H. Ochman, J. G. Lawrence, and E. A. Groisman, Lateral gene transfer and the nature of bacterial innovation, Nature, vol.405, pp.299-304, 2000.

O. Popa and T. Dagan, Trends and barriers to lateral gene transfer in prokaryotes, Curr. Opin. Microbiol, vol.14, pp.615-623, 2011.

M. F. Polz, E. J. Alm, and W. P. Hanage, Horizontal gene transfer and the evolution of bacterial and archaeal population structure, Trends Genet, vol.29, pp.170-175, 2013.

D. Medini, C. Donati, H. Tettelin, V. Masignani, and R. Rappuoli, The microbial pan-genome, Curr. Opin. Genet. Dev, vol.15, pp.589-594, 2005.

J. Davies and D. Davies, Origins and evolution of antibiotic resistance. Microbiol, Mol. Biol. Rev.: MMBR, vol.74, pp.417-433, 2010.

E. F. Boyd and H. Brussow, Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved, Trends Microbiol, vol.10, pp.521-529, 2002.

C. Smillie, M. Pilar-garcillan-barcia, M. Victoria-francia, E. P. Rocha, and F. Cruz, Mobility of plasmids. Microbiol. Mol. Biol. Rev, vol.74, pp.434-452, 2010.

V. Burrus, G. Pavlovic, B. Decaris, and G. Guedon, Conjugative transposons: the tip of the iceberg, Mol. Microbiol, vol.46, pp.601-610, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01659089

C. M. Johnson and A. D. Grossman, Integrative and conjugative elements (ICEs): what they do and how they work, Annu. Rev. Genet, vol.49, pp.577-601, 2015.

M. G. Ghinet, E. Bordeleau, J. Beaudin, R. Brzezinski, S. Roy et al., Uncovering the prevalence and diversity of integrating conjugative elements in Actinobacteria, PLoS ONE, vol.6, p.27846, 2011.

N. Goessweiner-mohr, K. Arends, W. Keller, and E. Grohmann, Conjugative type IV secretion systems in Gram-positive bacteria, Plasmid, vol.70, pp.289-302, 2013.

L. S. Frost, R. Leplae, A. O. Summers, and A. Toussaint, Mobile genetic elements: the agents of open source evolution, Nat. Rev. Microbiol, vol.3, pp.722-754, 2005.

H. Ochman, J. G. Lawrence, and E. A. Groisman, Lateral gene transfer and the nature of bacterial innovation, Nature, vol.405, pp.299-304, 2000.

G. Ebersbach and K. Gerdes, Plasmid segregation mechanisms, Annu. Rev. Genet, vol.39, pp.453-79, 2005.

D. K. Summers, The kinetics of plasmid loss, Trends Biotechnol, vol.9, pp.273-278, 1991.

I. Kobayashi, Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution, Nucleic Acids Res, vol.29, pp.3742-3756, 2001.

U. Dobrindt, B. Hochhut, U. Hentschel, and J. Hacker, Genomic islands in pathogenic and environmental microorganisms, Nat. Rev. Microbiol, vol.2, pp.414-438, 2004.

J. Guglielmini, L. Quintais, M. P. Garcillán-barcia, F. De-la-cruz, and E. P. Rocha, The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation, PLoS Genet, vol.7, p.1002222, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00647077

C. Canchaya, C. Proux, G. Fournous, A. Bruttin, and H. Brussow, Prophage Genomics. Microbiol. Mol. Biol. Rev, vol.67, pp.238-276, 2003.

C. M. Johnson and A. D. Grossman, Integrative and Conjugative Elements (ICEs): What They Do and How They Work, Annu. Rev. Genet, vol.49, pp.112414-055018, 2015.

X. Bellanger, S. Payot, N. Leblond-bourget, and G. Guédon, Conjugative and mobilizable genomic islands in bacteria: evolution and diversity, FEMS Microbiol. Rev, vol.38, pp.720-760, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01474898

N. Carraro and V. Burrus, Biology of Three ICE Families: SXT/R391, ICEBs1, and ICESt1/ICESt3. Microbiol. Spectr, vol.2, pp.1-20, 2014.

F. Delavat, R. Miyazaki, N. Carraro, N. Pradervand, and J. R. Van-der-meer, The hidden life of integrative and conjugative elements, FEMS Microbiol. Rev, vol.41, pp.512-537, 2017.

N. Carraro and V. Burrus, The dualistic nature of integrative and conjugative elements, Mob. Genet. Elements, vol.5, pp.98-102, 2015.

C. Lee, A. Babic, and A. D. Grossman, Autonomous plasmid-like replication of a conjugative transposon, Mol. Microbiol, vol.75, pp.268-79, 2010.

N. Carraro, D. Poulin, and V. Burrus, Replication and Active Partition of Integrative, 2015.

D. Mazel, Integrons: agents of bacterial evolution, Nat. Rev. Microbiol, vol.4, pp.608-620, 2006.

S. R. Partridge, Analysis of antibiotic resistance regions in Gram-negative bacteria, FEMS Microbiol. Rev, vol.35, pp.820-855, 2011.

M. R. Gillings, Integrons: past, present, and future. Microbiol, Mol. Biol. Rev, vol.78, pp.257-277, 2014.

J. A. Escudero, C. Loot, A. Nivina, and D. Mazel, The Integron: adaptation on demand, Microbiol. Spectr, vol.3, pp.3-0019, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01423322

C. M. Collis and R. M. Hall, Expression of antibiotic resistance genes in the integrated cassettes of integrons, Antimicrob. Agents Chemother, vol.39, pp.155-162, 1995.

M. J. Joss, J. E. Koenig, M. Labbate, M. F. Polz, M. R. Gillings et al., ACID: annotation of cassette and integron data, BMC Bioinformatics, vol.10, p.118, 2009.

Y. Boucher, M. Labbate, J. E. Koenig, and H. W. Stokes, Integrons: mobilizable platforms that promote genetic diversity in bacteria, Trends Microbiol, vol.15, pp.301-309, 2007.

C. A. Michael and M. Labbate, Gene cassette transcription in a large integron-associated array, BMC Genet, vol.11, p.82, 2010.

G. D. Recchia, H. W. Stokes, and R. M. Hall, Characterisation of speciic and secondary recombination sites recognised by the integron DNA integrase, Nucleic Acids Res, vol.22, pp.2071-2078, 1994.

G. D. Recchia and R. M. Hall, Plasmid evolution by acquisition of mobile gene cassettes: plasmid pIE723 contains the aadB gene cassette precisely inserted at a secondary site in the incQ plasmid RSF1010, Mol. Microbiol, vol.15, pp.179-187, 1995.

R. M. Hall, D. E. Brookes, and H. W. Stokes, Site-speciic insertion of genes into integrons: role of the 59-base element and determination of the recombination cross-over point, Mol. Microbiol, vol.5, pp.1941-1959, 1991.

S. E. Nunes-duby, H. J. Kwon, R. S. Tirumalai, T. Ellenberger, and A. Landy, Similarities and differences among 105 members of the Int family of site-speciic recombinases, Nucleic Acids Res, vol.26, pp.391-406, 1998.

C. M. Collis, G. D. Recchia, M. J. Kim, H. W. Stokes, and R. M. Hall, Eficiency of recombination reactions catalyzed by class 1 integron integrase IntI1, J. Bacteriol, vol.183, pp.2535-2542, 2001.

D. Macdonald, G. Demarre, M. Bouvier, D. Mazel, and D. N. Gopaul, Structural basis for broad DNA-speciicity in integron recombination, Nature, vol.440, pp.1157-1162, 2006.

M. Bouvier, M. Ducos-galand, C. Loot, D. Bikard, and D. Mazel, Structural features of single-stranded integron cassette attC sites and their role in strand selection, PLoS Genet, vol.5, p.1000632, 2009.

C. Frumerie, M. Ducos-galand, D. N. Gopaul, and D. Mazel, The relaxed requirements of the integron cleavage site allow predictable changes in integron target speciicity, Nucleic Acids Res, vol.38, pp.559-569, 2010.

N. Messier and P. H. Roy, Integron integrases possess a unique additional domain necessary for activity, J. Bacteriol, vol.183, pp.6699-6706, 2001.

S. R. Partridge, G. Tsafnat, E. Coiera, and J. R. Iredell, Gene cassettes and cassette arrays in mobile resistance integrons, FEMS Microbiol. Rev, vol.33, pp.757-784, 2009.

R. M. Hall and C. M. Collis, Mobile gene cassettes and integrons: capture and spread of genes by site-speciic recombination, 1995.

, Mol. Microbiol, vol.15, pp.593-600

D. A. Rowe-magnus, A. M. Guerout, L. Biskri, P. Bouige, and D. Mazel, Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae, Genome Res, vol.13, pp.428-442, 2003.

J. J. Diaz-mejia, C. F. Amabile-cuevas, I. Rosas, and V. Souza, An analysis of the evolutionary relationships of integron integrases, with emphasis on the prevalence of class 1 integrons in Escherichia coli isolates from clinical and environmental origins, Microbiology, vol.154, pp.94-102, 2008.

D. R. Nemergut, M. S. Robeson, R. F. Kysela, A. P. Martin, S. K. Schmidt et al., Insights and inferences about integron evolution from genomic data, BMC Genomics, vol.9, p.261, 2008.

R. M. Hall, Integrons and gene cassettes: hotspots of diversity in bacterial genomes, Ann. N Y Acad. Sci, vol.1267, pp.71-78, 2012.

M. Gillings, Y. Boucher, M. Labbate, A. Holmes, S. Krishnan et al., The evolution of class 1 integrons and the rise of antibiotic resistance, J. Bacteriol, vol.190, pp.5095-5100, 2008.

D. Mazel, B. Dychinco, V. A. Webb, and J. Davies, A distinctive class of integron in the Vibrio cholerae genome, Science, vol.280, pp.605-608, 1998.

D. A. Rowe-magnus, A. M. Guerout, P. Ploncard, B. Dychinco, J. Davies et al., The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons, Proc. Natl Acad. Sci. U.S.A, vol.98, pp.652-657, 2001.

B. Hochhut, Y. Loti, D. Mazel, S. M. Faruque, R. Woodgate et al., Molecular analysis of antibiotic resistance gene clusters in vibrio cholerae O139 and O1 SXT constins, Antimicrob. Agents Chemother, vol.45, pp.2991-3000, 2001.

M. Iwanaga, C. Toma, T. Miyazato, S. Insisiengmay, N. Nakasone et al., Antibiotic resistance conferred by a class I integron and SXT constin in Vibrio cholerae O1 strains isolated in Laos, Antimicrob. Agents Chemother, vol.48, pp.2364-2369, 2004.

M. R. Gillings, M. P. Holley, H. W. Stokes, and A. J. Holmes, Integrons in Xanthomonas: a source of species genome diversity, Proc. Natl Acad. Sci. U.S.A, vol.102, pp.4419-4424, 2005.

A. J. Holmes, M. R. Gillings, B. S. Nield, B. C. Mabbutt, K. M. Nevalainen et al., The gene cassette metagenome is a basic resource for bacterial genome evolution, Environ. Microbiol, vol.5, pp.383-394, 2003.

A. Moura, I. Henriques, R. Ribeiro, and A. Correia, Prevalence and characterization of integrons from bacteria isolated from a slaughterhouse wastewater treatment plant, J. Antimicrobial Chemother, vol.60, pp.1243-1250, 2007.

T. Stalder, O. Barraud, M. Casellas, C. Dagot, and M. C. Ploy, Integron involvement in environmental spread of antibiotic resistance, Front. Microbiol, vol.3, p.119, 2012.

M. R. Gillings, W. H. Gaze, A. Pruden, K. Smalla, J. M. Tiedje et al., Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution, ISME J, vol.9, pp.1269-1279, 2015.

G. Tsafnat, E. Coiera, S. R. Partridge, J. Schaeffer, and J. R. Iredell, Context-driven discovery of gene cassettes in mobile integrons using a computational grammar, BMC Bioinformatics, vol.10, p.281, 2009.

S. R. Eddy and R. Durbin, RNA sequence analysis using covariance models, Nucleic Acids Res, vol.22, pp.2079-2088, 1994.

E. P. Nawrocki and S. R. Eddy, Infernal 1.1: 100-fold faster RNA homology searches, Bioinformatics, vol.29, pp.2933-2935, 2013.

B. Neron, H. Menager, C. Maufrais, N. Joly, J. Maupetit et al., Mobyle: a new full web bioinformatics framework, vol.25, pp.3005-3011, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01287963

A. Moura, M. Soares, C. Pereira, N. Leitao, I. Henriques et al., INTEGRALL: a database and search engine for integrons, integrases and gene cassettes, Bioinformatics, vol.25, pp.1096-1098, 2009.

G. Cambray, N. Sanchez-alberola, S. Campoy, E. Guerin, S. Da-re et al., , 2011.

, Nucleic Acids Research, vol.44, issue.10, 2016.

, Prevalence of SOS-mediated control of integron integrase expression as an adaptive trait of chromosomal and mobile integrons, Mobile DNA, vol.2, p.6

R. C. Edgar, Search and clustering orders of magnitude faster than BLAST, Bioinformatics, vol.26, pp.2460-2461, 2010.

K. Katoh and D. M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol, vol.30, pp.772-780, 2013.

S. R. Eddy, Accelerated proile HMM searches, PLoS Comput. Biol, vol.7, p.1002195, 2011.

M. K. Gibson, K. J. Forsberg, and G. Dantas, Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology, ISME J, vol.9, pp.207-216, 2015.

R. D. Finn, J. Tate, J. Mistry, P. C. Coggill, S. J. Sammut et al., The Pfam protein families database, Nucleic Acids Res, vol.36, pp.281-288, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01294685

P. J. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox et al., Biopython: freely available Python tools for computational molecular biology and bioinformatics, vol.25, pp.1422-1423, 2009.

D. Hyatt, G. L. Chen, P. F. Locascio, M. L. Land, F. W. Larimer et al., Prodigal: prokaryotic gene recognition and translation initiation site identiication, BMC Bioinformatics, vol.11, p.119, 2010.

L. Bissonnette and P. H. Roy, Characterization of In0 of Pseudomonas aeruginosa plasmid pVS1, an ancestor of integrons of multiresistance plasmids and transposons of gram-negative bacteria, J. Bacteriol, vol.174, pp.1248-1257, 1992.

M. Kearse, R. Moir, A. Wilson, S. Stones-havas, M. Cheung et al., Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, vol.28, pp.1647-1649, 2012.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.

A. Criscuolo and S. Gribaldo, BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments, BMC Evol. Biol, vol.10, p.210, 2010.

L. T. Nguyen, H. A. Schmidt, A. Von-haeseler, and B. Q. Minh, IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol, vol.32, pp.268-274, 2015.

M. Touchon, J. Cury, E. Yoon, L. Krizova, G. C. Cerqueira et al., The Genomic Diversiication of the Whole Acinetobacter Genus: Origins, Mechanisms, and Consequences, Genome Biol. Evol, vol.6, pp.2866-2882, 2014.

S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

V. Miele, S. Penel, and L. Duret, Ultra-fast sequence clustering from similarity networks with SiLiX, BMC Bioinformatics, vol.12, p.116, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00698365

B. M. Lee, Y. J. Park, D. S. Park, H. W. Kang, J. G. Kim et al., The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice, Nucleic Acids Res, vol.33, pp.577-586, 2005.

P. Siguier, J. Perochon, L. Lestrade, J. Mahillon, and M. Chandler, ISinder: the reference centre for bacterial insertion sequences, Nucleic Acids Res, vol.34, pp.32-36, 2006.

M. Touchon and E. P. Rocha, Causes of insertion sequences abundance in prokaryotic genomes, Mol. Biol. Evol, vol.24, pp.969-981, 2007.

H. J. Brown, H. W. Stokes, and R. M. Hall, The integrons In0, In2, and In5 are defective transposon derivatives, J. Bacteriol, vol.178, pp.4429-4437, 1996.

G. Cambray, A. M. Guerout, and D. Mazel, Annu. Rev. Genet, vol.44, pp.141-166, 2010.

H. Segal, M. Victoria-francia, J. M. Garcia-lobo, and G. Elisha, Reconstruction of an active integron recombination site after integration of a gene cassette at a secondary site, Antimicrob. Agents Chemother, vol.43, pp.2538-2541, 1999.

F. J. Silva, A. Latorre, and A. Moya, Why are the genomes of endosymbiotic bacteria so stable?, Trends Genet, vol.19, pp.176-180, 2003.

B. Canback, I. Tamas, and S. G. Andersson, A phylogenomic study of endosymbiotic bacteria, Mol. Biol. Evol, vol.21, pp.1110-1122, 2004.

J. P. Mccutcheon and N. A. Moran, Extreme genome reduction in symbiotic bacteria, Nat. Rev. Microbiol, vol.10, pp.13-26, 2012.

H. Ochman, J. G. Lawrence, and E. A. Groisman, Lateral gene transfer and the nature of bacterial innovation, Nature, vol.405, pp.299-304, 2000.

O. X. Cordero and P. Hogeweg, The impact of long-distance horizontal gene transfer on prokaryotic genome size, Proc. Natl Acad. Sci. U.S.A, vol.106, pp.21748-21753, 2009.

D. A. Baltrus, Exploring the costs of horizontal gene transfer, Trends Ecol. Evol, vol.28, pp.489-495, 2013.

P. Salah, M. Bisaglia, P. Aliprandi, M. Uzan, C. Sizun et al., Probing the relationship between Gram-negative and Gram-positive S1 proteins by sequence analysis, Nucleic Acids Res, vol.37, pp.5578-5588, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00469655

P. Mazodier and J. Davies, Gene transfer between distantly related bacteria, Annu. Rev. Genet, vol.25, pp.147-171, 1991.
DOI : 10.1146/annurev.genet.25.1.147

T. Kloesges, O. Popa, W. Martin, and T. Dagan, Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths, Mol. Biol. Evol, vol.28, pp.1057-1074, 2011.

S. Nandi, J. J. Maurer, C. Hofacre, and A. O. Summers, Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter, Proc. Natl Acad. Sci. U.S.A, vol.101, pp.7118-7122, 2004.

F. Le-roux, M. Zouine, N. Chakroun, J. Binesse, D. Saulnier et al., Genome sequence of Vibrio splendidus: an abundant planctonic marine species with a large genotypic diversity, Environ. Microbiol, vol.11, pp.1959-1970, 2009.

A. M. Gestal, E. F. Liew, and N. V. Coleman, Natural transformation with synthetic gene cassettes: new tools for integron research and biotechnology, Microbiology, vol.157, pp.3349-3360, 2011.

G. E. Crooks, G. Hon, J. M. Chandonia, and S. E. Brenner, WebLogo: a sequence logo generator, Genome Res, vol.14, pp.1188-1190, 2004.

H. W. Stokes and R. M. Hall, A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons, 1989.

, Mol Microbiol, vol.3, pp.1669-1683

A. C. Fluit and F. J. Schmitz, Resistance integrons and super-integrons, Clin Microbiol Infect, vol.10, pp.272-288, 2004.

D. Mazel, Integrons: agents of bacterial evolution, Nat Rev Microbiol, vol.4, pp.608-620, 2006.

Y. Boucher, O. X. Cordero, A. Takemura, D. E. Hunt, K. Schliep et al., Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio cholerae populations, vol.2, pp.335-345, 2011.

G. Cambray, A. M. Guerout, and D. Mazel, Integrons. Annu Rev Genet, vol.44, pp.141-166, 2010.

R. A. Rapa and M. Labbate, The function of integron-associated gene cassettes in Vibrio species: the tip of the iceberg, Front Microbiol, vol.4, p.385, 2013.

J. A. Escudero, C. Loot, A. Nivina, and D. Mazel, The integron: adaptation on demand, Microbiol Spectr, vol.3, pp.3-0019, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01423322

S. R. Partridge, G. Tsafnat, E. Coiera, and J. R. Iredell, Gene cassettes and cassette arrays in mobile resistance integrons, FEMS Microbiol Rev, vol.33, pp.757-784, 2009.

T. Naas, Y. Mikami, T. Imai, L. Poirel, and P. Nordmann, Characterization of In53, a class 1 plasmid-and composite transposon-located integron of Escherichia coli which carries an unusual array of gene cassettes, J Bacteriol, vol.183, pp.235-249, 2001.

J. Cury, T. Jové, M. Touchon, B. Néron, and E. P. Rocha, Identification and analysis of integrons and cassette arrays in bacterial genomes, Nucleic Acids Res, vol.44, pp.4539-4550, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01374968

G. D. Recchia and R. M. Hall, Gene cassettes: a new class of mobile element, Microbiology, vol.141, pp.3015-3027, 1995.

M. V. Francia, J. C. Zabala, F. De-la-cruz, and J. M. Garcia-lobo, The IntI1 integron integrase preferentially binds single-stranded DNA of the attC site, J Bacteriol, vol.181, pp.6844-6849, 1999.

C. Johansson, M. Kamali-moghaddam, and L. Sundström, Integron integrase binds to bulged hairpin DNA, Nucleic Acids Res, vol.32, pp.4033-4043, 2004.

M. Bouvier, G. Demarre, and D. Mazel, Integron cassette insertion: a recombination process involving a folded single strand substrate, EMBO J, vol.24, pp.4356-4367, 2005.

J. A. Escudero, C. Loot, V. Parissi, A. Nivina, C. Bouchier et al., Unmasking the ancestral activity of integron integrases reveals a smooth evolutionary transition during functional innovation, Nat Commun, vol.7, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01292328

M. Bouvier, M. Ducos-galand, C. Loot, D. Bikard, and D. Mazel, Structural features of single-stranded integron cassette attC sites and their role in strand selection, PLoS Genet, vol.5, 2009.

A. Nivina, J. A. Escudero, C. Vit, D. Mazel, and C. Loot, Efficiency of integron cassette insertion in correct orientation is ensured by the interplay of the three unpaired features of attC recombination sites, Nucleic Acids Res, vol.44, pp.7792-7803, 2016.

C. Frumerie, M. Ducos-galand, D. N. Gopaul, and D. Mazel, The relaxed requirements of the integron cleavage site allow predictable changes in integron target specificity, Nucleic Acids Res, vol.38, pp.559-569, 2010.

H. W. Stokes, D. B. O'gorman, G. D. Recchia, M. Parsekhian, and R. M. Hall, Structure and function of 59-base element recombination sites associated with mobile gene cassettes, Mol Microbiol, vol.26, pp.731-745, 1997.

D. Mazel, B. Dychinco, W. Va, and J. Davies, A distinctive class of integron in the Vibrio cholerae genome, Science, vol.280, pp.605-608, 1998.

C. Loot, M. Ducos-galand, J. A. Escudero, M. Bouvier, and D. Mazel, Replicative resolution of integron cassette insertion, Nucleic Acids Res, vol.40, pp.8361-8370, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01700782

C. M. Collis and R. M. Hall, Expression of antibiotic resistance genes in the integrated cassettes of integrons, Antimicrob Agents Chemother, vol.39, pp.155-162, 1995.

Z. Baharoglu, D. Bikard, and D. Mazel, Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation, PLoS Genet, vol.6, 2010.

D. Hocquet, C. Llanes, M. Thouverez, H. D. Kulasekara, X. Bertrand et al., Evidence for induction of integron-based antibiotic resistance by the SOS response in a clinical setting, PLoS Pathog, vol.8, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00802793

O. Barraud and M. C. Ploy, Diversity of class 1 integron gene cassette rearrangements selected under antibiotic pressure, J Bacteriol, vol.197, pp.2171-2178, 2015.

E. Guerin, G. Cambray, N. Sanchez-alberola, S. Campoy, I. Erill et al., The SOS response controls integron recombination, Science, vol.324, p.1034, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00409031

G. Cambray, N. Sanchez-alberola, S. Campoy, E. Guerin, S. Da-re et al., Prevalence of SOSmediated control of integron integrase expression as an adaptive trait of chromosomal and mobile integrons, Mob DNA, vol.2, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00598347

Z. Baharoglu, E. Krin, and D. Mazel, Connecting environment and genome plasticity in the characterization of transformation-induced SOS regulation and carbon catabolite control of the Vibrio cholerae integron integrase, J Bacteriol, vol.194, pp.1659-1667, 2012.

D. Bikard, C. Loot, Z. Baharoglu, and D. Mazel, Folded DNA in action: hairpin formation and biological functions in prokaryotes, Microbiol Mol Biol Rev, vol.74, pp.570-588, 2010.

C. Loot, V. Parissi, J. A. Escudero, J. Amarir-bouhram, D. Bikard et al., The integron integrase efficiently prevents the melting effect of Escherichia coli single-stranded DNA-binding protein on folded attC sites, J Bacteriol, vol.196, pp.762-771, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01101080

C. Loot, D. Bikard, A. Rachlin, and D. Mazel, Cellular pathways controlling integron cassette site folding, EMBO J, vol.29, pp.2623-2634, 2010.

J. Wolfson and D. Dressler, Regions of single-stranded DNA in the growing points of replicating bacteriophage T7 chromosomes, Proc Natl Acad, vol.69, pp.2682-2686, 1972.

A. Moura, M. Soares, C. Pereira, N. Leitão, I. Henriques et al., INTEGRALL: a database and search engine for integrons, integrases and gene cassettes, Bioinformatics, vol.25, pp.1096-1098, 2009.

, Cassette Excision in Integrons, vol.8, pp.2296-2312, 2017.

S. Sophie, B. Abby, H. Néron, M. Ménager, E. Touchon et al., MacSyFinder: A Program to Mine Genomes for Molecular Systems with an Application to CRISPR-Cas Systems, PloS one, vol.9, issue.10, p.110726, 2014.

E. P. Abraham and E. Chain, An Enzyme from Bacteria able to Destroy Penicillin, Nature, vol.3713, p.837, 1940.

H. W. Ackermann and D. Prangishvili, Prokaryote viruses studied by electron microscopy, Archives of Virology, vol.157, issue.10, pp.1843-1849, 2012.

T. Akiba, K. Koyoma, Y. Ishiki, S. Kimura, and T. Fukushima, On the Mechanism of the development of multiple drug resistant clones of Shigella, Japan J. Microb, vol.4, issue.2, 1960.

B. Alipanahi, A. Delong, T. Matthew, B. J. Weirauch, and . Frey, Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning, Nat Biotechnol, vol.33, issue.8, pp.831-838, 2015.

F. Stephen, T. L. Altschul, A. A. Madden, J. Schäffer, Z. Zhang et al., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.3389-3402, 1997.

C. Angermueller, T. Pärnamaa, L. Parts, and O. Stegle, Deep learning for computational biology, Mol Syst Biol, vol.12, 2016.

J. and A. Harris, Pearl And Jennings On Assortative Conjugation In The Protozoa, Science, vol.35, issue.906, pp.740-745, 1912.

T. Oswald, C. M. Avery, M. Macleod, and . Mccarty, Studies On The Chemical Nature Of The Substance Inducing Transformation Of Pneumococcal Types, Journal of Experimental Medicine, vol.79, issue.2, pp.137-158, 1944.

P. Ayoubi, M. Kilic, and . Vijayakumar, Tn5253, the pneumococcal omega (cat tet) BM6001 element, is a composite structure of two conjugative transposons, Tn5251 and Tn5252, J. Bacteriol, vol.173, issue.5, pp.1617-1622, 1991.

L. Timothy, M. Bailey, . Boden, A. Fabian, M. Buske et al., MEME SUITE: tools for motif discovery and searching, Nucleic acids research, vol.37, pp.202-210, 2009.

X. Bellanger, S. Payot, N. Leblond-bourget, and G. Guédon, Conjugative and mobilizable genomic islands in bacteria: evolution and diversity, FEMS Microbiology Reviews, vol.38, pp.720-760, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01474898

J. Andrea, S. Berman, J. L. Kamtekar, . Goodman, M. José et al., Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases, The EMBO Journal, vol.26, issue.14, pp.3494-3505, 2007.

D. Bikard, S. Julié-galau, G. Cambray, and D. Mazel, The synthetic integron: an in vivo genetic shuffling device, Nucleic acids research, vol.38, issue.15, p.153, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01876815

L. Bissonnette and P. H. Roy, Characterization of In0 of Pseudomonas aeruginosa plasmid pVS1, an ancestor of integrons of multiresistance plasmids and transposons of gram-negative bacteria, Journal of Bacteriology, vol.174, issue.4, pp.1248-1257, 1992.

G. Blakely, . Colloms, . May, D. Burke, and . Sherratt, Escherichia coli XerC recombinase is required for chromosomal segregation at cell division, The New biologist, vol.3, issue.8, pp.789-98, 1991.

L. Bobay, M. Touchon, and E. P. Rocha, Pervasive domestication of defective prophages by bacteria, Proceedings of the National Academy of Sciences, vol.111, issue.33, pp.12127-12132, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01374961

L. Bobay, E. Rocha, and M. Touchon, The adaptation of temperate bacteriophages to their host genomes, Molecular biology and evolution, vol.30, issue.4, pp.737-51, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01374945

Y. Boucher, M. Labbate, J. E. Koenig, and H. Stokes, Integrons: mobilizable platforms that promote genetic diversity in bacteria, Trends in microbiology, vol.15, issue.7, pp.301-310, 2007.

M. Bouvier, G. Demarre, and D. Mazel, Integron cassette insertion: a recombination process involving a folded single strand substrate, The EMBO journal, vol.24, issue.24, pp.4356-67, 2005.

S. E-fidelma-boyd, M. Almagro-moreno, and . Parent, Genomic islands are dynamic, ancient integrative elements in bacterial evolution, Trends in microbiology, vol.17, issue.2, pp.47-53, 2009.

D. J. Brenner, G. R. Fanning, G. V. Miklos, and A. G. Steigerwalt, Polynucleotide Sequence Relatedness Among Shigella Species, International Journal of Systematic Bacteriology, vol.23, issue.1, pp.1-7, 1973.

D. J. Brenner, A. G. Steigerwalt, H. G. Wathen, R. J. Gross, and B. Rowe, Confirmation of aerogenic strains of Shigella boydii 13 and further study of Shigella serotypes by DNA relatedness, Journal of Clinical Microbiology, vol.16, issue.3, pp.432-436, 1982.

M. Brochet, C. Rusniok, E. Couvé, S. Dramsi, C. Poyart et al., Shaping a bacterial genome by large chromosomal replacements, the evolutionary history of <i>Streptococcus agalactiae</i>, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.15961-15967, 2008.

V. Burrus, G. Pavlovic, B. Decaris, and G. Guédon, Conjugative transposons : the tip of the iceberg, Molecular Microbiology, vol.46, pp.601-610, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01659089

G. Cambray, A. Guerout, and D. Mazel, Integrons. Annual review of genetics, vol.44, pp.141-66, 2010.

A. Campbell, The future of bacteriophage biology, Nature reviews. Genetics, vol.4, issue.6, pp.471-477, 2003.

N. Carraro and V. Burrus, The dualistic nature of integrative and conjugative elements, Mobile Genetic Elements, vol.5, issue.6, pp.98-102, 2015.

N. Carraro, D. Poulin, and V. Burrus, Replication and Active Partition of Integrative and Conjugative Elements (ICEs) of the SXT/R391 Family: The Line between ICEs and Conjugative Plasmids Is Getting Thinner, PLOS Genetics, vol.11, issue.6, p.1005298, 2015.

A. Somdatta-chatterjee, S. Mondal, S. Mitra, and . Basu, Acinetobacter baumannii transfers the bla NDM-1 gene via outer membrane vesicles, Journal of Antimicrobial Chemotherapy, vol.72, pp.2201-2207, 2017.

N. Chomsky, Transformational Analysis, 1955.

N. Chomsky, Three Models For the Description of Language, vol.2, pp.113-124, 1956.

N. Chomsky, On certain formal properties of grammars, Information and Control, vol.2, issue.2, pp.137-167, 1959.

G. Anthony-rm-coates, Y. Halls, and . Hu, Novel classes of antibiotics or more of the same?, British Journal of Pharmacology, vol.163, issue.1, pp.184-194, 2011.

T. Coenye and P. Vandamme, Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes, FEMS Microbiology Letters, vol.228, issue.1, pp.45-49, 2003.

S. N. Cohen, A. C. Chang, H. W. Boyer, and R. B. Helling, Construction of Biologically Functional Bacterial Plasmids In Vitro, Proceedings of the National Academy of Sciences, vol.70, issue.11, pp.3240-3244, 1973.

M. Colomer-lluch, J. Jofre, and M. Muniesa, Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples, PLoS ONE, vol.6, issue.3, 2011.

S. Cooper and C. E. Helmstetter, Chromosome Replication and the division cycle of Escherichia coli B/r, Journal of Molecular Biology, vol.31, pp.519-540, 1968.

F. Tim, J. A. Cooper, and . Heinemann, Postsegregational killing does not increase plasmid stability but acts to mediate the exclusion of competing plasmids, Proc Natl Acad Sci U S A, vol.97, issue.23, pp.12643-12648, 2000.

F. Tim, T. Cooper, O. Paixã, and J. A. Heinemann, Within-host competition selects for plasmidencoded toxin -antitoxin systems, Proc. R. Soc. B, vol.277, pp.3149-3155, 2010.

O. X. Cordero and P. Hogeweg, The impact of long-distance horizontal gene transfer on prokaryotic genome size, Proceedings of the National Academy of Sciences, vol.106, issue.51, pp.21748-21753, 2009.

H. C. Francis, L. Crick, S. Barnett, R. J. Brenner, and . Watts-tobin, General Nature Of The Genetic Code For Proteins, Nature, vol.4809, 1961.

. L-c-crossman, Plasmid replicons of Rhizobium. Biochemical Society Transactions, vol.33, issue.1, pp.157-158, 2005.

J. Nicholas, . Croucher, R. Simon, L. Harris, J. Barquist et al., A High-Resolution View of Genome-Wide Pneumococcal Transformation, PLoS Pathog, vol.8, issue.6, 2012.

N. J. Croucher, R. Mostowy, C. Wymant, P. Turner, S. D. Bentley et al., Horizontal DNA Transfer Mechanisms of Bacteria as Weapons of Intragenomic Conflict, PLOS Biology, vol.14, issue.3, p.1002394, 2016.

L. Czaplewski, R. Bax, M. Clokie, M. Dawson, H. Fairhead et al., Alternatives to antibiotics -a pipeline portfolio review. The Lancet Infectious Diseases, vol.16, pp.239-251, 2016.

J. Davies, Inactivation of antibiotics and the dissemination of resistance genes, Science, vol.264, issue.5157, pp.375-382, 1994.

L. Arthur, D. Delcher, S. Harmon, O. Kasif, S. L. White et al., Improved microbial gene identification with GLIMMER, Nucleic Acids Research, vol.27, issue.23, pp.4636-4641, 1999.

M. Keith, T. Derbyshire, and . Gray, Distributive Conjugal Transfer : New Insights into Horizontal Gene Transfer and Genetic Exchange in Mycobacteria, Microbiology Spectrum, vol.2, issue.1, pp.1-19, 2014.

T. Dimitriu, C. Lotton, J. Bénard-capelle, D. Misevic, P. Sam et al., Genetic information transfer promotes cooperation in bacteria, Proceedings of the National Academy of Sciences of the United States of America, vol.111, pp.11103-11111, 2014.

M. S. Dodd, D. Papineau, T. Grenne, J. F. Slack, M. Rittner et al., Evidence for early life in Earth's oldest hydrothermal vent precipitates, Nature, vol.543, issue.7643, pp.60-64, 2017.

S. Domingues, G. Silva, K. Kaare-magne-nielsen, and . Nielsen, Global dissemination patterns of common gene cassette arrays in class 1 integrons, Microbiology, vol.131, pp.1313-1337, 2015.

E. D. Frisoni, M. S. Marenda, E. Sagné, L. X. Nouvel, R. Guérillot et al., ICEA of Mycoplasma agalactiae: A new family of self-transmissible integrative elements that confers conjugative properties to the recipient strain, Molecular Microbiology, vol.89, issue.6, pp.1226-1239, 2013.

P. Doty, J. Boedtker, . Fresco, M. Haselkorn, and . Litt, Secondary structure in ribonucleic acids, Proc Natl Acad Sci U S A, vol.45, pp.482-499, 1959.

F. Drouin, J. Mélançon, and P. H. Roy, The intI-like tyrosine recombinase of Shewanella oneidensis is active as an integron integrase, Journal of Bacteriology, vol.184, issue.6, pp.1811-1815, 2002.

P. Gyanendra, G. Dubey, M. Babu, A. Mohan, E. Dubrovsky et al., Architecture and Characteristics of Bacterial Nanotubes. Developmental Cell, vol.36, pp.453-461, 2016.

P. Gyanendra, S. Dubey, and . Ben-yehuda, Intercellular Nanotubes Mediate Bacterial Communication, Cell, vol.144, pp.590-600, 2011.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence analyis. Cambridge University press, 1998.

J. Ebel-tsipis, D. Botstein, and M. S. Fox, Generalized transduction by phage P22 in Salmonella typhimurium, Journal of Molecular Biology, vol.71, issue.2, pp.433-448, 1972.

S. R. Eddy, Hidden Markov models, Current Opinion in Structural Biology, vol.6, issue.9, pp.755-763, 1996.

R. Sean and . Eddy, Profile hidden Markov models, Bioinformatics Review, vol.14, issue.9, pp.755-763, 1998.

S. R. Eddy, A probabilistic model of local sequence alignment that simplifies statistical significance estimation, PLoS Computational Biology, vol.4, issue.5, 2008.

S. R. Eddy, Accelerated Profile HMM Searches, PLoS computational biology, vol.7, issue.10, p.1002195, 2011.

F. Enault, A. Briet, L. Bouteille, S. Roux, B. Matthew et al., Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses, The ISME Journal, vol.11, issue.1, pp.237-247, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01557484

P. Escobar-paamo, C. Giudicelli, C. Parsot, and E. Denamur, The Evolutionary History of Shigella and Enteroinvasive Escherichia coli Revised, Journal of molecular evolution2, vol.57, pp.140-148, 2003.

J. Antonio-escudero, Céline Loot, Aleksandra Nivina, and Didier Mazel, vol.3, pp.1-22, 2015.

J. Edward and . Feil, Small change: keeping pace with microevolution, Nature reviews. Microbiology, vol.2, issue.6, pp.483-495, 2004.

A. Fleming, Penicillin, Nobel Lecture, 1945.

A. , C. Frank, C. M. Alsmark, M. Thollesson, G. E. Siv et al., Functional Divergence and Horizontal Transfer of Type IV Secretion Systems, Molecular Biology and Evolution, vol.22, issue.5, pp.1325-1336, 2005.

A. E. Franke and D. B. Clewell, Evidence for conjugal transfer of a Streptococcus faecalis transposon (Tn916) from a chromosomal site in the absence of plasmid DNA, Cold Spring Harbor Symposia on Quantitative Biology, vol.45, issue.1, pp.77-80, 1981.

R. Fronzes, P. J. Christie, and G. Waksman, The structural biology of type IV secretion systems, Nature Reviews Microbiology, vol.7, issue.10, pp.703-714, 2009.

L. Frost, Conjugation, Bacterial. Encyclopedia of Microbiology, pp.517-531, 2009.

S. Laura, R. Frost, A. O. Leplae, A. Summers, and . Toussaint, Mobile genetic elements: the agents of open source evolution, Nature reviews. Microbiology, vol.3, issue.9, pp.722-754, 2005.

L. José, E. García, and . Díaz, Plasmids as Tools for Containment, Microbiology Spectrum, vol.2, issue.5, 2014.

C. Genetello, M. Van-larebeke, . Holsters, . De-picker, J. Van-montagu et al., Ti plasmid of Agrobacterium as conjugative plasmids, Nature, vol.269, pp.585-586, 1977.

K. Gerdes, P. Alexander, T. Gultyaev, K. Franch, . Pedersen et al., Antisense Rna-Regulated Programmed Cell Death. Annual Review of Genetics, vol.31, pp.1-31, 1997.

M. Gillings, Y. Boucher, M. Labbate, A. Holmes, S. Krishnan et al., The evolution of class 1 integrons and the rise of antibiotic resistance, Journal of Bacteriology, vol.190, issue.14, pp.5095-5100, 2008.

. Michael-r-gillings, Integrons: past, present, and future. Microbiology and molecular biology reviews, vol.78, pp.257-77, 2014.

M. R. Gillings, Lateral gene transfer, bacterial genome evolution, and the Anthropocene, Annals of the New York Academy of Sciences, vol.1389, issue.1, pp.1-17, 2016.

M. R. Gillings, Class 1 integrons as invasive species, Current Opinion in Microbiology, vol.38, pp.10-15, 2017.

M. P. Michael-r-gillings, H. Holley, A. Stokes, and . Holmes, Integrons in Xanthomonas : A source of species genome diversity, Proceedings of the National Academy of Sciences, vol.102, issue.12, pp.4419-4424, 2005.

J. Stephen, E. S. Gould, and . Vrba, Exaptation-a Missing Term in the, Science of Form. Paleobiology, vol.8, issue.1, pp.4-15, 1982.

F. Mb-griffith, The significance of pneumococcal types, Journ. of Hyg, vol.XXVII, issue.2, 1928.

S. Griffiths-jones, S. Moxon, M. Marshall, A. Khanna, R. Sean et al., Rfam: annotating non-coding RNAs in complete genomes, Nucleic acids research, vol.33, pp.121-125, 2005.

D. Nigel, K. L. Grindley, P. Whiteson, and . Rice, Mechanisms of Site-Specific Recombination

, Annu. Rev. Biochem, vol.75, pp.567-605, 2006.

A. Eduardo, H. Groisman, and . Ochman, Pathogenicity Islands: Bacterial Evolution in Quantum Leaps, Cell, vol.87, pp.791-794, 1996.

D. Gu, N. Dong, Z. Zheng, D. Lin, M. Huang et al., A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. The Lancet Infectious Diseases, vol.3099, pp.1-10, 2017.

J. Guglielmini, F. De-la, C. , and E. Rocha, Evolution of conjugation and type IV secretion systems, Molecular biology and evolution, vol.30, issue.2, pp.315-346, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01374951

J. Guglielmini, B. Néron, S. Sophie, M. Abby, F. Pilar-garcillán-barcia et al., Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion, Nucleic acids research, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01374962

J. Guglielmini, L. Quintais, M. P. Garcillán-barcia, F. De-la, C. et al., The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation, PLoS genetics, vol.7, issue.8, p.1002222, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00647077

F. Guo, N. Deshmukh, G. Gopaul, and . Duyne, Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse, Nature, vol.384, pp.40-46, 1997.

S. Halary, J. W. Leigh, B. Cheaib, P. Lopez, and E. Bapteste, Network analyses structure genetic diversity in independent genetic worlds, Proceedings of the National Academy of Sciences of the United States of America, vol.107, pp.127-159, 2010.

R. M. Hall, Integrons and gene cassettes: Hotspots of diversity in bacterial genomes, Annals of the New York Academy of Sciences, vol.1267, pp.71-78, 2012.

M. Ruth, H. W. Hall, and . Stokes, Integrons or super integrons ? Microbiology, vol.150, pp.3-4, 2004.

L. Holly, J. P. Hamilton, and . Dillard, Natural transformation of Neisseria gonorrhoeae: From DNA donation to homologous recombination, Molecular Microbiology, vol.59, issue.2, pp.376-385, 2006.

E. Harrison and M. A. Brockhurst, Plasmid-mediated horizontal gene transfer is a coevolutionary process, Trends in microbiology, vol.20, issue.6, pp.262-269, 2012.

W. Peter, . Harrison, P. Ryan, . Lower, K. Nayoung et al., Introducing the bacterial 'chromid': not a chromosome, not a plasmid, Trends in microbiology, vol.18, issue.4, pp.141-149, 2010.

L. Timothy, J. J. Haskett, A. Terpolilli, . Bekuma, W. Graham et al., Assembly and transfer of tripartite integrative and conjugative genetic elements, Proceedings of the National Academy of Sciences of the United States of America, p.1613358113, 2016.

W. Hayes, What are episomes and plasmids, Bacterial Episomes and Plasmids, pp.4-8, 1969.

F. John, J. A. Heidelberg, . Eisen, C. William, R. A. Nelson et al., DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae, Nature, vol.406, issue.6795, pp.477-483, 2000.

L. Ferdi, R. J. Hellweger, J. R. Clegg, C. M. Clark, J. Plugge et al., Advancing microbial sciences by individual-based modelling, Nature Reviews Microbiology, vol.14, issue.7, pp.461-471, 2016.

M. Jennifer, B. L. Henke, and . Bassler, Bacterial social engagements. Trends in Cell Biology, vol.14, issue.11, pp.648-656, 2004.

B. Hochhut, Y. Lotfi, D. Mazel, M. Shah, R. Faruque et al., Molecular Analysis of Antibiotic Resistance Gene Clusters in Vibrio cholerae O139 and O1 SXT Constins, Antimicrobial Agents and Chemotherapy, vol.45, issue.11, pp.2991-3000, 2001.

D. Hofreuter, S. Odenbreit, and R. Haas, Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system, Molecular Microbiology, vol.41, issue.2, pp.379-391, 2001.

A. J. Holmes, M. R. Gillings, B. S. Nield, B. C. Mabbutt, K. M-h-nevalainen et al., The gene cassette metagenome is a basic resource for bacterial genome evolution, Environmental Microbiology, vol.5, issue.5, pp.383-394, 2003.

D. Hyatt, G. Chen, P. F. Locascio, M. L. Land, W. Frank et al., Prodigal: prokaryotic gene recognition and translation initiation site identification, BMC bioinformatics, vol.11, p.119, 2010.

F. Jacob and E. Wollman, Les épisomes, éléments génétiques ajoutés. Comptes rendus hebdomadaires des séances de l'Académie des Sciences, vol.247, pp.154-156, 1958.

K. Rasmus-bugge-jensen and . Gerdes, Programmed cell death in bacteria:proteic plasmid stabilization systems, Mol Microbiol, vol.17, issue.2, pp.205-210, 1995.

M. Christopher, A. D. Johnson, and . Grossman, Integrative and Conjugative Elements (ICEs): What They Do and How They Work, Annual Review of Genetics, vol.49, issue.1, 2015.

C. Johnston, B. Martin, G. Fichant, P. Polard, and J. Claverys, Bacterial transformation: distribution, shared mechanisms and divergent control, Nature Reviews Microbiology, vol.12, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01117850

J. Michael, J. E. Joss, M. Koenig, . Labbate, F. Martin et al., ACID: annotation of cassette and integron data, BMC bioinformatics, vol.10, p.118, 2009.

A. Kerr, Transfer of Virulence between Isolates of Agrobacterium, Nature, vol.223, issue.5211, pp.1175-1176, 1969.

J. Klimentová and J. Stulík, Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria, Microbiological Research, vol.170, pp.1-9, 2015.

I. Konieczny and K. Bury, Aleksandra Wawrzycka, and Katarzyna Wegrzyn. Iterons Plasmids. In Plasmids-Biology and Impact in Biotechnology and Discovery, 2015.

Y. Lacotte, M. Ploy, and S. Raherison, Class 1 integrons are low-cost structures in Escherichia coli, The ISME Journal, vol.1138, pp.1535-1544, 2017.

M. Land, L. Hauser, I. Se-ran-jun, . Nookaew, T. Michael-r-leuze et al., Insights from 20 years of bacterial genome sequencing, Funct Integr Genomics, vol.15, pp.141-161, 2015.

S. Andrew, O. Lang, J. Zhaxybayeva, and . Beatty, Gene transfer agents: phage-like elements of genetic exchange, Nature Reviews Microbiology, vol.10, 2012.

C. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald et al., Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment, Science, vol.262, issue.5131, pp.208-214, 1993.

J. Lederberg and E. Tatum, Gene recombination in Escherichia coli, 1946.

, Plasmid, vol.9, pp.1-9, 1998.

A. Catherine-a-lee, A. D. Babic, and . Grossman, Autonomous plasmid-like replication of a conjugative transposon, Molecular microbiology, vol.75, issue.2, pp.268-79, 2010.

J. Lilly and M. Camps, Mechanisms of Theta Plasmid Replication, Plasmids-Biology and Impact in Biotechnology and Discovery, 2015.

D. J. Ma?gorzata-b-?obocka, G. Rose, M. Plunkett, A. Rusin, H. Samojedny et al., Genome of Bacteriophage P1, Journal of Bacteriology, vol.186, issue.21, pp.7032-7068, 2004.

C. Loot, A. Nivina, J. Cury, J. Antonio-escudero, M. Ducos-galand et al., Differences in Integron Cassette Excision Dynamics Shape a Trade-Off between Evolvability and Genetic Capacitance, mBio, vol.8, issue.2, pp.2296-2312, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01689524

M. Lorenz and W. Wackernagel, Bacterial gene transfer by natural genetic transformation in the environment, Microbiol Rev, vol.58, issue.3, pp.563-602, 1994.

Q. Lu, Plasmid Vectors for Gene Cloning and Expression, Plasmid Biology, chapter 27, 2004.

D. Macdonald, G. Demarre, M. Bouvier, D. Mazel, and D. Gopaul, Structural basis for broad DNA-specificity in integron recombination, Nature, vol.440, issue.7088, pp.1157-62, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00140781

J. Mahillon and M. Chandler, Insertion Sequences. Microbiology And Molecular Biology Reviews, vol.62, issue.3, pp.725-774, 1998.

Y. I. Kira-s-makarova, E. V. Wolf, and . Koonin, Comparative genomics of defense systems in archaea and bacteria, Nucleic Acids Research, vol.41, issue.9, 2013.

L. Makart, F. Commans, A. Gillis, and J. Mahillon, Horizontal transfer of chromosomal markers mediated by the large conjugative plasmid pXO16 from Bacillus thuringiensis serovar israelensis, Plasmid, vol.91, pp.76-81, 2017.

H. David, J. Mathews, M. Sabina, D. H. Zuker, and . Turner, Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure, Journal of Molecular Biology, vol.288, issue.5, pp.911-940, 1999.

D. Mazel, B. Dychinco, A. Vera, J. Webb, and . Davies, A Distinctive Class of Integron in the Vibrio cholerae Genome, Science, vol.280, issue.5363, pp.605-608, 1998.

P. Mazodier and . Davies, Gene transfer between distantly related bacteria. Annual review of genetics, vol.25, pp.147-171, 1991.

P. John, N. A. Mccutcheon, and . Moran, Extreme genome reduction in symbiotic bacteria, Nature Reviews Microbiology, vol.10, issue.1, pp.13-26, 2011.

J. O. Mcinerney, A. Mcnally, M. J. O&apos;connell, A. T. Lloyd, and A. Eyre-walker, Why prokaryotes have pangenomes, Nature Microbiology, vol.2, issue.4, p.17040, 2017.

D. Medini, C. Donati, H. Tettelin, V. Masignani, and R. Rappuoli, The microbial pan-genome. Current Opinion in Genetics and Development, vol.15, pp.589-594, 2005.

C. , M. , and M. Labbate, Gene cassette transcription in a large integron-associated array, BMC genetics, vol.11, p.82, 2010.

A. Mira, H. Ochman, and N. A. Moran, Deletional bias and the evolution of bacterial genomes, 2001.

A. Moura, M. Soares, C. Pereira, N. Leitão, I. Henriques et al., INTEGRALL: a database and search engine for integrons, integrases and gene cassettes, Bioinformatics, vol.25, issue.8, pp.1096-1104, 2009.

P. Eric, D. L. Nawrocki, S. R. Kolbe, and . Eddy, Infernal 1.0: inference of RNA alignments, vol.25, pp.1335-1342, 2009.

E. P. Nawrocki, Structural RNA Homology Search and Alignment Using Covariance Models, 2009.

M. Nirenberg, M. Leder, . Bernfield, . Brimacombe, . Trupin et al., RNA codewords and protein synthesis, VII. On the general nature of the RNA code, Proceedings of the National Academy of Sciences of the United States of America, vol.53, pp.1161-1169, 1965.

T. Nogueira, D. J. Rankin, M. Touchon, F. Taddei, S. P. Brown et al., Horizontal gene transfer of the secretome drives the evolution of bacterial cooperation and virulence, Current biology, vol.19, issue.20, pp.1683-91, 2009.

A. Norman, L. H. Hansen, and S. J. Sorensen, Conjugative plasmids: vessels of the communal gene pool, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.364, pp.2275-2289, 1527.

H. S-e-nunes-düby, R. Kwon, T. Tirumalai, . Ellenberger, and . Landy, Similarities and differences among 105 members of the Int family of site-specific recombinases, Nucleic acids research, vol.26, issue.2, pp.391-406, 1998.

K. Ochiai, . Yamanaka, O. Kimura, and . Sawada, Inheritance of drug resistance (and its transfer) between Shigella strains and Between Shigella and E. coli strains, Hihon Iji Shimpo, issue.34, p.1959

H. Ochman, J. Lawrence, and E. Groisman, Lateral gene transfer and the nature of bacterial innovation, Nature, vol.405, issue.6784, pp.299-304, 2000.

H. Pedro, M. Oliveira, J. Touchon, E. P. Cury, and . Rocha, The chromosomal organization of horizontal gene transfer in Bacteria, Nature communications, vol.8, issue.841, pp.1-10, 2017.

H. Pedro, M. Oliveira, E. Touchon, and . Rocha, Regulation of genetic flux between bacteria by restriction-modification systems, Proceedings of the National Academy of Sciences of the United States of America, vol.113, pp.5658-63, 2016.

S. P. Otto and Y. Michalakis, The evolution of recombination in changing environments, Trends in Ecology and Evolution, vol.13, issue.4, pp.145-151, 1998.

R. Overbeek, M. Fonstein, G. Souza, N. Pusch, and . Maltsev, The use of gene clusters to infer functional coupling, Proceedings of the National Academy of Sciences of the United States of America, vol.96, pp.2896-901, 1999.

S. Samay-pande, L. Shitut, M. Freund, F. Westermann, C. Bertels et al., Metabolic cross-feeding via intercellular nanotubes among bacteria, Nature Communications, vol.6, issue.6238, 2015.

H. John, M. Paul, and . Sullivan, Marine phage genomics: what have we learned?, Current Opinion in Biotechnology, vol.16, pp.299-307, 2005.

A. Perrin, E. Larsonneur, A. C. Nicholson, D. J. Edwards, K. M. Gundlach et al., Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain, Nature communications, vol.8, p.15483, 2017.

. Morgan-n-price, S. Paramvir, A. P. Dehal, and . Arkin, Horizontal gene transfer and the evolution of transcriptional regulation in Escherichia coli, Genome biology, vol.9, issue.1, p.4, 2008.

M. Ptashne and . Switch, Phage Lambda and Higher Organisms, 1992.

J. Rakonjac, Filamentous Bacteriophages: Biology and Applications. eLS, 2012.

M. Rita-a-rapa, D. Labbate, and . Ceccarelli, The function of integron-associated gene cassettes in Vibrio species: the tip of the iceberg, Frontiers in Microbiology, vol.125, issue.18, pp.15-16, 2013.

H. G-d-recchia, R. Stokes, and . Hall, Characterisation of specific and secondary recombination sites recognised by the integron DNA integrase, Nucleic acids research, vol.22, issue.11, pp.2071-2078, 1994.

R. R. Reed and N. D. Grindley, Transposon-mediated site-specific recombination in vitro: DNA cleavage and protein-DNA linkage at the recombination site, Cell, vol.25, issue.3, pp.721-728, 1981.

P. C. Eduardo and . Rocha, Inference and analysis of the relative stability of bacterial chromosomes, Molecular Biology and Evolution, vol.23, issue.3, pp.513-522, 2006.

K. S. Igor-b-rogozin, J. Makarova, E. Murvai, Y. I. Czabarka, . Wolf et al., Connected gene neighborhoods in prokaryotic genomes, Nucleic acids research, vol.30, issue.10, pp.2212-2223, 2002.

A. Dean-a-rowe-magnus, L. Guerout, P. Biskri, and . Bouige, Comparative Analysis of Superintegrons : Engineering Extensive Genetic Diversity in the Vibrionaceae, Genome research, pp.428-442, 2003.

A. Dean-a-rowe-magnus, P. Guerout, B. Ploncard, J. Dychinco, and . Davies, The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons, Proceedings of the National Academy of Sciences, 2001.

A. José, C. Ruiz-maso, L. Machon, M. Bordanaba-ruiseco, and . Espinosa, Miquel Coll, and Gloria del Solar. Plasmid Rolling-Circle Replication, Plasmids-Biology and Impact in Biotechnology and Discovery, 2015.

J. A. Alvaro-san-millan, D. R. Escudero, D. Gifford, R. Mazel, and . Maclean, Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria, Nature Ecology & Evolution, vol.1, issue.0010, pp.1-8, 2016.

B. Sànchez, P. Bressollier, C. María, and . Urdaci, Exported proteins in probiotic bacteria: adhesion to intestinal surfaces, host immunomodulation and molecular cross-talking with the host, FEMS Immunol Med Microbiol, vol.54, pp.1-17, 2008.

F. Sanger, A. Nicklen, and . Coulson, DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci/ USA, vol.74, pp.5463-5467, 1977.

F. Sanger and H. Tuppy, The amino-acid sequence in the phenylalanyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates, Biochemical Journal, vol.49, issue.4, pp.463-481, 1951.

R. Sender, S. Fuchs, R. Milo, . Lee, S. Ahn et al., Revised Estimates for the Number of Human and Bacteria Cells in the Body, PLOS Biology, vol.14, issue.8, p.1002533, 2016.

S. Sheehan and Y. S. Song, Deep Learning for Population Genetic Inference, PLOS Computational Biology, vol.12, issue.3, p.1004845, 2016.

P. Siguier, E. Gourbeyre, and M. Chandler, Bacterial insertion sequences: their genomic impact and diversity, FEMS Microbiology Review, vol.38, pp.865-891, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01117881

S. Silver, K. Tapan, and . Misra, Plasmid-Mediated Heavy Metal Resistances, Ann. Rev. Microbial, vol.42, pp.717-760, 1988.

C. Smillie, P. Garcillán-barcia, E. Victoria-francia, F. Rocha, and . Cruz, Mobility of plasmids. Microbiology and molecular biology reviews : MMBR, vol.74, pp.434-52, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01374958

F. Erwin, C. O. Smith, and . Townsend, A Plant-Tumor of Bacterial Origin, Nature, vol.25, issue.643, pp.671-673, 1907.

G. R. Smith, Conjugational recombination in E. coli: Myths and mechanisms, Cell, vol.64, issue.1, pp.19-27, 1991.

C. M. Margaret, H. M. Smith, and . Thorpe, Diversity in the serine recombinases. Molecular microbiology, vol.44, pp.299-307, 2002.

M. Shannon, J. Soucy, J. Huang, and . Peter-gogarten, Horizontal gene transfer: building the web of life, vol.16, 2015.

A. Srivatsan, A. Tehranchi, D. M. Macalpine, and J. D. Wang, Co-orientation of replication and transcription preserves genome integrity, PLoS Genetics, vol.6, issue.1, 2010.

O. Stempler, K. Amit, S. Baidya, G. Bhattacharya, M. Babu et al., Interspecies nutrient extraction and toxin delivery between bacteria, Nature Communications, vol.8, issue.315, 2017.

R. Cameron, J. Strachan, and . Davies, The Whys and Wherefores of Antibiotic Resistance. Cold Spring Harbor perspectives in medicine, vol.7, p.25171, 2017.

J. T. Sullivan, J. R. Trzebiatowski, R. W. Cruickshank, J. Gouzy, S. D. Brown et al., Comparative Sequence Analysis of the Symbiosis Island of Mesorhizobium loti Strain R7A, Journal of Bacteriology, vol.184, issue.11, pp.3086-3095, 2002.

E. Tatum and J. Lederberg, Gene recombination in the bacterium Escherichia coli, Journal of Bacteriology, vol.53, pp.673-684, 1947.

M. Evelien, H. Te-poele, L. Bolhuis, and . Dijkhuizen, Actinomycete integrative and conjugative elements, International Journal of General and Molecular Microbiology, vol.94, issue.1, pp.127-143, 2008.

M. Christopher, . Thomas, M. Kaare, and . Nielsen, Mechanisms of, and barriers to, horizontal gene transfer between bacteria, Nature reviews. Microbiology, vol.3, issue.9, pp.711-732, 2005.

M. Touchon, S. Charpentier, O. Clermont, P. Eduardo, E. Rocha et al., CRISPR distribution within the Escherichia coli species is not suggestive of immunityassociated diversifying selection, Journal of Bacteriology, vol.193, issue.10, pp.2460-2467, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01374943

M. Touchon, J. Cury, E. Yoon, L. Krizova, C. Gustavo et al., The Genomic Diversification of the Whole Acinetobacter Genus: Origins, Mechanisms, and Consequences, Genome biology and evolution, vol.6, issue.10, pp.2866-2882, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01132634

M. Touchon, C. Hoede, O. Tenaillon, V. Barbe, S. Baeriswyl et al., Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths, PLoS genetics, vol.5, issue.1, p.1000344, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00390293

M. Touchon, J. A. Moura-de-sousa, and E. Rocha, Embracing the enemy: The diversification of microbial gene repertoires by phage-mediated horizontal gene transfer, Current Opinion in Microbiology, vol.38, pp.66-73, 2017.

M. Touchon and E. Rocha, Coevolution of the organization and structure of prokaryotic genomes, Cold Spring Harbor Perspectives in Biology, vol.8, issue.1, pp.1-18, 2016.

A. Toussaint and C. Merlin, Mobile Elements as a Combination of Functional Modules, Plasmid, vol.47, issue.1, pp.26-35, 2002.

O. H. Todd-j-treangen, T. Ambur, E. Tonjum, and . Rocha, The impact of the neisserial DNA uptake sequences on genome evolution and stability, Genome Biology, vol.9, issue.3, p.60, 2008.

J. Todd, E. Treangen, and . Rocha, Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes, PLoS genetics, vol.7, issue.1, p.1001284, 2011.

G. Tsafnat, E. Coiera, J. Sally-r-partridge, J. R. Schaeffer, and . Iredell, Context-driven discovery of gene cassettes in mobile integrons using a computational grammar, BMC bioinformatics, vol.10, p.281, 2009.

A. M. Turing, The Chemical Basis of Morphogenesis, Philosophical transactions of the Royal Society of London. Series B, Biological sciences, vol.237, pp.37-72, 1952.

F. W. Twort, An Investigation On The Nature Of Ultra-Microscopic Viruses, The Lancet, vol.186, issue.4814, pp.1241-1243, 1915.

A. Van-leewenhoeck, Concerning Little Animals by Him Observed in Rain-Well-Sea and Snow Water

, Also in Water Wherein Pepper Had Lain Infused. Philosophical Transactions, vol.12, pp.821-831, 1677.

S. Vieira, -. Silva, and E. Rocha, The systemic imprint of growth and its uses in ecological (meta)genomics, PLoS genetics, vol.6, issue.1, p.1000808, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00488678

K. Matthew and J. Waldor, Lysogenic Conversion by a Filamentous Phage Encoding Cholera Toxin, Science, vol.272, pp.1910-1914, 1996.

K. A. Wetterstrand, DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP)

. William-b-whitman, C. David, W. Coleman, and . Wiebe, Perspective Prokaryotes: The unseen majority, Proc Natl Acad Sci U S A, vol.95, pp.6578-6583, 1998.

C. R. Woese and G. E. Fox, Phylogenetic structure of the prokaryotic domain: The primary kingdoms, Proceedings of the National Academy of Sciences, vol.74, issue.11, pp.5088-5090, 1977.

E. Wollman, F. Jacob, and W. Hayes, Conjugation and Genetic Recombination in Escherichia coli K-12, Cold Spring Harbor Symposia on Quantitative Biology, vol.21, pp.141-162, 1956.

, World Health Organization. Antimicrobial resistance -Global Report on Surveillance, 2014.

E. Qiu, T. R. Yang, and . Walsh, Toxin-antitoxin systems and their role in disseminating and maintaining antimicrobial resistance, FEMS Microbiology Reviews, vol.187, pp.6094-105, 2017.

D. Norton, J. Zinder, and . Lederberg, project was funded in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Services, under Contract No.:HHSN272200900018C. Literature Cited Ackermann HW, Journal of Bacteriology, vol.64, pp.345-354, 1952.

M. D. Adams, Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii, J Bacteriol, vol.190, pp.8053-8064, 2008.
DOI : 10.1128/jb.00834-08

URL : https://jb.asm.org/content/190/24/8053.full.pdf

S. F. Altschul, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

S. Alvarez-perez, B. Lievens, H. Jacquemyn, and C. M. Herrera, Acinetobacter nectaris sp. nov. and Acinetobacter boissieri sp. nov., isolated from floral nectar of wild Mediterranean insect-pollinated plants, Int J Syst Evol Microbiol, vol.63, pp.1532-1539, 2013.

L. C. Antunes, F. Imperi, A. Carattoli, and P. Visca, Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity, PLoS One, vol.6, p.22674, 2011.

L. C. Antunes, P. Visca, and K. J. Towner, Acinetobacter baumannii: evolution of a global pathogen, vol.71, pp.292-301, 2014.

T. Baba, Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Mol Syst Biol, vol.2, p.8, 2006.

V. Barbe, Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium, Nucleic Acids Res, vol.32, pp.5766-5779, 2004.

R. Barrangou and L. A. Marraffini, CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity, Mol Cell, vol.54, pp.234-244, 2014.
DOI : 10.1016/j.molcel.2014.03.011

URL : https://doi.org/10.1016/j.molcel.2014.03.011

F. U. Battistuzzi and S. B. Hedges, The timetree of life, pp.106-115, 2009.

E. Bergogne-berezin and K. J. Towner, Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features, Clin Microbiol Rev, vol.9, pp.148-165, 1996.

T. Billard-pomares, Characterization of a P1-like bacteriophage encoding an SHV-2 extended-spectrum beta-lactamase from an Escherichia coli strain, Antimicrob Agents Chemother, vol.58, pp.6550-6557, 2014.

L. Bissonnette and P. H. Roy, Characterization of In0 of Pseudomonas aeruginosa plasmid pVS1, an ancestor of integrons of multiresistance plasmids and transposons of gram-negative bacteria, J Bacteriol, vol.174, pp.1248-1257, 1992.

C. Bland, CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats, BMC Bioinformatics, vol.8, p.209, 2007.

L. M. Bobay, E. P. Rocha, and M. Touchon, The adaptation of temperate bacteriophages to their host genomes, Mol Biol Evol, vol.30, pp.737-751, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01374945

P. J. Bouvet and S. Jeanjean, Delineation of new proteolytic genomic species in the genus Acinetobacter, Res Microbiol, vol.140, pp.291-299, 1989.

P. J. Bouvet, S. Jeanjean, J. F. Vieu, and L. Dijkshoorn, Species, biotype, and bacteriophage type determinations compared with cell envelope protein profiles for typing Acinetobacter strains, J Clin Microbiol, vol.28, pp.170-176, 1990.

P. Bouvet and P. Grimont, Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp-nov, Acinetobacter haemolyticus sp-nov, Acinetobacter johnsonii sp-nov, and Acinetobacter junii sp-nov and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii.I n tJS y s t Bacteriol, vol.36, pp.228-240, 1986.

D. ;. Bradley, B. , and Z. Microbiol, Characteristics and function of thick and thin conjugative pili determined by transfer-derepressed plasmids of incompatibility groups I1, I2, I5, vol.130, pp.1489-1502, 1984.

T. C. Bruen, H. Philippe, and D. Bryant, A simple and robust statistical test for detecting the presence of recombination, Genetics, vol.172, pp.2665-2681, 2006.

G. Cambray, Prevalence of SOS-mediated control of integron integrase expression as an adaptive trait of chromosomal and mobile integrons, Mob DNA, vol.2, p.6, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00598347

J. Castresana, Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis, Mol Biol Evol, vol.17, pp.540-552, 2000.

J. Z. Chan, M. R. Halachev, N. J. Loman, C. Constantinidou, and M. J. Pallen, Defining bacterial species in the genomic era: insights from the genus Acinetobacter, BMC Microbiol, vol.12, p.302, 2012.

A. Criscuolo and S. Gribaldo, BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments, BMC Evol Biol, vol.10, p.210, 2010.

T. Dandekar, B. Snel, M. Huynen, and P. Bork, Conservation of gene order: a fingerprint of proteins that physically interact, Trends Biochem Sci, vol.23, pp.324-328, 1998.

V. De-berardinis, A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1, Mol Syst Biol, vol.4, p.174, 2008.

L. Diancourt, V. Passet, A. Nemec, L. Dijkshoorn, and S. Brisse, The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool, PLoS One, vol.5, p.10034, 2010.

X. Didelot and D. Falush, Inference of bacterial microevolution using multilocus sequence data, Genetics, vol.175, pp.1251-1266, 2007.

L. Dijkshoorn, A. Nemec, and H. Seifert, An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii, Nat Rev Microbiol, vol.5, pp.939-951, 2007.

F. Doucet-populaire, P. Trieu-cuot, A. Andremont, and P. Courvalin, Conjugal transfer of plasmid DNA from Enterococcus faecalis to Escherichia coli in digestive tracts of gnotobiotic mice, Antimicrob Agents Chemother, vol.36, pp.502-504, 1992.

S. R. Eddy, Accelerated profile HMM searches, PLoS Comput Biol, vol.7, p.1002195, 2011.
DOI : 10.1371/journal.pcbi.1002195

URL : https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002195&type=printable

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.
DOI : 10.1093/nar/gkh340

URL : http://europepmc.org/articles/pmc390337?pdf=render

D. Encinas, Plasmid conjugation from Proteobacteria as evidence for the origin of xenologous genes in Cyanobacteria, J Bacteriol, vol.196, pp.1551-1559, 2014.

M. Eveillard, M. Kempf, O. Belmonte, H. Pailhories, and J. Ml, Reservoirs of Acinetobacter baumannii outside the hospital and potential involvement in emerging human community-acquired infections, Int J Infect Dis, vol.17, pp.802-805, 2013.

M. E. Falagas, E. A. Karveli, I. Kelesidis, and T. Kelesidis, Community-acquired Acinetobacter infections, Eur J Clin Microbiol Infect Dis, vol.26, pp.857-868, 2007.
DOI : 10.1007/s10096-007-0365-6

D. N. Farrugia, The complete genome and phenome of a community-acquired Acinetobacter baumannii, PLoS One, vol.8, p.58628, 2013.

J. C. Fay and C. I. Wu, Hitchhiking under positive Darwinian selection, Genetics, vol.155, pp.1405-1413, 2000.

M. Fondi, Exploring the evolutionary dynamics of plasmids: the Acinetobacter pan-plasmidome, BMC Evol Biol, vol.10, p.59, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00539447

M. Fondi, The genome sequence of the hydrocarbondegrading Acinetobacter venetianus VE-C3, Res Microbiol, vol.164, pp.439-449, 2013.

P. E. Fournier, Comparative genomics of multidrug resistance in Acinetobacter baumannii, PLoS Genet, vol.2, p.7, 2006.

D. E. Fouts, Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences, Nucleic Acids Res, vol.34, pp.5839-5851, 2006.

R. S. Galhardo, R. P. Rocha, M. V. Marques, and C. F. Menck, An SOS-regulated operon involved in damage-inducible mutagenesis in Caulobacter crescentus, Nucleic Acids Res, vol.33, pp.2603-2614, 2005.

M. P. Garcillan-barcia, M. V. Francia, and F. De-la-cruz, The diversity of conjugative relaxases and its application in plasmid classification, FEMS Microbiol Rev, vol.33, pp.657-687, 2009.

O. Gascuel, New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst Biol, vol.59, pp.307-321, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

U. Gerischer and L. N. Ornston, Dependence of linkage of alleles on their physical distance in natural transformation of Acinetobacter sp. strain ADP1, Arch Microbiol, vol.176, pp.465-469, 2001.

P. Gerner-smidt, Frequency of plasmids in strains of Acinetobacter calcoaceticus, J Hosp Infect, vol.14, pp.23-28, 1989.

F. W. Goldstein, Transferable plasmid-mediated antibiotic resistance in Acinetobacter, Plasmid, vol.10, pp.138-147, 1983.

J. Guglielmini, Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion, Nucleic Acids Res, vol.42, pp.5715-5727, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01374962

J. Guglielmini, L. Quintais, M. P. Garcillan-barcia, F. De-la-cruz, and E. P. Rocha, The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation, PLoS Genet, vol.7, p.1002222, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00647077

C. M. Harding, Acinetobacter baumannii strain M2 produces type IV pili which play a role in natural transformation and twitching motility but not surface-associated motility, MBio, vol.4, pp.360-00313, 2013.

S. R. Harris, Evolution of MRSA during hospital transmission and intercontinental spread, Science, vol.327, pp.469-474, 2010.

Y. Hauck, Diversity of Acinetobacter baumannii in four French military hospitals, as assessed by multiple locus variable number of tandem repeats analysis, PLoS One, vol.7, p.44597, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00734019

K. M. Hujer, Analysis of antibiotic resistance genes in multidrugresistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center, Antimicrob Agents Chemother, vol.50, pp.4114-4123, 2006.

F. Imperi, The genomics of Acinetobacter baumannii: insights into genome plasticity, antimicrobial resistance and pathogenicity, IUBMB life, vol.63, pp.1068-1074, 2011.

M. Juhas, D. W. Crook, and D. W. Hood, Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence, Cell Microbiol, vol.10, pp.2377-2386, 2008.

N. Karah, Species identification and molecular characterization of Acinetobacter spp. blood culture isolates from Norway, J Antimicrob Chemother, vol.66, pp.738-744, 2011.

K. Katoh and H. Toh, Recent developments in the MAFFT multiple sequence alignment program, Brief Bioinform, vol.9, pp.286-298, 2008.

L. Kennemann, Helicobacter pylori genome evolution during human infection, Proc Natl Acad Sci U S A, vol.108, pp.5033-5038, 2011.

K. T. Konstantinidis, A. Ramette, and J. M. Tiedje, The bacterial species definition in the genomic era, Philos Trans R Soc Lond B Biol Sci, vol.361, pp.1929-1940, 2006.

B. Krawczyk, K. Lewandowski, and J. Kur, Comparative studies of the Acinetobacter genus and the species identification method based on the recA sequences, Mol Cell Probes, vol.16, pp.1-11, 2002.

L. Krizova, M. Maixnerova, O. Sedo, and A. Nemec, Acinetobacter bohemicus sp. nov. widespread in natural soil and water ecosystems in the Czech Republic, Syst Appl Microbiol, vol.37, pp.467-473, 2014.

L. Scola, B. Gundi, V. A. Khamis, A. Raoult, and D. , Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species, J Clin Microbiol, vol.44, pp.827-832, 2006.

P. Librado and J. Rozas, DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, vol.25, pp.1451-1452, 2009.

K. S. Makarova, Evolution and classification of the CRISPR-Cas systems, Nat Rev Microbiol, vol.9, pp.467-477, 2011.

D. P. Martin, RDP3: a flexible and fast computer program for analyzing recombination, Bioinformatics, vol.26, pp.2462-2463, 2010.

A. E. Mather, Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts, Science, vol.341, pp.1514-1517, 2013.

P. Mcgann, Amplification of aminoglycoside resistance gene aphA1 in Acinetobacter baumannii results in tobramycin therapy failure, MBio, vol.5, p.915, 2014.

D. Metzgar, Acinetobacter sp.ADP1:anidealmodelorganism for genetic analysis and genome engineering, Nucleic Acids Res, vol.32, pp.5780-5790, 2004.

V. Miele, S. Penel, and L. Duret, Ultra-fast sequence clustering from similarity networks with SiLiX, BMC Bioinformatics, vol.12, p.116, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00698365

F. Miller, The hypervariable region of meningococcal major pilin PilE controls the host cell response via antigenic variation, MBio, vol.5, pp.1024-01013, 2014.

M. Muniesa, M. Colomer-lluch, and J. Jofre, Potential impact of environmental bacteriophages in spreading antibiotic resistance genes, Future Microbiol, vol.8, pp.739-751, 2013.

X. Nassif, Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells, Mol Microbiol, vol.8, pp.719-725, 1993.

A. Nemec, Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens, Int J Syst Evol Microbiol, vol.51, pp.1891-1899, 2001.

A. Nemec, Acinetobacter parvus sp. nov., a small-colonyforming species isolated from human clinical specimens, Int J Syst Evol Microbiol, vol.53, pp.1563-1567, 2003.

A. Nemec, Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans, Int J Syst Evol Microbiol, vol.59, pp.118-124, 2009.

A. Nemec, Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively, Int J Syst Evol Microbiol, vol.60, pp.896-903, 2010.

A. Nemec, Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU), Res Microbiol, vol.162, pp.393-404, 2011.

A. Nemec, M. Musilek, M. Vaneechoute, E. Falsen, and L. Dijkshoorn, Acinetobacter septicus, J Clin Microbiol, vol.46, p.2827, 2008.

K. M. Nielsen, A. M. Bones, and J. D. Van-elsas, Induced natural transformation of Acinetobacter calcoaceticus in soil microcosms, Appl Environ Microbiol, vol.63, pp.3972-3977, 1997.

Y. Nishimura, T. Ino, and H. Iizuka, Acinetobacter radioresistens sp. nov. isolated from cotton and soil, Int J Syst Bacteriol, vol.38, pp.209-211, 1988.
DOI : 10.1099/00207713-38-2-209

URL : http://ijs.microbiologyresearch.org/deliver/fulltext/ijsem/38/2/ijs-38-2-209.pdf?itemId=/content/journal/ijsem/10.1099/00207713-38-2-209&mimeType=pdf&isFastTrackArticle=

M. D. Norton, A. J. Spilkia, and V. G. Godoy, Antibiotic resistance acquired through a DNA damage-inducible response in Acinetobacter baumannii, J Bacteriol, vol.195, pp.1335-1345, 2013.

H. Ochman and N. A. Moran, Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis, Science, vol.292, pp.1096-1099, 2001.

E. Paradis, J. Claude, and K. Strimmer, APE: Analyses of Phylogenetics and Evolution in R language, Bioinformatics, vol.20, pp.289-290, 2004.
URL : https://hal.archives-ouvertes.fr/ird-01887318

A. Y. Peleg, The success of acinetobacter species; genetic, metabolic and virulence attributes, PLoS One, vol.7, p.46984, 2012.

A. Y. Peleg, H. Seifert, and D. L. Paterson, Acinetobacter baumannii: emergence of a successful pathogen, Clin Microbiol Rev, vol.21, pp.538-582, 2008.

B. Perichon, Identification of 50 class D beta-lactamases and 65 Acinetobacter-derived cephalosporinases in Acinetobacter spp, Antimicrob Agents Chemother, vol.58, pp.936-949, 2014.

M. C. Ploy, F. Denis, P. Courvalin, and T. Lambert, Molecular characterization of integrons in Acinetobacter baumannii: description of, 2000.

, Genomic Diversification of Acinetobacter GBE

, a hybrid class 2 integron, Antimicrob Agents Chemother, vol.6, issue.10, pp.2684-2688, 2014.

L. Poirel, S. Figueiredo, V. Cattoir, A. Carattoli, and P. Nordmann, Acinetobacter radioresistens as a silent source of carbapenem resistance for Acinetobacter spp, Antimicrob Agents Chemother, vol.52, pp.1252-1256, 2008.

D. Porstendorfer, O. Gohl, F. Mayer, and B. Averhoff, ComP, a pilin-like protein essential for natural competence in Acinetobacter sp. Strain BD413: regulation, modification, and cellular localization, J Bacteriol, vol.182, pp.3673-3680, 2000.

M. N. Price, P. S. Dehal, and A. P. Arkin, FastTree: computing large minimum evolution trees with profiles instead of a distance matrix, Mol Biol Evol, vol.26, pp.1641-1650, 2009.

K. D. Pruitt, T. Tatusova, and D. R. Maglott, NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins, Nucleic Acids Res, vol.35, pp.61-65, 2007.

. R-core-team, R: a language and environment for statistical computing, R Foundation for Statistical Computing, 2014.

F. A. Rainey, E. Lang, and E. Stackebrandt, The phylogenetic structure of the genus Acinetobacter, FEMS Microbiol Lett, vol.124, pp.349-353, 1994.

M. Richter and R. Rossello-mora, Shifting the genomic gold standard for the prokaryotic species definition, Proc Natl Acad Sci, vol.106, pp.19126-19131, 2009.

A. Robinson, Essential biological processes of an emerging pathogen: DNA replication, transcription, and cell division in Acinetobacter spp, Microbiol Mol Biol Rev, vol.74, pp.273-297, 2010.

E. Rocha, Order and disorder in bacterial genomes, Curr Opin Microbiol, vol.7, pp.519-527, 2004.

E. Rocha, Inference and analysis of the relative stability of bacterial chromosomes, Mol Biol Evol, vol.23, pp.513-522, 2006.

E. Rocha, Comparisons of dN/dS are time-dependent for closely related bacterial genomes, J Theor Biol, vol.239, pp.226-235, 2006.

J. Rodriguez-bano, Nosocomial bacteremia due to an as yet unclassified acinetobacter genomic species 17-like strain, J Clin Microbiol, vol.44, pp.1587-1589, 2006.

J. W. Sahl, Genomic comparison of multi-drug resistant invasive and colonizing Acinetobacter baumannii isolated from diverse human body sites reveals genomic plasticity, BMC Genomics, vol.12, p.291, 2011.

J. W. Sahl, Evolution of a pathogen: a comparative genomics analysis identifies a genetic pathway to pathogenesis in Acinetobacter, PLoS One, vol.8, p.54287, 2013.

G. H. Shen, Isolation and characterization of phikm18p, a novel lytic phage with therapeutic potential against extensively drug resistant Acinetobacter baumannii, PLoS One, vol.7, p.46537, 2012.

A. Smet, OXA-23-producing Acinetobacter species from horses: a public health hazard?, J Antimicrob Chemother, vol.67, pp.3009-3010, 2012.

C. Smillie, M. P. Garcillan-barcia, M. V. Francia, E. P. Rocha, and F. De-la-cruz, Mobility of plasmids. Microbiol Mol Biol Rev, vol.74, pp.434-452, 2010.

M. G. Smith, New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis, Genes Dev, vol.21, pp.601-614, 2007.
DOI : 10.1101/gad.1510307

URL : http://genesdev.cshlp.org/content/21/5/601.full.pdf

B. Snel, P. Bork, and M. A. Huynen, Genome phylogeny based on gene content, Nat Genet, vol.21, pp.108-110, 1999.
DOI : 10.1038/5052

E. S. Snitkin, Genome-wide recombination drives diversification of epidemic strains of Acinetobacter baumannii, Proc Natl Acad Sci, vol.108, pp.13758-13763, 2011.

R. Sorek, C. M. Lawrence, and B. Wiedenheft, CRISPR-mediated adaptive immune systems in bacteria and archaea, Annu Rev Biochem, vol.82, pp.237-266, 2013.

F. Tajima, Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, vol.123, pp.585-595, 1989.

O. Tenaillon, E. Denamur, and I. Matic, Evolutionary significance of stress-induced mutagenesis in bacteria, Trends Microbiol, vol.12, pp.264-270, 2004.

K. Thornton, Recombination and the properties of Tajima's D in the context of approximate-likelihood calculation, Genetics, vol.171, pp.2143-2148, 2005.

I. Tjernberg and J. Ursing, Clinical strains of Acinetobacter classified by DNA-DNA hybridization, APMIS, vol.97, pp.595-605, 1989.

M. Touchon, Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths, PLoS Genet, vol.5, p.1000344, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00390293

M. Touchon and E. P. Rocha, The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella.P L o SO n e5, p.11126, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01374940

K. Towner, J. Dworkin, S. Falkow, E. Rosenberg, and K. H. Schleifer, The Genus Acinetobacter, pp.746-758, 2006.

J. F. Turton, The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii, FEMS Microbiol Lett, vol.258, pp.72-77, 2006.

J. F. Turton, J. Shah, C. Ozongwu, and R. Pike, Incidence of Acinetobacter species other than A. baumannii among clinical isolates of Acinetobacter: evidence for emerging species, J Clin Microbiol, vol.48, pp.1445-1449, 2010.

D. Vallenet, Comparative analysis of Acinetobacters: three genomes for three lifestyles, PLoS One, vol.3, p.1805, 2008.

M. Vaneechoutte, Reclassification of Acinetobacter grimontii Carr et al. 2003 as a later synonym of Acinetobacter junii Bouvet and Grimont, Int J Syst Evol Microbiol, vol.58, pp.937-940, 1986.

I. Vaz-moreira, Acinetobacter rudis sp. nov., isolated from raw milk and raw wastewater, Int J Syst Evol Microbiol, vol.61, pp.2837-2843, 2011.

G. Wilharm, J. Piesker, M. Laue, and E. Skiebe, DNA uptake by the nosocomial pathogen Acinetobacter baumannii occurs during movement along wet surfaces, J Bacteriol, vol.195, pp.4146-4153, 2013.

K. P. Williams, Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies, Nucleic Acids Res, vol.30, pp.866-875, 2002.

K. P. Williams, Phylogeny of gammaproteobacteria, J Bacteriol, vol.192, pp.2305-2314, 2010.

M. S. Wright, New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis, MBio, vol.5, pp.963-00913, 2014.

K. Yamahira, Acinetobacter sp. strain Ths, a novel psychrotolerant and alkalitolerant bacterium that utilizes hydrocarbon, Extremophiles, vol.12, pp.729-734, 2008.

S. Yamamoto, P. J. Bouvet, and S. Harayama, Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA-DNA hybridization, Int J Syst Bacteriol, vol.49, pp.87-95, 1999.

Z. Yang, PAML 4: phylogenetic analysis by maximum likelihood, Mol Biol Evol, vol.24, pp.1586-1591, 2007.

E. J. Yoon, P. Courvalin, and C. Grillot-courvalin, RND-type efflux pumps in multidrug-resistant clinical isolates of Acinetobacter baumannii: major role for AdeABC overexpression and AdeRS mutations, Antimicrob Agents Chemother, vol.57, pp.2989-2995, 2013.

C. Wandersman and P. Delepelaire, Bacterial iron sources: from siderophores to hemophores, Annu. Rev. Microbiol, vol.58, p.611, 2004.

Z. C. Ruhe, D. A. Low, and C. S. Hayes, Bacterial contact-dependent growth inhibition, Trends Microbiol, vol.21, p.230, 2013.

V. Viprey, A. Del-greco, W. Golinowski, W. J. Broughton, and X. Perret, Symbiotic implications of type III protein secretion machinery in Rhizobium, Mol. Microbiol, vol.28, p.1381, 1998.

W. Ma and D. S. Guttman, Evolution of prokaryotic and eukaryotic virulence efectors, Curr. Opin. Plant Biol, vol.11, p.412, 2008.

B. Raymond, Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors, Trends Microbiol, vol.21, p.430, 2013.

S. Bleves, Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons, Int. J. Med. Microbiol, vol.300, p.534, 2010.

R. E. Dalbey and A. Kuhn, Protein traic in Gram-negative bacteria-how exported and secreted proteins ind their way, FEMS Microbiol. Rev, vol.36, p.1023, 2012.

J. H. Chang, D. Desveaux, and A. L. Creason, he ABCs and 123s of bacterial secretion systems in plant pathogenesis, Annu Rev Phytopathol, vol.52, p.317, 2014.

K. Sato, A protein secretion system linked to bacteroidete gliding motility and pathogenesis, Proc. Natl. Acad. Sci. USA, vol.107, p.276, 2010.

M. J. Mcbride and Y. Zhu, Gliding motility and Por secretion system genes are widespread among members of the phylum bacteroidetes, J. Bacteriol, vol.195, p.270, 2013.

M. Desvaux, M. Hebraud, R. Talon, and I. R. Henderson, Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue, Trends Microbiol, vol.17, p.139, 2009.

A. M. Abdallah, Type VII secretion-mycobacteria show the way, Nat. Rev. Microbiol, vol.5, p.883, 2007.

T. T. Tseng, B. M. Tyler, and J. C. Setubal, Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology, BMC Microbiol, vol.9, 2009.

P. J. Planet, S. C. Kachlany, R. Desalle, and D. H. Figurski, Phylogeny of genes for secretion NTPases: identiication of the widespread tadA subfamily and development of a diagnostic key for gene classiication, Proc. Natl. Acad. Sci. USA, vol.98, p.2503, 2001.

T. Minamino and K. Namba, Self-assembly and type III protein export of the bacterial lagellum, J. Mol. Microbiol. Biotechnol, vol.7, p.5, 2004.

V. Pelicic, . Type, and . Pili, Mol. Microbiol, vol.68, p.827, 2008.

C. R. Peabody, Type II protein secretion and its relationship to bacterial type IV pili and archaeal lagella, Microbiology, vol.149, p.3051, 2003.

T. Nogueira, M. Touchon, and E. P. Rocha, Rapid evolution of the sequences and gene repertoires of secreted proteins in bacteria, PLoS ONE, vol.7, p.49403, 2012.

U. Gophna, E. Z. Ron, and D. Graur, Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events, Gene, vol.312, p.151, 2003.

F. Boyer, G. Fichant, J. Berthod, Y. Vandenbrouck, and I. Attree, Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources?, BMC Genomics, vol.10, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02072538

C. P. Ren, he ETT2 gene cluster, encoding a second type III secretion system from Escherichia coli, is present in the majority of strains but has undergone widespread mutational attrition, J. Bacteriol, vol.186, p.3547, 2004.

M. Huynen, B. Snel, W. Lathe, and P. Bork, Predicting protein function by genomic context: quantitative evaluation and qualitative inferences, Genome Res, vol.10, p.1204, 2000.

Y. I. Wolf, I. B. Rogozin, A. S. Kondrashov, and E. V. Koonin, Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context, Genome Res, vol.11, p.356, 2001.

S. S. Abby and E. P. Rocha, he non-lagellar type III secretion system evolved from the bacterial lagellum and diversiied into hostcell adapted systems, PLoS Genet, vol.8, p.1002983, 2012.

S. S. Abby, B. Neron, H. Menager, M. Touchon, E. P. Rocha et al., A Program to Mine Genomes for Molecular Systems with an Application to CRISPR-Cas Systems, PLoS ONE, vol.9, p.110726, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01080418

M. R. Yen, Protein-translocating outer membrane porins of Gram-negative bacteria, Biochim. Biophys. Acta, vol.1562, p.6, 2002.

M. J. Pallen, S. A. Beatson, and C. M. Bailey, Bioinformatics, genomics and evolution of non-lagellar type-III secretion systems: a Darwinian perspective, FEMS Microbiol. Rev, vol.29, p.201, 2005.

N. P. Cianciotto, Type II secretion: a protein secretion system for all seasons, Trends Microbiol, vol.13, p.581, 2005.

M. H. Saier, C. H. Ma, L. Rodgers, D. G. Tamang, and M. R. Yen, Protein secretion and membrane insertion systems in bacteria and eukaryotic organelles, Adv. Appl. Microbiol, vol.65, p.141, 2008.

J. Guglielmini, F. De-la-cruz, and E. P. Rocha, Evolution of conjugation and type IV secretion systems, Mol. Biol. Evol, vol.30, p.315, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01374951

M. Barret, F. Egan, and F. O&apos;gara, Distribution and diversity of bacterial secretion systems across metagenomic datasets, Environmental microbiology reports, vol.5, p.117, 2013.

P. Delepelaire, Type I secretion in gram-negative bacteria, Biochim. Biophys. Acta, vol.1694, p.149, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00020359

P. Bouige, D. Laurent, L. Piloyan, and E. Dassa, Phylogenetic and functional classiication of ATP-binding cassette (ABC) systems, Curr. Protein Pept. Sci, vol.3, p.541, 2002.

E. Dassa and P. Bouige, ABC of ABCS: a phylogenetic and functional classiication of ABC systems in living organisms, Res. Microbiol, vol.152, p.211, 2001.

, Scientific RepoRts |, vol.6

F. Jacob-dubuisson, R. Fernandez, and L. Coutte, Protein secretion through autotransporter and two-partner pathways, Biochim. Biophys. Acta, vol.1694, p.235, 2004.

I. R. Henderson, F. Navarro-garcia, M. Desvaux, R. C. Fernandez, and D. Ala&apos;-aldeen, Type V protein secretion pathway: the autotransporter story. Microbiol, Mol. Biol. Rev, vol.68, p.692, 2004.

D. Linke, T. Riess, I. B. Autenrieth, A. Lupas, and V. A. Kempf, Trimeric autotransporter adhesins: variable structure, common function, Trends Microbiol, vol.14, p.264, 2006.

M. Tomich, P. J. Planet, and D. H. Figurski, he tad locus: postcards from the widespread colonization island, Nat. Rev. Microbiol, vol.5, p.363, 2007.

J. E. Broms, A. Sjostedt, and M. Lavander, The Role of the Francisella Tularensis Pathogenicity Island in Type VI Secretion, Intracellular Survival, and Modulation of Host Cell Signaling, Front. Microbiol, vol.1, p.136, 2010.

A. B. Russell, A Type VI Secretion-Related Pathway in Bacteroidetes Mediates Interbacterial Antagonism, Cell Host Microbe, vol.16, p.227, 2014.

S. R. Eddy, Accelerated Proile HMM Searches, PLoS Comput. Biol, vol.7, p.1002195, 2011.

L. S. Johnson, S. R. Eddy, and E. Portugaly, Hidden Markov model speed heuristic and iterative HMM search procedure, BMC Bioinformatics, vol.11, p.431, 2010.

P. M. Martinez-garcia, C. Ramos, and P. Rodriguez-palenzuela, T346Hunter: a novel web-based tool for the prediction of type III, type IV and type VI secretion systems in bacterial genomes, PLoS ONE, vol.10, p.119317, 2015.

I. B. Holland, L. Schmitt, and J. Young, Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway, Mol. Membr. Biol, vol.22, p.29, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00079736

K. Kanonenberg, C. K. Schwarz, and L. Schmitt, Type I secretion systems -a story of appendices, Res. Microbiol, vol.164, p.596, 2013.

I. T. Paulsen, J. H. Park, P. S. Choi, and M. H. Saier, A family of gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from gram-negative bacteria, FEMS Microbiol. Lett, vol.156, p.1, 1997.

T. Dinh, I. T. Paulsen, and M. H. Saier, A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria, J. Bacteriol, vol.176, p.3825, 1994.

E. Dassa, Natural history of ABC systems: not only transporters, Essays Biochem, vol.50, p.19, 2011.

A. L. Davidson, E. Dassa, C. Orelle, and J. Chen, Structure, function, and evolution of bacterial ATP-binding cassette systems, Microbiol. Mol. Biol. Rev, vol.72, p.317, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00319506

V. Koronakis, J. Eswaran, and C. Hughes, Structure and function of TolC: the bacterial exit duct for proteins and drugs, Annu. Rev. Biochem, vol.73, p.467, 2004.

V. Burland, he complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7, Nucleic Acids Res, vol.26, p.4196, 1998.

K. V. Korotkov, M. Sandkvist, and W. G. Hol, he type II secretion system: biogenesis, molecular architecture and mechanism, Nat. Rev. Microbiol, vol.10, p.336, 2012.

M. Nivaskumar and O. Francetic, Type II secretion system: a magic beanstalk or a protein escalator, Biochim. Biophys. Acta, vol.1843, p.1568, 2014.

N. P. Cianciotto, Many substrates and functions of type II secretion: lessons learned from Legionella pneumophila, Future Microbiol, vol.4, p.797, 2009.

S. M. Karaba, R. C. White, and N. P. Cianciotto, Stenotrophomonas maltophilia Encodes a Type II Protein Secretion System hat Promotes Detrimental Efects on Lung Epithelial Cells, Infect. Immun, vol.81, p.3210, 2013.

T. N. Zhilina and G. A. Zavarzin, Extremely halophilic, methylotrophic, anaerobic bacteria, FEMS Microbiol. Lett, vol.87, p.315, 1990.

A. Rondelet and G. Condemine, Type II secretion: the substrates that won't go away, Res. Microbiol, vol.164, p.556, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02001302

J. E. Galan and H. Wolf-watz, Protein delivery into eukaryotic cells by type III secretion machines, Nature, vol.444, p.567, 2006.

G. R. Cornelis, he type III secretion injectisome, Nat. Rev. Microbiol, vol.4, p.811, 2006.

C. C. Ginocchio, S. B. Olmsted, C. L. Wells, and J. E. Galan, Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium, Cell, vol.76, p.717, 1994.

F. Van-gijsegem, he hrp gene locus of Pseudomonas solanacearum, which controls the production of a type III secretion system, encodes eight proteins related to components of the bacterial lagellar biogenesis complex, Mol. Microbiol, vol.15, p.1095, 1995.

G. M. Young, D. H. Schmiel, and V. L. Miller, A new pathway for the secretion of virulence factors by bacteria: the lagellar export apparatus functions as a protein-secretion system, Proc. Natl. Acad. Sci. USA, vol.96, p.6456, 1999.

G. W. Sun and Y. H. Gan, Unraveling type III secretion systems in the highly versatile Burkholderia pseudomallei, Trends Microbiol, vol.18, p.561, 2010.

I. Hansen-wester and M. Hensel, Salmonella pathogenicity islands encoding type III secretion systems, Microbes Infect, vol.3, p.549, 2001.

C. E. Alvarez-martinez and P. J. Christie, Biological diversity of prokaryotic type IV secretion systems, Microbiol. Mol. Biol. Rev, vol.73, p.775, 2009.

C. De-la, F. Frost, L. S. Meyer, R. J. Zechner, and E. , Conjugative DNA Metabolism in Gram-negative Bacteria, FEMS Microbiol. Rev, vol.34, p.18, 2010.

J. Guglielmini, Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion, Nucleic Acids Res, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01374962

N. Dautin and H. D. Bernstein, Protein Secretion in Gram-Negative Bacteria via the Autotransporter Pathway, Annu. Rev. Microbiol, vol.61, p.89, 2007.

J. Mazar and P. Cotter, New insight into the molecular mechanisms of two-partner secretion, Trends Microbiol, vol.15, p.508, 2007.

D. L. Leyton, A. E. Rossiter, and I. R. Henderson, From self suiciency to dependence: mechanisms and factors important for autotransporter biogenesis, Nat. Rev. Microbiol, vol.10, p.213, 2012.

J. C. Leo, I. Grin, and D. Linke, Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane, Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol.367, p.1088, 2012.

R. Salacha, he Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel Type V secretion system, Environ. Microbiol, vol.12, p.1498, 2010.

P. Oberhettinger, Intimin and invasin export their C-terminus to the bacterial cell surface using an inverse mechanism compared to classical autotransport, PLoS ONE, vol.7, p.47069, 2012.

S. Ruer, G. Ball, A. Filloux, and S. De-bentzmann, P-usher' , a novel protein transporter involved in imbrial assembly and TpsA secretion, EMBO J, vol.27, p.2669, 2008.

J. D. Mougous, A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus, Science, vol.312, p.1526, 2006.

R. D. Hood, A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria, Cell Host Microbe, vol.7, p.25, 2010.

S. Schwarz, Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions, PLoS Pathog, vol.6, p.1001068, 2010.

J. M. Silverman, Y. R. Brunet, E. Cascales, and J. D. Mougous, Structure and regulation of the type VI secretion system, Annu. Rev. Microbiol, vol.66, p.453, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01458240

M. Basler, B. T. Ho, and J. J. Mekalanos, Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions, Cell, vol.152, p.884, 2013.

, Scientific RepoRts |, vol.6

Y. R. Brunet, L. Espinosa, S. Harchouni, T. Mignot, and E. Cascales, Imaging type VI secretion-mediated bacterial killing, Cell reports, vol.3, p.36, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01458227

A. Hachani, L. P. Allsopp, Y. Oduko, and A. Filloux, he VgrG proteins are "A la carte" delivery systems for bacterial type VI efectors, J. Biol. Chem, vol.289, p.17872, 2014.

E. Cascales and C. Cambillau, Structural biology of type VI secretion systems, Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol.367, p.1102, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01458261

M. M. Shneider, PAAR-repeat proteins sharpen and diversify the type VI secretion system spike, Nature, vol.500, p.350, 2013.

S. Pukatzki, A. T. Ma, A. T. Revel, D. Sturtevant, and J. J. Mekalanos, Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin, Proc. Natl. Acad. Sci. USA, vol.104, p.15508, 2007.

J. C. Whitney, Genetically distinct pathways guide efector export through the type VI secretion system, Mol. Microbiol, vol.92, p.529, 2014.

F. E. Nano, A Francisella tularensis pathogenicity island required for intramacrophage growth, J. Bacteriol, vol.186, p.6430, 2004.

J. S. Ludu, he Francisella pathogenicity island protein PdpD is required for full virulence and associates with homologues of the type VI secretion system, J. Bacteriol, vol.190, p.4584, 2008.

J. R. Barker, he Francisella tularensis pathogenicity island encodes a secretion system that is required for phagosome escape and virulence, Mol. Microbiol, vol.74, p.1459, 2009.

C. Camacho, BLAST + : architecture and applications, BMC Bioinformatics, vol.10, p.421, 2009.

J. Soding, Protein homology detection by HMM-HMM comparison, Bioinformatics, vol.21, p.951, 2005.

R. D. Finn, he Pfam protein families database, Nucleic Acids Res, vol.36, p.281, 2008.

E. Quevillon, InterProScan: protein domains identiier, Nucleic Acids Res, vol.33, p.116, 2005.

S. S. Kharade and M. J. Mcbride, Flavobacterium johnsoniae PorV is required for secretion of a subset of proteins targeted to the type IX secretion system, J. Bacteriol, vol.197, p.147, 2015.

S. Moslavac, A TolC-like protein is required for heterocyst development in Anabaena sp. strain PCC 7120, J. Bacteriol, vol.189, p.7887, 2007.

P. Staron, K. Forchhammer, and I. Maldener, Structure-function analysis of the ATP-driven glycolipid elux pump DevBCA reveals complex organization with TolC/HgdD, FEBS Lett, vol.588, p.395, 2014.

I. Rauschenbach, N. Yee, M. M. Haggblom, and E. Bini, Energy metabolism and multiple respiratory pathways revealed by genome sequencing of Desulfurispirillum indicum strain S5, Environ. Microbiol, vol.13, p.1611, 2011.

L. Zeng, Extracellular proteome analysis of Leptospira interrogans serovar Lai, Omics: a journal of integrative biology, vol.17, p.527, 2013.

B. D. Nguyen and R. H. Valdivia, Virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis revealed by forward genetic approaches, Proc. Natl. Acad. Sci. USA, vol.109, p.1263, 2012.

D. Schatz, Self-suppression of bioilm formation in the cyanobacterium Synechococcus elongatus, Environ. Microbiol, vol.15, p.1786, 2013.

A. J. Hager, Type IV pili-mediated secretion modulates Francisella virulence, Mol. Microbiol, vol.62, p.227, 2006.
DOI : 10.1111/j.1365-2958.2006.05365.x

R. Huber, hermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 C, Arch. Microbiol, vol.144, p.324, 1986.

A. K. Petrus, Genes for the major structural components of Thermotogales species' togas revealed by proteomic and evolutionary analyses of OmpA and OmpB homologs, PLoS ONE, vol.7, p.40236, 2012.

I. C. Sutclife, A phylum level perspective on bacterial cell envelope architecture, Trends Microbiol, vol.18, p.464, 2010.

C. Francke, Comparative analyses imply that the enigmatic Sigma factor 54 is a central controller of the bacterial exterior, BMC Genomics, vol.12, p.385, 2011.

T. Vesth, Firmicutes: Microbes disguised as Gram negatives, Stand Genomic Sci, vol.9, p.431, 2013.

D. H. Hat, TIGRFAMs and Genome Properties in 2013, Nucleic Acids Res, vol.41, p.387, 2013.

J. Guglielmini, L. Quintais, M. P. Garcillan-barcia, F. De-la-cruz, and E. P. Rocha, he Repertoire of ICE in Prokaryotes Underscores the Unity, Diversity, and Ubiquity of Conjugation, PLoS Genet, vol.7, p.1002222, 2011.

B. Neron, Mobyle: a new full web bioinformatics framework, Bioinformatics, vol.25, p.3005, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01287963

D. N. Nunn and S. Lory, Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase, Proc. Natl. Acad. Sci. USA, vol.88, p.3281, 1991.

C. M. Pepe, M. W. Eklund, and M. S. Strom, Cloning of an Aeromonas hydrophila type IV pilus biogenesis gene cluster: complementation of pilus assembly functions and characterization of a type IV leader peptidase/N-methyltransferase required for extracellular protein secretion, Mol. Microbiol, vol.19, p.857, 1996.

J. W. Marsh and R. K. Taylor, Identiication of the Vibrio cholerae type 4 prepilin peptidase required for cholera toxin secretion and pilus formation, Mol. Microbiol, vol.29, p.1481, 1998.

P. J. Christie, Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems, Biochim. Biophys. Acta, vol.1694, p.219, 2004.

H. Nagai and T. Kubori, Type IVB Secretion Systems of Legionella and Other Gram-Negative Bacteria, Front. Microbiol, vol.2, p.136, 2011.

G. Schroder, R. Schuelein, M. Quebatte, and C. Dehio, Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae, Proc. Natl. Acad. Sci. USA, vol.108, p.14643, 2011.

S. S. Abby, E. Tannier, M. Gouy, and V. Daubin, Lateral gene transfer as a support for the tree of life, Proc. Natl. Acad. Sci. USA, vol.109, p.4962, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00752055

N. Yutin, P. Puigbo, E. V. Koonin, and Y. I. Wolf, Phylogenomics of prokaryotic ribosomal proteins, PLoS ONE, vol.7, p.36972, 2012.

D. Wu, A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea, Nature, vol.462, p.1056, 2009.

B. Boussau, L. Gueguen, and M. Gouy, Accounting for horizontal gene transfers explains conlicting hypotheses regarding the position of aquiicales in the phylogeny of Bacteria, BMC Evol. Biol, vol.8, p.272, 2008.

R. C. Souza, AtlasT4SS: a curated database for type IV secretion systems, BMC Microbiol, vol.12, p.172, 2012.

D. Bi, SecReT4: a web-based bacterial type IV secretion system resource, Nucleic Acids Res, vol.41, p.660, 2013.

J. Li, SecReT6: a web-based resource for type VI secretion systems found in bacteria, Environ. Microbiol, vol.17, p.2196, 2015.

S. Pundhir and A. Kumar, SSPred: A prediction server based on SVM for the identiication and classiication of proteins involved in bacterial secretion systems, Bioinformation, vol.6, p.380, 2011.

Y. Wang, H. Huang, M. Sun, Q. Zhang, and D. Guo, T3DB: an integrated database for bacterial type III secretion system, BMC Bioinformatics, vol.13, p.66, 2012.

, Division of High Consequence Pathogens and Pathology, vol.3010

, USA. 9 CIP-Collection de l'Institut Pasteur, Institut Pasteur, vol.53718

, F-75724 Paris, France. 11 Division of Scientific Resources, Pasteur International Bioresources network (PIBnet), Plateforme de Microbiologie Mutualisée (P2M), vol.30329

, * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to, Division of Healthcare Quality Promotion, vol.30329

, Pulsed-field gel electrophoresis subtyping using an in-house developed protocol, modified after consultation with CDC, was used to determine genetic relatedness among all suspect outbreak isolates. All isolates determined to be Elizabethkingia species were submitted to CDC for further characterization. Upon arrival, bacteria were cultivated on heart infusion agar supplemented with 5% rabbit blood agar at 35 °C. The outbreak strain isolates were correctly identified as E. anophelis using an expanded MALDI-TOF spectral library, genome sequencing and optical mapping. Conventional biochemical testing was restricted to oxidase, catalase and Gram stain after the MALDI-TOF spectral library provided by the CDC Special Bacteriology Reference Laboratory proved to be a reliable method of identification, /ncomms15483 | www.nature.com/naturecommunications identified as E. meningoseptica using conventional biochemical assays and the Bruker MALDI-TOF spectral library, vol.8

M. Kit, For comparative purposes, we included seven isolates stored in the Pasteur Institute's collection (Collection de l'Institut Pasteur or CIP; the Nextera XT DNA Library Preparation kit, p.500

, E. meningoseptica strains, and 10 strains that belonged to the E. miricola cluster (see Results and Supplementary Fig. 1)

, CLC Genomics Workbench v8 (CLC bio, Waltham, MA), and manually aligned using BioEdit 43 . Indels in the circularized genomes were located using BioEdit's Positional Nucleotide Numerical Summary function. Assemblies of the seven genomes from the CIP and from publicly available data sets for which only sequence reads were available (see Supplementary Data 1), were generated using SPAdes v.3.6.2 (ref. 44) on pre-processed reads, Genome assembly and annotation. For each outbreak isolate, an initial assembly was generated using the Celera De Bruijn graph assembler (Celera Genomics Workbench v8

P. Kampfer, Elizabethkingia anophelis sp. nov., isolated from the midgut of the mosquito Anopheles gambiae, Int. J. Syst. Evol. Microbiol, vol.61, pp.2670-2675, 2011.

S. Breurec, Genomic epidemiology and global diversity of the emerging bacterial pathogen Elizabethkingia anophelis, Sci. Rep, vol.6, p.30379, 2016.

S. Chen, M. Bagdasarian, and E. D. Walker, Elizabethkingia anophelis: molecular manipulation and interactions with mosquito hosts, Appl. Environ. Microbiol, vol.81, pp.2233-2243, 2015.

P. Kukutla, Insights from the genome annotation of Elizabethkingia anophelis from the malaria vector Anopheles gambiae, PLoS ONE, vol.9, p.97715, 2014.

Y. Li, Complete genome sequence and transcriptomic analysis of the novel pathogen Elizabethkingia anophelis in response to oxidative stress, Genome Biol. Evol, vol.7, pp.1676-1685, 2015.

J. Teo, Comparative genomic analysis of malaria mosquito vectorassociated novel pathogen Elizabethkingia anophelis, Genome Biol. Evol, vol.6, pp.1158-1165, 2014.

L. S. Moore, Waterborne Elizabethkingia meningoseptica in adult critical care, Emerg. Infect. Dis, vol.22, pp.9-17, 2016.

M. N. Balm, Bad design, bad practices, bad bugs: frustrations in controlling an outbreak of Elizabethkingia meningoseptica in intensive care units, J. Hosp. Infect, vol.85, pp.134-140, 2013.

V. Tak, P. Mathur, P. Varghese, and M. C. Misra, Elizabethkingia meningoseptica: an emerging pathogen causing meningitis in a hospitalized adult trauma patient, Indian J. Med. Microbiol, vol.31, pp.293-295, 2013.

S. S. Hayek, Rare Elizabethkingia meningosepticum meningitis case in an immunocompetent adult, Emerg. Microbes Infect, vol.2, p.17, 2013.
DOI : 10.1038/emi.2013.16

URL : https://doi.org/10.1038/emi.2013.16

S. K. Lau, Evidence for Elizabethkingia anophelis transmission from mother to infant, Hong Kong. Emerg. Infect. Dis, vol.21, pp.232-241, 2015.

E. O. King, Studies on a group of previously unclassified bacteria associated with meningitis in infants, Am. J. Clin. Pathol, vol.31, pp.241-247, 1959.

K. C. Bloch, R. Nadarajah, and R. Jacobs, Chryseobacterium meningosepticum:an emerging pathogen among immunocompromised adults, Medicine (Baltimore), vol.76, pp.30-41, 1997.
DOI : 10.1097/00005792-199701000-00003

T. Frank, First case of Elizabethkingia anophelis meningitis in the Central African Republic, Lancet, vol.381, p.1876, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00826657

S. K. Lau, Elizabethkingia anophelis bacteremia is associated with clinically significant infections and high mortality, Sci. Rep, vol.6, p.26045, 2016.
DOI : 10.1038/srep26045

URL : https://www.nature.com/articles/srep26045.pdf

K. K. Kim, M. K. Kim, J. H. Lim, H. Y. Park, and S. Lee, Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov, Int. J. Syst. Evol. Microbiol, vol.55, pp.1287-1293, 2005.

S. Bellais, D. Aubert, T. Naas, and P. Nordmann, Molecular and biochemical heterogeneity of class B carbapenem-hydrolyzing beta-lactamases in Chryseobacterium meningosepticum, Antimicrob. Agents Chemother, vol.44, pp.1878-1886, 2000.

L. J. González and A. J. Vila, Carbapenem resistance in Elizabethkingia meningoseptica is mediated by metallo-b-lactamase BlaB, Antimicrob. Agents Chemother, vol.56, pp.1686-1692, 2012.

B. Holmes, A. G. Steigerwalt, and A. C. Nicholson, DNA-DNA hybridization study of strains of Chryseobacterium, Elizabethkingia and Empedobacter and of other usually indole-producing non-fermenters of CDC groups IIc, IIe, IIh and IIi, mostly from human clinical sources, and proposals of Chryseobacterium bernardetii sp. nov., Chryseobacterium carnis sp. nov.,Chryseobacterium lactis sp. nov., Chryseobacterium nakagawai sp. nov. and Chryseobacterium taklimakanense comb. nov, Int. J. Syst. Evol. Microbiol, vol.63, pp.4639-4662, 2013.

S. Doijad, H. Ghosh, S. Glaeser, P. Kämpfer, and T. Chakraborty, Taxonomic reassessment of the genus Elizabethkingia using whole genome sequencing: Elizabethkingia endophytica Kämpfer et al. 2015 is a later subjective synonym of Elizabethkingia anophelis Kämpfer et al. 2011, Int. J. Syst. Evol. Microbiol, vol.66, pp.4555-4559, 2016.

M. L. Michaels and J. H. Miller, The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine), J. Bacteriol, vol.174, pp.6321-6325, 1992.

S. Boiteux and J. P. Radicella, Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress, Biochimie, vol.81, pp.59-67, 1999.

B. Van-loon, E. Markkanen, and U. Hübscher, Oxygen as a friend and enemy: How to combat the mutational potential of 8-oxo-guanine, DNA Repair (Amst), vol.9, pp.604-616, 2010.

S. S. David, V. L. Shea, and S. Kundu, Base-excision repair of oxidative DNA damage, Nature, vol.447, pp.941-950, 2007.

K. G. Au, S. Clark, J. H. Miller, and P. Modrich, Escherichia coli mutY gene encodes an adenine glycosylase active on G-A mispairs, Proc. Natl Acad. Sci. USA, vol.86, pp.8877-8881, 1989.

K. Malanowska, A. A. Salyers, and J. F. Gardner, Characterization of a conjugative transposon integrase, IntDOT. Mol. Microbiol, vol.60, pp.1228-1240, 2006.

J. Laprise, S. Yoneji, and J. F. Gardner, Homology-dependent interactions determine the order of strand exchange by IntDOT recombinase, Nucleic Acids Res, vol.38, pp.958-969, 2010.

R. M. Schaaper and R. L. Dunn, Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors, Proc. Natl Acad. Sci. USA, vol.84, pp.6220-6224, 1987.

A. K. Mackenzie, Two SusD-like proteins encoded within a polysaccharide utilization locus of an uncultured ruminant bacteroidetes phylotype bind strongly to cellulose, Appl. Environ. Microbiol, vol.78, pp.5935-5937, 2012.

J. A. Shipman, J. E. Berleman, and A. A. Salyers, Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron, J. Bacteriol, vol.182, pp.5365-5372, 2000.

E. R. Moxon and J. S. Kroll, The role of bacterial polysaccharide capsules as virulence factors, Curr. Top. Microbiol. Immunol, vol.150, pp.65-85, 1990.

J. Guglielmini, F. De-la-cruz, and E. P. Rocha, Evolution of conjugation and Type IV secretion systems, Mol. Biol. Evol, vol.30, pp.315-331, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01374951

M. S. Hsu, Clinical features, antimicrobial susceptibilities, and outcomes of Elizabethkingia meningoseptica (Chryseobacterium meningosepticum) bacteremia at a medical center in Taiwan, Eur. J. Clin. Microbiol. Infect. Dis, vol.30, pp.1271-1278, 1999.

S. Bialek-davenet, Genomic definition of hypervirulent and multidrugresistant Klebsiella pneumoniae clonal groups, Emerg. Infect. Dis, vol.20, pp.1812-1820, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01118613

K. E. Holt, Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health, Proc. Natl Acad. Sci, vol.112, pp.3574-3581, 2015.

S. R. Harris, Evolution of MRSA during hospital transmission and intercontinental spread, Science, vol.327, pp.469-474, 2010.

Y. H. Grad, Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, Proc. Natl Acad. Sci. USA, vol.109, pp.3065-3070, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01118034

Z. Zhou, Neutral genomic microevolution of a recently emerged pathogen, Salmonella enterica serovar Agona, PLoS Genet, vol.9, p.1003471, 2013.

A. Oliver and A. Mena, Bacterial hypermutation in cystic fibrosis, not only for antibiotic resistance, Clin. Microbiol. Infect, vol.16, pp.798-808, 2010.

E. Denamur and I. Matic, Evolution of mutation rates in bacteria, Mol. Microbiol, vol.60, pp.820-827, 2006.

R. J. Söderberg and O. G. Berg, Kick-starting the ratchet: the fate of mutators in an asexual population, Genetics, vol.187, pp.1129-1137, 2011.

A. C. Nicholson, Complete genome sequences of four strains from the 2015-2016 Elizabethkingia anophelis outbreak, Genome Announc, vol.4, pp.563-579, 2016.

T. A. Hall, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser, vol.41, pp.95-98, 1999.

A. Bankevich, SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol, vol.19, pp.455-477, 2012.

A. Criscuolo and S. Brisse, AlienTrimmer: a tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads, Genomics, vol.102, pp.500-506, 2013.

Y. Liu, J. Schroder, and B. Schmidt, Musket: a multistage k-mer spectrum-based error corrector for Illumina sequence data, Bioinformatics, vol.29, pp.308-315, 2013.

M. R. Crusoe, The khmer software package: enabling efficient nucleotide sequence analysis. F1000Res, vol.4, p.900, 2015.

T. Seemann, Prokka: rapid prokaryotic genome annotation, Bioinformatics, vol.30, pp.2068-2069, 2014.

K. A. Jolley and M. C. Maiden, BIGSdb: scalable analysis of bacterial genome variation at the population level, BMC Bioinformatics, vol.11, pp.1-11, 2010.

K. Katoh and D. M. Standley, MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability, Mol. Biol. Evol, vol.30, pp.772-780, 2013.

L. Nguyen, H. A. Schmidt, A. Von-haeseler, and B. Q. Minh, IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol, vol.32, pp.268-274, 2015.

N. Goldman and Z. Yang, A codon-based model of nucleotide substitution for protein-coding DNA sequences, Mol. Biol. Evol, vol.11, pp.725-736, 1994.

M. B. Schultz, Repeated local emergence of carbapenem-resistant Acinetobacter baumannii in a single hospital ward, Microb. Genom, vol.2, p.50, 2016.

D. Arndt, PHASTER: a better, faster version of the PHAST phage search tool, Nucleic Acids Res, vol.44, pp.16-21, 2016.

S. Kurtz, Versatile and open software for comparing large genomes

, Genome Biol, vol.5, p.12, 2004.

T. J. Treangen, B. D. Ondov, S. Koren, and A. M. Phillippy, The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes, Genome Biol, vol.15, p.524, 2014.

N. Communications and . Doi,

A. J. Drummond and A. Rambaut, BEAST: bayesian evolutionary analysis by sampling trees, BMC Evol. Biol, vol.7, p.214, 2007.
DOI : 10.1186/1471-2148-7-214

URL : https://bmcevolbiol.biomedcentral.com/track/pdf/10.1186/1471-2148-7-214

A. J. Drummond, M. A. Suchard, D. Xie, and A. Rambaut, Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol, vol.29, pp.1969-1973, 2012.

S. Duffy and E. C. Holmes, Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses, J. Gen. Virol, vol.90, pp.1539-1547, 2009.

C. Ramsden, E. C. Holmes, and M. A. Charleston, Hantavirus evolution in relation to its rodent and insectivore hosts: no evidence for codivergence, Mol. Biol. Evol, vol.26, pp.143-153, 2009.
DOI : 10.1093/molbev/msn234

URL : https://academic.oup.com/mbe/article-pdf/26/1/143/13639790/msn234.pdf

C. Firth, Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses, Mol. Biol. Evol, vol.27, pp.2038-2051, 2010.

V. Miele, S. Penel, and L. Duret, Ultra-fast sequence clustering from similarity networks with SiLiX, BMC Bioinformatics, vol.12, p.116, 2011.
DOI : 10.1186/1471-2105-12-116

URL : https://hal.archives-ouvertes.fr/hal-00698365

J. Mistry, R. D. Finn, S. R. Eddy, A. Bateman, and M. Punta, Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions, Nucleic Acids Res, vol.41, p.121, 2013.

M. K. Gibson, K. J. Forsberg, and G. Dantas, Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology, ISME J, vol.9, pp.207-216, 2015.
DOI : 10.1038/ismej.2014.106

URL : https://www.nature.com/articles/ismej2014106.pdf

L. Chen, D. Zheng, B. Liu, J. Yang, and Q. Jin, VFDB 2016: hierarchical and refined dataset for big data analysis--10 years on, Nucleic Acids Res, vol.44, pp.694-697, 2016.
DOI : 10.1093/nar/gkv1239

URL : https://doi.org/10.1093/nar/gkv1239

S. S. Abby, B. Néron, H. Ménager, M. Touchon, and E. P. Rocha, MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems, PLoS ONE, vol.9, p.110726, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01080418

S. S. Abby, Identification of protein secretion systems in bacterial genomes, Sci. Rep, vol.6, p.23080, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01677379

I. Grissa, G. Vergnaud, and C. Pourcel, CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats, Nucleic Acids Res, vol.35, pp.52-57, 2007.
DOI : 10.1093/nar/gkm360

URL : https://hal.archives-ouvertes.fr/hal-00194414

J. Cury, T. Jové, M. Touchon, B. Néron, and E. P. Rocha, Identification and analysis of integrons and cassette arrays in bacterial genomes, Nucleic Acids Res, vol.44, pp.4539-4550, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01374968

S. Roux, F. Enault, B. L. Hurwitz, and M. B. Sullivan, VirSorter: mining viral signal from microbial genomic data, PeerJ, vol.3, p.985, 2015.
DOI : 10.7717/peerj.985

URL : https://hal.archives-ouvertes.fr/hal-01557667

D. E. Fouts, Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences, Nucleic Acids Res, vol.34, pp.5839-5851, 2006.

, Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 6, 2016.

N. Alikhan, N. K. Petty, N. L. Ben-zakour, and S. A. Beatson, BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons, BMC Genomics, vol.12, p.402, 2011.

P. Wilmes, S. L. Simmons, V. J. Denef, and J. F. Banfield, The dynamic genetic repertoire of microbial communities, FEMS Microbiol. Rev, vol.33, pp.109-132, 2009.

T. J. Treangen and E. P. Rocha, Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes, PLoS Genet, vol.7, p.1001284, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00578535

C. M. Thomas and K. M. Nielsen, Mechanisms of, and barriers to, horizontal gene transfer between bacteria, Nat. Rev. Microbiol, vol.3, pp.711-721, 2005.

M. W. Van-passel, P. R. Marri, and H. Ochman, The emergence and fate of horizontally acquired genes in Escherichia coli, PLoS Comput. Biol, vol.4, p.1000059, 2008.

J. Davies and D. Davies, Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev, vol.74, pp.417-433, 2010.

A. Mira, H. Ochman, and N. A. Moran, Deletional bias and the evolution of bacterial genomes, Trends Genet, vol.17, pp.589-596, 2001.

S. Koskiniemi, S. Sun, O. G. Berg, and D. I. Andersson, Selection-driven gene loss in bacteria, PLoS Genet, vol.8, p.1002787, 2012.

E. P. Rocha, The organization of the bacterial genome, Annu. Rev. Genet, vol.42, pp.211-233, 2008.

R. Overbeek, M. Fonstein, M. Souza, G. D. Pusch, and N. Maltsev, The use of gene clusters to infer functional coupling, Proc. Natl Acad. Sci. USA, vol.96, pp.2896-2901, 1999.

S. Vieira-silva and E. P. Rocha, The systemic imprint of growth and its uses in ecological (meta)genomics, PLoS Genet, vol.6, p.1000808, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00488678

P. M. Sharp, D. C. Shields, K. H. Wolfe, and W. H. Li, Chromosomal location and evolutionary rate variation in enterobacterial genes, Science, vol.246, pp.808-810, 1989.

A. L. Price, Principal components analysis corrects for stratification in genome-wide association studies, Nat. Genet, vol.38, pp.904-909, 2006.

L. M. Bobay, E. P. Rocha, and M. Touchon, The adaptation of temperate bacteriophages to their host genomes, Mol. Biol. Evol, vol.30, pp.737-751, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01374945

L. S. Frost, R. Leplae, A. O. Summers, and A. Toussaint, Mobile genetic elements: the agents of open source evolution, Nat. Rev. Microbiol, vol.3, pp.722-732, 2005.

V. Burrus, G. Pavlovic, B. Decaris, and G. Guedon, Conjugative transposons: the tip of the iceberg, Mol. Microbiol, vol.46, pp.601-610, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01659089

C. Canchaya, C. Proux, G. Fournous, A. Bruttin, and H. Brussow, Prophage genomics. Microbiol. Mol. Biol. Rev, vol.67, pp.238-276, 2003.

M. Asadulghani, The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants, PLoS Pathog, vol.5, p.1000408, 2009.

J. T. Sullivan and C. W. Ronson, Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene, Proc. Natl Acad. Sci. USA, vol.95, pp.5145-5149, 1998.

K. C. Murphy, Phage recombinases and their applications, Adv. Virus Res, vol.83, pp.367-414, 2012.
DOI : 10.1016/b978-0-12-394438-2.00008-6

R. Balbontin, N. Figueroa-bossi, J. Casadesus, and L. Bossi, Insertion hot spot for horizontally acquired DNA within a bidirectional small-RNA locus in Salmonella enterica, J. Bacteriol, vol.190, pp.4075-4078, 2008.

E. F. Boyd, S. Almagro-moreno, and M. A. Parent, Genomic islands are dynamic, ancient integrative elements in bacterial evolution, Trends Microbiol, vol.17, pp.47-53, 2009.
DOI : 10.1016/j.tim.2008.11.003

K. P. Williams, Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies, Nucleic Acids Res, vol.30, pp.866-875, 2002.

M. Touchon, Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths, PLoS Genet, vol.5, p.1000344, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00390293

N. J. Croucher, Rapid pneumococcal evolution in response to clinical interventions, Science, vol.331, pp.430-434, 2011.
DOI : 10.1126/science.1198545

URL : http://europepmc.org/articles/pmc3648787?pdf=render

S. T. Chancey, Composite mobile genetic elements disseminating macrolide resistance in Streptococcus pneumoniae, Front. Microbiol, vol.6, p.6, 2015.

R. G. Everitt, Mobile elements drive recombination hotspots in the core genome of Staphylococcus aureus, Nat. Commun, vol.5, p.3956, 2014.

P. H. Oliveira, M. Touchon, and E. P. Rocha, Regulation of genetic flux between bacteria by restriction-modification systems, Proc. Natl Acad. Sci. USA, vol.113, pp.5658-5663, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01374969

K. Homma, S. Fukuchi, Y. Nakamura, T. Gojobori, and K. Nishikawa, Gene cluster analysis method identifies horizontally transferred genes with high ARTICLE, NATURE COMMUNICATIONS, vol.24, pp.805-813, 2007.

S. Leclercq and R. Cordaux, Do phages efficiently shuttle transposable elements among prokaryotes?, Evolution, vol.65, pp.3327-3331, 2011.
DOI : 10.1111/j.1558-5646.2011.01395.x

URL : https://hal.archives-ouvertes.fr/hal-00637838

P. Koleff, Measuring beta diversity for presence-absence data, J. Anim. Ecol, vol.72, pp.367-382, 2003.
DOI : 10.1046/j.1365-2656.2003.00710.x

C. Johnston, B. Martin, G. Fichant, P. Polard, and J. P. Claverys, Bacterial transformation: distribution, shared mechanisms and divergent control, Nat. Rev. Microbiol, vol.12, pp.181-196, 2014.
DOI : 10.1038/nrmicro3199

URL : https://hal.archives-ouvertes.fr/hal-01117850

A. Campbell, Prophage insertion sites, Res. Microbiol, vol.154, pp.277-282, 2003.
DOI : 10.1016/s0923-2508(03)00071-8

J. Guglielmini, L. Quintais, M. P. Garcillan-barcia, F. De-la-cruz, and E. P. Rocha, The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation, PLoS Genet, vol.7, p.1002222, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00647077

C. Garcia-aljaro, E. Balleste, and M. Muniesa, Beyond the canonical strategies of horizontal gene transfer in prokaryotes, Curr. Opin. Microbiol, vol.38, pp.5-105, 2017.

C. H. Kuo, N. A. Moran, and H. Ochman, The consequences of genetic drift for bacterial genome complexity, Genome Res, vol.19, pp.1450-1454, 2009.

P. H. Oliveira, M. Touchon, and E. P. Rocha, The interplay of restrictionmodification systems with mobile genetic elements and their prokaryotic hosts, Nucleic Acids Res, vol.42, pp.10618-10631, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01374960

D. I. Andersson and D. Hughes, Antibiotic resistance and its cost: is it possible to reverse resistance?, Nat. Rev. Microbiol, vol.8, pp.260-271, 2010.
DOI : 10.1038/nrmicro2319

B. R. Levin, Frequency-dependent selection in bacterial populations, Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol.319, pp.459-472, 1988.

N. J. Croucher, Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict, PLoS Biol, vol.14, p.1002394, 2016.

N. D. Chu, A Mobile element in mutS drives hypermutation in a marine Vibrio, MBio, vol.8, pp.2045-2061, 2017.

K. D. Pruitt, T. Tatusova, and D. R. Maglott, NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins, Nucleic Acids Res, vol.35, pp.61-65, 2007.

V. Miele, S. Penel, and L. Duret, Ultra-fast sequence clustering from similarity networks with SiLiX, BMC Bioinformatics, vol.12, p.116, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00698365

M. Csuros, Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood, Bioinformatics, vol.26, pp.1910-1912, 2010.

M. Touchon and E. P. Rocha, Coevolution of the organization and structure of prokaryotic genomes, Cold Spring Harb. Perspect. Biol, vol.8, p.18168, 2016.

Y. Zheng, J. D. Szustakowski, L. Fortnow, R. J. Roberts, and S. Kasif, Computational identification of operons in microbial genomes, Genome Res, vol.12, pp.1221-1230, 2002.

A. Baselga, Partitioning the turnover and nestedness components of beta diversity, Global Ecol. Biogeogr, vol.19, pp.134-143, 2010.

X. Didelot and D. J. Wilson, ClonalFrameML: efficient inference of recombination in whole bacterial genomes, PLoS Comput. Biol, vol.11, p.1004041, 2015.

E. Paradis, J. Claude, and K. Strimmer, APE: analyses of phylogenetics and evolution in R language, Bioinformatics, vol.20, pp.289-290, 2004.
URL : https://hal.archives-ouvertes.fr/ird-01887318

B. Pfeifer, U. Wittelsburger, S. E. Ramos-onsins, and M. J. Lercher, PopGenome: an efficient Swiss army knife for population genomic analyses in R, Mol. Biol. Evol, vol.31, pp.1929-1936, 2014.

S. Powell, eggNOG v4.0: nested orthology inference across 3686 organisms, Nucleic Acids Res, vol.42, pp.231-239, 2014.

D. E. Fouts, Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences, Nucleic Acids Res, vol.34, pp.5839-5851, 2006.

L. M. Bobay, M. Touchon, and E. P. Rocha, Manipulating or superseding host recombination functions: a dilemma that shapes phage evolvability, PLoS Genet, vol.9, p.1003825, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01374955

J. Cury, T. Jove, M. Touchon, B. Neron, and E. P. Rocha, Identification and analysis of integrons and cassette arrays in bacterial genomes, Nucleic Acids Res, vol.44, pp.4539-4550, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01374968

S. S. Abby, B. Neron, H. Menager, M. Touchon, and E. P. Rocha, MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems, PLoS ONE, vol.9, p.110726, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01080418

S. S. Abby, Identification of protein secretion systems in bacterial genomes, Sci. Rep, vol.6, p.23080, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01677379

R. D. Finn, The Pfam protein families database, Nucleic Acids Res, vol.36, pp.281-288, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01294685

C. Kamoun, T. Payen, A. Hua-van, and J. Filee, Improving prokaryotic transposable elements identification using a combination of de novo and profile HMM methods, BMC Genomics, vol.14, p.700, 2013.

P. Siguier, J. Perochon, L. Lestrade, J. Mahillon, and M. Chandler, ISfinder: the reference centre for bacterial insertion sequences, Nucleic Acids Res, vol.34, pp.32-36, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00021179

T. M. Lowe and S. R. Eddy, tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence, Nucleic Acids Res, vol.25, pp.955-964, 1997.

D. Laslett and B. Canback, ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences, Nucleic Acids Res, vol.32, pp.1-16, 2004.

M. K. Gibson, K. J. Forsberg, and G. Dantas, Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology, ISME J, vol.9, pp.207-216, 2015.

F. Gao and C. T. Zhang, Ori-Finder: a web-based system for finding oriCs in unannotated bacterial genomes, BMC Bioinformatics, vol.9, p.79, 2008.

K. Katoh and D. M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol, vol.30, pp.772-780, 2013.

A. Criscuolo, S. Gribaldo, and . Bmge, Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments, BMC. Evol. Biol, vol.10, p.210, 2010.

S. Guindon, New algorithms and methods to estimate maximumlikelihood phylogenies: assessing the performance of PhyML 3.0, Syst. Biol, vol.59, pp.307-321, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies, Bioinformatics, vol.30, pp.1312-1313, 2014.

K. P. Schliep and . Phangorn, phylogenetic analysis in R, vol.27, pp.592-593, 2011.

H. Shimodaira and M. Hasegawa, Multiple comparisons of log-likelihoods with applications to phylogenetic inference, Mol. Biol. Evol, vol.16, pp.1114-1116, 1999.

L. T. Nguyen, H. A. Schmidt, A. Von-haeseler, and B. Q. Minh, IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol, vol.32, pp.268-274, 2015.

I. Letunic and P. Bork, Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy, Nucleic Acids Res, vol.39, pp.475-478, 2011.