Skip to Main content Skip to Navigation

Optimisation biénergie d'un panneau solaire multifonctionnel : du capteur aux installations in situ

Abstract : In the context of the fight against climate change, the building is a strategic sector to address because of its high consumption of heat and electricity. Solar energy, both thermal and photovoltaic, has strong assets to meet this challenge and is becoming more and more cost-competitive. In particular, the PVT hybrid solar is a promising solution with a double advantage: the extraction of heat under the photovoltaic module brings both a gain in electrical efficiency, and a gain by generating heat for the needs of the building. The state of the art demonstrates the diversity of solar hybrid technologies, and this thesis specifically addresses the unglazed flat-plate design with water as the heat transfer fluid. To address sustainability and performance issues, the company DualSun designed a PVT hybrid module with a stainless steel heat exchanger directly laminated during the photovoltaic module process.The analysis of the DualSun collector is done in Part I, first with a 3D model of the exchanger. This model makes it possible to determine minimum flows, to quantify the interest not to insulate the edges of the module and to visualize that the pressure drop for this concept is mainly related to the inlets and outlets of the module but remains acceptable. Given the limitations in terms of scope and calculation time of this 3D model, simplified models are proposed and compared. The results of these simplified models corroborate a stagnation temperature of the DualSun concept of around 75°C, which confirms that the design is intrinsically resilient to overheating even in the absence of hot water consumption. Finally, thermal performance on 9 prototypes with layer-by-layer composition variations confirm that the model is robust. The models demonstrate that the 250Wp non-insulated version of the PVT panel has a thermal power output of 758 Wth for hot water needs at 30°C.A system analysis of these modules integrated in a complex system is carried out in Part II. For the preheating Domestic Hot Water system (DHW), four software programs, PVSyst, PVGis, Polysun, Solo are compared to Trnsys with the Type 295 and Type 816, which integrate the two simplified models of the module defined in the section I. The physical models of these software programs are consistent with each other in the field of use.The results of these software programs used from statistical data for the weather and consumption habits are compared to field measurements on 28 DHW (domestic hot water) hybrid installations in private homes. The objective was to quantify the errors of estimation of the statistical predictions with respect to the reality. While the standard deviation of PV output and maximum temperatures reached by the modules related to the uncertainty on the weather is low (about 10%), the standard deviation of estimated hot water needs based on an average consumption is much higher (about 30%) because of irregular consumption behavior in individuals in terms of time and volume depending on the days. The average temperatures reached at the level of the modules are higher than 45°C during half of the year and allow an effective preheating of the sanitary tank. Solar covering of hot water needs of 57-58% are measured near Lyon.For combined solar and heat pump (HP+) systems in multi-dwelling buildings and for pool heating (SP) systems, statistical models allow a reliable evaluation of the energy production because of stable hot water needs.In conclusion, solar hybrid should be a key technology for the energy transition of buildings in the coming years. PVT technology will evolve to reduce costs from year to year as observed with photovoltaic technology and thus strengthen its cost-competitive position against gas as a heat source for homes and buildings.
Complete list of metadatas
Contributor : Abes Star :  Contact
Submitted on : Monday, May 20, 2019 - 10:05:09 AM
Last modification on : Thursday, July 2, 2020 - 5:46:05 PM


Version validated by the jury (STAR)


  • HAL Id : tel-02133891, version 1


Laetitia Brottier. Optimisation biénergie d'un panneau solaire multifonctionnel : du capteur aux installations in situ. Mécanique []. Université Paris-Saclay, 2019. Français. ⟨NNT : 2019SACLN009⟩. ⟨tel-02133891⟩



Record views


Files downloads