J. Berger, S. Guernouti, M. Woloszyn, and C. Buhe, Factors governing the development of moisture disorders for integration into building performance simulation, Journal of Building Engineering, vol.3, pp.1-15, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01819340

N. Mendes, F. Winkelmann, R. Lamberts, and P. Philippi, Moisture effects on conduction loads, Energy and Buildings, vol.35, issue.7, pp.631-644, 2003.

F. Antretter, C. Mitterer, and S. Young, Use of moisture-buffering tiles for indoor climate stability under different climatic requirements, HVAC&R Research, vol.18, issue.1-2, p.68, 2012.

M. Qin, A. Aït-mokhtar, and R. Belarbi, Two-dimensional hygrothermal transfer in porous building materials, Applied Thermal Engineering, vol.30, issue.16, p.61, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00543026

A. Evrard and A. De-herde, Hygrothermal Performance of Lime-Hemp Wall Assemblies, Journal of Building Physics, vol.34, issue.1, p.60, 2010.

D. Lelievre, T. , and P. Glouannec, Hygrothermal behavior of bio-based building materials including hysteresis effects: Experimental and numerical analyses, Energy and Buildings, vol.84, p.68, 2014.

J. Carmeliet and D. Derome, Temperature driven inward vapor diffusion under constant and cyclic loading in small-scale wall assemblies: Part 1 experimental investigation, Building and Environment, vol.48, p.68, 2012.

D. Samri, Analyse physique et caractérisation hygrothermique des matériaux de construction: approche expérimentale et modélisation numérique, vol.39, p.68, 2008.

T. Busser, A. Piot, M. Pailha, T. Bejat, and M. Woloszyn, From materials properties to modelling hygrothermal transfers of highly hygroscopic walls, vol.45, p.57, 2016.

R. Belarbi, M. Qin, A. Aït-mokhtar, and L. Nilsson, Experimental and theoretical investigation of non-isothermal transfer in hygroscopic building materials, Building and Environment, vol.43, issue.12, p.61, 2008.

J. Carmeliet and D. Derome, Temperature driven inward vapor diffusion under constant and cyclic loading in small-scale wall assemblies: Part 2 heat-moisture transport simulations, Building and Environment, vol.47, p.58, 2012.

J. Del-coz-díaz, F. Rabanal, O. Gencel, P. Nieto, M. Alonso-martínez et al., Hygrothermal study of lightweight concrete hollow bricks: A new proposed experimental-numerical method, Energy and Buildings, vol.70, p.54, 2014.

T. Colinart, D. Lelievre, and P. Glouannec, Experimental and numerical analysis of the transient hygrothermal behavior of multilayered hemp concrete wall, Energy and Buildings, vol.112, p.68, 2016.

L. Wang and H. Ge, Hygrothermal performance of cross-laminated timber wall assemblies: A stochastic approach, Building and Environment, vol.97, p.68, 2016.

R. Mcclung, H. Ge, J. Straube, and J. Wang, Hygrothermal performance of cross-laminated timber wall assemblies with built-in moisture: field measurements and simulations, Building and Environment, vol.71, p.61, 2014.

P. Talukdar, O. F. Osanyintola, S. O. Olutimayin, and C. J. Simonson, An experimental data set for benchmarking 1-D, transient heat and moisture transfer models of hygroscopic building materials. Part II: Experimental, numerical and analytical data, International Journal of Heat and Mass Transfer, vol.50, p.68, 2007.

Z. Zhang, M. Thiery, and V. Baroghel-bouny, Numerical modelling of moisture transfers with hysteresis within cementitious materials: Verification and investigation of the effects of repeated wetting-drying boundary conditions, Cement and Concrete Research, vol.68, p.45, 2015.

P. Perré, F. Pierre, J. Casalinho, and M. Ayouz, Determination of the Mass Diffusion Coefficient Based on the Relative Humidity Measured at the Back Face of the Sample During Unsteady Regimes, Drying Technology, vol.33, issue.9, p.68, 2015.

T. Busser, J. Berger, A. Piot, M. Pailha, and M. Woloszyn, Dynamic experimental method for identification of hygric parameters of a hygroscopic material, Building and Environmentdoi, vol.41, p.68

M. Van-belleghem, M. Steeman, A. Willockx, A. Janssens, and M. De-paepe, Benchmark experiments for moisture transfer modelling in air and porous materials, Building and Environment, vol.46, issue.4, p.56, 2011.

S. Dubois, A. Evrard, and F. Lebeau, Modeling the hygrothermal behavior of biobased construction materials, Journal of Building Physics, vol.38, issue.3, p.45, 2014.

X. Zhang, W. Zillig, H. M. Künzel, C. Mitterer, and X. Zhang, Combined effects of sorption hysteresis and its temperature dependency on wood materials and building enclosures-part II: Hygrothermal modeling, Building and Environment, vol.106, p.64, 2016.

T. Colinart, P. Glouannec, A. For, . Temperature, . In et al., , vol.45, p.68, 2016.

Y. Mualem, A modified dependent-domain theory of hysteresis, Soil Science, vol.137, issue.5, p.42, 1984.

J. Rubin, Numerical method for analyzing hysteresis-affected, post-infiltration redistribution of soil moisture, Soil Science Society of America Journal, vol.31, issue.1, 1967.

A. Evrard, Transient hygrothermal behaviour of lime-hemp materials, p.40

P. Perré and I. W. Turner, A 3-d version of transpore: a comprehensive heat and mass transfer computational model for simulating the drying of porous media, International Journal of heat and mass transfer, vol.42, issue.24, p.44, 1999.

M. Woloszyn and J. Virgone, Hygro-bat : Vers une méthode de conception hygro-thermique des batiments performants. rapport final, vol.41, p.50

J. Berger, T. Busser, D. Dutykh, and N. Mendes, On the estimation of moisture permeability and advection coefficients of a wood fibre material using the optimal experiment design approach, vol.55, p.68
URL : https://hal.archives-ouvertes.fr/hal-01498638

J. Berger, T. Busser, D. Dutykh, and N. Mendes, On the estimation of sorption isotherm coefficients using the optimal experiment design approach, vol.41, p.68

S. Roels, J. Carmeliet, and H. Hens, Hamstad wp1: Final report -moisture transfer properties and materials characterization, p.41

S. Roels, J. Carmeliet, H. Hens, O. Adan, H. Brocken et al., Interlaboratory comparison of hygric properties of porous building materials, Journal of thermal envelope and building science, vol.27, issue.4, p.41, 2004.

P. F. and C. , Rode, Prediction of moisture transfer in building constructions, Building and Environment, vol.27, issue.3, p.62, 1992.

T. Colinart and P. Glouannec, Temperature dependence of sorption isotherm of hygroscopic building materials. part 1: Experimental evidence and modeling, Energy and Buildings, vol.139, p.64, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01697276

T. Colinart, P. Glouannec, M. Bendouma, and P. Chauvelon, Temperature dependence of sorption isotherm of hygroscopic building materials. part 2: Influence on hygrothermal behavior of hemp concrete, Energy and Buildings, vol.152, p.41, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01697276

X. Zhang, W. Zillig, H. M. Künzel, C. Mitterer, and X. Zhang, Combined effects of sorption hysteresis and its temperature dependency on wood materials and building enclosures -Part I: Measurements for model validation, Building and Environment, vol.106, p.68, 2016.

A. S. Kalagasidis, P. Weitzmann, T. Nielsen, R. Peuhkuri, C. Hagentoft et al., The international building physics toolbox in simulink, Energy and Buildings, vol.39, issue.6, p.63, 2007.

S. O. Olutimayin and C. J. Simonson, Measuring and modeling vapor boundary layer growth during transient diffusion heat and moisture transfer in cellulose insulation, International Journal of Heat and Mass Transfer, vol.48, issue.16, p.66, 2005.

J. Berger, S. Gasparin, D. Dutykh, and N. Mendes, On the solution of coupled heat and moisture transport in porous material, Transport in Porous Media, vol.42, p.68, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01770386

H. J. Steeman, M. Van-belleghem, A. Janssens, and M. De-paepe, Coupled simulation of heat and moisture transport in air and porous materials for the assessment of moisture related damage, Building and Environment, vol.44, issue.10, p.59, 2009.

M. Van-belleghem, M. Steeman, A. Janssens, and M. De-paepe, Drying behaviour of calcium silicate, Construction and Building Materials, vol.65, p.68, 2014.

T. Defraeye, Convective Heat and Mass Transfer at Exterior Building Surfaces, vol.42, p.46, 2011.

H. Derluyn, H. Janssen, and J. Carmeliet, Influence of the nature of interfaces on the capillary transport in layered materials, Construction and Building Materials, vol.25, issue.9, pp.3685-3693, 2011.

M. Van-belleghem, M. Steeman, H. Janssen, A. Janssens, and M. De-paepe, Validation of a coupled heat, vapour and liquid moisture transport model for porous materials implemented in CFD, Building and Environment, vol.81, p.67, 2014.

S. Pang, Relative importance of vapour diffusion and convecttve flow in modelling of softwood drying, Drying technology, vol.16, issue.1-2, p.68, 1998.

J. Eriksson, H. Johansson, and J. Danvind, A mass transport model for drying wood under isothermal conditions, Drying technology, vol.25, issue.3, p.68, 2007.

S. Kowalski, G. Musielak, and J. Banaszak, Experimental validation of the heat and mass transfer model for convective drying, Drying Technology, vol.25, issue.1, p.68, 2007.

B. T. Hagentoft and C. , 1d-ham coupled heat, air and moisture transport in multi-layered wall structures. manual with brief theory and an example

C. Rode, Combined heat and moisture transfer in building construction, p.48, 1990.

J. Vinha, Hygrothermal performance of timber-framed external walls in Finnish climatic conditions: a method for determining the sufficient water vapour resistance of the interior lining of a wall assembly, vol.48, p.56, 2007.

X. Yang, P. Fazio, H. Ge, and J. Rao, Evaluation of moisture buffering capacity of interior surface materials and furniture in a full-scale experimental investigation, Transport Vehicles, vol.47, pp.188-196, 2012.

Q. Li, J. Rao, and P. Fazio, Development of HAM tool for building envelope analysis, Building and Environment, vol.44, issue.5, p.59, 2009.

F. Tariku and M. K. Kumaran, Hygrothermal modeling of aerated concrete wall and comparison with field experiment, Proceeding of the 3rd International Building Physics/Engineering Conference, vol.49, p.68, 2006.

M. Salonvaara and A. Karagiozis, Moisture transport in building envelopes using an approximate factorization solution method, p.49, 1994.

S. Raji-;-jean-rodolphe and . Lagière, Caractérisation hygro-thermique, par une approche multi échelle, de constructions en bois massif en vue d'amélioration énergétique et de valorisation environnementale, Philippe Sciences physiques et de l'ingénieur, vol.1, p.68, 2006.

J. Philip and D. D. Vries, Moisture movement in porous materials under temperature gradients, Transactions American Geophysical Union, vol.38, issue.2, p.61, 1957.

A. Piot, M. Woloszyn, J. Brau, and C. Abelé, Experimental wooden frame house for the validation of whole building heat and moisture transfer numerical models, Energy and Buildings, vol.43, issue.6, pp.1322-1328, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01025211

A. Piot, Hygrothermique du bâtiment : expérimentation sur une maison à ossature bois en conditions climatiques naturelles et modélisation numérique, vol.50, p.68, 2009.

M. Labat, . Jean-jacques, and . Woloszyn, Chaleur -Humidité -Air dans les maisons à ossature bois : Expérimentation et modélisation, vol.2012, p.54, 2012.

M. Ibrahim, E. Wurtz, P. H. Biwole, P. Achard, and H. Sallee, Hygrothermal performance of exterior walls covered with aerogel-based insulating rendering, Energy and Buildings, vol.84, p.54, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01076592

R. Galliano, K. G. Wakili, T. Stahl, B. Binder, and B. Daniotti, Performance evaluation of aerogelbased and perlite-based prototyped insulations for internal thermal retrofitting: Hmt model validation by monitoring at demo scale, Energy and Buildings, vol.126, pp.275-286, 2016.

A. Teasdale-st-hilaire and D. Derome, Comparison of experimental and numerical results of woodframe wall assemblies wetted by simulated wind-driven rain infiltration, Energy and Buildings, vol.39, issue.11, p.54, 2007.

M. Abuku, B. Blocken, and S. Roels, Moisture response of building facades to wind-driven rain: field measurements compared with numerical simulations, Journal of Wind Engineering and Industrial Aerodynamics, vol.97, issue.5, p.54, 2009.

H. Viitanen, J. Vinha, K. Salminen, T. Ojanen, R. Peuhkuri et al., Moisture and Bio-deterioration Risk of Building Materials and Structures, Journal of Building Physics, vol.33, issue.3, pp.201-224, 2010.

J. Berger, S. Guernouti, M. Woloszyn, and C. Buhe, Factors governing the development of moisture disorders for integration into building performance simulation, Journal of Building Engineering, vol.3, pp.1-15, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01819340

N. Mendes, F. Winkelmann, R. Lamberts, and P. Philippi, Moisture effects on conduction loads, Energy and Buildings, vol.35, issue.7, pp.631-644, 2003.

P. Plathner and M. Woloszyn, Interzonal air and moisture transport in a test house: experiment and modelling, Building and Environment, vol.37, issue.2, pp.189-199, 2002.

M. Salonvaara, T. Ojanen, A. H. Holm, H. M. Kunzel, and A. Karagiozis, Moisture buffering effects on indoor air quality-experimental and simulation results, Proceedings of Buildings IX, p.88, 2004.

L. Fang, G. Clausen, and P. O. Fanger, Impact of temperature and humidity on the perception of indoor air quality, Indoor air, vol.8, issue.2, pp.80-90, 1998.

C. Simonson, M. Salonvaara, and T. Ojanen, The effect of structures on indoor humidity-possibility to improve comfort and perceived air quality, Indoor Air, vol.12, issue.4, pp.243-251, 2002.

M. Woloszyn, T. Kalamees, M. O. Abadie, M. Steeman, and A. S. Kalagasidis, The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings, Building and Environment, vol.44, issue.3, pp.515-524, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00395970

M. Woloszyn and C. Rode, Tools for performance simulation of heat, air and moisture conditions of whole buildings, Building Simulation, vol.1, pp.5-24, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00353433

H. L. Hens, Combined heat, air, moisture modelling: a look back, how, of help?, Building and Environment, vol.91, pp.138-151, 2015.

C. Feng, H. Janssen, Y. Feng, and Q. Meng, Hygric properties of porous building materials: Analysis of measurement repeatability and reproducibility, vol.85, pp.160-172, 2015.

C. James, C. J. Simonson, P. Talukdar, and S. Roels, Numerical and experimental data set for benchmarking hygroscopic buffering models, International Journal of Heat and Mass Transfer, vol.53, pp.3638-3654, 2010.

T. Colinart, D. Lelievre, and P. Glouannec, Experimental and numerical analysis of the transient hygrothermal behavior of multilayered hemp concrete wall, Energy and Buildings, vol.112, pp.1-11, 2016.

P. Talukdar, O. F. Osanyintola, S. O. Olutimayin, and C. J. Simonson, An experimental data set for benchmarking 1-D, transient heat and moisture transfer models of hygroscopic building materials. Part II: Experimental, numerical and analytical data, International Journal of Heat and Mass Transfer, vol.50, pp.4915-4926, 2007.

M. Labat, M. Woloszyn, G. Garnier, and J. J. Roux, Dynamic coupling between vapour and heat transfer in wall assemblies: Analysis of measurements achieved under real climate, Building and Environment, vol.87, pp.129-141, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01236296

T. Busser, J. Berger, A. Piot, M. Pailha, and M. Woloszyn, Experimental validation of hygrothermal models for building materials and walls: an analysis of recent trends
URL : https://hal.archives-ouvertes.fr/hal-01678857

T. Busser, A. Piot, M. Pailha, T. Bejat, and M. Woloszyn, From materials properties to modelling hygrothermal transfers of highly hygroscopic walls, p.89, 2016.

T. Duforestel, Des transferts couplés de masse et de chaleura la conception bioclimatique: recherches sur l'efficacitéefficacitéénergétique des bâtiments, Mémoire HDR, p.89

H. Garbali´nskagarbali´nska, M. Bochenek, W. Malorny, and J. Werder, Comparative analysis of the dynamic vapor sorption (dvs) technique and the traditional method for sorption isotherms determination-exemplified at autoclaved aerated concrete samples of four density classes, Cement and Concrete Research, vol.91, pp.97-105, 2017.

H. Janssen, G. A. Scheffler, and R. Plagge, Experimental study of dynamic effects in moisture transfer in building materials, International Journal of Heat and Mass Transfer, vol.98, pp.141-149, 2016.

E. Latif, M. Lawrence, A. Shea, and P. Walker, Moisture buffer potential of experimental wall assemblies incorporating formulated hemp-lime, Building and Environment, vol.93, pp.199-209, 2015.

F. Mcgregor, A. Heath, A. Shea, and M. Lawrence, The moisture buffering capacity of unfired clay masonry, Building and Environment, vol.82, pp.599-607, 2014.

H. Cagnon, J. Aubert, M. Coutand, and C. Magniont, Hygrothermal properties of earth bricks, Energy and Buildings, vol.80, pp.208-217, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01850792

Z. Pavlík, J. Zumár, M. Pavlíková, and R. Cern, Cern`y, A boltzmann transformation method for investigation of water vapor transport in building materials, Journal of Building Physics, vol.35, issue.3, pp.213-223, 2012.

E. Agoua, S. Zohoun, and P. Perré, A double climatic chamber used to measure the diffusion coefficient of water in wood in unsteady-state conditions: determination of the best fitting method by numerical simulation, International journal of heat and mass transfer, vol.44, issue.19, pp.3731-3744, 2001.

S. Tada and K. Watanabe, Dynamic determination of sorption isotherm of cement based materials, Cement and concrete research, vol.35, issue.12, pp.2271-2277, 2005.

A. Piot, Hygrothermique du bâtiment : expérimentation sur une maisonàmaisonà ossature bois en conditions climatiques naturelles et modélisation numérique, p.89, 2009.

H. Rafidiarison, R. Rémond, and E. Mougel, Dataset for validating 1-D heat and mass transfer models within building walls with hygroscopic materials, Building and Environment, vol.89, p.98, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01598447

G. H. Kanevce, L. P. Kanevce, G. S. Dulikravich, and H. R. Orlande, Estimation of thermophysical properties of moist materials under different drying conditions, Inverse Problems in Science and Engineering, vol.13, issue.4, pp.341-353, 2005.

J. Berger, H. R. Orlande, N. Mendes, and S. Guernouti, Bayesian inference for estimating thermal properties of a historic building wall, Building and Environment, vol.106, pp.327-339, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01819322

A. Zaknoune, P. Glouannec, and P. Salagnac, Identification of the liquid and vapour transport parameters of an ecological building material in its early stages, Transport in porous media, vol.98, issue.3, pp.589-613, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00985786

S. Dubois, F. Mcgregor, A. Evrard, A. Heath, and F. Lebeau, An inverse modelling approach to estimate the hygric parameters of clay-based masonry during a moisture buffer value test, Building and Environment, vol.81, pp.192-203, 2014.

P. Perré, F. Pierre, J. Casalinho, and M. Ayouz, Determination of the mass diffusion coefficient based on the relative humidity measured at the back face of the sample during unsteady regimes, Drying Technology, vol.33, issue.9, pp.1068-1075, 2015.

S. Rouchier, M. Woloszyn, Y. Kedowide, and T. Béjat, Identification of the hygrothermal properties of a building envelope material by the covariance matrix adaptation evolution strategy, Journal of Building Performance Simulation, vol.89, p.101, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01288774

J. Berger, T. Busser, D. Dutykh, and N. Mendes, On the estimation of moisture permeability and advection coefficients of a wood fibre material using the optimal experiment design approach, Experimental Thermal and Fluid Sciencedoi, vol.92, p.106
URL : https://hal.archives-ouvertes.fr/hal-01498638

J. Kwiatkowski, Moisture in buildings air-envelope interaction, p.92, 2009.

, Méthodologie d'identification des propriétés hygriques : applicationàapplicationà l'isolant fibre de bois (article, 2018.

J. R. Taylor, An introduction to error analysis; the study of uncertainties in physical measurements, University Science Books, vol.93

A. Reichmuth, Estimating weighing uncertainty from balance data sheet specifications

M. Woloszyn and J. Virgone, Hygro-bat : Vers une méthode de conception hygro-thermique des batiments performants. rapport final, vol.93, p.94

J. Philip and D. D. Vries, Moisture movement in porous materials under temperature gradients, Eos, Transactions American Geophysical Union, vol.38, issue.2, pp.222-232, 1957.

A. V. Luikov, Systems of differential equations of heat and mass transfer in capillary-porous bodies (review), International Journal of Heat and Mass Transfer, vol.18, issue.1, pp.1-14, 1975.

O. Vololonirina, M. Coutand, and B. Perrin, Characterization of hygrothermal properties of wood-based products -Impact of moisture content and temperature, Construction and Building Materials, vol.63, pp.223-233, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01850786

M. T. Van-genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil science society of America journal, vol.44, issue.5, pp.892-898, 1980.

J. Kwiatkowski, M. Woloszyn, and J. Roux, Modelling of hysteresis influence on mass transfer in building materials, Building and Environment, vol.44, issue.3, pp.633-642, 2009.

T. F. Coleman and Y. Li, An interior trust region approach for nonlinear minimization subject to bounds, SIAM Journal on optimization, vol.6, issue.2, 1996.

A. Guisasola, J. Baeza, J. Carrera, G. Sin, P. Vanrolleghem et al., The Influence of Experimental Data Quality and Quantity on Parameter Estimation Accuracy, Education for Chemical Engineers, vol.1, issue.1, pp.139-145, 2006.

D. Ucinski, Optimal Measurement Methods for Distributed Parameter System Identification, p.101, 2004.
DOI : 10.1201/9780203026786

K. J. Beck, Parameter Estimation in Engineering and Science, 1977.

M. N. Ozisik and H. R. Orlande, Inverse Heat Transfer: Fundamentals and Applications, p.101, 2000.
DOI : 10.1115/1.1445337

J. Berger, S. Gasparin, D. Dutykh, and N. Mendes, Accurate numerical simulation of moisture front in porous material, Building and Environment, vol.118, pp.211-224, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01419018

K. Abahri, R. Bennacer, and R. Belarbi, Sensitivity analyses of convective and diffusive driving potentials on combined heat air and mass transfer in hygroscopic materials, Numerical Heat Transfer, Part A: Applications, vol.69, issue.10, pp.1079-1091, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01711190

, American society of heating, refrigerating and air conditioning engineering -handbook -fundamentals, chapter 26: Heat, air, and moisture control in building assemblies -material properties, p.135, 2013.

K. Abahri, R. Bennacer, and R. Belarbi, Sensitivity analyses of convective and diffusive driving potentials on combined heat air and mass transfer in hygroscopic materials, Numerical Heat Transfer, Part A: Applications, vol.69, issue.10, pp.1079-1091, 0135.
URL : https://hal.archives-ouvertes.fr/hal-01711190

. Bc-bauklimatik-dresden, Simulation program for the calculation of coupled heat, moisture, air, pollutant, and salt transport, p.133, 2011.

J. Berger, T. Busser, D. Dutykh, and N. Mendes, On the estimation of moisture permeability and advection coefficients of a wood fibre material using the optimal experiment design approach. Experimental Thermal and Fluid Science, vol.134, p.155, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01498638

J. Berger, D. Dutykh, and N. Mendes, On the optimal experiment design for heat and moisture parameter estimation, Experimental Thermal and Fluid Science, vol.81, p.155, 2017.

J. Berger, S. Gasparin, D. Dutykh, and N. Mendes, On the solution of coupled heat and moisture transport in porous material, Transport in Porous Media, p.134, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01770386

T. Busser, J. Berger, A. Piot, M. Pailha, and M. Woloszyn, Comparison of model numerical predictions of heat and moisture transfer in porous media with experimental observations at material and wall scales: an analysis of recent trends, vol.134, p.155

T. Busser, J. Berger, A. Piot, M. Pailha, and M. Woloszyn, Dynamic experimental method for identification of hygric parameters of a hygroscopic material, Building and Environment, vol.134, p.150, 2018.

T. Colinart and P. Glouannec, Temperature dependence of sorption isotherm of hygroscopic building materials. part 1: Experimental evidence and modeling, Energy and Buildings, vol.139, p.155, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01697276

T. Colinart, D. Lelievre, and P. Glouannec, Experimental and numerical analysis of the transient hygrothermal behavior of multilayered hemp concrete wall, Energy and Buildings, vol.112, p.134, 2016.

M. J. Cunningham, A model to explain" anomalous" moisture sorption in wood under step function driving forces, Wood and fiber science, vol.27, issue.3, p.141, 2007.

A. Tobin, N. Driscoll, L. N. Hale, and . Trefethen, , p.144, 2014.

S. Finsterle, Practical notes on local data-worth analysis, Water Resources Research, vol.51, issue.12, p.151, 2015.

H. Lund-frandsen, L. Damkilde, and S. Svensson, A revised multi-Fickian moisture transport model to describe non-Fickian effects in wood, Holzforschung, issue.5, p.61, 0147.

S. Gasparin, J. Berger, D. Dutykh, and N. Mendes, An improved explicit scheme for whole-building hygrothermal simulation. Building Simulation, 0144.
URL : https://hal.archives-ouvertes.fr/hal-01495737

, Impact des phénomènes supplémentaires sur la prédiction du comportement hygrique de la fibre de bois (article, Transport in porous media, 2018.

S. Gasparin, J. Berger, D. Dutykh, and N. Mendes, Stable explicit schemes for simulation of nonlinear moisture transfer in porous materials, Journal of Building Performance Simulation, pp.1-16, 0144.
URL : https://hal.archives-ouvertes.fr/hal-01404578

I. Fraunhofer and . Wufi, , p.133, 2005.

C. James and C. J. Simonson, Prabal Talukdar, and Staf Roels. Numerical and experimental data set for benchmarking hygroscopic buffering models, International Journal of Heat and Mass Transfer, vol.53, p.134, 2010.

T. Kalamees and J. Vinha, Hygrothermal calculations and laboratory tests on timberframed wall structures. Building and Environment, vol.38, p.133, 2003.

K. Krabbenhoft and L. Damkilde, A model for non-Fickian moisture transfer in wood, Materials and Structures, vol.37, issue.9, p.147, 2004.

M. Hartwig and . Kunzel, Simultaneous heat and moisture transport in building components, vol.133, p.140, 1995.

M. Labat, M. Woloszyn, G. Garnier, and J. J. Roux, Dynamic coupling between vapour and heat transfer in wall assemblies: Analysis of measurements achieved under real climate, Building and Environment, vol.87, p.134, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01236296

J. Langmans, R. Klein, and S. Roels, Numerical and experimental investigation of the hygrothermal response of timber frame walls with an exterior air barrier, Journal of Building Physics, vol.36, issue.4, p.155, 2013.

. Av-luikov, Heat and mass transfer in capillary bodies, vol.133, p.140, 1966.

N. Mendes, M. Chhay, J. Berger, and D. Dutykh, Numerical methods for diffusion phenomena in building physics: A practical introduction, PUCPRess, p.133, 2017.

N. Mendes, I. Ridley, R. Lamberts, C. Paulo, K. Philippi et al., UMIDUS: a PC program for the prediction of heat and moisture transfer in porous building elements, Building Simulation Conference-IBPSA, vol.99, p.133, 1999.

W. Monika and J. Virgone, Hygro-bat : Vers une méthode de conception hygro-thermique des batiments performants. rapport final, p.135, 2015.

P. Perré, Multiscale aspects of heat and mass transfer during drying, p.134, 2006.

P. Perré, F. Pierre, J. Casalinho, and M. Ayouz, Determination of the mass diffusion coefficient based on the relative humidity measured at the back face of the sample during unsteady regimes, Drying Technology, vol.33, issue.9, p.155, 2015.

R. Peuhkuri, Quantifying time dependent moisture storage and transport properties, Research in Building Physics, vol.140, p.147, 2003.

J. R. Philip, . Da-de, and . Vries, Moisture movement in porous materials under temperature gradients, Transactions American Geophysical Union, vol.38, issue.2, p.140, 1957.

R. Helisoa-rafidiarison, E. Rémond, and . Mougel, Dataset for validating 1-D heat and mass transfer models within building walls with hygroscopic materials, Building and Environment, vol.89, p.135, 2015.

C. Rode and K. G. Grau, Whole building hygrothermal simulation model, ASHRAE Transactions, p.133, 2003.

.. .. Dispositif,

.. .. Scénarios,

.. .. Outils,

.. .. Transferts-dans-la-paroi,

.. .. Bilans,

.. .. Résultats,

.. .. Échelon-de-température-À-l'extérieur,

.. .. Échelon-de-température-À-l'intérieur,

.. .. Sollicitations,

.. .. Synthèse,

.. .. Prédictions, , vol.5

.. .. Étude,

. .. , Influence des propriétés du matériau sur la prédiction

, Comparaison mesures -simulations à l'échelle du volume d'air, vol.6

, Prédiction lors d'un échelon de température extérieure, p.203

.. .. Simulations, , vol.7

.. .. Étude-de-l'influence-d'un-revêtement,

. .. , Influence de la prise en compte des transferts couplés, p.208

.. .. Conclusion, 210 5.5 Prédictions des transferts à l'échelle paroi griques où de nombreux phénomènes sont mis en jeu : gradient de température entre l'intérieur et l'extérieur du cube, sorption/désorption, dynamique de courte et longue durée. Cette étude dans la paroi va se dérouler en deux étapes. Nous nous intéresserons d'abord aux capteurs dans la paroi afin de valider le modèle de transferts d

, Dans un premiers temps, afin de s'affranchir des conditions d'interface, nous souhaitons prédire

, La Figure 5.30a montre que la température au milieu de la paroi est correctement prédite par le modèle tout au long de l'expérience : l'écart moyen de 0.08 ? C est inférieur à l'incertitude. Le comportement de la pression de vapeur pendant la phase d'adsorption est également bien prédit (Figure 5.30b). Par contre, pendant l'évolution libre, la désorption est sous-estimée par le modèle : la pente de la pression de vapeur est plus faible et le début de la dé-croissance est retardé. Cet écart peut être expliqué par le fait que l'isotherme utilisée correspond à celle déterminée dans le chapitre 3 lors d'un échelon d'adsorption 33%-75% et n'est pas adapté pour modéliser le comportement pendant la désorption, La comparaison entre mesures et simulations pour la paroi du fond est présentée dans la Figure 5.30 pour le cube B (panneaux bruts)

, FIGURE 5.30 -Comparaison mesures-simulations au milieu de la paroi du fond pour le cube B : (a) température, (b) pression de vapeur

, Les mêmes conclusions sont obtenues pour d'autres parois lorsque les simulations sont effectuées en utilisant les positions réelles des capteurs données dans le Tableau 5.6. Ces faibles diffé-5.6 Comparaison mesures -simulations à l

, Comparaison mesures -simulations à l'échelle du volume d'air

, Pour ce cas expérimental, aucun terme source n'est nécessaire car seules les conditions extérieures sont perturbées. Les infiltrations sont prises en compte avec le débit de fuite estimé dans la section 5.2.4.1. De plus, une étude paramétrique sur ce paramètre (±50%) nous a permis d'observer que son impact est très faible sur les résultats. Cela justifie notre choix de prendre la valeur estimée expérimentalement en conditions isothermes. La Figure 5.38a montre que la dynamique de la température intérieure est sur-estimée par le modèle par rapport aux mesures : le régime permanent est atteint 2j plus rapidement dans la simulation

P. Dans-cette, nous allons nous intéresser à l'expérience avec humidification, modélisée par le terme g sour ce . De plus, lors de l'évolution libre, le ventilateur qui permet de faire la circulation d'air pour l'injection d'humidité continue de fonctionner, cela contribue à extraire de l'humidité du cube. Cela sera modélisé par un terme puits afin d'écrire les charges hygriques comme

, La mesure du terme source par la balance, est importante pour avoir de bons résultats, vol.151

, Dans le modèle de volume d'air, la température intérieure est imposée en utilisant les données mesurées. Nous pourrons comparer les valeurs de la consommation de chauffage mesurées et simulées. Dans toute cette partie, nous allons nous concentrer sur le cas du cube brut (cube B) afin de comparer les prédictions aux données mesurées, La température intérieure est maintenue constante grâce aux résistances chauffantes

, Prédiction dans le volume d'air Les simulations sont effectuées avec la perméabilité à la vapeur moyenne du bois. Pour l'isotherme de sorption, nous comparons les résultats obtenus avec l'isotherme d'adsorption, déterminée lors d'un échelon 33%-75% (noté « adsorption

, Les phases d'humidification semblent correctement décrites par le modèle : pré-conditionnement et échelon de longue durée. La Figure 5.39b 1. parois : modèle couplé + volume d'air : bilans thermique et hygrique, appelé « couplé » 2. parois : modèle thermique + volume d'air : bilans thermique et hygrique, appelé « thermique » Nous comparons ces deux modèles dans le cas de l'expérience avec sollicitations hygriques. Pour le cas de panneaux bruts comme dans le cube B, les résultats de la consommation de chauffage montrent que les différences entre le modèle couplé et thermique apparaissent au moment des éche-lons d'humidité, au début de l'injection (Figure 5.46). En dehors de ces périodes, La prédiction obtenue avec l'isotherme d'adsorption ne permet pas d'avoir un bon accord pendant la phase d'évolution libre après l'échelon de longue durée

, Simulations complémentaires

, Au moment de l'injection de vapeur, la puissance dans le cas couplé est plus petite que pour le cas thermique : la différence est de plus de 10 W au début de l'échelon, La Figure 5.46b présente la différence entre les deux puissances pendant les cycles courts

, Cette puissance supplémentaire est due à l'apport des transferts couplés : au moment des échelons, de l'énergie est dégagée lors de la sorption de la vapeur dans les parois, c'est l'énergie de changement de phase qui permet de chauffer le volume intérieur. Cela permet une diminution de chauffage à ce moment-là. Néanmoins lors des phases de désorption

, En moyenne, la puissance prédite avec le modèle couplé est un peu supérieure à celle avec le modèle thermique : 86.7 W contre 85.6 W, soit 1.2% d'écart. La prise en compte des transferts couplés modifie peu l'énergie consommée comme le montre la valeur moyenne mais par contre, au moment de l'adsorption de l'humidité

, (a) comparaison sur l'expérience complète, (b) différence pendant les cycles courts. Nous pouvons également comparer les différents flux sensibles de chaleur (charges, fuite, parois) pour les 2 modèles. Les différences entre les deux simulations sont assez faibles sur l'expérience complète (Figure 5.47a). Les écarts apparaissent uniquement pour le flux de charge au moment des échelons d'humidité (Figure 5.47b) : le flux de charge est un peu plus faible de 20 W environ dans le cas du modèle couplé, FIGURE 5.46 -Influence des transferts couplés sur la consommation de chauffage dans le cas de panneaux bruts

, 47 -Influence des transferts couplés sur les flux sensibles de chaleur : (a) expérience complète, (b) cycles courts, FIGURE 5

. De-l'échelle-matériau-À-l'étude-de-l'interaction-paroi-volume-d'air, CHAPITRE, vol.5

B. Dans-le, améliorer la compréhension de l'interaction entre paroi et volume d'air et d'étudier l'importance des transferts couplés chaleur-masse sur l'ambiance intérieure, une étude expérimen-tale a été mise en place. Le dispositif correspond à deux enceintes construites à partir de panneaux de CLT dont les surfaces sont laissées brutes pour l'une et recouvertes d

, L'instrumentation permet d'étudier à la fois les transferts dans les parois et leur interaction avec le volume d'air mais également d'effectuer des bilans à l'échelle du volume d'air. Les scénarios étudiés se distinguent de la littérature

, Après avoir validé le modèle et les propriétés à l'échelle paroi, l'interaction entre paroi et volume d'air a été caractérisée grâce aux coefficients convectifs. La comparaison entre mesures et simulations dans le volume d'air montre que des phénomènes liés à la température doivent être pris en compte pour améliorer la prédiction comme l'effet de la température sur l'isotherme de sorption. Néanmoins, le modèle de volume d'air avec modélisation de l'hystérésis permet d'obtenir des ré-sultats satisfaisants dans la paroi et le volume d'air lors de sollicitations hygriques et avec gradient de température. Les résultats indiquent également que la qualité des résultats à l'échelle du volume d'air dépendent très fortement de la qualité du modèle de paroi. La modélisation de la couche d'huile par une résistance de surface supplémentaire a été validée par comparaison expérimentale et nous a permis de mettre en évidence que l'impact du revêtement sur la consommation est assez faible ce qui explique qu'il est difficile à étudier expérimentalement, Les résultats obtenus lors des différentes expériences permettent de mieux comprendre les phé-nomènes mis en jeu. Les constantes de temps thermiques (quelques heures) et hygriques (de l'ordre de 1 mois) montrent les différences entre les deux types de transfert

K. Rajendra, . Pachauri, V. R. Myles-r-allen, J. Barros, W. Broome et al., Climate change 2014 : synthesis report. Contribution of Working Groups I, 2014.

, Agence de l'Environnement et de la Maîtrise de l'Énergie. Chiffres clés : climat, air et énergie, 2017.

. Helisoa-rafidiarison, Etudes expérimentales des transferts de masse et de chaleur dans les parois des constructions en bois, en vue de leur modélisation, Applications aux économies d'énergie, vol.82, p.208, 2012.

;. Saed-raji, . Jean-rodolphe, and . Lagière, Caractérisation hygro-thermique, par une approche multi échelle, de constructions en bois massif en vue d'amélioration énergétique et de valorisation environnementale, Philippe Sciences physiques et de l'ingénieur. Sciences du bois, vol.81, p.82, 2001.

S. Hameury, The hygrothermal inertia of massive timber connstructions, p.208, 2006.

. Mk-kumaran, Iea annex 24 final report, vol.3, p.129, 1996.

J. Vinha, Hygrothermal performance of timber-framed external walls in Finnish climatic conditions : a method for determining the sufficient water vapour resistance of the interior lining of a wall assembly, 2007.

R. Peuhkuri, C. Rode, and K. K. Hansen, Non-isothermal moisture transport through insulation materials. Building and Environment, vol.43, issue.5, pp.811-822, 2008.

. Jw-meissner, . Mendes, L. M. Kc-mendonça, and . Moura, A full-scale experimental set-up for evaluating the moisture buffer effects of porous material, International Communications in Heat and Mass Transfer, vol.37, issue.9, pp.1197-1202, 2010.

X. Yang, P. Fazio, H. Ge, and J. Rao, Evaluation of moisture buffering capacity of interior surface materials and furniture in a full-scale experimental investigation, Transport Vehicles, vol.47, p.81, 2012.

. Bibliographie,

Y. Li, P. Fazio, and J. Rao, An investigation of moisture buffering performance of wood paneling at room level and its buffering effect on a test room, Building and Environment, vol.47, pp.205-216, 2012.

K. Lengsfeld, A. Holm, and M. Krus, Moisture-buffering effect-experimental investigations and validation, 6th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings : Sustainable Built Environment, 2007.

W. Maref and M. A. Lacasse, Daniel Booth, and others. Benchmarking of IRC's Advanced Hygrothermal Model-hygIRC Using Mid-and Large-scale Experiments, 2002.

T. Kalamees and J. Vinha, Hygrothermal calculations and laboratory tests on timberframed wall structures. Building and Environment, vol.38, p.82, 2003.

J. Carmeliet and D. Derome, Temperature driven inward vapor diffusion under constant and cyclic loading in small-scale wall assemblies : Part 1 experimental investigation, Building and Environment, vol.48, p.82, 2012.

H. Yoshino, T. Mitamura, and K. Hasegawa, Moisture buffering and effect of ventilation rate and volume rate of hygrothermal materials in a single room under steady state exterior conditions, Building and Environment, vol.44, issue.7, p.82, 2009.

M. Steeman, M. Van-belleghem, M. De-paepe, and A. Janssens, Experimental validation and sensitivity analysis of a coupled BES-HAM model, Building and Environment, vol.45, issue.10, p.86, 2010.

J. Tadiwos-zerihun-desta, S. Langmans, and . Roels, Experimental data set for validation of heat, air and moisture transport models of building envelopes, Building and Environment, vol.46, issue.5, pp.1038-1046, 2011.

C. Simonson, Energy consumption and ventilation performance of a naturally ventilated ecological house in a cold climate, Energy and buildings, vol.37, issue.1, pp.23-35, 2005.

W. Maref, . Ouazia, M. Reardon, and . Rousseau, Ventilation and wall research house. In Performance of exterior envelope of whole buildings X conference, 2007.

J. Langmans, R. Klein, M. De-paepe, and S. Roels, Potential of wind barriers to assure airtightness of wood-frame low energy constructions, Energy and Buildings, vol.42, issue.12, pp.2376-2385, 2010.

D. Allinson and M. Hall, Hygrothermal analysis of a stabilised rammed earth test building in the UK. Energy and Buildings, vol.42, p.82, 2002.

T. Busser, J. Berger, A. Piot, M. Pailha, and M. Woloszyn, Dynamic experimental method for identification of hygric parameters of a hygroscopic material, Building and Environment, vol.131, p.86, 2018.

J. Michel, Observatoire économique de france bois forêt, 2012.

O. Vololonirina, M. Coutand, and B. Perrin, Characterization of hygrothermal properties of wood-based products -Impact of moisture content and temperature, Construction and Building Materials, vol.63, p.86, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01850786

, CERA. Les usages du bois dans la construction, 2013.

C. E. Hachem, Etude expérimentale et modélisation multi-échelles du comportement hygromécanique des matériaux poreux de construction, vol.9, p.10, 2008.

M. Faessel, . Delisée, P. Bos, and . Castéra, 3d modelling of random cellulosic fibrous networks based on x-ray tomography and image analysis, Composites science and technology, vol.65, issue.13, pp.1931-1940, 2005.

C. Delisée, J. Malvestio, J. Lux, P. Castéra, L. Chaunier et al., Microstructure et propriétés de transport de matériaux isolants à base de fibres cellulosiques, Annales du Bâtiment et des travaux publics, p.23, 2007.

R. Peuhkuri, Quantifying time dependent moisture storage and transport properties. Research in Building Physics, vol.11, p.213, 2003.

K. Krabbenhoft and L. Damkilde, A model for non-Fickian moisture transfer in wood, Materials and Structures, vol.37, issue.9, p.163, 2004.

F. John and . Siau, Transport processes in wood, vol.11, p.17, 1984.

B. Djolani, Hystérèse et effets de second ordre de la sorption d'humidité dans le bois aux températures de 5 ? , 21 ? , 35 ? , 50 ? c, Annales des Sciences Forestières, vol.29, p.11, 1972.

A. Stamm, Wood and cellulose science. Wood and cellulose science, p.11, 1964.

J. Daïan, Equilibre et transferts en milieux poreux, 2013.

. Oc-bridgeman and . Aldrich, Vapor pressure tables for water, Journal of Heat Transfer, vol.86, issue.2, p.15, 1964.

T. Colinart and P. Glouannec, Temperature dependence of sorption isotherm of hygroscopic building materials. part 1 : Experimental evidence and modeling, Energy and Buildings, vol.139, p.213, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01697276

X. Zhang, W. Zillig, M. Hartwig, C. Künzel, X. Mitterer et al., Combined effects of sorption hysteresis and its temperature dependency on wood materials and building enclosures -Part I : Measurements for model validation, Building and Environment, vol.106, p.213, 2016.

A. Piot, Hygrothermique du bâtiment : expérimentation sur une maison à ossature bois en conditions climatiques naturelles et modélisation numérique, vol.16, p.82, 2009.

. Bibliographie,

J. Neto, Transport d'humidité en matériau poreux en présence d'un gradient de température. Caractérisation expérimentale d'un béton cellulaire, p.17, 1992.

M. Hartwig and . Künzel, Simultaneous heat and moisture transport in building components, vol.17, p.21, 1995.

H. Janssen, Thermal diffusion of water vapour in porous materials : Fact or fiction ? International, Journal of Heat and Mass Transfer, vol.54, issue.7-8, p.18, 2011.

S. Whitaker, Flow in porous media i : A theoretical derivation of darcy's law. Transport in porous media, vol.1, p.19, 1986.

. Av-luikov, Heat and mass transfer in capillary bodies, vol.23, p.32, 1920.

H. Janssen, Simulation efficiency and accuracy of different moisture transfer potentials, Journal of Building Performance Simulation, vol.7, issue.5, p.21, 2014.

H. Steeman, M. Van-belleghem, A. Janssens, and M. De-paepe, Coupled simulation of heat and moisture transport in air and porous materials for the assessment of moisture related damage, Building and Environment, vol.44, issue.10, p.21, 2009.

M. Labat, M. Woloszyn, G. Garnier, and J. J. Roux, Dynamic coupling between vapour and heat transfer in wall assemblies : Analysis of measurements achieved under real climate, Building and Environment, vol.87, pp.129-141, 1921.
URL : https://hal.archives-ouvertes.fr/hal-01236296

Y. Kedowide, Analyses expérimentales et numériques du comportement hygrothermique d'une paroi composée de matériaux fortement hygroscopiques, vol.86, p.210, 1921.

Q. Li, J. Rao, and P. Fazio, Development of HAM tool for building envelope analysis, Building and Environment, vol.44, issue.5, pp.1065-1073, 1921.

S. Rouchier, M. Woloszyn, G. Foray, and J. J. Roux, Influence of concrete fracture on the rain infiltration and thermal performance of building facades, International Journal of Heat and Mass Transfer, vol.61, issue.21, pp.340-352, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00798374

N. Mendes and P. C. Philippi, A method for predicting heat and moisture transfer through multilayered walls based on temperature and moisture content gradients, International Journal of Heat and Mass Transfer, vol.48, issue.1, pp.37-51, 1921.

M. Rogerio, N. Barbosa, and . Mendes, Combined simulation of central {HVAC} systems with a whole-building hygrothermal model, Energy and Buildings, vol.40, issue.3, pp.276-288, 2008.

G. Henrique, D. Santos, and N. Mendes, Combined heat, air and moisture (ham) transfer model for porous building materials, Journal of Building Physics, vol.32, issue.3, p.21, 2009.

L. Soudani, A. Fabbri, J. Morel, M. Woloszyn, P. Chabriac et al., Assessment of the validity of some common assumptions in hygrothermal modeling of earth based materials, Energy and Buildings, vol.116, p.129, 2016.

. Bibliographie,

J. Berger, S. Gasparin, D. Dutykh, and N. Mendes, On the solution of coupled heat and moisture transport in porous material, Transport in Porous Media, vol.121, issue.3, p.202, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01770386

C. Belleudy, A. Kayello, M. Woloszyn, and H. Ge, Experimental and numerical investigations of the effects of air leakage on temperature and moisture fields in porous insulation, Building and Environment, vol.94, p.24, 2015.

N. Hurel, M. Pailha, G. Garnier, and M. Woloszyn, Impact of different construction details on air permeability of timber frame wall assemblies : Some experimental evidences from a three-scale laboratory study, Journal of Building Physics, p.24, 2016.

, Chapter 26 : Heat, Air, and Moisture Control in Building AssembliesMaterial Properties, vol.160, p.163, 2013.

A. Tobin, N. Driscoll, L. N. Hale, and . Trefethen, , p.28, 2014.

R. Helisoa-rafidiarison, E. Rémond, and . Mougel, Dataset for validating 1-D heat and mass transfer models within building walls with hygroscopic materials. Building and Environment, vol.89, p.210, 2015.

J. R. Philip, . Da-de, and . Vries, Moisture movement in porous materials under temperature gradients, Transactions American Geophysical Union, vol.38, issue.2, p.128, 1957.

M. Woloszyn and C. Rode, Tools for performance simulation of heat, air and moisture conditions of whole buildings, Building Simulation, vol.32, p.83, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00353433

N. Mendes, M. Chhay, J. Berger, and D. Dutykh, Numerical methods for diffusion phenomena in building physics : A practical introduction, PUCPRess, p.32, 2017.

. Bc-bauklimatik-dresden, Simulation program for the calculation of coupled heat, moisture, air, pollutant, and salt transport, vol.32, p.128, 2011.

C. Rode and K. G. Sorensen, Whole building hygrothermal simulation model, American Society of Heating, Refrigeration and Air-Conditioning Engineers, Recent Advances in Energy Simulation : Building Loads, Symposium, vol.32, p.79, 2003.

I. Fraunhofer and . Wufi, , vol.32, p.128, 2005.

T. Duforestel and P. Dalicieux, A model of hygroscopic buffer to simulate the indoor air humidity behaviour in transient conditions, Proceedings of European conference on energy performance and indoor climate in buildings, vol.3, p.213, 1994.

N. Mendes, I. Ridley, R. Lamberts, C. Paulo, K. Philippi et al., Umidus : a pc program for the prediction of heat and moisture transfer in porous building elements, Building Simulation Conference -IBPSA, vol.99, p.32, 1999.

J. Berger, S. Guernouti, M. Woloszyn, and C. Buhe, Factors governing the development of moisture disorders for integration into building performance simulation, Journal of Building Engineering, vol.3, p.32, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01819340

N. Mendes, . Fc-winkelmann, P. C. Lamberts, and . Philippi, Moisture effects on conduction loads. Energy and Buildings, vol.35, issue.7, pp.631-644, 2003.

F. Antretter, C. Mitterer, and S. Young, Use of moisture-buffering tiles for indoor climate stability under different climatic requirements, HVAC&R Research, vol.18, issue.1-2, p.82, 2012.

M. Liu, Y. Zhu, . Park, D. K. David-e-claridge, and . Feary, Airflow reduction to improve building comfort and reduce building energy consumption-a case study, ASHRAE Transactions, vol.105, p.208, 1999.

H. Viitanen, J. Vinha, K. Salminen, T. Ojanen, R. Peuhkuri et al., Moisture and Bio-deterioration Risk of Building Materials and Structures, Journal of Building Physics, vol.33, issue.3, p.32, 2010.

M. Salonvaara, T. Ojanen, A. H. Holm, M. Hartwig, A. N. Künzel et al., Moisture buffering effects on indoor air quality-experimental and simulation results, Proceedings of Buildings IX, p.32, 2004.

L. Fang, G. Clausen, and P. Fanger, Impact of temperature and humidity on the perception of indoor air quality, Indoor air, vol.8, issue.2, pp.80-90, 1998.

. Cj-simonson, T. Salonvaara, and . Ojanen, The effect of structures on indoor humiditypossibility to improve comfort and perceived air quality, Indoor Air, vol.12, issue.4, p.170, 2002.

M. Barclay, N. Holcroft, and . Shea, Methods to determine whole building hygrothermal performance of hemp-lime buildings, Building and environment, vol.80, p.77, 2014.

S. Dubois and F. Lebeau, Impact des matériaux biosourcés sur le climat intérieur : Un outil de calcul flexible à l'échelle de la pièce, vol.77, p.82, 2014.

J. Kwiatkowski, M. Woloszyn, and J. Roux, Influence of sorption isotherm hysteresis effect on indoor climate and energy demand for heating. Applied Thermal Engineering, vol.31, p.77, 2011.

J. Kwiatkowski, M. Woloszyn, and J. Roux, Modelling of hysteresis influence on mass transfer in building materials, Building and Environment, vol.44, issue.3, p.129, 2009.

C. James, C. J. Simonson, P. Talukdar, and S. Roels, Numerical and experimental data set for benchmarking hygroscopic buffering models, International Journal of Heat and Mass Transfer, vol.53, p.130, 2010.
DOI : 10.1016/j.ijheatmasstransfer.2010.03.039

X. Yang, H. Ge, P. Fazio, and J. Rao, Evaluation of Parameters Influencing the Moisture Buffering Potential of Hygroscopic Materials with BSim Simulations, Buildings, vol.4, issue.3, p.82, 1978.

. Bibliographie,

K. Lengsfeld, A. Holm, and M. Krus, Moisture-Buffering Effect-Experimental Investigations and Validation, 6th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings : Sustainable Built Environment, IAQVEC, vol.78, p.82, 2007.

M. Woloszyn and C. Rode, MOIST-ENG Subtask 1 -Modelling Principles and Common Exercises, vol.41, p.78, 2007.

F. Tariku, P. Kumar-kumaran, and . Fazio, Integrated analysis of whole building heat, air and moisture transfer, International Journal of Heat and Mass Transfer, vol.53, p.79, 2010.

M. Qin, R. Belarbi, A. Aït-mokhtar, and F. Allard, Simulation of coupled heat and moisture transfer in air-conditioned buildings, Automation in construction, vol.18, issue.5, p.79, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00312354

M. Y. Ferroukhi, R. Djedjig, R. Belarbi, K. Limam, and K. Abahri, Effect of Coupled Heat, Air and Moisture Transfers Modeling in the Wall on the Hygrothermal Behavior of Buildings, Energy Procedia, vol.78, p.79, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01690686

K. My-ferroukhi, . Abahri, . Belarbi, A. Limam, and . Nouviaire, Experimental validation of coupled heat, air and moisture transfer modeling in multilayer building components, Heat and Mass Transfer, vol.52, issue.10, p.208, 2016.

K. My-ferroukhi, . Abahri, K. Belarbi, and . Limam, Integration of a hygrothermal transfer model for envelope in a building energy simulation model : experimental validation of a hambes co-simulation approach, vol.53, p.79, 2017.

H. M. Künzel, A. Holm, D. Zirkelbach, and A. N. Karagiozis, Simulation of indoor temperature and humidity conditions including hygrothermal interactions with the building envelope, Solar Energy, vol.78, issue.4, p.170, 1979.

D. Medjelekh, L. Ulmet, and F. Dubois, Mesure et modélisation des transferts hygrothermiques d'une enveloppe en béton de bois, p.79, 2014.

C. J. Simonson, M. Salaonvaara, and T. Ojanen, Heat and Mass Transfer between Indoor Air and a Permeable and Hygroscopic Building Envelope : Part II -Verification and Numerical Studies, Journal of Building Physics, vol.28, issue.2, p.79, 2004.

C. J. Simonson, M. Salonvaara, and T. Ojanen, Heat and Mass Transfer between Indoor Air and a Permeable and Hygroscopic Building Envelope : Part I -Field Measurements, Journal of Building Physics, vol.28, issue.1, p.79, 2004.

C. Rode, M. Salonvaara, T. Ojanen, C. Simonson, and K. Grau, Integrated hygrothermal analysis of ecological buildings, Proceedings of the 2nd International Building Physics Conference, p.79, 2003.

A. Piot, M. Woloszyn, J. Brau, and C. Abelé, Experimental wooden frame house for the validation of whole building heat and moisture transfer numerical models, Energy and Buildings, vol.43, issue.6, p.210, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01025211

M. Labat and ;. Et-woloszyn, Chaleur -Humidité -Air dans les maisons à ossature bois : Expérimentation et modélisation, Monika Génie civil Lyon, vol.80, p.82, 2012.

M. Qin, G. Walton, R. Belarbi, and F. Allard, Simulation of whole building coupled hygrothermal-airflow transfer in different climates. Energy Conversion and Management, vol.52, p.82, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00548182

M. Van-belleghem, M. Steeman, A. Willockx, A. Janssens, and M. De-paepe, Benchmark experiments for moisture transfer modelling in air and porous materials, Building and Environment, vol.46, issue.4, p.81, 2011.

M. Van-belleghem, M. Steeman, A. Janssens, and M. De-paepe, Drying behaviour of calcium silicate, Construction and Building Materials, vol.65, p.81, 2014.

M. Van-belleghem, M. Steeman, H. Janssen, A. Janssens, and M. De-paepe, Validation of a coupled heat, vapour and liquid moisture transport model for porous materials implemented in CFD, Building and Environment, vol.81, p.81, 2014.

D. Samri, Analyse physique et caractérisation hygrothermique des matériaux de construction : approche expérimentale et modélisation numérique, vol.81, p.131, 2008.

P. Perré, F. Pierre, J. Casalinho, and M. Ayouz, Determination of the Mass Diffusion Coefficient Based on the Relative Humidity Measured at the Back Face of the Sample During Unsteady Regimes, Drying Technology, vol.33, issue.9, p.131, 2015.

R. Mcclung, H. Ge, J. Straube, and J. Wang, Hygrothermal performance of crosslaminated timber wall assemblies with built-in moisture : field measurements and simulations, Building and Environment, vol.71, p.82, 2014.

. Sj-kowalski, J. Musielak, and . Banaszak, Experimental validation of the heat and mass transfer model for convective drying, Drying Technology, vol.25, issue.1, p.81, 2007.

J. Langmans, R. Klein, and S. Roels, Numerical and experimental investigation of the hygrothermal response of timber frame walls with an exterior air barrier, Journal of Building Physics, vol.36, issue.4, p.82, 2013.

L. Wang and H. Ge, Hygrothermal performance of cross-laminated timber wall assemblies : A stochastic approach, Building and Environment, vol.97, p.82, 2016.

B. Moujalled, Y. Aã¯t-oumã©ziane, S. Moissette, and M. Bart, Experimental and numerical evaluation of the hygrothermal performance of a hemp lime concrete building : A long term case study, Building and Environment, vol.136, p.82, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01738378

. Jmpq-delgado, M. M. Nuno, E. Ramos, . Barreira, . Vp-de et al., A critical review of hygrothermal models used in porous building materials, Journal of Porous Media, vol.13, issue.3, p.83, 2010.

J. Berger, S. Gasparin, D. Dutykh, and N. Mendes, Accurate numerical simulation of moisture front in porous material, Building and Environment, vol.118, p.130, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01419018

. Bibliographie,

S. Pang, Relative importance of vapour diffusion and convecttve flow in modelling of softwood drying. Drying technology, vol.16, p.83, 1998.

T. Colinart, D. Lelievre, and P. Glouannec, Experimental and numerical analysis of the transient hygrothermal behavior of multilayered hemp concrete wall, Energy and Buildings, vol.112, p.86, 2016.

P. Talukdar, F. Olalekan, S. O. Osanyintola, C. J. Olutimayin, and . Simonson, An experimental data set for benchmarking 1-D, transient heat and moisture transfer models of hygroscopic building materials. Part II : Experimental, numerical and analytical data, International Journal of Heat and Mass Transfer, vol.50, pp.4915-4926, 2007.

M. Van-belleghem, H. Steeman, M. Steeman, A. Janssens, and M. De-paepe, Sensitivity analysis of CFD coupled non-isothermal heat and moisture modelling, Building and Environment, vol.45, issue.11, p.86, 2010.

H. Garbalí-nska, M. Bochenek, W. Malorny, and J. V. Werder, Comparative analysis of the dynamic vapor sorption (dvs) technique and the traditional method for sorption isotherms determination-exemplified at autoclaved aerated concrete samples of four density classes, Cement and Concrete Research, vol.91, p.86, 2017.

R. Helisoa-rafidiarison, E. Rémond, and . Mougel, Dataset for validating 1-D heat and mass transfer models within building walls with hygroscopic materials. Building and Environment, vol.89, p.129, 2015.

K. Abahri, R. Bennacer, and R. Belarbi, Sensitivity analyses of convective and diffusive driving potentials on combined heat air and mass transfer in hygroscopic materials, Numerical Heat Transfer, Part A : Applications, vol.69, issue.10, p.86, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01711190

S. Rouchier, T. Busser, M. Pailha, A. Piot, and M. Woloszyn, Hygric characterization of wood fiber insulation under uncertainty with dynamic measurements and markov chain monte-carlo algorithm, Building and Environment, vol.114, pp.129-139, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01437146

M. Woloszyn and J. Virgone, Hygro-bat : Vers une méthode de conception hygro-thermique des batiments performants. rapport final, p.110, 2015.

J. Berger, D. Dutykh, and N. Mendes, On the optimal experiment design for heat and moisture parameter estimation, Experimental Thermal and Fluid Science, vol.81, p.118, 2017.

J. Berger, T. Busser, D. Dutykh, and N. Mendes, On the estimation of moisture permeability and advection coefficients of a wood fibre material using the optimal experiment design approach. Experimental Thermal and Fluid Science, vol.118, p.131, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01498638

J. R. Taylor, An introduction to error analysis ; the study of uncertainties in physical measurements. University Science Books, p.121

C. E. Hachem, P. Ye, K. Abahri, and R. Bennacer, Fiber's hygromorphic effect on thermal conductivity of wooden fibrous insulation characterized by x-ray tomography, Construction and Building Materials, vol.150, issue.123, pp.758-765, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01598400

C. E. Hachem, K. Abahri, J. Vicente, R. Bennacer, and R. Belarbi, Hygromorphic characterization of softwood under high resolution x-ray tomography for hygrothermal simulation, pp.1-9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01790801

C. Feng, H. Janssen, Y. Feng, and Q. Meng, Hygric properties of porous building materials : Analysis of measurement repeatability and reproducibility, Building and Environment, vol.85, p.128, 2015.

S. Whitaker, Simultaneous heat, mass, and momentum transfer in porous media : a theory of drying. Advances in heat transfer, vol.13, p.128, 1977.

H. Janssen, Thermal diffusion of water vapour in porous materials : Fact or fiction ? International, Journal of Heat and Mass Transfer, vol.54, issue.7-8, p.212, 2011.

T. Colinart, M. Glouannec, P. Bendouma, and . Chauvelon, Temperature dependence of sorption isotherm of hygroscopic building materials. part 2 : Influence on hygrothermal behavior of hemp concrete, Energy and Buildings, vol.152, p.185, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01697276

X. Zhang, W. Zillig, M. Hartwig, C. Künzel, X. Mitterer et al., Combined effects of sorption hysteresis and its temperature dependency on wood materials and building enclosures-part II : Hygrothermal modeling, Building and Environment, vol.106, p.185, 0129.

J. Peter, R. F. Sereda, and . Feldman, Wetting and drying of porous materials, Canadian building digests 101-150, p.129, 1975.

Y. Mualem, A conceptual model of hysteresis, Water Resources Research, vol.10, issue.3, p.213, 1974.

. Carsten-rode-pedersen, Combined heat and moisture transfer in building constructions, Thermal Insulation Laboratory, vol.214, p.213, 1990.

J. Berger, T. Busser, D. Dutykh, and N. Mendes, An efficient method to estimate sorption isotherm curve coefficients. submitted, p.130, 2017.
DOI : 10.1080/17415977.2018.1495720

URL : https://hal.archives-ouvertes.fr/hal-01509113

C. Rode and K. K. Hansen, Hysteresis and temperature dependency of moisture sorption-new measurements, 9th Nordic symposium on building physics, vol.130, p.213, 2011.

Y. Aït-oumeziane, S. Moissette, M. Bart, and C. Lanos, Influence of temperature on sorption process in hemp concrete, Construction and Building Materials, vol.106, p.130, 2016.

S. Assouline and Y. Mualem, Effect of rainfall-induced soil seals on the soil water regime : Drying interval and subsequent wetting, vol.53, p.130, 2003.

D. Sun, Y. Zang, and S. Semprich, Effects of airflow induced by rainfall infiltration on unsaturated soil slope stability, Transport in Porous Media, vol.107, issue.3, p.130, 2015.

. Bibliographie,

C. Belleudy, M. Woloszyn, M. Chhay, and M. Cosnier, A 2d model for coupled heat, air, and moisture transfer through porous media in contact with air channels, International Journal of Heat and Mass Transfer, vol.95, p.130, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01815586

K. Abahri, R. Bennacer, and R. Belarbi, Sensitivity analyses of convective and diffusive driving potentials on combined heat air and mass transfer in hygroscopic materials, Numerical Heat Transfer, Part A : Applications, vol.69, issue.10, p.160, 0130.
URL : https://hal.archives-ouvertes.fr/hal-01684888

Z. Slimani, Analyse expérimentale et numérique du comportement hygrothermique de parois fortement hygroscopiques, p.131, 2015.

L. Wadsö, Unsteady-state water vapor adsorption in wood : an experimental study. Wood and fiber science, vol.6, p.131, 1994.

H. Lund-frandsen, L. Damkilde, and S. Svensson, A revised multi-Fickian moisture transport model to describe non-Fickian effects in wood, Holzforschung, issue.5, p.61, 0131.

H. Richard, J. C. Byrd, J. Gilbert, and . Nocedal, A trust region method based on interior point techniques for nonlinear programming, Mathematical Programming, vol.89, issue.1, p.158, 2000.

R. Rémond and G. Almeida, Mass diffusivity of low-density fibreboard determined under steady-and unsteady-state conditions : Evidence of dual-scale mechanisms in the diffusion, Wood Material Science and Engineering, vol.6, issue.1-2, p.165, 2011.

P. Perré, Multiscale aspects of heat and mass transfer during drying, Drying of Porous Materials, p.165, 2006.

P. Perré, Multiscale modeling of drying as a powerful extension of the macroscopic approach : application to solid wood and biomass processing, Drying Technology, vol.28, issue.8, p.165, 2010.

K. Krabbenhoft and L. Damkilde, Double porosity models for the description of water infiltration in wood, Wood Science and Technology, vol.38, issue.8, p.165, 2004.

. Saed-raji, Caractérisation hygro-thermique, par une approche multi échelle, de constructions en bois massif en vue d'amélioration énergétique et de valorisation environnementale, vol.170, p.208, 2006.

F. Antretter, C. Mitterer, and S. Young, Use of moisture-buffering tiles for indoor climate stability under different climatic requirements, HVAC&R Research, vol.18, issue.1-2, p.170, 2012.

M. Salonvaara, T. Ojanen, A. Holm, M. Hartwig, A. Künzel et al., Moisture buffering effects on indoor air quality-experimental and simulation results, Proceedings of the Performance of Exterior Envelopes of Whole Buildings IX International Conference, p.170, 2004.

R. Rémond and P. Perré, Modélisation du comportement thermique d'une maison bois à l'aide de micromodèles chaleur-masse distribués. International Building Performance Simulation Association (IBPSA)-France, p.170, 2008.

M. Labat and M. Woloszyn, Moisture balance assessment at room scale for four cases based on numerical simulations of heat-air-moisture transfers for a realistic occupancy scenario, Journal of Building Performance Simulation, vol.9, issue.5, p.203, 2016.

S. Boulet, Caractérisation du confort hygrothermique et acoustique dans les constructions à base de bois, p.170, 2009.

F. Olalekan, C. Osanyintola, and . Simonson, Moisture buffering capacity of hygroscopic building materials : Experimental facilities and energy impact, Energy and Buildings, vol.38, issue.10, p.209, 2006.

M. Woloszyn, T. Kalamees, M. Olivier-abadie, M. Steeman, and A. S. Kalagasidis, The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings, Building and Environment, vol.44, issue.3, p.208, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00395970

T. Kalamees, M. Korpi, J. Vinha, and J. Kurnitski, The effects of ventilation systems and building fabric on the stability of indoor temperature and humidity in finnish detached houses, Building and Environment, vol.44, issue.8, p.208, 2009.

M. Labat, M. Woloszyn, J. Roux, A. Piot, and G. Garnier, Bilan hygrique sur une maison à ossature bois : rôle des débits d'air non contrôlés et des transferts aux parois, p.178, 2010.

M. Labat, M. Woloszyn, G. Garnier, and J. J. Roux, Assessment of the air change rate of airtight buildings under natural conditions using the tracer gas technique. comparison with numerical modelling, Building and environment, vol.60, issue.178, pp.37-44, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00985227

T. Fujii and H. Imura, Natural-convection heat transfer from a plate with arbitrary inclination, International Journal of Heat and Mass Transfer, vol.15, issue.4, p.199, 1972.

H. Ge, X. Yang, P. Fazio, and J. Rao, Influence of moisture load profiles on moisture buffering potential and moisture residuals of three groups of hygroscopic materials, Building and Environment, vol.81, p.190, 2014.

M. Labat, M. Woloszyn, G. Garnier, A. Piot, and J. Roux, Simulation of coupled heat, air and moisture transfers in an experimental house exposed to natural climate, OSB, vol.602, issue.3, p.1450, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00985568

M. Labat, M. Woloszyn, G. Garnier, and J. J. Roux, Dynamic coupling between vapour and heat transfer in wall assemblies : Analysis of measurements achieved under real climate, Building and Environment, vol.87, p.210, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01236296

. Jf-sacadura, Transferts thermiques : Initiation et approfondissement. Ed Lavoisier Tec&Doc, 0199.

. Bibliographie,

J. Carey, M. Simonson, T. Salonvaara, and . Ojanen, Moderating indoor conditions with hygroscopic building materials and outdoor ventilation, ASHRAE Transactions, vol.110, issue.2, p.208, 2004.

M. Qin, G. Walton, R. Belarbi, and F. Allard, Simulation of whole building coupled hygrothermal-airflow transfer in different climates. Energy conversion and management, vol.52, p.209, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00548182

M. Th-van-genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil science society of America journal, vol.44, issue.5, p.212, 1980.

S. Rouchier, M. Woloszyn, G. Foray, and J. Roux, Influence of concrete fracture on the rain infiltration and thermal performance of building facades, International Journal of Heat and Mass Transfer, vol.61, p.212, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00798374

A. Trabelsi, Etudes numérique et expérimentale des transferts hygrothermiques dans les matériaux poreux de construction, p.212, 2010.

K. Krabbenhoft, Moisture transport in wood : A study of physical-mathematical models and their numerical implementation, p.213, 2003.

J. Carmeliet, H. De-wit, and . Janssen, Hysteresis and moisture buffering of wood, Symposium of Building Physics in the Nordic Countries, p.213, 2005.

R. Rémond, G. Almeida, and P. Perré, The gripped-box model : A simple and robust formulation of sorption hysteresis for lignocellulosic materials, Construction and Building Materials, vol.170, p.213, 2018.

S. Gasparin, J. Berger, D. Dutykh, and N. Mendes, Stable explicit schemes for simulation of nonlinear moisture transfer in porous materials, Journal of Building Performance Simulation, vol.222, p.223, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01404578