P. V. Abdelnur, B. G. Vaz, J. D. Rocha, M. B. De-almeida, M. Teixeira et al., Characterization of Bio-oils from Different Pyrolysis Process Steps and Biomass Using HighResolution Mass Spectrometry, vol.27, pp.6646-6654, 2013.

G. E. Achladas, Analysis of biomass pyrolysis liquids: Separation and characterization of phenols, Journal of Chromatography A, vol.542, pp.263-275, 1991.

D. T. Allen, Kinetic and Thermodynamic Lumping of Multicomponent Mixtures. Structural models of catalytic cracking chemistry, 1991.

D. T. Allen and D. Liguras, Structural Models of Catalytic Cracking Chemistry: A Case Study of a Group Contribution Approach to Lumped Kinetic Modeling. Structural models of catalytic cracking chemistry, Reactions in Complex Mixtures, pp.101-125, 1991.

A. Alvarez-majmutov and J. Chen, Stochastic Modeling and Simulation Approach for Industrial Fixed-Bed Hydrocrackers, Ind. Eng. Chem. Res, vol.56, pp.6926-6938, 2017.

A. Alvarez-majmutov, J. Chen, R. Gieleciak, D. Hager, N. Heshka et al., Deriving the Molecular Composition of Middle Distillates by Integrating Statistical Modeling with Advanced Hydrocarbon Characterization, Energy Fuels, vol.28, pp.7385-7393, 2014.

A. Alvarez-majmutov, R. Gieleciak, and J. Chen, Deriving the Molecular Composition of Vacuum Distillates by Integrating Statistical Modeling and Detailed Hydrocarbon Characterization, Energy Fuels, vol.29, pp.7931-7940, 2015.

A. Alvarez-majmutov, J. Chen, and R. Gieleciak, Molecular-Level Modeling and Simulation of Vacuum Gas Oil Hydrocracking, Energy Fuels, vol.30, pp.138-148, 2016.

T. Andersson, T. Hyötyläinen, and M. Riekkola, Analysis of phenols in pyrolysis oils by gel permeation chromatography and multidimensional liquid chromatography, Journal of Chromatography A, vol.896, pp.343-349, 2000.

L. Artok, O. Erbatur, and H. H. Schobert, Reaction of dinaphthyl and diphenyl ethers at liquefaction conditions, Fuel Processing Technology, vol.47, pp.153-176, 1996.

L. Artok, Y. Su, Y. Hirose, M. Hosokawa, S. Murata et al., Structure and Reactivity of Petroleum-Derived Asphaltene ?. Energy Fuels, vol.13, pp.287-296, 1999.

R. Bayerbach and D. Meier, Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part IV: Structure elucidation of oligomeric molecules, Journal of Analytical and Applied Pyrolysis, vol.85, pp.98-107, 2009.

R. Bayerbach, D. Van-nguyen, U. Schurr, and D. Meier, Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin), Journal of Analytical and Applied Pyrolysis, vol.77, pp.95-101, 2006.

C. A. Bennett, User-Controlled Network Generation with INGEN, Rutgers, 2009.

S. W. Benson, Thermochemical kinetics: Methods for the estimation of thermochemical data and rate parameters, 1968.

M. Bertero, L. Puente-g-de, and U. Sedran, Fuels from bio-oils: Bio-oil production from different residual sources, characterization and thermal conditioning, Fuel, vol.95, pp.263-271, 2012.

Y. Bie, A. Gutierrez, T. R. Viljava, J. M. Kanervo, and J. Lehtonen, Hydrodeoxygenation of Methyl Heptanoate over Noble Metal Catalysts: Catalyst Screening and Reaction Network, Ind. Eng. Chem. Res, vol.52, pp.11544-11551, 2013.

Y. Bie, J. M. Kanervo, and J. Lehtonen, Hydrodeoxygenation of Methyl Heptanoate over Rh/ZrO 2 Catalyst as a Model Reaction for Biofuel Production: Kinetic Modeling Based On Reaction Mechanism, Ind. Eng. Chem. Res, vol.54, pp.11986-11996, 2015.

A. B. Bindwal and P. D. Vaidya, Kinetics of Aqueous-Phase Hydrogenation of Levoglucosan over Ru/C Catalyst, Ind. Eng. Chem. Res, vol.52, pp.17781-17789, 2013.

M. M. Boduszynski, Composition of heavy petroleums. 1. Molecular weight, hydrogen deficiency, and heteroatom concentration as a function of atmospheric equivalent boiling point up to 1400.degree.F (760.degree.C), Energy Fuels, vol.1, pp.2-11, 1987.

M. M. Boduszynski, Composition of heavy petroleums. 2. Molecular characterization, Energy Fuels, vol.2, pp.597-613, 1988.

E. S. Boek, D. S. Yakovlev, and T. F. Headen, Quantitative Molecular Representation of Asphaltenes and Molecular Dynamics Simulation of Their Aggregation ?, Energy Fuels, vol.23, pp.1209-1219, 2009.

, Bondi A (1964) van der Waals Volumes and Radii, J. Phys. Chem, vol.68, pp.441-451

H. Bour, , 2017.

C. Branca, P. Giudicianni, D. Blasi, and C. , GC/MS Characterization of Liquids Generated from LowTemperature Pyrolysis of Wood, Ind. Eng. Chem. Res, vol.42, pp.3190-3202, 2003.

A. Bridgwater, Renewable fuels and chemicals by thermal processing of biomass, Chemical Engineering Journal, vol.91, pp.87-102, 2003.

T. Bridgwater, IEA Bioenergy 27th update, Biomass and Bioenergy, vol.31, pp.47-52, 2007.

A. Y. Bunch, X. Wang, and U. S. Ozkan, Hydrodeoxygenation of benzofuran over sulfided and reduced Ni-Mo/?-Al2O3 catalysts: Effect of H2S, Journal of Molecular Catalysis A: Chemical, vol.270, pp.264-272, 2007.

L. Busetto, D. Fabbri, R. Mazzoni, M. Salmi, C. Torri et al., Application of the Shvo catalyst in homogeneous hydrogenation of bio-oil obtained from pyrolysis of white poplar: New mild upgrading conditions, Fuel, vol.90, pp.1197-1207, 2011.

D. M. Campbell, C. Bennett, Z. Hou, and M. T. Klein, Attribute-Based Modeling of Resid Structure and Reaction, Ind. Eng. Chem. Res, vol.48, pp.1683-1693, 2009.

A. Centeno, E. Laurent, and B. Delmon, Influence of the Support of CoMo Sulfide Catalysts and of the Addition of Potassium and Platinum on the Catalytic Performances for the Hydrodeoxygenation of, 1995.

C. Carbonyl and G. Molecules, Journal of Catalysis, vol.154, pp.288-298

N. Charon, J. Ponthus, D. Espinat, F. Broust, G. Volle et al., Multi-technique characterization of fast pyrolysis oils, Journal of Analytical and Applied Pyrolysis, vol.116, pp.18-26, 2015.

N. Charon-revellin, H. Dulot, C. López-garcía, and J. J. , Kinetic Modeling of Vacuum Gas Oil Hydrotreatment using a Molecular Reconstruction Approach, Oil Gas Sci. Technol. -Rev. IFP Energies nouvelles, vol.66, pp.479-490, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00877849

T. Cheng, Y. Han, Y. Zhang, and C. Xu, Molecular composition of oxygenated compounds in fast pyrolysis bio-oil and its supercritical fluid extracts, Fuel, vol.172, pp.49-57, 2016.

E. D. Christensen, G. M. Chupka, J. Luecke, T. Smurthwaite, T. L. Alleman et al., Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions, Energy Fuels, vol.25, pp.5462-5471, 2011.

E. Crezee, Three-phase hydrogenation of D-glucose over a carbon supported ruthenium catalystmass transfer and kinetics, Applied Catalysis A: General, vol.251, pp.587-595, 2003.

A. Dahiya, Bioenergy: Biomass to biofuels. Pyrolysis of Lignocellulosic Biomass: Oil, Char and Gas, 2015.

M. R. Djokic, T. Dijkmans, G. Yildiz, W. Prins, V. Geem et al., Quantitative analysis of crude and stabilized bio-oils by comprehensive two-dimensional gas-chromatography, J Chromatogr A, vol.1257, pp.131-140, 2012.
DOI : 10.1016/j.chroma.2012.07.035

D. C. Elliott, G. G. Neuenschwander, T. R. Hart, J. Hu, A. E. Solana et al., Hydrogenation of biooil for chemical and fuel production, Science in thermal and chemical biomass conversion, 2006.

D. C. Elliott, Historical Developments in Hydroprocessing Bio-oils, Energy Fuels, vol.21, pp.1792-1815, 2007.
DOI : 10.1021/ef070044u

D. C. Elliott and T. R. Hart, Catalytic Hydroprocessing of Chemical Models for Bio-oil, Energy Fuels, vol.23, pp.631-637, 2009.

R. J. Evans and T. A. Milne, Molecular characterization of the pyrolysis of biomass, Energy Fuels, vol.1, pp.123-137, 1987.

O. Faix, D. Meier, and I. Fortmann, Thermal degradation products of wood: Gas chromatographic separation and mass spectrometric characterization of monomeric lignin derived products, Holz als Roh-und Werkstoff, vol.48, pp.281-285, 1990.

O. Faix, I. Fortmann, J. Bremer, and D. Meier, Thermal degradation products of wood, Holz als Rohund Werkstoff, vol.49, pp.213-219, 1991.
DOI : 10.1007/bf02663795

J. L. Faulon, Prediction, elucidation et modelisation moleculaire : algorithmes et applications en geochimie, 1991.

J. L. Faulon, Stochastic Generator of Chemical Structure. 1. Application to the Structure Elucidation of Large Molecules, J. Chem. Inf. Model, vol.34, pp.1204-1218, 1994.
DOI : 10.1021/ci000029m

J. L. Faulon, J. M. Drappier, M. Romero, M. Vandenbroucke, and F. Behar, Modélisation des structures chimiques des macromolécules sédimentaires: Le logiciel XMOL Software, Rev. Inst. Fr. Pét, vol.45, pp.161-180, 1990.
DOI : 10.2516/ogst:1990014

C. A. Fisk, T. Morgan, Y. Ji, M. Crocker, C. Crofcheck et al., Bio-oil upgrading over platinum catalysts using in situ generated hydrogen, Applied Catalysis A: General, vol.358, pp.150-156, 2009.
DOI : 10.1016/j.apcata.2009.02.006

K. Freudenberg, A. C. Neish, A. Fullana, J. A. Contreras, R. C. Striebich et al., Multidimensional GC/MS analysis of pyrolytic oils, Journal of Analytical and Applied Pyrolysis, vol.74, pp.315-326, 1968.

E. Furimsky, Catalytic hydrodeoxygenation, Applied Catalysis A: General, vol.199, pp.147-190, 2000.
DOI : 10.1016/s0926-860x(99)00555-4

S. B. Gevert, M. Eriksson, P. Eriksson, and F. E. Massoth, Direct hydrodeoxygenation and hydrogenation of 2,6-and 3,5-dimethylphenol over sulphided CoMo catalyst, Applied Catalysis A: General, vol.117, pp.151-162, 1994.
DOI : 10.1016/0926-860x(94)85095-x

B. S. Gevert, J. Otterstedt, and F. E. Massoth, Kinetics of the HDO of methyl-substituted phenols, Applied Catalysis, vol.31, pp.119-131, 1987.

D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, Journal of Computational Physics, vol.22, issue.76, pp.90041-90044, 1976.

D. T. Gillespie, A rigorous derivation of the chemical master equation, Physica A: Statistical Mechanics and its Applications, vol.188, pp.404-425, 1992.

W. G. Glasser, H. R. Glasser, and N. Morohoshi, Simulation of reactions with lignin by computer (SIMREL). 6. Interpretation of primary experimental analysis data, 1981.

, Macromolecules, vol.14, pp.253-262

E. Gnansounou, . Dauriat-a-le, and . Bioéthanol,

J. Gomez-prado, N. Zhang, and C. Theodoropoulos, Characterisation of heavy petroleum fractions using modified molecular-type homologous series (MTHS) representation, Energy, vol.33, pp.974-987, 2008.

C. González, P. Marín, F. V. Díez, and S. Ordóñez, Hydrodeoxygenation of Acetophenone over Supported Precious Metal Catalysts at Mild Conditions: Process Optimization and Reaction Kinetics, Energy Fuels, vol.29, pp.8208-8215, 2015.

C. González, P. Marín, F. V. Díez, and S. Ordóñez, Gas-Phase Hydrodeoxygenation of Benzaldehyde, Benzyl Alcohol, Phenyl Acetate, and Anisole over Precious Metal Catalysts, Ind. Eng. Chem. Res, vol.55, pp.2319-2327, 2016.

M. Grilc, B. Likozar, and J. Levec, Hydrotreatment of solvolytically liquefied lignocellulosic biomass over NiMo/Al2O3 catalyst: Reaction mechanism, hydrodeoxygenation kinetics and mass transfer model based on FTIR, Biomass and Bioenergy, vol.63, pp.300-312, 2014.

J. H. Gross, Mass spectrometry: A textbook, 2010.

X. Guo, S. Wang, Z. Guo, Q. Liu, Z. Luo et al., Pyrolysis characteristics of bio-oil fractions separated by molecular distillation, Applied Energy, vol.87, pp.2892-2898, 2010.

Z. Guo, S. Wang, Y. Gu, G. Xu, X. Li et al., Separation characteristics of biomass pyrolysis oil in molecular distillation, Separation and Purification Technology, vol.76, pp.52-57, 2010.

N. Hao, H. Ben, C. G. Yoo, S. Adhikari, and A. J. Ragauskas, Review of NMR Characterization of Pyrolysis Oils, Energy Fuels, vol.30, pp.6863-6880, 2016.

D. Harvey, Modern analytical chemistry, 2000.

Z. He and X. Wang, Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading, Catalysis for Sustainable Energy, vol.1, 2012.

S. R. Heller, A. Mcnaught, I. Pletnev, S. Stein, and D. Tchekhovskoi, InChI, the IUPAC International Chemical Identifier, J Cheminform, vol.7, p.23, 2015.

R. N. Hilten and K. C. Das, Comparison of three accelerated aging procedures to assess bio-oil stability, Fuel, vol.89, pp.2741-2749, 2010.

E. Hirsch and K. H. Altgelt, Integrated structural analysis. Method for the determination of average structural parameters of petroleum heavy ends, Analytical Chemistry, vol.42, pp.1330-1339, 1970.

E. Hoekstra, S. R. Kersten, A. Tudos, D. Meier, and K. J. Hogendoorn, Possibilities and pitfalls in analyzing (upgraded) pyrolysis oil by size exclusion chromatography (SEC), Journal of Analytical and Applied Pyrolysis, vol.91, pp.76-88, 2011.

. Hoffmann-ed and V. Stroobant, Mass spectrometry: Principles and applications, 2007.

J. H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, Sci. China Chem, vol.56, pp.840-847, 1975.

S. R. Horton, R. J. Mohr, Y. Zhang, F. P. Petrocelli, and M. T. Klein, Molecular-Level Kinetic Modeling of Biomass Gasification, Energy Fuels, vol.30, pp.1647-1661, 2015.

S. R. Horton, L. Zhang, Z. Hou, C. A. Bennett, M. T. Klein et al., Molecular-Level Kinetic Modeling of Resid Pyrolysis, Ind. Eng. Chem. Res, vol.54, pp.4226-4235, 2015.

S. R. Horton, J. Woeckener, R. Mohr, Y. Zhang, F. Petrocelli et al., Molecular-Level Kinetic Modeling of the Gasification of Common Plastics, Energy Fuels, vol.30, pp.1662-1674, 2015.

Z. Hou, C. Bennett, M. T. Klein, and P. S. Virk, Approaches and Software Tools for Modeling Lignin Pyrolysis ?, Energy Fuels, vol.24, pp.58-67, 2010.

S. Hu, G. Towler, and X. X. Zhu, Combine Molecular Modeling with Optimization to Stretch Refinery Operation, Ind. Eng. Chem. Res, vol.41, pp.825-841, 2002.

X. Hu, Y. Wang, D. Mourant, R. Gunawan, C. Lievens et al., Polymerization on heating up of bio-oil: A model compound study, AIChE J, vol.59, pp.888-900, 2013.

D. Hudebine, Reconstruction moléculaire de coupes pétrolières, 2003.

D. Hudebine and J. Verstraete, Molecular reconstruction of LCO gasoils from overall petroleum analyses, Chemical Engineering Science, vol.59, pp.4755-4763, 2004.

D. Hudebine and J. J. Verstraete, Reconstruction of Petroleum Feedstocks by Entropy Maximization. Application to FCC Gasolines, Oil Gas Sci. Technol. -Rev. IFP Energies nouvelles, vol.66, pp.437-460, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01937398

D. Hudebine, J. Verstraete, and T. Chapus, Statistical Reconstruction of Gas Oil Cuts, Oil Gas Sci. Technol. -Rev. IFP Energies nouvelles, vol.66, pp.461-477, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01937397

M. Iwase, S. Sugiyama, Y. Liang, Y. Masuda, M. Morimoto et al., Development of Digital Oil for Heavy Crude Oil: Molecular Model and Molecular Dynamics Simulations, Energy Fuels, vol.32, pp.2781-2792, 2018.

J. P. Diebold, A Review of the Chemical and Physical Mechanisms of the Sorage Stability of Fast Pyrolysis Bio-oils, 2000.

S. B. Jaffe, H. Freund, and W. N. Olmstead, Extension of Structure-Oriented Lumping to Vacuum Residua, Ind. Eng. Chem. Res, vol.44, pp.9840-9852, 2005.

J. M. Jarvis, A. M. Mckenna, R. N. Hilten, K. C. Das, R. P. Rodgers et al., Characterization of Pine Pellet and Peanut Hull Pyrolysis Bio-oils by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Energy Fuels, vol.26, pp.3810-3815, 2012.

K. G. Joback and R. C. Reid, Estimation of pure-component properties from group-contributions, Chemical Engineering Communications, vol.57, pp.233-243, 2007.

W. Jong and J. R. Ommen, Biomass as a sustainable energy source for the future: Fundamentals of conversion processes. Biomass Composition, Properties and Characterization, 2015.

J. Joseph, C. Baker, S. Mukkamala, S. H. Beis, M. C. Wheeler et al., Chemical Shifts and Lifetimes for Nuclear Magnetic Resonance (NMR) Analysis of Biofuels, Energy Fuels, vol.24, pp.5153-5162, 2010.

N. Joshi and A. Lawal, Hydrodeoxygenation of acetic acid in a microreactor, Chemical Engineering Science, vol.84, pp.761-771, 2012.

E. Kantarelis, W. Yang, and W. Blasiak, Production of Liquid Feedstock from Biomass via Steam Pyrolysis in a Fluidized Bed Reactor, Energy Fuels, vol.27, pp.4748-4759, 2013.

S. R. Kirby, C. Song, and H. H. Schobert, Hydrodeoxygenation of O-containing polycyclic model compounds using a novel organometallic catalyst precursor, Catalysis Today, vol.31, pp.121-135, 1996.

A. Kirilin, J. Wärnå, A. Tokarev, and D. Y. Murzin, Kinetic Modeling of Sorbitol Aqueous-Phase Reforming over Pt/Al 2 O 3, Ind. Eng. Chem. Res, vol.53, pp.4580-4588, 2014.

M. T. Klein, G. Hou, B. J. Ralph, L. J. Broadbelt, and A. Kumar, Molecular modeling in heavy hydrocarbon conversions, Quantitative structure/reactivity correlations as a reation engineering tol: Applications to hydrocracking of polynuclear aromatics, vol.109, 1994.

T. G. Kurtz, The Relationship between Stochastic and Deterministic Models for Chemical Reactions, J. Chem. Phys, vol.57, p.2976, 1972.

E. Laurent and B. Delmon, Study of the hydrodeoxygenation of carbonyl, car?ylic and guaiacyl groups over sulfided CoMo/?-Al2O3 and NiMo/?-Al2O3 catalysts, Applied Catalysis A: General, vol.109, pp.85004-85010, 1994.

N. Li and G. W. Huber, Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2-Al2O3: Identification of reaction intermediates, Journal of Catalysis, vol.270, pp.48-59, 2010.

C. Libaniti, D. Mourant, M. He, R. Gunawan, X. Li et al., An FT-IR spectroscopic study of carbonyl functionalities in bio-oils, Fuel, vol.90, pp.3417-3423, 1992.

Y. Liu, Q. Shi, Y. Zhang, Y. He, K. H. Chung et al., Characterization of Red Pine Pyrolysis Bio-oil by Gas Chromatography-Mass Spectrometry and Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Energy Fuels, vol.26, pp.4532-4539, 2012.

M. Lopez-abelairas, L. P. Oliveira, . De, and J. J. Verstraete, Application of Monte Carlo techniques to LCO gas oil hydrotreating: Molecular reconstruction and kinetic modelling, Catalysis Today, vol.271, pp.188-198, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01338408

L. García, C. Hudebine, D. Schweitzer, J. Verstraete, J. J. Ferré et al., In-depth modeling of gas oil hydrotreating: From feedstock reconstruction to reactor stability analysis, Catalysis Today, vol.150, pp.279-299, 2010.

Q. Lu, X. Yang, and X. Zhu, Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk, Journal of Analytical and Applied Pyrolysis, vol.82, pp.191-198, 2008.

R. Lu, G. Sheng, Y. Hu, P. Zheng, H. Jiang et al., Fractional characterization of a bio-oil derived from rice husk, Biomass and Bioenergy, vol.35, pp.671-678, 2011.

N. Mahinpey, P. Murugan, T. Mani, and R. R. , Analysis of Bio-Oil, Biogas, and Biochar from Pressurized Pyrolysis of Wheat Straw Using a Tubular Reactor, Energy Fuels, vol.23, pp.2736-2742, 2009.

J. H. Marsman, J. Wildschut, F. Mahfud, and H. J. Heeres, Identification of components in fast pyrolysis oil and upgraded products by comprehensive two-dimensional gas chromatography and flame ionisation detection, J Chromatogr A, vol.1150, pp.21-27, 2007.

J. H. Marsman, J. Wildschut, P. Evers, . Koning-s-de, and H. J. Heeres, Identification and classification of components in flash pyrolysis oil and hydrodeoxygenated oils by two-dimensional gas chromatography and time-of-flight mass spectrometry, J Chromatogr A, vol.1188, pp.17-25, 2008.

F. E. Massoth, P. Politzer, M. C. Concha, J. S. Murray, J. Jakowski et al., Catalytic hydrodeoxygenation of methyl-substituted phenols: correlations of kinetic parameters with molecular properties, J Phys Chem B, vol.110, pp.14283-14291, 2006.

J. B. Mcdermott, C. Libanati, C. Lamarca, and M. T. Klein, Quantitative use of model compound information: Monte Carlo simulation of the reactions of complex macromolecules, Ind. Eng. Chem. Res, vol.29, pp.22-29, 1990.

D. C. Medeiros, Chemical Representation of Complex Mixtures, 2013.

J. A. Melero, A. García, and J. Iglesias, Biomass catalysis in conventional refineries, Advances in Clean Hydrocarbon Fuel Processing, pp.199-240, 2011.

K. Metaxas, J. W. Thybaut, G. Morra, D. Farrusseng, C. Mirodatos et al., A Microkinetic Vision on High-Throughput Catalyst Formulation and Optimization: Development of an Appropriate Software Tool, Top Catal, vol.53, pp.64-76, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00476845

I. Miettinen, S. Kuittinen, V. Paasikallio, M. Mäkinen, A. Pappinen et al., Characterization of fast pyrolysis oil from short-rotation willow by high-resolution Fourier transform ion cyclotron resonance mass spectrometry, Fuel, vol.207, pp.189-197, 2017.

M. V. Migliorini, M. Moraes, M. E. Machado, and E. B. Caramão, GC×GC/TOFMS. SC, vol.5, pp.47-65, 2013.

T. Milne, F. Agblevor, M. Davis, S. Deutch, and D. Johnson, Developments in Thermochemical Biomass Conversion. A Review of the Chemical Composition of Fast-Pyrolysis Oils from Biomass, 1997.

B. M. Moreno, Thermochemical conversion of biomass: Models and modeling approaches, 2014.

B. M. Moreno, N. Li, J. Lee, G. W. Huber, and M. T. Klein, Modeling aqueous-phase hydrodeoxygenation of sorbitol over Pt/SiO2-Al2O3, vol.3, p.23769, 2013.

C. A. Mullen, G. D. Strahan, and A. A. Boateng, Characterization of Various Fast-Pyrolysis Bio-Oils by, NMR Spectroscopy ?. Energy Fuels, vol.23, pp.2707-2718, 2009.

J. N. Murwanashyaka, H. Pakdel, and C. Roy, Step-wise and one-step vacuum pyrolysis of birch-derived biomass to monitor the evolution of phenols, Journal of Analytical and Applied Pyrolysis, vol.60, pp.219-231, 2001.

L. Negahdar, A. Gonzalez-quiroga, D. Otyuskaya, H. E. Toraman, L. Liu et al., Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using 13C NMR and Comprehensive GC × GC, ACS Sustain Chem Eng, vol.4, pp.4974-4985, 2016.

M. Neurock, A computational chemical reaction engineering analysis of complex heavy hydrocarbon reaction systems, 1992.

M. Neurock, A. Nigam, D. Trauth, and M. T. Klein, Molecular representation of complex hydrocarbon feedstocks through efficient characterization and stochastic algorithms, Chemical Engineering Science, vol.49, pp.4153-4177, 1994.

T. Nimmanwudipong, R. C. Runnebaum, D. E. Block, and B. C. Gates, Catalytic Conversion of Guaiacol Catalyzed by Platinum Supported on Alumina: Reaction Network Including Hydrodeoxygenation Reactions, Energy Fuels, vol.25, pp.3417-3427, 2011.

A. Oasmaa and D. Meier, Fast Pyrolysis of Biomass: A Handbook. Analysis, Characterization and Test Methods of Fast Pyrolysis Liquids, 2002.

A. Oasmaa, E. Kuoppala, and Y. Solantausta, Fast Pyrolysis of Forestry Residue. 2. Physicochemical Composition of Product Liquid, Energy Fuels, vol.17, pp.433-443, 2003.

R. Olcese, V. Carré, F. Aubriet, and A. Dufour, Selectivity of Bio-oils Catalytic Hydrotreatment Assessed by Petroleomic and GC*GC/MS-FID Analysis, Energy Fuels, vol.27, pp.2135-2145, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00865994

L. P. Oliveira, Développement d'une méthodologie de modélisation cinétique de procédés de raffinage traitant des charges lourdes, 2013.

L. P. Oliveira, J. J. Verstraete, and M. Kolb, A Monte Carlo modeling methodology for the simulation of hydrotreating processes, Chemical Engineering Journal, vol.207, 2012.

L. P. Oliveira, J. J. Verstraete, and M. Koib, Molecular representation of petroleum fractions and molecule-based kinetic modeling by Monte Carlo methods, Prepr. Pap.-Am. Chem. Soc., Div. Energy Fuels Chem, vol.57, issue.2, p.982, 2012.

L. P. Oliveira, J. J. Verstraete, and M. Koib, Development of a General Modelling Methodology for Vacuum Residue Hydroconversion, Oil Gas Sci. Technol. -Rev. IFP Energies nouvelles, vol.68, pp.1027-1038, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00934126

L. P. Oliveira, J. J. Verstraete, and M. Kolb, Molecule-based kinetic modeling by Monte Carlo methods for heavy petroleum conversion, Sci. China Chem, vol.56, pp.1608-1622, 2013.

L. P. Oliveira, J. J. Verstraete, and M. Kolb, Simulating vacuum residue hydroconversion by means of Monte-Carlo techniques, Catalysis Today, 2014.

. Oliveira-lp-de, D. Hudebine, D. Guillaume, J. J. Verstraete, and J. F. Joly, A Review of Kinetic Modeling Methodologies for Complex Processes, Oil Gas Sci. Technol. -Rev. IFP Energies nouvelles, vol.71, p.45, 2016.

. Oliveira-lp-de, A. T. Vazquez, J. J. Verstraete, and M. Kolb, Molecular Reconstruction of Petroleum Fractions: Application to Vacuum Residues from Different Origins, Energy Fuels, vol.27, pp.3622-3641, 2013.

B. Omais, J. Crepier, N. Charon, M. Courtiade, A. Quignard et al., Oxygen speciation in upgraded fast pyrolysis bio-oils by comprehensive two-dimensional gas chromatography, Analyst, vol.138, pp.2258-2268, 2013.

G. Onyestyák, S. Harnos, A. Kaszonyi, M. ?tolcová, and D. Kalló, Acetic acid hydroconversion to ethanol over novel InNi/Al2O3 catalysts, Catalysis Communications, vol.27, pp.159-163, 2012.

I. Oppenheim, Stochastic and Deterministic Formulation of Chemical Rate Equations, J. Chem. Phys, vol.50, p.460, 1969.

F. Orata, Derivatization Reactions and Reagents for Gas Chromatography Analysis, Advanced Gas Chromatography -Progress in Agricultural, Biomedical and Industrial Applications, 2012.

D. Otyuskaya, J. W. Thybaut, R. Lødeng, and G. B. Marin, Anisole Hydrotreatment Kinetics on CoMo Catalyst in the Absence of Sulfur: Experimental Investigation and Model Construction, Energy Fuels, vol.31, pp.7082-7092, 2017.

J. Ourique, S. Telles, and A. , Estimation of Properties of Pure Organic Substances with Group and Pair Contributions, Braz. J. Chem. Eng, vol.14, 1997.

M. Ozagac, Etude mécanistique de l'hydroconversion catalytique de bio-huiles de pyrolyse, 2016.

M. Ozagac, C. Bertino-ghera, D. Uzio, M. Rivallan, D. Laurenti et al., Impact of guaiacol on the formation of undesired macromolecules during catalytic hydroconversion of bio-oil: A model compounds study, Biomass and Bioenergy, vol.95, pp.194-205, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01487875

M. Ozagac, C. Bertino-ghera, D. Uzio, M. Rivallan, D. Laurenti et al., Understanding macromolecules formation from the catalytic hydroconversion of pyrolysis bio-oil model compounds, Biomass and Bioenergy, vol.95, pp.182-193, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01428620

N. Özbay, E. Apayd?n-varol, B. Uzun, and B. , Characterization of bio-oil obtained from fruit pulp pyrolysis, Eren Pütün A, vol.33, pp.1233-1240, 2008.

D. Özçimen and F. Karaosmano?lu, Production and characterization of bio-oil and biochar from rapeseed cake, Renewable Energy, vol.29, pp.779-787, 2004.

J. Parker, G. Goos, J. Hartmanis, J. Van-leeuwen, R. Cohen et al., Genetic Algorithms for Continuous Problems, Advances in Artificial Intelligence, vol.2338, pp.176-184, 2002.

P. R. Patwardhan, Understanting the product distribution from biomass fast pyrolysis, Iowa State University Peng B (1999) Molecular modelling of petroleum processes, 2010.

B. Peng, C. Zhao, I. Mejía-centeno, G. A. Fuentes, A. Jentys et al., Comparison of kinetics and reaction pathways for hydrodeoxygenation of C3 alcohols on Pt/Al2O3, Catalysis Today, vol.183, pp.3-9, 2012.

C. F. Poole, New trends in solid-phase extraction, TrAC Trends in Analytical Chemistry, vol.22, pp.362-373, 2003.

D. Procházková, P. Zámostný, M. Bejblová, L. ?ervený, and J. ?ejka, Hydrodeoxygenation of aldehydes catalyzed by supported palladium catalysts, Applied Catalysis A: General, vol.332, pp.56-64, 2007.

H. Prosen and L. Zupan?i?-kralj, Solid-phase microextraction, TrAC Trends in Analytical Chemistry, vol.18, pp.272-282, 1999.

A. Pütün, A. Özcan, and E. Pütün, Pyrolysis of hazelnut shells in a fixed-bed tubular reactor: Yields and structural analysis of bio-oil, Journal of Analytical and Applied Pyrolysis, vol.52, pp.33-49, 1999.

S. P. Pyl, Z. Hou, V. Geem, K. M. Reyniers, M. Marin et al., Modeling the Composition of Crude Oil Fractions Using Constrained Homologous Series, Ind. Eng. Chem. Res, vol.50, pp.10850-10858, 2011.

L. Qiang, L. Wen-zhi, Z. Dong, and Z. Xi-feng, Analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) of sawdust with Al/SBA-15 catalysts, Journal of Analytical and Applied Pyrolysis, vol.84, pp.131-138, 2009.

R. J. Quann and S. B. Jaffe, Building useful models of complex reaction systems in petroleum refining, Chemical Engineering Science, vol.51, pp.1615-1635, 1996.

S. Rangarajan, A. Bhan, and P. Daoutidis, Rule-Based Generation of Thermochemical Routes to Biomass Conversion, Ind. Eng. Chem. Res, vol.49, pp.10459-10470, 2010.

S. Rangarajan, A. Bhan, and P. Daoutidis, Language-oriented rule-based reaction network generation and analysis: Description of RING, Computers & Chemical Engineering, vol.45, pp.114-123, 2012.

S. Rangarajan, A. Bhan, and P. Daoutidis, Identification and analysis of synthesis routes in complex catalytic reaction networks for biomass upgrading, Applied Catalysis B: Environmental, vol.145, pp.149-160, 2014.

R. Ribeiro, Chemical Representation of Various Biomass Compounds. Dissertation, Instituto Superior Técnico, 2014.

P. K. Rout, M. K. Naik, S. N. Naik, V. V. Goud, L. M. Das et al., Supercritical CO 2 Fractionation of Bio-oil Produced from Mixed Biomass of Wheat and Wood Sawdust, Energy Fuels, vol.23, pp.6181-6188, 2009.

R. C. Runnebaum, R. J. Lobo-lapidus, T. Nimmanwudipong, D. E. Block, and B. C. Gates, , 2011.

, Anisole Catalyzed by Platinum Supported on Alumina: The Reaction Network, Energy Fuels, vol.25, pp.4776-4785

K. V. Sarkanen and C. H. Ludwig, Lignins: Occurrence, formation, structure and reactions, 1971.

S. Sastri and K. K. Rao, A new group contribution method for predicting viscosity of organic liquids, The Chemical Engineering Journal, vol.50, p.80002, 1992.

S. Sato, The Development of Support Program for the Analysis of Average Molecular Structures by Personal Computer, Sekiyu Gakkaishi, vol.40, pp.46-51, 1997.

J. T. Scanlon and D. E. Willis, Calculation of Flame Ionization Detector Relative Response Factors Using the Effective Carbon Number Concept, Journal of Chromatographic Science, vol.23, pp.333-340, 1985.

P. Schnongs, Recosntruction moléculaire de coupes pétrolières lourdes, 2005.

B. Scholze and D. Meier, Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY-GC/MS, FTIR, and functional groups, Journal of Analytical and Applied Pyrolysis, vol.60, pp.41-54, 2001.

O. ?enol, T. Viljava, and A. Krause, Hydrodeoxygenation of methyl esters on sulphided NiMo/?-Al2O3 and CoMo/?-Al2O3 catalysts, Catalysis Today, vol.100, pp.331-335, 2005.

O. ?enol, T. Viljava, and A. Krause, Effect of sulphiding agents on the hydrodeoxygenation of aliphatic esters on sulphided catalysts, Applied Catalysis A: General, vol.326, pp.236-244, 2007.

T. Sfetsas, C. Michailof, A. Lappas, Q. Li, and B. Kneale, Qualitative and quantitative analysis of pyrolysis oil by gas chromatography with flame ionization detection and comprehensive twodimensional gas chromatography with time-of-flight mass spectrometry, J Chromatogr A, vol.1218, pp.3317-3325, 2011.

J. R. Shahrouzi, D. Guillaume, P. Rouchon, D. Costa, and P. , Stochastic Simulation and Single Events Kinetic Modeling: Application to Olefin Oligomerization, Ind. Eng. Chem. Res, vol.47, pp.4308-4316, 2008.

C. E. Shannon, A Mathematical Theory of Comunication, The Bell System Technical Journal, vol.27, pp.379-423, 1948.

J. M. Sheremata, M. R. Gray, H. D. Dettman, and W. C. Mccaffrey, Quantitative Molecular Representation and Sequential Optimization of Athabasca Asphaltenes, Energy Fuels, vol.18, pp.1377-1384, 2004.

K. Sipilä, E. Kuoppala, L. Fagernäs, and A. Oasmaa, Characterization of biomass-based flash pyrolysis oils, Biomass and Bioenergy, vol.14, pp.103-113, 1998.

S. Sitthisa, T. Sooknoi, Y. Ma, P. B. Balbuena, and D. E. Resasco, Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts, Journal of Catalysis, vol.277, pp.1-13, 2011.

E. A. Smith and Y. J. Lee, Petroleomic Analysis of Bio-oils from the Fast Pyrolysis of Biomass: Laser Desorption Ionization?Linear Ion Trap?Orbitrap Mass Spectrometry Approach, Energy Fuels, vol.24, pp.5190-5198, 2010.

E. A. Smith, S. Park, A. T. Klein, and Y. J. Lee, Bio-oil Analysis Using Negative Electrospray Ionization: Comparative Study of High-Resolution Mass Spectrometers and Phenolic versus Sugaric Components, Energy Fuels, vol.26, pp.3796-3802, 2012.

T. W. Solomons and C. B. Fryhle, Organic chemistry, vol.8, 2004.

J. Speight, A structural investigation of the constituents of Athabasca bitumen by proton magnetic resonance spectroscopy, Fuel, vol.49, pp.76-90, 1970.

M. Sta?, D. Kubi?ka, J. Chudoba, and M. Pospí?il, Overview of Analytical Methods Used for Chemical Characterization of Pyrolysis Bio-oil, Energy Fuels, vol.28, pp.385-402, 2014.

M. Sta?, J. Chudoba, D. Kubi?ka, J. Bla?ek, and M. Pospí?il, Petroleomic Characterization of Pyrolysis Bio-oils: A Review, Energy Fuels, vol.31, pp.10283-10299, 2017.

G. D. Strahan, C. A. Mullen, and A. A. Boateng, Characterizing Biomass Fast Pyrolysis Oils by 13 C NMR and Chemometric Analysis, Energy Fuels, vol.25, pp.5452-5461, 2011.

K. Surla, D. Guillaume, J. J. Verstraete, and P. Galtier, Kinetic Modeling using the Single-Event Methodology: Application to the Isomerization of Light Paraffins, Oil Gas Sci. Technol. -Rev. IFP Energies nouvelles, vol.66, pp.343-365, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01937403

T. Suzuki, M. Itoh, Y. Takegami, and Y. Watanabe, Chemical structure of tar-sand bitumens by 13C and 1H n.m.r. spectroscopic methods, vol.61, pp.402-410, 1982.

Y. Takegami, Y. Watanabe, T. Suzuki, T. Mitsudo, and M. Itoh, Structural investigation on columnchomatographed vaccum residues of various petroleum crudes by 13C nuclear magnetic resonance spectroscopy, Fuel, vol.59, pp.253-259, 1980.

N. S. Tessarolo, . Santos, R. Luciana, R. Silva, and D. A. Azevedo, Chemical characterization of bio-oils using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry, J Chromatogr A, vol.1279, pp.68-75, 2013.

C. Tessini, N. Muller, C. Mardones, D. Meier, A. Berg et al., Chromatographic approaches for determination of low-molecular mass aldehydes in bio-oil, J Chromatogr A, vol.1219, pp.154-160, 2012.

C. Torri and D. Fabbri, Application of off-line pyrolysis with dynamic solid-phase microextraction to the GC-MS analysis of biomass pyrolysis products, Microchemical Journal, vol.93, pp.133-139, 2009.

D. M. Trauth, Structure of complex mixtures through characterization, reaction and modeling, 1993.

D. M. Trauth, S. M. Stark, T. F. Petti, M. Neurock, and M. T. Klein, Representation of the Molecular Structure of Petroleum Resid through Characterization and Monte Carlo Modeling, Energy Fuels, vol.8, pp.576-580, 1994.

M. M. Tripathi, E. Hassan, F. Yueh, J. P. Singh, P. H. Steele et al., Reflection-absorptionbased near infrared spectroscopy for predicting water content in bio-oil, Sensors and Actuators B: Chemical, vol.136, pp.20-25, 2009.

I. Ugi, J. Bauer, K. Bley, A. Dengler, A. Dietz et al., Computer-Assisted Solution of Chemical Problems-The Historical Development and the Present State of the Art of a New Discipline of Chemistry, Angew. Chem. Int. Ed. Engl, vol.32, pp.201-227, 1993.

P. D. Vaidya and V. V. Mahajani, Kinetics of Liquid-Phase Hydrogenation of Furfuraldehyde to Furfuryl Alcohol over a Pt/C Catalyst, Ind. Eng. Chem. Res, vol.42, pp.3881-3885, 2003.

K. M. Van-geem, D. Hudebine, M. F. Reyniers, F. Wahl, J. J. Verstraete et al., Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices, Computers & Chemical Engineering, vol.31, pp.1020-1034, 2007.

N. M. Vandewiele, K. M. Van-geem, M. Reyniers, and G. B. Marin, Genesys: Kinetic model construction using chemo-informatics, Chemical Engineering Journal, vol.207, pp.526-538, 2012.
DOI : 10.1016/j.cej.2012.07.014

R. H. Venderbosch, A. R. Ardiyanti, J. Wildschut, A. Oasmaa, and H. J. Heeres, Stabilization of biomassderived pyrolysis oils, J. Chem. Technol. Biotechnol, vol.85, pp.674-686, 2010.
DOI : 10.1002/jctb.2354

J. J. Verstraete, N. Revellin, H. Dulot, and D. Hudebine, Molecular Reconstruction of Vacuum Gas Oils, Abstr. Pap. Am. Chem. Soc, 2004.

J. J. Verstraete, P. Schnongs, H. Dulot, and D. Hudebine, Molecular reconstruction of heavy petroleum residue fractions, Chemical Engineering Science, vol.65, pp.304-312, 2010.
DOI : 10.1016/j.ces.2009.08.033

R. Vinu and L. J. Broadbelt, Unraveling reaction pathways and specifying reaction kinetics for complex systems, Annu Rev Chem Biomol Eng, vol.3, pp.29-54, 2012.
DOI : 10.1146/annurev-chembioeng-062011-081108

T. P. Vispute and G. W. Huber, Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils, Green Chem, vol.11, p.1433, 2009.

H. Wan, R. V. Chaudhari, and B. Subramaniam, Aqueous Phase Hydrogenation of Acetic Acid and Its Promotional Effect on p -Cresol Hydrodeoxygenation, Energy Fuels, vol.27, pp.487-493, 2013.

J. Wang, H. Cui, S. Wei, S. Zhuo, L. Wang et al., Separation of Biomass Pyrolysis Oil by Supercritical CO2 Extraction, SGRE, vol.01, pp.98-107, 2010.
DOI : 10.4236/sgre.2010.12015

URL : http://www.scirp.org/journal/PaperDownload.aspx?paperID=2601

S. Wang, High-Efficiency Separation of Bio-Oil, Matovic MD (ed) Biomass Now -Sustainable Growth and Use, 2013.

S. Wang, Y. Gu, Q. Liu, Y. Yao, Z. Guo et al., Separation of bio-oil by molecular distillation, Fuel Processing Technology, vol.90, pp.738-745, 2009.
DOI : 10.1016/j.fuproc.2009.02.005

H. Wang, J. Male, and Y. Wang, Recent Advances in Hydrotreating of Pyrolysis Bio-Oil and Its Oxygen-Containing Model Compounds, ACS Catal, vol.3, pp.1047-1070, 2013.

W. Wei, C. A. Bennett, R. Tanaka, G. Hou, and M. T. Klein, Computer aided kinetic modeling with KMT and KME, Fuel Processing Technology, vol.89, pp.350-363, 2008.
DOI : 10.1016/j.fuproc.2007.11.015

D. Weininger, SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules, J. Chem. Inf. Model, vol.28, pp.31-36, 1988.

D. Weininger, A. Weininger, and J. L. Weininger, SMILES. 2. Algorithm for generation of unique SMILES notation, J. Chem. Inf. Model, vol.29, pp.97-101, 1989.

J. Wildschut, J. Arentz, C. B. Rasrendra, R. H. Venderbosch, and H. J. Heeres, Catalytic hydrotreatment of fast pyrolysis oil: Model studies on reaction pathways for the carbohydrate fraction, Environ. Prog. Sustainable Energy, vol.28, pp.450-460, 2009.

J. Wildschut, Pyrolysis oil upgrading to transportation fuels by catalytic hydrotreatment, 2009.

J. Xu, J. Jiang, W. Lv, W. Dai, and Y. Sun, Rice husk bio-oil upgrading by means of phase separation and the production of esters from the water phase, and novolac resins from the insoluble phase, Biomass and Bioenergy, vol.34, pp.1059-1063, 2010.

Q. Xu, Z. Zhang, S. Zhang, F. Wang, and Y. Yan, Molecular Structure Models of Asphaltene in Crude and Upgraded Bio-Oil, Chem. Eng. Technol, vol.37, pp.1198-1204, 2014.
DOI : 10.1002/ceat.201300158

V. A. Yakovlev, S. A. Khromova, O. V. Sherstyuk, V. O. Dundich, D. Ermakov et al., Development of new catalytic systems for upgraded biofuels production from bio-crude-oil and biodiesel, Catalysis Today, vol.144, pp.362-366, 2009.
DOI : 10.1016/j.cattod.2009.03.002

Y. Zhang, A Molecular Approach for Characterization and Property Predictions of Petroleum Mixtures with Applications to Refinery Modelling, 1999.

S. Zhang, Y. Yan, Z. Ren, and T. Li, Study of Hydrodeoxygenation of Bio-Oil from the Fast Pyrolysis of, Biomass. Energy Sources, vol.25, pp.57-65, 2003.

S. Zhang, Y. Yan, T. Li, and Z. Ren, Lumping Kinetic Model for Hydrotreating of Bio-oil from the Fast Pyrolysis of, Biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol.31, pp.639-645, 2009.

L. Zhang, Z. Hou, S. R. Horton, M. T. Klein, Q. Shi et al., Molecular Representation of Petroleum Vacuum Resid, Energy Fuels, vol.28, pp.1736-1749, 2014.

, Carbon Monoxide, vol.3

, Furfuryl alcohol, vol.7

, Tetrahydrofuran alcohol, vol.1

/. C39h36o12/, , p.28

/. C28h18o10/, , vol.24, p.26

/. C44h46o19/, , vol.17, p.13

, Structure name not available in ChemSketch, replaced by InChI)