, Accélérations observées en crête du barrage d'Aratozawa (haut), à mi-hauteur

, Le modèle géométrique du barrage et sa fondation en 2D est illustré sur la figure 6.6. Les cinq zones du corps du barrage sont identifiées par des groupes de mailles différentes

J. E. Andrade, A. M. Ramos, and A. Lizcano, Criterion for flow liquefaction instability, Acta Geotechnica, vol.8, issue.5, pp.525-535, 2013.

K. I. Andrianopoulos, A. G. Papadimitriou, G. D. Bouckovalas, and D. K. Karamitros, Insight into the seismic response of earth dams with an emphasis on seismic coefficient estimation, Computers and Geotechnics, vol.55, pp.195-210, 2014.

D. Aubry, J. Hujeux, F. Lassoudiere, and Y. Meimon, A double memory model with multiple mechanisms for cyclic soil behaviour, Proceedings of the Int. Symp. Num. Mod. Geomech, pp.3-13, 1982.

J. Bardet, K. Ichii, L. , and C. , EERA : a computer program for equivalentlinear earthquake site response analyses of layered soil deposits, 2000.

Z. P. Bazant and R. J. Krizek, Endochronic constitutive law for liquefaction of sand, Northwestern univ Evanston ill technolofical inst, 1976.

M. Beroya, A. Aydin, R. Tiglao, and M. Lasala, Use of microtremor in liquefaction hazard mapping, Engineering Geology, vol.107, issue.3-4, pp.140-153, 2009.

J. Betbeder-matibet, Génie parasismique. Hermès science publications, 2003.

S. K. Bhatia, The verification of relationships for effective stress method to evaluate liquefaction potential of saturated sands, 1982.

S. Bhattacharya, M. Hyodo, K. Goda, T. Tazoh, T. et al., Liquefaction of soil in the tokyo bay area from the 2011 tohoku (japan) earthquake. Soil Dynamics and Earthquake Engineering, vol.31, pp.1618-1628, 2011.

M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. ii. higher frequency range, The Journal of the acoustical Society of america, vol.28, issue.2, pp.179-191, 1956.
URL : https://hal.archives-ouvertes.fr/hal-01368668

R. I. Borja, Condition for liquefaction instability in fluid-saturated granular soils, Acta Geotechnica, vol.1, issue.4, p.211, 2006.

R. I. Borja, C. Lin, K. M. Sama, and G. M. Masada, Modelling non-linear ground response of non-liquefiable soils. Earthquake engineering & structural dynamics, vol.29, pp.63-83, 2000.

P. M. Byrne, A cyclic shear-volume coupling and pore pressure model for sand. International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 1991.

B. Cambou, A constitutive model for granular materials based on two plasticity mechanisms, Proc. Int. Workshop on Constitutive Equations for Granular Non-cohesive Soils, 1987.

J. Canou, N. Benahmed, J. Dupla, D. Gennaro, and V. , Instabilités de liquéfaction et phénomene de mobilité cyclique dans les sables, pp.29-46, 2002.

A. Casagrande, Liquefaction and cyclic deformation of sands-a critical review, Harvard Soil Mechanics Series, issue.88, 1976.

G. Castro and S. J. Poulos, Factors affecting liquefaction and cyclic mobility, Journal of Geotechnical and Geoenvironmental Engineering, vol.103, issue.6, pp.501-516, 1977.

P. Chiba, Chiba geo-environmental data bank, Map?mid=6300&mpx=139.9591035471852&mpy=35.636947466210174& bsw=1366&bsh=774, 2018.

R. W. Clough and A. K. Chopra, Earthquake stress analysis in earth dams, Journal of the Engineering Mechanics Division, vol.92, issue.2, pp.197-212, 1966.

R. W. Clough, J. Penzien, G. , and D. , Dynamics of structures, Journal of Applied Mechanics, vol.44, p.366, 1977.

V. Cuellar and Z. P. Bazant, Densification and hysteresis of sand under cyclic shear, 1977.

A. Der-kiureghian, On response of structures to stationary excitation, 1979.

G. Devesa, Opérateur rest_spec_temp, 2010.

G. Devesa, Éléments de frontière absorbante, 2017.

G. Devesa, Commande de f i_sol_equi, 2018.

G. Devesa, Méthode linéaire équivalent pour la propagation des ondes en 1d, 2018.

R. Dobry, Liquefaction of soils during earthquakes, national research council (nrc), committee on earthquake engineering, 1985.

D. C. Washington and . Usa,

R. Dobry, R. Ladd, F. Y. Yokel, R. M. Chung, P. et al., Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method, National Bureau of Standards, vol.138, 1982.

R. Dobry, D. Powell, F. Yokel, and R. Ladd, Liquefaction potential of saturated sand-the stiffness method, Proceedings of 7th World Conference on Earthquake Engineeing, pp.25-32, 1980.

V. P. Drnevich and F. Richart, Dynamic prestraining of dry sand, Journal of Soil Mechanics & Foundations Div, vol.96, pp.453-469, 1970.

E. Electricité-de-france, Finite element code?aster, analysis of structures and thermomechanics for studies and research, 1989.

A. Elgamal, E. Parra, Z. Yang, and K. Adalier, Numerical analysis of embankment foundation liquefaction countermeasures, Journal of Earthquake Engineering, vol.6, issue.04, pp.447-471, 2002.

A. Foucault, Modélisation du comportement cyclique des ouvrages en terre intégrant des techniques de régularisation, 2010.

G. Gazetas, Seismic response of earth dams : some recent developments. Soil dynamics and earthquake engineering, vol.6, pp.2-47, 1987.

J. Ghaboussi, Modelling and analysis of cyclic behaviour of sand. Soil mechanics-transient and cyclic loads, pp.313-342, 1982.

A. A. Guzman, J. Chameau, G. Leonards, and J. Frost, Shear modulus and cyclic undrained behavior of sands, Soils and Foundations, vol.29, issue.4, pp.105-119, 1989.

P. Habib and M. Luong, Sols pulvérulents sous chargement cycliques, Sémi-naire Matériaux et Structures Sous Chargement Cycliques, pp.28-29, 1978.

B. Han, L. Zdravkovic, S. Kontoe, and D. M. Taborda, Numerical investigation of the response of the yele rockfill dam during the 2008 wenchuan earthquake, Soil Dynamics and Earthquake Engineering, vol.88, pp.124-142, 2016.

B. O. Hardin and W. L. Black, Sand stiffness under various triaxial stresses, Journal of Soil Mechanics & Foundations Div, vol.92, pp.27-42, 1966.

B. O. Hardin and V. P. Drnevich, Shear modulus and damping in soils : measurement and parameter effects, Journal of Soil Mechanics & Foundations Div, issue.sm6, p.98, 1972.

G. P. Hayes, P. S. Earle, H. M. Benz, D. J. Wald, and R. W. Briggs, 88 hours : The us geological survey national earthquake information center response to the 11 march 2011 mw 9, Seismological Research Letters, vol.82, issue.4, pp.481-493, 2011.

A. Hazen, Hydraulic-fill dams, Transactions of the American Society of Civil Engineers, vol.83, issue.1, pp.1713-1745, 1920.

M. Hudson, I. Idriss, and M. Beikae, QUAD4M : a computer program to evaluate the seismic response of soil structures using finite element procedures and incorporating a compliant base, 1994.

J. Hujeux, Une loi de comportement pour le chargement cyclique des sols. Génie parasismique, pp.287-302, 1985.

S. Iai, Y. Matsunaga, and T. Kameoka, Strain space plasticity model for cyclic mobility, Report of the Port and harbour Research Institute, vol.29, issue.4, 1990.

I. Idriss and H. Seed, Response of horizontal soil layers during earthquakes, 1967.

I. M. Idriss and R. W. Boulanger, Soil liquefaction during earthquakes, 2008.

T. Ikeda, K. Konagai, and T. Katagiri, Seismic behavior of the tokyo bay area during the 2011 off the pacific coast of tohoku earthquake using downhole array records, Journal of Japan Society of Civil Engineers, Ser, vol.1, p.68, 2012.

K. Ishihara, One-dimensional soil response analysis during earthquakes based on effective stress method, J. of the Faculty of Engineering, issue.4, pp.655-700, 1980.

K. Ishihara, Evaluation of soil properties for use in earthquake response analysis, Proc. Int. Symp. on Nyumerical Models in Gepmechanics, pp.237-259, 1982.

K. Ishihara, Post-earthquake failure of a tailings dam due to liquefaction of pond deposit. International Conference on Case Histories in Geotechnical Engineering, vol.13, 1984.

K. Ishihara, Stability of natural deposits during earthquakes, Proc. of 11th ICSMFE, vol.1, pp.321-376, 1985.

K. Ishihara, K. Araki, and B. Bradley, Characteristics of liquefaction-induced damage in the 2011 great east japan earthquake, geotec hanoi, pp.978-604, 2011.

K. Ishihara, F. Tatsuoka, Y. , and S. , Undrained deformation and liquefaction of sand under cyclic stresses. Soils and foundations, vol.15, pp.29-44, 1975.

K. Ishihara and M. Yoshimine, Evaluation of settlements in sand deposits following liquefaction during earthquakes. Soils and foundations, vol.32, pp.173-188, 1992.

J. Jgs), Disaster investigation report of 2008 iwate-miyagi nairiku earthquake, 2010.

E. Javelaud, Mise en OEuvre de l'approche graduee dans les etudes de liquefaction, Proceedings des 9ièmes Journées Nationales de Géotechnique et de Géologie de l'Ingénieur, 2016.

J. Jrc), Reconnaissance report on the iwatemiyagi nairiku earthquake disaster in 2008, 2009.

K. Katsumata and K. Tokimatsu, Relationship between seismic characteristics and soil liquefaction of urayasu city induced by the 2011 great east japan earthquake, Proc., 9th International Conference on Urban Earthquake Engineering/4th Asia Conference on Earthquake Engineering, pp.6-8, 2012.

R. Kayen, B. Cox, J. Johansson, C. Steele, P. Somerville et al., Geoengineering and seismological aspects of the iwate miyagi-nairiku, japan earthquake of june 14, 2008.

M. Kazama, S. Kataoka, and R. Uzuoka, Volcanic mountain area disaster caused by the iwate-miyagi nairiku earthquake of, japan. Soils and Foundations, vol.52, issue.1, pp.168-184, 2008.

A. Kerciku, S. Bhattacharya, Z. Lubkowski, and H. Burd, Failure of showa bridge during the 1964 niigata earthquake : Lateral spreading or buckling instability ?, Proceedings of the 14th World Conference on Earthquake Engineering, 2008.

S. Kontoe, L. Pelecanos, and D. Potts, An important pitfall of pseudo-static finite element analysis, Computers and Geotechnics, vol.48, pp.41-50, 2013.

S. Kontoe, L. Zdravkovic, and D. M. Potts, An assessment of time integration schemes for dynamic geotechnical problems, Computers and geotechnics, vol.35, issue.2, pp.253-264, 2008.

S. L. Kramer, Geotechnical earthquake engineering prentice hall, 1996.

S. S. Liao, D. Veneziano, and R. V. Whitman, Regression models for evaluating liquefaction probability, Journal of Geotechnical Engineering, vol.114, issue.4, pp.389-411, 1988.

F. Lopez-caballero, Influence du comportement non linéaire du sol sur les mouvements sismiques induits dans des géo-structures, 2003.

F. Lopez-caballero and A. Modaressi-farahmand-razavi, Numerical simulation of mitigation of liquefaction seismic risk by preloading and its effects on the performance of structures, Soil dynamics and Earthquake engineering, vol.49, pp.27-38, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00787006

M. P. Luong, Phénomènes cycliques dans les sols pulvérulents. Revue française de géotechnique, pp.39-53, 1980.

J. Lysmer, T. Udaka, C. Tsai, and H. B. Seed, Flush-a computer program for approximate 3-d analysis of soil-structure interaction problems, 1975.

G. R. Martin, W. L. Finn, and H. B. Seed, Fundementals of liquefaction under cyclic loading, Journal of Geotechnical and Geoenvironmental Engineering, vol.101, pp.423-438, 1975.

H. Modaressi, Modélisation numérique de la propagation des ondes dans les milieux poreux anélastiques, 1987.

H. Modaressi and I. Benzenati, Paraxial approximation for poroelastic media, Soil Dynamics and Earthquake Engineering, vol.13, issue.2, pp.117-129, 1994.

Y. Mohri, S. Masukawa, T. Hori, A. , and M. , Damage to agricultural facilities, Soils and Foundations, vol.54, issue.4, pp.588-607, 2014.

N. Mononobe, A. Takata, and M. Matumura, Seismic stability of the earth dam, Proc. 2nd Congress on Large Dams, vol.4, 1936.

S. Nemat-nasser, Geothermal energy-heat extraction from hot dry rock masses, In American Society of Mechanical Engineers, Energy Technology Conference and Exhibition, vol.99, p.612, 1977.

N. M. Newmark, Effects of earthquakes on dams and embankments, Geotechnique, vol.15, issue.2, pp.139-160, 1965.

T. Noda, M. Kazma, A. , and A. , New developments related to clarification of the mechanisms of ground deformation caused by earthquakes-in the wake of the great easst japan earthquake, Journal of JSCE, vol.5, issue.1, pp.133-144, 2017.

T. Ohmachi and T. Tahara, Nonlinear earthquake response characteristics of a central clay core rockfill dam. Soils and foundations, vol.51, pp.227-238, 2011.

S. Oztoprak and M. Bolton, Stiffness of sands through a laboratory test database, Géotechnique, vol.63, issue.1, p.54, 2013.

A. Pecker, livre de dynamique des sols, 1984.

A. Pecker, J. Prevost, and L. Dormieux, Analysis of pore pressure generation and dissipation in cohesionless materials during seismic loading, Journal of earthquake engineering, vol.5, issue.04, pp.441-464, 2001.

A. Preumont, Vibrations aléatoires et analyse spectrale, 1990.

J. H. Prevost, A. M. Abdel-ghaffar, and S. J. Lacy, Nonlinear dynamic analyses of an earth dam, Journal of Geotechnical Engineering, vol.111, issue.7, pp.882-897, 1985.

R. Pyke, Evolution of soil models since the 1970s, In International Workshop on the Uncertainties in Nonlinear Soil Properties and their Imp act on Modeling Dynamic Soil Response, 2004.

I. Rapti, Numerical modeling of liquefaction-induced failure of geostructures subjected to earthquakes, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01329628

M. P. Santisi-d'avila, V. A. Pham, L. Lenti, and J. Semblat, Extended iwan-iai (3dxii) constitutive model for 1-directional 3-component seismic waves in liquefiable soils : applicationto the kushiro site (japan), Geophysical Journal International, vol.215, issue.1, pp.252-266, 2018.

A. Sawicki and J. Mierczy´nskimierczy´nski, Basic set of experiments for determination of mechanical properties of sand, Bulletin of the Polish Academy of Sciences : Technical Sciences, vol.62, issue.1, pp.129-137, 2014.

A. Sawicki, J. Mierczy´nskimierczy´nski, and J. S?awi´nskas?awi´nska, Compaction/liquefaction properties of some model sands, Archives of Hydro-Engineering and Environmental Mechanics, vol.62, issue.3-4, pp.121-133, 2015.

A. Sawicki and W. Swidzinski, Compaction curve as one of basic characteristics of granular soils. In 4th colloque Franco-Polonais de mechanique des sols appliquee, vol.1, pp.103-115, 1987.

A. Sawicki and W. Swidzinski, Mechanics of a sandy subsoil subjected to cyclic loadings, International Journal for Numerical and Analytical Methods in Geomechanics, vol.13, issue.5, pp.511-529, 1989.

A. Sawicki and W. Swidzinski, A study on liquefaction susceptibility of some soils from the coast of marmara sea, TECHNICAL SCIENCES, issue.4, p.54, 2006.

A. Sawicki and W. Swidzinski, Simple mathematical model for assessment of seismic-induced liquefaction of soils, Journal of waterway, port, coastal, and ocean engineering, vol.133, issue.1, pp.50-54, 2007.

K. Schittkowski, Easy-fit : a software system for data fitting in dynamical systems. Structural and Multidisciplinary Optimization, vol.23, pp.153-169, 2002.

P. B. Schnabel, Shake : a computer program for earthquake response analysis of horizontally layered sites, pp.72-84, 1972.

H. B. Seed, Representation of irregular stress time histories by equivalent uniform stress series in liquefaction analyses, 1975.

H. B. Seed and I. Idriss, Soil moduli and damping factors for dynamic response analysis, 1970.

H. B. Seed and I. M. Idriss, Simplified procedure for evaluating soil liquefaction potential, Journal of Soil Mechanics & Foundations Div, vol.97, pp.1249-1273, 1971.

H. B. Seed, R. T. Wong, I. Idriss, and K. Tokimatsu, Moduli and damping factors for dynamic analyses of cohesionless soils, Journal of Geotechnical Engineering, vol.112, issue.11, pp.1016-1032, 1986.

H. B. Seed, I. I. Banerjee, and N. , Representation of irregular stress times histories by equivalent uniform stress series in liquefaction analyses, 1975.

J. Semblat and A. Pecker, Waves and vibrations in soils : Earthquakes, traffic, shocks, construction works, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00356022

M. L. Silver and H. B. Seed, Deformation characteristics of sands under cyclic loading, Journal of Soil Mechanics & Foundations Div, vol.97, pp.1081-1098, 1971.

J. Sladen, R. D'hollander, and J. Krahn, The liquefaction of sands, a collapse surface approach, Canadian Geotechnical Journal, vol.22, issue.4, pp.564-578, 1985.

H. Tajimi, A statistical method of determing the maximum response of a building structure during an earthquake, Proc. 2nd World Conf. Earthq. Eng, pp.781-797, 1960.

F. Tatsuoka and K. Ishihara, Drained deformation of sand under cyclic stresses reversing direction, Soils and foundations, vol.14, issue.3, pp.51-65, 1974.

F. Tatsuoka and S. Shibuya, Deformation characteristics of soils and rocks from field and laboratory tests, vol.37, pp.1-136, 1992.

K. Tokimatsu and K. Katsumata, Liquefaction-induced damage to buildings in urayasu city during the 2011 tohoku pacific earthquake, Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, pp.665-674, 2012.

K. Tokimatsu and H. B. Seed, Evaluation of settlements in sands due to earthquake shaking, Journal of Geotechnical Engineering, vol.113, issue.8, pp.861-878, 1987.

K. Tokimatsu, H. Suzuki, K. Katsumata, and S. Tamura, , 2013.

I. Towhata and K. Ishihara, Shear work and pore water pressure in undrained shear, Soils and foundations, vol.25, issue.3, pp.73-84, 1985.

M. D. Trifunac and A. G. Brady, A study on the duration of strong earthquake ground motion, Bulletin of the Seismological Society of America, vol.65, issue.3, pp.581-626, 1975.

D. Vandeputte and G. Devesa, Réponse sismique d'une colonne de sol avec code_aster méthode linéaire équivalente, CEIDRE TEGG -Présentation à la journée utilisateur Code_Aster 18 Mars, 2014.

A. Vasquez-herrera, R. Dobry, and T. Ng, Pore pressure buildup and liquefaction failure of anisotropically consolidated sand due to cyclic straining, Hydraulic Fill Structures, pp.346-366, 1988.

E. Vincens, Estimation des tassements des sols sous séismes, 1999.

E. Vincens, P. Labbe, and B. Cambou, Simplified estimation of seismically induced settlements, International journal for numerical and analytical methods in geomechanics, vol.27, issue.8, pp.669-683, 2003.

F. Voldoire, Réponse sismique par analyse transitoire. Document de référence, Code_Aster, 2017.

M. Vucetic and R. Dobry, Effect of soil plasticity on cyclic response, Journal of geotechnical engineering, vol.117, issue.1, pp.89-107, 1991.

G. Wu, Volume change and residual pore water pressure of saturated granular soils to blast loads, p.15, 1996.

G. Wu, Earthquake-induced deformation analyses of the upper san fernando dam under the 1971 san fernando earthquake, Canadian geotechnical journal, vol.38, issue.1, pp.1-15, 2001.

Z. Yang, A. Elgamal, and E. Parra, Computational model for cyclic mobility and associated shear deformation, Journal of Geotechnical and Geoenvironmental Engineering, vol.129, issue.12, pp.1119-1127, 2003.

N. Yasuda, M. Kondo, T. Sano, H. Yoshioka, Y. Yamaguchi et al., Effect of the mid niigata prefecture earthquake in 2004 on dams, 37th Joint Meeting of the Panel on Wind and Seismic Effects, US Japan Natural Resources Development Program, pp.1-16, 2005.

N. Yasuda and N. Matsumoto, Comparisons of deformation characteristics of rockfill materials using monotonic and cyclic loading laboratory tests and in situ tests, Canadian geotechnical journal, vol.31, issue.2, pp.162-174, 1994.

S. Yasuda, K. Harada, K. Ishikawa, and Y. Kanemaru, Characteristics of liquefaction in tokyo bay area by the 2011 great east japan earthquake, Soils and Foundations, vol.52, issue.5, pp.793-810, 2012.

N. Yoshida, Nonlinear site response and its evaluation and prediction, Proc. 2nd Int. Symp. on the Effects of Surface Geology on Seismic Motion, vol.1, pp.71-90, 1998.

T. L. Youd and I. M. Idriss, Liquefaction resistance of soils : summary report from the 1996 nceer and 1998 nceer/nsf workshops on evaluation of liquefaction resistance of soils, Journal of geotechnical and geoenvironmental engineering, vol.127, issue.4, pp.297-313, 2001.

, A.2 Vérification des facteurs de pic

C. Dans-le, une étude statistique a été mené pour construire la courbe unique de prédicteur. Nous disposons de 800 échantillons de valeurs de pics de distorsion. La Figure A.4 représentent les facteurs de pic calculés à partir des huit cents échantillons proposés et ceux calculés respectivement, vol.4, 1979.

. Figure-a, 4 Facteurs de pic p s et q s calculés à partir des échantillons (symboles) et ceux proposés par Der Kiureghian, 1979.

, Nous remarquons que le facteur de pic p s qui relie l'espérance mathématique de la réponse maximale E(? max ) et l'écart-type du processus ? ? sont en très bonne corrélation avec les courbes de Der Kiureghian, vol.22

, Quant à l'écart type lié à cette réponse maximale ? ? max , nous obtenons une corrélation moins satisfaisante avec les valeurs de Der Kiureghian, 1979.

. Figure-b, 3 Profil de V s (gauche), distorsion maximale calculée (centre) : par X-ELM (courbe rouge) et par le prédicteur (courbe noire) et taux de montée de pression interstitielle (droite) par X-ELM (courbe rouge) et par le prédicteur

B. La-figure, En comparant les deux résultats obtenus, on trouve que le prédicteur (courbe noire) conduit également à une bonne estimation. Comme le montre la figure B.3 (droite), les deux courbes ont les mêmes formes avec une très légère différence en amplitude

. Ishihara, Profils liquéfiés Huit emplacements parmi les profils étudiés ont été identifiés comme zones liquéfiées, où des cônes de liquéfaction, des tassements, des basculements de bâtiments ont été observés, vol.53, 2011.

. Tokimatsu, Imagawa 1-2 (ID g = 05341), Imagawa 2-2 (ID g = 25616), Irifune 3 (ID g = 25614), Irifune 6 (ID g = 25894), Mihama 1 (ID g = 12961), Chidori (ID g = 25608), vol.4, 2012.

. Figure-b, 8 Profil de V s (gauche), distorsion maximale calculée (centre) : par X-ELM (courbe rouge) et par le prédicteur (courbe noire) et taux de montée de pression interstitielle (droite) par X-ELM (courbe rouge) et par le prédicteur

B. La-figure, 8 présente les comparaisons entre les profils de distorsions maximales et les taux de montée de pression interstitielle calculés à l'aide du prédicteur (courbes noires) et de l'approche X-ELM (courbes rouges)

B. Le-tableau, .2.6 présente les propriétés mécaniques et dynamiques du sol à cet endroit

, Les données ont été recueillies auprès de la banque d'informations géologiques de Chiba, sous le numéro d'enquête géotechnique 12961. Les types de non-linéarité renvoient aux courbes de dégradation présentées sur la figure 5.6 (c)

Z. Kteich, P. Labbé, J. Semblat, E. Javelaud, and A. Bennabi, Engineering methods for evaluating earthquake induced settlements and liquefaction prediction, 2016.

Z. Kteich, Estimation du tassement et de la montée de pression interstitielle dans un profil de sol 1D, Journées géotechniques CEREMA et IFSTTAR, 2016.

Z. Kteich and P. Labbe, Engineering simplified method for calculating earthquake induced settlements and liquefaction ratio in 1D soil profile under seismic loading. Third meeting of the ICOLD European Club Working Group Dams and Earthquakes, 2017.

Z. Kteich, P. Labbé, J. Semblat, E. Javelaud, and A. Bennabi, Engineering simplified method for calculating earthquake induced settlements and pore pressure rise, Symposium of the 85th Annual Meeting of ICOLD, 2017.

Z. Kteich and P. Labbé, A new method for predicting liquefaction risk and induced settlements applied on the Urayasu city hit by, The first International Conference on Seismic Design of Structure and Foundations, 2011.

Z. Kteich, P. Labbe, J. Semblat, E. Javelaud, and A. Bennabi, A hybrid simplified method to, 2011.

. Earthquake, Geotechnical earthquake engineering and soil dynamics V conference

Z. Kteich, P. Labbé, J. Semblat, E. Javelaud, and A. Bennabi, Modèle simplifié pour estimer la liquéfaction -Application au séisme de Tohoku à Urayasu, 2018.

Z. Kteich, P. Labbé, J. Semblat, E. Javelaud, and A. Bennabi, Estimating earthquake-induced pore pressure in Urayasu city during 2011 East Japan earthquake. 16 ECEE, 2018.

G. Veylon, M. Jellouli, J. Fry, L. Boutonnier, Z. Kteich et al., Nouvelle approche simplifiée pour l'évaluation de la performance sismique des barrages en remblai, 2018.

Z. Kteich, P. Labbé, J. Semblat, E. Javelaud, and A. Bennabi, «EXTENDED EQUIVALENT LINEAR METHOD TO ASSESS LIQUEFACTION TRIGGERING : Application to the city of Urayasu during Tohoku, 2011.