the 11p15 locus and overexpression of insulin-like growth factor-II gene in sporadic adrenocortical tumors, Journal of Clinical Endocrinology and Metabolism, vol.78, pp.1444-1453, 1994.

F. M. Barlaskar, A. C. Spalding, J. H. Heaton, R. Kuick, A. C. Kim et al., Preclinical targeting of the type 1 insulin-like growth factor receptor in adrenocortical carcinoma, Journal of Clinical Endocrinology and Metabolism, pp.94-204, 2008.

E. E. Patterson, A. K. Holloway, J. Weng, T. Fojo, and E. Kebebew, MicroRNA profiling of adrenocortical tumors reveals miR-483 as a marker of malignancy, Cancer, vol.117, pp.1630-1639, 2011.

P. Soon, L. J. Tacon, A. J. Gill, C. P. Bambach, M. S. Sywak et al., miR-195 and miR-483-5p identified as predictors of poor prognosis in adrenocortical cancer, Clinical Cancer Research, vol.15, pp.7684-7692, 2009.

O. Chabre, R. Libé, G. Assie, O. Barreau, J. Bertherat et al., Serum miR-483-5p and miR-195 are predictive of recurrence risk in adrenocortical cancer patients, Endocrine-Related Cancer, vol.20, pp.579-594, 2013.

D. M. O-¨-zata, S. Caramuta, D. Velázquez-fernández, P. Akçakaya, H. Xie et al., The role of microRNA deregulation in the pathogenesis of adrenocortical carcinoma, Endocrine-Related Cancer, vol.18, pp.643-655, 2011.

K. J. Schmitz, J. Helwig, S. Bertram, S. Y. Sheu, A. C. Suttorp et al., Differential expression of microRNA-675, microRNA-139-3p and microRNA-335 in benign and malignant adrenocortical tumours, Journal of Clinical Pathology, vol.64, pp.529-535, 2011.

N. S. Rechache, Y. Wang, H. S. Stevenson, J. K. Killian, D. C. Edelman et al., DNA methylation profiling identifies global methylation differences and markers of adrenocortical tumors, Journal of Clinical Endocrinology and Metabolism, pp.97-1004, 2012.

M. Kulis-m-&-esteller, DNA methylation and cancer, Advances in Genetics, vol.70, pp.27-56, 2010.

O. Barreau, G. Assié, H. Wilmot-roussel, B. Ragazzon, C. Baudry et al., Identification of a CpG Island methylator phenotype in adrenocortical carcinomas, Journal of Clinical Endocrinology and Metabolism, pp.98-174, 2012.

E. A. Stephan, T. H. Chung, C. S. Grant, S. Kim, V. Hoff et al., Adrenocortical carcinoma survival rates correlated to genomic copy number variants, Molecular Cancer Therapeutics, vol.7, pp.425-431, 2008.

P. M. Szabó, V. Tamási, V. Molnár, M. Andrásfalvy, Z. Tömböl et al., Meta-analysis of adrenocortical tumour genomics data: novel pathogenic pathways revealed, Oncogene, vol.29, pp.3163-3172, 2010.

O. Barreau, A. De-reynies, H. Wilmot-roussel, M. Guillaud-bataille, C. Auzan et al., Clinical and pathophysiological implications of chromosomal alterations in adrenocortical tumors: an integrated genomic approach, Journal of Clinical Endocrinology and Metabolism, pp.97-301, 2012.

C. L. Ronchi, S. Sbiera, E. Leich, K. Henzel, A. Rosenwald et al., Single nucleotide polymorphism array profiling of adrenocortical tumors -evidence for an adenoma carcinoma sequence? PloS ONE, vol.8, p.73959, 2013.

T. J. Giordano, R. Kuick, T. Else, P. G. Gauger, M. Vinco et al., Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling, Clinical Cancer Research, vol.15, pp.668-676, 2009.

M. Toyota, N. Ahuja, M. Ohe-toyota, J. G. Herman, S. B. Baylin et al., CpG island methylator phenotype in colorectal cancer, PNAS, vol.1999, pp.96-8681

F. Tissier, A. S. Leteurtre, E. , A. Ghuzlan, A. Patey et al., Adrenocortical tumors: improving the practice of the Weiss system through virtual microscopy: a National Program of the French Network INCa-COMETE

, American Journal of Surgical Pathology, vol.2012, pp.36-1194

A. Viola, D. Tizzani, S. Monticone, V. Crudo, M. Galmozzi et al., Diagnosis and treatment of unilateral forms of primary aldosteronism, Current Hypertension Reviews, vol.2013, pp.9-156

S. Gaujoux, F. Tissier, L. Groussin, R. Libé, B. Ragazzon et al., Wnt/b-catenin and 3',5'-cyclic adenosine 5'-monophosphate/protein kinase A signaling pathways alterations and somatic b-catenin gene mutations in the progression of adrenocortical tumors, Journal of Clinical Endocrinology and Metabolism, vol.93, pp.4135-4140, 2008.

U. Elbelt, A. Trovato, M. Kloth, E. Gentz, R. Finke et al., Molecular and clinical evidence for an ARMC5 tumor syndrome: concurrent inactivating germline and somatic mutations are associated with both primary macronodular adrenal hyperplasia and meningioma, Journal of Clinical Endocrinology and Metabolism, pp.100-119, 2015.

M. Bisceglia, O. Ludovico, D. Mattia, A. Ben-dor, D. Sandbank et al., Adrenocortical oncocytic tumors: report of 10 cases and review of the literature, International Journal of Surgical Pathology, vol.12, pp.231-243, 2004.

M. C. Fragoso, M. Q. Almeida, T. L. Mazzuco, B. M. Mariani, L. P. Brito et al., Combined expression of BUB1B, DLGAP5, and PINK1 as predictors of poor outcome in adrenocortical tumors: validation in a Brazilian cohort of adult and pediatric patients, European Journal of Endocrinology, vol.166, pp.61-67, 2012.

L. A. Diaz and A. Bardelli, Liquid biopsies: genotyping circulating tumor DNA, Journal of Clinical Oncology, vol.32, pp.579-586, 2011.

A. Sebio, M. Kahn, and H. J. Lenz, The potential of targeting Wnt/b-catenin in colon cancer, Expert Opinion on Therapeutic Targets, vol.18, pp.611-615, 2014.

A. R. Glover, J. T. Zhao, A. J. Gill, J. Weiss, N. Mugridge et al., microRNA-7 as a tumor suppressor and novel therapeutic for adrenocortical carcinoma, Oncotarget, vol.6, pp.36675-36688, 2015.

R. P. Lifton, R. G. Dluhy, M. Powers, G. M. Rich, S. Cook et al., A chimaeric 11 b-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension, Nature, pp.355-262, 1992.

L. S. Kirschner, J. A. Carney, S. D. Pack, S. E. Taymans, C. Giatzakis et al., Mutations of the gene encoding the protein kinase A type I-a regulatory subunit in patients with the Carney complex, Nature Genetics, pp.26-89, 2000.

A. Horvath, V. Mericq, and C. A. Stratakis, Mutation in PDE8B, a cyclic AMPspecific phosphodiesterase in adrenal hyperplasia, New England Journal of Medicine, vol.358, pp.750-752, 2008.

A. Horvath, S. Boikos, C. Giatzakis, A. Robinson-white, L. Groussin et al., A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia, Nature Genetics, pp.38-794, 2006.

L. S. Weinstein, A. Shenker, P. V. Gejman, M. J. Merino, E. Friedman et al.,

. Mccune-albright-syndrome, New England Journal of Medicine, pp.325-1688, 1991.

A. Forlino, A. Vetro, L. Garavelli, R. Ciccone, E. London et al., New England Journal of Medicine, vol.370, pp.1065-1067, 2014.

B. Skogseid, C. Larsson, P. G. Lindgren, E. Kvanta, J. Rastad et al., Clinical and genetic features of adrenocortical lesions in multiple endocrine neoplasia type 1, Journal of Clinical Endocrinology and Metabolism, pp.75-76, 1992.

B. Shuch, C. J. Ricketts, C. D. Vocke, V. A. Valera, C. C. Chen et al., Adrenal nodular hyperplasia in hereditary leiomyomatosis and renal cell cancer, Journal of Urology, vol.189, pp.430-435, 2013.

C. Pilon, M. Pistorello, A. Moscon, G. Altavilla, U. Pagotto et al., Inactivation of the p16 tumor suppressor gene in adrenocortical tumors, Journal of Clinical Endocrinology and Metabolism, vol.84, pp.2776-2779, 1999.

S. Gaujoux, S. Pinson, A. P. Gimenez-roqueplo, L. Amar, B. Ragazzon et al., Inactivation of the APC gene is constant in adrenocortical tumors from patients with familial adenomatous polyposis but not frequent in sporadic adrenocortical cancers, Clinical Cancer Research, vol.16, pp.5133-5141, 2010.

C. P. Lombardi, M. Raffaelli, G. Pani, A. Maffione, P. Princi et al., Gene expression profiling of adrenal cortical tumors by cDNA macroarray analysis. Results of a preliminary study, Biomedicine & Pharmacotherapy, pp.60-186, 2006.

G. G. Fernandez-ranvier, J. Weng, R. F. Yeh, D. Shibru, E. Khafnashar et al., Candidate diagnostic markers and tumor suppressor genes for adrenocortical carcinoma by expression profile of genes on chromosome 11q13, World Journal of Surgery, vol.32, pp.873-881, 2008.

L. Lenzini, T. M. Seccia, E. Aldighieri, A. S. Belloni, P. Bernante et al., Heterogeneity of aldosteroneproducing adenomas revealed by a whole transcriptome analysis, Hypertension, vol.50, pp.1106-1113, 2007.

T. Wang, F. Satoh, R. Morimoto, Y. Nakamura, H. Sasano et al., Gene expression profiles in aldosteroneproducing adenomas and adjacent adrenal glands, European Journal of Endocrinology, vol.164, pp.613-619, 2011.

E. A. Azizan, B. Y. Lam, S. J. Newhouse, J. Zhou, R. E. Kuc et al., Microarray, qPCR, and KCNJ5 sequencing of aldosterone-producing adenomas reveal differences in genotype and phenotype between zona glomerulosa-and zona fasciculata-like tumors, Journal of Clinical Endocrinology and Metabolism, vol.2012, pp.97-819

S. Monticone, N. G. Hattangady, K. Nishimoto, F. Mantero, B. Rubin et al., Effect of KCNJ5 mutations on gene expression in aldosterone-producing adenomas and adrenocortical cells, Journal of Clinical Endocrinology and Metabolism, pp.97-1567, 2012.

A. L. Fonseca, J. Kugelberg, L. F. Starker, U. Scholl, M. Choi et al., Comprehensive DNA methylation analysis of benign and malignant adrenocortical tumors, Genes. Chromosomes Cancer, vol.2012, pp.51-949

B. Howard, Y. Wang, P. Xekouki, F. R. Faucz, M. Jain et al., Integrated analysis of genome-wide methylation and gene expression shows epigenetic regulation of CYP11B2 in aldosteronomas, Journal of Clinical Endocrinology and Metabolism, pp.99-536, 2014.

M. Murakami, T. Yoshimoto, K. Nakabayashi, K. Tsuchiya, I. Minami et al., Integration of transcriptome and methylome analysis of aldosterone-producing adenomas, European Journal of Endocrinology, vol.173, pp.185-195, 2015.

A. R. Glover, J. T. Zhao, J. C. Ip, J. C. Lee, B. G. Robinson et al., Long noncoding RNA profiles of adrenocortical cancer can be used to predict recurrence, Endocrine-Related Cancer, vol.22, pp.99-109, 2015.

D. R. Szabó, M. Luconi, P. M. Szabó, M. Tó-th, N. Szücs et al., Analysis of circulating microRNAs in adrenocortical tumors, Laboratory Investigation, pp.94-331, 2014.

D. Patel, M. Boufraqech, M. Jain, L. Zhang, M. He et al., MiR-34a and miR-483-5p are candidate serum biomarkers for adrenocortical tumors, Surgery, vol.2013, pp.154-1224

S. Robertson, S. M. Mackenzie, S. Alvarez-madrazo, L. A. Diver, J. Lin et al., MicroRNA-24 is a novel regulator of aldosterone and cortisol production in the human adrenal cortex, Hypertension, vol.62, pp.572-578, 2013.

D. Velázquez-fernández, S. Caramuta, D. M. O-¨-zata, M. Lu, A. Höög et al., MicroRNA expression patterns associated with hyperfunctioning and non-hyperfunctioning phenotypes in adrenocortical adenomas, European Journal of Endocrinology, vol.170, pp.583-591, 2014.

C. L. Ronchi, E. Leich, S. Sbiera, D. Weismann, A. Rosenwald et al., Single nucleotide polymorphism microarray analysis in cortisol-secreting adrenocortical adenomas identifies new candidate genes and pathways, Neoplasia, vol.14, pp.206-218, 2012.