Génomique intégrée des tumeurs bénignes corticosurrénaliennes

Abstract : The adrenal cortex produces steroid hormones, mainly cortisol, aldosterone and androgens. The adrenal cortex can be the site of tumors - adenomas or cancers -, hyperplasias and dysplasias. These lesions are in their great majority benign. They may be associated with hypersecretion of steroid hormone, most commonly cortisol (Cushing's syndrome) or aldosterone. There are also non-secreting tumors. Although molecular classifications have been established for carcinomas, to date there is no genome-wide classification of benign adrenocortical tumors, which could provide information on the mechanisms of autonomic secretion and proliferation of these lesions. Finally, the genetic determinism of dysplasia and hyperplasia is only partially known. During my thesis, I analyzed a complete "omics" dataset of benign adrenocortical lesions for more than a hundred samples, including high-throughput sequencing (exome / targeted for mutations, RNA-seq for microRNA analysis), transcriptome and methylome microarrays, and SNP microarrays for chromosomal alterations. I was able to identify a relatively convergent genome-wide molecular classification between the different "omics", which is consistent with the tumor and secretory types, but also identifies new subgroups within these lesions. In particular, it appears that mutations in these lesions are essential determinants of molecular classification. Thus, the lesions are grouped according to the signaling pathway or the altered gene, in particular the PKA / cAMP pathway for lesions producing cortisol, the Wnt / beta-catenin pathway for adenomas that do not secrete little or no cortisol, and ARMC5 for a subgroup of macronodular hyperplasia. These very distinct groups also contain lesions with no identified mutation, presumably with alternative mechanisms of alteration of these signaling pathways. In the group of ARMC5 mutated macronodular hyperplasia, the comparison with all other benign lesions shows a strong ovarian expression signature, marked by the expression of FOXL2 and its targets CYP19A1 and PTHLH. This mark of specifically gonadal differentiation in the adrenal gland causes a development anomaly to be discussed. This integrated genomic analysis also identifies epigenetic alterations of steroidogenesis. In particular, tumors secreting a lot of cortisol are globally hypermethylated in their CpG islands. In addition, hypermethylation of CYP21A2 is probably a mechanism of intratumoral 21-hydroxylase deficiency. MiRNA signatures also appear to have an impact on steroidogenesis. During my thesis I also analyzed the exome of unmutated macronodular hyperplasia ARMC5. I did not identify a new recurrent somatic mutation. At the level of the germinal exome, I identified several recurrent candidate genes, which open the way for complementary genetic analyzes (cohort extension) and cell biology. This work is the first major genomic characterization of benign lesions of the adrenal cortex. Although not all mechanisms are fully elucidated, these data represent an important resource for guiding future research into benign adrenal tumorigenesis and steroidogenesis.
Document type :
Theses
Complete list of metadatas

Cited literature [393 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02134094
Contributor : Abes Star <>
Submitted on : Monday, May 20, 2019 - 12:10:30 PM
Last modification on : Saturday, June 15, 2019 - 4:26:48 AM

File

va_Faillot_Simon.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02134094, version 1

Collections

Citation

Simon Faillot. Génomique intégrée des tumeurs bénignes corticosurrénaliennes. Génétique. Université Sorbonne Paris Cité, 2017. Français. ⟨NNT : 2017USPCB261⟩. ⟨tel-02134094⟩

Share

Metrics

Record views

324

Files downloads

845