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I N T R O D U C T I O N

Alonzo Church introduced the untyped λ-calculus in the early 30’s, within an attempt to
give mathematics a logical foundation [Chu32]. In fact, he was unintentionally setting a
milestone for the study of the logical foundation of a new discipline: computer science.
The system turned out to provide a model of computation through λ-definability (Church’s
thesis), a notion perfectly equivalent to other mathematical definitions of computability, as
proved by Stephen Kleene in [Kle36] and Alan Turing in [Tur37]. Moreover, the late 60’s saw
the rise of an abstract theory of programming having the λ-calculus as central core. Over the
last five decades λ-calculi have played a prominent role in the conception, implementation
and analysis of functional programming languages, but also in a number of impressive
theoretical insights into the concepts of computation, program and proof. And nothing
suggests that this will not be the case in the decades to come.

This thesis is a contribution to the purely mathematical study of the untyped λ-calculus,
as a term rewriting system having the β-reduction (the formal counterpart of the idea of
execution of programs) as main rule. The λ-calculus is a rich field of research, which uses tools
from algebra, computability, rewriting theory, type theory and shares deep connections
with proof theory and category theory thanks to the Curry-Howard isomorphism [How80].

Our main focus is on denotational semantics [Sco70, SS71], namely the investigation of
mathematical models of the λ-calculus giving the same denotation to β-convertible λ-terms.
Dana Scott discovered the first denotational model in 1969 [Sco69]. Since then, a large
number of such models, lying in many different categories, have been studied. In most
of them λ-terms are interpreted as functions between some order-theoretic, algebraic or
topological structures. This is not the case for the denotational semantics that we study
in this thesis, which is called relational semantics. It has its roots in Jean-Yves Girard’s linear
logic [Gir87, Gir88], a major source of inspiration for recent developments in denotational se-
mantics. Relational semantics interprets λ-terms as relations, where their inputs are grouped
together in multisets. As a result of this usage of multisets, relational models are resource-
sensitive, in that they represent explicitly the consumption of input resources during the
execution of programs.

We study a proper subclass of relational models, which we call relational graph models
(rgm’s). On the one hand, rgm’s rephrase in the relational setting the graph models à la
Plotkin-Scott-Engeler [Eng81, Lon83, Plo93]. On the other hand, they can be studied using
some (non-idempotent) intersection type systems, so they can be seen as a resource-sensitive
reformulation of filter models [BDS13, Part III]. Graph models and filter models were intro-
duced in the late 70’s and 80’s to study Scott continuous semantics respectively in a more
set-theoretical way and in a more type-theoretical way. In particular, the choice of handling
intersection types is perhaps not necessary here, but we find it convenient, so we fully em-
brace it. As a matter of fact, this thesis can also be seen as a work on intersection type theory.
The idea of using non-idempotent intersection types to study some relational models is not
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exclusively ours. Most notably, it has been advocated by Luca Paolini, Mauro Piccolo and
Simona Ronchi in [PPRDR15].

The study of the untyped λ-calculus is not restricted to the sole β-rule. One is more
often interested in λ-theories, which are congruences on λ-terms that include β-conversion.
All λ-theories form a complete lattice of cardinality 2ℵ0, mostly still unexplored. From the
point of view of computer science, observational equivalences have a certain relevance among
λ-theories. Indeed, they provide an answer to a nontrivial question: when two programs are
equivalent? The answer is behavioural: they are equivalent if they look to behave in the same
way in every possible case of execution. Formally, two λ-terms M and N are observationally
(or contextually) equivalent with respect to some fixed set O of observable terms when, for
every possible context of evaluation C[−], the λ-term C[M] β-reduces to an observable in O

if and only if C[N] β-reduces to an observable in O. The choice of O is not unique. The most
studied instance (not only for the untyped λ-calculus) is the one where the observables are
λ-terms in head normal form. This λ-theory is denoted by H∗. An alternative choice is to take
as O the set of λ-terms in β-normal form. We call this last Morris’s observational equivalence.
Basically John H. Morris introduced it (together with the general notion of observational
equivalence) in his PhD thesis [Mor68] in 1968. This λ-theory, which we call H+, has been
a bit neglected in comparison to H∗. This is why we decided to investigate it in this thesis.

Every denotational model induces a λ-theory, defined by equating λ-terms that have the
same interpretation. If in particular the λ-theory is an observational equivalence, then the
model is declared fully abstract for that equivalence. The main aim of this work is to find
rgm’s fully abstract for H+. We address the problem in two different ways.

In Chapter 4 there are rgm’s in which β-normalizability can be characterized. As we
handle the interpretation via intersection types, this reduces to characterize β-normalizable
λ-terms through some specific kind of typings. The characterization that we find involves
the occurrence of the empty intersection in some typing judgments. The (infinitely many)
rgm’s in which this characterization holds are called uniformly bottomless and they are all
fully abstract for H+. This approach to the full abstraction problem is similar to the one
used by Coppo, Dezani and Zacchi to find their filter model [CDZ87], so far the only fully
abstract denotational model for H+ that has appeared in the literature.

In Chapter 5 we take a more radical approach, and as a payoff we get a much more
general, basically exhaustive, result: we find necessary and sufficient conditions on rgm’s to be
fully abstract for H+. Precisely, our main theorem states that an rgm is fully abstract for H+

if and only if it is extensional (i.e. a model of η-conversion) and λ-König. Intuitively an rgm

is λ-König when every infinite computable tree has an infinite branch witnessed by some
type of the model. This witnessing can be seen as a property of non-well-foundedness on
the type. The theorem actually characterizes the full abstraction for H+ in the whole class of
relational models. (Since extensional rgm’s coincide with all extensional relational models.)
The idea of characterizing a certain full abstraction property within a fixed semantics (in
this case relational semantics), rather than just finding some instances, is quite a novelty.
It has been first advocated by one of the co-authors of our result, Flavien Breuvart, in his
paper [Bre14], where a similar theorem is shown about H∗.

Some further results on H+ are proved in this thesis.
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• We prove that H+ satisfies the ω-rule, a strong form of extensionality. This solves a
long-standing open question [Bar84, §17.4].

• We define yet another model of H+, which we call extensional Taylor expansion.

We also provide a couple of results concerning other λ-theories.

• We show that the first rgm that appeared in the literature [HNPR06, dC09] , here called
rgm à la Engeler, induces the λ-theory equating λ-terms with the same Böhm tree, and
that this λ-theory is minimal among the λ-theories represented by rgm’s.

• We define a fully abstract rgm for H∗. To prove its full abstraction we rely on another
such relational model, introduced by Bucciarelli, Ehrhard and Manzonetto in [BEM07].

Here is a more detailed plan of the manuscript, with credits.

Chapter 1

In this preliminary chapter we recall basic notions and results on the λ-calculus.
A certain emphasis is given to the many ways of defining extensional versions of Böhm

trees. In 1968 Corrado Böhm proved that, as far as we consider β-normalizable λ-terms
M and N, we have M =H+ N exactly when their β-normal forms, i.e. their Böhm trees,
only differs by η-conversion (Böhm’s theorem). This fact was generalized in the 70’s mainly
by Hyland and Nakajima to characterize H+, and even H∗, on all λ-terms, even those
with infinite Böhm trees. The various notions of η-reduction on generic Böhm-like trees so
obtained play a prominent role here.

We also recall the linear resource calculus and the related notion of Taylor expansion of
λ-terms. This calculus is an alternative syntax for the linear fragment of the differential λ-
calculus, introduced by Ehrhard and Regnier in [ER03]. Despite not being the main focus of
this work, the linear resource calculus can be interpreted in rgm’s. This circumstance helps
us when proving some important facts about the semantics.

Chapter 2

We define the class of rgm’s and the corresponding class of intersection type systems (see the
informal introduction above). We show how the typing derivations can be used to interpret
λ-terms. We also prove that they are suitable to model the linear resource calculus. Through
the notion of Taylor expansion, this last fact helps us to prove the approximation theorem for
all rgm’s, without using the technique of reducibility candidates.

The content of this chapter has been developed together with Giulio Manzonetto, with
the obvious exception of the basic generalities about relational semantics, which are mainly
due to Girard and Ehrhard. It was presented in [MR14], but with most of the proofs omitted.
We present all the technical details for the first time here.

Chapter 3

In the first part of this chapter we study an rgm that we call à la Engeler, since it can be seen
as a relational version of Engeler’s graph model [Eng81]. We find out that its λ-theory is
the one equating λ-terms with the same Böhm tree. Also, this is the minimal λ-theory (with
reference to inclusion) that can be induced by any rgm. Actually, we focus on the preorder
theory induced by the model, namely the preorder defined by M ⊑ N if and only if the
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interpretation of M is included in the interpretation of N. The preorder theory of the rgm à
la Engeler is not just given by the usual order between Böhm trees, but turns out to involve
η-expansions on Böhm trees.

In the second part of the chapter we remark that the maximal λ-theory represented by
rgm’s is H∗. As a matter of facts, there is already in the literature an rgm fully abstract for
H∗. It was introduced by Bucciarelli, Ehrhard and Manzonetto in [BEM07] and proved to
induce H∗ in [Man09]. We define yet another rgm doing that.

Everything in this chapter is unpublished material by the author.

Chapter 4

In this chapter we introduce the notion of uniformly bottomless (extensional) rgm and show,
through a characterization of β-normalizable λ-terms, that such a model is fully abstract
for H+. We see some examples, with a particular attention to the simplest of them, an rgm

built up from one single atomic type ⋆ satisfing ⋆→ ⋆ ≃ ⋆ .
Looking for reflexive objects in some cartesian closed category is not the only possible

approach to reformulate H+. At the end of this chapter we present a characterization of
H+ that relies on an extensional version of the Taylor expansion of λ-terms.

This chapter is a revisited version of results published with Giulio Manzonetto in [MR14].

Chapter 5

This chapter contains the main result of the thesis, as already described above: an rgm is
fully abstract for H+ if and only if it is extensional and λ-König. In order to prove this,
we study what distinguishes two λ-terms that are equated in H∗ but not in H+ (something
that we formalize with the notion of Morris’s separator) and then we extract such a difference
thanks to an ad hoc refined version of the Böhm-out technique.

As a byproduct of our version of the Böhm-out, we get another purely syntactic result,
already mentioned above: H+ satisfies the ω-rule.

The results in this chapter are a joint work with Flavien Breuvart, Giulio Manzonetto and
Andrew Polonsky published in [BMPR16] (with a minor error, fixed here). In particular,
applying the Böhm-out to prove the validity of the ω-rule in H+ is an idea of Polonsky.

Paris, October 2016

EDIT
In this revisited version of the manuscript we corrected a few minor errors and imple-
mented some useful suggestions received from the jury members.

Meanwhile - as if to prove how quickly a PhD thesis can become obsolete! - most of the
results in this manuscript were represented in a more suitable form in our article [BMR17].
Most relevantly, there we provided a brand new direct proof of the approximation theorem,
which avoids not only reducibility candidates, but even any reference to the resource calcu-
lus and the Taylor expansion.

Paris, July 2017
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1
P R E L I M I N A R I E S

In this chapter we recall the notions and results on the λ-calculus used throughout the thesis.
Of course, this is in no way intended to be an actual presentation of the field. We just want to
fix the notations and make this work as much self-contained as possible. As a matter of fact,
all definitions and theorems that we use in this thesis are properly stated within it, with the
exception of some basic notions from set theory (sets, functions, relations, orders), category
theory (categories, functors, natural transformations, products, monads) and theoretical
computer science (computable functions, rewritings, grammars). This basic notions can be
found in any standard manual, like [ML97, Bor94a, Bor94b, BW90] for categories or [Odi89]
for computability theory.

Nevertheless, here and there one will find some informal references to facts from proof
theory, type theory and semantics of the λ-calculus that we will not even try to present.
Even if formally those facts are not used in any of our proofs, having an idea of them helps
to understand the whole picture.

It is needless to say that the reader should have some familiarity with the kind of proofs
typically encountered in the field of the logical foundations of proofs and programs. In
particular, this work contains a great number of proofs by induction on different kinds of
structures, and even a few ones by coinduction. We write IH as an abbreviation for inductive
hypothesis, whereas coIH stands for coinductive hypothesis.

The symbol := is used with the meaning of equality by definition.

1.1 generalities

Sets
Given a set X we write P(X) for the set of all subsets of X and Pf(X) for the set of all finite
subsets of X. Given two sets X and Y their intersection is denoted by X ∩ Y, their union
by X ∪ Y, their cartesian product by X× Y, their disjoint union by X ⊎ Y and the relative
complement of Y w.r.t. X by X− Y. The empty set is represented by the symbol ∅.

Given a function f : X → Y, we denote its domain by dom(f) and its range (in the sense
of image of the domain) by rng(f).

Partial functions are written as f : X⇀ Y, meaning that dom(f) ⊆ X.
We recall that given a structure (X,R) composed of a set X and a binary relation R on X,

an ideal of (X,R) is any non-empty subset Y of X that is downward closed ( if xRy ∈ Y then
x ∈ Y ) and directed ( if x,y ∈ Y then there is z ∈ Y such that x,yR z ).

We write N for the set of natural numbers.

Sequences of natural numbers
We call N∗ the set of finite sequences of natural numbers. The symbol ε denotes the empty
sequence in N∗. Let ϕ = 〈n1, . . . ,nk〉,ϕ ′ = 〈m1, . . . ,mh〉 ∈N∗ and let n ∈N. We write
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• |ϕ| for the length k of ϕ,

• ϕ.n for the sequence 〈n1, . . . ,nk,n〉,

• ϕϕ ′ for the concatenation of ϕ and ϕ ′, namely 〈n1, . . . ,nk,m1, . . . ,mh〉 ,

• ϕ ′ 4 ϕ wheneverϕ ′ is a prefix ofϕ, i.e. whenϕ = ϕ ′ψ for some ψ ∈N∗. In particular
ϕ ′ ≺ ϕ if such a ψ is not ε.

Trees
A (naked) tree is a partial function T : N∗

⇀ N such that dom(T) is downward closed under
prefixes and for all σ ∈ dom(T) and n ∈N we have σ.n ∈ dom(T) if and only if n < T(σ).

The elements of dom(T) are called positions on T . For all σ ∈ dom(T), T(σ) gives the
number of children of the node in position σ. In particular σ is a leaf of T when T(σ) = 0.

A naked tree is computable (or recursive) if it is computable as a partial function.
We denote by T the set of all naked trees, by Trec the set of all the computable naked

trees, by T∞
rec the set of all infinite computable naked trees.

Multisets
Let X be a set. A multiset over X is any map m : X → N. For all x ∈ X the natural number
m(x) is the multiplicity of x in m. The support of m is the set { x ∈ A | m(x) 6= 0 } .

A multiset m is called finite if its support is finite. We represent a finite multiset m by the
unordered list of its elements, possibly with repetitions, between square brackets, like this:
m =

[
x1, . . . , xn

]
. Accordingly the empty multiset, i.e. the function m : X → N mapping all

elements of X to 0, is denoted by [ ].
We write Mf(X) for the set of all finite multisets over X. Given m,m ′ ∈ Mf(X), their

multiset union is the pointwise sum m+m ′ : x ∈ X 7→ m(x) +m ′(x) ∈N.

Rewriting
Consider a reduction rule→R in a rewriting system.

The R-reduction ։R is the transitive-reflexive closure of {→R}. In other words, given two
terms t, t ′ of the system we have t ։R t

′ if and only if there are n ∈ N and terms
t0, . . . , tn−1 such that t0 = t, tn−1 = t ′ and ti →R ti+1 for all i ∈ {0, . . . ,n− 1}. The term t

is in R-normal form (R-nf ) if there is no t ′ 6= t such that t→R t
′. The term t is R-normalizable if

nfR(t) :=
{
t ′ | t։R t

′ and t ′ R-nf
}

is not empty. For a set X of terms nfR(X) :=
⋃
t∈X nfR(t).

The R-conversion =R is the transitive-reflexive closure of {→R} ∪ { R←}. So, given two
terms t, t ′ we have t =R t ′ if and only if there are n ∈ N and terms t0, . . . , tn−1 such that
t0 = t, tn−1 = t ′ and

(
ti →R ti+1 or ti R← ti+1

)
for all i ∈ {0, . . . ,n− 1}.

Categories
Given a (small) category C, the hom-set of two objectsA and B of C, i.e. the set of morphisms
(also called arrows) in C from A to B, is denoted by C(A,B).

Given f ∈ C(A,B) and g ∈ C(B,C) their composition is written as g ◦ f ∈ C(A,C). When-
ever f is an isomorphism we denote its inversion by f−1∈ C(B,A).

Consider two functors F,G : C → D and a natural transformation α : F → G. For every
object A of C the corresponding component of α is denoted by αA ∈ D(FA,GA).
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1.2 untyped λ-calculus

The untyped (or type-free) λ-calculus [Chu41] studies the purely computational behavior of
functions. It is a formal system whose terms can be all considered to have the same status
of ‘functions freely applicable to one another’.

The λ-calculus first appeared in [Chu32], as a fragment of a wider system conceived by
Church as a logical foundation for mathematics. Church’s idea was to take functions, rather
than sets, as primitive objects, but his system turned out to be logically inconsistent [SCK35].
Nevertheless, the fragment dealing only with functions became relevant in the study of the
logical foundations of computer science. The untyped λ-calculus has a prominent role in
computability theory, since it can represent all computable functions (Church’s thesis). But
also in the theory of programming, as a suitable framework to study from an abstract
perspective many aspects of functional programming languages and their implementation.
Actually, the untyped λ-calculus can be seen as a programming language on its own.

The terms of the system are built up from variables by means of two freely applicable
constructors: the application MN, intuitively corresponding to the operation of applying a
function M to (another function used as) an argument N; the λ-abstraction λx.M, which
allows the effective substitutions of arguments for the variable x in an expression M.

The syntax
We generally use the notation of Barendregt’s book [Bar84] for the untyped λ-calculus.

We fix an infinite set Var. Its elements are called variables and denoted by x,y, z or occa-
sionally other lowercase Latin letters, possibly with apexes and pedexes.

The set Λ of λ-terms is defined by the following grammar:

Λ : M,N ::= x | λx.M | MN for all x ∈ Var. (1)

A λ-term of the form MN is called an application . One of the form λx.M is a λ-abstraction.
We assume that the application associates to the left, namely we write M1M2M3 · · ·Mn

for the λ-term (· · · ((M1M2)M3) · · · )Mn. Obviously the λ-abstraction associates to the right,
in that λx1.λx2 . . . λxn.M stands for the λ-term λx1.(λx2.(. . . (λxn.M) . . . )). In fact, such a
λ-terms will be always denoted by the compact notation λx1x2 . . . xn.M.

The set fv(M) of free variables of M ∈ Λ is defined by induction on the structure of M as
follows: fv(x) := {x} , fv(λx.M ′) := fv(M ′) − {x} and fv(M1M2) := fv(M1)∪ fv(M2). When
a variable x occurs in M but x 6∈ fv(M) we say that x is bound in M.

A λ-term M is closed whenever fv(M) = ∅. Closed λ-terms are also called combinators. We
denote the set of all closed λ-terms by Λ0.

Given M,N ∈ Λ we denote by M {N/x} the capture-free simultaneous substitution of N
for all free occurrences of x inM. FormallyM {N/x} is defined by induction onM as follows:
x {N/x} := N, y {N/x} := y if y 6= x, (M1M2) {N/x} :=M1{N/x}M2{N/x}, (λy.M ′) {N/x} :=

λy.M ′ {N/x} for y 6= x.
Let λx.M ∈ Λ and y not occurring in M, neither free nor bound. One may define in

this hypothesis the rewriting rule λx.M →α λy.M {y/x} , called α-rule. By convention we
consider α-convertible λ-terms to be the same λ-term, namely if M =α N then actually
M = N. For instance λxz.xxz = λyz.yyz = λyx.yyx. In other words, we assume the α-
convertion to be implicit in the syntax of the λ-calculus.
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We also adopt the so-called variable convention [Bar84, Conv. 2.1.13] : when in the same
context (in the same definition, statement, proof, and so on) we are dealing with certain
λ-terms M1, . . . ,Mn the set of all variables that are bound in any of them is disjoint from
fv(M1 · · ·Mn), which is the set of all variables that are free in any of M1, . . . ,Mn. For
instance, if we are talking of M1 = λx.xy and M2 = xx then the variable x occurring in M1

is not the same as the one in M2.

The dynamics
In the λ-calculus the idea of computation is represented by the β-rule, a rewriting rule that
defines the dynamics of substitution. It is the contextual closure of (λx.M)N →β M {N/x} .
More explicitly, this means that →β is defined by the clauses: (λx.M)N →β M {N/x} ;
whenever M →β M ′ then MN →β M ′N , NM →β NM ′ and λx.M →β λx.M ′ for all
N ∈ Λ and x ∈ Var. See § 1.1 for the meaning of ։β, =β and β-nf.

A λ-term M is solvable if and only if it has a head normal form (hnf ), which means that
M։β λx1 . . . xn.xM1 · · ·Mm for some n,m ∈N. Otherwise M is called unsolvable.

Also relevant is the η-rule, which is the contextual closure of λx.Mx→η M for x /∈ fv(M).
The η-conversion provides a way to axiomatize extensionality, the idea that every λ-term
actually behaves like a function.

Here some notable closed λ-terms:

I := λx.x n := λfx.

n times
︷ ︸︸ ︷
f(f(· · · f(x) · · · )) succ := λnfx.f(nfx)

K := λxy.x 1n := λxx1 . . . xn.xx1 . . . xn sum := λnmfx.nf(mfx)

S := λxyz.xz(yz) Y := λf.
(
λx.f(xx)

)(
λx.f(xx)

)
Ω := (λx.xx)(λx.xx)

F := λxy.y Θ :=
(
λxf.(f(xxf))

)(
λxf.f(f(xxf))

)
J := Θ

(
λzxy.x(zy)

)

The combinator I is called the identity and gives IM →β M for all M ∈ Λ. Schönfinkel’s
combinators K and S play a key role in combinatory logic. Notice that SKK ։β I. In par-
ticular K is sometimes denoted by T, a reference to the truth value true. The other boolean
false is F. For every n ∈ N the combinator n is called the n-th Church’s numeral. We have
succn ։β n+ 1 and sumnm ։β n+m. For every n ∈ N clearly 1n ։η I. In particular
11 = 1 →η I. A prominent example of unsolvable λ-term is Ω, since Ω →β Ω. For every
M ∈ Λ Church’s fixpoint combinator Y satisfies YM =β M(YM), whereas the more refined
Turing’s fixpoint combinator Θ gives ΘM։β M(ΘM). Fixpoint combinators help us de-
fine solvable but not β-normalizable λ-terms, such as Wadsworth’s combinator J. It has the
property J ։β λxy.x( Jy) ։β λxy.x

(
λy1.y( Jy1)

)
։β λxy.x(λy1.y

(
λy2.y1( Jy2))

)
։β . . .

and so on to infinity. The λ-term J will play a prominent role in this thesis.
As already mentioned, the untyped λ-calculus is a model of computation, like Turing

machines and recursive functions. This is established through the following notion. For any
k ∈ N we say that f : Nk → N is λ-definable if and only if there exists F ∈ Λ such that
Fn1 · · ·nk =β f(n1, . . . ,nk) for all n1, . . . ,nk ∈ N. Kleene proved that f is λ-definable
if and only if it is recursive [Bar84, Theorem 6.3.13], hence when it is Turing-recognizable.
Church’s thesis states that a function is (intuitively) computable if and only if it is λ-definable.
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Böhm trees
A tree representation can be very handy when reasoning on β-convertibility. This successful
approach was pioneered by Barendregt [Bar84] relying on a seminal work of Böhm [Böh68].

Let π1 and π2 be respectively the left and right projection operator for the cartesian
product of sets. Let Σ :=

{
λx1 . . . xn.x | x1, . . . , xn, x ∈ Var and n ∈N

}
∪
{
⊥
}

. A Böhm-like
tree is a partial function A : N∗

⇀ Σ×N such that π2 ◦A is a naked tree and (π2 ◦A)(σ) = 0

whenever (π1 ◦ A)(σ) = ⊥. We call
⌈
A
⌉

:= (π2 ◦ A) the (naked) tree underlying A. For
convenience, with an abuse of language we will usually write A(σ) to denote (π1 ◦A)(σ).

Intuitively, a Böhm-like tree is just a labelled tree where every node is given a label of the
form λx1 . . . xn.x or the label ⊥, with the latter case possible only if the node is a leaf.

Just like λ-terms, Böhm-like trees are considered up to α-conversion and with the variable
convention. We denote by ΛB the set of all Böhm-like trees.

Given a position ϕ ∈ dom(A) on A ∈ ΛB, the subtree of A at position ϕ is the Böhm-like
tree Aϕ defined by Aϕ(ψ) := A(ϕψ) for all ψ ∈N∗.

As an alternative, Böhm-like trees can be defined coinductively as follows: ⊥ ∈ ΛB; for
all m ∈ N if A1, . . . ,Am ∈ ΛB then λx1 . . . xn.xA1, . . . ,Am ∈ ΛB for all n ∈ N and
for all x1, . . . , xn, x ∈ Var. This definition is formally different from the one above, since
these coinductive terms have nothing to do with functions of the form A : N∗

⇀ Σ×N.
Nevertheless, we will freely use one or the other depending on the need.

We denote by N the set of finite Böhm-like trees, also called (finite) approximants. Formally
A ∈ N if and only if A ∈ ΛB and dom(A) is finite.

Finite approximants have an alternative definition through a rewriting system. They can
be seen as the β⊥-nf’s of the λ⊥-calculus, which is the extension of the λ-calculus obtained
by adding the constant ⊥ to the grammar (1) and the new rules λx.⊥ →⊥ ⊥ and ⊥M→⊥ ⊥

for all λ⊥-term M.
We use upper case Latin letters A,B, . . . for generic elements of ΛB and lower case Latin

letters a,b, . . . for elements of N, possibly with pedexes and apexes.
The set ΛB can be given a structure of order. We set A 6⊥B if and only if A results from

B by replacing some subtrees with ⊥. The intuitive reading of A 6⊥B is that the Böhm-like
tree A is a less refined approximation of B.

We call A∗ :=
{
a ∈ N | a 6⊥ A

}
the set of finite approximants of A ∈ ΛB. Notice that

S ⊆ N is an ideal of
(
N,6⊥

)
if and only if there exist A ∈ ΛB such that S = A∗.

Some elements of ΛB can be used to represent the result of the (possibly infinite) com-
plete β-reduction of λ-terms. LetM ∈ Λ. The Böhm tree ofM is the tree BT(M) ∈ ΛB defined
coinductively as follows:

if M is unsolvable then BT(M) := ⊥; if M is solvable and M ։β λx1 . . . xn.xN1 · · ·Nm
then BT(M) := λx1 . . . xn.xBT(N1) · · ·BT(Nm). Such a definition is independent of the hnf
λx1 . . . xn.xN1 · · ·Nm chosen in the second clause.

Notice that not every A ∈ ΛB is the Böhm tree of a λ-term, see [Bar84, Theorem 10.1.23].
In Figure 1 we provide some examples of Böhm trees.

One should think of BT(M) as the possibly infinite β-normal form of M, with the unsolv-
able parts of M represented by the symbol ⊥. In particular, whenever M has a β-nf N then
actually BT(M) is N.
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BT(λx.yΩ)
q

λx.y

⊥

BT((λyz.z y) sum)
q

λz.z

λnmfx.n

f m

xf

BT(Y)
q

λf.f

f

f

f
...

BT(Θ)
q

λf.f

f

f

f
...

BT( J )
q

λxz0.x

λz1.z0
λz2.z1
λz3.z2...

Figure 1: Some examples of Böhm trees.

For every position σ in BT(M), we want some λ-term Mσ such that BT(Mσ) = BT(M)σ.
Of course, such an Mσ is not unique. So we define a canonical one. Firstly, the principal head
normal form of a λ-term M, denoted phnf(M), is the head normal form obtained from M

by the head reduction strategy [Bar84, Def. 8.3.10]. Then for any σ on BT(M) we define the
subterm Mσ of M at σ by: Mε =M; Mi.σ = (Mi+1)σ whenever phnf(M) = λ~x.yM1 · · ·Mn.

Preorder and λ-theories
The study of the untyped λ-calculus is not restricted to the sole β-rule. For a variety of
reasons, one may want to identify more λ-terms than β-convertibility does. So typically the
focus is on some equational extension of β-convertibility. Such extensions are known as λ-
theories, formally defined below. A further refinement consists in investigating inequational
extensions of β-convertibility, which we call preorder theories.

Remember that a binary relation is a preorder if it is reflexive and transitive, whereas an
equivalence is a symmetric preorder.

A binary relation R on Λ is compatible (with abstraction and application) if it satisfies
MRN⇒ λx.MR λx.N and (MRN)∧ (M ′RN ′)⇒ (MM ′RNN ′) for all M,N,M ′,N ′ ∈ Λ.

A preorder theory is any compatible preorder on Λ including =β.
A λ-theory is any compatible equivalence on Λ including =β.
Given a preorder theory ⊑T , its induced equivalence =T is defined by M =T N if and

only if M ⊑T N and N ⊑T M, and it is always a λ-theory. We often use the symbol T itself
when referring to the λ-theory =T .

A λ-theory is: consistent if it does not equate all λ-terms (hence Λ×Λ is the only inconsis-
tent λ-theory); extensional if it includes =η ; sensible if it equates all unsolvables. A preorder
theory is consistent, extensional or sensible if such is its induced λ-theory.

We call λ the least λ-theory. It is in fact the λ-theory just equating β-convertible λ-terms,
namely λ =

{
(M,N) ∈ Λ×Λ |M =β N

}
.

We call λη the least extensional λ-theory. Such λη is nothing but the transitive closure
of λ ∪

{
(M,N) ∈ Λ×Λ | M =η N

}
. Actually, it is not complicated to prove that λη =

{
(M,N) ∈ Λ×Λ | M =βη N

}
, where =βη is the notion of convertibility of the rewriting

system defined by both the β-rule and the η-rule.
More generally, given a λ-theory T we denote by Tη the least λ-theory including T ∪ λη.
The preorder theory ⊑B is defined as M ⊑B N if and only if BT(M) 6⊥ BT(N). By

antisymmetry of 6⊥ the induced λ-theory is then: M =B N if and only if BT(M) = BT(N).
Notice that B is sensible, because when M and N are unsolvable BT(M) = ⊥ = BT(N).
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We call H the least sensible λ-theory. In other words, H is the least λ-theory that includes
{
(M,N) | M,N unsolvables

}
. We have H ⊂ B (since B is sensible, H ⊆ B; moreover this

inclusion is proper, as BT(Θ) = BT(Y) but Θ 6=H Y ).
The ω-rule is a strong form of extensionality defined as follows:

for all M,N ∈ Λ
((

for all P ∈ Λ0 MP = NP
)

implies M = N
)

.

Theω0-rule is the restriction of theω-rule to combinatorsM,N ∈ Λ0. Given a λ-theory T we
denote its closure under the ω-rule by Tω, and we say that T satisfies the ω-rule if T = Tω.
An analogous notation is used for the ω0-rule. By collecting some results in [Bar84, §4.1],
for all λ-theories T we have: Tη ⊆ Tω ; T satisfies the ω-rule if and only if T satisfies the
ω0-rule; T ⊆ T ′ entails Tω ⊆ T ′ω.

Categorical semantics
Most of this thesis concerns denotational semantics of the untyped λ-calculus. Among the
many notions of model for such system (weakly extensional λ-algebras, λ-models, syntacti-
cal λ-models, categorical models, see [Bar84, Ch. 5]) we will only use the categorical one.

We recall that a cartesian closed category is a category C with finite products × and a
bifunctor − ⇒ − : Cop × C → C right adjoint to the product. For any product

∏
i∈FAi we

denote by π
∏
i∈F Ai

i :
∏
i∈FAi → Ai its i-th projection. The adjunction −×− ⊣ −⇒ −

assures the existence of a bijection ΛA,B,C : C(A×B,C) → C(A,B⇒ C) natural in A,B and
C. We denote by EvA,B : (A ⇒ B)×A → B the counit of the adjunction. Cartesian closed
categories provide the categorical semantics of the simply typed λ-calculus.

Definition 1.2.1. Let C be a cartesian closed category. A reflexive object in C is a triple(
D, Abs, App

)
composed of an object D of C and morphisms Abs ∈ C(D ⇒ D,D) and

App ∈ C(D,D ⇒ D) such that App ◦ Abs = idD⇒D. The reflexive object is extensional if
Abs ◦ App = idD.

Definition 1.2.2. Let D =
(
D, Abs, App

)
be a reflexive object in a cartesian closed category.

For all M ∈ Λ and for all finite sequence of variables x1, . . . , xn such that fv(M) ⊆ ~x , the
interpretation

[[
M

]]~x
D

: Dn → D is given by induction on M as:
[[
xi
]]~x
D

:= πD
n

i ,
[[
λx.M

]]~x
D

:=

Abs ◦ΛD,Dn ,D

([[
M

]]x,~x
D

)
and

[[
MN

]]~x
D

:= EvD,D ◦
〈
App ◦

[[
M

]]~x
D

,
[[
N
]]~x
D

〉
.

We could not find any reference for the following definition in the literature. Nevertheless,
we are convinced that it must have already appeared elsewhere, and that it is considered
by many as mathematical folklore.

Definition 1.2.3. Let D =
(
D, Abs, App

)
and D ′ =

(
D ′, Abs ′, App ′

)
be reflexive objects in a

given cartesian closed category. An isomorphism of reflexive objects f : D → D ′ is an isomor-
phism f : D→ D ′ making the following two diagrams commute:

D⇒D D D⇒D

D ′⇒D ′ D ′ D ′⇒D ′

Abs

f−1⇒f f

App

f−1⇒f

Abs ′ App ′

(2)
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Theorem 1.2.4. Let D and D ′ be isomorphic reflexive objects in a cartesian closed category. Then
for all M,N ∈ Λ and for all finite sequence of variables x1, . . . , xn such that fv(MN) ⊆ ~x we have[[
M

]]~x
D

=
[[
N
]]~x
D

if and only if
[[
M

]]~x
D ′ =

[[
N
]]~x
D ′ .

Proof. See Appendix A.

When it comes to isomorphisms between extensional reflexive objects we do not need to
check the commutativity of the right diagram of (2) in Definition 1.2.3.

Lemma 1.2.5. Let D and D ′ be reflexive objects in a cartesian closed category. In particular let D
be extensional. If the isomorphism f : D → D ′ makes the left diagram of (2) commute, then f is an
isomorphism of reflexive objects.

Proof. See Appendix A.

The research on denotational semantics of λ-calculi has derived much benefit from the
discovery of Linear Logic (LL) by Girard [Gir87]. The natural deduction of propositional in-
tuitionistic logic can be embedded into LL. This is true in particular for its implicative frag-
ment, which corresponds to the simply typed λ-calculus via the Curry-Howard (or proofs-
as-programs) isomorphism [How80, SU06]. From the semantic perspective, this means that
from a categorical model of LL one must always be able to construct a categorical model of
the simply typed λ-calculus, namely a cartesian closed category.

There are different categorical axiomatizations of LL, all of them sharing Bierman’s linear-
non-linear principle [Bie95], as explained in [Mel09, Ch. 7]. We briefly recall here the categor-
ical model of LL known by the name of Seely category (skipping most technical details). The
notion is in fact a reformulation by Bierman [Bie95] of a definition of Seely [See89].

A symmetric monoidal category (smc) (S,⊗, 1,α, λ,γ,σ) is composed of a category S, a bi-
functor ⊗ : S ⊗ S → S (called tensor), an object 1 (the unity of the tensor), and natural
isomorphisms αA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C), λA : 1 ⊗ A → A, ρA : A ⊗ 1 → A,
σA,B : A⊗B→ B⊗A that make commute some well-known diagrams axiomatizing associa-
tivity, left and right neutrality of 1 and commutativity (see for instance [Mel09] or [ML97]).
An smc as above is closed (smcc) if there exists a bifunctor − ⊸ − : Sop× S→ S right adjoint
to the tensor −⊗−. This provides a bijection λA,B,C : S(A⊗ B,C) → S(A,B ⊸ C) natural
in A,B and C. We denote by evA,B : (A ⊸ B)⊗A → B the counit of this adjunction. In
particular one can define dualBA := λA,A⊸B,B(evA,B ◦ σA,A⊸B) : A → (A ⊸ B) ⊸ B. The smcc
is a ∗-autonomous category if there is an object ⊥ (called the dualizing object) such that for
every A the arrow dual⊥A is an isomorphism. In such a case one also writes A⊥ := A ⊸ ⊥.
Finally, a Seely category is a ∗-autonomous category S with finite products (usually denoted
by & rather than × in this context, with ⊤ being the final object) and a symmetric monoidal
comonad (!, der, dig,m) : (S,⊗, 1) → (S, &,⊤) that satisfies a further technical condition re-
lating dig and m, see diagram (72) in [Mel09, § 7.3]. We refer to [Mel09] for the unfolding
of what symmetric monoidal comonad means. We just recall that the counit derA : !A → A

of the comonad is called dereliction, the comultiplication digA : !A → !!A is called dig-
ging, whereas the natural isomorphisms m2

A,B : !A ⊗ !B → !(A & B) and m0 : 1 → !⊤
making the functor ! monoidal go by the name of Seely isomorphisms. Also, using these
ingredients one can define promA,B : !A ⊸ B → !A ⊸ !B, which we call promotion. Let
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(
S,⊗, 1,α, λ,γ,σ,⊥, &,⊤, !, der, dig,m

)
be a Seely category. Then the co-Klesli category of ! on

S, here denoted by Kl !(S), is a cartesian closed category. Remember that its objects are the
same as S, its morphisms are given by Kl !(S)(A,B) := S

(
!A,B

)
with derA ∈ Kl !(S)(A,A) as

identity, and the composition of f ∈ Kl !(S)(A,B) and g ∈ Kl !(S)(B,C) is provided by the ar-
row g ◦ !f ◦ digA existing in S. The product & of S lifts to a product in Kl !(S), when taking as
i-th projection of

˘
i∈FAi just the morphism π

˘

i∈F Ai

i ◦ der˘
i∈F Ai

: !
˘
i∈FAi → Ai in S. As

concerns the closure −⇒ −, it is defined on objects as A⇒ B := !A⊸ B (also known as Gi-
rard’s first translation [Gir87]), whereas given g ∈ Kl !(S)

op(A,A ′) = Kl !(S)(A
′,A) = S

(
!A ′,A

)

and h ∈ Kl !(S)
(
B,B ′

)
= S

(
!B,B ′

)
the morphism

g⇒ h ∈ Kl !(S)
(
A⇒ B , A ′ ⇒ B ′

)
= S

(
!(A⇒ B) , A ′ ⇒ B ′

)
= S

(
!(!A⊸ B) , !A ′ ⊸ B ′

)

is the following composition of arrows in S:

!(!A⊸B) !A⊸B !A⊸ !B !!A ′⊸B ′ !A ′⊸B ′ .
der!A⊸B

prom
A,B !g⊸h der!A′ ⊸B ′

1.3 observational equivalences

The problem of determining when two programs are equivalent is crucial in computer
science. For λ-calculi and related systems, it has become standard to consider two terms M
and N as equivalent programs when they are observationally (or contextually) equivalent with
respect to some fixed set O of observable terms. This means that one can plug either M or N
into any context C[−] without noticing any difference in behaviour through the glasses of O:
the program C[M] reduces to an observable in O exactly when C[N] does. The underlying
intuition is that terms in O have a form with a certain stable amount of information, so they
can be used as observable outputs of the computation. The choice of the set O is not unique.

Several interesting preorder theories and λ-theories are obtained when one applies this
approach to the untyped λ-calculus, as we do now.

A context C[−] is a λ-term with exactly one hole [−] occurring as a subterm in it. A way to
formally define this is by first adding the constant [−] to the grammar defining λ-terms (1),
and then taking from the terms so obtained only those where [−] occurs once. Given a
context C[−] and M ∈ Λ, we denote by C[M] the λ-term obtained by replacing the hole
with M. It is important to stress that we do not apply the α-conversion and the variable
conventions to contexts. For instance, if we have the context λx.[−] and the λ-term xx, the
occurrences of x in both of them refer to the same variable. The reason is that we do want
to be able to capture bound variables when filling a hole.

A context E[−] is a head context if it has the form λx1 . . . xm.[−]M1 · · ·Mn for m,n ∈ N.
In particular such a head context is applicative whenever m = 0, namely if it has the form
[−]M1 · · ·Mn.

Consider a set O ⊆ Λ. We write M ∈R O when there exists M ′ ∈ O such that M ։R M
′.

The O-observational preorder ⊑O is defined as

M ⊑ON if and only if for every context C[−]
(
C[M] ∈βO ⇒ C[N] ∈βO

)
.

Notice that we are not asking C[M] and C[N] to reduce to the same element of O.
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The O-observational equivalence =O is the equivalence induced by ⊑O, namely M =ON if
and only if M ⊑ON and N ⊑OM .

It is easy to check that ⊑O is a preorder theory, hence =O is a λ-theory.
We have not asked any condition on O. Nevertheless, it seems reasonable to take some

set O closed by β-convertibility. We are interested in two specific cases.

Hyland’s Observability
Let O be the set of λ-terms in hnf. The corresponding O-observational preorder is denoted
by ⊑H∗ and the corresponding O-observational equivalence by =H∗ . More explicitly

M ⊑H∗N if and only if for every C[−]
(
C[M] has a hnf ⇒ C[N] has a hnf

)
.

It is easy to realize that ⊑H∗ and H∗ are consistent, extensional and sensible.
It is a well-known fact that one can focus attention to head contexts.

Lemma 1.3.1 (Context Lemma). LetM,N ∈ Λ. ThenM ⊑H∗N if and only if for all head context
E[−] whenever E[M] has a hnf then E[N] has a hnf.

Corollary 1.3.2. Let M,N ∈ Λ0. Then M ⊑H∗ N if and only if for all applicative and closed
context ~X whenever M~X has a hnf then N~X has a hnf.

The λ-theory H∗ was extensively studied in the 70’s, primarily by Hyland [Hyl75, Hyl76]
and Wadsworth [Wad76]. In particular Hyland proved that H∗ is the maximal consistent
sensible λ-theory. The proof of this fact, as can be found in [Bar84, Theorem 16.2.6], can
also be straightforwardly adapted to the preorder case. So ⊑H∗ is the maximal consistent
sensible preorder theory. We will make an extensive use of this maximality in this thesis.

The following characterization of ⊑H∗ comes from [Hyl76] (see also [Bar84] and [RP04]).

Definition 1.3.3. Let M,N ∈ Λ. We write M ⊑kH∗ N if and only if either k = 0, or M is
unsolvable, or k > 0 and

M =β λx1 . . . xn1 .yM1 · · ·Mm1
N =β λx1 . . . xn2 .yN1 · · ·Nm2

where n1 −m1 = n2 −m2 and if, say, m1 6 m2 (hence n1 6 n2 and there exists p > 0

such that n2 = n1 + p and m2 = m1 + p) then:

• either y is free or y = xj for some j 6 n1 ;

• Mi ⊑
k−1
H∗ Ni for all i ∈ {1, . . . ,m1} and xn1+j ⊑

k−1
H∗ Nm1+j for all j ∈ {1, . . . ,p}.

(The case m1 > m2 is symmetrical.)

Proposition 1.3.4. Let M,N ∈ Λ. We have M ⊑H∗N if and only if M ⊑kH∗N for all k ∈N.

For convenience, we reformulate Proposition 1.3.4 also in terms of approximants.

Definition 1.3.5. Let a,b ∈ N− {⊥}. Since elements of N are considered up to α-conversion,
it makes sense to write them as a = λx1 . . . xn.xa1 · · ·am and b = λx1 . . . xn ′ .yb1 · · ·bm ′

for some n,m,n ′,m ′ ∈ N. We write a ∼ b if and only if x = y, n−m = n ′ −m ′ and
either x is free or x = xj for a certain j ∈

{
1, . . . , min(n,n ′)

}
. When a ∼ b we make use of

the following notation:
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• if m ′ 6 m we set bm ′+i := xn ′+i for all i ∈
{
1, . . . ,m−m ′

}
;

• if m 6 m ′ we set am+i := xm+i for all i ∈
{
1, . . . ,m ′ −m

}
.

Example 1.3.6. We have λxyz.yy⊥ ∼ λxy.y I since they have the same head variable y and
3− 2 = 2− 1. And if we call λx1x2x3.x2 a1 a2 := λxyz.yy⊥ and λx1x2.x2 b1 := λxy.y I

then according to the notation set above λx1x2x3.x2 b1b2 := λxyz.y I z .

Notice that a ∼ b is not an inductive notion, in the sense that in Definition 1.3.5 nothing
is asked concerning the relation between the ai’s and the bi’s. We are going to do that in
the following definition, which is moreover an order refinement of the idea.

Definition 1.3.7. Let a,b ∈ N. We write a - b if and only if either a = ⊥, or a ∼ b and for
all i ∈

{
1, . . . , max(m,m ′)

}
we have ai - bi.

Definition 1.3.8. Let a ∈ N and T ∈ ΛB. We write a - T if and only if there exists b ∈ T∗

such that a - b.

One can easily check that Definition 1.3.8 is consistent with Definition 1.3.7 whenever
T = b ∈ N. Finally, we can reformulate Proposition 1.3.4 as follows.

Proposition 1.3.9. Let M,N ∈ Λ. Then M ⊑H∗N if and only if a - BT(N) for all a ∈ BT(M)∗.

Morris’s Observability
Taking hnf’s as observables is the most common choice. Such observational equivalence
is by far the most investigated in the literature [Hyl76, Wad76, GFH99, Man09, Bre16],
at least concerning the untyped setting (for typed versions of the system, most notably
PCF [Mil77, Plo77, HO00, AJM00], one has some notion of values as observables). But in
this thesis we focus on a different observability.

Let O be the set of λ-terms in β-nf. Then ⊑O is called Morris’s observational preorder and
denoted by ⊑H+ . More explicitly

M ⊑H+N if and only if for all C[−]
(
C[M] is β-normalizable ⇒ C[N] is β-normalizable

)
.

The induced equivalence =O is called Morris’s observational equivalence and denoted by =H+ .
It is easy to check that ⊑H+ and H+ are consistent, extensional and sensible. Notice also

that in the characterization of ⊑H+ here above one can replace the β-reduction with the
βη-reduction, namely

M ⊑H+N if and only if for all C[−]
(
C[M] is βη-normalizable ⇒ C[N] is βη-normalizable

)
.

Even in this case we can focus our attention on head contexts.

Lemma 1.3.10 (Context Lemma). Let M,N ∈ Λ. Then M ⊑H+ N if and only if for all head
context E[−] whenever E[M] has a β-nf then E[N] has a β-nf.

Corollary 1.3.11. Let M,N ∈ Λ0. Then M ⊑H∗ N if and only if for all applicative and closed
context ~X whenever M~X has a β-nf then N~X has a β-nf.
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In [Bar84, Ch.16] the λ-theory H+ is denoted by TNF and called Morris’s extensional the-
ory. That name aims to distinguish H+ from the original Morris’s theory [Mor68], which is
defined likewise but further requires C[M] and C[N] to reduce to the same β-nf. This origi-
nal version of H+ is clearly not extensional (it does not equate y and λx.yx). As far as we
know, it was the very first instance of an observational equivalence ever introduced in the
literature. Anyway, it will not be considered in this thesis.

1.4 extensional böhm trees

Studying observational equivalences is not an easy task, especially because of the quantifi-
cation over all possible contexts appearing in their definition. This is the reason why since
the 70’s several attempts have been made to find alternative characterizations of H∗ and
H+. We recall in this section those that use Böhm-like trees.

In the paper [Böh68] from 1968 Böhm presented his famous theorem (see [Bar84, § 10.4]):
if two β-normalizable λ-terms M and N have different βη-nf’s then they can be separated,
i.e. there exists a context C[−] such that C[M] has a β-nf whereas C[N] does not. On the other
hand, if M and N have β-nf’s that differ only for some η-conversions then they cannot be
separated (take for instance M = x and N = λy.xy). Stated in contrapositive form, Böhm’s
theorem says that as far as we consider only β-normalizable terms H+ corresponds to λη, and
in fact also to Bη (for such terms being β-convertible means having the same Böhm tree).
Can we extend this approach — looking at Böhm trees up to η-conversion — to all λ-terms
in order to fully characterize H+ or other observational equivalences? The answer is yes,
provided we have some appropriate notion of η-reduction for generic Böhm-like trees.

There exist two distinct such notions. Both of them allow to reduce at once infinitely many
η-redexes, each occurring at a certain position on the tree. This is reasonable, as Böhm-like
trees are infinitary objects. The difference lies in what one considers to be an η-redex (in a
certain position on the tree). Take for instance BT( J ) in Figure 1. It looks like an infinitely
deep η-expansion of λx.x. Shall we allow BT( J ) to η-reduce to I ? Or must we only reduce
finitely deep η-extensions? Both options are of interest: the first approach provides a model
of H∗; the more restrictive choice gives a model of H+.

We start by defining the reduction that takes infinitely deep η-expansions into account.
The definition is the same as [Bar84, Definition 10.2.10] , where it is denoted by B >η A. As
a matter of fact, what we are going to define is not a reduction rule in a formal rewriting
system, but rather an order on ΛB. Nevertheless, we prefer to denote it by B։։η A, just to
stay close to the underlying intuition. In fact ։։η can be defined as an actual reduction in
an infinitary rewriting system, as recently shown by Severi and de Vries in [SdV16].

Remember that, given a Böhm-like tree A : N∗
⇀ Σ×N, for convenience we use A(σ)

instead of (π1 ◦ A)(σ). For instance, if A is the tree ⊥, i.e. formally dom(A) = {ε} and
A(ε) = (⊥, 0), then with an abuse of language we directly write A(ε) = ⊥.

Definition 1.4.1. Let A ∈ ΛB and T ∈ T. We say that T extends A if and only if dom(A) ⊆

dom(T) , and whenever A(ϕ) = ⊥ then T(ϕ) = 0 (namely ϕ is a terminal node in T ).

Definition 1.4.2. Let A ∈ ΛB and T ∈ T such that T extends A. The Böhm-like tree (A ; T)
is defined on ϕ ∈N∗ as follows.
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1. If ϕ ∈ dom(A) and A(ϕ) = ⊥ (hence T(ϕ) = 0 by Definition 1.4.1), we set
(
A ; T

)
(ϕ) := ⊥ .

2. If ϕ ∈ dom(A), A(ϕ) = λ~x.x and the number of children of the node ϕ in A is m
(
A ; T

)
(ϕ) := λ~xyϕ0 . . . y

ϕ

T(ϕ)−m−1.x .

Notice that in particular if T(ϕ) = m then (A ; T)(ϕ) := A(ϕ) .

3. If ϕ = ϕ ′.m+ i ∈ dom(T) − dom(A), ϕ ′ ∈ dom(A) and m is the number of children
of the node ϕ ′ in A, then we set

(
A ; T

)
(ϕ) := λyϕ0 . . . y

ϕ

T(ϕ)−1.yϕ
′

i .

4. If ϕ = ϕ ′. i ∈ dom(T) − dom(A) and ϕ ′ 6∈ dom(A) we set
(
A ; T

)
(ϕ) := λyϕ0 . . . y

ϕ

T(ϕ)−1.yϕ
′

i .

5. If ϕ 6∈ dom(T) then also ϕ 6∈ dom(A ; T), i.e. (A ; T) is undefined.

Notice that 1-5 above are all the cases that one must take into account, since T extends A.

Remark 1.4.3. Let A ∈ ΛB and T ∈ T such that T extends A. Then
⌈
(A ; T)

⌉
= T .

Definition 1.4.4. Let A,B ∈ ΛB. We say that B is an infinite η-expansion of A, denoted by
B ։։η A , if and only if there exists S ∈ T such that B = (A ;S). Notice that in such a case
in fact

⌈
B
⌉
= S , by Remark 1.4.3.

Example 1.4.5. Let T : N∗
⇀ N send 〈

n times
︷ ︸︸ ︷
0, 0, . . . , 0 〉 7→ 1 for every n ∈ N. Then T ∈ T and T

extends I. It easy to realize that BT( J ) = (I ; T). Hence BT( J ) ։։η I.

We will make use of the following two lemmas.

Lemma 1.4.6. Let λx1 . . . xn.xB1 · · ·Bm ։։η λx1 . . . xn ′ .xA1 · · ·Am ′ . Then Bi ։։η Ai for all
i ∈ {1, . . . ,m ′} and Bm ′+i ։։η xn ′+i for all i ∈ {1, . . . ,m−m ′}.

Proof. Straightforward.

Lemma 1.4.7 ([Bar84, Lemma 10.2.14 (ii)]). Let A,A ′,B ∈ ΛB such that A ′ ։։η A 6⊥B. Then
there is B ′ ∈ ΛB such that A ′ 6⊥B

′ ։։η B. Diagrammatically

A ′ B ′

A B

6⊥

6⊥

where → denotes ։։η and the dashed lines are the ones given by thesis.

As already mentioned ։։η provides a model of H∗, and in fact even of ⊑H∗ .
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Theorem 1.4.8 ([Bar84, Theorem 19.2.9]). Let M,N ∈ Λ.

1. M ⊑H∗N if and only if there are A,B ∈ ΛB such that BT(M) ηևև A 6⊥B։։η BT(N).

2. M =H∗N if and only if there is A ∈ ΛB such that BT(M) ηևև A։։η BT(N).

The notion that performs only finitely deep η-reductions can now be defined as a specific
case of B։։η A.

Definition 1.4.9. Let A,B ∈ ΛB. We say that B is a finitely deep (infinite) η-expansion of
A, denoted by B ։։fin

η A , if and only if B ։։η A and for all ϕ ∈ dom(A) whenever
{
ψ ∈ dom(A) | ψ ≻ ϕ

}
= ∅ then the set

{
ψ ∈ dom(B) | ψ ≻ ϕ

}
is finite.

One can prove an analogue of Theorem 1.4.8(2) for H+, that is M =H+ N if and only if
there is A ∈ ΛB such that BT(M) fin

η ևև A։։fin
η BT(N). The analogue for ⊑H+ is not true.

Example 1.4.10. In Figure 2 we have two Böhm trees. The symbol ηn(x) in a certain position
σ on BT(P) denotes the fact that the subtree BT(P)σ is an η-expansion of depth n, namely
λx1.xBT(P)σ〈0〉(λx2.x1(λx3.x2(· · · (λxn.xn−1xn) · · · ))). The λ-terms P andQ exist by [Bar84,
Theorem 10.1.23]. We have BT(P) ։։fin

η BT(Q). So P =H+Q.

Anyway, for ⊑H+ and H+ we will use a different characterization by Hyland and Lévy.
It has a more set-theoretical flavor, since it makes use of finite approximants.

Definition 1.4.11. Let M ∈N. The extensional Böhm tree of M is the set

BTe(M) :=
⋃

M ′։ηM

nfηBT(M ′)∗ =
{

nfη(a) | a ∈ BT(M ′)∗ and M ′ ։η M
}

.

Notice that, despite the name, BTe(M) is not actually a Böhm-like tree.

Theorem 1.4.12 ([Hyl75]). Let M,N ∈ Λ.

1. M ⊑H+N if and only if BTe(M) ⊆ BTe(N).

2. M =H+N if and only if BTe(M) = BTe(N).

A sketch of the proof of Theorem 1.4.12 is in Hyland’s original paper [Hyl75]. The reader
may want to see [RP04] for a cleaner proof.

Example 1.4.13. It is easy to realize that BTe( J ) ⊆ BTe( I ). So by Theorem 1.4.12(1) we get
J ⊑H+ I . On the other hand, BTe( I ) 6⊆ BTe( J ), since I ∈ BTe( I ) − BTe( J ). As a matter of
fact I 6⊑H+ J (taken C[ ] := [ ] we have C[ I ] = I with a β-nf and C[ J ] = J without).

There is a way to obtain a characterization of ⊑H∗ and H∗ starting from BTe(−).

Definition 1.4.14. Let a,b ∈ N. Then a 6e b if and only if there exist a ′,b ′ ∈ N such that
a ηև a ′ 6⊥b

′ ։η b.

Definition 1.4.15. The Nakajima tree of M ∈ Λ is NT(M) := BTe(M)∪
{

sup
6e

BTe(M)
}

.
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Theorem 1.4.16 ([Nak75]). Let M,N ∈ Λ.

1. M ⊑H∗N if and only if NT(M) ⊆ NT(N).

2. M =H∗N if and only if NT(M) = NT(N).

Example 1.4.17. One can prove that I is the only element of BTe( I ) − BTe( J ). Moreover
sup

6e
BTe( J ) = I = sup

6e
BTe( I ). Hence NT( J ) = BTe( J )∪ { I } = BTe( I ) = NT( I ).

Definition 1.4.14 is not the original version of Nakajima’s trees [Nak75], but rather a
reformulation in terms of finite approximants provided by Lévy [Lev76]. Anyway, we will
not use this model of H∗ in the thesis.

There is yet another way to define the extensional Böhm trees, as given in [vBBDCdV02].
This alternative definition is not exactly equivalent to BTe(−). In fact, it only provides a
model of H+, not of ⊑H+ . It is based on a coinductive definition of what can be seen as the
normal form of a Böhm-like tree w.r.t. the notion ։։fin

η discussed above.

Definition 1.4.18. Let A ∈ ΛB. The η-normal form of A, denoted by η(A), is defined coin-
ductively as follows: η(⊥) = ⊥ and

η
(
λx1 . . . xn.yA1 · · ·Am

)
=

{
η
(
λx1 . . . xn.yA1 · · ·Am−1

)
if (#) below holds

λx1 . . . xn.yη(A1) · · ·η(Am) otherwise

where Condition (#) is: xn 6∈ fv(yA1 · · ·Am−1), Am ∈ N (i.e. Am is finite) and Am ։η xn.

Definition 1.4.19. Let M ∈ Λ. The Böhm η-tree of M is BTη(M) := η
(
BT(M)

)
.

Example 1.4.20. Examples of Böhm η-trees are: BTη( J ) = BT( J ), BTη(λy.xyy) = λy.xyy,
BTη(λxy1y2.x(λz1.y1(λz2.z1(λz3.z2z3))y2) = BTη(I) = I, BTη(λy.x⊥y) = x⊥.

Theorem 1.4.21 ([vBBDCdV02]). For M,N∈Λ, M =H+N if and only if BTη(M) = BTη(N).

On the other hand, BTη(M) 6⊥ BTη(N) is not equivalent to BTe(M) ⊆ BTe(N) (i.e. to
M ⊑H+N). E.g. BTe(x⊥) ⊆ BTe(λy.xyy) but BTη(x⊥) = x⊥ 66⊥λy.xyy = BTη(λy.xyy).

1.5 the lattice of λ-theories

The set of all λ-theories, ordered by inclusion, forms a complete lattice.
The meet of two λ-theories is their intersection. The join is the least λ-
theory that includes their union. The minimum element of the lattice
is λ, whereas the maximum is the inconsistent λ-theory. The lattice of
λ-theories is still largely unexplored, see [LS04] as a reference.

λ

λη H

Hη

Hω Bη

λω B

Bω

? •H+

H∗

The picture on the right, where T is above T ′ if T ⊂ T ′, is taken
from [Bar84, Theorem 17.4.16] and shows some facts about the λ-
theories under consideration.
The counterexample showing that λη ⊂ λω is based on Plotkin’s
terms [Bar84, Definition 17.3.26]. Since these terms are unsolvable,
they become useless when considering sensible λ-theories.
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BT(P)
q

λyx.x

y

η1(x)⊥

y

η2(x)⊥ ⊥
. . .

BT(Q)
q

λyx.x

y

x⊥

y

x⊥ ⊥ . . .

Figure 2: Example of finitely deep η-reduction: BT(P) ։։fin
η BT(Q)

Take the two λ-terms P,Q in Example 1.4.10, whose Böhm trees are depicted in Figure 2.
As we know, they satisfy P =H+Q. The existence of P and Q entails that Bη ⊂ H+. Indeed,
when M→ηN then BT(M) can be obtained from BT(N) by performing an η-expansion of
at most depth 1 at every position (see [Bar84, Lemma 16.4.3]). As a consequence, M =Bη N

entails that BT(M) can be obtained from BT(N) by performing possibly infinite many η-
expansions, but with a bound on the depth of all of them. Clearly this not the case of P and
Q, since at every level 2n of BT(P) there is an η-expansion of depth n. So P 6=Bη Q.

Perhaps more surprisingly, P and Q can also be used to prove that Bη ⊂ Bω, since
P =Bω Q holds. The argument is due to Barendregt, see [Bar84, Lemma 16.4.4]. Recall
the following basic fact: for every M ∈ Λ0 there exists k > 0 such that MΩ · · ·Ω, where
the application to Ω is repeated k times, becomes unsolvable (see [Bar84, Lemma 17.4.4]).
By inspecting Figure 2, we notice that in BT(P) the variable y is applied to an increasing
number of Ω’s (represented by ⊥). So, when substituting some M ∈ Λ0 for y in BT(Py),
there will be a level k of the tree where MΩ · · ·Ω become ⊥, thus cutting BT(PM) at level k.
The same reasoning can be done for BT(QM). Therefore BT(PM) and BT(QM) only differ
because of finitely many η-expansions, which gives PM =Bη QM. Since Bη ⊆ Bω, we have
PM =BωQM. As this is true for all M ∈ Λ0, by the ω-rule holding in Bω we get P =BωQ.

About the relation between Bω and H+, Sallé conjectured that Bω ⊂ H+ [Bar84, §17.4].
The fact that H∗ satisfies the ω-rule is clearly a consequence of its maximality. However,

there are several direct proofs: see [Bar84, §17.2] for a syntactic demonstration and [Wad76]
for a semantic one. The longstanding open question whether H+ satisfies the ω-rule will
be answered positively in Theorem 5.4.3.

1.6 linear resource calculus and taylor expansion

All models of the untyped λ-calculus studied in this thesis are resource-sensitive, in the sense
that they represent explicitly the consumption of resources by λ-terms along the process of
β-reduction. For their technical development we derive much benefit from a reformulation
of the untyped λ-calculus where the resource-sensitiveness is integrated in the syntax from
the beginning. It is the linear fragment of Ehrhard’s resource calculus [ER06a], handled here
with the syntax proposed by Tranquilli in [Tra11].
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The linear resource calculus
The set Λr of (linear) resource terms and the set Λb of bags are defined by the grammars

Λr : s, t ::= x | λx.t | tb Λb : b ::=
[
s1, . . . , sn

]
where n > 0. (3)

Notice that in applications tb resource terms are in functional position, whereas bags are
in argument position and represent unordered lists of resource terms. Intuitively, in a term
t
[
s1, . . . , sn

]
each si is a linear resource, meaning that t cannot duplicate nor erase it. We

will deal with bags as if they were multisets presented in multiplicative notation: b1 · b2 is
the multiset union of b1 and b2. Clearly, the neutral element of this multiplication is the
empty multiset [ ]. We write

[
sk

]
for the bag [s, . . . , s] containing k copies of s.

The α-equivalence and the set fv(t) of free variables of t are defined as done for the
ordinary λ-calculus in § 1.2. Resource terms and bags are considered up to α-equivalence,
and we also apply the Variable Convention seen in § 1.2.

As a syntactic sugar, we extend all the constructors of the grammars (3) as pointwise
operations on (possibly infinite) sets of resource terms or bags. That is, given T ⊆ Λr and
B, B ′ ⊆ Λb we use the following notations: λx.T := {λx.t | t ∈ T}, TB := {tb | t ∈ T, b ∈ B},
[T] := {[t] | t ∈ T} and B ·B ′ := {b · b ′ | b ∈ B, b ′ ∈ B ′}. For convenience, we also write Tb

for T{b} and B · b for B · {b}. Observe that λx.∅ = ∅, t∅ = ∅, ∅b = ∅, [∅] = ∅ and ∅ · b = ∅. So
the empty set ∅ annihilates any resource term or bag.

Given a relation→R⊆ Λ
r×Pf(Λ

r) its context closure is the least relation in Pf(Λ
r)×Pf(Λ

r)

such that, when t→R T, we have

λx.t→R λx.T, tb→R Tb, s([t] · b)→R s([T] · b), {t}∪ S →R T ∪ S.

We say that t ∈ Λr is in R-normal form if there is no T such that t →R T. When →R is
confluent, nfR(t) ∈ Pf(Λ

r) denotes the unique R-normal form of t, if it exists.
The degree of x in t, denoted by degx(t), is the number of free occurrences of x in t. A

β-redex is a resource term of the form (λx.t)
[
s1, . . . , sk

]
and its contractum is a finite set of

resource terms: when degx(t) = k, it is the set of all possible resource terms obtained by
linearly replacing each free occurrence of x in t by exactly one of the si’s; otherwise, when
degx(t) 6= k, it is just ∅. Formally, we define→β as the context closure of:

(λx.t)
[
s1, . . . , sk

]
→β






{

t
{
sp(1)/x1, . . . , sp(k)/xk

} ∣∣ p ∈ Sk

}

if degx(t) = k,

∅ otherwise

where Sk is the group of permutations of {1, . . . ,k} and x1, . . . , xn is a fixed arbitrary enu-
meration of the free occurrences of x in t. Note that the β-reduction is strongly normalizing
on Pf(Λ

r), since whenever t →β T the size of t is strictly bigger than the size of each re-
source term in T. Moreover, the β-reduction is weakly confluent, and therefore confluent
by Newman’s lemma.

There is no evident notion of η-reduction on Pf(Λ
r). We will deal with this issue in § 4.5.

Taylor expansion
The Taylor expansion of a λ-term, as defined in [ER03, ER08], is a translation developing
every M ∈ Λ as an infinite series of resource applications with rational coefficients. For our
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purpose it is enough to consider a simplified version T(−) : Λ → P(Λr) corresponding to
the support of the actual Taylor expansion, namely the set of those resource terms appearing
in the series with a non-zero coefficient. In other words, here a Taylor expansion will be a
possibly infinite set of resource λ-terms.

Definition 1.6.1. Let M ∈ Λ. The Taylor expansion of M is a set T(M) ⊆ Λr defined by

T(x) := {x} , T(λx.M) := λx.T(M) , T(MN) := T(M)Mf
(
T(N)

)
.

The Taylor expansion is extended to finite approximants in N by adding the clause T(⊥) := ∅

and to Böhm-like trees A by setting T(A) :=
⋃
a∈A∗ T(a) .

Examples 1.6.2. Here are the Taylor expansions of some λ-terms:

T(I) =
{

I
}

T(λx.xx) =
{
λx.x

[
xn

]
| n ∈N

}
,

T(λy.xyy) =
{
λy.x

[
yn

][
yk

]
| n,k ∈N

}

T(Ω) =
{(
λx.x[xn0 ]

)[
λx.x[xn1 ], . . . , λx.x[xnk ]

]
| k,n0, . . . ,nk ∈N

}
,

T(Y) =
{

λf.
(
λx.f

[
x[xn1 ], . . . , x[xnk ]

])[
λx.f

[
x[xn11 ], . . . , x[xn1k1 ]

]
, . . . ,

λx.f
[
x[xnh1 ], . . . , x[xnhkh ]

]] ∣∣ k,ni,h,nij ∈N

}

,

T( J) =
{

t
[
λzxy.x

[
z[yn11 ], . . . , z[yn1k1 ]

]
, . . . ,

λzxy.x
[
z[ynh1 ], . . . , z[ynhkh ]

]] ∣∣ t ∈ T(Θ), h,ki,ni,j ∈N

}

.

From the examples above it is clear that if a λ-term M has a β-redex, then there are
resource terms t ∈ T(M) having β-redexes too. However each t has a unique β-nf and
we can always compute nfβ(T(M)) =

⋃
t∈T(M) nfβ(t). For instance: T(I), T(λx.xx) and

T(λy.xyy) are already β-normal, whereas nfβ
(
T(Ω)

)
= ∅.

We will make use of the following lemma, whose proof is simple.

Lemma 1.6.3. Let a ∈ N and M ∈ Λ. Then T(a) ⊆ T(BT(M)) entails a ∈ BT(M)∗.

There is a strong relationship between the Böhm tree of a λ-term and its Taylor expansion,
as clarified by the following theorem.

Theorem 1.6.4 ([ER06a]). Let M,N ∈ Λ. Then nfβ
(
T(M)

)
= T

(
BT(M)

)
.

Corollary 1.6.5. Let M,N ∈ Λ. Then BT(M) = BT(N) if and only if nfβ
(
T(M)

)
= nfβ

(
T(N)

)
.

Theorem 1.6.4 will play an important role in this thesis. It can be read as a kind of com-
mutation: performing the Taylor expansion of M ∈ Λ and then β-normalizing is equivalent
to β-normalizing in the first place (something represented by taking the Böhm tree) and
then doing the Taylor expansion. Here some examples of applications of Theorem 1.6.4:

nfβ
(
T(Y)

)
=

{
λf.f[ ] , λf.f

[
(f[ ])n

]
, λf.f

[
f
[
(f[ ])n1

]
, . . . , f

[
(f[ ])nk

]]
, . . .

}

nfβ
(
T( J)

)
=

{
λxz0.x[ ] , λxz0.x[(λz1.z0[ ])n] , . . .

}
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The (full) resource calculus extends the one presented here above with a more general
notion of bag

[
s1, . . . , sn, t!

1, . . . , t!
m

]
, where resources of the form t! are considered as non-

linear (duplicable or erasable when substituted), and a more general β-reduction accomo-
dating this idea. The calculus has been further studied in [PT09, PRDR10, MP11]. It shares
some similarities with Boudol’s λ-calculus with multiplicities [Bou93, BCL99]. The syntax
of the resource calculus can be reformulated in a way very close to the common differen-
tiation in ordinary calculus. In such a case, it goes by the name of differential λ-calculus, as
developed by Ehrhard and Regnier in [ER03, ER06b, ER08]. (See for instance [Man12] for
the formal translation between the resource calculus and the differential λ-calculus.)
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2
R E L AT I O N A L G R A P H M O D E L S

introduction

In Scott’s continuous semantics [Sco72] programs are interpreted as functions. Also, the
interpretation of data types relies on some order. The kind of denotational semantics that
we use here, called relational semantics, does not have neither of these features.

Relational semantics interprets types as sets, and λ-terms as binary relations. A program p

of type A→ B is interpreted as a relation
[[
p
]]

between finite multisets of A and elements
of B (by convenience we are calling A the set that interprets a given type A). Intuitively

( [
a1, . . . ,an

]
, b

)
∈

[[
p
]]

(4)

means that one among the possible executions of p can produce a piece of output b by
consuming exactly the resources a1, . . . ,an. Let us point out two relevant features of this
semantics.

1. Finite multisets provide a resource-sensitive interpretation of inputs of programs: if m
is the multiplicity of ai in

[
a1, . . . ,an

]
, then the piece of information ai is used m

times in the specific execution represented by (4).

2. Such semantics carries some notion of non-determinism, since programs are interpreted
as relations rather than functions. According to (4) the resources a1, . . . ,an can pro-
duce the output b. But they may also produce some other output c, since one can have( [
a1, . . . ,an

]
, c

)
∈
[[
p
]]

too.

This semantics is an offspring of the strict connection between λ-calculus and linear
logic [Gir87]. The category Rel of sets and relations is suitable to model LL if one assumes
the operator Mf of finite multisets as the comonad interpreting ! . Then the cartesian closed
category MRel arising from the co-Kleisli construction of Mf on Rel is a model of the simply
typed λ-calculus. A relational model of the untyped λ-calculus is a reflexive object in MRel.

Here we introduce the notion of relational graph model (rgm for short). Rgm’s form a proper
subclass of the class of relational models. They are a resource-sensitive reformulation of
the graph models à la Plotkin-Scott-Engeler [Plo72, Eng81, Lon83, Plo93, Sch91]. A graph
model is a specific kind of reflexive object in the cartesian closed category of cpo’s and
Scott-continuous functions. Precisely, one of the form (P(D),⊆ ) for a given infinite set D in
which Pf(D)×D is injected. The idea behind rgm’s is to replace Pf(D) with Mf(D). With
this choice, not the set Mf(D), but rather D itself turns out to be a reflexive object in MRel.

Rgm’s are the main subject of this work. We investigate them by employing a type-
theoretical approach. Indeed, we formalize the interpretation of λ-terms in each specific
rgm by means of a corresponding type assignment system. A peculiar feature of such a sys-
tem is a non-idempotent operation defined on types, corresponding intuitively to the union
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of multisets. We denote this operation as an intersection, in accordance to a long standing
tradition [BDS13, Part III]. From this perspective, rgm’s remind one of the role played by
filter models in the context of Scott’s semantics.

plan of the chapter In § 2.1 we collect the generic technicalities concerning MRel.
In § 2.2 we introduce the rgm’s. The type systems associated with them are presented in
§ 2.3. The usage of these systems to interpret λ-terms is given in § 2.4. In § 2.5 we show that
rgm’s are also models of the linear resource calculus. We exploit this fact in § 2.6 to prove
the crucial approximation theorem that holds for every rgm.

2.1 relational semantics

Relational semantics of linear logic and the λ-calculus, first conceived by Girard in [Gir88],
has been mainly developed by Ehrhard and coauthors [BEM07, BEM12, Ehr12]. We recall
here its main ingredients, referring to § 1.2 for the categorical notions that we mention.

In the category Rel objects are sets. Given two objects A and B we define Rel(A,B) :=

P(A×B). In other words, morphisms in Rel are binary relations between sets. The composi-
tion in Rel is the usual composition of binary relations, i.e. for any f ⊆ A×B and g ⊆ B×C
we have g ◦ f :=

{
(a, c) ∈ A×C | (a,b) ∈ f and (b, c) ∈ g for some b ∈ B

}
. The inversion

of a morphism f : A→ B is just its inverse relation f−1 :=
{
(b,a) ∈ B×A | (a,b) ∈ f

}
.

Rel is a ∗-autonomous category. The tensor and its closure are both given by the cartesian
product of sets A ⊗ B := A ⊸ B := A × B. However, notice that the definition differs
on morphisms f and g, since − ⊸ − is contravariant in the first argument. So actually
f⊗ g := f× g whereas f⊸ g := f−1× g. The unit of the adjuction between ⊗ and ⊸ is
evA,B :=

{
(((a,b),a),b) | a ∈ A and b ∈ B

}
. The unit of the tensor is the generic singleton

1 := {∗}. The same goes for the dualizing object, namely ⊥ := {∗}. For every object A we
have A⊥ = A up to isomorphism, whereas for every f : A → B we have f⊥ = f−1. Rel has
the disjoint unions of sets A⊎B as finite products and the empty set ∅ as final object.

See § 1.1 for the notations on multisets that we are going to use hereafter.
One can see Mf(−) as an endofunctor on Rel by setting for all f ⊆ A×B

Mf(f) :=
{([

a1, . . . ,an
]

,
[
b1, . . . ,bn

]) ∣∣ n ∈N and (ai,bi) ∈ f for all i
}

.

The functor Mf(−) is a monoidal comonad on Rel. Its counit and comultiplication are

derA :=
{(

[a] , a
)
| a ∈ A

}
,

digA :=
{(
m1 + · · ·+mn ,

[
m1, · · · ,mn

]) ∣∣ n ∈N and mi ∈Mf(A) for all i
}

.

The Seely isomorphism m0 : 1 → !⊤ is just m0 :=
{
(∗, [ ])

}
⊆ {∗}×

{
[ ]
}

. The Seely isomor-
phism m2

A,B : !A⊗ !B→ !(A&B), namely m2
A,B ⊆

(
Mf(A)×Mf(B)

)
×Mf

(
A⊎B

)
, is

m2

A,B :=
{(([

a1, . . . an
]

,
[
b1, . . . bm

])
,
[
(1,a1), . . . , (1,an), (2,b1), . . . , (2,bm)

])}n,m∈N

ai∈A,bj∈B
.

All this makes Rel a Seely category. So its co-Kleisli MRel := KlMf(Rel) is a cartesian
closed category. The objects of MRel are sets. A morphism f ∈ MRel(A,B) is any relation
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between Mf(A) and B, in other words MRel(A,B) = P(Mf(A) × B). The composition of
f ∈MRel(A,B) and g ∈MRel(B,C) is characterized as follows:

g◦ f =
{(∑n

i=1mi , x
) ∣∣ n ∈N and ∃y1, . . . ,yn such that (mi,yi) ∈ f,

([
y1, . . . ,yn

]
, x
)
∈ g

}

.

The identity of A is the relation idA =
{
([x], x) | x ∈ A

}
. The product is the disjoint union

A⊎B and the exponential object A⇒B is Mf(A)×B.
As it is customary in relational semantics, when dealing with an arrow coming out of a

product A& B, i.e. with a relation coming out of Mf(A ⊎ B), we silently compose it with
Seely’s isomorphism m2

A,B , so to see it as a relation coming out of Mf(A)×Mf(B).
Every function f : A → B can be sent to a morphism f† ∈ MRel(A,B) just by setting

f† :=
{(

[x], f(x)
)
| x ∈ A

}
. Then the following result is easy to prove.

Lemma 2.1.1. Let the function f : A → B be bijective. Then f† ∈ MRel(A,B) is an isomorphism,
with inverse

(
f−1

)†
∈MRel(B,A).

We call relational model of the untyped λ-calculus any reflexive object in MRel. This makes
sense even despite the fact that the MRel has not enough points, as clarified in [BEM07]. We
will briefly recall this issue in § 2.4.

2.2 relational graph models

We define a class of relational models of the untyped λ-calculus. As we will see in Chapter 3,
this class contains the relational model introduced by Hyland and others in [HNPR06],
and up to isomorphism also the relational model of Bucciarelli, Ehrhard and Manzonetto
defined in [BEM07] and further studied in [BEM12].

Definition 2.2.1. A relational graph model (rgm, for short) is a pair D = (D, i) consisting of
an infinite set D and an injection i : Mf(D)×D→ D.

An rgm D = (D, i) is called extensional (ergm, for short) whenever i is bijective.

Proposition 2.2.2. Let D = (D, i) be an rgm. Then
(
D, i†,

(
i−1

)† ) is a reflexive object in MRel.

If moreover D is an ergm then
(
D, i†,

(
i−1

)† ) is an extensional reflexive object in MRel.

Proof. The binary relation i† ⊆Mf

(
Mf(D)×D

)
×D is given by

i† =
{ ([

p
]
,d

)
∈Mf

(
Mf(D)×D

)
×D | i(p) = d

}

.

The binary relation
(
i−1

)†
⊆Mf(D)× (Mf(D)×D) is given by

(
i−1

)†
=

{ ([
d
]
,p

)
∈Mf(D)× (Mf(D)×D) | i−1(d) = p

}

.
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So we have
(
i−1

)†
◦ i† =

{(
⊎ni=1mi,p

)
∈Mf

(
Mf(D)×D

)
×
(
Mf(D)×D

)
| n ∈N, (mi,di) ∈ i†

for all i ∈ {1, . . . n} , and
([
d1, . . . ,dn

]
,p

)
∈
(
i−1

)†}

=
{([

p1
]
,p

)
∈Mf

(
Mf(D)×D

)
×
(
Mf(D)×D

)
|
([
p1

]
,d1

)
∈ i† and

([
d1

]
,p

)
∈
(
i−1

)†}

=
{([

p1
]
,p

)
∈Mf

(
Mf(D)×D

)
×
(
Mf(D)×D

)
| i(p1) = d1 and i−1(d1) = p

}

=
{([

p
]
,p

)
∈Mf

(
Mf(D)×D

)
×
(
Mf(D)×D

)
| p ∈ dom(i)

}

=
{([

p
]
,p

)
∈Mf

(
Mf(D)×D

)
×
(
Mf(D)×D

)
| p ∈Mf(D)×D

}

= idD⇒D

which means that (D⇒ D) ⊳ D in the category MRel.
If moreover i is a surjective function, i.e. dom

(
i−1

)
= D, then

i† ◦
(
i−1

)†
=

{(
⊎ni=1mi,d

)
∈Mf(D)×D | n ∈N, (mi,pi) ∈

(
i−1

)† for all i ∈ {1, . . . n},

and
([
p1, . . . ,pn

]
,d

)
∈ i†

}

=
{([

d1
]
,d

)
∈Mf(D)×D | (

[
d1

]
,p1) ∈

(
i−1

)† and (
[
p1

]
,d) ∈ i†

}

=
{([

d1
]
,d

)
∈Mf(D)×D | i−1(d1) = p and i(p) = d

}

=
{([

d
]
,d

)
∈Mf(D)×D | d ∈ dom

(
i−1

)}

=
{([

d
]
,d

)
∈Mf(D)×D | d ∈ D

}

= idD

so that (D⇒ D) ≃ D in the ccc MRel.

According to Proposition 2.2.2 an rgm always provides a categorical model, which is in
particular extensional in the case of an ergm. In fact, from now on we have no serious reason
to distinguish between (D, i) and

(
D, i†,

(
i−1

)†). Hence, with an abuse of language we say
that an rgm is a model of the untyped λ-calculus.

Remark 2.2.3. Since every isomorphism f ∈MRel(X,X) has the form f =
{
([α], i(α)) | α ∈ X

}

for some bijective map i, the class of ergm’s coincides with the one of extensional relational
models, meaning by that all extensional reflexive objects in MRel.

Theorem 2.2.4. Let M ∈ Λ and fv(M) ⊆ {x1, . . . , xn}. The interpretation of M in D w.r.t. ~x is
the relation [[M]]~xD ⊆Mf(D)n ×D given inductively as follows.

1.
[[
xi
]]~x
D

=
{((

[ ], . . . , [ ], [σ], [ ], . . . , [ ]
)
,σ

)
| σ ∈ D

}

, where [σ] stands in i-th position.

2.
[[
λx.M

]]~x
D

=
{(

~m , i(m,σ)
)
|
(
(~m,m),σ

)
∈ [[M]]~x,x

D

}

, where x 6∈ ~x by α-conversion.
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3.
[[
MN

]]~x
D

=
{(

( ~m0 + · · ·+ ~mk) , σ
)
| k ∈N and ∃σ1, . . . ,σk ∈ D such that

(
~m0 , i([σ1, . . . ,σk],σ)

)
∈ [[M]]~xD and ( ~mℓ,σℓ) ∈ [[N]]~xD for all 1 6 ℓ 6 k

}

.

Proof. A straightforward application of Definition 1.2.2. Remark however that we are also
composing with Seely’s isomorphism m2, following the custom recalled in § 2.1.

Rgm’s can be built from a possibly finite amount of information, as formalized here below.
We will exploit such a practical benefit all over the rest of this work. The idea was pioneered
by Longo in [Lon83] for graph models. See Berline’s article [Ber00] on the subject.

Definition 2.2.5. A partial pair A = (A, j) consists of a non-empty set A that does not contain
any pair and a partial injection j : Mf(A)×A⇀ A.

A partial pair A is extensional when j is a bijection between dom(j) and A.

Definition 2.2.6. Let A = (A, j) be a partial pair. The (free) completion A of a A is the pair(
A, j

)
defined as follows.

1. By induction on n ∈N we define

• A0 := A ,

• An+1 :=
( (

Mf(An)×An
)
− dom(j)

)
∪ A

and then we set
A :=

⋃

n∈N

An .

2. The total function j : Mf(A)×A→ A is defined as

j (m,α) :=

{
j (m,α) if (m,α) ∈ dom(j)

(m,α) otherwise.

One can think A as a solution of the set-theoretical equation X =
(
Mf(X)× X

)
∪ A in

the unknown X . More precisely, the intuitive reading of Definition 2.2.6 is the following:
Clause 1 says that A is the least set X obtained by adding recursively to the basic set A
all elements of Mf(X)× X except for those that are already in dom(j); the reason for such
an exception is given by Clause 2, which specifies that (m,α) ∈ dom(j) is intended to be
already represented in A by the object j(m,α).

Lemma 2.2.7. Let (A, j) be a partial pair and (A, j) its completion. Then j extends j, namely
dom(j) ⊆ dom(j) and j(x) = j(x) for all x ∈ dom(j). In particular rng(j) ⊆ rng

(
j
)

.

Proof. Since A ⊆ A we have dom(j) = Mf(A)×A ⊆ Mf(A)×A = dom j. The rest is by
definition of j.

Proposition 2.2.8. If A is a partial pair, then A is an rgm. If A is an extensional partial pair, then
A is an ergm.
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Proof. Let (m,α) and (m ′,α ′) be distinct elements of Mf(A)×A.
If (m,α), (m ′,α ′) ∈ dom(j) then j(m,α) = j(m,α) 6= j(m ′,α ′) = j(m ′,α ′), as j is injective.
If (m,α), (m ′,α ′) 6∈ dom(j) then trivially j(m,α) = (m,α) 6= (m ′,α ′) = j(m ′,α ′).
If (m,α) ∈ dom(j) and (m ′,α ′) 6∈ dom(j) then j(m,α) 6= (m ′,α ′) = j(m ′,α ′) since the

subset rng(j) of A does not contain any pair by Definition 2.2.5. So j is an injection.
Finally, let j be surjective, which means that A = rng(j), and consider d ∈ A. We want to

prove that d ∈ rng
(
j
)
.

If d ∈ A0 = A = rng(j) then d ∈ rng
(
j
)

by Lemma 2.2.7.
If there exists n ∈N such that y ∈ An+1 −A then

d ∈
(
Mf(An)×An

)
− dom(j) ⊆

(
Mf(A)×A

)
− dom(j) = dom

(
j
)
− dom(j) .

Therefore by Definition 2.2.6(2) we get d = j(d) ∈ rng
(
j
)
.

Definition 2.2.9. Let D = (D, i) be an rgm. We call atoms of D the elements of the set
AtD := D− (Mf(D)×D).

Proposition 2.2.10. Let A = (A, i) be a partial pair. Then AtA = A.

Proof. Since A does not contain any pair we have A ⊆ A−
(
Mf(A)×A

)
= AtA.

The inclusion AtA ⊆ A holds because the completion only adds to the basic set A new
elements intended to be in Mf(A)×A: formally An+1 −A =

(
Mf(An)×An

)
− dom(j) ⊆

Mf(A)×A for all n ∈N, hence A−A ⊆Mf(A)×A. So AtA = A−
(
Mf(A)×A

)
⊆ A.

A final technical observation. We asked that the underlying set A of a partial pair (A, j)
does not contain any pair. But when proving that (A, j) is an rgm (Proposition 2.2.8) we only
used the fact that rng(i) does not contain pairs. In fact, we could define partial pairs (A, j)
allowing elements of A− rng(j) to be pairs. But this formalization would entail some un-
pleasant consequences, in particular the need for a less intuitive definition of atoms allowing
also certain pairs to be considered as atoms. We have nothing to gain by doing that.

2.3 non-idempotent intersection types

We study rgm’s using a notion of non-idempotent intersection types. Instead of the standard
interpretation provided by the reflexive object (and described in Theorem 2.2.4), we use an
intersection type assignment system to interpret λ-terms. Such an approach is not a novelty
in denotational semantics, being typical of filter models [BDS13, Part III] (see also [RP04])
and Krivine’s models [Kri90]. We just adapt it to the context of relational semantics. Also,
this approach is not mandatory. For instance, the content of Chapter 5 of this thesis was
presented in [BMPR16] using the interpretation shown in Theorem 2.2.4.

Definition 2.3.1. Let D be an rgm. The set TD of types for D and the set ID of intersections
for D are mutually defined by the following two grammars

TD : σ ::= α | µ→ σ ID : µ ::= ω | σ | µ∧ µ

where
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• α ∈ AtD ;

• the operation ∧ is commutative and associative;

• ω is a neutral element of ∧ , i.e., for all µ ∈ ID we set µ ∧ ω := µ .

The intersection ω is called empty intersection.

Remarks. Here some observations to understand the definition above.

• Types are unary intersections, whereas in general intersections are not types. Indeed,
non-unary intersections may only appear on the left-hand side of the operator → .

• The intersection is not idempotent, i.e. for all σ ∈ TD

σ∧ σ 6= σ .

This differs from the traditional use of intersection types [BDS13, Part III].

Notations. We will usually use (possibly with some subscript or superscript):

• the Greek letters µ and ν to denote generic intersections;

• the Greek letters σ, τ,γ, δ for those intersections which are in particular types;

• the Greek letters α and β for those types which are in particular atoms.

Since ∧ is associative, we can write

∧ni=1σi :=

{
σ1 ∧ · · ·∧ σn if n > 1 ,

ω if n = 0 .

By convention ∧ takes precedence over the constructor → , that is

∧ni=1σi → σ :=
(
∧ni=1 σi

)
→ σ .

For all µ ∈ ID and for all σ ∈ TD the expression

σ ∈ µ

means that σ is one of the types occurring in the intersection µ (up to associativity), i.e.
σ ∈ µ if and only if µ = ∧ni=1σn and there exists i ∈ {1, . . . ,n} such that σ = σi .
For all µ,ν ∈ ID we write

µ − ν

for the intersection obtained from µ by erasing all types σ ∈ ν.

The notation σ ∈ µ does not stand for a set-theoretical membership, but it is not am-
biguous. In fact, it relies on the following intuition: for any rgm D = (D, i), one can think of
intersections in ID as multisets in Mf(D), and types in TD as elements of AtD∪ (Mf(D)×D).
The set D can then be recovered as TD/≃

D, for a certain equivalence ≃D generated by the
injection i . Here below the formalization of this idea.
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Definition 2.3.2. Let D = (D, i) be an rgm. The function (−)⋄ : TD → D, together with its
auxiliary function (−)⋄ : ID →Mf(D), is defined by the following induction on σ ∈ TD :

• α⋄ := α for all α ∈ AtD ;

• (µ→ τ)⋄ := i(µ⋄, τ ⋄) for all µ ∈ ID and for all τ ∈ TD, where

(σ1 ∧ · · ·∧ σn)
⋄ :=

[
σ1

⋄, . . . ,σn⋄
]

for all n ∈N and for all σ1, . . . ,σn ∈ TD .

Definition 2.3.3. Let D be an rgm. The relation ≃D⊆ TD ×TD is defined as:

σ ≃D τ if and only if σ ⋄ = τ ⋄.

We also extend the relation ≃D to intersections, in the sense that for all µ,ν ∈ ID

µ ≃Dν if and only if µ ⋄ = ν ⋄.

When there is no ambiguity concerning D we write ≃D simply as ≃ .

Without loss of generality, from now on we suppose that D contains at most pairs in
Mf(D)×D. In this way, the following function depth : D→N is well defined:

depth(d) :=

{
0 if d ∈ AtD ,

maxn+1i=1 depth(di) + 1 if d =
(
[d1, . . . ,dn],dn+1

)
∈Mf(D)×D .

Lemma 2.3.4. Let D be an rgm. The function (−)⋄ : TD → D is surjective.

Proof. Let d ∈ D. We prove that d = σ⋄ for some σ ∈ TD. We proceed by induction on
depth(d).
Case depth(d) = 0. In this case d ∈ AtD, hence d⋄ = d by Definition 2.3.2.
Case depth(d) > 0. We have d =

(
[d1 . . . ,dn],dn+1

)
for some n ∈ N. By IH there exist

σ1, . . . ,σn+1 ∈ TD such that σi⋄ = di for all i ∈ {1, . . . ,n+ 1}. So

(
∧ni=1 σi → σn+1

)⋄
=

([
σ⋄

1 , . . . ,σ⋄
n

]
,σ⋄
n+1

)
=

(
[d1, . . . ,dn],dn+1

)
= d

which concludes the proof.

Remark 2.3.5. Clearly the equivalence ≃D is a congruence on TD w.r.t. ∧ and → , meaning
that if µ ≃Dµ ′, ν ≃Dν ′ and σ ≃Dσ ′ then also µ∧ ν ≃Dµ ′ ∧ ν ′ and µ→ σ ≃Dµ ′ → σ ′.

Definition 2.3.6. Let D be an rgm. An environment for D is a map Γ : Var → ID such that
supp(Γ) := { x ∈ Var | Γ(x) 6= ω } is finite. The set of all environments for D is called EnvD.

Notations. Let Γ ∈ EnvD such that supp(Γ) = { x1, . . . , xn } and Γ(xi) = µi for all i ∈
{1, . . . ,n}. Then we denote Γ by

x1 : µ1 , . . . , xn : µn .

Accordingly, the environment mapping all variables to ω is just omitted.
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x : σ ⊢D x : σ
var

Γ , x : µ ⊢D M : σ

Γ ⊢D λx.M : µ→ σ
lam

Γ ⊢D M : τ σ ≃D τ
Γ ⊢D M : σ

eq

Γ0 ⊢
D M : ∧ni=1σi → σ Γi ⊢

D N : σi for all i ∈ {1, . . . ,n}

Γ0 ∧
(∧n

i=1 Γi
)
⊢D MN : σ

app

Figure 3: The intersection type systems for Λ and N.

Definition 2.3.7. Consider Γ ,∆ ∈ EnvD .

• The environment Γ ∧∆ ∈ EnvD is defined as

Γ ∧ ∆ : x ∈ Var 7→ Γ(x) ∧ ∆(x) ∈ ID .

• The environment Γ −∆ ∈ EnvD is defined as

Γ − ∆ : x ∈ Var 7→ Γ(x) − ∆(x) ∈ ID .

• The equivalence ≃D is extended to environments as:

Γ ≃D∆ if and only if Γ(x) ≃D∆(x) for all x ∈ Var .

Definition 2.3.8. Let D be an rgm. The type assignment system ⊢D for Λ and N associated to D

is given in Fig. 3. When D is clear from the context we simply write ⊢ instead of ⊢D.

Remark 2.3.9. The natural number n appearing in Rule app in Fig. 3 can be 0. So, given
M ∈ Λ and a ∈ N we have the inference rules

Γ ⊢D M : ω→ σ
Γ ⊢D MN : σ

Γ ⊢D a : ω→ σ
Γ ⊢D ab : σ

(5)

whatever N ∈ Λ and b ∈ N are. For example, even if Ω is not typable in the system
associated to any rgm, one can always derive

x : ω→ σ ⊢ x : ω→ σ
x : ω→ σ ⊢ xΩ :→ σ
⊢ λx.xΩ : (ω→ σ)→ σ

for every σ ∈ TD. In a way ω plays the role of universal type, a common concept in tradi-
tional intersection type theory [BDS13, Part III].

Lemma 2.3.10. Let D be an rgm. If Γ ⊢D M : σ is derivable then supp(Γ) ⊆ fv(M).

Proof. By a straightforward induction on the derivation of the sequent.
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The inclusion in Lemma 2.3.10 can be strict. For instance we can derive x : ω→ σ ⊢ xy : σ

where supp(x : ω → σ) = {x} ⊂ fv(xy), for any σ. More generally, one should realize that
whenever supp(Γ) ⊂ fv(M) then along the derivation of Γ ⊢ M : σ some subterm N of M
comes untyped as in (5). To be more precise, there must be a subterm PN of M such that
P is typed with some ω → τ by a subtree of the derivation, hence its argument N comes
untyped in a following instance of Rule app. As a consequence, any variable in fv(N) can
possibly not receive a multiset µ 6= ω in the environment Γ . Still it can be free in M.

Definition 2.3.11. Let D be an rgm. A family
{
Γi
}

i∈I
of environments for D is a decomposition

of Γ ∈ EnvD whenever Γ = ∧i∈IΓi.

The following result is essential throughout our investigation.

Lemma 2.3.12 (Inversion). Let D be an rgm. Let M,N ∈ Λ∪N.

1. If Γ ⊢D x : σ is derivable then there exists τ ∈ TD such that Γ = x : τ and τ ≃Dσ .

2. The sequent Γ ⊢Dλx.M : σ is derivable if and only if there exist τ ∈ TD and µ ∈ ID such that
Γ , x : µ ⊢D M : τ is derivable and µ→ τ ≃Dσ ;

3. If Γ ⊢D MN : σ is derivable then for some n > 0 there exist σ1, . . . ,σn ∈ TD and a
decomposition

{
Γi
}n
i=0

of Γ such that the sequents Γ0 ⊢D M : ∧ni=1σi → σ and Γi ⊢D N : σi
for all i ∈ {1, . . . ,n} are derivable.

Proof. (1) We proceed by induction on the derivation of Γ ⊢ x : σ. Such a derivation must
terminate either by an application of Rule var or by an application of Rule eq.

In the former case Γ = x : σ, and we are done.
In the latter case there is a derivation of Γ ⊢ x : τ for some τ ≃ σ. By IH then we have

Γ = x : γ for some γ ≃ τ ≃ σ.
(2) We proceed by induction on the derivation of Γ ⊢ λx.M : σ. Such a derivation must

terminate either by an application of Rule lam or by an application of Rule eq.
In the former case σ = µ→ τ and the sequent Γ , x : µ ⊢M : τ is derivable.
In the latter case there is a derivation of Γ ⊢ λx.M : τ for some τ ≃ σ. By IH then the

sequent Γ , x : µ ⊢M : γ is derivable for some µ→ γ ≃ τ ≃ σ.
(3) We proceed by induction on the derivation of Γ ⊢ MN : σ. Such a derivation must

terminate either by an application of Rule app or by an application of Rule eq.
In the former case the thesis is clearly true for the definition of Rule app itself.
In the latter case there is a derivation of Γ ⊢ MN : τ for some τ ≃ σ. By IH there exists

a decomposition
{
Γi
}n
i=0

of Γ such that the sequents Γ0 ⊢M : ∧ni=1σi → τ and Γi ⊢ N : σi
for all i ∈ {1, . . . ,n} are derivable. Then we can derive

Γ0 ⊢M : ∧ni=1σi → τ ∧ni=1σi → τ ≃ ∧ni=1σi → τ

Γ0 ⊢M : ∧ni=1σi → σ Γi ⊢ N : σi for all i ∈ {1, . . . ,n}
Γ ⊢MN : σ

which completes the proof.
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We do not claim sole authorship on the intersection type systems given in Definition 2.3.8.
In fact, they first appeared in the article [PPRDR15] by Ronchi, Paolino and Piccolo. Ronchi
and coauthors share with us the interest in these systems as models of the untyped λ-
calculus. But the way we exploit them to interpret λ-terms (the topic of the next section)
differs from theirs. As a matter of fact, the interpretation that they use is more adherent to
the traditional notion of Hindley-Longo syntactical λ-model, as given in [HL80] and [Bar84,
§ 5.3]. Whereas ours is a bit less conventional.

Finally, we mention that an instance of these type systems — precisely the one where
≃D is just the equality of types — was studied by de Carvalho in [dC09]. In particular de
Carvalho already recognized that specific type system to correspond to a relational model of
the untyped λ-calculus. Incidentally we will have a closer look at this instance in Chapter 3.

2.4 the type-interpretation

Definition 2.4.1. Let D be an rgm. Let M ∈ Λ ∪ N. The type-interpretation of M in D is
defined as [[

M
]]D

:=
{

(Γ ,σ) ∈ EnvD ×TD | Γ ⊢D M : σ
}

.

Firstly, we show that the type-interpretation [[−]]D is equivalent to the traditional inter-
pretation [[−]]−D provided by the reflexive object and described in Theorem 2.2.4.

Theorem 2.4.2 (Type-semantics Theorem). Let M ∈ Λ and fv(M) ⊆ {x1, . . . , xn}. Then

1.
[[
M

]]D
=

{

(Γ ,σ) ∈ EnvD ×TD |
(
Γ(x1)

⋄, . . . , Γ(xn)⋄,σ ⋄
)
∈
[[
M

]]~x
D

}

,

2.
[[
M

]]~x
D

=
{ (
Γ(x1)

⋄, . . . , Γ(xn)⋄,σ ⋄
)
∈Mf(D)n ×D | (Γ ,σ) ∈

[[
M

]]D}

.

Proof. (1) We must prove that (Γ ,σ) ∈ [[M]]D if and only if
(
Γ(x1)

⋄, . . . , Γ(xn)⋄,σ ⋄
)
∈ [[M]]~xD.

We proceed by induction on M.
Case M = xi. By Definition 2.3.8 and Lemma 2.3.12(1) the sequent Γ ⊢ xi : σ is derivable if
and only if Γ = xi : τ for some τ ∈ TD such that τ ≃ σ, i.e. τ ⋄ = σ ⋄. By Lemma 2.2.4(1)
this is equivalent to

(
Γ(x1)

⋄, . . . , Γ(xn)⋄,σ ⋄
)

=
(
[ ], . . . , [ ], [τ ⋄], [ ], . . . , [ ],σ ⋄

)

=
(
[ ], . . . , [ ], [σ ⋄], [ ], . . . , [ ],σ ⋄

)
∈

[[
xi
]]~x
D

.

Case M = λx.P. By Definition 2.3.8 and Lemma 2.3.12(2) the sequent Γ ⊢ λx.P : σ is deriv-
able if and only if Γ , x : µ ⊢ P : τ is derivable for some µ → τ ≃ σ. By IH this is equiv-
alent to

(
Γ(x1)

⋄, . . . , Γ(xn)⋄,µ ⋄,σ ⋄
)
∈ [[P]]~x,x

D . By Lemma 2.2.4(2) this fact is equivalent to(
Γ(x1)

⋄, . . . , Γ(xn)⋄, i (µ ⋄,σ ⋄)
)
∈ [[λx.P]]~xD. This proves the thesis as i (µ ⋄,σ ⋄) = (µ→ σ) ⋄.

Case M = PQ. By Definition 2.3.8 and Lemma 2.3.12(3) the sequent Γ ⊢ PQ : σ is derivable
if and only if there exist σ1, . . . ,σk ∈ TD and a decomposition

{
Γi
}k
i=0

of Γ such that

Γ0 ⊢ P : ∧ki=1σi → σ and Γi ⊢ Q : σi for all i ∈ {1, . . . ,k} are derivable. (6)
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By IH then (6) is equivalent to
(
Γ0(x1)

⋄, . . . , Γ0(xn)⋄,
(
∧ki=1 σi → σ

)⋄)
∈
[[
P
]]~x
D

and
(
Γi(x1)

⋄, . . . , Γi(xn)⋄,σ⋄i
)
∈
[[
Q
]]~x
D

for all i ∈ {1, . . . ,k}.

Since
(
∧ki=1 σi → σ

)⋄
=

([
σ⋄1, . . . ,σ⋄k

]
,σ⋄

)
, by Lemma 2.2.4(2) such a fact is equivalent to(

Γ(x1)
⋄, . . . , Γ(xn)⋄,σ ⋄

)
∈ [[PQ]]~xD.

(2) Firstly, we notice that for every (m1, . . . ,mn,d) ∈ Mf(D)n ×D there exists (Γ ,σ) ∈
EnvD × TD such that (m1, . . . ,mn,d) =

(
Γ(x1)

⋄, . . . , Γ(xn)⋄,σ ⋄
)
. Indeed, as (−)⋄ is surjec-

tive by Lemma 2.3.4, there exist µ1, . . . ,µn ∈ ID and σ ∈ TD such that (m1, . . . ,mn,d) =
(µ ⋄
1, . . . ,µ ⋄

n,σ ⋄). So one just takes Γ := x1 : µ1, . . . , xn : µn.
Such observation justifies the first of the following two equalities:

[[
M

]]~x
D

=
{ (
Γ ⋄(x1), . . . , Γ ⋄(xn),σ ⋄

)
∈ [[M]]~xD | (Γ ,σ) ∈ EnvD ×TD

}

=
{ (
Γ ⋄(x1), . . . , Γ ⋄(xn),σ ⋄

)
∈Mf(D)n ×D | (Γ ,σ) ∈ [[M]]D

}

where the last equality is given by (1).

Corollary 2.4.3. Let M,N ∈ Λ and fv(MN) ⊆ {x1, . . . , xn}. Then [[M]]D ⊆ [[N]]D if and only if
[[M]]~xD ⊆ [[N]]~xD.

A few words are maybe useful to contextualize our definition of [[−]]D in the more usual
scenario of denotational semantics and intersection type theory. In general, the categorical
interpretation of a λ-term M in a reflexive object D gives a morphism [[M]]~xD : D~x → D

such that Th(D) is a λ-theory. If the category is well-pointed, like in the case of Scott’s
continuous semantics, then it is equivalent to interpretM as a point ofD through a valuation
ρ : Var→ D, namely as an arrow [[M]]ρ : ⊤ → D from the terminal object ⊤ depending on ρ,
see [Bar84, §5.5]. For this reason, in the context of Scott models it has become standard to
consider the interpretation of M as an element of the domain. When the model is translated
into a type system (as in filter models), this interpretation becomes the set of the types of
M, as done in [Roc82, CDZ87, Ber00, RP04, BDS13]. As shown by Koymans in [Koy82],
when the category is not well-pointed, points are no more suitable for interpreting λ-terms,
since the induced equality is not a λ-theory as a consequence of the failure of the ξ-rule,
which is M = N ⇒ λx.M = λx.N. In the algebraic terminology, the set of points gives
a λ-algebra which is not a λ-model [Bar84, §5.2]. Nevertheless, in [BEM07] Bucciarelli and
others showed that a λ-model can still be constructed from a reflexive object D of a non-
well pointed category, by considering the set of Cf(D

Var,D) of finitary morphisms from DVar

to D (a technical notion) and valuations ρ : Var → Cf(D
Var,D). For instance, this is the

approach followed in [PPRDR15]. However, in [Man08] Manzonetto remarked that the use
of valuations in this context becomes redundant since [[M]]ρ = [[N]]ρ exactly when they are
equal under the valuation x 7→ πVar

x sending x to the corresponding projection. By applying
this fact to the type-theoretical interpretation given in [PPRDR15], one can recover our
type-theoretical interpretation, i.e. Definition 2.4.1.

By Corollary 2.4.3 even the type-interpretation [[−]]D provides a model of the untyped
λ-calculus. In particular for every given rgm:
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I. the type-interpretation is invariant under β-reduction and β-expansion;

II. when the rgm is extensional the type-interpretation is invariant under η-conversion;

III. the inclusion between type-interpretations of λ-terms defines a preorder theory;

IV. the equality between type-interpretations of λ-terms defines a λ-theory.

Points I-IV can now be considered certain. Nevertheless, in the rest of this section we
prove each of them more directly, in a way that is completely independent of the interpreta-
tion [[−]]−D given by the reflexive object. We find this exercise of interest in itself, and a good
workout in the use of the type system. By the way, we will refine Point II, by revealing that
the invariance under η-reduction holds in every rgm, whereas only the η-expansion actually
requires an ergm.

Let us start with a basic lemma, which states the invariance under application of contexts.

Lemma 2.4.4 (Contextuality). Let D be an rgm. Let M,N ∈ Λ∪N and C[ ] a context. Whenever[[
M

]]D
⊆

[[
N
]]D then

[[
C[M]

]]D
⊆

[[
C[N]

]]D.

In particular
[[
M

]]D
=

[[
N
]]D entails

[[
C[M]

]]D
=

[[
C[N]

]]D.

Proof. We proceed by induction on the structure of C[ ].
Case C[ ] = [ ]. Trivial.
Case C[ ] = C ′[ ]Q. Consider (Γ ,σ) ∈ EnvD × TD such that Γ ⊢ C ′[M]Q : σ can be derived.
By Lemma 2.3.12(3) we have a decomposition

{
Γi
}n
i=0

of Γ and some σ1, . . . ,σn ∈ TD such
that Γ0 ⊢ C ′[M] : ∧ni=1σi → σ and Γi ⊢ Q : σi for all i ∈ {1, . . . ,n} are derivable. Then by IH
Γ0 ⊢ C

′[N] : ∧ni=1σi → σ is derivable. Hence by app we also get Γ ⊢ C ′[N]Q : σ.
Case C[ ] = PC ′[ ]. Consider (Γ ,σ) ∈ EnvD × TD such that Γ ⊢ PC ′[M] : σ can be derived.
By Lemma 2.3.12(3) we have a decomposition

{
Γi
}n
i=0

of Γ and some σ1, . . . ,σn ∈ TD such
that Γ0 ⊢ P : ∧ni=1σi → σ and Γi ⊢ C ′[M] : σi for all i ∈ {1, . . . ,n} are derivable. Then by IH
the sequents Γi ⊢ C ′[N] : σi for all i are derivable. Hence by app we also get Γ ⊢ C ′[N]Q : σ.
Case C[ ] = λx.C ′[ ]. Let Γ ⊢ λx.C ′[M] : σ be derivable. By Lemma 2.3.12(2) the sequent
Γ , x : µ ⊢ C ′[M] : τ for µ → τ ≃ σ is derivable. By IH then Γ , x : µ ⊢ C ′[N] : τ for
µ→ τ ≃ σ is derivable. From this we get Γ ⊢ λx.C ′[N] : σ by Rules lam and eq.

It is now simple to prove Points III-IV above.

Definition 2.4.5. Let D be an rgm.

• The preorder theory induced by D is defined as

Th⊑(D) :=
{
(M,N) ∈ Λ×Λ | [[M]]D ⊆ [[N]]D

}
.

Whenever (M,N) ∈ Th⊑(D) we write M ⊑D N.

• The λ-theory induced by D is defined as

Th(D) :=
{
(M,N) ∈ Λ×Λ | [[M]]D = [[N]]D

}
.

Whenever (M,N) ∈ Th(D) we write M =D N.
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Theorem 2.4.6. Let D be an rgm. Then Th⊑(D) is a preorder theory and Th(D) is a λ-theory.

Proof. The reflexivity and the transitivity of both ⊑D and =D are trivial, as well as the
symmetry of =D .

Let us show that ⊑D is a congruence w.r.t. λ-abstraction and application. (Then the same
thing immediately follows also for =D .)

Let M ⊑D N, i.e. [[M]] ⊆ [[N]]. By applying Lemma 2.4.4 to M and N with the context
C[ ] = λx.[ ] we get [[λx.M]] ⊆ [[λx.N]], i.e. λx.M ⊑D λx.N.

Let M ⊑D N and P ⊑D Q , i.e. [[M]] ⊆ [[N]] and
[[
P
]]
⊆ [[Q]]. By applying Lemma 2.4.4 to

M and N with the context C[ ] = [ ]P we get [[MP]] ⊆ [[NP]]. By applying Lemma 2.4.4 to P
and Q with the context C[ ] = N[ ] we get [[NP]] ⊆ [[NQ]]. So we have [[MP]] ⊆ [[NP]] ⊆ [[NQ]],
hence MP ⊑D NQ.

Let us prove Point I . We show the invariance of [[−]]D under β-reduction (correspond-
ing to the so-called subject reduction property of the type assignment system ⊢D), under
β-expansion (corresponding to the subject expansion property of the type system), hence un-
der β-convertibility (the so-called soundness of the semantics). A preliminary lemma stating
the invariance for substitution is needed.

Lemma 2.4.7 (Substitution). Let D be an rgm. Let M,N ∈ Λ∪N.

1. If the sequents Γ , x : ∧ni=1γi ⊢
D M : σ and Γi ⊢D N : γi for all i ∈ {1, . . . ,n} are derivable

then the sequent Γ ∧∧ni=1Γi ⊢
D M

{
N/x

}
: σ is derivable.

2. If the sequent Γ ⊢D M
{
N/x

}
: σ is derivable then there exist γ1, . . . ,γn ∈ TD and a

decomposition
{
Γi
}n
i=0

of Γ such that Γ0, x : ∧ni=1γi ⊢
D M : σ and Γi ⊢

D N : γi for all
i ∈ {1, . . . ,n} are derivable.

Proof. (1) By induction on the structure of the λ-term M.
Case M = ⊥. This case does not need to be considered, as ⊥ cannot be typed.
Case M = y 6= x. By hypothesis Γ , x : ∧ni=1γi ⊢ y : σ is derivable. By Lemma 2.3.12(1) we
have Γ , x : ∧ni=1γi = y : τ for a type τ ≃ σ. So n = 0 and Γ = y : τ. Hence the sequent
Γ ∧∧ni=1Γi ⊢ M

{
N/x

}
: σ is nothing but Γ ⊢ M

{
N/x

}
: σ. Since M{N/x} = y{N/x} = y,

such sequent is y : τ ⊢ y : σ, which is derivable by Rules var and eq.
Case M = x. By hypothesis Γ , x : ∧ni=1γi ⊢ x : σ is derivable. By Lemma 2.3.12(1) we have
Γ , x : ∧ni=1γi = x : τ for a type τ ≃ σ. So Γ is the empty environment, n = 1 and ∧ni=1γi =

γ1 = τ. Hence the sequent Γ ∧∧ni=1Γi ⊢M
{
N/x

}
: σ is nothing but Γ1 ⊢M

{
N/x

}
: σ. Since

M{N/x} = x{N/x} = N, such sequent is Γ1 ⊢ N : σ. It is derivable using Rule eq, because
Γ1 ⊢ N : γ1 is derivable by hypothesis and γ1 = τ ≃ σ.
Case M = λy.P. By Lemma 2.3.12(2) the sequent Γ ,y : µ, x : ∧ni=1γi ⊢ P : τ is derivable for
some µ→ τ ≃ σ. By IH we can derive

(
Γ ,y : µ

)
∧∧ni=1Γi ⊢ P

{
N/x

}
: τ . (7)
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For all i ∈ {1, . . . ,n} Lemma 2.3.10 gives supp(Γi) ⊆ fv(N). By the Variable Convention
y 6∈ fv(N). Therefore y 6∈ supp(Γi) for all i ∈ {1, . . . ,n}. So the sequent (7) is in fact
Γ ∧∧ni=1Γi,y : µ ⊢ P

{
N/x

}
: τ. In the end we can derive

Γ ∧∧ni=1Γi,y : µ ⊢ P
{
N/x

}
: τ

Γ ∧∧ni=1Γi ⊢ λy.
(
P
{
N/x

})
: µ→ τ

Γ ∧∧ni=1Γi ⊢ (λy.P)
{
N/x

}
: σ

Case M = PQ. By Lemma 2.3.12(3) there are k ∈ N, a partition
{
∆j

}k
j=0

of Γ , a decomposi-

tion
{
Ij
}k
j=0

of the set {1, . . . ,n} and σ1, . . . ,σk ∈ TD such that the following are derivable:
∆0, x : ∧i∈I0γi ⊢ P : ∧kj=1σj → σ and ∆j, x : ∧i∈Ijγi ⊢ Q : σj for all j ∈ {1, . . . ,k}.

By IH then ∆0 ∧∧i∈I0Γi ⊢ P {N/x} : ∧
k
j=1σj → σ and ∆j ∧∧i∈IjΓi ⊢ Q {N/x} : σj for all

j ∈ {1, . . . ,k} are derivable. By applying Rule app we derive

∧kj=0∆j ∧∧kj=0 ∧i∈Ij Γi ⊢ P {N/x}Q {N/x} : σ . (8)

Since ∧kj=0∆j = Γ , ∧kj=0 ∧i∈Ij Γi = ∧ni=1Γi and M{N/x} = PQ{N/x} = P{N/x}Q{N/x}, the
sequent (8) is Γ ∧∧ni=1Γi ⊢M {N/x} : σ , whose derivability was to be proved.

(2) By induction on the structure of the λ-term M.
Case M = ⊥. This case must not be considered, as ⊥ cannot be typed.
CaseM = y 6= x. AsM{N/x} = y{N/x} = y, by hypothesis the sequent Γ ⊢ y : σ is derivable.
Then setting n := 0 and Γ0 := Γ the decomposition

{
Γ0
}

of Γ proves the result.
Case M = x. As M{N/x} = x{N/x} = N, by hypothesis the sequent Γ ⊢ N : σ is deriv-
able. We set n := 1 and we take Γ0 to be the empty environment and Γ1 := Γ . Then the
decomposition

{
Γ0, Γ1

}
of Γ proves the result.

Case M = λy.P. Since (λy.P)
{
N/x

}
= λy.P

{
N/x

}
, by Lemma 2.3.12(2) there is a derivation

of Γ ,y : µ ⊢ P
{
N/x

}
: τ for some type µ→ τ ≃ σ.

By IH there are γ1, . . . ,γn ∈ TD and a decomposition
{
Γi
}n
i=0

of Γ ,y : µ such that

Γ0, x : ∧ni=1γi ⊢ P : σ (9)

and

Γi ⊢ N : γi (10)

for all i ∈ {1, . . . ,n} are derivable.
From (10) Lemma 2.3.10 gives supp(Γi) ⊆ fv(N) for all i ∈ {1, . . . ,n} f. By the Variable

Conventiony 6∈ fv(N). Therefore y 6∈ supp(Γi) for all i ∈ {1, . . . ,n}. So

Γ0(y) =
(
Γ ,y : µ

)
(y) = µ .

Then from the sequent (9) by Rules lam and eq we derive

Γ0 − (y : µ), x : ∧ni=1γi ⊢ λy.P : σ .

We are done, because
{
Γ0 − (y : µ)

}
∪
{
Γi
}n
i=1

is a decomposition of Γ .
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Case M = PQ. We have M{N/x} = PQ{N/x} = P{N/x}Q{N/x}.
By Lemma 2.3.12(3) there are k ∈ N, a decomposition

{
∆i

}k
i=0

of Γ and σ1, . . . ,σk ∈ TD

such that the following are derivable:

∆0 ⊢ P
{
N/x

}
: ∧ki=1σi → σ (11)

and for all i ∈ {1, . . . ,k}

∆i ⊢ Q
{
N/x

}
: σi . (12)

From (11) by IH we have n0 ∈N, a decomposition
{
∆0j

}n0
j=0

of ∆0 and types γ01, . . . ,γ0n0
such that

∆00 , x : ∧n0j=1γ0j ⊢ P : ∧ki=1σi → σ (13)

and for all j ∈ {1, . . . ,n0}

∆0j ⊢ N : γ0j (14)

are derivable.
Let i ∈ {1, . . . ,k}. From (12) by IH we have ni ∈ N, a decomposition

{
∆ij

}ni
j=0

of ∆i and
types γi1, . . . ,γini such that

∆i0 , x : ∧nij=1γij ⊢ Q : σi (15)

and for all j ∈ {1, . . . ,ni}

∆ij ⊢ N : γij (16)

are derivable.
From (13) and (15) by Rule app we derive

∧ki=0∆i0 , x : ∧ki=0 ∧
ni
j=1 γij ⊢ PQ : σ (17)

Notice that
{
∆ij | i ∈ {0, . . . ,k} and j ∈ {1, . . . ,ni}

}
is a decomposition of Γ , as the union of

decompositions of ∆0, . . . ,∆k, which in turn form a decomposition of Γ . Such a decomposi-
tion then proves the result, because of the derivability of (14), (16) and (17).

Lemma 2.4.8 (Subject reduction). Let D be an rgm. Let M,N ∈ Λ ∪N such that M ։β N. If
Γ ⊢D M : σ is derivable then Γ ⊢D N : σ is derivable.

Proof. We proceed by induction on M.
Case M = ⊥. This case does not need to be considered, as ⊥ cannot be typed.
Case M = x. In such a case N = x =M, so there is nothing to prove.
Case M = λx.P. Then N = λx.Q where P ։β Q. By Lemma 2.3.12(2) the sequent Γ , x : µ ⊢

P : τ is derivable for some µ → τ ≃ σ. By IH we get the derivability of Γ , x : µ ⊢ Q : τ.
Hence by applying Rules lam and eq we derive Γ ⊢ λx.Q : σ.
Case M = PQ and N = P ′Q ′ where P ։β P

′ and Q ։β Q
′. By Lemma2.3.12(3) there

are a decomposition
{
Γi
}n
i=0

of Γ and types σ1, . . . ,σn such that Γ0 ⊢ P : ∧ni=1σi → σ
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and Γi ⊢ Q : σi for all i ∈ {1, . . . ,n} are derivable. By IH then Γ0 ⊢ P ′ : ∧ni=1σi → σ and
Γi ⊢ Q

′ : σi for all i ∈ {1, . . . ,n} are derivable. By means of Rule app we derive Γ ⊢ P ′Q ′ : σ.
Case M = (λx.P)Q and N = P ′

{
Q ′/x

}
where P ։β P

′ and Q ։β Q
′. By Lemma 2.3.12(3)

there are a decomposition
{
Γi
}n
i=0

of Γ and σ1, . . . ,σn ∈ TD such that Γ0 ⊢ λx.P : ∧ni=1σi →

σ and Γi ⊢ Q : σi for all i ∈ {1, . . . ,n} are derivable. Applying then Lemma 2.3.12(2) we
get the derivability of Γ0, x : ∧ni=1τi ⊢ P : τ where ∧ni=1τi → τ ≃ ∧ni=1σi → σ. By IH the
sequents Γ0, x : ∧ni=1τi ⊢ P ′ : τ and Γi ⊢ Q ′ : σi for all i ∈ {1, . . . ,n} are derivable. Hence
Rule eq gives us the derivability of

Γ0, x : ∧ni=1τi ⊢ P
′ : σ (18)

and

Γi ⊢ Q
′ : τi for all i ∈ {1, . . . ,n} . (19)

By (18) and (19), Lemma 2.4.7(1) assures that ∧ni=0Γi ⊢ P
′
{
Q ′/x

}
: τ is derivable.

An alternative way to prove the subject reduction is the following. Firstly, one can start
by proving the statement for the case M →β N. Then the result is obviously generalized
to the case M ։β N, formally by an induction on the number of one step-reductions →β
that are in M ։β N, starting by base 1. Now, to prove the statement for M →β N one can
distinguish two cases:

• the case where M = (λx.P)Q and N = P
{
Q/x

}
, which is basically proved as the

analogous seen in the proof above (except for the fact that there is no use of an IH);

• the case where M = C
[
(λx.P)Q

]
and N = C

[
P
{
Q/x

}]
, which immediately follows

from the previous one by contextuality of the interpretation, i.e. Lemma 2.4.4.

Choosing between this way of formalizing the proof and the one used is nothing more than
a matter of taste. For instance, we use such an alternative style in the proof of the subject
reduction for the η-rule (Lemma 2.4.11).

Lemma 2.4.9 (Subject expansion). Let D be an rgm. Let M,N ∈ Λ ∪N such that M ։β N. If
Γ ⊢D N : σ is derivable then Γ ⊢D M : σ is derivable.

Proof. We proceed by induction on M.
Case M = ⊥. This case does not need to be considered, as ⊥ cannot be typed.
Case M = x. In such a case N = x =M, so there is nothing to prove.
Case M = λx.P. Then N = λx.Q where P ։β Q. By Lemma 2.3.12(2) the sequent Γ , x : µ ⊢

Q : τ is derivable for some µ → τ ≃ σ. By IH we get the derivability of Γ , x : µ ⊢ P : τ.
Hence by applying Rules lam and eq we derive Γ ⊢ λx.P : σ.
Case M = PQ and N = P ′Q ′ where P ։β P

′ and Q ։β Q
′. By Lemma2.3.12(3) there

are a decomposition
{
Γi
}n
i=0

of Γ and types σ1, . . . ,σn such that Γ0 ⊢ P ′ : ∧ni=1σi → σ

and Γi ⊢ Q ′ : σi for all i ∈ {1, . . . ,n} are derivable. By IH then Γ0 ⊢ P : ∧ni=1σi → σ and
Γi ⊢ Q : σi for all i ∈ {1, . . . ,n} are derivable. By means of Rule app we derive Γ ⊢ PQ : σ.
Case M = (λx.P)Q and N = P ′

{
Q ′/x

}
where P ։β P

′ and Q ։β Q
′. By Lemma 2.4.7(2)

there are a decomposition
{
Γi
}n
i=0

of Γ and σ1, . . . ,σn ∈ TD such that Γ , x : ∧ni=1γi ⊢ P
′ : σ
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and Γi ⊢ Q
′ : γi for all i ∈ {1, . . . ,n} are derivable. Hence by IH the sequents Γ , x : ∧ni=1γi ⊢

P : σ and Γi ⊢ Q : γi for all i ∈ {1, . . . ,n} are derivable. Then we can infer

Γ , x : ∧ni=1γi ⊢ P : σ

Γ ⊢ λx.P : ∧ni=1γi → σ Γi ⊢ Q : γi for all i ∈ {1, . . . ,n}
Γ ⊢ (λx.P)Q : σ

and we are done.

Theorem 2.4.10 (Soundness for β-conversion). Let D be an rgm. Let M,N ∈ Λ ∪N such that
M =β N. Then [[M]]D = [[N]]D.

Proof. By hypothesis for some k ∈ N there is a finite sequence
(
Mi

)k
i=0

of λ-terms such
that M0 =M, Mk = N and for all i ∈ {0, . . . ,k− 1} either Mi →β Mi+1 or Mi+1 →β Mi .

The result is proved by the following induction on k.
Base: k = 0. As M =M0 = N, the thesis trivially holds.
Step: k > 1. The IH is applied to the sequence

(
Mi

)k
i=1

so to get [[M1]] = [[Mk]].
Let us see that [[M0]] = [[M1]]. In case M0 →β M1 we have [[M0]] ⊆ [[M1]] by Lemma 2.4.8

and [[M1]] ⊆ [[M0]] by Lemma 2.4.9. So [[M0]] = [[M1]]. The case M1 →β M0 is dual.
We can conclude that [[M]] = [[M0]] = [[M1]] = [[Mk]] = [[N]].

We now move to Point II, namely the invariance under η-conversion.

Lemma 2.4.11 (η-subject reduction). Let D be an rgm. Let M,N ∈ Λ∪N such that M։η N. If
Γ ⊢D M : σ is derivable then Γ ⊢D N : σ is derivable.

Proof. We prove the statement for the case M →η N. Then the result is obviously general-
ized to the case M։η N (formally by induction on the number of steps→η in ։η).
Case M = λx.Nx for x 6∈ fv(N). Let Γ ⊢ λx.Nx : σ be derivable. By Lemma 2.3.12(2) we can
derive Γ , x : µ ⊢ Nx : τ for some µ→ τ ≃ σ. By Lemma 2.3.12(3) there exist types τ1, . . . , τn
and a decomposition

{
Γi
}n
i=0

of the environment Γ , x : µ such that

Γ0 ⊢ N : ∧ni=1τi → τ (20)

and Γi ⊢ x : τi for all i ∈ {1, . . . ,n} are derivable. Then for all i ∈ {1, . . . ,n} Lemma 2.3.12(1)
gives Γi = x : γi for γi ≃ τi . Hence ∧ni=1Γi = x : ∧ni=1γi.

Since supp(Γ0) ⊆ fv(N) by Lemma 2.3.10 and x 6∈ fv(N), we have Γ0(x) = ω. Thus

∧ni=1τi ≃ ∧ni=1γi =
(
∧ni=1 Γi

)
(x) =

(
∧ni=0 Γi

)
(x) =

(
Γ , x : µ

)
(x) = µ .

Therefore ∧ni=1τi → τ ≃ µ → τ ≃ σ. And from the fact that ∧ni=1Γi = x : ∧ni=1γi = x : µ

we also get that Γ0 = Γ . Finally from (20) by Rule eq we derive Γ ⊢ N : σ.
Case M = C[ λx.N ′x ] for x 6∈ fv(N ′) and N = C[N ′]. By the case above and Lemma 2.4.11.

Lemma 2.4.12 (η-subject expansion). Let D be an ergm. Let M,N ∈ Λ∪N such that M։η N.
If Γ ⊢D N : σ is derivable then Γ ⊢D M : σ is derivable.
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x : σ ⊢D x : σ
var

Γ , x : µ ⊢D t : σ

Γ ⊢D λx.t : µ→ σ
lam

Γ ⊢D t : τ σ ≃D τ
Γ ⊢D t : σ

eq

Γ0 ⊢
D t : ∧ni=1σi → σ Γi ⊢

D si : σi for all i ∈ {1, . . . ,n}

Γ0 ∧
(∧n

i=1 Γi
)
⊢D t

[
s1, . . . , sn

]
: σ

app

Figure 4: The intersection type systems for Λr.

Proof. We prove the statement for the case M →η N. Then the result is obviously general-
ized to the case M։η N (formally by induction on the number of steps→η in ։η).
Case M = λx.Nx for x 6∈ fv(N). Since i : Mf(D)×D→ D is surjective, there exists (m,d) ∈
Mf(D)×D such that i(m,d) = σ⋄. By Lemma 2.3.4 we have µ ∈ ID such that µ⋄ = m and
τ ∈ TD such that τ⋄ = d. Hence σ⋄ = i(m,d) = i(µ⋄, τ⋄) = (µ→ τ)⋄, i.e. σ ≃ µ→ τ. In the
end, if µ = ∧ni=1γi we can derive

Γ ⊢ N : σ
Γ ⊢ N : µ→ τ x : γi ⊢ x : γi for all i ∈ {1, . . . ,n}

Γ , x : µ ⊢ Nx : τ
Γ ⊢ λx.Nx : µ→ τ

Case M = C[ λx.N ′x ] for x 6∈ fv(N ′) and N = C[N ′]. By the case above and Lemma 2.4.11.

Theorem 2.4.13 (Soundness for η-conversion). Let D be an ergm. Let M,N ∈ Λ∪N such that
M =η N. Then [[M]]D = [[N]]D.

Proof. Just like the proof of Theorem 2.4.10, only replacing the reduction→β with→η , and
Lemmas 2.4.8 - 2.4.9 with Lemmas 2.4.11 - 2.4.12 respectively.

2.5 interpreting the linear resource calculus

Rgm’s are also models of the linear resource calculus presented in § 1.6. One way to prove
this is to show that the corresponding reflexive objects are linear in the cartesian closed
differential category MRel, in the sense of [Man12, § 4]. Here we do not follow that line. We
exploit directly the type assignment discipline instead.

Definition 2.5.1. Let D be an rgm. The type assignment system ⊢D for Λr associated with D is
given in Fig. 4. When D is clear from the context we simply write ⊢ instead of ⊢D.

Remark 2.5.2. In Remark 2.3.9 we saw that from Γ ⊢M : ω→ σ one can deduce Γ ⊢MN : σ

for no matter what N ∈ Λ. This is not exactly the case for Λr. Of course, also the natural
number n appearing in Rule app in Fig. 4 can be 0. But the premises of this version of app
require a perfect matching between the number n of types σi that compose the intersection
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∧ni=1σi and the number n of elements of the bag [s1, . . . , sn] that we put in argument
position. So for t ∈ Λr all we can derive is

Γ ⊢D t : ω→ σ
Γ ⊢D t [ ] : σ

and not Γ ⊢D tb : σ for every b ∈Mf(Λ
r).

Lemma 2.5.3 (Inversion). Let D be an rgm. Let t ∈ Λr and b ∈Mf(Λ
r).

1. If Γ ⊢D x : σ is derivable then there exists τ ∈ TD such that Γ = x : τ and τ ≃Dσ .

2. The sequent Γ ⊢D λx.t : σ is derivable if and only if there exist τ ∈ TD and µ ∈ ID such that
Γ , x : µ ⊢D t : τ is derivable and µ→ τ ≃Dσ ;

3. If Γ ⊢D t[s1, . . . , sn] : σ is derivable then there exist σ1, . . . ,σn ∈ TD and a decomposition
{
Γi
}n
i=0

of Γ such that the sequents Γ0 ⊢D t : ∧ni=1σi → σ and Γi ⊢D si : σi for all
i ∈ {1, . . . ,n} are derivable.

Proof. Similar to the proof of Lemma 2.3.12.

Definition 2.5.4. Let D be an rgm. Let t ∈ Λr. The type-interpretation of t in D is defined as

[[
t
]]D

:=
{

(Γ ,σ) ∈ EnvD ×TD | Γ ⊢D t : σ
}

.

An analogue of Lemma 2.3.10 holds also for resource terms, as we state here below.

Lemma 2.5.5. Let D be an rgm and t ∈ Λr. If Γ ⊢D t : σ is derivable then supp(Γ) ⊆ fv(t).

We prove that this type-interpretation is invariant under β-reduction (subject reduction
property) and under β-expansion (subject expansion property), hence it provides a sound
model of the linear resource calculus. As is customary, we start with an appropriate substi-
tution lemma.

Lemma 2.5.6 (Substitution for Λr). Let D be an rgm. Let t ∈ Λr.

1. If the sequents Γ , x : ∧ni=1γi ⊢
D t : σ and Γi ⊢D si : γi for all i ∈ {1, . . . ,n} are derivable

then n = degt(x) and, given an enumeration x1, . . . , xn of all occurrences of x in t, there
exists p ∈ Sn such that Γ ∧∧ni=1Γi ⊢

D t
{
sp(1)/x1, . . . , sp(n)/xn

}
: σ is derivable.

2. Let n = degt(x) and consider an enumeration x1, . . . , xn of all occurrences of x in t. If the
sequent Γ ⊢D t

{
s1/x1, . . . , sn/xn

}
: σ is derivable then there are γ1, . . . ,γn ∈ TD and a

decomposition
{
Γi
}n
i=0

of Γ such that the sequents Γ , x : ∧ni=1γi ⊢
D t : σ and Γi ⊢D si : γi

for all i ∈ {1, . . . ,n} are derivable.

48



Proof. (1) By induction on the structure of t.
Case t = y 6= x. By Lemma 2.5.3.(1) we have Γ , x : ∧ni=1γi = y : τ for some τ ≃ σ. Hence
∧ni=1γi = ω, that is n = 0 = degy(x).

By hypothesis Γ ⊢ y : σ is derivable, and we are done. (Notice that S0 = {∅}, so formally
∅ is the permutation that we pick here.)
Case t = x. By hypothesis Γ , x : ∧ni=1γi ⊢ x : σ is derivable. By Lemma 2.5.3.(1) we have
Γ , x : ∧ni=1γi = x : τ for a type τ ≃ σ. So Γ is the empty environment and ∧ni=1γi = γ1 = τ.
In particular n = 1 = degx(x).

Obviously we take as p the only element of S1, i.e. 1 7→ 1. We must prove the derivability
of Γ1 ⊢ x {s1/x1} : τ , which is the sequent Γ1 ⊢ s1 : τ . Since Γ1 ⊢ s1 : σ is derivable by
hypothesis and τ ≃ σ, by applying Rule eq we are done.
Case t = λy.s. By Lemma 2.5.3.(2) the sequent Γ ,y : µ, x : ∧ni=1γi ⊢ s : τ is derivable for
some µ → τ ≃ σ. By IH we have n = degs(x) = degλy.s(x) and there exists p ∈ Sn such
that

(
Γ ,y : µ

)
∧∧ni=1Γi ⊢ s

{
sp(1)/x1, . . . , sp(n)/xn

}
: τ . (21)

is derivable. For all i ∈ {1, . . . ,n} Lemma 2.5.5 gives supp(Γi) ⊆ fv(si). By the Variable
Convention y 6∈ fv(si). Therefore y 6∈ supp(Γi) for all i ∈ {1, . . . ,n}. So the sequent (21) is in
fact Γ ∧∧ni=1Γi,y : µ ⊢ s

{
sp(1)/x1, . . . , sp(n)/xn

}
: τ. So at last we derive

Γ ∧∧ni=1Γi,y : µ ⊢ s
{
sp(1)/x1, . . . , sp(n)/xn

}
: τ

Γ ∧∧ni=1Γi ⊢ λy.
(
s
{
sp(1)/x1, . . . , sp(n)/xn

})
: µ→ τ

Γ ∧∧ni=1Γi ⊢ (λy.s)
{
sp(1)/x1, . . . , sp(n)/xn

}
: σ

Case t = s[r1, . . . , rk] for some k ∈ N. By Lemma 2.5.3(3) there are a decomposition
{
∆j

}k
j=0

of Γ , a decomposition
{
Ij
}k
j=0

of the set {1, . . . ,n} and σ1, . . . ,σk ∈ TD such that
the following are derivable: ∆0, x : ∧i∈I0γi ⊢ s : ∧

k
j=1σj → σ and ∆j, x : ∧i∈Ijγi ⊢ rj : σj for

all j ∈ {1, . . . ,k}. For all j ∈ {0, . . . ,k} we apply the IH so to get:

• degs(x) = |I0| ;

• p0 ∈ S|I0| such that ∆0 ∧∧i∈I0Γi ⊢ s
{
sp0(1)/x1, . . . , sp0(|I0|)/x|I0|

}
: ∧kj=1σj → σ is

derivable;

• degrj(x) = |Ij| for all j ∈ {1, . . . ,k} ;

• pj ∈ S|Ij| such that ∆j ∧∧i∈IjΓi ⊢ rj
{
spj(1)/x1, . . . , spj(|Ij|)/x|Ij|

}
: σj is derivable, for

all j ∈ {1, . . . ,k}.

Firstly, we get

degs[r1,...,rk]
(x) = degsj(x) +

k∑

j=1

degrj(x) =

k∑

j=0

| Ij | = n .

By applying Rule app we derive

∧kj=0∆j ∧∧kj=0 ∧i∈Ij Γi ⊢ s
{
sp0(i)/xi

}|I0|

i=1

[
rj
{
spj(i)/xi

}|Ij|

i=1

]k
j=1

: σ . (22)

We define
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p : {1, . . . ,n} −→ {1, . . . ,n}

m ∈ Ij 7→ pj(m)

Such p is well defined as a function, because
{
Ij
}k
j=0

is a decomposition {1, . . . ,n}. Moreover
p ∈ Sn, since all the pj’s are bijective. It is evident that

s
{
sp0(i)/xi

}|I0|

i=1

[
rj
{
spj(i)/xi

}|Ij|

i=1

]k
j=1

= s
{
sp(i)/xi

}|I0|

i=1

[
rj
{
sp(i)/xi

}|Ij|

i=1

]k
j=1

= s
[
r1, . . . , rk

]{
sp(i)/xi

}n
i=1

Since in addition ∧kj=0∆j = Γ and ∧kj=0 ∧i∈Ij Γi = ∧ni=1Γi , the sequent (22) is exactly
Γ ∧∧ni=1Γi ⊢ s

[
r1, . . . , rk

]{
sp(1)/x1, . . . , sp(n)/xn

}
: σ, whose derivability was to be proved.

(2) By induction on the structure of the resource term t.
Case t = y 6= x. In such a case n = 0, hence t

{
s1/x1, . . . , sn/xn

}
= t = y. So by hypothesis

Γ ⊢ y : σ is derivable. Then setting Γ0 := Γ the decomposition
{
Γ0
}

of Γ proves the result.
Case t = x. In this case n = 1 and t {s1/x1} = s1. Hence by hypothesis Γ ⊢ s1 : σ is derivable.
We set Γ0 to be the empty environment, Γ1 := Γ and γ1 := σ. The sequent Γ0, x : γ1 ⊢ x : σ

is nothing but x : σ ⊢ x : σ, which is trivially derivable. So the decomposition
{
Γ0, Γ1

}
of Γ

proves the result.
Case t = λy.s. Since (λy.s)

{
s1/x1, . . . , sn/xn

}
= λy.s

{
s1/x1, . . . , sn/xn

}
, by Lemma 2.5.3.(2)

there is a derivation of Γ ,y : µ ⊢ s
{
s1/x1, . . . , sn/xn

}
: τ for some µ→ τ ≃ σ.

By IH there are γ1, . . . ,γn ∈ TD and a decomposition
{
Γi
}n
i=0

of Γ ,y : µ such that

Γ0, x : ∧ni=1γi ⊢ s : σ (23)

and

Γi ⊢ si : γi

for all i ∈ {1, . . . ,n} are derivable.
For all i ∈ {1, . . . ,n} Lemma 2.5.5 gives supp(Γi) ⊆ fv(si). By the Variable Convention

y 6∈ fv(si). Therefore y 6∈ supp(Γi) for all i ∈ {1, . . . ,n}. So

Γ0(y) =
(
Γ ,y : µ

)
(y) = µ .

Then from the sequent (23) by Rules lam and eq we derive Γ0 − (y : µ), x : ∧ni=1γi ⊢ λy.P : σ.
We are done, because

{
Γ0 − (y : µ)

}
∪
{
Γi
}n
i=1

is a decomposition of Γ .

Case t = s [r1, . . . , rk] for some k ∈N. We have a decomposition
{
Ii
}k
i=0

of the set {1, . . . ,n}

such that s
{
s1/x1, . . . , sn/xn

}
= s

{
sj/xj

}

j∈I0

[
r1
{
sj/xj

}

j∈I1
, . . . , rk

{
sj/xj

}

j∈Ik

]
.

By Lemma 2.5.3.(3) there is a decomposition
{
∆i

}k
i=0

of Γ and σ1, . . . ,σk ∈ TD such that
the following sequents are derivable:

∆0 ⊢ s
{
sj/xj

}

j∈I0
: ∧ki=1σi → σ (24)

and for all i ∈ {1, . . . ,k}

∆i ⊢ ri
{
sj/xj

}

j∈Ii
: σi . (25)
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From (24) by IH we have a decomposition
{
∆0j

}|I0|

j=0
of ∆0 and types γ01, . . . ,γ0n0 such

that

∆00 , x : ∧|I0|
j=1γ0j ⊢ s : ∧

k
i=1σi → σ (26)

and for all j ∈
{
1, . . . , |I0|

}

∆0j ⊢ sj : γ0j (27)

are derivable.
Let i ∈ {1, . . . ,k}. From (25) by IH we have a decomposition

{
∆ij

}|Ii|

j=0
of ∆i and types

γi1, . . . ,γini such that

∆i0 , x : ∧|Ii|
j=1γij ⊢ ri : σi (28)

and for all j ∈
{
1, . . . , |Ii|

}

∆ij ⊢ sj : γij (29)

are derivable.
From (26) and (28) by Rule app we derive

∧ki=0∆i0 , x : ∧ki=0 ∧
|Ii|
j=1 γij ⊢ s [r1, . . . , rk] : σ (30)

Notice that
{
∆ij | i ∈ {0, . . . ,k} and j ∈ {1, . . . , |Ii|}

}
is a decomposition of Γ , as the union of

decompositions of elements of a decomposition of Γ . Such a decomposition then proves the
result, because of the derivability of (27), (29) and (30).

Lemma 2.5.7 (Subject reduction for Λr). Let D be an rgm. Let t ∈ Λr and T ∈ Pf(Λ
r) such that

t։β T. If Γ ⊢D t : σ is derivable then there exists t ′ ∈ T such that Γ ⊢D t ′ : σ is derivable.

Proof. We prove the statement for the case t→β T. Then the result is obviously generalized
to the case t։β T (formally by induction on the number of steps→β).

The proof is by induction on t.
Case t = x. In such a case T = {x}, so taking t ′ := x the thesis is proved.
Case t = λx.s. Then T = λx.S where s→β S. By Lemma 2.5.3.(2) the sequent Γ , x : µ ⊢ s : τ is
derivable for some µ→ τ ≃ σ. By IH there exists s ′ ∈ S such that Γ , x : µ ⊢ s ′ : τ is derivable,
hence by applying lam and eq also Γ ⊢ λx.s ′ : σ is derivable. We can take t ′ := λx.s ′ ∈ λx.S.
Case t = sb and T = Sb where s →β S. Let b = [s1, . . . , sn]. By Lemma 2.5.3(3) we
have a decomposition

{
Γi
}n
i=0

of Γ and types σ1, . . . ,σn such that Γ0 ⊢ s : ∧ni=1σi → σ

and Γi ⊢ si : σi for all i ∈ {1, . . . ,n} are derivable. By IH there exists s ′ ∈ S such that
Γ0 ⊢ s

′ : ∧ni=1σi → σ is derivable. So by app we derive Γ ⊢ s ′b : σ. Clearly we take
t ′ := s ′b ∈ Sb.
Case t = s

(
[r] ·b

)
and T = s

(
[R] ·b

)
where r→β R. Let b = [s1, . . . , sn]. By Lemma 2.5.3(3)

we have a decomposition ∆ ∪
{
Γi
}n
i=0

of Γ and τ,σ1, . . . ,σn ∈ TD such that the sequents
Γ0 ⊢ s : τ∧∧ni=1σi → σ, ∆ ⊢ r : τ and Γi ⊢ si : σi for all i ∈ {1, . . . ,n} are derivable. By IH
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there exists r ′ ∈ R such that ∆ ⊢ r ′ : τ is derivable. So by app we derive Γ ⊢ s
(
[r ′] · b

)
: σ. In

the end we take t ′ := s
(
[r ′] · b

)
∈ s

(
[R] · b

)
and we are done.

Case t = (λx.s)[s1, . . . , sn]. By Lemma 2.5.3(3) there are a decomposition
{
Γi
}n
i=0

of Γ and
σ1, . . . ,σn ∈ TD such that Γ0 ⊢ λx.s : ∧ni=1σi → σ and Γi ⊢ si : σi for all i ∈ {1, . . . ,n} are
derivable. Applying then Lemma 2.5.3(2) we get the derivability of Γ0, x : ∧ni=1τi ⊢ s : τ

where ∧ni=1τi → τ ≃ ∧ni=1σi → σ. By Rule eq we derive

Γ0, x : ∧ni=1τi ⊢ s : σ (31)

and

Γi ⊢ si : τi for all i ∈ {1, . . . ,n} . (32)

By (31) and (32), we can apply Lemma 2.5.6(1) so to get the equality degs(x) = n and the
existence of p ∈ Sn making Γ0 ∧∧ni=1Γi ⊢ s

{
sp(1)/x1, . . . , sp(n)/xn

}
: σ derivable.

Since degs(x) = n, by definition of t→β T we have T =
⋃
p∈Sn

s
{
sp(1)/x1, . . . , sp(n)/xn

}
.

So eventually t ′ := s
{
sp(1)/x1, . . . , sp(n)/xn

}
∈ T proves the thesis.

Lemma 2.5.8 (Subject expansion for Λr). Let D be an rgm. Let t ∈ Λr and T ∈ Pf(Λ
r) such

that t։β T. If there exists t ′ ∈ T such that Γ ⊢D t ′ : σ is derivable then Γ ⊢D t : σ is derivable.

Proof. We prove the statement for the case t →β T 6= ∅. Then the result is obviously gener-
alized to the case t։β T 6= ∅ (formally by induction on the number of steps→β).

The proof is by induction on t.
Case t = x. In such a case T = {x}, so t ′ = x = t and there is nothing to prove.
Case t = λx.s. Then T = λx.S where s →β S. Then t ′ = λx.s ′ for some s ′ ∈ S. By
Lemma 2.5.3.(2) the sequent Γ , x : µ ⊢ s ′ : τ is derivable for some µ → τ ≃ σ. By IH
then Γ , x : µ ⊢ s : τ is derivable. By lam and eq we derive Γ ⊢ λx.s : σ.
Case t = sb and T = Sb where s →β S. We have t ′ = s ′b for some s ′ ∈ S. Let b =

[s1, . . . , sn]. By Lemma 2.5.3(3) we have a decomposition
{
Γi
}n
i=0

of Γ and types σ1, . . . ,σn
such that Γ0 ⊢ s ′ : ∧ni=1σi → σ and Γi ⊢ si : σi for all i ∈ {1, . . . ,n} are derivable. By IH
Γ0 ⊢ s : ∧

n
i=1σi → σ is derivable. So by Rule app we derive Γ ⊢ sb : σ.

Case t = s
(
[r] · b

)
and T = s

(
[R] · b

)
where r→β R. In such a case t ′ = s

(
[r ′] · b

)
for some

r ′ ∈ R. Let b = [s1, . . . , sn]. By Lemma 2.5.3(3) we have a decomposition ∆ ∪
{
Γi
}n
i=0

of
Γ and τ,σ1, . . . ,σn ∈ TD such that the sequents Γ0 ⊢ s : τ∧∧ni=1σi → σ, ∆ ⊢ r ′ : τ and
Γi ⊢ si : σi for all i ∈ {1, . . . ,n} are derivable. By IH also ∆ ⊢ r : τ is derivable. So by Rule
app we can derive Γ ⊢ s

(
[r] · b

)
: σ.

Case t = (λx.s)[s1, . . . , sn] and T =
⋃
p∈Sn

s
{
sp(1)/x1, . . . , sp(n)/xn

}
. In such a case t ′ =

s
{
sp(1)/x1, . . . , sp(n)/xn

}
for some p ∈ Sn. By Lemma 2.5.6(2) there are γ1, . . . ,γn ∈ TD

and a decomposition
{
Γi
}n
i=0

of Γ such that Γ , x : ∧ni=1γi ⊢ s : σ and Γi ⊢ sp(i) : γi for all
i ∈ {1, . . . ,n} are derivable. So one can derive

Γ , x : ∧ni=1γi ⊢ s : σ
Γ ⊢ λx.s : ∧ni=1γi → σ Γi ⊢ sp(i) : γi for all i ∈ {1, . . . ,n}

Γ ⊢ (λx.s)
[
sp(1), . . . , sp(n)

]
: σ

which was to proved, since (λx.s)
[
sp(1), . . . , sp(n)

]
= t.
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Theorem 2.5.9 (One-step soundness for the linear resource calculus). Let D be an rgm. Let
U,V ∈ Pf(Λ

r) such that U→β V . Then
[[
U
]]D

=
[[
V
]]D.

Proof. The hypothesis U→β V means that V =
⋃
t∈U Vt where t→β Vt for all t ∈ U.

Let (Γ ,σ) ∈ [[U]], i.e. Γ ⊢ t : σ derivable for some t ∈ U. By Lemma 2.5.7 there is t ′ ∈ Vt ⊆
V such that Γ ⊢ t : σ is derivable. So [[U]] ⊆ [[V]].

Let (Γ ,σ) ∈ [[V]], i.e. Γ ⊢ t ′ : σ derivable for some t ′ ∈ V . By hypothesis there exists t ∈ U
such that t ′ ∈ Vt and t→β Vt. By Lemma 2.5.8 then Γ ⊢ t : σ is derivable. So [[V]] ⊆ [[U]].

Corollary 2.5.10 (Soundness for the linear resource calculus). Let D be an rgm. Let U,V ∈
Pf(Λ

r) such that U =β V . Then
[[
U
]]D

=
[[
V
]]D.

Proof. For some k ∈ N there is a finite sequence
(
Ui

)k
i=0

of elements of Pf(Λr) such that
U0 =M, Uk = V and for all i ∈ {0, . . . ,k− 1} either Ui →β Ui+1 or Ui+1 →β Ui .

The result is proved by the following induction on k.
Base: k = 0. As U = U0 = V , the thesis trivially holds.
Step: k > 1. The IH is applied to the sequence

(
Ui

)k
i=1

so to get [[U1]] = [[Uk]].
Either U0 →β U1 or U1 →β U0. In either case [[U0]] = [[U1]] by Theorem 2.5.9.
In the end we have [[U]] = [[U0]] = [[U1]] = [[Uk]] = [[V]].

2.6 approximation theorems : from taylor to böhm

The Böhm tree of a λ-term M can be considered as the possibly infinite β-normal form of M
(with the unsolvable subterms sent to ⊥). Accordingly, the elements of BT(M)∗ should be
thought of as finite approximations of the reduction of M. From this perspective, it is reasonable
to expect from a model to satisfy

[[
M

]]
=

⋃

a∈BT(M)∗

[[a]] for all M ∈ Λ . (33)

Although not always true, this is indeed often the case. A property of such a kind is known
as Approximation Theorem for the given model. If at hand, Property (33) plays a key role in
the study of the model: it stands as a bridge from the possibly infinite nature of (β-reduction
of) λ-terms to the finitary realm of finite Böhm-like trees.

Proving an Approximation Theorem is generally not an easy task. Sometimes it can
be shown by means of some ad hoc indexed refinement of β-reduction, as first done by
Wadsworth in [Wad78]. As an alternative, the method of reducibility candidates à la Tait-
Girard [Tai67, Gir72, GLT89] is the most widespread proof technique for the purpose. This
technique is ubiquitous in logic and the theory of programming (where it goes by many
names, such as logical relations [Rey83], saturated sets [Kri90], realizability interpretations [Kri09],
stable sets in Kripke structures [BDS13]). But it is much complicated. Also, it must be cleverly
adapted to each single model.

Here these complications are avoided thanks to the following crucial fact, which holds
for every rgm D :

[[
M

]]D
=

⋃

t∈T(M)

[[t]]D for all M ∈ Λ . (34)
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We call this result Taylor Approximation Theorem, as opposed to (33), which we rather call
Böhm Approximation Theorem from now on. The Taylor Approximation Theorem has great
advatages. Firstly, both inclusions in (34) are proved by a straightforward induction, not by
reducibility candidates. Moreover, the Böhm Approximation Theorem easily follows from
the Taylor one by Theorem 1.6.4 of Ehrhard and Regnier. Finally, another great benefit of
this approach lies in its generality, since the method works for all rgm’s.

In fact (34) is the main reason why the linear resource calculus and the notion of Taylor
expansion are taken into account in this work.

Definition 2.6.1. Let D be an rgm. Let A ∈ ΛB. The type-interpretation of A in D is

[[
A
]]D

:=
⋃

a∈A∗

[[a]]D.

In particular, for all M ∈ Λ we have
[[

BT(M)
]]D

=
⋃

a∈BT(M)∗

[[a]]D .

Every λ-term M in β-normal form can be seen as a finite Böhm-like tree. So both Defi-
nition 2.4.1 (type-interpretation of terms) and Definition 2.6.1 (type-interpretation of trees)
apply to M. Of course, we are using the same symbol [[M]]D for both because they coincide.
Indeed, Theorem 2.6.5 below states that [[M]]D in the sense of Definition 2.4.1 is equal to
[[BT(M)]]D, where the latter is [[M]]D in the sense of Definition 2.6.1 whenever the β-normal
form M is seen as a tree.

Definition 2.6.2. Let D be an rgm. Let X be in Λ or in ΛB. The type-interpretation in D of the
Taylor expansion T(X) is defined as

[[
T(X)

]]D
:=

⋃

t∈T(X)

[[t]]D.

For a Böhm-like tree A ∈ ΛB we have in particular

[[
T(A)

]]D
=

⋃

t∈T(A)

[[t]]D =
⋃

a∈A∗

⋃

t∈T(a)

[[t]]D =
⋃

a∈A∗

[[
T(a)

]]D . (35)

Theorem 2.6.3 (Taylor Approximation Theorem). Let D be an rgm. Let M be in Λ or in N.
The sequent Γ ⊢D M : σ is derivable if and only if there exists t ∈ T(M) such that Γ ⊢D t : σ is
derivable. In other words

[[
M

]]D
=

[[
T(M)

]]D.

Proof. (⇒) The proof is by induction on the derivation of Γ ⊢ M : σ. We proceed therefore
by a case analysis on the last rule applied in the derivation.
Case var. If Rule var is the last (and only, actually) rule applied, then Γ ⊢ M : σ has the
form x : σ ⊢ x : σ. This case is trivial since T(x) = {x}.
Case lam. If Rule lam is the last rule applied, then Γ ⊢M : σ has the form Γ ⊢ λx.P : µ → τ

and the sequent Γ , x : µ ⊢ P : τ is derivable. By IH there exists t ′ ∈ T(P) such that the
sequent Γ , x : µ ⊢ t ′ : τ is derivable. By Rule lam we derive Γ ⊢ λx.t ′ : µ→ τ.
Case app. If app is the last rule applied the derivable sequent Γ ⊢ M : σ has the form
Γ0 ∧ (∧ni=1Γi) ⊢ PQ : σ , for some n > 0, with sequents Γ0 ⊢ P : ∧ni=1σi → σ and Γi ⊢ Q : σi
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for all i ∈ {1, . . . ,n} derivable. By IH, there exists s ∈ T(P) such that Γ0 ⊢ s : ∧ni=1σi → σ is
derivable, and for all i ∈ {1, . . . ,n} there exists ti ∈ T(Q) such that Γi ⊢ ti : σi is derivable.
Therefore we can derive

Γ0 ⊢ s : ∧
n
i=1σi → σ Γi ⊢ ti : σi ∀i ∈ {1, . . . ,n}

Γ ⊢ s[t1, . . . , tn] : σ
app

So there is s [t1, . . . , tn] ∈ T(PQ) such that Γ ⊢ s[t1, . . . , tn] : σ is derivable.
Case eq. Let Γ ⊢M : σ be derived by an instance of Rule eq from a derivation of a sequent
Γ ⊢ M : τ such that τ ≃ σ. By IH there exists t ∈ T(M) such that Γ ⊢ t : τ has a derivation.
By applying eq to such derivation we derive Γ ⊢ t : σ.

Proof. (⇐) Let t ∈ T(M) such that Γ ⊢ t : σ has a derivation. We proceed by induction on
this derivation. At that purpose we make a case analysis on the last Rule applied therein.
Case var. The derivable sequent Γ ⊢ t : σ has the form x : σ ⊢ x : σ and x ∈ T(M). Since
x ∈ T(M) if and only if M = x by definition of the Taylor expansion, the thesis is trivially
proved.
Case lam. The derivable sequent Γ ⊢ t : σ has the form Γ ⊢ λx.t ′ : µ → τ and the sequent
Γ , x : µ ⊢ t ′ : τ is derivable. By definition of Taylor expansion λx.t ∈ T(M) entails M = λx.P
for some P ∈ Λ such that t ′ ∈ T(P). By IH the sequent Γ , x : µ ⊢ P : τ is derivable. By Rule
lam we derive Γ ⊢ λx.P : µ→ τ.
Case app. The derivable sequent Γ ⊢ t : σ has the form Γ0 ∧ (∧ni=1Γi) ⊢ s[t1, . . . , tn] : σ, for
some n > 0, where sequents Γ0 ⊢ t : ∧ni=1σi → σ and Γi ⊢ si : σi for all i ∈ {1, . . . ,n}
are derivable. Since s[t1, . . . , tn] ∈ T(M), by definition of Taylor expansion M = PQ for
some P,Q ∈ Λ such that s ∈ T(P) and t1, . . . , tn ∈ T(Q). By IH there exist derivations of
Γ0 ⊢ P : ∧ni=1σi → σ and Γi ⊢ Q : σi for all i ∈ {1, . . . ,n}. Therefore we derive

Γ0 ⊢ P : ∧ni=1σi → σ Γi ⊢ Q : σi ∀i ∈ {1, . . . ,n}
Γ ⊢ PQ : σ

app

Case eq. Let Γ ⊢ t : σ be derived by an instance of Rule eq from a derivation of a sequent
Γ ⊢ t : τ such that τ ≃ σ. Since t ∈ T(M) by IH the sequent Γ ⊢ M : τ has a derivation. By
applying Rule eq to such derivation we derive Γ ⊢M : σ.

Corollary 2.6.4 (Taylor Approximation Theorem for Böhm-like trees). Let D be an rgm and
A ∈ ΛB. Then

[[
A
]]D

=
[[
T(A)

]]D.

Proof. Applying in the order Definition 2.6.1, Theorem 2.6.3 and (35) we get

[[
A
]]

=
⋃

a∈A∗

[[a]] =
⋃

a∈A∗

[[
T(a)

]]
=

[[
T(A)

]]

as was to be proved.

Theorem 2.6.5 (Böhm Approximation Theorem). Let D be an rgm and M ∈ Λ. The sequent
Γ ⊢D M :σ is derivable if and only if there exists a ∈ BT(M)∗ such that Γ ⊢D a : σ is derivable. In
other words

[[
M

]]D
=

[[
BT(M)

]]D.
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Proof. We have the following chain of equivalences

Γ ⊢M :σ if and only if ∃ t ∈ T(M) such that Γ ⊢ t :σ (by Theorem 2.6.3)

if and only if ∃ t ∈ nfβT(M) such that Γ ⊢ t :σ (by Corollary 2.5.10)

if and only if ∃ t ∈ T(BT(M)) such that Γ ⊢ t :σ (by Theorem 1.6.4)

if and only if ∃a ∈ BT(M)∗ such that Γ ⊢ a :σ (by Corollary 2.6.4)

which completes the proof. Notice that the second step of this chain of equivalences relies
on the fact that β-normalization is strongly normalizing on Λr.

We conclude this chapter with some general facts concerning the preorder theory and
the λ-theory of every rgm’s.

Theorem 2.6.6. Let D be an rgm.

1. ⊑B is included in Th⊑(D) , namely BT(M) 6⊥ BT(N) implies M ⊑D N for all M,N ∈ Λ.

2. B ⊆ Th(D) , namely BT(M) = BT(N) implies M =D N for all M,N ∈ Λ.

Proof. (1) Let BT(M) 6⊥ BT(N). Since this is equivalent to BT(M)∗ ⊆ BT(N)∗, by Theo-
rem 2.6.5 we have [[M]] = [[BT(M) ]] =

⋃
a∈BT(M)∗ [[a]] ⊆

⋃
a∈BT(N)∗ [[a]] = [[BT(N) ]] = [[N]].

(2) It follows immediately from 1.

Theorem 2.6.7. Let D be an rgm. Then [[M]]D = ∅ for all unsolvable M ∈ Λ. In particular the
theory Th(D) is sensible.

Proof. Let M be unsolvable. By Theorem 2.6.5 we have [[M]] =
⋃
a∈⊥∗ [[a]] = [[⊥]] = ∅.

Corollary 2.6.8. Let D be an rgm. Let M,N ∈ Λ. Then [[M]]D ⊆ [[N]]D implies M ⊑H∗N.
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3
M I N I M A L A N D M A X I M A L R E L AT I O N A L G R A P H T H E O R I E S

introduction

The study of the untyped λ-calculus is not restricted to the sole β-rule. In fact, one is
more often interested in λ-theories, the equational extensions of β-convertibility defined in
§ 1.2. As we mentioned in that section, the lattice of λ-theories is still largely unexplored. A
further refinement consists in investigating inequational extensions of β-convertibility, which
we called preorder theories in § 1.2.

Studying preorder or λ-theories by pure syntactical methods can be very complicated.
Denotational semantics comes then in handy. Indeed, given a certain preorder or λ-theory
one can search for models inducing it. In Chapters 4 and 5 we will go in such a direction,
by looking for rgm’s that induce Morris’s observational preorder and λ-theory.

However, one can also undertake a reverse path, which starts from purely semantic con-
siderations rather than from some fixed theory. Just for the sake of convenience, let us call
semantics any class of uniformly defined denotational models. Scott’s continuous semantics,
stable semantics, relational semantics are examples of the idea. Given a semantics, one can
explore the range of preorder and λ-theories represented by it, i.e. induced by some of its
models. Some natural questions then arise.

1. Is the given semantics incomplete, i.e. unable to represent all consistent λ-theories ?

2. Can the semantics represent exactly the least λ-theory λβ, or the least extensional
λ-theory λβη ?

3. Can the semantics represent the minimal sensible λ-theory H ?

4. Has the semantics a minimal representable λ-theory?

5. Has the semantics a maximal representable λ-theory?

This kind of problems are usually anything but trivial, because often a given semantics
can represent 2ℵ0 distinct preorder and λ-theories and yet being incomplete. For instance,
the representabilities of λβ, λβη and H are long-standing open problems. In particular
Question 2 was raised by Honsell and Ronchi for Scott’s semantics in [HRDR92]. Berline’s
article [Ber00] supplies a survey on these issues.

Now, rgm’s can be considered to form a semantics on their own. So it makes sense to ask
the questions above for such semantics.

Questions 1 and 2 have already been answered at the end of Chapter 2. As a matter of
fact, Theorem 2.6.7 states that rgm’s can only induce sensible λ-theories. So

1. the semantics of rgm’s is incomplete, because unable to represent any λ-theory that
does not equate two distinct unsolvable terms;
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2. in particular, the class of rgm’s cannot represent λβ and λβη, as these are not sensible.

In this chapter we provide answers to Questions 3-5.
As concerns Question 4, the minimal λ-theory turns out to be B, namely the one equating

λ-terms if and only if they have the same Böhm tree. Since H ⊂ B, we also get an answer
to Questions 3: there is no rgm inducing H.

More subtly, we focus on the minimal preorder theory represented by rgm’s. We denote
this preorder by ⊑r and we characterize it as follows:

M ⊑r N if and only if there exists T ∈ ΛB such that BT(M) 6⊥ T ։։η BT(N) .

According to the meaning of ։։η given in § 1.4, this reads as: the Böhm tree of M is
an approximation of a tree T obtained from the Böhm tree of N by performing up to
denumerable many η-expansions possibly of infinite depth.

The minimal preorder ⊑r is induced by an rgm E that we call à la Engeler, because con-
ceived as a relational version of Engeler’s graph model [Eng81], [Bar84, § 5.4]. The model
E already appeared elsewhere. It was in fact the very first relational model of the untyped
λ-calculus introduced in the literature, precisely by Hyland and others in [HNPR06]. Also,
the corresponding intersection type system was studied by de Carvalho in [dC07, dC09].

As regards Question 5 , the maximal λ-theory represented by rgm’s is H∗. In fact, there is
in the literature an rgm that is fully abstract for H∗. It was introduced by Bucciarelli, Ehrhard
and Manzonetto in [BEM07] and proved to induce H∗ in [Man09]. Here we provide another
one.

plan of the chapter . In § 3.1 we define the model E. In § 3.2 we prove the equiva-
lence between ⊑E and ⊑r, except for the more technical lemma, to which a separate section
is devoted, namely § 3.3. In § 3.4 we reformulate the rgm D ′ introduced in [BEM07], as an
isomorphic rgm D∗ built by completion upon one single atom and one single basic equation.

3.1 a relational graph model à la engeler

In this and the next two sections we study the rgm defined below.

Definition 3.1.1. We call rgm à la Engeler the free completion

E := (E, ∅ )

where E is a denumerable set E :=
{
αn

}

n∈N
whose elements αn are pairwise distinct and

not pairs, and ∅ : Mf(E)× E⇀ E is the empty partial function.

More explicitly, E is the rgm
(
E , ∅

)
, where E is the union

⋃
n∈N

En of the sequence
defined by E0 = E and En+1 =

(
Mf(En)× En

)
∪ E , whereas ∅ is the inclusion map of

Mf(E)× E into E, meaning that

∅ (m, x) = (m, x) for all (m, x) ∈ Mf(E)× E . (36)

Lemma 3.1.2. The equivalence ≃E is the equality on types in TE. In other words, for all σ, τ ∈ TE

we have σ ≃E τ if and only if σ = τ .
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Proof. By Proposition 2.2.10 we have AtE = At
(E,∅) = E. By Definition 2.3.2 and (36) we get

1. α⋄ = α for all α ∈ AtE ;

2. (µ→ τ)⋄ = (µ⋄, τ ⋄) for all µ ∈ IE and for all τ ∈ TE.

We prove that σ ≃E τ implies σ = τ by induction on σ. (The reverse implication is evident.)
Case σ ∈ AtE , i.e. σ = α ∈ E. By hypothesis α ≃E τ , that is α = α⋄ = τ⋄ . Then τ cannot be
an arrow type, otherwise by Point 2 above τ⋄ = α would be a pair, contradicting the fact
that α ∈ E. So let τ = β ∈ AtE. In the end σ = α = α⋄ = β⋄ = β = τ .
Case σ = µ → σ ′. Let µ → σ ′ ≃E τ, that is (µ → σ ′)⋄ = τ⋄. By Point 2 above then
τ⋄ = (µ⋄,σ ′ ⋄). Hence τ 6∈ AtE = E, otherwise τ = τ⋄ would not be a pair. So τ = ν → τ ′

and still by Point 2 we have (µ⋄,σ ′ ⋄) = (µ → σ ′)⋄ = (ν → τ ′)⋄ = (ν⋄, τ ′ ⋄). By IH from
µ⋄ = ν⋄ we get µ = ν, and from σ ′ ⋄ = τ ′ ⋄ we get σ ′ = τ ′. So σ = µ→ σ ′ = ν→ τ ′ = τ.

Notation. All over this chapter ⊢ denotes the type system obtained from Definition 2.3.8
(the system in Figure 3 of Chapter 2 ) by throwing away Rule eq.

Lemma 3.1.2 says that Rule eq is essentially useless for deriving typings in ⊢E. Because of
this, the type system ⊢E is equivalent to the type system ⊢ . Here the word equivalent has a
strong sense. In fact, they are basically the same type assignment system: every derivation
in ⊢ is also a derivation in ⊢E, whereas every derivation in ⊢E can be reproduced in ⊢ just
by erasing each instance of Rule eq. For instance, in ⊢E the dummy rule eq allows to derive

x : α1 ∧α2 → α3 ⊢
E x : α1 ∧α2 → α3

var
y : α1 ⊢

E y : α1
var

y : α2 ⊢
E y : α2

var

x : α1 ∧α2 → α3 , y : α1 ∧α2 ⊢
E xy : α3

app

x : α1 ∧α2 → α3 , y : α1 ∧α2 ⊢
E xy : α3

eq

x : α1 ∧α2 → α3 , y : α1 ∧α2 ⊢
E xy : α3

eq

x : α1 ∧α2 → α3 , y : α1 ∧α2 ⊢
E xy : α3

eq

y : α1 ∧α2 ⊢
E λx.xy :

(
α1 ∧α2 → α3

)
→ α3

lam

which is represented in the system ⊢ simply as

x : α1 ∧α2 → α3 ⊢ x : α1 ∧α2 → α3
var

y : α1 ⊢ y : α1
var

y : α2 ⊢ y : α2
var

x : α1 ∧α2 → α3 , y : α1 ∧α2 ⊢ xy : α3
app

y : α1 ∧α2 ⊢ λx.xy :
(
α1 ∧α2 → α3

)
→ α3

lam

In particular for all M ∈ Λ we have

[[
M

]]E
=

{

(Γ ,σ) ∈ EnvE×TE | Γ ⊢E M : σ
}

=
{

(Γ ,σ) ∈ EnvE×TE | Γ ⊢M : σ
}

.

From now on we only use ⊢ in order to study the interpretation of λ-terms in the model E.

As mentioned in the introduction of this chapter, the model E appeared for the first time
in a paper by Hyland and others [HNPR06] . We name it rgm à la Engeler in analogy to the
traditional Engeler’s graph model E, introduced in [Eng81]. As a matter of fact, E can be
defined as the free completion, in the sense of graph models, over the empty partial pair
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∅ : Pf(A)×A⇀ A for any non-empty set A, as Longo showed in [Lon83] (for a presentation
more similar to ours see Berline’s article [Ber06], where E is called E).

The intersection type system ⊢ was introduced by de Carvalho in [dC07, dC09], where
it went by the name of System R. De Carvalho recognized its semantic status of λ-algebra
coming from a reflexive object of MRel. Most notably, he used System R as a tool to analyse
a notion of time of execution of λ-terms in Krivine’s abstract machine [Kri92].

A close system was also investigated from a purely syntactic perspective by Bernadet and
Lengrand in [BL13] .

3.2 the minimal preorder and λ-theory

In this section we characterize Th⊑(E) and Th(E) (with the proof of the most technical
lemma actually postponed to the next section). Moreover, we prove them to be respectively
the minimal preorder theory and the minimal λ-theory represented by the class of rgm’s.

Before investigating Th⊑(E), let us take a quick look at the preorders induced by some
related denotational models.

Two of them are Engeler’s graph model E, introduced in [Eng81], and Scott-Plotkin graph
model Pω [Bar84, § 18.1 & 19.1]. Typically E is presented as a simplification of Pω, like in
the standard reference [Bar84, § 5.4]. The main reason is that they both induce the λ-theory
B. But this is not relevant from our more refined perspective (studying the preorder theories
induced by models, not just their λ-theories), since they have different preorder theories.
The model E induces ⊑B, as proved by Longo in [Lon83]. On the other hand, the model
Pω has the following preorder, as established in [Bar84, Th. 19.1.19]: for all M,N ∈ Λ

M ⊑PωN if and only if there is A ∈ ΛB such that BT(M) ηևև A 6⊥ BT(N) . (37)

In [Roc82] Ronchi studied a filter model M where the order between types is the equality.
One can see a certain analogy with E, the rgm where the equivalence between types is the
equality. The model M induces the following preorder theory: for all M,N ∈ Λ

M ⊑M N if and only if there exists A ∈ ΛB such that BT(M) 6⊥A։։η BT(N) . (38)

In some way this preorder is symmetrical to the one in (37). Indeed ⊑Pω possibly requires
to infinitely η-expand the Böhm tree of the λ-term on the left hand side of the relation, whereas
⊑M asks for the same on the right hand side. Here infinitely means that the η-expansions may
have infinite depth.

The rgm E can be considered as a relational version of E, but at the same time also as a
relational/non-idempotent rephrasing of M. So it is natural to wonder if their preorder theories
share some similarities. We show that E behaves like M, namely it induces the preorder in
(38). Such a preorder is denoted by ⊑r from now on, as formally defined below.

Definition 3.2.1. Let A,B ∈ ΛB. Then A 6 r B if and only if there exists B ′ ∈ ΛB such that
A 6⊥B

′ ։։η R .

Remark 3.2.2. Let a,b ∈ N . Then a 6 r b if and only if there exists b ′ ∈ N such that
a 6⊥b

′ ։η b .
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Definition 3.2.3. Let M,N ∈ Λ. Then M ⊑r N if and only if BT(M) 6 r BT(N).

Examples 3.2.4.

• For all M,N ∈ Λ such that BT(M) 6⊥ BT(N) obviously M ⊑r N.

• λx.yΩ ⊑r y, since BT(λx.yΩ) = λx.y⊥ 6⊥λx.yx։η y = BT(y).

• Consider the λ-terms P and Q defined in Example 1.4.10. Then P ⊑r Q.

• J ⊑r I, because BT( J) ։։η BT(I).

• Let Y’ := λf.
(
λxy.f(xx)( Jy)

)(
λxy.f(xx)( Jy)

)
. Then Y’ ⊑r Y since

BT(Y ′)
q

λf y1.f

λy2.f

λy3.f

λy4.f

...
λx1.y4

λx2.x1

...

λx1.y3

λx2.x1

...

λx1.y2

λx2.x1

...

λx1.y1

λx2.x1

...

։։η
BT(Y)

q

λf.f

f

f

f

...

Our proof of the equality between ⊑E and ⊑r relies on the type system ⊢ . However we
have given a definition of ⊑r that uses Böhm-like trees. Now, Böhm-like trees cannot be
typed, since they are possibly infinite objects. But finite approximants can, as we know from
the previous chapter. That is why now we reformulate ⊑r also in terms of elements of N.

Theorem 3.2.5. Let M,N ∈ Λ. The following two statements are equivalent:

1. M ⊑r N

2. for all a ∈ BT(M)∗ there exists b ∈ BT(N)∗ such that a 6 r b.

Proof. (1⇒ 2) Let a∈ BT(M)∗. We seek b∈ BT(N)∗ and b ′∈ N such that a 6⊥b
′ ։η b.

We proceed by induction on a.
If a = ⊥ we take b := b ′ := ⊥ and we are done.
Let a = λx1 . . . xn.xa1 · · ·am for some n,m ∈ N. Since a ∈ BT(M)∗ we have BT(M) =

λx1 . . . xn.xBT(M1) · · ·BT(Mm) for M1, . . . ,Mm ∈ Λ such that ai ∈ BT(Mi)
∗ for all i .
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By hypothesis 1 there exists B = λx1 . . . xn.xB1 · · ·Bm ∈ ΛB such that BT(M) 6⊥B and

B ։։η BT(N) . (39)

In particular from (39) we get BT(N) = λx1 . . . xn ′ .xBT(N1) · · ·BT(Nm ′) for some n ′ 6 n,
m ′ 6 m and N1, . . . ,Nm ′ ∈ Λ.

Let i ∈ {1, . . . ,m ′}. From (39) we get Bi ։։η BT(Ni) by Lemma 1.4.6 . Then by IH there
are b ′

i ∈ N and bi ∈ BT(Ni)∗ such that ai 6⊥b
′
i ։η bi.

Let i ∈ {1, . . . ,m−m ′}. From (39) we get Bm ′+i ։։η xn ′+i = BT(xn ′+i) by Lemma 1.4.6.
Then the IH gives an approximant b ′

m ′+i ∈ N such that am ′+i 6⊥b
′
m ′+i ։η xn ′+i.

In the end b := λx1 . . . xn ′ .xb1 · · ·bm ′ and b ′ := λx1 . . . xn.xb ′
1 · · ·b

′
m give a 6⊥b

′ ։η b.

(2⇒ 1) We are looking for a Böhm-like tree B such that BT(M) 6⊥B։։η BT(N).
Take B :=

(
BT(N) ;

⌈
BT(M)

⌉ )
. All we need to prove is BT(M) 6⊥B. As dom(BT(M)) =

dom(B) by definition of B, it is sufficient to prove that for all ϕ ∈ dom(BT(M)) such that
BT(M)(ϕ) 6= ⊥ we have BT(M)(ϕ) = B(ϕ). So consider such a ϕ.

We take an approximant a ∈ BT(M)∗ such that ϕ∈ dom(a) and BT(M)(ϕ) = a(ϕ). By
hypothesis 2 there are b ∈ BT(N)∗ and b ′ ∈ N such that a 6⊥ b

′ ։η b. Since a(ϕ) =

BT(M)(ϕ) 6= ⊥ and a 6⊥b
′, surely

b ′
(
ϕ ′

)
= a

(
ϕ ′

)
= BT(M)

(
ϕ ′

)
6= ⊥ for all ϕ ′ � ϕ . (40)

As moreover b ′ ։η b, from (40) we get

b
(
ϕ ′

)
= BT(N)

(
ϕ ′

)
6= ⊥ for all ϕ ′ � ϕ such that ϕ ′∈ dom(b) . (41)

Because of (40), all we need to prove is b ′(ϕ) = B(ϕ). We perform a case analysis on the
various clauses in Definition 1.4.1 applied to B =

(
BT(N) ;

⌈
BT(M)

⌉ )
.

The case ϕ ∈ dom(BT(N)) with BT(N)(ϕ) = ⊥ must not be taken into account, for in
such a case we would have b(ϕ) = ⊥, contradicting (41).

For convenience let us denote T :=
⌈
BT(M)

⌉
.

Case ϕ ∈ dom(BT(N)) and BT(N)(ϕ) = λ~x.x. Let m be the number of children of the node
ϕ in BT(N). Then by Definition 1.4.1(2) we have B(ϕ) = λ~xyϕ0 . . . y

ϕ

T(ϕ)−m−1.x .
By (41) we get b(ϕ) = BT(N)(ϕ) = λ~x.x. As b ′ ։η b then b ′(ϕ) = λ~x z0 . . . zT(ϕ)−m−1.x ,

where the number of those λ-abstracted variables zi is exactly T(ϕ) −m because (40) says
that b ′(ϕ) = BT(M)(ϕ), hence the number of children of the node b ′(ϕ) is supposed to be⌈
BT(M)

⌉
(ϕ) = T(ϕ). In the end up to α-conversion b ′(ϕ) = BT(N)(ϕ).

Case ϕ = ϕ ′.m+ i ∈ dom(T) − dom(BT(N)) and ϕ ′ ∈ dom(BT(N)) where m is the

number of children of the node ϕ ′ in BT(N). By Definition 1.4.1(3) we have B(ϕ) :=

λyϕ0 . . . y
ϕ

T(ϕ)−1.yϕ ′

i , where yϕ ′

i is the i-th variable of η-expansion that is λ-abstracted at the
father node B(ϕ ′).

By (41) we have b(ϕ ′) = BT(N)(ϕ ′). Since b ′ ։η b then b ′(ϕ) := λz0 . . . zT(ϕ)−1.z, where
z is the i-th variable of η-expansion λ-abstracted at the node b ′(ϕ ′). Here in particular the
number of those λ-abstracted zi’s is T(ϕ) because (40) says that b ′(ϕ) = BT(M)(ϕ), hence
the number of children of the node b ′(ϕ) is supposed to be

⌈
BT(M)

⌉
(ϕ) = T(ϕ).

It is clear that up to α-conversion b ′(ϕ) = BT(N)(ϕ).

62



Case ϕ = ϕ ′. i ∈ dom(T) − dom(BT(N)) and ϕ ′ 6∈ dom(BT(N)). By Definition 1.4.1(4) we
have B(ϕ) = λyϕ0 . . . y

ϕ

T(ϕ)−1.yϕ ′

i .
As b ′ ։η b and ϕ ′ 6∈ dom(b), for certain b ′(ϕ ′) = λu0 . . . uT(ϕ ′)−1.u and b ′(ϕ) =

λv0 . . . vT(ϕ)−1.ui, where in particular

• the number of those ui’s is T(ϕ ′) because (40) says that b ′(ϕ ′) = BT(M)(ϕ ′), hence
the number of children of the node b ′(ϕ ′) is

⌈
BT(M)

⌉
(ϕ ′) = T(ϕ ′).

• the number of those vi’s is T(ϕ) because (40) says that b ′(ϕ) = BT(M)(ϕ), hence the
number of children of the node b ′(ϕ) is

⌈
BT(M)

⌉
(ϕ) = T(ϕ).

In the end up to α-conversion b ′(ϕ) = BT(N)(ϕ).

We prove that the equivalence generated by ⊑r is the equality of Böhm trees.

Lemma 3.2.6. Let M,N ∈ Λ. Then M⊑rN and N⊑rM if and only if BT(M) = BT(N).

Proof. The right-to-left implication is trivial. Let us prove the other one.
By hypothesis there are A,B ∈ ΛB such that BT(M) 6⊥A։։η BT(N) 6⊥B։։η BT(M) .

By Lemma 1.4.7 there exists B ′ ∈ ΛB such that A 6⊥ B
′ ։։η B. Diagrammatically, using

the notation in the statement of Lemma 1.4.7, we have the following situation

BT(M) A B ′

BT(N) B

BT(M)

6⊥ 6⊥

6⊥ (42)

The fact that BT(M) 6⊥ B
′ implies

⌈
B ′

⌉
=

⌈
BT(M)

⌉
. From B ′ ։։η BT(M) we get then

B ′ =
(

BT(M) ;
⌈
B ′

⌉ )
=

(
BT(M) ;

⌈
BT(M)

⌉ )
= BT(M) . It is then clear that all the trees in

(42) are in fact BT(M). In particular BT(N) = BT(M).

Lemma 3.2.7. Let D be an rgm. Let M,N ∈ Λ. Then M ⊑rN implies M ⊑DN.

Proof. By Theorem 3.2.5 for every a ∈ BT(M)∗ there exists b ∈ BT(N)∗ such that a 6 r b .
This means that a 6⊥ b

′ ։η b for a certain b ′ ∈ N. For every rgm D we have then [[a]] ⊆

[[b ′]] ⊆ [[b]], the last inclusion in particular given by Lemma 2.4.11 (η-subject reduction). In
the end, using Theorem 2.6.5 (Böhm Approximation), we get

[[
M

]]
=

⋃

a∈BT(M)∗

[[
a
]]
⊆

⋃

b∈BT(N)∗

[[
b
]]

=
[[
N
]]

that is M ⊑DN .

Lemma 3.2.7 has the following relevant consequence. As soon as one finds an rgm induc-
ing a preorder included in ⊑r, two things can be concluded at once:
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• such rgm induces exactly the preorder ⊑r , because its preorder also includes ⊑r ;

• the preorder ⊑r is actually the minimal one represented by the class of rgm’s, because
no rgm can induce a strictly smaller preorder.

Now E is such an rgm. So basically what we need to show is the implication

M ⊑E N =⇒ M ⊑r N for all M,N ∈ Λ .

A fact that greatly facilitates the proof is that M⊑EN implies M ⊑H∗N by Corollary 2.6.8,
hence a - BT(N) for all a ∈ BT(M)∗ by Proposition 1.3.9.

The whole § 3.3 below is devoted to the proof of the following technical lemma.

Lemma 3.2.8. Let B ∈ ΛB and a ∈ N such that [[a]]E ⊆
⋃
b∈B∗ [[b]]E and a - B. Then there exists

b ∈ B∗ such that a 6 r b.

Lemma 3.2.9. Let M,N ∈ Λ. Then M ⊑EN implies M ⊑rN.

Proof. We prove that M ⊑rN using the characterization 2 given in Theorem 3.2.5. So let us
consider an a ∈ BT(M)∗ and show that there exists b ∈ BT(N)∗ such that a 6 r b.

By Theorem 2.6.5 (Böhm Approximation) and the hypothesis M ⊑EN we get
⋃

a∈BT(M)∗

[[a]]E = [[M]]E ⊆ [[N]]E =
⋃

b∈BT(N)∗

[[b]]E .

In particular

[[a]]E ⊆
⋃

b∈BT(N)∗

[[b]]E . (43)

By Corollary 2.6.8, the hypothesis [[M]]E ⊆ [[N]]E entails M⊑H∗N. So by Proposition 1.3.9

a - BT(N) . (44)

As (43) and (44) hold, Lemma 3.2.8 gives an approximant b ∈ BT(N)∗ such that a 6 r b.

Theorem 3.2.10. 1. The preorder Th⊑(E) is ⊑r, namely [[M]]E ⊆ [[N]]E if and only if M ⊑rN.

2. The λ-theory Th(E) is B, that is [[M]]E = [[N]]E if and only if BT(M) = BT(N).

Proof. (1) The left-to-right implication is Lemma 3.2.9. The other is given by Lemma 3.2.7.
(2) By Point 1 we have [[M]]E = [[N]]E if and only ifM ⊑rN andN ⊑rM. This is equivalent

to BT(M) = BT(N) because of Lemma 3.2.6.

The result here below provides and answer to Question 4 in the introduction.

Corollary 3.2.11. 1. The preorder ⊑r is the minimal preorder theory induced by any rgm.

2. The λ-theory B is the minimal λ-theory induced by any rgm.
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Proof. (1) By Theorem 3.2.10(1) there is an rgm that induces ⊑r . By Lemma 3.2.7 there
cannot be one inducing a preorder strictly lower than ⊑r .

(2) By Theorem 3.2.10(2) there is an rgm that induces B . By Theorem 2.6.6(2) there cannot
be one inducing a λ-theory strictly lower than B.

It is worth noticing that, even when proved to exist, the minimal preorder or λ-theory
represented by a given semantics is not always cleanly characterized as in Corollary 3.2.11.
For example, Bucciarelli and Salibra proved the existence of a minimal λ-theory represented
by graph models in [BS08], but they did not provide a characterization of this λ-theory.

Corollary 3.2.12. There is no rgm D such that Th⊑(D) is ⊑B.

Proof. By Corollary 3.2.11(1), since ⊑B is strictly included in ⊑r (see Examples 3.2.4).

According to Corollary 3.2.12, from the point of view of the preorder theories there is no
rgm that corresponds to Engeler’s E, i.e. the graph model inducing ⊑B (nor to Plotkin’s
Tω [Plo78], another model known to induce the preorder ⊑B , as proved in [BL80] ).

We can also answer Question 3 in the introduction. A long-standing open problem in
denotational semantics is whether there exists a model of the untyped λ-calculus induc-
ing the minimal sensible λ-theory, called H in § 1.2. Since H ⊂ B, as a consequence of
Corollary 3.2.11(2) the class of rgm’s does not help us to solve the problem.

Corollary 3.2.13. There is no rgm D such that Th(D) is the minimal sensible λ-theory H.

3.3 semantic separation of approximants through r-separators

This section is devoted to the proof of Lemma 3.2.8. It is proved in contrapositive form:
given an approximant a and a Böhm-like tree B such that a - B and a 66 r b for all b ∈ B∗,
we show that [[a]]E 6⊆

⋃
b∈B∗ [[b]]E. This means to find a pair (Γ ,σ) ∈ EnvE × TE such that

Γ ⊢ a : σ is derivable whereas for all b ∈ B∗ the sequent Γ ⊢ b : σ is not, written Γ 6⊢ b : σ.
Let us give the intuition behind the next definition. We are in the following situation. On

one side, by hypothesis a - B, i.e. there is b ∈ B∗ such that a - b. This means that

for every position ϕ ∈ dom(a)∩ dom(b) such that aϕ 6= ⊥ we have aϕ ∼ bϕ . (fact 1)

On the other side a 66 r b, which means that

however we η-expand b into some b ′ we have a 66⊥b
′ . (fact 2)

One can realize that (fact 1) and (fact 2) are compatible with each other only if there is
a position ϕ such that a(ϕ) 6= ⊥ and the node b(ϕ) has a number of λ-abstraction strictly
greater than the one of a(ϕ). For instance, consider a,b ∈ N depicted in Figure 5. In this
example such a position is ϕ := 〈0, 0〉. Indeed aϕ = u ∼ λv.uv = bϕ, but at the same
time b(ϕ) = λv.u has one λ-abstraction more than a(ϕ) = u . Definition 3.3.1 here below
captures this idea.
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a
q

λ x.y

z

u

⊥

b
q

y

z

λ v.u

v

Figure 5: Example of finite approximants with an r-separator.

Definition 3.3.1. Let a ∈ N and B ∈ ΛB. Let ϕ ∈ N∗ such that ϕ ∈ dom(a) ∩ dom(B) and
aϕ = λx1 . . . xn.xa1 · · ·am for some n,m ∈ N. The sequence ϕ is an r-separator for a from
B if and only if there exists b ∈ B∗ such that

bϕ = λx1 . . . xn ′ .xbϕ.1 · · ·bϕ.m ′ where m−n = m ′ −n ′ and n ′ > n .

The r-separator ϕ is minimal if it has minimal length |ϕ | among r-separators for a from B.

Remark 3.3.2. Clearly if a position ϕ is an r-separator for a from B then a 6= ⊥ and B 6= ⊥.

Lemma 3.3.3. Let x ∈ Var and a ∈ N such that a - x. Then a 6 r x.

Proof. We prove the existence of some e ∈ N such that a 6⊥ e։η x by induction on a.
If a = ⊥ it is enough to take e := x.
Let a = λx1 . . . xn.xa1 · · ·am for some n,m ∈N. Since a - x then n−m = 0 and ai - xi

for all i ∈ {1, . . . ,n}. By IH for all i ∈ {1, . . . ,n} there exists ei ∈ N such that ai 6⊥ ei ։η xi.
We take e := λx1 . . . xn.x e1 · · · en. So we get

a = λx1 . . . xn.xa1 · · ·an
6⊥ λx1 . . . xn.x e1 · · · en
։η λx1 . . . xn.x x1 · · · xn ։η x

which was to be proved.

Lemma 3.3.4. Let a ∈ N and B ∈ ΛB such that a - B and a 66 r b for all b ∈ B∗. Then there
exists an r-separator for a from B.

Proof. We proceed by induction on a. Remark that a 6= ⊥, otherwise a 6 r b for all b ∈ B∗.
So there are x ∈ Var and n,m ∈N such that

a = λx1 . . . xn.xa1 · · ·am (45)

for some a1, . . . ,am ∈ N.
By hypothesis a - B, i.e. a - b for some b ∈ B∗. Consequently B 6= ⊥, as a 6- ⊥. So there

are y ∈ Var and n ′,m ′ ∈ N such that B = λx1 . . . xn ′ .yB1 · · ·Bm ′ for some B1, . . . ,Bm ′ ∈

ΛB.
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By hypothesis a - B, i.e. there exists b = λx1 . . . xn ′ .xb1 · · ·bm ′ ∈ B∗ such that a - b.
Thus in particular y = x and

n ′ −m ′ = n−m . (46)

Two cases must be considered.
Case n ′ > n. In such a case ε is an r-separator for a from B, and we are done.
Case n > n ′ (hence m > m ′). Firstly, we prove that there exists i ∈ {1, . . . ,m ′} such that
ai 66 r c for all c ∈ B∗

i . By contradiction, let us suppose that for all i ∈ {1, . . . ,m ′} there exists
ci ∈ B

∗
i such that ai 6 r ci, i.e.

ai 6⊥ di ։η ci (47)

for some di ∈ N. Let

c := λx1 . . . xn ′ .x c1 · · · cm ′ ∈ B∗. (48)

Let i ∈ {1, . . . ,m−m ′}. Since a - b, we have am ′+i - xn ′+i. Therefore am ′+i 6 r xn ′+i

by Lemma 3.3.3. This means that there exists ei ∈ N such that

am ′+i 6⊥ ei ։η xn ′+i . (49)

In the end we have

a = λx1 . . . xn xn ′+1 . . . xn ′ .xa1 · · ·am ′ am ′+1 · · ·am by (45)

6⊥ λx1 . . . xn ′ xn ′+1 . . . xn ′ .xd1 · · ·dm ′ e1 · · · em−m ′ by (47) and (49)

։η λx1 . . . xn ′ xn ′+1 . . . xn ′ .x c1 · · · cm ′ xn ′+1 · · · xn ′+(m−m ′) by (47) and (49)

= λx1 . . . xn ′ xn ′+1 . . . xn ′ .x c1 · · · cm ′ xn ′+1 · · · xn by (46)

։η λx1 . . . xn ′ .x c1 · · · cm ′ by η-rule

= c by (48)

Hence a 6 r c. But c ∈ B∗, so by hypothesis a 66 r c, and we are in contradiction.
We have proved the existence of an i ∈ {1, . . . ,m ′} such that ai 66 r c for all c ∈ B∗

i .
Moreover from a - b we get ai - bi. So the IH can be applied to ai and Bi. There is an
r-separator ϕ ∈N∗ for ai from Bi. Then clearly 〈i− 1〉ϕ is an r-separator for a from B.

Remember from Definition 3.1.1 that the atoms of E are named α0,α1, . . . ,αn, . . .

Definition 3.3.5. Let σ ∈ TE. Then σ terminates in αn whenever σ = µ1 → · · · → µk → αn
for some k ∈N and µ1, . . . ,µk ∈ IE.

Notation. For any h ∈N and σ ∈ TE we write ωh → σ for the type
h times

︷ ︸︸ ︷
ω → . . . → ω → σ.

Lemma 3.3.6. Let a ∈ N and B ∈ ΛB such that a - B. Suppose there is an r-separator for a from
B. Then there is (Γ ,σ) ∈ EnvE ×TE such that Γ ⊢ a : σ is derivable and Γ 6⊢ b : σ for all b ∈ B∗.

Proof. Let ϕ be a minimal r-separator for a from B. We do an induction loading, by proving:
there exists (Γ ,σ) ∈ EnvE ×TE such that
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1. Γ ⊢ a : σ is derivable,

2. Γ 6⊢ b : σ for all b ∈ B∗,

3. the type σ terminates in α|ϕ| ,

4. for all x ∈ Var and for all γ ∈ Γ(x) the type γ terminates in αt for a natural number t 6 |ϕ| .

Remember from Remark 3.3.2 that a 6= ⊥ and B 6= ⊥. Let a = λ x1 . . . xn.xa1 · · ·am for
some n,m ∈N. We proceed by induction on |ϕ| .

Base. Let |ϕ| = 0, i.e. ϕ = ε. Since a = aε, by Definition 3.3.1 there is b ∈ B∗ such that

b = bε = λx1 . . . xn ′ .xb1 · · ·bm ′ (50)

where n ′ −m ′ = n−m and n ′ > n . More than this: in fact, every b ∈ B∗ − {⊥} has the
form (50) for some appropriate approximants bi’s.

Consider the deduction

x : ωm→ α0 ⊢ x : ω
m→ α0

x : ωm→ α0 ⊢ xa1 . . . am : α0 (51)

We distinguish two cases, depending on whether x is free or not in a.

• If x 6= xi for all i ∈ {1, . . . ,n}, then from (51) we derive x : ωm→ α0 ⊢ a : ωn→ α0 . In
such a case we set Γ := x : ωm→ α0 and σ := ωn→ α0 .

• If there exists k ∈ {1, . . . ,n} such that x = xk we derive from (51) the sequent
⊢ a : ωk−1 →

(
ωm→ α0

)
→ ωn−k→ α0 . In this case we take Γ to be the empty

environment and σ := ωk−1 →
(
ωm→ α0

)
→ ωn−k→ α0 .

In both cases the pair (Γ ,σ) clearly satisfies Conditions 1, 3 and 4.
Let us check Condition 2. Obviously Γ 6⊢ ⊥ : σ. As regards every b ∈ B∗ − {⊥} , such a b

has the form (50). Then Γ 6⊢ b : σ, since the number n of arrows in σ is strictly lower than
the number n ′ of λ-abstractions appearing in (50).

Step. Let |ϕ| > 0, i.e. ϕ = 〈k〉ψ for some ψ ∈N∗ and some k ∈N.
Since a - B, there is b ∈ B∗ such that a - b, namely

b = λ x1 . . . xn ′ .xb1 . . . bm ′ (52)

with n ′−m ′ = n−m and ai - bi for all i ∈
{
1, . . . , max(m,m ′)

}
. In fact, every b ∈ B∗− {⊥}

has the form (52) for some appropriate approximants bi’s.
The path ε has length |ε| = 0 < |ϕ|. By minimality of ϕ as an r-separator, ε is not an

r-separator from a to B. Hence n ′ 6 n (and m ′ 6 m).
Notice that k 6 min(m,m ′) = m ′, since ϕ ∈ dom(a) ∩ dom(B) by Definition 3.3.1. The

fact that ϕ = 〈k〉ψ is a minimal r-separator for a from B = λx1 . . . xn ′ .xB1 . . . Bm ′ entails
that ψ is a minimal r-separator for ak from Bk. Also, ak - Bk, because ak - bk. As
|ψ | < |ϕ| the IH can be applied to ak and Bk. Therefore there exists

(
Γ̃ , σ̃

)
∈ EnvE × TE

such that
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i. Γ̃ ⊢ ak : σ̃ is derivable,

ii. Γ̃ 6⊢ c : σ̃ for all c ∈ B∗
k ,

iii. the type σ̃ terminates in α|ψ| ,

iv. for all x ∈ Var and for all γ ∈ Γ̃(x) the type γ terminates in αt for a t 6 |ψ| .

We type a as follows:

x : ωk−1→ σ̃→ ωm−k→ α|ϕ| ⊢ x : ω
k−1→ σ̃→ ωm−k→ α|ϕ| Γ̃ ⊢ ak : σ̃

Γ̃ ∧
(
x : ωk−1→ σ̃→ ωm−k→ α|ϕ|

)
⊢ xa1 . . . am : α|ϕ|(

Γ̃ ∧
(
x : ωk−1→ σ̃→ ωm−k→ α|ϕ|

))
−
(
x1 : µ1, . . . , xn : µn

)
⊢ a : µ1 → · · · → µn → α|ϕ|

where for all i ∈ {1, . . . ,n} we are setting µi :=
(
Γ̃ ∧

(
x : ωk−1→ σ̃→ ωm−k→ α|ϕ|

))
(xi) .

We take σ := µ1 → · · · → µn → α|ϕ| and

Γ :=
(
Γ̃ ∧

(
x : ωk−1→ σ̃→ ωm−k→ α|ϕ|

))
−
(
x1 : µ1, . . . , xn : µn

)
.

It is immediate to check that the pair (Γ ,σ) satisfies Conditions 1, 3 and 4.
Let us prove Condition 2.
By way of contradiction suppose there is b ∈ B∗ such that Γ ⊢ b : σ . The case b = ⊥ is

impossible, since ⊥ is not typable. So b 6= ⊥. Remember that in such a case b has the form
displayed in (52). Since n ′ 6 n, by Lemma 2.3.12(2) a deduction of Γ ⊢ b : σ can only come
from a deduction of the sequent

∆ ⊢ xb1 . . . bm ′ : µn ′+1 → · · · → µn → α|ϕ| (53)

where

∆ :=
(
Γ̃ ∧

(
x : ωk−1→ σ̃→ ωm−k→ α|ϕ|

) )
−
(
xn ′+1 : µn ′+1, . . . , xn : µn

)
. (54)

(Remark that in (54) we write := rather than ≃ because in E the equivalence of types is
just the equality of types.)

Notice that, as a - B, the variable x is either none of the variables in
{
x1, . . . , xmax(n,n ′)

}
=

{
x1, . . . , xn

}
or it is in

{
x1, . . . , xmin(n,n ′)

}
=

{
x1, . . . , xn ′

}
.

We keep on backtracking a deduction by means of the Inversion Lemma. In particular
by Lemma 2.3.12(3) in any deduction of the sequent (53) the type of the variable x in head
position must terminate in α|ϕ|. Such type cannot be one in Γ̃(x), because all types in there
terminate in αt for t 6 |ψ | < |ϕ| by Point iv of the IH. So, looking at (54) one realizes that
such a type can only be ωk−1→ σ̃→ ωm−k→ α|ϕ|.

From n ′ −m ′ = n−m and k 6 m ′ one gets n−n ′ = m−m ′ 6 m− k . Hence

ωk−1→ σ̃→ ωm−k→ α|ϕ| = ωk−1→ σ̃→ ωm−k−(m−m ′)→ ωm−m ′
→ α|ϕ|

= ωk−1→ σ̃→ ωm−k−(m−m ′)→ ωn−n
′
→ α|ϕ| . (55)
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The fact that the haed variable x is typed with the type in (55) implies that each of those
n−n ′ intersections µi’s in (53) must be ω. This assures us that actually

∆ = Γ̃ ∧
(
x : ωk−1→ σ̃→ ωm−k→ α|ϕ|

)
.

In the end the only possible deduction of (53) is

x : ωk−1→ σ̃→ ωm−k→ α|ϕ| ⊢ x : ω
k−1→ σ̃→ ωm−k→ α|ϕ| Γ̃ ⊢ bi : σ̃

Γ̃ ∧
(
x : ωk−1→ σ̃→ ωm−k→ α|ϕ|

)
⊢ xb1 . . . bm ′ : ωn−n

′
→ α|ϕ|

whereas Γ̃ 6⊢ bi : σ̃ by Point ii of the IH. This contradiction proves Condition 2.

We can finally prove Lemma 3.2.8 used in the previous section.

Proof of Lemma 3.2.8. Let B ∈ ΛB and a ∈ N such that and a - B. Let us suppose that
a 66 r b for all b ∈ B∗. We must prove that [[a]]E 6⊆

⋃
b∈B∗ [[b]]E. By Lemma 3.3.4 there

exists an r-separator for a from T . By Lemma 3.3.6 we have (Γ ,σ) ∈ EnvE × TE such that
(Γ ,σ) ∈ [[a]]E whereas (Γ ,σ) 6∈ [[b]]E for all b ∈ B∗.

3.4 a fully abstract relational graph model for H∗

Beside E, the only other rgm previously appeared in literature was introduced by Bucciarelli,
Ehrhard and Manzonetto in [BEM07]. It was further studied in [Man09, BEM12] and also
analyzed from the linear logic perspective in [Ehr12]. The model went by the name of D in
those articles, but here we prefer to rename it D ′.

Notation. Let X be a set.

• We denote by Mf(X)
(ω) the set of all sequences of elements of Mf(X) equal to the

empty multiset [ ] from a certain point on. In other words, an element of Mf(X)
(ω) is

a sequence (mn)n∈N where mn ∈ Mf(X) and there exists k ∈ N such that mn = [ ]

for all n > k.

• We call ⊛ the sequence constantly equal to the empty multiset, i.e.
(
[ ], [ ], . . . , [ ], . . .

)
.

Obviously ⊛ ∈Mf(X)
(ω) for every set X.

• For all s ∈ Mf(X)
(ω) and for all m ∈ Mf(X) we denote by m : : s the sequence

obtained from s by adding m as its first element. More explicitly, m : : (mn)n∈N is
the function mapping 0 7→ m and n+ 1 7→ mn for all n ∈ N. We assume that the
operator : : associates to the right. In particular each (mn)n∈N ∈ Mf(X)

(ω) has the
form m1 : : m2 : : · · · : : mp : : ⊛ for some p ∈N.

Definition 3.4.1 ([BEM07]). The triple D ′ = (D ′, Abs ′, App ′) consists of the following.

• Firstly, by induction on n ∈N we define:

– D ′
0 := ∅ ,

– D ′
n+1 := Mf

(
D ′
n

)(ω) .
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Then we set
D ′ :=

⋃

n∈N

D ′
n .

• Abs ′ :=
{([

(m, s)
]

, m : : s
)
| m ∈Mf(D

′) and s ∈ D ′
}

∈ MRel
(
Mf(D

′)×D ′ , D ′
)

.

• App ′ :=
{([

m : : s
]

, (m, s)
)
| m ∈Mf(D

′) and s ∈ D ′
}

∈ MRel
(
D ′ , Mf(D

′)×D ′
)

.

Notice that D ′
1 = {⊛ } . ( In fact we could have started the sequence (Dn)n directly from

{⊛ } , instead of ∅ .) So intuitivelyD ′ is the hierarchy of elements of Mf(D
′)(ω) built up start-

ing from ⊛ . It may be worth remarking that D ′
2 is basically the set of the finite sequences

of natural numbers, if one thinks every natural number n represented as [⊛ , . . . , ⊛
︸ ︷︷ ︸
n times

] .

It is straightforward to check App ′ ◦ Abs ′ =
{([

(m, s)
]

, (m, s)
)
| m ∈ Mf(D

′), s ∈ D ′
}
=

idMf(D
′)×D ′ and Abs ′ ◦ App ′ =

{([
m : : s

]
, m : : s

)
| m ∈ Mf(D

′), s ∈ D ′
}
=

{(
[s] , s

)
| s ∈

D ′
}
= idD ′ , hence D ′ is an extensional reflexive object in MRel.

It is even easiest to realize that D ′ is an ergm, if one see it as the pair
(
D ′ , − : : −

)
.

Theorem 3.4.2 ([Man09]). The model D ′ is fully abstract for ⊑H∗ , i.e. its induced preorder theory
is ⊑H∗ . In particular it is fully abstract for H∗, meaning that its induced λ-theory is H∗.

Corollary 3.4.3. The λ-theory H∗ is the maximal λ-theory induced by any rgm.

Proof. By Theorem 3.4.2 the theory H∗ is induced by some rgm. By Theorem 2.6.7 any other
λ-theory induced by an rgm is sensible, so it cannot properly include the maximal sensible
λ-theory H∗.

Despite being an rgm, the model D ′ does not look like one defined by completion of a
partial pair, i.e. the kind of rgm whose basic equations are easy to write down and study. In
the rest of this section we reformulate D ′ as such an rgm D∗, built by completion upon one
single atom ∗ and one single basic equation ∗ ≃ ω→ ∗ .

Definition 3.4.4. We call D∗ the rgm obtained as the completion

D∗ :=
(
{∗} , j

)

where ∗ is not a pair and j : Mf
(
{∗}

)
× {∗} ⇀ {∗} is defined just by j

(
[ ] , ∗

)
:= ∗ .

Lemma 3.4.5. The rgm D∗ is extensional.

Proof. By Proposition 2.2.8, since the partial pair ({∗}, j) is extensional, i.e. j is surjective.

Lemma 3.4.6. In D∗ the equivalence ∗ ≃ ω→ ∗ holds.

Proof. By Definition 2.3.3 we have ∗ ≃ ω→ ∗ if and only if ∗⋄ = (ω→ ∗)⋄, which is true
since ∗ = ∗⋄ = (ω→ ∗)⋄ = j([ ], ∗⋄) = j([ ], ∗) = j([ ], ∗) = ∗ .
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So more informally, D∗ is the ergm built upon one single atom ∗ and the only basic
equational identification

∗ ≃ ω → ∗ .

It is then clear that for all k ∈N one has

∗ ≃

k times
︷ ︸︸ ︷
ω → · · · → ω → ∗ ,

as formalized in the next lemma.

Proposition 3.4.7. Let σ ∈ TD∗ . Then γ ≃ ∗ if and only if γ is generated by the grammar

γ ::= ∗ | ω→ γ .

In particular µ→ σ ≃ ∗ implies that µ = ω and σ ≃ ∗ .

Proof. The right-to-left implication is given by a trivial induction on the grammar:

• the type ∗ is equivalent to itself;

• if γ ≃ ∗ by IH, then ω→ γ ≃ ω→ ∗ ≃ ∗ (by Lemma 3.4.6).

The left-to-right implication is given by the following induction on γ.

• Since AtD∗ = {∗} by Proposition 2.2.10, whenever γ ≃ ∗ is an atom we have γ = ∗ .

• Let γ = µ→ σ ≃ ∗ . This means that j(µ⋄,σ⋄) = (µ→ σ)⋄ = ∗⋄ = ∗ . Since j is surjec-
tive by Lemma 3.4.5 and j([ ] , ∗) = j([ ] , ∗) = ∗ by Definition 4.4.1, the pair (µ⋄,σ⋄)
must be ([ ], ∗). So µ = ω and σ ≃ ∗ , which was to be proved. �

By Proposition 2.2.2 the reflexive object associated with D∗ is
(
{∗} , j

†
,
(
j−1

) † )
. For

convenience we rename it as
(
D , Abs , App

)
, i.e. D := {∗} , Abs := j

†
and App :=

(
j−1

)†
.

In the rest of the section we prove the equivalence between D ′ and D∗. At this purpose,
remember the notion of isomorphism between reflexive objects in a cartesian closed cate-
gory, given in Definition 1.2.3, and the sufficient condition for extensional reflexive objects
provided by Lemma 1.2.5.

Definition 3.4.8. The function f : D → D ′ is defined by induction on the rank of elements
of D as follows:

• f(∗) := ⊛ ,

• f
([
d1, . . . ,dn

]
,d

)
:=

[
f(d1), . . . , f(dn)

]
: : f(d) .

Remember that ([ ], ∗) 6∈ D, since ([ ], ∗) ∈ dom(j). So we are avoiding the eventuality
f([ ], ∗) = [ ] : : f(∗) = [ ] : : ⊛ = ⊛ = f(∗). This idea is behind the proof of the injectivity of f.

Lemma 3.4.9. The function f : D→ D ′ is injective.
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Proof. Let d,d ′∈ D such that d 6= d ′. Let k (respectively k ′) be the minimal natural number
such that d ∈ Dk (respectively d ′∈ D ′

k). We show f(d) 6= f(d ′) by induction on n := k+ k ′.
Notice that n >0, for if n = k = k ′= 0 then d,d ′∈D0 = {∗}, against the hypothesis d 6=d ′.

Case n = 1. One between k and k ′ is 0 and the other is 1. Say, k = 0 and k ′ = 1. Then
d ∈ D0 = {∗} , namely d = ∗. Whereas d ′ ∈ D1 implies that d ′ =

(
[ ∗, . . . , ∗ ], ∗

)
. In particular

that [ ∗, . . . , ∗ ] has multiplicity ℓ > 0, because ([ ], ∗) 6∈ D by Definition 3.4.4. So we get

f(d ′) = f
(
[ ∗, . . . , ∗
︸ ︷︷ ︸
ℓ times

], ∗
)
= [ f(∗), . . . , f(∗)

︸ ︷︷ ︸
ℓ times

] : : f(∗) = [⊛, . . . ,⊛
︸ ︷︷ ︸
ℓ times

] : : ⊛ 6= [ ] : : ⊛ = ⊛ = f(∗) = f(d) .

Case n > 1. At least one between k and k ′ must be greater than 0. Say, k > 0. The fact that
d 6∈ Dk−1 for some k− 1 > 0 assures that d 6= ∗ . So d = (m, e) for m ∈ Mf(Dk−1) and
e ∈ Dk−1. As concerns d ′, there are two eventualities. If it has the form d ′ = (m ′, e ′) then
f(d ′) = f(m ′) : : f(e ′). If d ′ = ∗ then f(d ′) = f(∗) = ⊛ = [ ] : : f(∗). In the latter case let us set
e ′ := ∗. So it is clear that in both eventualities we can write f(d ′) = m̃ : : f(e ′) for a certain
m̃ ∈Mf(D) and some e ′∈ Dk ′−1. Since k− 1+ k ′ − 1 < k+ k ′ = n we can apply the IH to
e and e ′, so to get f(e) 6= f(e ′). Therefore f(d) = f(m) : : f(e) 6= m̃ : : f(e ′) = f(d ′).

Lemma 3.4.10. The function f : D→ D ′ is surjective.

Proof. Take d ′ ∈ D ′. Let n be the minimal natural number such that d ′ ∈ D ′
n. Notice that

n > 0, as D ′
0 = ∅. We prove the existence of d ∈ D such that f(d) = d ′ by induction on n.

Case n = 1. We have d ′ ∈ D1 = {⊛ }. So we take d := ∗ , since f(∗) = ⊛.
Case n > 1. Let d ′ = m1 : : m2 : : · · · : : mp : : ⊛ ∈ D ′

n with mp 6= [ ]. Notice that p > 0
because d ′ 6= ⊛, since ⊛ ∈ D ′

1 whereas the minimal n such that d ′ ∈ D ′
n is not 1. In

particular let mi =
[
d ′
i1, . . . ,d ′

iki

]
for all i ∈ {1, . . . ,p}.

For all i ∈ {1, . . . ,p} and j ∈ {1, . . . ,ki} let us call nij the minimal natural number such that
d ′
ij ∈ D

′
nij

. It is clear that nij 6 n− 1. So by IH there exists dij ∈ D such that f(dij) = d ′
ij.

We set d :=
( [
d11, . . . ,d1k1

]
,
( [
d21, . . . ,d2k2

]
, · · ·

( [
dp1, . . . ,dpkp

]
, ∗

)
· · ·

) )
.

The fact that kp > 0 assures that d ∈ D (remember that ( [ ] , ∗ ) is not an element
of D by the free completion given in Definition 3.4.4). By Definition 3.4.8 finally f(d) =[
f(d11), . . . , f(d1k1)

]
: : · · · : :

[
f(dp1), . . . , f(dpkp)

]
: : f(∗) = m1 : : · · · : : mp : : ⊛ = d ′.

Corollary 3.4.11. The morphism f †∈MRel(D,D ′) is an isomorphism in MRel.

Proof. The function f : D → D ′ is a bijection by Lemmas 3.4.9 and 3.4.10. Then the relation
f †⊆Mf(D)×D ′ is an isomorphism in MRel because of Lemma 2.1.1.

Lemma 3.4.12. The morphism f †∈MRel(D,D ′) makes

D⇒D D

[
D ′⇒D ′

]
D ′

Abs

[
f †

−1
⇒f †

]
f †

Abs ′

commute.

Proof. Remember from § 1.2 that given a Seely category S and two morphisms in its co-
Kleisli g ∈ Kl !(S)

op(A,A ′) = Kl !(S)(A
′,A) = S

(
!A ′,A

)
and h ∈ Kl !(S)

(
B,B ′

)
= S

(
!B,B ′

)
,

then g⇒ h is the composition of arrows in S

!(!A⊸B) !A⊸B !A⊸ !B !!A ′⊸B ′ !A ′⊸B ′ .
der!A⊸B

prom
A,B !g⊸h der!A′ ⊸B ′
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We are interested in the case where S = Rel, hence Kl !(S) = KlMf(Rel) = MRel, the arrow

g ∈ Kl !(S)
op(A,A ′) is

(
f †
)−1
∈ MRelop(D,D ′) = MRel(D ′,D) = P(Mf(D

′)×D) and the
arrow h ∈ Kl !(S)(B,B ′) is f †∈MRel(D,D ′) = P(Mf(D)×D ′).

We have f † =
{(

[d],d ′
)
| f(d) = d ′

}

and
(
f †
)−1

=
{(

[d ′],d
)
| f(d) = d ′

}

. Hence

Mf

((
f †
)−1)

=
{([[

d ′
1

]
, . . . ,

[
d ′
n

]]
,
[
d1, . . . ,dn

]) ∣∣ n ∈N and f(di) = d
′
i for all i

}

⊆ Mf
(
Mf

(
D ′

))
× Mf

(
D
)

and

Mf

((
f †
)−1)

⊸ f † = Mf

((
f †
)−1)⊥

` f † = Mf

((
f †
)−1)−1

× f † =
{([

d1, . . . ,dn
]

,
[[
d ′
1

]
, . . . ,

[
d ′
n

]]) ∣∣ n ∈N and f(di) = d
′
i for all i

}

× f † =
{(([

d1, . . . ,dn
]
, [d]

)
,
([[
d ′
1

]
, . . . ,

[
d ′
n

]]
,d ′

)) ∣∣ n ∈N, f(d) = d ′, f(di) = d ′
i for all i

}

=
{(([

d1, . . . ,dn
]
, [d]

)
,
([[
f(d1)

]
, . . . ,

[
f(dn)

]]
, f(d)

)) ∣∣ n ∈N,d,d1, . . . ,dn ∈ D
}

⊆
(
Mf

(
D
)
×Mf

(
D
))
×
(
Mf

(
Mf

(
D ′

))
×D ′

)
.

By pre-composing with promD,D ◦ der!D⊸D and post-composing with der!D ′ ⊸D ′ we get
[
f †

−1

⇒f †
]

=
{([([

d1, . . . ,dn
]
,d

)]
,
([
f(d1), . . . , f(dn)

]
, f(d)

)) ∣∣ n ∈N,d,di ∈ D
}

.

Remembering how Abs ′ is given in Definition 3.4.1, the lower side of our diagram is

Abs ′◦
[
f †

−1

⇒f †
]

=
{([([

d1, . . . ,dn
]
,d

)]
,
[
f(d1), . . . , f(dn)

]
: : f(d)

) ∣∣ n ∈N,d,di ∈ D
}

.

(56)

As concerns the upper side of the diagram, we have

Abs := j
†

=
{ ( [

(m,d)
]

, j(m,d)
)
| m ∈Mf(D) and d ∈ D

}

,

from which we get

f † ◦ Abs =
{([([

d1, . . . ,dn
]
,d

)]
, f

(
j
([
d1, . . . ,dn

]
,d

))) ∣∣ n ∈N,d,di ∈ D
}

. (57)

Our thesis is the equality between (56) and (57). Clearly it is enough to show that for every
n ∈N and d,d1, . . . ,dn ∈ D we have f

(
j
([
d1, . . . ,dn

]
,d

))
=

[
f(d1), . . . , f(dn)

]
: : f(d) .

We distinguish two cases.
Case n = 0 and d = ∗ . In this case j

([
d1, . . . ,dn

]
,d

)
= j

(
[ ], ∗

)
= ∗ by Definition 3.4.4.

Then using Definition 3.4.8 we obtain

f
(
j
([
d1, . . . ,dn

]
,d

))
= f(∗) = ⊛ = [ ] : : ⊛ = [ ] : : f(∗) =

[
f(d1), . . . , f(dn)

]
: : f(d) .

Case n > 0 or d 6= ∗. In this case j
([
d1, . . . ,dn

]
,d

)
=

([
d1, . . . ,dn

]
,d

)
by Definition 3.4.4.

So by Definition 3.4.8 we get

f
(
j
([
d1, . . . ,dn

]
,d

))
= f

([
d1, . . . ,dn

]
,d

)
=

[
f(d1), . . . , f(dn)

]
: : f(d)

which completes the proof.

74



Proposition 3.4.13. The morphism f † ∈ MRel(D,D ′) is an isomorphism of reflexive objects be-
tween (the reflexive object associated to) D∗ and D ′.

Proof. The fact that f † is an isomorphism in MRel is given by Corollary 3.4.11. Moreover D∗

is extensional by Lemma 3.4.5 and the diagram in the statement of Lemma 3.4.12 commutes.
Hence f † satisfies the hypothesis of Lemma 1.2.5.

Theorem 3.4.14. The rgm D∗ is fully abstract for H∗, namely Th(D∗) = H∗ .

Proof. By Proposition 3.4.13 and Theorem 1.2.4 we have [[M]]~xD∗
= [[N]]~xD∗

if and only if
[[M]]~xD ′ = [[N]]~xD ′ . So Th(D∗) = Th(D ′), which is H∗ by Theorem 3.4.2.
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4
T H E F U L L A B S T R A C T I O N P R O B L E M F O R M O R R I S ’ S P R E O R D E R

introduction

Looking for characterizations of observational equivalences can be a complicated task, no
matter what mathematical framework one has at hand. Relational semantics is not immune
to this problem. Consider for instance the relational model D ′ defined in § 3.4. It is fully
abstract for H∗, as proved in [Man09]. However, the proof of this fact relies on realizability
candidates, the tricky technique briefly recalled at the beginning of § 2.6.

In this and the next chapter we search for characterizations of Morris’s observability,
namely the preorder theory that we called ⊑H+ in § 1.3.

In order to be fully abstract for Morris’s preorder, an rgm must satisfy
[[
M

]]
⊆

[[
N
]]
⇐⇒ for all contexts C[ ] if C[M] has a β-nf then C[N] has a β-nf. (58)

The right-to-left implication is true for all extensional rgm’s. We prove this by exploiting
the notion of extensional Böhm tree BTe(−), which characterizes ⊑H+ as recalled in § 1.4.

The hard work is to find conditions on ergm’s giving the left-to-right implication in (58).
In this thesis we address the problem in two different ways. These two modus operandi
are not equally powerful. The stronger one — strong enough to catch all rgm’s inducing
Morris’s preorder theory — will be the subject of Chapter 5. In this chapter we use a more
conventional, but still interesting approach to the issue. Here is the idea in a nutshell. On
the one hand, ⊑H+ concerns β-normalization. On the other hand, we deal with [[−]] by
means of a type system. It seems then reasonable to look for rgm’s in which the notion of
β-normalizability can be characterized in terms of derivable sequents of the system. More
precisely, we find an infinite class of ergm’s D, which we call uniformly bottomless ergm’s,
satisfying for all M ∈ Λ something like this:

M has a β-nf ⇐⇒ there is (Γ ,σ) ∈ EnvD ×TD such that Γ ⊢D M : σ and P(Γ ,σ)

where P(−,−) is a certain property that only mentions typings. Roughly, the property
P(Γ ,σ) states a certain constraint on the occurrence of the empty intersection ω in Γ and σ.
In the end, assuming the hypothesis [[M]] ⊆ [[N]], one can get

C[M] has a β-nf ⇐⇒ there is (Γ ,σ) such that Γ ⊢ C[M] : σ and P(Γ ,σ)

=⇒ there is (Γ ,σ) such that Γ ⊢ C[N] : σ and P(Γ ,σ) (59)

⇐⇒ C[N] has a β-nf

where (59) is given by [[C[M]]] ⊆ [[C[N]]], an obvious consequence of [[M]] ⊆ [[N]].
So all uniformly bottomless ergm’s satisfy (58), i.e. they induce Morris’s preorder theory.

The simplest one among them is denoted by D⋆ and turns out to be built up from a single
atom ⋆ and the basic equation ⋆→ ⋆ ≃ ⋆ .
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The (categorical) semantic approach is not the only one possible when trying to reformulate
H+. At the end of this chapter we show what could be called a syntactic characterization of
H+. It relies on an ad hoc version of the Taylor expansion (§ 1.6) taking η-conversion into
account, and therefore called extensional Taylor expansion.

plan of the chapter . In § 4.1 we define the uniformly bottomless ergm’s. In § 4.2
we provide some examples. In § 4.3 we show that these ergm’s solve the full abstraction
problem for Morris’s preorder theory. In § 4.4 we take a look at the example of D⋆ , with a
particular attention to the role that the atom ⋆ plays in it. In § 4.5 we present the extensional
Taylor expansion of λ-terms, providing another model of Morris’s equivalence.

4.1 uniformly bottomless relational graph models

We need to formulate a certain notion of occurrence of the empty intersection ω in the
unfolding of types. Roughly, the fact that when a type σ is unfolded by means of ≃ so to
have a certain number k+ 1 of arrows

σ ≃ µ0 → · · · → µk → σ ′ (60)

then one of those µi’s is ω, or otherwise ω can be found by keeping unfolding deeper
and deeper some type inside one of those µi’s. The idea is formalized in Definition 4.1.1
below. This is done in fact in a slightly more general way than the informal description
above: firstly, the value called k in (60) will vary level by level of the unfolding; secondly, the
definition will also carry a notion of polarization of the occurrence of ω.

Notice that an unfolding like in (60) is always possible if the rgm is extensional. In fact, for
convenience all over this chapter we will always consider ergm’s, even when the hypothesis
of extensionality is not strictly necessary.

Definition 4.1.1. Let D be an ergm, f : N →N and σ ∈ TD . We define at the same time the
meaning of ω ∈− UNFnf (σ) and ω ∈+ UNFnf (σ) by mutual induction on n ∈N.

• We write ω ∈− UNFnf (σ) if and only if whenever σ ≃ µ0 → · · · → µf(n) → σ ′

there exists i ∈
{
0, . . . , f(n)

}
such that either µi = ω or there is τ ∈ µi such that

ω ∈+ UNFn+1f (τ) .

• We write ω ∈+ UNFnf (σ) if and only if whenever σ ≃ µ0 → · · · → µf(n) → σ ′ there
exist i ∈

{
0, . . . , f(n)

}
and τ ∈ µi such that ω ∈− UNFn+1f (τ) .

When ω ∈− UNF 0f(σ) we say that ω f-occurs negatively in σ, denoted by ω ∈−f σ . Similarly,
whenever ω ∈+ UNF 0f(σ) then ω f-occurs positively in σ, denoted by ω ∈+f σ .

For any µ ∈ ID we say that ω f-occurs negatively in µ, denoted by ω ∈−f µ , if there exists
σ ∈ µ such that ω ∈−f σ . Similarly one defines ω ∈+f µ .

Examples 4.1.2. Here are a couple of simple examples.

• In the rgm D∗ (Definition 3.4.4) we have ∗ ≃ ωk → ∗ for all k ∈ N, by Proposi-
tion 3.4.7. It is then clear that ω ∈−f ∗ for every f : N → N. If σ := ω → ω → ∗ → ∗

thenω ∈+f σ for every f : N →N such that f(0) = 2, since σ ≃ ω→ ω→ (ω→ ∗)→ ∗.
On the other hand, ω ∈−f σ for every f : N →N such that f(0) 6= 2.

78



• Consider the rgm
(
{α,β,γ} , j

)
with the partial map j defined by j([ ],α) := β and

j
([
β,β,γ

]
,γ

)
:= α . Since β ≃ ω→ α ≃ ω→ β∧ β∧ γ → γ we have ω ∈−f β for

every f : N → N such that f(0) = 0. Also ω ∈+f β for every f : N → N such that
f(0) = 1 and f(1) = 0. Since α ≃ β∧ β∧ γ → γ we can then state that ω ∈−f α for
every f : N →N such that f(0) = 0, f(1) = 1 and f(2) = 0.

Notations. We employ the following helpful notations.

• By the expression ω ∈p UNFnf (σ) we mean no matter which between ω ∈+ UNFnf (σ) and
ω ∈− UNFnf (σ). In other words, that apex p (standing for polarity) is always intended
to be an element of the set {+,−}.

• When f : N → N is a constant function, i.e. there is k ∈ N such that f(n) = k for all
n ∈N, we prefer to replace the pedex f with k in all the expression in Definition 4.1.1,
namely writing ω ∈p UNFnk (σ) , ω ∈pk σ, and so on.

Definition 4.1.1 is consistent, in the sense that the truth value associated to the expression
ω ∈p UNFnf (σ) is unique, because independent of how σ is unfolded using ≃D . In fact, not
only ω ∈p UNFnf (−) is a function on TD, but it can also be seen as a function on TD/ ≃

D.
This is formalized in Lemma 4.1.3 below.

Lemma 4.1.3. Let f : N →N. Let D be an ergm and σ,γ ∈ TD such that σ ≃ γ . Then ω ∈pf σ
if and only if ω ∈pf γ.

Lemma 4.1.4. Let f,g : N → N such that g(n) 6 f(n) for all n ∈ N. Let D be an ergm and
σ ∈ TD such that ω ∈pg σ . Then ω ∈pf σ.

Corollary 4.1.5. Let D be an ergm, σ ∈ TD and k ∈N. If ω ∈pk σ then ω ∈pk+1 σ.

Remark 4.1.6. One has ω ∈p UNFnk (σ) if and only if ω ∈p UNFn+1k (σ) .

Definition 4.1.7. Let D be an ergm and f : N →N. A type σ ∈ TD is f-bottomless if and only
if ω 6∈+f σ and ω 6∈−f σ. In particular if f is a constant function k we say that σ is k-bottomless.

We can now present the main notion of this chapter.

Definition 4.1.8. An ergm D is uniformly bottomless if and only if for all k ∈N there exists a
k- bottomless type σk ∈ TD.

In order to understand the concrete examples of uniformly bottomless ergm’s presented
in the next section, it may be useful to take into account also the following notion.

Definition 4.1.9. An ergm D is strongly bottomless if and only if for all f : N →N there exists
an f-bottomless type σ ∈ TD.

Proposition 4.1.10. A strongly bottomless ergm is uniformly bottomless.

Proof. Among all functions f : N →N there are in particular all the constant ones.
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4.2 examples

Let us see some examples of uniformly bottomless rgm’s.

Example 4.2.1. We call F the free completion

F := ( F, j )

of the partial pair (F, j) defined as follows. The elements of the denumerable family

F :=
{
∗
}
∪

{

βkn

}

n∈N,k6n

are pairwise distinct and are not pairs. The partial function j : Mf(F)× F ⇀ F maps

(
[ ] , ∗

)
7→ ∗ ,

for all n ∈N and 0 < k 6 n

([
βnn

]
, βk−1n

)
7→ βkn ,

for all n ∈N ([
βnn

]
, ∗

)
7→ β0n ,

and is undefined on any other (m,a) ∈Mf(F) × F.
The rgm F is extensional, since j is surjective. Notice that the total injection j maps

(
[ ] , ∗

)
7→ ∗

([
β00

]
, ∗

)
7→ β00([

β11
]

,
([
β11

]
, ∗

))
7→ β11

...
n+1 times

︷ ︸︸ ︷([
βnn

]
,
(([
βnn

]
,
(
· · ·

(([
βnn

]
, ∗

)
· · ·

)))
7→ βnn

...

By convenience let us rename αn := βnn for all n ∈ N. Then one can think of F as the
ergm relying on the basic equational identifications

∗ ≃ ω → ∗

and for all n ∈N

αn ≃

n+1 times
︷ ︸︸ ︷
αn → · · · → αn → ∗ .

Clearly F is uniformly bottomless, since for all k ∈N the atom αk is k-bottomless.
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Example 4.2.2. We call G the completion

G := (G, j )

of the partial pair (G, j) defined as follows. The 2ℵ0 elements of the family

G :=
{
∗
}
∪

{

βn,k
f

}n∈N,k6f(n)

f∈NN

are pairwise distinct and are not pairs. The partial function j : Mf(G)×G ⇀ G maps
(
[ ] , ∗

)
7→ ∗ ,

for all f : N →N, for all n ∈N and for all 0 < k 6 f(n)
([
β
n+1, f(n+1)
f

]
, βn,k−1
f

)
7→ βn,k

f ,

for all f : N →N and for all n ∈N
([
β
n+1, f(n+1)
f

]
, ∗

)
7→ βn,0

f ,

and is undefined on any other (m,a) ∈Mf(G) × G.
The rgm G is extensional, since j is surjective.
Notice that for all f : N →N and for all n ∈N the total injection j maps

f(n)+1 times
︷ ︸︸ ︷([
β
n+1, f(n+1)
f

]
,
([
β
n+1, f(n+1)
f

]
, · · ·

([
β
n+1, f(n+1)
f

]
, ∗

)
· · ·

))
7→ β

n, f(n)
f .

By convenience let us rename αnf := β
n, f(n)
f for all n ∈ N. Then one can think of G as

the ergm relying on the basic equational identifications

∗ ≃ ω → ∗

and for every f : N →N

α0f ≃

f(0)+1 times
︷ ︸︸ ︷

α1f → · · · → α1f → ∗

α1f ≃

f(1)+1 times
︷ ︸︸ ︷

α2f → · · · → α2f → ∗

...

αnf ≃

f(n)+1 times
︷ ︸︸ ︷

αn+1f → · · · → αn+1f → ∗

...

Clearly G is strongly bottomless, since for all f : N →N the atom α0f is f-bottomless. Hence
G is uniformly bottomless by Proposition 4.1.10.
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Example 4.2.3. Let Grec be defined just like the rgm G above, but considering only recursive
functions from N to N. In other words, we repeat the construction given in Example 4.2.2
but restricting to the set of ℵ0 atoms

Grec :=
{
∗
}
∪

{

αnf

}n∈N

f∈NN , f computable
.

Of course Grec is not strongly bottomless, like G is. Nevertheless, it is uniformly bottomless.
Indeed, all constant functions are computable, so for all k ∈ N we get a k-bottomless type
α0f ∈ TGrec by taking f(n) := k for all n ∈N.

Remark 4.2.4. Let the ergm D be embedded into the ergm D ′, in the sense that there exists
an injective homomorphism of rgm’s f : D→ D ′. If D is uniformly bottomless then also D ′

is. The reason is that for all k ∈N the fact that a certain type σk ∈ TD is k-bottomless in D

implies that f(σk) ∈ TD ′ is k-bottomless in D ′.
Considering for instance the rgm’s in Examples 4.2.1-4.2.3, it is easy to realize that F is

embedded into Grec, which in turn is embedded into G.

4.3 full abstraction for morris’s preorder theory

In this section we prove a theorem of full abstraction: every uniformly bottomless ergm D

induces Morris’s preorder theory ⊑H+ .
The core of the proof is Lemma 4.3.1, which exploits typings to characterize the λ-terms

having β-nf. This lemma is analogous to a classical result [BDS13, Theorem 17B.15(i)] that
characterizes β-normalizable λ-terms by typability in the intersection type systems associ-
ated with certain filter models.

Let us give some intuition to Lemma 4.3.1. As explained in the introduction, we need
some property P(−,−) giving for all M ∈ Λ

M has a β-nf ⇐⇒ there is (Γ ,σ) ∈ EnvD ×TD such that Γ ⊢D M : σ and P(Γ ,σ) .

Remember that by Böhm Approximation (Theorem 2.6.5) typing M is equivalent to typing
some a ∈ BT(M)∗. Now, suppose that M does not have a β-nf. This means that every
a ∈ BT(M)∗ must contain ⊥. Of course, those occurrences of ⊥ must appear in argument
positions in a. So, when trying to type a, some variable x in a gets a type of the form

µ→ · · · → ω→ · · · → τ , (61)

or at least this must be the case up to type equivalence ≃D. Notice that (61) corresponds to
the basic case of the common idea of negative occurrence of ω. Such a negative occurrence of
ω remains fixed in the environment Γ of the final sequent Γ ⊢ a : σ if x is not λ-abstracted
in a; or it becomes a positive occurrence in σ, in case x gets λ-abstracted in a.

As an instance, consider M = λx.yΩI(xyΩ). Up to type equivalence ≃D, any derivable
sequent Γ ⊢ λx.yΩI(xyΩ) : σ has:

• a negative occurrence of ω in Γ(y), because the free variable y must receive a type
of the form ω → µ → ν → τ by Rule var (when in head position, y takes three
arguments, namely Ω, I and xyΩ, and the first of them is an unsolvable);
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• a positive occurrence of ω in σ, because the λ-abstracted variable x must receive a
type of the form µ ′ → ω → τ ′ by Rule var (when in head position, x takes two
arguments, namely y and Ω, and the second of them is an unsolvable).

It seems that we could have here some very rough characterization of non-β-normalizability
of a λ-term M: for every derivable typing Γ ⊢ M : σ the intersection ω occurs positively in σ or
negatively in Γ , at least up to type equivalence. So its negation should now look like a very
rough characterization of β-normalizability of M: there exists a typing Γ ⊢M : σ such that ω
does not occur positively in σ nor negatively in Γ , at least up to type equivalence.

This intuitive idea can be further refined. Since a β-normal form has an upper bound
k ∈ N on the number of arguments of all its head variables, one does not even need to
talk of (positive or negative) occurrences of ω, but rather formalize the idea of (positive or
negative) occurrence of ω up to k arguments. Which is exactly what we did with the notion
that we denoted by ω ∈pk σ.

In the end, what we actually obtain is

M has a β-nf ⇐⇒ for all k ∈N big enough there exists (in correspondence with k)

a pair (Γ ,σ) ∈ EnvD ×TD such that Γ ⊢D M : σ and P(Γ ,σ,k)

where the property P(−,−,−) is given by

P(Γ ,σ,k) ⇐⇒ ω /∈+k σ and ω /∈−k Γ(x) for all x ∈ Var .

This whole informal reasoning has one major issue. We are always talking of derivable
sequents up to type equivalence ≃D. But in general ≃D can mess up the polarities of the
occurrences of ω in the typing.

For instance, consider the rgm’s defined in Examples 4.2.1-4.2.3. They all have a type ∗
such that ∗ ≃ ω → ∗. Hence at any moment in a typing derivation we can turn (via Rule
eq) the type ∗, which satisfies ω 6∈−f ∗ for every f : N →N, into another one ω→ ∗ that on
the opposite satisfies ω ∈−f ω→ ∗ for every f : N →N (and vice versa).

So actually the informal reasoning above makes sense only if D has some stability of
polarities modulo ≃D. That is exactly the purpose of our notion of uniformly bottomless
ergm: for all k ∈N such a stability is provided up to k arguments by a k-bottomless type σk.

Lemma 4.3.1. Let D be a uniformly bottomless ergm. LetM ∈ Λ. The following facts are equivalent.

1. M has a β-normal form.

2. There exists a ∈ BT(M)∗ that does not contain ⊥ .

3. There exists t ∈ nfβT(M) that does not contain the empty bag [ ] .

4. For some t ∈ nfβT(M) there exists ñ ∈ N such that for all k > ñ there is (Γ ,σ) ∈
EnvD ×TD satisfying:

• Γ ⊢D t : σ is derivable,

• ω /∈+k σ ,
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• ω /∈−k Γ(x) for all x ∈ Var .

5. There exists ñ ∈N such that for all k > ñ there is (Γ ,σ) ∈ EnvD ×TD satisfying:

• Γ ⊢D M : σ is derivable,

• ω /∈+k σ ,

• ω /∈−k Γ(x) for all x ∈ Var .

(Remark: in Conditions 4 and 5 the pair (Γ ,σ) depends on k. We do not write something like (ΓK,σk)
just to keep the notation the less heavy as possible.)

Proof of (1⇒ 2). If N is the β-nf of M, then N itself is a finite Böhm-like tree not containing
⊥ and such that N ∈ BT(M)∗.

Proof of (2⇒ 1). For all a ∈ BT(M)∗ there is M ′ ∈ Λ such that M =β M
′ and BT(M ′) = a.

In particular in case a is finite and does not contain ⊥ the corresponding M ′ is in β-nf, so
it is the β-nf of M.

Proof of (2 ⇐⇒ 3). By Definition 1.6.1 Statement 2 is equivalent to the existence of a resource
term t ∈ T(BT(M)) that does not contain [ ] . By Theorem 1.6.4 the set T(BT(M)) is nothing
but t ∈ nfβT(M) .

Proof of (4 ⇐⇒ 5). By Theorem 2.6.3, namely Taylor Approximation Theorem, we have

[[
M

]]
=

[[
T(M)

]]
.

Since T(M) =β nfβT(M), by Corollary 2.5.10, i.e. the soundness of the linear resource
calculus, we have

[[
T(M)

]]
=

[[
nfβT(M)

]]
.

By transitivity

[[
M

]]
=

[[
nfβT(M)

]]
.

In other words, a sequent Γ ⊢ M : σ is derivable if and only if there is some t ∈ nfβT(M)

such that Γ ⊢ t : σ is derivable. (Notice that this fact is true in general, even in case M is
unsolvable, hence nfβT(M) = ∅ .)

It is then clear that Condition 4 is equivalent to Condition 5. Indeed, all the other proper-
ties stated in 4 and 5 only concern Γ , σ and k, independently ofM or t. And these properties
are the same in 4 and 5, so there is nothing to prove.

Proof of (3⇒ 4). For all k ∈N, let σk ∈ TD be a fixed k-bottomless type.
(By the way, we remark that the proof of (3⇒ 4) is the only one requiring the hypothesis of
existence of such kind of types.)

We prove that the implication holds more generally for any β-normal form t that does
not contain [ ] , regardless the fact that t ∈ nfβT(M).

We proceed by structural induction on t.
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Case t = yb1 · · ·bp for some p > 0. Since [ ] does not occur in t by hypothesis, for all
i ∈ {1, . . . ,p} we have bi =

[
si1, . . . , sini

]
for some ni > 0, and moreover [ ] does not occur

in sij for all j ∈ {1, . . . ,ni}.
By IH Condition 4 holds for all sij. Let ñij ∈ N be the natural number corresponding

with sij as in 4. In order to prove that Condition 4 holds for t, we set

ñ := max
i,j

ñij .

Let k > ñ. For all i ∈ {1, . . . ,p} and j ∈ {1, . . . ,ni} we have k > ñ > ñij , so there exist Γij
and τij such that ω /∈−k Γij(x) for all x ∈ Var, ω /∈+k τij, and Γij ⊢ sij : τij is derivable.

We define µi := ∧
ni
j=1τij for all i ∈ {1, . . . ,p} . Notice that for all i ∈ {1, . . . ,p}

ω /∈+k µi . (62)

Also, setting

Γ0 := (y : µ1 → · · · → µp → σk) (63)

and

Γ := Γ0 ∧
(
∧
p
i=1 ∧

ni
j=1Γij

)
, (64)

we derive

Γ0 ⊢ y : µ1 → · · · → µp → σk Γij ⊢ sij : τij i ∈ {1, . . . ,p}, j ∈ {1, . . . ,ni}
Γ ⊢ yb1 · · ·bp : σk

Let us show that the pair (Γ ,σk) ∈ EnvD ×TD is the one that we are seeking in correspon-
dence with k.

As σk is k-bottomless, ω /∈+k σk holds by Definition 4.1.7. So we are left to show that
ω 6∈−k Γ(x) for all x ∈ Var.

Firstly, let us prove that

ω /∈−k µ1 → · · · → µp → σk . (65)

According to Definition 4.1.1, the expression (65) means that whenever

µ1 → · · · → µp → σk ≃ ν0 → · · · → νk → δ

then for all i ∈ {0, . . . ,k} we have νi 6= ω and ω 6∈+ UNF 1k(τ) for all τ ∈ νi .
Since f>1 = f when f is a constant function, by Remark 4.1.6 we have ω 6∈+ UNF 1k(τ) if

and only if ω 6∈+ UNF 0k(τ). So proving Condition (65) is equivalent to prove what follows:
whenever

µ1 → · · · → µp → σk ≃ ν0 → · · · → νk → δ (66)

then for all i ∈ {0, . . . ,k} we have νi 6= ω and ω 6∈+k τ for all τ ∈ νi (i.e. ω 6∈+k νi).
Now, when (66) holds then for all i ∈ {0, . . . ,p− 1} we have

νi ≃ µi+1 . (67)
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By Lemma 4.1.3 from (62) and (67) we get ω 6∈+k νi for all i ∈ {0, . . . ,p− 1}.
Moreover (67) implies νi 6= ω for all i ∈ {0, . . . ,p− 1}, because µi+1 6= ω, as an intersec-

tion of ni+1 > 0 types.
By (66) we also have

σk ≃ νp → · · · → νp+k → δ (68)

As σk is k-bottomless, ω 6∈−k σk holds by Definition 4.1.7. By Definition 4.1.1 this means
that for all i ∈ {p, . . . ,p+ k} we have νi 6= ω and ω 6∈+k νi.

In the end we have proved something even stronger than what was to be proved, namely:
whenever

µ1 → · · · → µp → σk ≃ ν0 → · · · → νk → · · · → νp+k → δ

then for all i ∈ {0, . . . ,p+ k} we have νi 6= ω and ω 6∈+k νi. And we needed to prove this
only for all i ∈ {0, . . . ,k} in order to get (65). A fortiori (65) holds.

From (63) and (65) we get that ω /∈−k Γ0(x) for all x ∈ Var. By IH for all i and j we also
have ω 6∈−k Γij(x) for all x ∈ Var. So from (64) we conclude that ω 6∈−k Γ(x) for all x ∈ Var.

In the end t validates Condition 4.

Case t = λy.t ′. By hypothesis [ ] does not occur in λy.t ′. Therefore [ ] does not occur in t ′.
So by IH Condition 4 holds for t ′. Let ñ be the natural number in correspondence with t ′

given by Condition 4.
In order to show that also λy.t ′ satisfies Condition 4, in correspondence with such term

we take ñ itself.
Let k > ñ. By Condition 4 for t ′, there are

(
Γ , y : µ

)
∈ EnvD and σ ∈ TD such that

Γ ,y : µ ⊢ t ′ : σ is derivable, ω /∈−k Γ(x) for all x ∈ Var, ω /∈−k µ and ω /∈+k σ. We infer

Γ ,y : µ ⊢ t ′ : σ

Γ ⊢ λy.t ′ : µ→ σ

Let us show that the pair (Γ ,µ→ σ) ∈ EnvD × TD is the one that we are looking for in
correspondence with k. All we need to prove is

ω /∈+k µ→ σ . (69)

By Definition 4.1.1 this means that whenever µ → σ ≃ µ0 → · · · → µk → σ ′ then for all
i ∈ {0, . . . ,k} and for all τ ∈ µi we have ω /∈− UNF 1k(τ) . Since f>1 = f when f is a constant
function, by Remark 4.1.6 we have ω 6∈− UNF 1k(τ) if and only if ω 6∈− UNF 0k(τ), i.e. ω /∈−k τ .
So to prove (69) is equivalent to prove the following:

whenever µ → σ ≃ µ0 → · · · → µk → σ ′ then for all i ∈ {0, . . . ,k} and for all τ ∈ µi we
have ω /∈−k τ . This is true, as in fact something even stronger holds. Indeed, by ω /∈−k µ

and ω /∈+k σ given by IH, we have the following:
whenever µ → σ ≃ µ0 → · · · → µk+1 → σ ′ then for all i ∈ {0, . . . ,k+ 1} and τ ∈ µi we

have ω /∈−k τ . And we needed to prove this only for all i ∈ {0, . . . ,k} in order to get (69). A
fortiori (69) holds.
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Proof of (4⇒ 3). We define the function arg : nfβ(Λr) → N by taking as arg(t) ∈ N the
maximum number of consecutive applications occurring in t. As t is in normal form, this
is equivalent to say that arg(t) is the maximum number of arguments of any variable in t.
In other words, it is the maximum number of children of any node in the tree structure of
t. For example, arg(x) = 0 and arg

(
λx.y[x, x, x]

[
λvz.z[v][y, v]

]
[x]

[
x,y, x[x]

])
= 4.

We replace Hypothesis 4 with the following equivalent version:

IV. for some t ∈ nfβT(M) there exists ñ > arg(t) such that for all k > ñ there is (Γ ,σ) ∈
EnvD ×TD satisfying:

• Γ ⊢D t : σ is derivable,

• ω /∈+k σ ,

• ω /∈−k Γ(x) for all x ∈ Var .

Notice that not only trivially (IV ⇒ 4), but the implication (4 ⇒ IV) is also true. Indeed,
given a natural number ñ in correspondence with t as in Condition 4, one simply takes
max

(
n, arg(t)

)
as the one in correspondence with t that validates Condition IV.

We prove (IV⇒ 3) proceeding by induction on t.

Case t = yb1 · · ·bp for some p > 0, where for all i ∈ {1, . . . ,p} we have bi =
[
si1, . . . , sini

]

for some ni > 0.

We want to apply the IH to every sij. At this purpose, we prove that Condition IV holds
for each sij when taking as ñ exactly the same ñ given by hypothesis in correspondence
with t. Such a candidate makes sense, as arg(sij) 6 arg(t) 6 ñ.

Let k > ñ. In correspondence with k we have an environment Γ and a type σ satisfying
all the properties in IV. In particular, from the derivation of Γ ⊢ yb1 · · ·bp : σ we get by
Lemma 2.3.12 the derivability of

Γ0 ⊢ y : µ1 → · · · → µp → σ Γij ⊢ sij : τij for all i ∈ {1, . . . ,p}, j ∈ {1, . . . ,ni}
Γ ⊢ yb1 · · ·bp : σ

where µi := ∧
ni
j=1τij for all i ∈ {1, . . . ,p} , Γ0 = (y : δ) with δ ≃ µ1 → · · · → µp → σ and

Γ := Γ0 ∧
(
∧
p
i=1 ∧

ni
j=1Γij

)
. We show that for every sij the environment Γij and the type τij

are the ones that we are seeking in correspondence with k.
By hypothesis for all x ∈ Var we have ω /∈−k Γ(x), that is ω /∈−k Γ0(x)∧

(
∧
p
i=1∧

ni
j=1Γij(x)

)
.

So ω /∈−k Γij(x) for all x ∈ Var. Also from that, ω /∈−k Γ0(y), i.e. ω /∈−k δ. By Lemma 4.1.3,
this entails

ω /∈−k µ1 → · · · → µp → σ . (70)

We have

p 6 arg(sij) 6 arg(t) 6 ñ 6 k . (71)

(We remark that (71) is the only reason why we introduced arg(−) in this proof.)
So from (70), (71) and Definition 4.1.1 for all i ∈ {1, . . . ,p} we get:

1. µi 6= ω ;
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2. ω /∈− UNF 1k(τij) for all j ∈ {1, . . . ,ni}.

Remembering that f>1 = f when f is a constant function, by Remark 4.1.6 the expression
ω /∈− UNF 1k(τij) in Point 2 is equivalent to ω /∈− UNF 0k(τij), which is ω /∈−k τij. This
completes the proof of the fact that IV holds for all sij.

So for all i ∈ {1, . . . ,p} and j ∈ {1, . . . ,ni} by IH the term sij does not contain [ ].
Moreover from Point 1 for all i ∈ {1, . . . ,p} we get ni > 0, hence bi 6= [ ] .
So t = yb1 · · ·bp does not does not contain [ ].

Case t = λy.t ′. By hypothesis in correspondence with λy.t ′ there exists ñ > arg
(
λy.t ′

)

satisfying Condition IV.
We want to apply the IH to t ′. At this purpose, we prove that Condition IV holds for

t ′ when taking as ñ exactly the same ñ given by hypothesis in correspondence with λy.t ′.
Such a candidate makes sense, as ñ > arg

(
λy.t ′

)
= arg

(
t ′
)
.

Let k > ñ. Since k+ 1 > k > ñ , by Condition IV there is (Γ ,σ) ∈ EnvD × TD such that
Γ ⊢ λy.t ′ : σ is derivable, ω /∈+k+1 σ and ω /∈−k+1 Γ(x) for all x ∈ Var.

By Lemma 2.3.12 we get the derivability of Γ ,y : µ ⊢ t ′ : σ ′ with σ ≃ µ → σ ′. We
show that the environment (Γ ,y : µ) and the type σ ′ are the two that we are seeking in
correspondence with k.

Firstly, we prove that ω /∈+k σ. Let σ ′ ≃ µ0 → · · · → µk → σ ′′. Then

σ ≃ µ → σ ′ ≃ µ → µ0 → . . . → µk → σ ′′ . (72)

Since ω /∈+k+1 σ , from (72) we get

1. µ 6= ω ,

2. µi 6= ω for all i ∈ {1, . . . ,k},

3. ω /∈−k+1 µ ,

4. ω /∈−k+1 µi for all i ∈ {1, . . . ,k}.

By Corollary 4.1.5 Point 4 implies ω /∈−k µi for all i ∈ {1, . . . ,k}. This fact together with
Point 2 proves that ω /∈+k σ.

We now prove that ω /∈−k
(
Γ ,y : µ

)
(x) for all x ∈ Var.

Since ω /∈−k+1 Γ(x) for all x ∈ Var, by Corollary 4.1.5 we have ω /∈−k Γ(x) for all x ∈ Var.
Which means that ω /∈−k

(
Γ ,y : µ

)
(x) for all x ∈ Var − {y}.

We are left to show that ω /∈−k
(
Γ ,y : µ

)
(y), i.e. ω /∈−k µ . Since σ ≃ µ→ σ ′ and k+ 1 > 1,

the fact that ω /∈+k+1 σ assures that µ 6= ω and ω /∈−k+1 µ . The latter expression implies
ω /∈−k µ by Corollary 4.1.5.

This completes the proof of the fact that Condition IV holds for t ′. Then the IH assures
that t ′ does not contain [ ]. Hence λx.t ′ does not contain [ ].

Theorem 4.3.2. Let D be a uniformly bottomless ergm. For all M,N ∈ Λ the following statements
are equivalent.

1.
[[
M

]]D
⊆

[[
N
]]D.
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2. M ⊑H+N .

3. BTe(M) ⊆ BTe(N) .

(In particular the hypothesis of uniformly bottomlessness is needed only for the implication 1⇒ 2.)

Proof. (1⇒ 2) Consider a context C[−] such that C[M] has a β-normal form. By Lemma 4.3.1
(specifically the implication (1 ⇒ 5) stated therein) there is a natural number ñ ∈ N such
that for all k > ñ there exists (Γ ,σ) ∈

[[
C[M]

]]
(in correspondence with k) satisfying ω /∈+k σ

and ω /∈−k Γ(x) for all x ∈ Var .
By hypothesis [[M]] ⊆ [[N]]. As [[−]]D is contextual (Lemma 2.4.4) we get

[[
C[M]

]]
⊆

[[
C[N]

]]
.

Therefore all those (Γ ,σ) mentioned above (in correspondence with a give k > ñ) belong
also to

[[
C[N]

]]
. By applying Lemma 4.3.1 again (specifically the implication (5⇒ 1) stated

therein), we conclude that C[N] has a β-normal form.

(2 ⇐⇒ 3) This equivalence is Theorem 1.4.12(1).

(3⇒ 1) By hypothesis the rgm D is extensional. Hence

[[
M

]]
=

⋃

M ′։ηM

[[
M ′

]]
by Theorem 2.4.13 (η-soundness)

=
⋃

M ′։ηM

[[
BT(M ′)

]]
by Theorem 2.6.5 (Böhm Approximation)

=
⋃

M ′։ηM

[[
nfηBT(M ′)

]]
by Theorem 2.4.13 (η-soundness)

=
[[

BTe(M)
]]

by definition of BTe(M).

So the hypothesis BTe(M)⊆BTe(N) implies
[[
M

]]
=

[[
BTe(M)

]]
⊆

[[
BTe(N)

]]
=

[[
N
]]

.

Corollary 4.3.3. A uniformly bottomless ergm D is fully abstract for Morris’s preorder theory, i.e.
Th⊑(D) is ⊑H+ . In particular it is fully abstract for Morris’s λ-theory, namely Th(D) = H+ .

Corollary 4.3.4. The rgm’s F, G and Grec defined in Examples 4.2.1-4.2.3 are fully abstract for
Morris’s preorder theory and λ-theory.

In [MR14] we have already given a sufficient condition to make an ergm fully abstract
for Morris’s preorder theory. That condition was less refined than the notion of uniformly
bottomless ergm. We conclude this section by discussing this fact.

Firstly, in [MR14] we formalized what does it mean for ω to occur positively or negatively
in a type σ, as follows.

Notation. Given a certain polarity p ∈ {+,−} we denote by ∽ p the other polarity. In other
words ∽p ∈ {+,−}− {p}.

Definition 4.3.5. Let D be an ergm and σ ∈ TD. The two expressions ω ∈pσ are defined for
both polarities by mutual induction as follows.

• ω ∈− ω→ σ for any σ ∈ TD.

• If ω ∈p σ then ω ∈p µ→ σ for any µ ∈ ID.
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• If ω ∈pσ then ω ∈∽p σ∧ µ→ τ for any τ ∈ TD and µ ∈ ID.

Notice that the notion above speaks of occurrences of ω, but not up to equivalence of
types. This is why we had to introduce a notion of preservation of ω-polarity up to equiva-
lence of types.

Definition 4.3.6. An ergm D preserves ω-polarities if and only if for all σ, τ ∈ TD the hypoth-
esis ω ∈p σ and σ ≃ τ imply ω ∈p τ .

Finally we showed that an ergm satisfying such a property induces Morris’s preorder.

Theorem 4.3.7 ([MR14, Corollary 4.6]). Every ergm D preserving ω-polarities is fully abstract
for Morris’s preorder ⊑H+ .

Let us see how this theorem is related to what has been done so far in this chapter.
Firstly, the following proposition clarifies the link between the notion denoted by ω ∈p σ

and the more refined one written as ω ∈pf σ. We omit the proof, but the statement should
seem quite evident to the reader.

Proposition 4.3.8. Let D be an ergm and σ ∈ TD. There exists ψ ∈ [σ]≃ such that ω ∈p ψ if
and only if there exists f : N →N such that ω ∈pf σ.

The result of full abstraction provided by Theorem 4.3.7 turns out to be encompassed by
the one in Corollary 4.3.3. In other words, the class of uniformly bottomless ergm’s contains
all ergm’s preserving ω-polarity. This is given by the result here below.

Theorem 4.3.9. Let D be an ergm. Then the following chain of implications holds, meaning that
1⇒ 2⇒ 3⇒ 4.

1. D preserves ω-polarities.

2. There exists σ ∈ TD such that ω 6∈+ ψ and ω 6∈− ψ for all ψ ∈ [σ]≃ .

3. D is strongly bottomless.

4. D is uniformly bottomless.

Proof. (1 ⇒ 2) An atom α ∈ AtD satisfies ω 6∈+ α and ω 6∈− α by definition. Then by
preservation of ω-polarity whenever ψ ≃ α we also have ω 6∈+ ψ and ω 6∈− ψ .
(2⇒ 3) By Proposition 4.3.8 the hypothesis 2 implies that ω 6∈pf σ for all f : N →N. Hence
for every f : N →N the type σ is an f-bottomless type.
(3⇒ 4) This is Proposition 4.1.10.

The rgm’s F and Grec, defined respectively in Examples 4.2.1 and 4.2.3, satisfy Condition 4

in the chain of Theorem 4.3.9, but not Conditions 1-3. The rgm G defined in Examples 4.2.3
satisfies Conditions 3 and 4, but not Conditions 1 and 2. In the next section we study an
rgm satisfying all four Conditions 1-4.
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4.4 the relational graph model D⋆

In this section we focus on an rgm fully abstract for Morris that strikes for its simplicity.

Definition 4.4.1. We call D⋆ the rgm obtained as the free completion

D⋆ :=
(
{⋆} , j

)

where ⋆ is not a pair and the partial injection j : Mf( {⋆} )× {⋆} ⇀ {⋆} maps j([ ⋆ ], ⋆) := ⋆ .

Lemma 4.4.2. The rgm D⋆ is extensional.

Proof. By Proposition 2.2.8, since the partial pair ({⋆}, j) is extensional, i.e. j is surjective.

Lemma 4.4.3. In D⋆ the equivalence ⋆ ≃ ⋆→ ⋆ holds.

Proof. By Definition 2.3.3 we have ⋆ ≃ ⋆ → ⋆ if and only if ⋆ = ⋆
⋄ = (⋆ → ⋆)⋄ =

j([ ⋆⋄], ⋆⋄) = j([ ⋆ ], ⋆) = j([ ⋆ ], ⋆) = ⋆ .

So more informally, D⋆ is the ergm built upon one single atom ⋆ and the only basic
equational identification

⋆ ≃ ⋆ → ⋆ .

It is then clear that for all k ∈N one has

⋆ ≃

k times
︷ ︸︸ ︷
⋆ → · · · → ⋆ → ⋆ ,

as formalized in the next lemma.

Lemma 4.4.4. Let σ ∈ TD⋆
. Then γ ≃ ⋆ if and only if γ is generated by the following grammar:

γ ::= ⋆ | γ→ γ .

In particular µ→ σ ≃ ⋆ entails that σ ≃ ⋆ and the intersection µ is one single type τ ≃ ⋆ .

Proof. The right-to-left implication is given by a trivial induction on the grammar:

• the type ⋆ is equivalent to itself;

• if γ1 ≃ ⋆ and γ2 ≃ ⋆ by IH, then γ1 → γ2 ≃ ⋆→ ⋆ ≃ ⋆ (by Lemma 4.4.3).

The left-to-right implication is given by the following induction on γ.

• Since AtD⋆
= {⋆} by Proposition 2.2.10, whenever γ ≃ ⋆ is an atom we have γ = ⋆ .

• Let γ = µ→ σ ≃ ⋆ . This means that j(µ⋄,σ⋄) = (µ→ σ)⋄ = ⋆
⋄ = ⋆ . Since j is surjec-

tive by Lemma 4.4.2 and j([ ⋆ ], ⋆) = j([ ⋆ ], ⋆) = ⋆ by Definition 4.4.1, the pair (µ⋄,σ⋄)
must be ([ ⋆ ], ⋆). So µ ≃ ⋆ and σ ≃ ⋆ , which was to be proved. �

Proposition 4.4.5. The ergm D⋆ is uniformly bottomless.

Proof. For all k ∈ N we have ω 6∈+k ⋆ and ω 6∈−k ⋆ , as a consequence of Lemma 4.4.4.
Therefore ⋆ is a k-bottomless type.
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Corollary 4.4.6. The model D⋆ is fully abstract for Morris’s preorder ⊑H+ and λ-theory H+.

Proof. By Proposition 4.4.5 and Theorem 4.3.3.

Remark 4.4.7. One may also observe that D⋆ is an ergm preserving ω-polarity, in the sense
of Definition 4.3.6. So in fact D⋆ satisfies all Conditions 1-4 in the chain of Theorem 4.3.9.

So far the filter model Dcdz of Coppo, Dezani and Zacchi [CDZ87] was the only deno-
tational model known to induce Morris’s observability. The construction of Dcdz relies on
two atomic types and, as any filter model, on a subtyping preorder 6. In comparison to
that, the fact that D⋆ only requires one atom and relies on an equivalence of types can be
regarded as a valuable simplification.

We show two interesting properties of the atom ⋆ .
Firstly, the type ⋆ provides a characterization of the λ-terms having a linear normal form,

according to the notion of linearity below.

Definition 4.4.8. A λ-term M ∈ Λ is called linear if and only if

• every y ∈ fv(M) occurs once in M ;

• for every subterm λx.N of M the bound variable x occurs once in N .

We recall that in general supp(Γ) ⊆ fv(N), by Lemma 2.3.10.

Lemma 4.4.9. Let N ∈ Λ be in β-normal form. Let (Γ ,σ) ∈ EnvD⋆
×TD⋆

such that

• the sequent Γ ⊢D⋆ N : σ is derivable,

• Γ(x) ≃ ⋆ for all x ∈ supp(Γ) ,

• σ ≃ ⋆ .

Then N is linear and supp(Γ) = fv(N).

Proof. We proceed by structural induction on N.

Case N = yN1 · · ·Nk for some k ∈ N. By Lemma 2.3.12(1),(3) the derivability of Γ ⊢ N : σ

entails the derivability of

Γ0 ⊢ y : µ1 → · · · → µk → σ Γij ⊢ Nij : τij i ∈ {1, . . . ,k} , j ∈ {1, . . . ,ni}
Γ ⊢ yN1 · · ·Nk : σ

where Γ = Γ0∧
(
∧ki=1∧

ni
j=1Γij

)
, µi := ∧

ni
j=1τij for all i ∈ {1, . . . ,k} and Γ0 = (y : γ) for some

γ ∈ TD⋆
such that γ ≃ µ1 → · · · → µk → σ.

In particular µ1 → · · · → µk → σ ≃ γ = Γ0(y) ⊆ Γ(y). By hypothesis Γ(y) ≃ ⋆ . So
µ1 → · · · → µk → σ = ⋆ . By Lemma 4.4.4 this implies that for all i ∈ {1, . . . ,k} we have
ni = 1 and the intersection µi is composed of a single type τi ≃ ⋆ .

In the end what we actually have is for all i ∈ {1, . . . ,k} the derivability of the sequent
Γi ⊢ Ni : τi for some τi ≃ ⋆ and for some Γi ∈ EnvD⋆

such that

Γ = Γ0 ∧
(
∧ki=1 Γi

)
. (73)
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Also notice that Ni is in β-nf, as a subterm of the β-normal λ-term N. In order to apply the
IH to Ni we are only left to prove that that

Γi(x) ≃ ⋆ for all x ∈ supp(Γi) . (74)

We have supp(Γi) ⊆ supp(Γ) and Γi(x) ⊆ Γ(x) by (73), and Γ(x) ≃ ⋆ by hypothesis. There-
fore (74) is true.

By IH each Ni is linear and

supp(Γi) = fv(Ni). (75)

Let us prove the linearity of N. We have to show that

1. y 6∈
⋃k
i=1 fv(Ni) ,

2. fv(Ni)∩ fv(Nj) = ∅ for all i, j ∈ {1, . . . ,k} such that i 6= j .

By (73) and the fact that Γ(y) is the unitary intersection Γ0(y), we have

y 6∈ supp
(
∧ki=1 Γi

)
=

k⋃

i=1

supp(Γi) =

k⋃

i=1

fv(Ni) ,

where the last equality holds by (75). So 1 is proved.
Consider i, j ∈ {1, . . . ,k} such that i 6= j . By way of contradiction let x ∈ fv(Ni)∩ fv(Nj) =

supp(Γi) ∩ supp(Γj), where the last equality holds by (75). Then by (74) we get Γi(x) ≃ ⋆

and Γj(x) ≃ ⋆ . Hence ⋆∧ ⋆ ⊆ Γ(x), against the hypothesis that Γ(x) ≃ ⋆ . So 2 is proved, and
with that the linearity of N.

Finally let us see that supp(Γ) = fv(N). It is a simple consequence of (75), as

supp(Γ) =

k⋃

i=0

supp(Γi) = {y}∪
k⋃

i=1

supp(Γi) = {y}∪
k⋃

i=1

fv(Ni) = fv(N) .

Case N = λx.N ′. By Lemma 2.3.12(2) the derivability of Γ ⊢ λx.N ′ : σ implies the one of

Γ , x : µ ⊢ N ′ : τ (76)

for some µ ∈ ID⋆
and τ ∈ TD⋆

such that µ → τ ≃ σ. By hypothesis σ ≃ ⋆ . Hence
by transitivity of ≃ we get that µ → τ ≃ ⋆ . By Lemma 4.4.4 this implies that τ ≃ ⋆

and the intersection µ is composed of a single type γ ≃ ⋆ . Also notice that N ′ is in β-nf,
as a subterm of the β-nf N. So we can apply the IH to N ′. We get that N ′ is linear and
supp(Γ , x : µ) = fv(N ′).

As a consequence of the latter fact, we have

supp(Γ) = supp(Γ , x : µ) − {x} = fv
(
N ′

)
− {x} = fv

(
λx.N ′

)
,

as it was to be proved.
We are left to show that λx.N ′ is linear. Since N ′ is linear by IH, all we need to prove is

that x occurs exactly once in N ′. Of course, it cannot occur more than once, because that
would contradict the fact that N ′ is linear. Moreover x ∈ supp(Γ , x : µ) = fv(N ′). So x occurs
at least once in N ′.
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Theorem 4.4.10. Let M ∈ Λ. Then M has a linear β-normal form if and only if one can derive
Γ ⊢D⋆ M : σ with σ ≃ ⋆ and Γ(x) ≃ ⋆ for all x ∈ supp(Γ) .

Proof. (⇐) Let Γ ⊢ M : σ be derivable for some σ ≃ ⋆ and Γ(x) ≃ ⋆ for all x ∈ supp(Γ) .
For all k ∈ N we have ω 6∈+k ⋆ and ω 6∈−k ⋆ . By Lemma 4.1.3 then ω 6∈+k σ and ω 6∈−k Γ(x)
for all x ∈ supp(Γ) . So Condition 5 in the statement of Lemma 4.3.1 holds for M. The rgm

D⋆ is uniformly bottomless, so Lemma 4.3.1 can be applied. Then the implication (5⇒ 1)
of such lemma assures that M has a β-nf. By subject reduction (Lemma 2.4.8) the sequent
Γ ⊢ nfβ(M) : σ is derivable. Finally, by Lemma 4.4.9 we conclude that nfβ(M) is linear.

(⇒) Suppose that M ∈ Λ has a linear β-nf. Let Γ ∈ EnvD be defined as

Γ(x) :=

{
⋆ if x ∈ fv

(
nfβ(M)

)
,

ω otherwise.
(77)

We prove that Γ ⊢ nfβ(M) : ⋆ is derivable. After that, one can conclude by subject expansion
(Lemma 2.4.9) that Γ ⊢M : ⋆ is derivable. We proceed by induction on nfβ(M).

Case nfβ(M) = yN1 · · ·Nk for some k ∈N. For all i ∈ {1, . . . ,k} let Γi ∈ EnvD be

Γi(x) :=

{
⋆ if x ∈ fv(Ni),

ω otherwise.

As Ni is a linear β-nf, by IH the sequent Γi ⊢ Ni : ⋆ is derivable. Then we can derive

y : ⋆ ⊢ y : ⋆ ⋆ ≃

k times
︷ ︸︸ ︷
⋆→ · · · → ⋆→ ⋆

y : ⋆ ⊢ y :≃

k times
︷ ︸︸ ︷
⋆→ · · · → ⋆→ ⋆

eq

Γi ⊢ Ni : ⋆ for all i ∈ {1, . . . ,k}

(y : ⋆)∧
(
∧ki=1 Γi

)
⊢ yN1 · · ·Nk : ⋆

To conclude, notice that (y : ⋆)∧
(
∧ki=1 Γi

)
is exactly the environment Γ as defined in (77).

Case nfβ(M) = λx.N. By Definition 4.4.8, the linearity of λx.N implies that x occurs free in
N. Hence fv(N) = fv(λx.N)∪ {x}. Moreover obviously N is a linear β-normal term. Then by
IH we have the derivability of Γ , x : ⋆ ⊢ N ′ : ⋆ , where

Γ(x) :=

{
⋆ if x ∈ fv

(
λx.N

)
,

ω otherwise.

By deriving

Γ , x : ⋆ ⊢ N ′ : ⋆

Γ ⊢ λx.N : ⋆→ ⋆ ⋆ ≃ ⋆→ ⋆

Γ ⊢ λx.N : ⋆
eq

we get the thesis.

We conclude this section by showing that in D⋆ the type ⋆ separates I from its infinite
η-expansion J. This remark is a preamble to a key result of the next chapter.

The following lemma is easy to check.
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Lemma 4.4.11. Let x ∈ Var. Then BT( J x )∗ = {⊥} ∪
{
λy.xb | y 6= x and b ∈ BT( J y )∗

}
.

Lemma 4.4.12. Let σ ∈ TD⋆
such that σ ≃ ⋆ . Let x ∈ Var. Then

(
x : σ , σ

)
6∈
[[

J x
]]D⋆.

Proof. By Theorem 2.6.5 (i.e. Böhm Approximation) we have
(
x : σ , σ

)
6∈
[[

J x
]]

if and only
if
(
x : σ , σ

)
6∈ [[a]] for every a ∈ BT( J x )∗. We prove the right hand side of this equivalence

by induction on a. According to Lemma 4.4.11 there are only two cases to consider.
Case a = ⊥ . As [[a]] = [[⊥]] = ∅, clearly σ 6∈ [[a]].
Case a = λy.xb for y 6= x and b ∈ BT( J y ). By way of contradiction we suppose that
x : σ ⊢ λy.xb : σ is derivable. By Lemma 2.3.12(2) this is equivalent to the derivability of
x : σ , y : µ ⊢ xb : τ for some µ ∈ ID⋆

and τ ∈ TD⋆
such that µ → τ ≃ σ . Since σ ≃ ⋆ by

hypothesis, we get µ → τ ≃ ⋆ . Hence by Lemma 4.4.4 the intersection µ is a single type
γ ≃ ⋆ and τ ≃ ⋆ . By Lemma 2.3.12(3) we get the derivability of

Γ0 ⊢ x : ν→ τ Γi ⊢ b : δi for all i ∈ {1, . . . ,n}
x : σ , y : γ ⊢ xb : τ (78)

where ν := ∧ni=1δi for some n ∈ N and ∧ni=0Γi = (x : σ , y : γ) . By Lemma 2.3.12(1) then
Γ0 = x : σ ′ for a type σ ′ ≃ ν → τ . So we have

(
x : σ ′

)
∧∧ni=1Γi = (x : σ , y : γ) . This

implies that σ ′ = σ and ∧ni=1Γi = (y : γ) . Hence n = 1 and ν = δ1 = γ . In the end (78) is

x : σ ⊢ x : ν→ τ y : γ ⊢ b : γ

x : σ , y : γ ⊢ xb : τ

This is a contradiction, because b ∈ BT( J y ), so by IH one cannot derive y : γ ⊢ b : γ.

Proposition 4.4.13. Let σ ∈ TD⋆
such that σ ≃ ⋆ . Then σ ∈

[[
I
]]D⋆

−
[[

J
]]D⋆ .

Proof. We have σ ≃ ⋆ ≃ ⋆→ ⋆ ≃ σ→ σ ∈
[[

I
]]
. Therefore σ ∈

[[
I
]]
.

By way of contradiction let σ ∈
[[

J
]]

. By Theorem 2.4.10 this is equivalent to σ ∈[[
λx. J x

]]
, since J =β λx. J x . In other words, the sequent ⊢ λx. J x : σ is derivable. By

Lemma 2.3.12(2) this is equivalent to the derivability of x : µ ⊢ J x : τ for some µ ∈ ID⋆
and

τ ∈ TD⋆
such that µ → τ ≃ σ . Since σ ≃ ⋆ by hypothesis, we get µ → τ ≃ ⋆ . Hence by

Lemma 4.4.4 the intersection µ is a single type γ ≃ ⋆ and τ ≃ ⋆ . So we can derive

x : γ ⊢ J x : τ

x : γ ⊢ J x : γ
eq

In the end
(
(x : γ) , γ

)
∈
[[

J x
]]

contradicts Lemma 4.4.12.

4.5 a syntactic model of morris’s theory : extensional taylor expansion

In this section we take a break from relational semantics and study a model of H+ of a
very different kind. In § 1.4 we recalled two notions of extensional Böhm tree of a λ-term M,
namely BTe(M) and BTη(M). Both provide a syntactic characterization of Morris’s equiv-
alence. Here we present yet another such characterization. But rather than relying on the
approximation à la Böhm, this new characterization exploits the Taylor expansion of Ehrhard
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and Regnier recalled in § 1.6 (and already used in alternative to the notion of Böhm tree in
§ 2.6, when proving the Approximation Theorems for rgm’s).

We introduce the notion of extensional Taylor expansion T η(M) of a λ-term M and prove
that T η(M) = T

(
BTη(M)

)
(Theorem 4.5.32). This result is deliberately conceived as an

analogue of Theorem 1.6.4, the key result by Ehrhard and Regnier stating that

nfβ
(
T(M)

)
= T

(
BT(M)

)
. (79)

By the way, (79) is not just a source of inspiration: we actually use it to achieve our result.
As a byproduct, we obtain a new syntactic characterization of H+, which is M =H+ N

if and only if T η(M) = T η(N) (Corollary 4.5.34). For technical reasons, on this occasion
we prefer to use BTη(−) instead of BTe(−). As a consequence, T η(−) is not a model of
Morris’s preorder ⊑H+ . (See § 1.4 for the reason why BTη(−) is not refined enough to get
Morris’s observational theory also inequationally.)

Notation. By convenience, all over this section we denote the empty multiset [ ] by the
symbol 1. Notice that such a notation is consistent with the fact that [ ] is the neutral
element of the union of multisets.

Let us give an overview of the situation that we are dealing with. In order to obtain an
analogue of (79) in the extensional setting, we want the extensional Taylor expansion of
M to be the η-normal form of nfβT(M), just like BTη(M) is the η-normal form of BT(M).
But defining an η-reduction on P(nfβ(Λr)) is not an easy task. As a first attempt, one may
consider the naïve definition

→η :=
⋃

k∈N

(
→ηk

)
where λx.t

[
xk

]
→ηk t whenever x /∈ fv(t)

and then extend it pointwise to sets of resource terms. This correctly reduces T(λy.xy) =
{
λy.x

[
yk

]
| k ∈ N

}
to the set {x}, which is what one would expect. But the fact that

λy.x 1 →η0 x is a problem. Indeed λy.x 1 also belongs to T(λy.xΩ), so this Taylor expan-
sion would η-reduce to

{
x , λy.x 1

}
, whereas x /∈ T

(
nfη(λy.xΩ)

)
=

{
λy.x 1

}
. Similarly,

λy.x1[y] as an element of T(λy.xzy) is supposed to η-reduce to x 1, whereas as an element
of T(λy.xyy) it should be considered already η-normal.

These examples reveal that, while the β-reduction of T(M) can be performed locally by
reducing each term individually, the η-reduction of nfβT(M) must be a global operation,
that considers the whole set of terms before deciding whether a term should reduce or not.

Here is how we handle the issue. We divide the computing of the η-normal form of the
set nfβT(M) into two phases.

• We first define a labeling L(−) on nfβT(M), as a global operation annotating on each
empty bag 1 occurring in each t ∈ nfβT(M) the following piece of information:

– whether that 1 comes from a finite η-expansion of some variable (for instance
λy.x 1 ∈ T(λy.x(λz.yz)) should be labeled as something like λy.x 1η(y), meaning
that 1 comes from an η-expansion of the variable y) ;

– the set of free variables that were forgotten by taking 1 in the Taylor expansion
(for instance λy.x 1[y] ∈ T(λy.xyy) should be labeled as λy.x 1y[y]) .

96



• Then we define a local reduction →ηℓ on elements of L(nfβT(M)) that exploits the
extra information annotated by L(−) to perform the η-reduction only when it is safe.

The labeling L(−) relies on a certain homogeneity in the structure of the resource terms
belonging to nfβT(M). As shown in [BHP13], this homogeneity is captured by the following
definedness relation � between β-normal resource terms.

Definition 4.5.1 ([BHP13, Def. 9]). The relation� is the smallest subset of nfβ
(
Λr

)
×nfβ

(
Λr

)

satisfying the rules

λx1 . . . xn.y � λx1 . . . xn.y
t � t ′ b � b ′

tb � t ′b ′ 1 � b

∃ t ′ ∈ b ′ ∀ t ∈ b , t � t ′

b � b ′

Remark 4.5.2. The relation � is not a preorder, since it is transitive but not reflexive. For
instance, x

[
y1[y] , y[y] 1

]
6� x

[
y1[y] , y[y] 1

]
, because y1[y] 6� y[y] 1 and y[y]1 6� y1[y]. See

[BHP13] for more properties of this relation.

The well-known notion of ideal used hereafter is recalled in § 1.1.

Proposition 4.5.3 ([BHP13, Lemma 12]). Let S be an ideal of
(

nfβ(Λr),�
)
. Then S has one of

the following forms: {x} for some x ∈ Var, or λx.T for some ideal T, or TB for some ideal T and
some set of bags B such that

⋃
B is an ideal.

The following key definition is sound precisely because of Proposition 4.5.3.

Definition 4.5.4. Let S be an ideal of
(

nfβ(Λr),�
)

and t ∈ S. The labeled (β-normal resource)
term L

(
t, S

)
is given by the following induction on t (and accordingly on the structure of S,

as given by Proposition 4.5.3).

L
(
x, {x}

)
:= x, L

(
λx.t, λx.T

)
:= λx.L

(
t, T

)
, L

(
tb, TB

)
:= L

(
t, T

)
L
(
b, B

)
,

L
([
t1, . . . , tk

]
, B

)
:=

[
L
(
t1,

⋃
B
)
, . . . ,L(tk,

⋃
B)

]
for k > 0

L
(
1, B

)
:=

{
1xη(x) if there exists t ′ ∈

⋃
B such that t ′ ։η ′ x (•)

1fv(B) otherwise

where the reduction→η ′ appearing in Condition (•) is defined as

λx.t
[
xk+1

]
→η ′ t whenever x /∈ fv(t) and k ∈N .

We also set
L(S) :=

{
L(t, S) | t ∈ S

}
.

The labeling L(−) can be applied to nfβT(M) thanks to the following result.

Proposition 4.5.5. [BHP13, Lemma 23] Let M ∈ Λ. Then nfβT(M) is an ideal of
(

nfβ(Λr),�
)
.

Remark 4.5.6. Actually the definition of L(t, S) will be only used when S = nfβT(M) for
some M ∈ Λ. Under this hypothesis the case L(1, B) is applied when B = Mf(T(N)) for
some β-normal N ∈ Λ, hence

⋃
B = T(N). Then Condition (•) becomes
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there is t ∈ T(N) such that t։η ′ x’

which holds exactly when N։η x.

Examples 4.5.7. Here are a couple of examples of labeling of resource terms.

• Let t = λy.x11 and S = nfβT(λy.xΩy) =
{
λy.x1

[
yn

]
| n ∈ N

}
. Then we have

L(t, S) = λy.L
(
x, {x}

)
L
(
1, {1}

)
L
(
1,
{[
yn

]
| n ∈N

})
= λy.x 1∅1

y
η(y)

.

• Let t = λy.x11 and S = nfβT(λy.xyy) =
{
λy.x

[
yn

][
ym

]
| n,m ∈ N

}
. We have

L(t, S) = λy.L
(
x, {x}

)
L
(
1,
{[
yn

]
| n ∈ N

})
L
(
1,
{[
ym

]
| m ∈ N

})
= λy.x1

y
η(y)

1
y
η(y)

.
More generally

L
(
T(λy.xyy)

)
=

{

λy.x1
y
η(y)

1
y
η(y)

}

∪
{

λy.x1
y
η(y)

[
ym+1

]
| m ∈N

}

∪
{

λy.x
[
yn+1

]
1
y
η(y)

| n ∈N

}

∪
{

λy.x
[
yn+1

][
ym+1

]
| n,m ∈N

}

.

Definition 4.5.8. Let t be a labeled resource term. The set f̃v(t) of the free variables of t is
defined like the usual definition of fv(−) for resource terms, but with the addition of the
clauses f̃v

(
1xη(x)

)
:= {x} and f̃v

(
1V

)
:= V .

Remark 4.5.9. Let T ∈ ΛB. Then x ∈ fv(T) if and only if x ∈ f̃v(t) for every t ∈ L(T(T)).

Definition 4.5.10. The reduction→ηℓ on labeled β-normal resource terms is given by

λx.t 1xη(x) →ηℓ t whenever x /∈ f̃v(t)

λx.t
[
xn+1

]
→ηℓ t whenever x /∈ f̃v(t) and n ∈N .

Examples 4.5.11. We have L
(
λy.x1[y], nfβT(λy.xzy)

)
= λy.x1zη(z)[y] →ηℓ x1zη(z). On the

contrary L
(
λy.x1[y], nfβT(λy.xyy)

)
= λy.x1

y
η(y)

y is already in ηℓ-normal form.

Proposition 4.5.12. The reduction→ηℓ is strongly normalizing and confluent.

Proof. The reduction →ηℓ is strongly normalizing since the size of the term decreases. It is
moreover weakly confluent, and therefore confluent by Newman’s lemma.

Notation. Given a labeled term t, we write ptq for the resource term obtained from t by
erasing all its labels.

Definition 4.5.13. Let M ∈ Λ. The extensional Taylor expansion of M is given by

T η(M) := pnfηℓL(nfβT(M))q

Remark 4.5.14. In the definition above, the β-reduction and the ηℓ-reduction are separated,
and performed in that specific order, because the reduction β ∪ ηℓ is not confluent: for
instance λx.I [x, x]→ηℓ I whereas λx.I [x, x]→β ∅.
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We need some other technical tools. Remember that our aim is to prove the equality
T η(M) = T

(
BTη(M)

)
, i.e. pnfηℓL(nfβT(M))q = T

(
BTη(M)

)
. By (79), it is enough to show

that pnfηℓL(T(BT(M)))q = T(BTη(M)). The difficulty lies in that, on the one hand, BTη(M)

is η
(
BT(M)

)
, something defined coinductively on BT(M), whereas on the other hand the

ηℓ-reduction works on a set of (labeled) resource terms coming from BT(M)∗, which is a
set of finite approximants, not a coinductively defined object. In order to fill this gap, as
an intermediate step we recharacterize η

(
BT(M)

)
in the style of pnfηℓL(−)q. Basically we

mimick on sets of finite approximants what we have done so far in this section for sets of
resource terms. In particular, even for sets of finite approximants we want the η-reduction
to act like a global operation; therefore, we introduce a labeling E(−) on ideals of (N,6⊥)

in the spirit of Definition 4.5.4.

Notation. Given M ⊆ N, we denote by M ↓ its downward closure w.r.t. 6⊥, that is the set
{
a ∈ N | there exists b ∈M such that a 6⊥b

}
.

We adopt for sets M ∈ P(N) the same syntactic sugar that we used for P(Λr) since § 1.6,
by extending all the constructors of the grammar of N as pointwise operations on P(N). For
instance, MN stands for

{
ab | a ∈M and b ∈N

}
. As another example, the ideal BT( Jx)∗

can be written as
{
λz0.x(BT( Jz0)

∗)
}
↓ = λz0.x(BT( Jz0)

∗)∪ {⊥}.

Remark 4.5.15. When M is an ideal of (N,6⊥) then M = M ↓ and all its elements have a
similar syntactic structure, except for ⊥.

Definition 4.5.16. Let M be an ideal of (N,6⊥) and a ∈ M. We define the labeled finite
approximant E(a, M) by induction on a as follows.

E
(
x, {x}↓

)
:= x, E

(
λx.a, (λx.M)↓

)
:= λx.E

(
a, M↓

)
,

E
(
ac, (MN)↓

)
:= E

(
a, M↓

)
E
(
c, N

)
,

E
(
⊥, M

)
:=

{
⊥xη(x) if there exists a ⊥-free a ∈M such that a։η x, (◦)

⊥fv(M) otherwise.

We extend the definition to M by setting

E
(
M

)
:=

{
E
(
a, M

)
| a ∈M

}
.

If a is a labeled approximants we call paq the term obtained from a by erasing all its labels.

Notice that in the case (MN) ↓ of Definition 4.5.16 the set N is already downward closed.
This is the reason why it is not necessary to write E(ac, (MN)↓) := E(a, M↓)E(c, N↓) .

Remark 4.5.17. For every M ∈ Λ the set BT(M)∗ is an ideal of (N,6⊥). In fact, the definition
of E(a, M) will be only used when M is some BT(M)∗. Under this hypothesis the case
E(⊥, M) is only applied when M = BT(N)∗ for some N ∈ Λ. Then Condition (◦) is simply
equivalent to N։η x.

Definition 4.5.18. Let a be a labeled finite approximant. The set f̃v(a) of the free variables of
a is defined like the usual definition of fv(−) for finite approximants, but with the addition
of the clauses f̃v

(
⊥xη(x)

)
:= {x} and f̃v

(
⊥V

)
:= V .
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Remark 4.5.19. Let T ∈ ΛB. Then x ∈ fv(T) if and only if x ∈ f̃v(t) for every t ∈ E(T∗).

Definition 4.5.20. The reduction→ηe on labeled finite approximants is given by the rules

λx.a⊥xη(x) →ηe a if x /∈ f̃v(a), λx.ax →ηe a if x /∈ f̃v(a).

Proposition 4.5.21. The reduction→ηe is strongly normalizing and confluent.

Proof. The reduction →ηe is strongly normalizing since the size of the term decreases. It is
moreover weakly confluent, and therefore confluent by Newman’s lemma.

After some technical lemmas, we show that the ηe-reduction on E(BT(M)) computes ex-
actly the finite approximants of the coinductively defined tree BTη(M) (Proposition 4.5.26).

Lemma 4.5.22. Let x ∈ Var M ∈ Λ such that M։η x. For all a ∈M∗ either E(a,M∗) = ⊥xη(x)
or E(a,M∗) ։ηe x.

Proof. We have M = λx1 . . . xn.xN1 · · ·Nn with Ni ։β xi and x 6∈ fv(xN1 · · ·Ni−1) for all
i ∈ {1, . . . ,n}. Consider a ∈M∗. We proceed by induction on a.
Case a = ⊥. In such a case E(a,M∗) = E(⊥,M∗) = ⊥xη(x) by Definition 4.5.16, since there is
M ∈M∗ such that M→η x (M is β-normal, so it can be seen as a finite approximant).
Case a = λx1 . . . xn.xa1 · · ·an with ai ∈ N

∗
i for all i ∈ {1, . . . ,n}. By IH for all i ∈ {1, . . . ,n}

either E(ai,N∗
i ) ։ηe xi or E(ai,N∗

i ) = ⊥
xi
η(xi)

. So by Definition 4.5.16 and Definition 4.5.20

E(a,M∗) = λx1 . . . xn.xE(a1,N∗
1) · · ·E(an,N∗

n) ։ηe x.

Notation. Given two sets of terms X, Y and a reduction→r we write X ⇒r Y if and only if

• for all t1 ∈ X there is t2 ∈ Y such that t1 ։r t2,

• for all t2 ∈ Y there is t1 ∈ X such that t1 ։r t2.

Lemma 4.5.23. Let T = λ~xy.z T1 · · · Tk+1 be a Böhm like tree such that Tk+1 is finite, Tk+1 ։η y

and y /∈ fv(z T1 · · · Tk). Then E(T∗)⇒ηe E
(
(λ~x.zT∗1 · · · T

∗
k)↓

)
.

Proof. Firstly we prove that given a ∈ T∗ there exists a ′ ∈ (λ~x.zT∗1 · · · T
∗
k) ↓ such that

E(a, T∗) ։ηe E
(
a ′, (λ~x.zT∗1 · · · T

∗
k

)
↓). We split into cases depending on a.

Case a = ⊥. We have E(a, T∗) = E(⊥, T∗) = E
(
⊥, (λ~xy.zT∗1 · · · T

∗
kT

∗
k+1)↓

)
. As by hypothesis

Tk+1 is finite, Tk+1 ։η y and y /∈ fv(z T1 · · · Tk), we have T = λ~xy.z T1 · · · TkTk+1 →η
λ~xy.z T1 · · · Tk. It is then clear that there is a ⊥-free c1 ∈ T∗ such that c1 ։η z if and only if
there exists a ⊥-free c2 ∈ (λ~x.zT∗1 · · · T

∗
k)↓ such that c2 ։η z. Therefore by Definition 4.5.16

E
(
⊥, (λ~xy.zT∗1 · · · T

∗
kT

∗
k+1)↓

)
= E

(
⊥, (λ~x.zT∗1 · · · T

∗
k)↓

)
. In the end we assume a ′ := ⊥.

Case a = λ~xy.z a1 · · ·ak+1 with ai ∈ T
∗
i for all i ∈ {1, . . . ,k + 1}. By Definition 4.5.16

E(a, T∗) = λ~xy.zE(a1, T∗1 ) · · ·E(ak, T∗k)E(ak+1, T∗k+1). By hypothesis Tk+1 ։η y, hence by
Lemma 4.5.23 either E(ak+1, Tk+1) = ⊥

y
η(y)

or E(ak+1, Tk+1) ։ηe y. By Remark 4.5.19 the

fact that y /∈ fv(z T1 · · · Tk) implies y /∈ f̃v
(
zE(a1, T∗1 ) · · ·E(ak, T∗k)

)
. So in both cases we get

E(a, T∗) ։ηe λ~x.zE(a1, T∗1 ) · · ·E(ak, T∗k) = E
(
λ~x.z a1 · · ·ak, (λ~x.zT∗1 · · · T

∗
k) ↓

)
. We assume

a ′ := λ~x.z a1 · · ·ak and we are done.

Secondly, we prove that for every a ′ ∈ (λ~x.zT∗1 · · · T
∗
k) ↓ there exists a ∈ T∗ such that

E(a, T∗) ։ηe E
(
a ′, (λ~x.zT∗1 · · · T

∗
k)↓

)
. Again, we split into cases depending on a ′.
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Case a ′ = ⊥. It is enough to take a := ⊥ and repeat the argument in Case a = ⊥ above.
Case a ′ = λ~x.za ′

1 · · ·a
′
k with a ′

i ∈ T
∗
i for all i ∈ {1, . . . ,k}. Obviously ⊥ ∈ T∗k+1, so it

makes sense to assume a := λ~xy.za ′
1 · · ·a

′
k⊥ ∈ T

∗. Since by hypothesis Tk+1 is finite and
Tk+1 ։η y, we have

E(⊥, T∗k+1) = ⊥y
η(y)

. (80)

Moreover by Remark 4.5.19 from the hypothesis y /∈ fv(z T1 · · · Tk) we get

y /∈ fv
(
zE(a ′

1, T∗1 ) · · ·E(a
′
k, T∗k)

)
. (81)

We then have

E(a, T∗) = λ~xy.zE(a ′
1, T∗1 ) · · ·E(a

′
k, T∗k)E(a

′
k+1, T∗k+1) by Def. 4.5.16

= λ~xy.zE(a ′
1, T∗1 ) · · ·E(a

′
k, T∗k)⊥

y
η(y)

by (80)

→ηe λ~x.zE(a ′
1, T∗1 ) · · ·E(a

′
k, T∗k) by (81)

= E(a ′, λ~x.zT∗1 · · · T
∗
k). by Def. 4.5.16

and we are done.

Corollary 4.5.24. Let T = λ~xy.z T1 · · · Tk+1 be a Böhm like tree such that Tk+1 is finite, Tk+1 ։η

y and y /∈ fv(z T1 · · · Tk). Then nfηe
(
E(T∗)

)
= nfηe

(
E
(
(λ~x.zT∗1 · · · T

∗
k)↓

))
.

Proof. Let t ∈ nfηe
(
E(T∗)

)
, namely let t1 ∈ E(T∗) be such that t is the ηe-nf of t1. By

Lemma 4.5.23 there is t2 ∈ E
(
(λ~x.zT∗1 · · · T

∗
k) ↓

)
such that t1 ։ηe t2. Hence, by confluence

of ։ηe , the term t is also the ηe-nf of t2. So t ∈ nfηe
(
E
(
(λ~x.zT∗1 · · · T

∗
k)↓

))
. This proves that

nfηe
(
E(T∗)

)
⊆ nfηe

(
E
(
(λ~x.zT∗1 · · · T

∗
k)↓

))
.

Let t ∈ nfηe
(
E
(
(λ~x.zT∗1 · · · T

∗
k) ↓

))
, i.e. let t2 ∈ E

(
(λ~x.zT∗1 · · · T

∗
k) ↓

)
be such that t is the

ηe-nf of t2. By Lemma 4.5.23 there is t1 ∈ E(T∗) such that t1 ։ηe t2. Then clearly t is also
the ηe-nf of t1. So t ∈ nfηe

(
E(T∗)

)
. Eventually nfηe

(
E(T∗)

)
⊇ nfηe

(
E
(
(λ~x.zT∗1 · · · T

∗
k)↓

))
.

Lemma 4.5.25. Let T ∈ ΛB. Then pnfηe(E(T∗))q = η(T)∗.

Proof. We proceed by coinduction on T .
If T = ⊥ then pnfηe(E(T∗))q = pnfηe(E({⊥}))q = {pE(⊥,⊥)q} = {p⊥∅q} = {⊥} = η(T)∗.
Otherwise, the Böhm-like tree T can be written in a unique way as

T = λx1 . . . xny1 . . . ym.z T1 · · · Tk T ′
1 · · · T

′
m

for some n,m,k ∈N such that:

1. T ′
i is finite, T ′

i ։η yi and yi /∈ fv
(
z T1 · · · TkT

′
1 · · · T

′
i−1

)
, for all i ∈ {1, . . . ,m} ;

2. Tk is infinite, or Tk is finite but does not η-reduce to xn, or xn ∈ fv(z T1 · · · Tk).
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The following equalities hold:

pnfηe(E(T∗))q = pnfηe(E(λ~x.z T∗1 · · · T
∗
k)↓)q by 1 and Cor. 4.5.24

= pnfηe
(
λ~x.zE(T∗1 ) · · ·E(T

∗
n))

∪ {E(⊥, (λ~x.z T∗1 · · · T
∗
k)↓)} q by Def. 4.5.16

= pλ~x.znfηe(E(T∗1 )) · · ·nfηe(E(T∗k))

∪ {nfηe(E(⊥, (λ~x.z T∗1 · · · T
∗
k)↓))}q by def. of nfη(−)

= λ~x.z pnfηe(E(T∗1 ))q · · · pnfηe(E(T∗k))q

∪
{
pnfηe(E(⊥, (λ~x.z T∗1 · · · T

∗
k)↓))q

}
by def. of p−q

= λ~x.z η(T1)∗ · · ·η(Tk)∗

∪
{
pnfηe(E(⊥, (λ~x.z T∗1 · · · T

∗
k)↓))q

}
by coIH

= λ~x.z η(T1)∗ · · ·η(Tk)∗

∪
{
pnfηe(⊥fv(λ~x.zT∗

1 ···T
∗
k))q

}
by 2 and Def. 4.5.16

= λ~x.z η(T1)∗ · · ·η(Tk)∗ ∪ {⊥} by def. of p−q and nfη(−)

= η(T)∗ by def. of η(−)

and we are done.

Proposition 4.5.26. Let M ∈ Λ. Then pnfηeE(BT(M)∗)q = BTη(M)∗.

Proof. Since BTη(M) := η
(
BT(M)

)
, the result follows directly from Lemma 4.5.25.

Now that all technical tools are in place, we are finally able to prove that the exten-
sional Taylor expansion of a λ-term M is equal to the Taylor expansion of BTη(M) (Theo-
rem 4.5.32).

The key passage is a sort of commutation between the ηℓ-normalization and the Taylor
expansion. In fact, it is at this purpose that we have introduced also the ηe-reduction: Propo-
sition 4.5.31 below states that performing the Taylor expansion and then ηℓ-normalizing is
equivalent to ηe-normalizing in the first place and then doing the Taylor expansion.

Lemma 4.5.27. LetM ∈ Λ such thatM։η x. Then for all t ∈ T(M) we have L(t,T(M)) ։ηℓ x.

Proof. By hypothesis M = λx1 . . . xn.xM1 · · ·Mn, for some n ∈ N, with Mi ։η xi and
xi 6∈ fv(xM1 · · ·Mi−1) for all i ∈ {1, . . . ,n}. We proceed by induction on t ∈ T(M).

We have t = λx1 . . . xn.xb1 · · ·bn where bi ∈Mf(T(Mi)) for every i ∈ {1, . . . ,n}.
If n = 0 then L(t,T(M)) = L(x, {x}) = x by Definition 4.5.4. So the thesis is proved.
If n > 0 then by Definition 4.5.4

L(t,T(M)) = λx1 . . . xn.x L
(
b1,Mf(T(M1))

)
· · · L

(
bn,Mf(T(Mn))

)
.

Suppose bn = [t1, . . . , tk] for some k ∈N. Remember that tj ∈ T(Mn) for all j ∈ {1, . . . ,k}.
Let us see that

L
(
t,T(Mn)

)
։ηℓ λx1 . . . xn−1.x L

(
b1,Mf(T(M1))

)
· · · L

(
bn−1,Mf(T(Mn−1))

)
. (82)
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At this purpose we distinguish two cases, depending on k.
If k = 0 then by Definition 4.5.4

L
(
bn,Mf(T(Mn))

)
= L

(
1,Mf(T(Mn))

)
= 1

xn
η(xn)

(83)

because Mn ։η xn implies that there is s ∈
⋃
Mf(T(Mn)) = T(Mn) such that s։η ′ xn.

Therefore

L
(
t,T(Mn)

)
= λx1 . . . xn.xL

(
b1,Mf(T(M1))

)
· · ·L

(
bn−1,Mf(T(Mn−1))

)
1
xn
η(xn)

by (83)

։ηℓ λx1 . . . xn−1.xL
(
b1,Mf(T(M1))

)
· · ·L

(
bn−1,Mf(T(Mn−1))

)
by Def. 4.5.20

So (82) is proved.
Let us consider the case k > 0. Since Mn ։η xn, for every j ∈ {1, . . . ,k} the IH can be

applied to tj ∈ T(Mn), so to get L
(
tj,T(Mn)

)
։ηℓ xn. Therefore

L
(
t,T(Mn)

)
։ηℓ λx1 . . . xn.xL

(
b1,Mf(T(M1))

)
· · · L

(
bn−1,Mf(T(Mn−1))

)[
xkn

]

։ηℓ λx1 . . . xn−1.xL
(
b1,Mf(T(M1))

)
· · · L

(
bn−1,Mf(T(Mn−1))

)

So even in this case (82) is proved.
By iterating on the bags bn−1, . . . , b1 the reasoning done above for bn ultimately one

concludes that L(t,T(M)) ։ηℓ x.

Lemma 4.5.28. Let T = λ~xy.zT1 · · · Tk+1 be a Böhm like tree such that Tk+1 is finite, Tk+1 ։η y

and y /∈ fv(zT1 · · · Tk). Then L
(
T(T)

)
⇒ηℓ L

(
T(λ~x.zT1 · · · Tk)

)
.

Proof. We first take t ∈ T(T), namely t = λ~xy.zb1 · · ·bk+1 with bi ∈ Mf(T(Ti)) for all
i ∈ {1, . . . ,k+ 1}, and show that L

(
t,T(T)

)
։ηℓ L

(
t ′,T(λ~x.zT1 · · · Tk)

)
holds when we take

t ′ := λ~x.zb1 · · ·bk ∈ L
(
T(λ~x.zT1 · · · Tk)

)
. By Definition 4.5.4 we have

L(t,T(T)) = λ~xy.zL
(
b1,Mf(T(T1))

)
· · · L

(
bk+1,Mf(T(Tk+1))

)
. (84)

By Remark 4.5.9 we have that y /∈ fv(zT1 · · · Tk) implies

y /∈ f̃v
(
zL

(
b1,Mf(T(T1))

)
· · · L

(
bk,Mf(T(Tk))

) )
. (85)

Suppose that bk+1 = [t1, . . . , tn] for some n ∈N. We split into cases depending on n.
Case n = 0. The finite Böhm-like tree Tk+1 is also ⊥-free, because Tk+1 ։η y. Therefore

there exist s ∈ T(Tk+1) =
⋃
Mf(T(Tk+1)) without empty bags such that s։η ′ y. Hence

L
(
bk+1,Mf(T(Tk+1))

)
= L

(
1,Mf(T(Tk+1))

)
= 1

y
η(y)

. (86)

We have

L
(
t,T(T)

)
= λ~xy.zL

(
b1,Mf(T(T1))

)
· · ·L

(
bk+1,Mf(T(Tk+1))

)
by (84)

= λ~xy.zL
(
b1,Mf(T(T1))

)
· · ·L

(
bk,Mf(T(Tk))

)
1
y
η(y)

by (86)

→ηℓ λ~x.zL(b1,Mf(T(T1))) · · ·L(bk,Mf(T(Tk))) by (85)

= L
(
λ~x.zb1 · · ·bk,T(λ~xy.zT1 · · · Tk)

)
by Def. 4.5.4
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so we are done.
Case n > 0. In this case ti ∈ T(Tk+1) for i ∈ {1, . . . ,n} and by Definition 4.5.4

L
(
bk+1,Mf(T(Tk+1))

)
=

[
L(t1,T(Tk+1)), . . . ,L(tn,T(Tk+1))

]
. (87)

Since Tk+1 ։η y, by Lemma 4.5.27 then

L(ti,T(Tk+1)) ։ηℓ y for every i ∈ {1, . . . ,n} . (88)

Therefore

L
(
t,T(T)

)
= λ~xy.zL

(
b1,Mf(T(T1))

)
· · · L

(
bk+1,Mf(T(Tk+1))

)
by Def. 4.5.4

։ηℓ λ~xy.zL
(
b1,Mf(T(T1))

)
· · · L

(
bk,Mf(T(Tk))

) [
yn

]
by (87) and (88)

→ηℓ λ~x.zL
(
b1,Mf(T(T1))

)
· · · L

(
bk,Mf(T(Tk))

)
by Def. 4.5.10

as it was to be proved.

Secondly, we must show that for every t ′ ∈ T(λ~x.z T1 · · · Tk), namely for every t ′ of
the form λ~x.zb1 · · ·bk with bi ∈ Mf(T(Ti)) for all i ∈ {1, . . . ,k}, there exists t ∈ T(T)

such that L
(
t,T(T)

)
։ηℓ L

(
t ′,T(λ~x.zT1 · · · Tk)

)
. At this purpose it is enough to assume

t := λ~xy.zb1 · · ·bk 1. The proof then proceeds exactly like Case n = 0 above.

Corollary 4.5.29. Let T = λ~xy.z T1 · · · Tk+1 be a Böhm like tree such that Tk+1 is finite, Tk+1 ։η

y and y /∈ fv(z T1 · · · Tk). Then nfηℓ
(
L
(
T(T)

))
= nfηℓ

(
L
(
T(λ~x.zT1 · · · Tk)

))
.

Proof. Let t ∈ nfηℓ
(
T(L(T))

)
, namely let t1 ∈ T(L(T)) be such that t is the ηℓ-nf of t1. By

Lemma 4.5.28 there is t2 ∈ L
(
T((λ~x.zT1 · · · Tk)↓)

)
such that t1 ։ηℓ t2. Hence, by confluence

of ։ηℓ , the term t is also the ηℓ-nf of t2. So t ∈ nfηℓ
(
L
(
T((λ~x.zT1 · · · Tk) ↓)

))
. This proves

that nfηℓ
(
T(L(T))

)
⊆ nfηℓ

(
L
(
T((λ~x.zT1 · · · Tk)↓)

))
.

Let t ∈ nfηℓ
(
L
(
T((λ~x.zT1 · · · Tk) ↓)

))
, i.e. let t2 ∈ L

(
T((λ~x.zT1 · · · Tk) ↓)

)
be such that t is

the ηℓ-nf of t2. By Lemma 4.5.28 there is t1 ∈ T(L(T)) such that t1 ։ηℓ t2. Then clearly t is
the ηℓ-nf of t1. So t ∈ nfηℓ

(
T(L(T))

)
and nfηℓ

(
T(L(T))

)
⊇ nfηℓ

(
L
(
T((λ~x.zT1 · · · Tk)↓)

))
.

Lemma 4.5.30. Let T ∈ ΛB. Then pnfηℓL(T(T))q = T(pnfηeE(T∗)q) .

Proof. We proceed by coinduction on T .
In case T = ⊥ we have

pnfηℓL(T(⊥))q = pnfηℓL(∅)q = ∅ = T(⊥) = T(pnfηeE(⊥,⊥∗)q) = T(pnfηeE(⊥∗)q) .

so the thesis is proved.
Otherwise, the Böhm-like tree T can be written in a unique way as

T = λx1 . . . xny1 . . . ym.z T1 · · · Tk T ′
1 · · · T

′
m

for some n,m,k ∈N such that:

1. T ′
i is finite, T ′

i ։η yi and yi /∈ fv
(
z T1 · · · TkT

′
1 · · · T

′
i−1

)
, for all i ∈ {1, . . . ,m} ;

2. Tk is infinite, or Tk is finite but does not η-reduce to xn, or xn ∈ fv(z T1 · · · Tk).
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The following equalities hold:

pnfηℓL(T(T))q = pnfηℓL(T(λ~x.z T1 · · · Tk))q by Cor. 4.5.29.

= pnfηℓL(λ~x.zMf(T(T1)) · · ·Mf(T(Tk)))q by def. of T(−)

= pnfηℓ(λ~x.zMf(L(T(T1))) · · ·Mf(L(T(Tk))))q by def. of L(−)

= pλ~x.zMf(nfηℓ(L(T(T1)))) · · ·Mf(nfηℓ(L(T(Tk))))q by Def. 4.5.10

= λ~x.zMf(pnfηℓ(L(T(T1)))q) · · ·Mf(pnfηℓ(L(T(Tk)))q) by def. of p−q

= λ~x.zMf(T(pnfηe(E(T∗1 ))q)) · · ·Mf(T(pnfηe(E(T∗k))q)) by coIH

= T
(
λ~x.znfηe(pE(T∗1 )q) · · ·nfηe(pE(T∗k)q)

)
by def. of T(−)

= T
(
pλ~x.znfηe(E(T∗1 )) · · ·nfηe(E(T∗k))q

)
by def. of p−q

= T
(
pλ~x.znfηe(E(T∗1 )) · · ·nfηe(E(T∗k))q

)
∪ T(⊥) since T(⊥) = ∅

= T
(
pλ~x.znfηe(E(T∗1 )) · · ·nfηe(E(T∗k))q

)
∪ T

(
pE(⊥, λ~x.z T∗1 · · · T

∗
k)q

)
by Def. 4.5.16

= T
(
pλ~x.znfηe(E(T∗1 )) · · ·nfηe(E(T∗k))q ∪

{
pE(⊥, λ~x.z T∗1 · · · T

∗
k

)
q
})

by def. of T(−)

= T
(
pnfηe

(
λ~x.zE(T∗1 ) · · ·E(T

∗
k)
)
q ∪

{
pE(⊥, λ~x.z T∗1 · · · T

∗
k

)
q
})

by Def. 4.5.20

= T
(
pnfηeE((λx1 . . . xn.zT1 · · · Tk)↓)q

)
by Def. 4.5.16

= T(pnfηeE(T∗)q) by 1 and Cor. 4.5.29.

and we are done.

Proposition 4.5.31. Let M ∈ Λ. Then pnfηℓL(T(BT(M)))q = T(pnfηeE(BT(M)∗)q) .

Proof. We just apply Lemma 4.5.30 for T = BT(M).

We can finally prove the main result of the section.

Theorem 4.5.32. Let λ-term M. Then T η(M) = T(BTη(M)).

Proof. We have the following chain of equalities

T η(M) = pnfηℓL(nfβT(M))q by Def. 4.5.13

= pnfηℓL(T(BT(M)))q by Theor. 1.6.4

= T(pnfηeE(BT(M)∗)q) by Prop. 4.5.31

= T(BTη(M)∗) by Prop. 4.5.26

so we are done.

Corollary 4.5.33. Let M,N ∈ Λ. Then BTη(M)∗ ⊆ BTη(N)∗ if and only if T η(M) ⊆ T η(N).

Proof. (⇒) Using Theorem 4.5.32, the definition of the Taylor expansion for Böhm-like trees
and the hypothesis we get

T η(M) = T(BTη(M)) =
⋃

a∈BTη(M)∗

T(a) ⊆
⋃

a∈BTη(N)∗

T(a) = T(BTη(N)) = T η(N) .
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(⇐) Using Theorem 4.5.32, the definition of the Taylor expansion for Böhm-like trees and
the hypothesis we get

⋃

a∈BTη(M)∗

T(a) = T(BTη(M)) = T η(M) ⊆ T η(N) = T(BTη(N)) =
⋃

a∈BTη(N)∗

T(a) .

So given any a ∈ BTη(M)∗ we have T(a) ⊆ T(BTη(N)). By Lemma 1.6.3 we can conclude
that a ∈ BTη(N)∗.

Corollary 4.5.34. Let M,N ∈ Λ. Then M =H+N if and only if T η(M) = T η(N).

Proof. As seen in § 1.4 we have M =H+ N if and only if BTη(M) = BTη(N), which is
BTη(M)∗ = BTη(N)∗. This is equivalent to T η(M) = T η(N) by Corollary 4.5.33.
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5
C H A R A C T E R I Z I N G M O R R I S ’ S T H E O RY: λ- K Ö N I G R E L AT I O N A L
G R A P H M O D E L S

A key aim of this thesis is to find models of Morris’s observational theory. The notion of
uniformly bottomless ergm, seen in Chapter 4, provides us with plenty of such models
(actually infinitely many of them). However, that notion is only a sufficient condition for the
full abstraction. In this final chapter we achieve a much more complicated goal. We give
an exhaustive answer to the problem within our semantics: we find necessary and sufficient
conditions on rgm’s to be fully abstract for Morris’s theory. (Actually, these conditions will
extend immediately to all relational models.)

Results of full abstraction are rarely as exhaustive as this, at least in the context of the
untyped λ-calculus. As a matter of fact, in the literature there is only one other charac-
terization of an observational theory in a given class of models. Such result concerns the
observational theory with head normal forms as observables, namely H∗. In [Bre16] (first
published as [Bre14]) Breuvart presented a necessary and sufficient condition on Krivine’s
models to induce ⊑H∗ . Krivine’s models [Kri90] are a (large) subclass of Scott’s continuous
semantics, which is not the one that we use here. Nevertheless, there are some informal sim-
ilarities between Krivine’s models and rgm’s, specifically the fact that both semantics can be
handled using intersection types. So it should not be surprising if we state that Breuvart’s
theorem was of inspiration for the one that we provide here.

Here the full abstraction problem is considered inequationally, that is w.r.t. ⊑H+ . However,
at the end of the process we will also find out that solving the problem inequationally is
equivalent to solving it equationally. So there is no harm if we refer just to the equational
theory H+ in this introduction. We have already seen in Chapter 4 that all ergm’s validate at
least the equations of H+, as a consequence of the fact that the extensional Böhm trees form a
syntactic model of H+. Once again the difficult part is to find a condition guaranteeing that
an ergm does not equate more than that. So we need to analyze the equations in H∗ −H+

(remember that the λ-theory of any rgm is sensible, hence included in the maximal sensible
λ-theory H∗). The purpose is to avoid these equations: whenever (M,N) ∈ H∗ −H+ we
wish to separate M and N in the model, namely we want [[M]] 6= [[N]].

We show that if two λ-terms M,N are equal in H∗, but not in H+, then their Böhm
trees are similar — meaning that their nodes can be equated by some η-conversions — but
with the following relevant fact: there must exist a position σ where they differ because
of an infinitely deep η-expansion. In other words, BT(M) and BT(N) are equal up to some
conversions ։։η , and in particular in at least a position σ the infinite η-expansion cannot
be finitely deep, i.e. BT(N)σ ։։η BT(M)σ but BT(N)σ 6։։

fin
η BT(M)σ . Such a position is

called Morris separator for M and N. One may notice here a certain analogy with the notion
of r-separator introduced in § 3.3: in that case the existence of an r-separator characterized
the fact that (M,N) ∈ H∗ − (=r); here the existence of a Morris separator will characterize
the fact that (M,N) ∈ H∗ −H+.
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Thanks to an ad hoc refined version of the Böhm-out technique, we prove that it is always
possible to extract such a difference existing in position σ by means of a suitable context.
Precisely, we define a context C[−] such that BT(C[M]) = I whereas BT(C[N]) ։։η I and
BT(C[N]) 6։։fin

η I, i.e. BT(C[N]) is an infinitely deep η-expansion of I. This allows us to
reduce the quest for a fully abstract ergm of H+ to another problem: separating in an ergm

the λ-term I from all its infinitely deep η-expansions.
For this purpose, we introduce the notion of λ-König model. Let us explain the rough idea.

For every infinite computable tree T let us call BT ∈ ΛB the infinite η-expansion of I with
underlying tree T . One should realize here that these BT ’s are exactly all infinitely deep
η-expansions of I. Intuitively an rgm is λ-König when every infinite computable tree T has
an infinite branch (which always exists by König’s lemma) witnessed by some type σT of
the model. The definition of such a witness is given by a refined version of the unfolding of
types exploited in Chapter 4, and it assures that σT→σT 6∈

[[
BT

]]
. Since on the other hand

σT → σT ∈
[[

I
]]

, the separation is achieved.
In the end the main result of this chapter, arguably of the thesis, states that an rgm is fully

abstract for H+ if and only if it is extensional and λ-König (Theorem 5.6.2). This actually
characterizes the full abstraction for H+ in the whole relational semantics (Corollary 5.6.3).

As a byproduct of our version of the Böhm-out, we get another purely syntactic result.
We show that H+ satisfies the ω-rule, the property of extensionality recalled in § 1.2 which
is stronger than the η-rule, as explained in § 1.5. This gives a positive answer to a long-
standing open problem (cf. [Bar84, § 17.4]).

plan of the chapter . In order to approach gradually to the desired necessary and
sufficient condition for the full abstraction, in § 5.1 we make some heuristic considerations
inspired by the weaker condition already found in Chapter 4. In § 5.2 we associate with
every infinite recursive tree T a closed λ-term JT such that BT( JT ) is the (only) infinitely
deep η-expansion of I whose underlying naked tree is T (namely, BT( JT ) is the Böhm-like
tree called BT in this informal introduction). In § 5.3 we introduce the notion of Morris
separator, and show how to perform a Böhm-out whenever such a separator exists. In § 5.4
we use the Böhm-out Lemma to prove that the λ-theory H+ satisfies the ω-rule. In § 5.5 we
introduce the notion of witness for an infinite computable tree T and prove that the set of
witnesses for T is exactly the difference [[ I ]] − [[ JT ]]. In § 5.6 we give the notion of λ-König
rgm. Then we use the Böhm-out Lemma and the characterization of [[ I ]] − [[ JT ]] mentioned
above to conclude that an rgm induces the preorder ⊑H+ if and only if it is extensional and
λ-König. We also provide examples of λ-König ergm (some which are not already contained
in the class of fully abstract models from the previous chapter).

5.1 by way of a preamble : two candidate fully abstract models?

This section features mainly informal considerations. Readers only interested in the formal
results can skip to § 5.2.

To introduce the main idea of this chapter, it may help to start from what we have
achieved so far, i.e. the notion of uniformly bottomlessness developed in § 4.1-4.3. For every
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k ∈N it provides the model with some type σk satisfying the following property: when σk
is unfolded as

σk ≃ µ00 → · · · → µ0k → τk

σ1k ≃ µ10 → · · · → µ1k → τ1k
...

σnk ≃ µn0 → · · · → µnk → τnk
...

with σn+1k ∈
⋃k
i=1 µ

n
i for all n ∈N, then µni 6= ω for all n ∈N and for all i ∈ {0, . . . ,k}. As

explained in § 4.3, this property helps us to characterize β-normalizability within the model.
Even if in this chapter we do not exploit β-normalizability to achieve the full abstraction,
nevertheless a question arise: do we really need all those intersections µni to be non-empty?
Can we refine the notion by requiring as few non-empty µni as possible along the unfoldling?

For instance, one may ask a model to have for all f : N → N a type σf that can be
infinitely unfolded as

σf ≃ µ00 → · · · → µ0f(0) → τk

σ1f ≃ µ10 → · · · → µ1f(1) → τ1k
...

σnf ≃ µn0 → · · · → µnf(n) → τnk
...

with σn+1f ∈ µnf(n) for all n ∈ N. Does this condition provide enough control on the pro-
liferation of ω to assure a clear separation in the model (i.e. using typings) between what
is β-normalizable and what is not? We could also weaken this condition by requiring the
existence of such a σf not for every f : N → N, but just for every computable f : N → N.
What about this weaker alternative?

Here are two concrete examples of rgm’s satisfying these two conditions.

Example 5.1.1. We call L the free completion

L := (L , j )

of the partial pair (L , j ) defined as follows. The 2ℵ0 elements of the family

L :=
{
∗
}
∪

{

βn,k
f

}n∈N,k6f(n)

f∈NN

are pairwise distinct and are not pairs. The partial function j : Mf(L)× L ⇀ L maps
(
[ ] , ∗

)
7→ ∗ ,

for all f : N →N, for all n ∈N and for all 0 < k 6 f(n)

([ ]
, βn,k−1
f

)
7→ βn,k

f ,
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for all f : N →N and for all n ∈N
([
β
n+1, f(n+1)
f

]
, ∗

)
7→ βn,0

f ,

and is undefined on any other (m,a) ∈Mf(L) × L.
The rgm L is extensional, since j is surjective.
In particular notice that for all f : N →N and for all n ∈N the completion j maps

f(n) times
︷ ︸︸ ︷([ ]

,
([ ]

, · · ·
([ ]

,
([
β
n+1, f(n+1)
f

]
, ∗

))
· · ·

))
7→ β

n, f(n)
f .

By convenience let us rename αnf := β
n, f(n)
f for all n ∈ N. Then one can think of G as the

ergm relying on the basic equations

∗ ≃ ω → ∗

and for every f : N →N

α0f ≃

f(0) times
︷ ︸︸ ︷
ω → · · · → ω → α1f → ∗

α1f ≃

f(1) times
︷ ︸︸ ︷
ω → · · · → ω → α2f → ∗

...

αnf ≃

f(n) times
︷ ︸︸ ︷
ω → · · · → ω → αn+1f → ∗

...

Example 5.1.2. Let Lrec be defined just like the rgm L above, but considering only recursive
functions from N to N. In other words, we repeat the construction given in Example 5.1.1
but restricting to the set of ℵ0 atoms

Lrec :=
{
∗
}
∪

{

βn,k
f

}n∈N,k6f(n)

f∈NN , f computable

In this case also by convenience we rename αnf := β
n, f(n)
f for all n ∈N.

Is any of these two models fully abstract for H+? Clearly, neither L nor Lrec is uniformly
bottomless. So we cannot answer the question for the moment. But we will at the end of
this chapter. Anyhow, L and Lrec seem to be good candidates. After all, in both rgm’s we
have [[ I ]] 6= [[ J ]]. Indeed it easy to realize that, for the constant function f : n ∈ N 7→ 0 ∈ N,
one has αf → αf 6∈ [[a]] for every a ∈ BT( J ), hence by the Böhm Approximation Theorem
αf → αf ∈ [[ I ]] − [[ J ]]. Now, the property [[ I ]] 6= [[ J ]] may not be enough to get the full
abstraction, but it is a clue. In fact, more than a clue: it is a starting point towards the
solution, as it will be clear in the rest of this chapter.
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BT
(

JT
)

q

λxy1 . . . yTε.x

λz1 . . . zT〈0〉.y1 · · · λz1 . . . zT〈Tε-1〉.yTε

λ~wT〈0,0〉.z1 · · · λ~wT〈0,T〈0〉-1〉.zT〈0〉 λ~wT〈Tε-1,0〉.z1 · · · λ~wT〈Tε-1,T〈Tε-1〉-1〉.zT〈Tε-1〉

· · · · · · · · · · · ·

Figure 6: The Böhm tree of JT , an infinite η-expansion of I following T ∈ T∞
rec. To lighten the nota-

tions in this figure we write Tσ rather than T(σ) and we let ~wn := w1, . . . ,wn.

5.2 infinite η-expansions of I

So far we have made use of Wadsworth’s combinator J [Wad76]. In particular, we have
regarded its Böhm tree as a kind of paradigmatic infinite η-expansion of the identity. But
BT( J) is not the only possible such η-expansion. In fact, for each T ∈ T∞

rec there exists one
and only one infinite η-expansion of I that follows T , meaning that T is its underlying naked
tree, as in Figure 6. For every T ∈ T∞

rec we define here a λ-term JT such that BT
(

JT
)

is the
infinite η-expansion of I following T .

Let us fix an effective encoding @ : N∗ →N. By that we mean that @ is bijective and both
@ and @−1 are computable functions.

Proposition 5.2.1. The function P : N×N →N defined by
(
@ϕ , n

)
7→ @

(
ϕ.n

)
is computable.

Proof. We describe how to compute P on any given (m,n) ∈ N ×N. Since @−1 is com-
putable, we can compute @−1m.

In case @−1m is undefined we set P(m,n) to be undefined.
If @−1m = ϕ then, by computability of @, we can compute @(ϕ.n). In the end we set

P(m,n) := @(ϕ.n).

By Church’s thesis Proposition 5.2.1 gives the following fact.

Lemma 5.2.2. There is Cons∈ Λ0 such that Cons@ϕ n =β @(ϕ.n) for all ϕ ∈N∗ and n ∈N.

Notation. From now on ϕ stands for @ϕ , for all ϕ ∈N∗.

Let # : Λ→N be a Gödel numbering, i.e. any encoding of all λ-terms into N.

Theorem 5.2.3. [Bar84, Proposition 8.2.2.] Let (Mn)n∈N be a sequence of closed λ-terms such that
n ∈N 7→ #Mn ∈N is computable. There exists M ∈ Λ0 such that Mn =β Mn for all n ∈N.

Lemma 5.2.4. Let T ∈ Trec. Then there exists ET ∈ Λ0 such that for all ϕ ∈ dom(T)

ETϕ =β λr x x1 . . . xT(ϕ).x
(
r
(
Consϕ0

)
x1

)
· · ·

(
r
(
ConsϕT(ϕ) − 1

)
xT(ϕ)

)
.
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Proof. Let X := @
[
dom(T)

]
=

{
n ∈N | there exists ϕ ∈ dom(T) such that n = @ϕ

}
.

Consider the function

n ∈ X

#
(
λrxx1 . . . xT(@−1n).x

(
r
(
Consn0

)
x1

)
· · ·

(
r
(
ConsnT(@−1n) − 1

)
xT(@−1n)

))
∈N.

In other words we are sending each n ∈ X to the Gödel number of the closed λ-term

λ r x x1 . . . xT(ϕ). x
(
r
(
Consϕ0

)
x1

)
· · ·

(
r
(
ConsϕT(ϕ) − 1

)
xT(ϕ)

)
∈ Λ0 (89)

where ϕ is the only element of dom(T) such that n = @ϕ, hence n = ϕ .
The computability of this partial function from N×N to N follows obviously from the

partial computability of T , @−1 and #.
By applying Theorem 5.2.3 to this function we get ET ∈ Λ0 such that for every n ∈ X the

λ-term ETn , namelyETϕ , is β-corvertible to (89).

Definition 5.2.5. Let T ∈ Trec. We define the closed λ-terms J T := Θ
(
λ r s.ETs r

)
.

Lemma 5.2.6. Let T ∈ Trec. For every ϕ ∈ dom(T) we have

J Tϕ =β λ x x1 . . . xT(ϕ). x
(
J Tϕ.0 x1

)
· · ·

(
J Tϕ.T(ϕ) − 1 xT(ϕ)

)
.

Proof. We have

J Tϕ = Θ
(
λrs.ETsr

)
ϕ by Def. 5.2.5

=β
(
λrs.ETsr

)
Θ
(
λrs.ETsr

)
ϕ by Def. of Θ

=β ET ϕJ T by Def. 5.2.5

=β λx x1 . . . xT(ϕ).x
(
J T

(
Consϕ0

)
x1

)
· · ·

(
J T

(
ConsϕT(ϕ) − 1

)
xT(ϕ)

)
by Lem. 5.2.4

=β λx x1 . . . xT(ϕ).x
(
J Tϕ.0 x1

)
· · ·

(
J Tϕ.T(ϕ) − 1 xT(ϕ)

)
by Lem. 5.2.2

which was to be proved.

Lemma 5.2.7. Let T ∈ Trec. For every ϕ,ϕ ′ ∈ dom(T) we have J Tϕϕ ′ =β J
Tϕϕ ′ .

Proof. We proceed by coinduction on ϕ ′ ∈N∗.

J Tϕϕ ′ =β λx x1 . . . xT(ϕϕ ′).x
(
J Tϕϕ ′.0 x1

)
· · ·

(
J Tϕϕ ′.T(ϕϕ ′) − 1 xT(ϕϕ ′)

)
by Lem. 5.2.6

=β λx x1 . . . xTϕ(ϕ ′).x
(
J Tϕϕ ′.0 x1

)
· · ·

(
J Tϕϕ ′.Tϕ(ϕ) − 1 xTϕ(ϕ ′)

)
by coIH

=β J Tϕϕ ′ by Lem. 5.2.6

as we had to prove.

Definition 5.2.8. Let T ∈ Trec. Then JT := J Tε .

Theorem 5.2.9. Let T ∈ Trec. Then JT =β λ x x1 . . . xT(ε). x
(

JT〈0〉 x1
)
· · ·

(
JT〈T(ε)−1〉 xT(ε)

)
.

112



Proof. We have

JT := J Tε by Def. 5.2.8

=β λ x x1 . . . xT(ε). x
(
J T〈0〉 x1

)
· · ·

(
J T〈T(ϕ) − 1〉 xT(ε)

)
by Lem. 5.2.6

=β λ x x1 . . . xT(ε). x
(
J T〈0〉ε x1

)
· · ·

(
J T〈T(ϕ)−1〉ε xT(ε)

)
by Lem. 5.2.7

=β λ x x1 . . . xT(ε). x
(

JT〈0〉 x1
)
· · ·

(
JT〈T(ε)−1〉 xT(ε)

)
by Def. 5.2.8

and we are done.

Corollary 5.2.10. Let T ∈ Trec. Then the naked tree underlying BT
(

JT
)

is T .

Proof. We check the result by coinduction on BT
(

JT
)

. By Theorem 5.2.9 we have

BT
(

JT
)

= λ x x1 . . . xT(ε). x BT
(
JT〈0〉 x1

)
· · · BT

(
JT〈T(ε)−1〉 xT(ε)

)
.

So the number of children of the root of
⌈
BT

(
JT
)⌉

is T(ε). Also, for all i ∈ {0, . . . , T(ε) − 1}
we have T〈i〉 =

⌈
BT

(
JT〈i〉

)⌉
=

⌈
BT

(
JT〈i〉 xi+1

)⌉
by coIH. This proves the thesis.

In particular given T ∈ T∞
rec then BT( JT ) is the tree depicted in Figure 6.

Proposition 5.2.11. Let T ∈ Trec. Then BT
(

JT
)
։։η I. In particular whenever T ∈ T∞

rec then
BT

(
JT
)
։։η I but BT

(
JT
)
6։։fin
η I.

Proof. According to Definition 1.4.1 we must prove that BT
(

JT
)
=

(
I ;

⌈
BT

(
JT
)⌉ )

. By Corol-
lary 5.2.10 this is equivalent to BT

(
JT
)
= (I ; T). In order to prove this equality we show

that for every ϕ ∈ dom(T) = dom
(
BT

(
JT
))

= dom(I ; T) we have (I ; T)(ϕ) = BT
(

JT
)
(ϕ).

• Clearly ε ∈ dom(I), I(ε) = λx.x and the number of children of the node ε in I is 0. Then
by Point 2 of Definition 1.4.1 we have (I ; T)(ε) = λxyε0 . . . y

ε

T(ε)−1.x = BT
(

JT
)
(ε).

• For all i ∈ {0, . . . , T(ε) − 1} we have 〈i〉 = ε.i ∈ dom(T) − dom(I), ε ∈ dom(I) and the
number of children of the node ε in I is 0. Then by Point 3 of Definition 1.4.1 we get
(I ; T)

(
〈i〉

)
= λy

〈i〉

0 . . . y
〈i〉

T(〈i〉)−1.yεi = BT
(

JT
)(
〈i〉

)
.

• For any ϕ ∈ dom(T) of length at least 2 we have ϕ = ϕ ′. i ∈ dom(T) − dom(I) with
ϕ ′ 6∈ dom(I). So by Point 4 of Definition 1.4.1 we get (I ; T)(ϕ) = λyϕ0 . . . y

ϕ

T(ϕ)−1.yϕ ′

i =

BT
(

JT
)
(ϕ) .

So eventually (I ; T) = BT
(

JT
)
. This completes the proof of BT

(
JT
)
։։η I .

Finally, the fact that BT
(

JT
)
6։։fin
η I whenever T ∈ T∞

rec is trivial to prove.

Remark 5.2.12. At this point it should be clear that
{

BT( JT )
}

T∈T
rec

is actually the family of all
λ-definable Böhm-like trees that are infinite η-expansions of I. In particular its subfamily
{

BT( JT )
}

T∈T∞
rec

contains exactly what we call the infinitely deep η-expansions of I.

Examples 5.2.13. Here are some examples.

• If T ∈ Trec − T∞
rec then BT

(
JT
)

is the finite η-expansion of I following T . For instance,
by taking the partial map T : N∗

⇀ N that only sends ε 7→ 0 we get JT =β I. As an-
other example, if T maps ε 7→ 3 and 〈2〉 7→ 1 then JT =β λxy0y1y2.xy0y1(λz0y2 z0).
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• Let T : N∗
⇀ N send 〈

n times
︷ ︸︸ ︷
0, 0, . . . , 0 〉 7→ 1 for every n ∈ N. Then T ∈ T∞

rec and JT = J.
Pay attention: not only BT

(
JT
)
= BT

(
J
)
, but actually the two terms JT and J are the

same. In other words, our uniform definition of the function J− : T ∈ Trec 7→ JT ∈ Λ
0

generalizes the definition of the combinator J given by Wadsworth in [Wad76].

An even more explicit definition of JT can be found in § 2.1 of our paper [BMPR16].

5.3 separating the inseparable : böhm-out through morris separators

The Böhm-out technique [Bar84, RP04], which first appeared in [Böh68], builds a context C[ ]
from any two λ-terms M and N. This is done so that C[M] and C[N] extract (instances of)
Mσ and Nσ, namely the subterms of M and N lying at a certain position σ on BT(M) and
BT(N). The technique is usually used to separate M and N according to some notion of
separation, provided that their inner structures are sufficiently different.

As explained in the introduction of the chapter, we are interested in the case where
M ⊑H∗ N (hence M and N have a similar structure, meaning that in every position σ on
which both BT(M) and BT(N) are defined the number of abstractions and applications
can be matched via η-expansions), but M 6⊑H+ N. We rephrase the traditional Böhm-out
technique for such a case, so to extract I from one of the two λ-terms, and something with
Bohm tree BT( JT ), for T infinite recursive, from the other (Theorem 5.3.8). Actually, rather
than consider directly the hypothesis M 6⊑H+ N, it suffices to focus first on the situation
where M is β-normal, N is not β-normalizable and M ⊑H∗ N. Notice that these M and N
are not separable in the sense of [Bar84], from which the pun in the title of this section: we
separate the inseparable.

We start by providing a notion of Morris separator, as a sequence σ ∈ N∗ witnessing that
we are in the situation described above.

Notation. We generally use for Böhm trees the same notions and notations introduced for
naked trees. Except for the following convenient abuse of language: we write σ ∈ BT(M) to
indicate that σ ∈ dom(BT(M)).

Remember that for M ∈ Λ and σ ∈ BT(M) the subterm Mσ is defined in § 1.2.

Definition 5.3.1. Let M,N ∈ Λ and σ ∈ BT(M) ∩ BT(N). Then σ is a Morris separator for
M,N, written

σ : M 6⊑H+ N ,

if there exists i > 0 such that for some p > i we have

Mσ =β λx1 . . . xn.yM1 · · ·Mm and Nσ =β λx1 . . . xn+p.yN1 · · ·Nm+p

where Nm+i =B JTxn+i for some T ∈ T∞
rec.

Lemma 5.3.2. Let M,N ∈ Λ. If σ :M 6⊑H+N and σ = 〈k〉 τ then τ :Mk+1 6⊑H+Nk+1.

Proof. Simply because
(
Mk+1

)
τ
=Mσ and

(
Nk+1

)
τ
= Nσ.
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BT(M) = λx.x

λz.y λvz0.x

x z v z0

BT(N) = λxw.x

y λz0.x λv0z0.w

x λz1.z0 λv1z1.v0 λv1z1.z0

λz2.z1
...

λv2z2.v1 λv2z2.z1 λv2z2.v1 λv2z2.z1
. . .. .
. . . .. .

. . . .. .
. . . .. .

.

Figure 7: The Böhm trees of two λ-terms M, N such that M is β-normal, M ⊑H∗ N, but M 6⊑H+ N.

Example 5.3.3. Consider two λ-terms M and N with Böhm trees as in Figure 7. There exist
exactly two Morris separators for M, N. They are ε and 〈1, 0〉, as explained here below.

• The empty sequence ε ∈ BT(M) ∩ BT(N) is a Morris separator since 〈2〉 /∈ BT(M),
whereas N〈2〉 =B JT2w, where T2 is the complete binary tree (formally T2 : N∗

⇀ N

is given by σ 7→ 2 for every sequence σ whose elements are only 0’s and 1’s).

• The sequence 〈1, 0〉 ∈ BT(M)∩ BT(N) is a Morris separator because 〈1, 0, 0〉 /∈ BT(M),
whereas N〈1,0,0〉 =B Jz1.

Proposition 5.3.4. LetM,N ∈ Λ such thatM is β-normal,N is not β-normalizable andM ⊑H∗N.
Then there exists a position σ ∈ BT(M)∩ BT(N) such that σ :M 6⊑H+N.

Proof. Since M is β-normal, the finite tree BT(M) is ⊥-free. Hence, as M ⊑H∗N, also BT(N)

is ⊥-free. But at the same time N is not β-normalizable by hypothesis. So the tree BT(N)

must be infinite. By König’s lemma there exists f ∈ Π(BT(N)). Since BT(M) is finite there
exists n ∈N such that

σ :=
〈
f(0), . . . , f(n− 1)

〉
∈ BT(M)∩BT(N) and

〈
f(0), . . . , f(n)

〉
/∈ BT(M) . (90)

(Notice that such σ is simply ε in case n = 0.)
Since M ⊑H∗N, by Proposition 1.3.4 and (90) there exist m1,n1 ∈N and p > 0 such that

Mσ =β λx1 . . . xn1 .yM1 · · ·Mm1
and Nσ =β λx1 . . . xn1+p.yN1 · · ·Nm1+p .

Moreover, still by Proposition 1.3.4 if we set j := f(n1) + 1−m1 we have xn1+j ⊑H∗ Nm1+j.
By the characterization of ⊑H∗ in terms of η-expansions of Böhm trees, we have then
BT(Nm1+j) ։։η xn1+j. Since BT(Nm1+j) is infinite, BT(Nm1+j) 6։η xn1+j. We conclude by
Remark 5.2.12 that Nm1+j =B JTxn1+j for some T ∈ T∞

rec.

The combinators known as projectors Unk and tuplers Pn will be used (among others re-
called in § 1.2) to build the Böhm-out context. For all n,k ∈N such that k > n they are

Unk := λx1 . . . xn.xk Pn := λx1 . . . xn.λz.z x1 · · · xn .

These combinators enjoy the following properties, whose proofs are straigthforward.

Lemma 5.3.5. Let n,k ∈N such that k > n, and let X1, . . . ,Xn, Y1, . . . , Yk−n ∈ Λ0. Then
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1.
(
PkX1 · · ·Xn

)
Y1 · · · Yk−n =β λz.zX1 · · ·XnY1 · · · Yk−n ;

2.
(
λz.zX1 · · ·Xn

)
Uni =β Xi .

Let us explain the main idea. When Unk is substituted for y in λ~x.yM1 · · ·Mn, it extracts
an instance of Mk, meaning by this, Mk possibly with some of its free variables replaced by
combinators. For instance, consider the λ-term N whose Böhm tree is given in Figure 7. The
context [−]U31 extracts from N the subterm yx where x is replaced by U31. The idea of the
Böhm-out technique is to replace every variable along the path σ with the correct projector.

The issue is when the same variable occurs several times in σ and we must select dif-
ferent children in these occurrences. For example, to extract N〈1,0〉 the first occurrence of
x should be replaced by U32, the second by U11 = I. The problem was originally solved by
Böhm in [Böh68] by first replacing the occurrences of the same variables along the path by
different variables using the tupler, and then replacing each variable by the suitable projec-
tor. In the example under consideration, the context [−]P3ΩU32U11ΩΩU31 extracts from N

the instance of N〈1,0〉 where z0 is replaced by I.
Notice that finite η-differences can be destroyed during the process of Böhming out. In

contrast, we show that infinitely deep η-differences can always be preserved.

Notation. Let M ∈ Λ. Then M∼n denotes the sequence of λ-terms containing n copies of M.

Lemma 5.3.6 (Böhm-out). Let M,N ∈ Λ such that M ⊑H∗ N and let σ : M 6⊑H+ N be a
Morris separator. Let ~y contain the variables in fv(MN). Then for all k ∈ N large enough there is
~X ∈

(
Λ0

)∗ such that M
{

Pk/~y
}
~X =β I and N

{
Pk/~y

}
~X =B JT for some T ∈ T∞

rec.

Proof. We proceed by induction on σ.
Case σ = ε. Since ε :M 6⊑H+N, there exist i > 0 and p > i such that

M =β λx1 . . . xn.yM1 · · ·Mm and N =β λx1 . . . xn+p.yN1 · · ·Nm+p

with

Nm+i =B JTxn+i for some T ∈ T
∞
rec . (91)

Since T is infinite and computable, there exists j ∈
{
0, . . . , T(ε) − 1

}
such that T〈j〉 is still

infinite and computable. Also notice that
(

JTxn+i
){

U
T(ε)
j+1 /xn+i

}

=β λx1 . . . xTε. JT〈j〉 . (92)

For any k > n+m+ p let us set ~X := P∼n
k U

T(ε)
j+1

∼pΩ∼k−m−pUkm+iI
∼T(ε) . Notice that ~X

depends on k (we will make this explicit using a pedex, i.e. by ~Xk, only when needed).
We split into cases depending on whether y is free or y = xj for some j ∈ {1, . . . ,n}. We

consider only the former case, as the latter is completely analogous. On the one side
(
λx1 . . . xn.yM1 · · ·Mm

){
Pk/~y

}
~X =

(
λx1 . . . xn.PkM ′

1 · · ·M
′
m

)
~X =β where M ′

ℓ :=Mℓ

{
Pk/~y

}

(
PkM

′′
1 · · ·M

′′
m

)
U
T(ε)
j+1

∼pΩ∼k−m−pUkm+iI
∼T(ε) =β where M ′′

ℓ :=M ′
ℓ

{
Pk/~x

}

(
λz.zM ′′

1 · · ·M
′′
mU

T(ε)
j+1

∼pΩ∼k−m−p
)
Ukm+iI

∼T(ε) =β by Lem. 5.3.5(1)

U
T(ε)
j+1 I∼T(ε) =β I by Lem. 5.3.5(2).
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On the other side we get

(
λx1 . . . xn+p.xjN1 · · ·Nm+p

){
Pk/~y

}
~X =

(
λx1 . . . xn+p.PkN ′

1 · · ·N
′
m+p

)
~X =β for N ′

ℓ := Nℓ
{

Pk/~y
}

(
λxn+1 . . . xn+p.PkN ′′

1 · · ·N
′′
m+p

)
U
T(ε)
j+1

∼pΩ∼k−m−pUkm+iI
∼T(ε) =β for N ′′

ℓ := N ′
ℓ

{
Pk/x1, . . . , xn

}

(
PkN

′′′
1 · · ·N

′′′
m+p

)
Ω∼k−m−pUkm+iI

∼T(ε) =β for N ′′′
ℓ := N ′′

ℓ

{
U
T(ε)
j+1 /xn+1, . . . , xn+p

}

(
λz.zN ′′′

1 · · ·N
′′′
m+pΩ

∼k−m−p
)
Ukm+iI

∼T(ε) =β by Lem. 5.3.5(1)

N ′′′
m+iI

∼T(ε) = Nm+1

{

U
T(ε)
j+1 /xn+i

}

I∼T(ε) =B by Lem. 5.3.5(2)
(

JTxn+i
){

U
T(ε)
j+1 /xn+i

}

I∼T(ε) =β by (91)(
λx1 . . . xTε. JT〈j〉

)
I∼T(ε) =β JT〈j〉 by (92).

Case σ = 〈i〉τ. By Lemma 1.3.4 there are n,m,n ′,m ′ ∈N such that n−m = n ′ −m ′ and

M = λx1 . . . xn.yM1 · · ·Mm and N = λx1 . . . xn ′ .yN1 · · ·Nm ′

where Mj ⊑H∗ Nj for all j ∈ {1, . . . , min(m,m ′)} and either y is free or y = xj for some
j ∈ {1, . . . , min(n,n ′)}. Suppose that, say, n 6 n ′ (the case n ′ 6 n is analogous). Then we
set p := n ′ −n = m ′ −m , so we can write n ′ = n+ p and m ′ = m+ p .

Notice that i+ 1 ∈ {1, . . . , min(m,m ′)} and by Lemma 5.3.2 we have τ :Mi+1 6⊑H+ Ni+1.
Since moreover Mi+1 ⊑H∗ Ni+1 and all the free variables of Mi+1Ni+1 are among ~y,~x ,
the IH can be applied to Mi+1 and Ni+1. For any h large enough we get ~Yh ∈

(
Λ0

)∗

such that Mi+1

{
Ph/~y,~x

}
~Yh =β I and Ni+1

{
Ph/~y,~x

}
~Yh =B JT for some T ∈ T∞

rec. For any
k > max(h,n+m+ p), we set ~X := P∼n+p

k Ω∼k−m−pUki+1
~Yk.

We suppose that y is free, the other case being analogous. On the one side we have

(
λx1 . . . xn.yM1 · · ·Mm

){
Pk/~y

}
~X =

(
λx1 . . . xn.PkM ′

1 · · ·M
′
m

)
P∼n+p
k Ω∼k−m−pUki+1

~Yk =β where M ′
ℓ :=Mℓ

{
Pk/~y

}

(
PkM

′′
1 · · ·M

′′
m

)
P∼p
k Ω∼k−m−pUki+1

~Yk =β where M ′′
ℓ :=M ′

ℓ

{
Pk/~x

}

(
λz.zM ′′

1 · · ·M
′′
mP∼p

k Ω∼k−m−p
)
Uki+1

~Yk =β by Lemma 5.3.5(1)

M ′′
i+1

~Yk = Mi+1

{
Pk/~y,~x

}
~Yk =β I by Lemma 5.3.5(2) and IH.

On the other side, we have
(
λx1 . . . xn+p.yN1 · · ·Nm+p

){
Pk/~y

}
~X =

(
λx1 . . . xn+p.PkN ′

1 · · ·N
′
m+p

)
P∼n+p
k Ω∼k−m−pUki+1

~Yk =β where N ′
ℓ := Nℓ

{
Pk/~y

}

(
PkN

′′
1 · · ·N

′′
m+p

)
Ω∼k−m−pUki+1

~Yk =β where N ′′
ℓ := N ′

ℓ

{
Pk/~x

}

(
λz.zN ′′

1 · · ·N
′′
m+pΩ

∼k−m−p
)
Uki+1

~Yk =β by Lemma 5.3.5(1)

N ′′
i+1

~Yk = Ni+1
{

Pk/~y,~x
}
~Yk =B JT by Lemma 5.3.5(2) and IH

which completes the proof.

Corollary 5.3.7 (Böhm-out). Let M,N ∈ Λ such that M is β-normal, N is not β-normalizable
and M ⊑H∗ N. Then there is a closed head context C[−] such that C[M] =β I and C[N] =B JT
for some T ∈ T∞

rec. In particular when M,N ∈ Λ0 the context C[−] is closed and applicative.
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Proof. Let y1, . . . ,yn contain the variables in fv(MN). By Proposition 5.3.4 there is a Morris
Separator σ : M 6⊑H+ N. By Lemma 5.3.6 for k large enough we have ~X ∈

(
Λ0

)∗ such that
M

{
Pk/~y

}
~X =β I and N

{
Pk/~y

}
~X =B JT for some T ∈ T∞

rec. The head context C[ ] :=(
λy1 . . . yn.[ ]

)
P∼n
k

~X proves the thesis, since

C[M] :=
(
λy1 . . . yn.M

)
P∼n
k

~X =β M
{

Pk/~y
}
~X =β I

and

C[N] :=
(
λx1 . . . xn.N

)
P∼n
k

~X =β N
{

Pk/~y
}
~X =B JT .

Clearly C[ ] is closed and applicative when M and N are closed.

Theorem 5.3.8 (Morris Separation). Let M,N ∈ Λ such that M ⊑H∗ N whereas M 6⊑H+ N.
There is a closed head context C[−] such that C[M] =β I and C[N] =B JT for some T ∈ T∞

rec . In
particular when M,N ∈ Λ0 the context C[−] is closed and applicative.

Proof. SinceM 6⊑H+N, by Corollary 1.3.11 there is a closed head context E[−] such that E[M]

has a β-nf whereas E[N] does not. From M ⊑H∗N we obtain E[M] ⊑H∗ E[N]. Therefore we
can apply Corollary 5.3.7 to the λ-terms E[M] and E[N], and get a closed head context D[−]

such that D[E[M]] =β I and D[E[N]] =B JT for some T ∈ T∞
rec. So the closed head context

C[−] := D[E[−]] gives us the thesis. When M,N are closed, all the contexts can be chosen
closed and applicative.

5.4 intermezzo : H+ and the ω-rule

Before going on with the quest for an exhaustive solution to our full abstraction problem,
we wish to show that our Böhm-out (Corollary 5.3.7) is of interest in itself, independently
of the semantic problem that we are confronting here. In this brief section we use it to
achieve a purely syntactic result. We prove that H+ satisfies the ω-rule, the strong form
of extensionality recalled in § 1.2. As recalled there, for any λ-theory T one has T ⊢ ω if
and only if T ⊢ ω0, where ω0 denotes the restriction of ω to closed λ-terms. So we want to
prove that for all M,N ∈ Λ0

(
MZ =H+ NZ for all Z ∈ Λ0

)
implies M =H+ N .

Lemma 5.4.1. Let M,N ∈ Λ0 such that M has a β-nf whereas N does not. Then, there exist n > 1

and closed λ-terms Z1, . . . ,Zn ∈ Λ0 such that M~Z has a β-nf whereas N~Z does not.

Proof. We distinguish two possible cases.
Case M ⊑H+ N. By Corollary 5.3.7 there exist n ∈ N and Z1, . . . ,Zn ∈ Λ0 such that
M~Z =β I and N~Z =B JT for some T ∈ T∞

rec. Since T is infinite and computable, there exists
j ∈

{
0, . . . , T(ε) − 1

}
such that T〈j〉 is still infinite and computable.

If n > 1 we are done.
If n = 0 just take Z1 := U

T(ε)
j+1 and conclude since JTU

T(ε)
j+1 =β λx1 . . . xTε. JT〈j〉 .

Case M 6⊑H+N. In this case by Corollary 1.3.2 there are n ∈ N and Z1, . . . ,Zn ∈ Λ0 such
that M~Z =β λx1 . . . xm.xiM1 · · ·Mk for some m,k ∈ N and N~Z =β U for some unsolvable
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U. Then we have M~Z Im =β I and N~Z Im =β U
′ for some unsolvable U ′. If n+m > 1 we

are done.
If n+m = 0 just take Z1 := I and conclude since U ′ I is still unsolvable.

Lemma 5.4.2. Let M,N ∈ Λ0. Suppose that MZ =H+ NZ for all Z ∈ Λ0. Then M =H+ N. In
other words H+ ⊢ ω0.

Proof. By Corollary 1.3.11 the hypothesis states that

for all Z ∈ Λ0 and for all ~Y ∈
(
Λ0

)∗
MZ~Y has a β-nf if and only if NZ~Y has a β-nf. (93)

Still by Corollary 1.3.11 the thesis is equivalent to

for all ~X ∈
(
Λ0

)∗
M~X has a β-nf if and only if N~X has a β-nf.

We distinguish two cases depending on the length k of ~X (but notice that this is not a proof
by induction on k).
Case k = 0. Lemma 5.4.1 is exactly the contrapositive of what we have to show here. So
there is nothing more to prove.
Case k > 0. This is given by the hypothesis (93) itself.

As a consequence, we get our main result, which solves positively a long-standing open
problem (see [Bar84, § 17.4]).

Theorem 5.4.3. H+ satisfies the ω-rule.

5.5 witnessing trees

If an rgm D is extensional, every σ ∈ TD is equivalent to an arrow type. So we can always
try to unfold it following a function f : N →N, in the following sense. Starting from σ = σ0,
at every level ℓ ∈ N we consider σℓ ≃ µ0 → · · · → µf(ℓ) → σ ′

ℓ and, as long as there is a
σℓ+1 ∈ µf(ℓ), we can keep unfolding it at level ℓ+ 1. Obviously there are two possibilities.
If at some level ℓ we have µf(ℓ) = ω, then the process is forced to stop and σ cannot be
unfolded following f. If this process continues indefinitely, then we consider that σ can
actually be unfolded following f. This idea is made rigorous in Definition 5.5.1 below by
means of a coinduction.

Notation. Let f : N →N. Then f>k denotes the function defined by

n ∈N 7→ f(n+ k) ∈N .

Definition 5.5.1. Let D be an rgm. Let T ∈ T∞
rec and f ∈ Π(T). Then σ ∈ TD is a witness for T

following f if and only if there are µ0, . . . ,µf(0) ∈ ID and σ ′ ∈ TD such that

σ ≃ µ0 → · · · → µf(0) → σ ′

and there exists τ ∈ µf(0) that is a witness for T〈f(0)〉 following f>1.
We say that σ is a witness for T whenever there exists an f ∈ Π(T) such that σ is a witness

for T following f.
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Notice that in this definition we do not ask f to be computable, despite T being com-
putable.

Notation. We denote by

• WD,f (T) the set of all witnesses for T following f,

• WD(T) the set of all witnesses for T .

If the model D is clear from the context, we simply write Wf(T) and W(T).

Definition 5.5.1 is consistent, because it is independent of the arrow type µ0 → · · · →
µf(0) → σ ′ (equivalent to σ) that we choose. This is formalized in Lemma 5.5.2 below.
Actually, we could also get rid of ≃ in Definition 5.5.1 and just write σ = µ0 → · · · →

µf(0) → σ ′ therein. That would be enough for our purposes. Nevertheless, even with such
a choice we would need Lemma 5.5.2, so it makes no great difference.

Lemma 5.5.2. Let D be an rgm. Let T ∈ T∞
rec and f ∈ Π(T). If σ ∈ WD,f (T) and γ ≃ σ then

γ ∈WD,f (T).

Proof. We proceed by coinduction on T . By Definition 5.5.1 σ ≃ µ0 → · · · → µf(0) → σ ′ and
there exists τ ∈ µf(0) such that τ ∈ Wf>1

(
T〈f(0)〉

)
. As γ ≃ σ ≃ µ0 → · · · → µf(0) → σ ′,

there must exist ν0, · · · ,νf(0) ∈ ID and γ ′ ∈ TD such that γ ≃ ν0 → · · · → νf(0) → γ ′ . In
particular νf(0) ≃ µf(0). Hence there is ψ ∈ νf(0) such that ψ ≃ τ. Since τ ∈ Wf>1

(
T〈f(0)〉

)
,

by coIH we have that ψ ∈Wf>1
(
T〈f(0)〉

)
. So γ ∈Wf(T).

As explained in the introduction of the chapter, in an ergm WD(T) is constituted by those
σ ∈ TD such that σ→ σ /∈

[[
JT
]]

. To prove this, we first need a couple of technical lemmas.

Lemma 5.5.3. Let D be an rgm and T ∈ Trec. If a ∈ BT( JTx)
∗ and Γ ⊢ a : σ is derivable then

Γ = x : γ for some γ ≃ σ.

Proof. By Lemma 2.3.10 supp(Γ) ⊆ fv(a) = {x}. Since x is in head position in a we have
{x} ⊆ supp(Γ). So supp(Γ) = {x} , namely Γ = x : µ for some µ ∈ ID.

Clearly a 6= ⊥, since a is typable. So by Theorem 5.2.9 we have a = λx1 . . . xm.xa1 · · ·am
with ai ∈ BT( JT〈i−1〉xi)

∗ for all i ∈ {1, . . . ,m}, and in fact m = T(0). From the derivability of
x : µ ⊢ λx1 . . . xm.xa1 · · ·am : σ we get by Lemma 2.3.12(2) the derivability of the sequent
x : µ, x1 : µ0, . . . , xm : µm ⊢ xa1 · · ·am : τ for some µ0 → · · · → µm → τ ≃ σ .

By (applying m times) Lemma 2.3.12(3) we get a decomposition
{
∆
}
∪

{
Γij | i ∈ {1, . . . ,m } and j ∈ {1, . . . ,ni}

}

of the environment x : µ, x1 : µ1, . . . , xm : µm making the following sequents derivable:

∆ ⊢ x : ν0 → · · · → νm → τ (94)

and for all i ∈ {1, . . . ,m} and for all j ∈ {1, . . . ,ni}

Γij ⊢ ai : γij , (95)

where νi = ∧
ni
j=1γij.
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By Lemma 2.3.12(1) from (94) we get ∆ = x : γ for a certain γ ≃ ν0 → · · · → νm → τ.
Since ai ∈ BT( JT〈i−1〉xi)

∗, by Lemma 5.5.3 from (95) we get νi ≃ ∧
ni
j=1Γij(xi) ≃ µi .

Hence γ ≃ ν0 → · · · → νm → τ ≃ µ0 → · · · → µm → τ ≃ σ.
By Lemma 2.3.10 from (95) we get supp(Γij) ⊆ fv(ai) 6∋ x , hence Γij(x) = ω, for all i and

j. In the end

µ = Γ(x) =
(
∆∧∧mi=1 ∧

ni
j=1 Γij

)
(x) = ∆(x)∧∧mi=1 ∧

ni
j=1 Γij(x) = ∆(x) = γ .

This completes the proof of the fact that Γ = x : γ for some γ ≃ σ.

Lemma 5.5.4. Let D be an rgm. Let T ∈ T∞
rec and σ ∈ WD(T). For all a ∈ BT( JTx)

∗ we have
(x : σ,σ) /∈ [[a]]. Equivalently, for all a ∈ BT( JT )

∗ we have σ→ σ /∈ [[a]].

Proof. Let a ∈ BT( JTx)
∗. We prove x : σ 6⊢ a : σ by induction on a.

Case a = ⊥. Trivial.
Case a = λx1 . . . xm.xa1 · · ·an. We have n = m = T(ε) by Theorem 5.2.9. Notice that n > 0,
since the naked tree T underlying BT( JTx) is infinite.

By hypothesis there exists f ∈ Π(T) such that σ ∈Wf(T). So f(0) < n and considering

σ ≃ µ0 → · · · → µf(0) → · · · → µn−1 → σ ′ (96)

there exists τ ∈ µf(0) such that τ ∈Wf>1
(
T〈f(0)〉

)
.

By way of contradiction let x : σ ⊢ a : σ be derivable. From (96) the sequent

x : σ ⊢ λx1 . . . xn.xa1 · · ·an : µ0 → · · · → µf(0) → · · · → µn−1 → σ ′

is derivable by applying rule eq. Then by Lemma 2.3.12(2) the sequent

x : σ, x1 : ν0, . . . , xn : νn−1 ⊢ xa1 · · ·an : σ ′′

is derivable for σ ′′ ≃ σ ′ and νi ≃ µi for all i ∈ {0, . . . ,n− 1}.
By (applying n times) Lemma 2.3.12(3) we get a decomposition

{
∆
}
∪

{
Γij | i ∈ {0, . . . ,n− 1 } and j ∈ {1, . . . ,ni}

}

of the environment x : σ, x1 : ν0, . . . , xn : νn−1 making the following sequents derivable:

∆ ⊢ x : ν ′
0 → · · · → ν ′

f(0) → · · · → ν ′
n−1 → σ ′′

and for all i ∈ {0, . . . ,n− 1} and for all j ∈ {1, . . . ,ni}

Γij ⊢ ai+1 : γij , (97)

where

ν ′
i = ∧

ni
j=1γij for some ni ∈N . (98)

Since τ ∈ µf(0) ≃ νf(0) ≃ ν ′
f(0), there exists γf(0) j ∈ ν ′

f(0) such that γf(0) j ≃ τ. In
particular we get from (97) the derivability of

Γf(0) j ⊢ af(0)+1 : γf(0) j . (99)
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Since af(0)+1 ∈ BT( JT〈f(0)〉xf(0)+1)
∗, by Lemma 5.5.3 and (99) we have Γf(0) j = xf(0)+1 : γ

for some γ ≃ γf(0) j. By applying rule eq to (99) we then derive

xf(0)+1 : γ ⊢ af(0)+1 : γ . (100)

Since τ ∈ Wf>1
(
T〈f(0)〉

)
and γ ≃ γf(0) j ≃ τ, by Lemma 5.5.2 we have γ ∈ Wf>1

(
T〈f(0)〉

)
.

Therefore by IH we should have xf(0)+1 : γ 6⊢ af(0)+1 : γ, contradicting (100).

Proposition 5.5.5. For any ergm D and any tree T ∈ T∞
rec

WD(T) =
{

σ ∈ TD | σ→ σ 6∈
[[

JT
]]}

.

Proof. (⊆) By Lemma 5.5.4 when σ ∈W(T) we have σ→ σ 6∈
⋃
a∈BT( JT )∗

[[a]] =
[[

JT
]]

, where
the last equality is given by Theorem 2.6.5 (Böhm Approximation).

(⊇) Let n := T(ε). Consider σ ∈ TD such that x : σ 6⊢ JT : σ, which is equivalent to

x : σ 6⊢ λx1 . . . xn. x
(

JT〈0〉 x1
)
· · ·

(
JT〈n−1〉 xn

)
: σ (101)

by Theorems 5.2.9 and 2.4.10. We coinductively construct f ∈ Π(T) such that σ ∈Wf(T).
Since D is extensional, there exist µ0, . . . ,µn−1 ∈ ID and σ ′ ∈ TD such that σ ≃ µ0 →

· · · → µn−1 → σ ′. There must exist i < n and τ ∈ µi such that xi+1 : τ 6⊢ JT〈i〉xi+1 : τ ,
because otherwise one would contradict (101) by deriving

x : σ ⊢ x : σ
x : σ ⊢ x : µ0 → · · · → µn−1 → σ ′ xi+1 : τ ⊢ JT〈i〉xi+1 : τ for all i∈ {0, . . . ,n− 1} for all τ ∈ µi

x : σ, x1 : µ0, . . . , xn : µn−1 ⊢ x
(

JT〈0〉 x1
)
· · ·

(
JT〈n−1〉 xn

)
: σ ′

x : σ ⊢ λx1 . . . xn. x
(

JT〈0〉 x1
)
· · ·

(
JT〈n−1〉 xn

)
: µ0 → · · · → µn−1 → σ ′

x : σ ⊢ λx1 . . . xn. x
(

JT〈0〉 x1
)
· · ·

(
JT〈n−1〉 xn

)
: σ

By coIH there exists g ∈ Π
(
T〈i〉

)
such that τ ∈ Wg

(
T〈i〉

)
. We define f : N → N by setting

f(0) := i and f(n+ 1) := g(n) for all n ∈N. From i < n = T(ε) and g ∈ Π
(
T〈i〉

)
we get that

f ∈ Π(T). From τ ∈ µi and τ ∈Wg

(
T〈i〉

)
we obtain σ ∈Wf(T).

At the end of § 4.4 we proved that σ ∈ [[ I ]]D⋆− [[ J ]]D⋆ whenever σ ≃ ⋆ . That was a
foretaste of what we have just seen: we were demonstrating that every σ ≃ ⋆ is a witness
in D⋆ for the tree that underlies BT( J). Indeed, one can remark the resemblance (even for
what concerns the proofs) of Lemma 4.4.12 and Proposition 4.4.13 there respectively to
Lemma 5.5.4 and Proposition 5.5.5 here.

5.6 λ-könig relational graph models

As we prove in this section, the following notion (together with extensionality) characterizes
the observability in the sense of Morris within the class of rgm’s.

Definition 5.6.1. An rgm D is λ-König if and only if WD(T) 6= ∅ for every T ∈ T∞
rec.
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The name is a clear reference to König’s Lemma, which is indeed indispensable to assure
the existence of the infinite branch f of T followed by the witness.

Here are the main ideas behind the proof of the characterization.

1. The ‘Morris Separation’ (Theorem 5.3.8) allows to reduce our specific full abstraction
problem to the search for an rgm separating I from JT for all T ∈ T∞

rec.

2. Let D be a λ-König ergm. Since every T ∈ T∞
rec has a non-empty set of witnesses WD(T)

and Proposition 5.5.5 gives WD(T) ⊆
{
σ ∈ TD | σ → σ 6∈ [[ JT ]]

}
, there is a type σ

such that σ → σ ∈ [[I]] − [[ JT ]]. Thus, D separates I from all the JT ’s for T ∈ T∞
rec. So D

is inequationally fully abstract for Morris’s observability for what we said in Point 1.

3. Proposition 5.5.5 provides another inclusion, i.e. WD(T) ⊇
{
σ ∈ TD | σ → σ 6∈ [[ JT ]]

}
.

As a consequence of this, λ-König ergm’s turn out to be all possible fully abstract rgm’s
in the sense of Morris. Indeed, a model D inducing H+ must separate I from JT for
all T ∈ T∞

rec. So such a D makes the set
{
σ ∈ TD | σ → σ 6∈ [[ JT ]]

}
non-empty. In the

end WD(T) is non-empty for all T ∈ T∞
rec , i.e. the model is λ-König.

4. By the way we find out that an rgm induces the preorder theory ⊑H+ if and only if it
induces the λ-theory H+. In other words, in this context the inequational approach to
the problem is perfectly equivalent to the equational one, not a refinement of it.

Theorem 5.6.2. Let D be an rgm. The following statements are equivalent.

1. Th(D) = H+, namely M =H+N if and only if
[[
M

]]D
=

[[
N
]]D for all M,N ∈ Λ.

2. the rgm D is λ-König and extensional.

3. Th⊑(D) is ⊑H+ , namely M ⊑H+N if and only if
[[
M

]]D
⊆

[[
N
]]D for all M,N ∈ Λ.

In other words, an ergm is λ-König if and only if it is inequationally fully abstract for Morris’s
observability, which is the case if and only if it is equationally fully abstract for Morris’s observability.

Proof. (1 ⇒ 2) Obviously D must be extensional since H+ is an extensional λ-theory. By
contradiction let us suppose that D is not λ-König. Then there exists T ∈ T∞

rec such that
WD(T) = ∅. By Proposition 5.5.5 then [[ I ]] = [[ JT ]]. This is impossible since I 6=H+ JT .

(2⇒ 3) The fact that M ⊑H+N implies [[M]] ⊑ [[N]] is given by the implication 2⇒ 1 in The-
orem 4.3.2. (Notice that such implication is proved therein relying only on the extensionality
of D, an hypothesis that we have also here.)

We are left to show the opposite implication in 3. By the way of contradiction let us
assume that [[M]] ⊆ [[N]] but M 6⊑H+N.

By maximality of ⊑H∗ among the sensible preorders, [[M]] ⊆ [[N]] implies M ⊑H∗ N.
We can then apply Theorem 5.3.8 (Morris Separation) and get a context C[−] such that

C[M] =β I and C[N] =B JT for some T ∈ T∞
rec.

By Theorem 2.4.10 (β-Soundness) C[M] =β I implies
[[
C[M]

]]
=

[[
I
]]

.
Since B ⊆ Th(D) by Theorem 2.6.6(2), from C[N] =B JT we get

[[
C[N]

]]
=

[[
JT
]]

.
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By Lemma 2.4.4, i.e. contextuality of [[−]], from [[M]] ⊆ [[N]] we obtain
[[

I
]]

=
[[
C[M]

]]
⊆

[[
C[N]

]]
=

[[
JT
]]

. (102)

By Definition 5.6.1 there exists σ ∈ WD(T). By Proposition 5.5.5 we have σ → σ 6∈ [[ JT ]].
Hence σ→ σ 6∈ [[ I ]] by (102). Clearly this is a contradiction.

(3⇒ 1) Trivial.

Actually, we have characterized the full abstraction fo H+ in the whole relational seman-
tics, not only for what concerns rgm’s. This follows immediately from Remark 2.2.3.

Corollary 5.6.3. A relational model D is (in)equationally fully abstract for Morris’s observability if
and only if it is a λ-König ergm.

Proof. Any reflexive object D in MRel fully abstract for H+ must be extensional, since such
is H+. By Remark 2.2.3 then D is necessarily an ergm. We then apply Theorem 5.6.2.

In § 5.1 we have defined two ergm’s L and Lrec, wondering if they are fully abstract for
Morris’s observability (preorder theory or λ-theory, the distinction has become pointless).
We can now answer that question: only one of them is!

Theorem 5.6.4. The rgm L defined in Examples 5.1.1 is fully abstract for Morris’s preorder theory
and λ-theory.

Proof. Let T ∈ T∞
rec and take any f ∈ Π(T) (there exists at least one such f by König’s

Lemma). Then αf ∈ WL,f (T) simply by the definition of the model L. So the ergm L is
λ-König and Theorem 5.6.2 gives the thesis.

It is clear that in defining L we have put plenty of atoms αf not really necessary in order
to make it a λ-König rgm. We can minimize that number of atoms as follows.

Example 5.6.5. For every T ∈ T∞
rec choose a function fT ∈ Π(T), which exists of course by

König’s Lemma. Let L ′ be defined just like the rgm L, but considering only the selected
functions. In other words, we repeat the construction given in Example 5.1.1 but restricting
to the set of ℵ0 atoms

L ′ :=
{
∗
}
∪

{

βn,k f
}n∈N,k6f(n)

f∈
{
fT : N→N | T∈T∞

rec

} .

Theorem 5.6.6. The rgm L ′ defined in Examples 5.6.5 is fully abstract for Morris’s preorder theory
and λ-theory.

Proof. Just like the proof of Theorem 5.6.4.

On the contrary, Lrec turns out not to induce ⊑H+ . The reason is a classical result in
recursion theory, known as the failure of the recursive version of König’s Lemma: there is an infi-
nite computable tree, sometimes called Kleene’s Tree, with no infinite computable branches.

Theorem 5.6.7 (Kleene, [Odi89, Theorem V.5.25]). There exists TKleene ∈ T∞
rec such that every

f ∈ Π(TKleene) is not computable.
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Lemma 5.6.8. Let T ∈ T∞
rec and f : N →N. If WLrec,f (T) 6= ∅ then α0f ∈WLrec,f (T).

Proof. By hypothesis there exists σ ∈WLrec,f (T). We proceed by induction on σ.
Case σ ∈ AtLrec . We have σ = βn,k

h where h : N → N is a computable function, n ∈ N

and k 6 h(n). Firstly, we prove the existence of an atom of the form α0g such that σ ≃ α0g.

By definition of the model βn,k
h ≃ ωk → β

n,h(n)
h → ∗ . Then clearly βn,k

h ≃ β
n,ℓ(n)
ℓ = αnℓ

whenever ℓ is the function defined as ℓ(n) := k and ℓ(m) := h(m) for all m 6= n. Of course
such an atom αnℓ exists since ℓ is computable. Finally, it is easy to realize that αnℓ ≃ α

0
ℓ>n

,
where the latter atom exists since also ℓ>n is computable.

So we have σ ≃ α0g. We show that f = g , so that α0f = α0g ≃ σ ∈ WLrec,f (T) implies
α0f ∈WLrec,f (T) by Lemma 5.5.2.

By way of contradiction suppose f 6= g. Let m := min
{
n ∈ N | f(n) 6= g(n)

}
. By

definition of Lrec we have

αmg ≃

g(m) times
︷ ︸︸ ︷
ω → · · · → ω → αm+1

g →

k times
︷ ︸︸ ︷
ω → · · · → ω → ∗ (103)

for every k ∈ N. As f(m) 6= g(m), the intersection in position f(m) + 1 on the right hand
side of (103) is not the one in position g(m) + 1, namely αm+1

g . So it must be ω. Clearly
this contradicts the hypothesis α0g ∈WLrec,f (T), which requires such intersection to contain
a witness for the tree T〈f(0),...,f(m)〉.
Case σ 6∈ AtLrec . Let h ∈N be the minimal natural number giving σ = ν0 → · · · → νh → α0g
for some α0g ∈ AtLrec . Let σ = ν0 → · · · → νh → α0g ≃ µ0 → · · · → µf(0) → τ. We
distinguish two subcases.

Subcase f(0) > h . In this case

µh+1 → · · · → µf(0) → τ ≃ α0g ≃

g(m) times
︷ ︸︸ ︷
ω → · · · → ω → α1g →

k times
︷ ︸︸ ︷
ω → · · · → ω → ∗

for every k ∈ N. Since µf(0) must contain a witness for Tf(0), in particular µf(0) ≃ α1g. So
α1g ∈WLrec,αn

g ′
f1

(
Tf(0)

)
by Lemma 5.5.2. This implies α0g ∈WLrec,f (T). Finally, the fact that

g = f is proved just like we have done in the basic case σ ∈ AtLrec above.
Subcase f(0) 6 h . In this case νf(0) ≃ µf(0). By hypothesis there exists σ1 ∈ µf(0)

such that σ1 ∈ WLrec,f>1
(
Tf(0)

)
. So there is τ1 ∈ νf(0) such that τ1 ≃ σ1, and τ1 ∈

WLrec,f>1
(
Tf(0)

)
by Lemma 5.5.2. Since τ1 is a subtype of σ, the IH can be applied to it.

We obtain that α0
f>1
∈WLrec,f>1

(
Tf(0)

)
. Therefore α0f ∈WLrec,f (T).

Corollary 5.6.9. Let f : N →N be non-computable. Then WLrec,f (T) = ∅ .

Proof. By way of contradiction suppose there is σ ∈ WLrec,f (T). By Lemma 5.6.8 then α0f ∈
WLrec,f (T). But α0f does not even exist as a type of Lrec, since f is not computable.

Theorem 5.6.10. The rgm Lrec defined in Examples 5.1.2 is not fully abstract for Morris’s preorder
theory and λ-theory.

Proof. Take any f ∈ Π(TKleene) (there exists at least one such f by König’s Lemma). By The-
orem 5.6.7 the function f : N → N is not computable. Hence WLrec,f (T) = ∅ by Corol-
lary 5.6.9. So the ergm Lrec is not λ-König and Theorem 5.6.2 gives the thesis.
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A
A P P E N D I X

Despite being most probably mathematical folklore, we could not find any literature ref-
erences for Definition 1.2.3, namely the notion of isomorphic reflexive objects in a cartesian
closed category. Hence any formal proofs of Theorem 1.2.4 and Lemma 1.2.5 given in the
preliminaries. Just for the record, we provide those proofs in this appendix.

Let us remind Definition 1.2.3 here below.

Definition A.0.11. Let D =
(
D, Abs, App

)
and D ′ =

(
D ′, Abs ′, App ′

)
be reflexive objects

in a given cartesian closed category. An isomorphism of reflexive objects f : D → D ′ is an
isomorphism f : D→ D ′ making the two diagrams

D⇒D D D⇒D

D ′⇒D ′ D ′ D ′⇒D ′

Abs

f−1⇒f f

App

f−1⇒f

Abs ′ App ′

(104)

commute.

We recall some very basic facts from category theory.

Lemma A.0.12. A final object in a category is unique up to isomorphism. Moreover, given two final
objects in the category the isomorphism from one to the other is unique.

Proof. Let T and T ′ be final. Let tX be the only morphism from an object X to T , and t ′X
the only one from X to T ′. Then tT ′ ◦ t ′T : T → T is the only morphism from T to T , i.e.
tT ′ ◦ t ′T = tT = idT . Switching T and T ′ we get by the same argument t ′T ◦ tT ′ = t ′

T ′ = idT ′ .
So t ′T : T → T ′ is an isomorphism. Moreover it is the only one possible, as T ′ is final.

Lemma A.0.13. Let
{
Xi

}

i∈I
be a family of objects of a category. If existing, a product of the family

is unique up to isomorphism. Moreover, considered two such products
{
πi : V → Xi

}

i∈I
and

{
π ′
i : V

′ → Xi
}

i∈I
there exists a unique isomorphism from one to the other. In particular, whenever

their vertexes V and V ′ are equal then the two products are equal, namely πi = π ′
i for all i ∈ I.

Proof. The statement is an instance of Lemma A.0.12, since a product of the family
{
Xi

}

i∈I
is a final object in the category of cones from any object to

{
Xi

}

i∈I
. In particular, let

{
πi : V → Xi

}

i∈I
and

{
π ′
i : V → Xi

}

i∈I
be two products with the same vertex V . The

unique isomorphism from the former product to the other must be the identity idV . Such
isomorphism is also the arrow associated with the cone

{
πi : V → Xi

}

i∈I
according to the

universal property of the product
{
π ′
i : V → Xi

}

i∈I
. So π ′

i = πi ◦ idV = πi for all i ∈ I.
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Remember that every category C gives a functor C(−,−) : Cop × C → Set defined on
morphisms f ∈ Cop(A,A ′) = C(A ′,A) and g ∈ C(B,B ′) by the function

C(f,g) : C(A,B) → C(A ′,B ′)

h 7→ g ◦ h ◦ f

Lemma A.0.14. Let f : D→ D ′ be an isomorphism of reflexive objects in a cartesian closed category
C. Then for all M ∈ Λ and for all finite sequence of variables x1, . . . , xn such that fv(M) ⊆ ~x we

have f ◦
[[
M

]]~x
D
◦
(
f−1

)n
=

[[
M

]]~x
D ′ .

Proof. Let D =
(
D, Abs, App

)
and D ′ =

(
D ′, Abs ′, App ′

)
. We proceed by induction on M.

Case M = xi for some i ∈ {1, . . . ,n}. Let us call πi the i-th projection of the product Dn

and π ′
i the i-th projection of the product (D ′)n. By Definition 1.2.2 we have [[xi]]

~x
D = πi and

[[xi]]
~x
D ′ = π ′

i. So the thesis is

f ◦ πi ◦
(
f−1

)n
= π ′

i . (105)

We show that the cone
{

f ◦ πi ◦
(
f−1

)n
: (D ′)n → D ′

}

i∈ {1,...,n}
(106)

is a product of the family containing n times D ′. Once we have that, since also the cone
{
π ′
i : (D

′)n → D ′
}

i∈{1,...,n} is a product of that family and the two cones have the exact
same vertex (D ′)n, then they are equal by Lemma A.0.13, and in particular we get (105).

Proving that (106) is a product means to associate with every given family of arrows
{
gi : X → D ′

}

i∈ {1,...,n} a unique r : X → (D ′)n making for every i ∈ {1, . . . ,n} the
following diagram commute

X (D ′)n

D ′

D

D ′

gi

r

(
f−1

)n

πi

f

(107)
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Let h be the morphism associated with the family of arrows
{
f−1 ◦ gi : X → D ′

}

i∈ {1,...,n}

by the product
{
πi : D

n → D
}

i∈{1,...,n} , namely the only h making the central diagram
here below commute

X Dn (D ′)n

D ′ Dn

D

D ′

gi h

gi

h

idD
n

fn

(
f−1

)n

id
D

′

f−1 πi

f

Then clearly r := fn ◦ h makes (107) commute.
In order to prove the unicity of r, suppose to have another r̃ : X→ (D ′)n such that

f ◦ πi ◦
(
f−1

)n
◦ r̃ = gi

for all i ∈ {1, . . . ,n}. Then

πi ◦
(
f−1

)n
◦ r̃ = f−1 ◦ gi . (108)

Since h is the only arrow such that πi ◦ h = f−1 ◦ gi , from (108) we get
(
f−1

)n
◦ r̃ = h.

We conclude that r̃ = id(D ′)n ◦ r̃ = fn ◦
(
f−1

)n
◦ r̃ = fn ◦ h = r.

Case M = λx.P. The adjunction −×− ⊣ − ⇒ − assures, inter alia, that the bijection
ΛA,B,C : C(A×B,C) → C(A,B⇒ C) is natural in A,B and C. In particular the diagram

C
(
Dn ×D,D

)
C
(
Dn,D⇒ D

)

C
(
D ′n ×D ′,D ′

)
C
(
D ′n,D ′ ⇒ D ′

)

ΛD
n ,D,D

C
((
f−1

)n
× f−1, f

)
C
((
f−1

)n, f−1⇒ f
)

Λ
D

′n ,D′ ,D′

commutes. So for all g : Dn ×D→ D we have
(
f−1⇒ f

)
◦ Λ(g) ◦

(
f−1

)n
= Λ

(
f ◦ g ◦

((
f−1

)n
× f−1

))
= Λ

(
f ◦ g ◦

(
f−1

)n+1) .

(109)

We deduce that

f ◦
[[
λx.P

]]~x
D
◦
(
f−1

)n
= f ◦Abs ◦Λ

([[
P
]]x,~x
D

)
◦
(
f−1

)n by Definition 1.2.2

= Abs ′ ◦
(
f−1⇒ f

)
◦Λ

([[
P
]]x,~x
D

)
◦
(
f−1

)n by Definition A.0.11

= Abs ′ ◦Λ
(
f ◦

[[
P
]]x,~x
D
◦
(
f−1

)n+1) by (109)

= Abs ′ ◦Λ
([[
P
]]x,~x
D ′

)
by IH

=
[[
λx.P

]]~x
D ′ by Definition 1.2.2
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Case M = PQ. The adjunction −×− ⊣ − ⇒ − assures, inter alia, that the bijection
Λ−1
A,B,C : C(A,B⇒ C) → C(A×B,C) is natural in A,B and C. In particular the diagram

C
(
D⇒ D,D⇒ D

)
C
(
(D⇒ D)×D,D

)

C
(
D⇒ D,D⇒ D ′

)
C
(
(D⇒ D)×D,D ′

)

Λ−1
D⇒D,D,D

C
(
D⇒D,D⇒ f

)
C
(
(D⇒D)×D, f

)

Λ−1
D⇒D,D,D′

commutes. This means that for all g ∈ C
(
D⇒ D,D⇒ D

)
we have

f ◦ Λ−1(g) ◦ id(D⇒D)×D = Λ−1
((
D⇒ f

)
◦ g ◦ idD⇒D

)
. (110)

By taking in particular as g the identity idD⇒D we get

f ◦ Λ−1
(
idD⇒D

)
= Λ−1

(
D⇒ f

)

= Λ−1
((
f−1◦ f

)
⇒

(
idD ′ ◦ f

))

= Λ−1
((
f⇒ D ′

)
◦
(
f−1 ⇒ f

))
(111)

where the last equality depends on the fact that the bifunctor − ⇒ − is contravariant in
the first argument and covariant in the second one.

Exploiting once again the fact that Λ−1
A,B,C : C(A,B⇒ C) → C(A×B,C) is natural in A,B

and C, we get the commutativity of the following diagram

C
(
D⇒ D,D ′ ⇒ D ′

)
C
(
(D⇒ D)×D ′,D ′

)

C
(
D⇒ D,D⇒ D ′

)
C
(
(D⇒ D)×D,D ′

)

Λ−1
D⇒D,D′ ,D′

C
(
D⇒D, f⇒D ′

)
C
(
(D⇒D)× f,D ′

)

Λ−1
D⇒D,D,D′

This means that for all g ∈ C
(
D⇒ D,D ′ ⇒ D ′

)
we have

idD ′ ◦ Λ−1(g) ◦
(
(D⇒ D)× f

)
= Λ−1

((
f⇒ D ′

)
◦ g ◦ idD⇒D

)
.

By taking in particular as g the morphism f−1⇒ f we get

Λ−1
(
f−1⇒ f

)
◦
(
(D⇒ D)× f

)
= Λ−1

((
f⇒ D ′

)
◦
(
f−1⇒ f

))
.

The last equality and (111) give by transitivity

f ◦ Λ−1
(
idD⇒D

)
= Λ−1

(
f−1⇒ f

)
◦
(
(D⇒ D)× f

)
. (112)
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Also, remember that for all objects A,B of C and for every g : X×A → B the morphism
Λ(g) : X→ A⇒ B is the only one that makes the following diagram commute:

(A⇒ B)×A B

X×A

EvA,B

Λ(g)×A
g

SinceΛ is an isomorphism, this is equivalent to say that for all h : X→ A⇒ B the morphism
Λ−1(h) : X×A→ B is the only one that makes the following diagram commute:

(A⇒ B)×A B

X×A

EvA,B

h×A
Λ−1(h) (113)

In particular this implies that

EvA,B = EvA,B ◦ (idA⇒B ×A) = Λ−1(idA⇒B) . (114)

Now, we are interested in

f ◦
[[
PQ

]]~x
D
◦
(
f−1

)n
= f ◦ EvD,D ◦

〈 [[
P
]]~x
D
◦App ,

[[
Q
]]~x
D

〉
◦
(
f−1

)n

= f ◦ EvD,D ◦
(
App×D

)
◦
〈 [[
P
]]~x
D

,
[[
Q
]]~x
D

〉
◦
(
f−1

)n . (115)

We have

f ◦ EvD,D ◦
(
App×D

)
= f ◦Λ−1(idD⇒D) ◦

(
App×D

)
by (114)

= Λ−1
(
f−1⇒ f

)
◦
(
(D⇒ D)× f

)
◦
(
App×D

)
by (112)

= Λ−1
(
f−1⇒ f

)
◦
(
App× f

)
as −×− is functor

= EvD ′ ,D ′ ◦
((
f−1⇒ f

)
×D ′

)
◦
(
App× f

)
by (113)

= EvD ′ ,D ′ ◦
((
f−1⇒ f

)
◦App

)
×
(
D ′ ◦ f

)
as −×− is functor

= EvD ′ ,D ′ ◦
(
App ′ ◦ f

)
×
(
D ′ ◦ f

)
by Definition A.0.11

= EvD ′ ,D ′ ◦
(
App ′ ×D ′

)
◦
(
f× f

)
as −×− is functor

So continuing from (115) we get

f ◦
[[
PQ

]]~x
D
◦
(
f−1

)n
= EvD ′ ,D ′ ◦

(
App ′ ×D ′

)
◦
(
f× f

)
◦
〈 [[
P
]]~x
D

,
[[
Q
]]~x
D

〉
◦
(
f−1

)n

= EvD ′ ,D ′ ◦
(
App ′ ×D ′

)
◦
〈
f ◦

[[
P
]]~x
D

, f ◦
[[
Q
]]~x
D

〉
◦
(
f−1

)n

= EvD ′ ,D ′ ◦
(
App ′ ×D ′

)
◦
〈
f ◦

[[
P
]]~x
D
◦
(
f−1

)n , f ◦
[[
Q
]]~x
D
◦
(
f−1

)n 〉

= EvD ′ ,D ′ ◦
(
App ′ ×D ′

)
◦
〈 [[
P
]]~x
D ′ ,

[[
Q
]]~x
D ′

〉

=
[[
PQ

]]~x
D ′

where the penultimate equality is clearly given by IH.
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We can now prove Theorem 1.2.4 from the preliminaries, restated here below.

Theorem A.0.15. Let D and D ′ be isomorphic reflexive objects in a cartesian closed category. Then
for all M,N ∈ Λ and for all finite sequence of variables x1, . . . , xn such that fv(MN) ⊆ ~x we have[[
M

]]~x
D

=
[[
N
]]~x
D

if and only if
[[
M

]]~x
D ′ =

[[
N
]]~x
D ′ .

Proof. Let f : D→ D ′ be an isomorphism of reflexive objects. Let us prove the equivalence

[[
M

]]~x
D

=
[[
N
]]~x
D

⇐⇒ f ◦
[[
M

]]~x
D
◦
(
f−1

)n
= f ◦

[[
N
]]~x
D
◦
(
f−1

)n . (116)

from which the thesis immediately follows by Lemma A.0.14.
The left-to-right implication of (116) is obvious. The right-to-left implication follows from

the fact that f and
(
f−1

)n are isomorphisms, since we have

f ◦
[[
M

]]~x
D
◦
(
f−1

)n
= f ◦

[[
N
]]~x
D
◦
(
f−1

)n
⇒

f−1◦ f ◦
[[
M

]]~x
D
◦
(
f−1

)n
◦ fn = f−1◦ f ◦

[[
N
]]~x
D
◦
(
f−1

)n
◦ fn ⇒

idD ◦
[[
M

]]~x
D
◦
(
f−1 ◦ f

)n
= idD ◦

[[
N
]]~x
D
◦
(
f−1 ◦ f

)n
⇒

[[
M

]]~x
D
◦ idDn =

[[
N
]]~x
D
◦ idDn ⇒

[[
M

]]~x
D

=
[[
N
]]~x
D

which concludes the proof of (116).

We are now going to prove Lemma 1.2.5, i.e. the fact that when it comes to isomorphisms
between extensional reflexive objects we do not need to check the commutativity of the right
diagram of (104) in Definition A.0.11.

Definition A.0.16. Let C be a category. A morphism f ∈ C(A,B) is an epi if and only if for
every object C and for all morphisms g,h ∈ C(B,C) whenever g ◦ f = h ◦ f then g = h.

Lemma A.0.17. Let
(
D, Abs, App

)
and

(
D ′, Abs ′, App ′

)
be reflexive objects in a cartesian closed

category. Let Abs be an epi. If the isomorphism f : D → D ′ makes the left diagram of (104)
commute, then f is an isomorphism of reflexive objects.

Proof. By Definition 1.2.1 we have App ◦ Abs = idD⇒D and App ′ ◦ Abs ′ = idD ′⇒D ′ . So the
outermost diagram in (104) commutes, i.e.

(
f−1⇒ f

)
◦ App ◦ Abs = App ′ ◦ Abs ′ ◦

(
f−1⇒ f

)
. (117)

By hypothesis the left one also commutes, meaning that Abs ′ ◦
(
f−1⇒ f

)
= f ◦Abs. Therefore

from (117) we get

(
f−1⇒ f

)
◦ App ◦ Abs = App ′ ◦ f ◦ Abs .

Since Abs is epi, the last equality entails
(
f−1⇒ f

)
◦ App = App ′ ◦ f, which is the commuta-

tivity of the right diagram of (104).

Lemma A.0.18. Let
(
D, Abs, App

)
be an extensional reflexive object in a cartesian closed category.

Then Abs is an epi.
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Proof. Consider two arrows g,h : D → C such that g ◦ Abs = h ◦ Abs , from which we
get g ◦ Abs ◦ App = h ◦ Abs ◦ App . Since Abs ◦ App = idD by Definition 1.2.1, which means
g ◦ idD = h ◦ idD , i.e. the thesis g = h.

We can finally prove Lemma 1.2.5 from the preliminaries, restated here below.

Lemma A.0.19. Let D and D ′ be reflexive objects in a cartesian closed category. In particular let D
be extensional. If the isomorphism f : D → D ′ makes the left diagram of (104) commute, then f is
an isomorphism of reflexive objects.

Proof. By Lemma A.0.17 and Lemma A.0.18.
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Title: Relational Graph Models and Morris’s Observability

abstract

This thesis is a contribution to the study of Church’s untyped λ-calculus, a term rewriting
system having the β-reduction (the formal counterpart of the idea of execution of programs) as
main rule. The focus is on denotational semantics, namely the investigation of mathematical
models of the λ-calculus giving the same denotation to β-convertible λ-terms. We inves-
tigate relational semantics, a resource-sensitive semantics interpreting λ-terms as relations,
with their inputs grouped together in multisets. We define a large class of relational mod-
els, called relational graph models (rgm’s), and we study them in a type/proof-theoretical
way, using some non-idempotent intersection type systems. Firstly, we find the minimal and
maximal λ-theories (equational theories extending β-conversion) represented by the class.
Then we use rgm’s to solve the full abstraction problem for Morris’s observational λ-theory,
the contextual equivalence of programs that one gets by taking the β-normal forms as
observable outputs. We solve the problem in different ways. Through a type-theoretical
characterization of β-normalizability, we find infinitely many fully abstract rgm’s, which
we call uniformly bottomless. We then give an exhaustive answer to the problem, by showing
that an rgm is fully abstract for Morris’s observability if and only if it is extensional (a model
of η-conversion) and λ-König. Intuitively an rgm is λ-König when every infinite computable
tree has an infinite branch witnessed by some type of the model, where the witnessing is a
property of non-well-foundedness on the type.

Titre: Modèles de Graphe Relationnels et Observabilité à la Morris

résumé

La thèse contribue à l’étude du λ-calcul non-typé de Church, un système de réécriture dont
la règle principale est la β-réduction (formalisant l’exécution d’un programme). Nous nous
concentrons sur la sémantique dénotationnelle, l’étude de modèles du λ-calcul interprétant
de la même façon les λ-termes β-convertibles. On examine la sémantique relationnelle, une
sémantique sensible aux ressources qui interprète les λ-termes comme des relations avec les
entrées regroupées en multi-ensembles. Nous définissons une classe de modèles relation-
nels, les modèles de graphe relationnels (rgm’s), que nous étudions avec une approche issue
de la théorie des types et de la démonstrsation, par le biais de certains systèmes de types
avec intersection non-idémpotente. D’abord, nous découvrons la plus petite et la plus grande
λ-théorie (théorie equationnelle étendant la β-conversion) représentées dans la classe. En-
suite, nous utilisons les rgm’s afin de résoudre le problème de l’adéquation complète pour
la λ-théorie observationnelle de Morris, à savoir l’equivalence contextuelle de programmes que
l’on obtient lorsqu’on prend les β-formes normales comme sorties observables. On résoudre
le problème de différentes façons. En caractérisant la β-normalisabilité avec les types, nous
découvrons une infinité de rgm’s complètement adéquats, que nous appelons uniformément
sans fond. Puis, nous résolvons le problème de façon exhaustive, en prouvant qu’un rgm est
complètement adéquat pour l’observabilité de Morris si et seulement si il est extensionnel
(il modèle l’η-conversion) et λ-König. Moralement un rgm est λ-König si tout arbre récursif
infini a une branche infinie témoignée par un type non-bien-fondé.
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