C. P. Kurtzman and C. J. Robnett, Multigene phylogenetic analysis of the Trichomonascus, Wickerhamiella and Zygoascus yeast clades, and the proposal of Sugiyamaella gen. nov. and 14 new species combinations, FEMS Yeast Res, vol.7, pp.141-51, 2007.

W. J. Middelhoven, M. C. Hoogkamer-te-niet, and N. J. Kreger-van-rij, Trichosporon adeninovorans sp. nov., a yeast species utilizing adenine, xanthine, uric acid, putrescine and primary n-alkylamines as the sole source of carbon, nitrogen and energy, Antonie Van Leeuwenhoek, vol.50, pp.369-78, 1984.

J. P. Van-der-walt, M. T. Smith, and Y. Yamada, Arxula gen. nov. (Candidaceae), a new anamorphic, arthroconidial yeast genus, Antonie Van Leeuwenhoek, vol.57, pp.59-61, 1990.

I. A. Samsonova, G. Kunze, R. Bode, and F. Bottcher, A set of genetic markers for the chromosomes of the imperfect yeast Arxula adeninivorans, Yeast, vol.12, pp.1209-1226, 1996.

H. Rosel and G. Kunze, Integrative transformation of the dimorphic yeast arxula adeninivorans LS3 based on hygromycin B resistance, Curr Genet, vol.33, pp.157-63, 1998.

W. J. Middelhoven, I. M. De-jong, and M. De-winter, Arxula adeninivorans, a yeast assimilating many nitrogenous and aromatic compounds, Antonie Van Leeuwenhoek, vol.59, pp.129-166, 1991.

R. Buttner, R. Bode, and D. Birbaum, Alcoholic Fermentation of Starch by Arxula adeninivorans, Zentralbl Mikrobiol, vol.147, pp.225-255, 1992.

E. Boer, A. Schroter, R. Bode, M. Piontek, and G. Kunze, Characterization and expression analysis of a gene cluster for nitrate assimilation from the yeast Arxula adeninivorans, Yeast, vol.26, pp.83-93, 2009.

T. Wartmann, A. Kruger, K. Adler, B. M. Duc, I. Kunze et al., Temperature-dependent dimorphism of the yeast Arxula adeninivorans Ls3, Antonie Van Leeuwenhoek, vol.68, pp.215-238, 1995.

V. Robert, G. Cardinali, and A. Casadevall, Distribution and impact of yeast thermal tolerance permissive for mammalian infection, BMC Biol, vol.13, p.18, 2015.

D. Radecka, V. Mukherjee, R. Q. Mateo, M. Stojiljkovic, M. R. Foulquie-moreno et al., Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation, FEMS Yeast Res, p.15, 2015.

G. Kunze, C. Gaillardin, M. Czernicka, P. Durrens, T. Martin et al., The complete genome of Blastobotrys (Arxula) adeninivorans LS3 -a yeast of biotechnological interest, Biotechnol Biofuels, vol.7, p.66, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-00988609

A. Malak, K. Baronian, and G. Kunze, Blastobotrys (Arxula) adeninivorans: a promising alternative yeast for biotechnology and basic research, Yeast, vol.33, pp.535-582, 2016.

T. Maskow, A. Rollich, I. Fetzer, J. U. Ackermann, and H. Harms, On-line monitoring of lipid storage in yeasts using impedance spectroscopy, J Biotechnol, vol.135, pp.64-70, 2008.

M. Olstorpe, J. Pickova, A. Kiessling, and V. Passoth, Strain-and temperature-dependent changes of fatty acid composition in Wickerhamomyces anomalus and Blastobotrys adeninivorans, Biotechnol Appl Biochem, vol.61, pp.45-50, 2014.

C. Stockmann, M. Scheidle, B. Dittrich, A. Merckelbach, G. Hehmann et al., Process development in Hansenula polymorpha and Arxula adeninivorans, a re-assessment, Microb Cell Fact, vol.8, p.22, 2009.

J. L. Adrio, Oleaginous yeasts: Promising platforms for the production of oleochemicals and biofuels, Biotechnol Bioeng, 2017.

C. A. Boulton and C. Ratledge, Correlation of lipid accumulation in yeasts with possession of ATP:citrate lyase, J Gen Microbiol, vol.127, pp.169-76, 1981.

T. Vorapreeda, C. Thammarongtham, S. Cheevadhanarak, and K. Laoteng, Alternative routes of acetylCoA synthesis identified by comparative genomic analysis: involvement in the lipid production of oleaginous yeast and fungi, Microbiology, vol.158, pp.217-245, 2012.

R. Dulermo, H. Gamboa-melendez, R. Ledesma-amaro, F. Thevenieau, and J. M. Nicaud, Yarrowia lipolytica AAL genes are involved in peroxisomal fatty acid activation, Biochim Biophys Acta, vol.1861, pp.555-65, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01532580

R. Álvaro-benito, M. Fernández-lobato, M. Baronian, K. Kunze, and G. , Assessment of Schwanniomyces occidentalis as a host for protein production using the wide-range Xplor®2 expression platform, Appl Microbiol Biotechnol, vol.97, pp.4443-4456, 2013.

F. Arous, S. Azabou, and I. E. Triantaphyllidou, Newly isolated yeasts from Tunisian microhabitats: lipid accumulation and fatty acid composition, Eng Life Sci, vol.2, pp.1-11, 2016.

A. Beopoulos, R. Haddouche, P. Kabran, T. Dulermo, T. Chardot et al., Identification and characterization of DGA2, an acyltransferase of the DGAT1 acylCoA:diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. New insights into the storage lipid metabolism of oleaginous yeasts, Appl Microbiol Biotechnol, vol.93, pp.1523-1560, 2012.

E. Böer, R. Bode, H. P. Mock, M. Piontek, and G. Kunze, Atan1p-An extracellular tannase from the dimorphic yeast Arxula adeninivorans: Molecular cloning of the ATAN1 gene and characterization of the recombinant enzyme, Yeast, vol.26, issue.6, pp.323-337, 2009.

E. Böer, M. Piontek, and G. Kunze, Xplor 2-an optimized transformation/expression system for recombinant protein production in the yeast Arxula adeninivorans, Appl Microbiol Biotechnol, vol.84, pp.583-594, 2009.

R. R. Bomareddy, W. Sabra, G. Maheshwari, and A. P. Zeng, Metabolic network analysis and experimental study of lipid production in Rhodosporidium toruloides grown on single and mixed substrates, Microb. Cell Fact, vol.14, p.36, 2015.

J. Browse, P. J. Mccourt, and C. R. Somerville, Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue, Anal Biochem, vol.152, pp.141-146, 1986.

H. Cao, Structure-function analysis of diacylglycerol acyltransferase sequences from 70 organisms, BMC Res. Notes, vol.4, p.249, 2011.

S. Cases, S. J. Smith, and Y. W. Zheng, Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis, Proc. Natl Acad. Sci. USA, vol.95, pp.13018-13023, 1998.

E. Cavallo, H. Charreau, P. Cerrutti, and M. L. Foresti, Yarrowia lipolytica: a model yeast for citric acid production, FEMS Yeast Research, vol.17, issue.8, 2017.

S. D. Kohlwein, Triacylglycerol homeostasis: insights from yeast, J Biol Chem, vol.285, pp.15663-15667, 2010.

C. Kubicek and L. Karaffa, Organic acids. Basic Biotechnology, pp.305-320, 2001.

G. Kunze and I. Kunze, Characterization of Arxula adeninivorans strains from different habitats, Antonie van Leeuwenhoek, vol.65, pp.607-614, 1994.

C. P. Kurtzmann and J. C. Robnett, Multigene phylogenetic analysis of the Trichomonascus, Wickerhammiella and Zygoascus yeast clades, and the proposal of Sugiyamaella gen. nov. and 14 new species combinations, FEMS Yeast Res, vol.7, pp.141-151, 2007.

Q. Liu, R. M. Siloto, C. L. Snyder, and R. J. Weselake, Functional and Topological Analysis of Yeast Acyl-CoA:Diacylglycerol Acyltransferase 2, an Endoplasmic Reticulum Enzyme Essential for Triacylglycerol Biosynthesis, J Biol Chem, vol.286, pp.13115-13126, 2011.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2 ?, 2001.

P. Mcfie, S. Banman, K. S. Stone, and S. J. , Murine diacylglycerol acyltransferase-2 (DGAT2) can catalyze triacylglycerol synthesis and promote lipid droplet formation independent of its localization to the endoplasmic reticulum, J Biol Chem.Aug, vol.12, issue.32, pp.28235-28281

I. Morgunov, S. Kamzolova, and J. Lunina, The citric acid production from raw glycerol by Yarrowia lipolytica yeast and its regulation, Appl Microbiol Biotechnol, vol.97, pp.7387-97, 2013.

A. Ochoa-estopier and S. Guillouet, D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica, J Biotechnol, vol.170, pp.35-41, 2014.

P. Oelkers, D. Cromley, M. Padamsee, J. T. Billheimer, and S. L. Sturley, The DGA1 gene determines a second triglyceride synthetic pathway in yeast, J. Biol. Chem, vol.277, pp.8877-8881, 2002.

C. S. Oh, D. A. Toke, S. Mandala, and C. E. Martin, ELO2 and ELO3, homologs of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation, J. Biol. Chem, vol.272, pp.17376-17384, 1997.

S. Papanikolaou, L. Muniglia, I. Chevalot, G. Aggelis, and I. Marc, Yarrowia lipolytica as a potential producer of citric acid from raw glycerol, J Appl Microbiol, vol.92, pp.737-744, 2002.

S. Papanikolaou and G. Aggelis, Lipids of oleaginous yeasts. Part II: technology and potential applications, Eur. J. Lipid Sci. Technol, vol.113, pp.1052-1073, 2011.

C. Peters, K. D. Tsirigos, N. Shu, and A. Elofsson, Improved topology prediction using the terminal hydrophobic helices rule, Bioinformatics, vol.32, pp.1158-1162, 2016.

C. Ratledge, Regulation of lipid accumulation in oleaginous micro-organisms, Biochem Soc Trans, vol.30, pp.1047-50, 2002.

C. Ratledge, Single cell oils for the 21th century Ratledge C Single Cell Oils Champaign AOCS Press, 2005120.

H. Rösel and G. Kunze, Cloning and characterization of a TEF gene for elongation factor 1, 1995.

H. Rossler, C. Rieck, T. Delong, U. Hoja, and E. Schweizer, Functional differentiation and selective inactivation of multiple Saccharomyces cerevisiae genes involved in verylongchain fatty acid synthesis, J. Mol. Gen. Genomics, vol.269, pp.290-298, 2003.

R. Schneiter, V. Tatzer, G. Gogg, E. Leitner, and S. D. Kohlwein, Elo1p-dependent carboxy-terminal elongation of C14:1 delta (9) to C16:1 delta (11) fatty acids in Saccharomyces cerevisiae, J. Bacteriol, vol.182, pp.3655-3660, 2000.

H. Shen and J. J. Chou, MemBrain: improving the accuracy of predicting transmembrane helices, PLoS ONE, vol.3, p.2399, 2008.

M. O. Debelyy, H. W. Platta, D. Saf-fi-an, A. Hensel, and S. Thoms, Ubp15p, a ubiquitin hydrolase associated with the peroxisomal export machinery, J. Biol. Chem, vol.286, pp.28223-28234, 2011.

R. Den-haan and W. H. Van-zyl, Differential expression of the Trichoderma reesei beta-xylanase II (xyn2) gene in the xylose-fermenting yeast Pichia stipitis, Appl Microbiol Biotechnol, vol.57, issue.4, pp.521-527, 2001.

P. Dey and M. K. Maiti, Molecular characterization of a novel isolate of Candida tropicalis for enhanced lipid production, J. Appl.Microbiol, vol.114, pp.1357-1368, 2013.

F. Dittrich, D. Zajonc, K. Hühne, U. Hoja, A. Ekici et al., Fatty acid elongation in yeast. Biochemical characteristics of the enzyme system and isolation of elongation defective mutants, Eur. J. Biochem, vol.252, pp.477-485, 1998.

R. Dulermo, H. Gamboa-meléndez, T. Dulermo, F. Thevenieau, and J. Nicaud, The fatty acid transport protein Fat1p is involved in the export of fatty acids from lipid bodies in Yarrowia lipolytica, FEMS Yeast Res, vol.14, pp.883-96, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204447

T. Dulermo and J. Nicaud, Involvement of the G3P shuttle and ?-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica, Metab. Eng, vol.13, pp.482-491, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01004587

T. Dulermo and J. Nicaud, Involvement of the G3P shuttle and ?-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica, Metabolic engineering, vol.40, issue.4, pp.1096-7176, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01004587

T. Dulermo, B. Treton, A. Beopoulos, A. P. Kabran-gnankon, R. Haddouche et al., Characterization of the two intracellular lipases of Yarrowia lipolytica encoded by TGL3 and TGL4 genes: new insights into the role of intracellular lipases and lipid body organisation, Biochim. Biophys. Acta, vol.1831, pp.1486-1495, 2013.

H. El-fadaly, N. El-ahmady-el-naggar, and E. M. Marwan, Single cell oil production by an oleaginous yeast strain in a low cost cultivation medium, Res. J. Microbiol, vol.4, pp.301-313, 2009.

B. Elliott and B. Futcher, Stress resistance of yeast cells is largely independent of cell cycle phase, Yeast, vol.9, pp.33-42, 1993.

E. Fahy, D. Cotter, M. Sud, and S. Subramaniam, Lipid classification, structures and tools, Biochim Biophys Acta, vol.1811, issue.11, pp.637-684, 2011.

E. Fahy, S. Subramaniam, H. A. Brown, C. K. Glass, A. H. Merrill et al.,

Y. Russell, W. Seyama, and . Shaw, A comprehensive classification system for lipids, J. Lipid Res, vol.46, pp.839-862, 2005.

S. Fakas, C. Konstantinou, C. , and G. M. , DGK1-encoded diacylglycerol kinase activity is required for phospholipid synthesis during growth resumption from stationary phase in Saccharomyces cerevisiae, J. Biol. Chem, vol.286, pp.1464-1474, 2011.

S. Fakas, S. Papanikolaou, A. Batsos, M. Galiotou-panayotou, A. Mallouchos et al., Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina, Biomass Bioener, vol.33, pp.573-580, 2009.

Q. Fei, H. N. Chang, L. Shang, J. D. Choi, N. Kim et al., The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production, Bioresour. Technol, vol.102, issue.3, pp.2695-2701, 2011.

S. Fernando, S. Adhikari, C. Chandrapal, and N. Murali, Biorefineries: Current Status, Challenges, and Future Direction, Energy & Fuels, vol.20, pp.1727-1737, 2006.

P. Fickers, J. Destain, and P. Thonart, Methyl oleate modulates LIP2 expression in the lipolytic yeast Yarrowia lipolytica, Biotechnol Lett, vol.27, pp.1751-1754, 2005.

P. Fickers, A. Marty, and J. M. Nicaud, The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications, Biotechnol Adv, vol.29, issue.6, pp.632-644, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01001241

S. Fillet, J. Gibert, B. Suárez, A. Lara, C. Ronchel et al., Fatty alcohols production by oleaginous yeast, J. Ind. Microbiol. Biotechnol, vol.42, pp.1463-1472, 2015.

Y. Gong, J. Zhang, X. Guo, X. Wan, and Z. Liang, Identification and characterization of PtDGAT2B, an acyltransferase of the DGAT2 acyl-coenzyme A: diacylglycerol acyltransferase family in the diatom Phaeodactylum tricornutum, FEBS Lett, vol.587, pp.481-487, 2013.

Z. Gong, Q. Wang, H. Shen, C. Hu, G. Jin et al., Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production, Bioresour. Technol, vol.117, pp.20-24, 2012.

F. M. Goñi and A. Alonso, Structure and functional properties of diacylglycerols in membranes, Prog. Lipid Res, vol.38, pp.1-48, 1999.

L. Granger, P. Perlot, G. Goma, and A. Pareilleux, Efficiency of fatty acid synthesis by oleaginous yeasts: Prediction of yield and fatty acid cell content from consumed C/N ratio by a simple method, Biotechnol. Bioeng, vol.42, pp.1151-1156, 1993.

M. Groenewald, T. Boekhout, C. Neuvéglise, C. Gaillardin, P. W. Van-dijck et al., Yarrowia lipolytica : Safety assessment of an oleaginous yeast with a great industrial potential, Critical Reviews in Microbiology, vol.40, issue.3, pp.187-206, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204298

O. A. Grum-grzhimaylo, A. J. Debets, and E. N. Bilanenko, The diversity of microfungi in peatlands originated from the White Sea, Mycologia, vol.108, pp.233-254, 2016.

P. Gujjari, S. Suh, K. Coumes, and J. Zhou, Characterization of oleaginous yeasts revealed two novel species: Trichosporon cacaoliposimilis sp. nov. and Trichosporon oleaginousus sp, Mycologia, vol.103, pp.1110-1118, 2011.

N. Gunde-cimerman, A. Plemenitas, and P. Buzzini, Changes in lipids composition and fluidity of yeast plasma membrane as response to cold, Cold-adapted yeasts biodiversity, adaptation strategies and biotechnological significance, pp.225-242, 2014.

H. Guo, C. Madzak, G. Du, and J. Zhou, Mutagenesis of conserved active site residues of dihydrolipoamide succinyltransferase enhances the accumulation of ?-ketoglutarate in Yarrowia lipolytica, Appl. Microbiol. Biotechnol, vol.100, pp.649-659, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01531602

T. Hahn, K. Tag, . Riedel, S. Uhlig, K. Baronian et al., A novel estrogen sensor based on recombinant Arxula adeninivrans cells, Biosens Bioelectron, vol.21, issue.11, pp.2078-85, 2006.

J. Hall, M. Hetrick, T. French, R. Hernandez, J. Donaldson et al., Oil production by a consortium of oleaginous microorganisms grown on primary effluent wastewater, J. Chem. Technol. Biotechnol, vol.86, pp.54-60, 2011.

H. J. Ham, H. J. Rho, S. K. Shin, and H. J. Yoon, The TGL2 gene of Saccharomyces cerevisiae encodes an active acylglycerol lipase located in the mitochondria, J. Biol. Chem, vol.285, pp.3005-3013, 2010.

K. S. Ham and J. S. Rhee, Property characterization and lipid compositional analysis of lipid granules isolated from an oleaginous yeast Rhodotorula glutinis, J Food Sci Nutr, vol.3, pp.211-215, 1998.

G. Han, K. Gable, S. Kohlwein, F. Beaudoin, J. Napier et al., The Saccharomyces cerevisiae YBR159w gene encodes the 3-ketoreductase of the microsomal fatty acid elongase, J. Biol. Chem, vol.277, pp.35440-35449, 2002.

G. S. Han, W. I. Wu, and G. M. Carman, The Saccharomyces cerevisiae Lipin homolog is a Mg 2+-dependent phosphatidate phosphatase enzyme, J. Biol. Chem, vol.281, pp.9210-9218, 2006.

D. Hanahan, Studies on transformation of Escherichia coli with plasmids, J Mol Biol, vol.166, issue.4, pp.557-80, 1983.

D. Hardman, D. Mcfalls, and S. Fakas, Characterization of phosphatidic acid phosphatase activity in the oleaginous yeast Yarrowia lipolytica and its role in lipid biosynthesis, Yeast, vol.34, pp.83-91, 2017.

J. L. Harwook, The AOCS lipid Library [WWW Document, Plant Fat. acid Synth, 2010.

M. Hassan, P. J. Blanc, A. Pareilleux, and G. Goma, Production of single-cell oil from prickly-pear juice fermentation by Cryptococcus curvatus grown in batch culture, World J Microbiol Biotechnol, vol.10, p.534, 1994.

N. Hassan, M. Rafiq, M. Hayat, A. A. Shah, and F. Hasan, Psychrophilic and psychrotrophic fungi: a comprehensive review, Rev. Environ. Sci. Bio/Technol, vol.15, issue.2, pp.147-172, 2016.

J. He, Z. Yang, B. Hu, X. Ji, Y. Wei et al., Correlation of unsaturated fatty acids with the cold adaptation of Rhodotorula glutinis, Yeast, vol.32, pp.683-690, 2015.

S. A. Henry, S. D. Kohlwein, C. , and G. M. , Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae, Genetics, vol.190, pp.317-349, 2012.

A. Hernández-almanza, C. Montanez, J. Aguilar-gonzález, M. A. Martínez-Ávila, C. Rodríguez-herrera et al., Rhodotorula glutinis as source of pigments and metabolites for food industry, Food Biosci, vol.5, pp.64-72, 2014.

K. Hofmann, A superfamily of membrane-bound O-acyltransferases with implication of Wnt signalling, Trends Biochem. Sci, vol.25, pp.111-112, 2000.

C. S. Hoffman and F. Winston, A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli, Gene, vol.57, issue.2-3, pp.267-72, 1987.

C. Holkenbrink, M. I. Dam, K. R. Kildegaard, J. Beder, J. Dahlin et al., EasyCloneYALI: CRISPR/Cas9-based synthetic toolbox for engineering of the yeast Yarrowia lipolytica, Biotechnol J, 2018.

J. C. Holthuis and A. K. Menon, Lipid landscapes and pipelines in membrane homeostasis, Nature, vol.510, pp.48-57, 2014.

Y. Hou, R. P. Learmonth, and K. Watson, Intrinsic and induced resistance to oxidative and heat stress is dependent on mitochondrial function, Proc Aust Soc Biochem and Mol Biol, vol.23, p.52, 1991.

C. Hu, S. Wu, Q. Wang, G. Jin, H. Shen et al., Simultanious utilization of glucose and xylose for lipid production by Trichosporon cutaneum, Biotechnol. Biofuels, vol.4, pp.25-32, 2011.

L. Huang, B. Zhang, B. Gao, and G. Sun, Application of fishmeal wastewater as a potential lowcost medium for lipid production by Lipomyces starkeyi HL, Environ. Technol, vol.32, 2011.

X. Huang, J. Liu, and R. C. Dickson, Down-Regulating Sphingolipid Synthesis Increases Yeast Lifespan, PLoS Genet, vol.8, issue.2, p.1002493, 2012.

M. S. Hussain, L. Gambill, S. Smith, and M. A. Blenner, Engineering promoter architecture in oleaginous yeast Yarrowia lipolytica, ACS Synth Biol, vol.5, pp.213-236, 2016.

T. Iida, T. Sumita, A. Ohta, and M. Takagi, The cytochrome P450ALK multigene family of an nalkane-assimilating yeast, Yarrowia lipolytica: cloning and characterization of genes coding for new CYP52 family members, Yeast, vol.16, pp.1077-1087, 2000.

M. Ivan?i?-?antek, E. Mi?kulin, M. Petrovi?, S. Beluhan, and B. ?antek, Effect of carbon and nitrogen source concentrations on the growth and lipid accumulation of yeast Trichosporon oleaginous in continuous andbatch culture, J. Chem. Technol. Biotechnol, vol.92, pp.1620-1629, 2017.

R. Iwama, S. Kobayashi, A. Ohta, H. Horiuchi, and R. Fukula, Fatty aldehyde dehydrogenase multigene family involved in the assimilation of n-alkanes in Yarrowia lipolytica, J. Biol. Chem, vol.289, pp.33275-33286, 2014.

N. Jacquier, V. Choudhary, M. Mari, A. Toulmay, F. Reggiori et al., Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae, J. Cell Sci, vol.124, pp.2424-2437, 2011.

T. Jako?i?nas, A. S. Rajkumar, J. Zhang, D. Arsovska, A. Rodriguez et al., CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae, ACS Synth. Biol, vol.4, pp.1226-1234, 2015.

D. A. Jankowska, K. Faulwasser, and A. Trautwein-schult, Arxula adeninivorans recombinant adenine deaminase and its application in the production of food with low purine content, J Mol Microbiol Biotechnol, vol.115, pp.1134-1146, 2013.

D. A. Jankowska, A. Trautwein-schult, A. Cordes, P. Hoferichter, C. Klein et al., Arxula adeninivorans xanthine oxidoreductase and its application in the production of food with low purine content, J Appl Microbiol, vol.115, pp.796-807, 2013.

Y. Jiang, M. J. Vasconcelles, S. Wretzel, A. Light, C. E. Martin et al., MGA2 is involved in the low-oxygen response element-dependent hypoxic induction of genes in Saccharomyces cerevisiae, Mol. Cell. Biol, vol.21, pp.6161-6169, 2001.

T. M. Jiru, M. Groenewald, C. Pohl, N. Steyn, N. Kiggundu et al., Optimization of cultivation conditions for biotechnological production of lipid by Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae ) SY89 for biodiesel preparation, Chemistry Central Journal, vol.12, p.91, 2018.

E. A. Johnson and C. Echavarri-erasun, The Yeasts, a Taxonomic Study, 2011.

V. Johnson, M. Singh, V. S. Saini, V. R. Sista, and N. K. Yadav, Effect of pH on lipid accumulation by an oleaginous yeast: Rhodotorula glutinis IIP-30, World J Microbiol Biotechnol, vol.8, issue.4, pp.382-384, 1992.

B. Jost, M. Holz, A. Aurich, G. Barth, T. Bley et al., The influence of oxygen limitation for the production of succinic acid with recombinant strains of Yarrowia lipolytica, Applied Microbiology and Biotechnology, vol.99, issue.4, pp.1675-1686, 2015.

A. B. Juanssilfero, P. Kahar, R. L. Amza, N. Miyamoto, H. Otsuka et al., Effect of inoculum size on single-cell oil production from glucose and xylose using oleaginous yeast Lipomyces starkeyi, J. Biosci. Bioeng, 2017.

A. B. Juanssilfero, P. Kahar, R. L. Amza, N. Miyamoto, H. Otsuka et al., Selection of oleaginous yeasts capable of high accumulation during challenges from inhibitory chemical compounds, Biochemical Engieering Journal, vol.137, pp.182-191, 2018.

C. Kaiser, S. Uhlig, T. Gerlach, M. Korner, K. Simon et al., Evaluation and validation of a novel Arxula adeninivorans estrogen screen (nAES) assay and its application in analysis of wastewater, seawater, brackish water and urine, Sci Total Environ, vol.408, pp.6017-6026, 2010.

S. Kajiwara, Molecular cloning and characterization of the delta9 fatty acid desaturase gene and its promoter region from Saccharomyces kluyveri, FEMS Yeast Res, vol.2, pp.333-339, 2002.

P. Kaur, A. Lingner, B. Singh, E. Böer, J. Polajeva et al., APHO1 from the yeast Arxula adeninivorans encodes an acid phosphatase of broad substrate specificity, Antonie Van Leuuwenhoek, vol.91, pp.45-55, 2007.

E. J. Kerkhoven, K. R. Pomraning, S. E. Baker, and J. Nielsen, Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica, npj Systems Biology and Applications, vol.2, 2016.

S. Kitcha and B. Cheirsilp, Screening of oleaginous yeasts and optimization for lipid production using crude glycerol as a carbon source, Energy Procedia, vol.9, pp.274-82, 2011.

L. Klug and G. Daum, Yeast lipid metabolism at a glance, FEMS Yeast Research, vol.14, issue.3, pp.369-388, 2014.

A. Knoll, S. Bartsch, B. Husemann, P. Engel, K. Schroer et al., High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors, J Biotechnol, vol.132, pp.167-179, 2007.

S. D. Kohlwein, Triacylglycerol homeostasis: insights from yeast, J Biol Chem, vol.285, issue.21, pp.15663-15667, 2010.

G. Kunze, C. Gaillardin, M. Czernicka, P. Durrens, T. Martin et al., The complete genome of Blastobotrys (Arxula) adeninivorans LS3-a yeast of biotechnological interest, Biotechnol Biofuels, vol.7, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-00988609

C. F. Kurat, K. Natter, J. Petschnigg, H. Wolinski, K. Scheuringer et al., Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast, J. Biol. Chem, vol.281, pp.491-500, 2006.

C. P. Kurtzman and C. J. Robnett, Multigene phylogenetic analysis of the Trichomonascus, Wickerhamiella and Zygoascus yeast clades, and the proposal of Sugiyamaella gen. nov. and 14 new species combinations, FEMS Yeast Res, vol.7, pp.141-151, 2007.

C. P. Kurtzmann and J. W. Fell, The yeasts, a taxonomic study, vol.3, 2011.

Z. Lazar, T. Dulermo, C. Neuveglise, . Crutz-le, A. M. Coq et al., Hexokinase-A limiting factor in lipid production from fructose in Yarrowia lipolytica, Metab Eng, vol.26, pp.89-99, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204422

Y. Leblond, N. Mouz, A. Marty, and J. Uribelarrea, Method for producing lipase, transformed Yarrowia lipolytica cell capable of producing said lipase and their uses. United States Patent Application, 2012.

R. Ledesma-amaro, R. Dulermo, X. Niehus, and J. M. Nicaud, Combining metabolic engineering and process optimization to improve production and secretion of fatty acids, Metab Eng, vol.38, pp.38-46, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01532648

J. J. Lee, L. Chen, B. Cao, and W. N. Chen, Engineering Rhodosporidium toruloides with a membrane transporter facilitates production and separation of carotenoids and lipids in a bi-phasic culture, Appl. Microbiol. Biotechnol, vol.100, pp.869-877, 2016.

Y. Y. Lee, L. Prashant, and R. W. Torget, Dilute-acid hydrolysis of lignocellulosic biomass, Adv. Biochem. Eng. Biotechnol, vol.65, pp.93-115, 1999.

D. E. Leiva-candia, S. Pinzi, M. D. Redel-macías, A. Koutinas, C. Webb et al., The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel, Fuel, vol.123, pp.33-42, 2014.

Y. Li, M. Dietrich, and R. D. Schmid, Identification and functional expression of a ?9-fatty acid desaturase from Psychrobacter urativorans in Esherichia coli, Lipids, vol.43, pp.207-213, 2008.

Y. Li, Z. Zhao, and F. Bai, High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture, Enzyme Microb. Technol, vol.41, pp.312-317, 2007.

Z. J. Li, K. Qiao, N. Liu, and G. Stephanopoulos, Engineering Yarrowia lipolytica for poly-3-hydroxybutyrate production, J. Ind. Microbiol. Biotechnol, vol.44, issue.4-5, pp.605-612, 2017.

S. H. Liang, H. Wu, R. R. Wang, Q. Wang, T. Shu et al., The TORC1-Sch9-Rim15 signaling pathway represses yeast-to-hypha transition in response to glycerol availability in the oleaginous yeast Yarrowia lipolytica, Mol. Microbiol, vol.104, pp.553-567, 2017.

L. Liu, K. Markham, J. Blazeck, N. Zhou, D. Leon et al., Surveying the lipogenesis landscape in Yarrowia lipolytica through understanding the function of a Mga2p regulatory protein mutant, Metabol Eng, vol.31, pp.102-111, 2015.

B. Liu and Z. K. Zhao, Biodiesel production by direct methanolysis of oleaginous microbial biomass, J. Chem. Technol. Biotechnol, vol.82, pp.775-780, 2007.

H. Liu, C. Madzak, M. Sun, L. Ren, P. Song et al., Engineering Yarrowia lipolytica for arachidonic acid production through rapid assembly of metabolic pathway, Biochem. Eng. J, vol.119, pp.52-58, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01530788

Q. Liu, R. M. Siloto, R. Lehner, S. J. Stone, and R. J. Weselake, Acyl-CoA:diacylglycerol acyltransferase: Molecular biology, biochemistry and biotechnology, Prog Lipid Res, vol.51, p.3502377, 2012.

Y. Liu, Y. Wang, H. Liu, and J. Zhang, Enhanced lipid production with undetoxified corncob hydrolysate by Rhodotorula glutinis using a high cell density culture strategy, Bioresour. Technol, vol.180, pp.32-39, 2015.

Y. Liu, S. A. Yap, C. M. Koh, J. , and L. , Developing a set of strong intronic promoters for robust metabolic engineering in oleaginous Rhodotorula (Rhodosporidium) yeast species, Microb. Cell Fact, vol.15, 0200.

Y. B. Liu, C. M. Koh, L. H. Sun, M. M. Hlaing, M. G. Du et al., Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides, Appl Microbiol Biotechnol, vol.97, pp.719-748, 2013.

M. Lopes, N. Gomes, C. Goncalves, M. A. Coelho, M. Mota et al., Yarrowia lipolytica lipase production enhanced by increased air pressure, Lett Appl Microbiol, vol.46, issue.2, pp.255-260, 2008.

E. Lorenz, D. Runge, A. Marbà-ardébol, M. Schmacht, U. Stahl et al., Systematic development of a txo stage fed-batch process for lipid accumulation in Rhodotorula glutinis, Journal of Biotechnology J Biotechnol, vol.246, pp.4-15, 2017.

S. F. Lu, I. I. Tolstorukov, S. Anamnart, Y. Kaneko, and S. Harashima, Cloning, sequencing and functional analysis of H-OLE1 gene encoding delta9-fatty acid desaturase in Hansenula polymorpha, Appl Microbiol Biotechnol, vol.54, pp.499-509, 2000.

Y. S. Luo, J. Nicaud, P. P. Van-veldhoven, and T. Chardot, The acyl-CoA oxidases from the yeast Yarrowia lipolytica : characterization of Aox2 p, Arch. Biochem. Biophys, vol.407, pp.32-38, 2002.

Y. S. Luo, H. J. Wang, K. V. Gopalan, D. K. Srivastava, J. M. Nicaud et al., Purification and characterization of the recombinant form of Acyl CoA oxidase 3 from the yeast Yarrowia lipolytica, Arch. Biochem. Biophys, vol.384, pp.1-8, 2000.

S. Michely, C. Gaillardin, J. Nicaud, and C. Neuvéglise, Comparative Physiology of Oleaginous Species from the Yarrowia Clade, PLoS ONE, vol.8, issue.5, p.63356, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01190562

S. Michely, Dynamique des génomes et évolution du métabolisme lipidique chez les levures du clade Yarrowia. Thèse de doctorat Science de la vie et santé Paris, 2014.

C. Micolonghi, D. Ottaviano, E. Di-silvio, G. Damato, H. J. Heipieper et al., A dual signaling pathway for the hypoxic expression of lipid genes, dependent on the glucose sensor Rag4, is revealed by the analysis of the KlMGA2 gene in Kluyveromyces lactis, Microbiology, vol.158, pp.1734-1744, 2012.

W. J. Middelhoven, A. Coenen, B. Kraakman, and M. D. Sollewijn-gelpke, Degradation of some phenols and hydroxybenzoates by the imperfect ascomycetous yeasts Candida parapsilosis and Arxula adeninivorans: evidence for an operative gentisate pathway, Antonie Van Leeuwenhoek, vol.62, pp.181-187, 1992.

W. J. Middelhoven, I. M. De-jonge, and M. Winter, Arxula adeninivorans, a yeast assimilating many nitrogenous and aromatic compounds, Antonie van Leeuwenhoek, vol.60, pp.129-137, 1991.

W. J. Middelhoven, . Hoogkamer-te, M. V. Niet, and N. J. Kreger-van-rij, Trichosporon adeninovorans sp. nov., a yeast species utilizing adenine, xanthine, uric acid, putrescine and primary nalkylamines as the sole source of carbon, nitrogen and energy, Antonie Van Leeuwenhoek, vol.50, pp.369-378, 1984.

W. J. Middelhoven and W. Van-doesburg, Utilization of hexamethylenetetramine (urotropine) by bacteria and yeasts, Antonie Leeuwenhoek, vol.91, issue.2, pp.191-196, 2007.

A. Misra, K. Khan, A. Niranjan, P. Nath, and V. A. Sane, Overexpression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana, Phytochemistry, vol.96, pp.37-45, 2013.

K. Mlickova, E. Roux, K. Athenstaedt, S. Andrea, G. Daum et al., Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica, Appl Environ Microbiol, vol.70, pp.3918-3942, 2004.

M. T. Moreira, G. Feijoo, and J. M. Lema, Fungal bioreactors: applications to white-rot fungi, Rev Environ Sci Biotechnol, vol.2, pp.247-259, 2003.

K. Mori, R. Iwama, S. Kobayashi, H. Horiuchi, R. Fukuda et al., Transcriptional repression by glycerol of genes involved in the assimilation of n-alkanes and fatty acids in yeast Yarrowia lipolytica, FEMS Yeast Res, vol.13, pp.233-240, 2013.

G. Munch, R. Sestric, R. Sparling, D. B. Levin, and N. Cicek, Lipid production in the undercharacterized oleaginous yeasts, Rhodosporidium babjevae and Rhodosporidium diobovatum, from biodiesel-derived waste glycerol, Bioresour. Technol, vol.185, pp.49-55, 2015.

Y. Nakagawa, N. Sakumoto, Y. Kaneko, and S. Harashima, Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae, Biochem Biophys Res Comm, vol.271, pp.707-713, 2002.

Y. Nakagawa, S. Sugioka, Y. Kaneko, and S. Harashima, O2R, a novel regulatory element mediating Rox1p-independent O2 and unsaturated fatty acid repression of OLE1 in Saccharomyces cerevisiae, J. Bacteriol, vol.183, pp.745-751, 2001.

J. Nielsen, Systems biology of lipid metabolism: from yeast to human, FEBS Lett, vol.583, pp.3905-3913, 2009.

A. Ochoa-estopier, Analyses systématique des bascules métaboliques chez les levures d'intérêt industriel: application aux bascules du métabolisme lipidique chez Yarrowia lipolytica, 2012.

K. Ochsenreither, C. Glück, T. Stressler, L. Fischer, and C. Syldatk, Production strategies and applications of microbial single cell oils, Frontiers in Microbiology, vol.7, p.1539, 2016.

P. Oelkers, D. Cromley, M. Padamsee, J. T. Billheimer, and S. L. Sturley, The DGA1 gene determines a second triglyceride synthetic pathway in yeast, J Biol Chem, vol.277, issue.11, pp.8877-8881, 2002.

P. Oelkers, A. Tinkelenberg, N. Erdeniz, D. Cromley, J. T. Billheimer et al., A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast, J Biol Chem, vol.275, pp.15609-15621, 2000.

E. Oguri, K. Masaki, T. Naganuma, and H. Iefuji, Phylogenetic and biochemical characterization of the oil-producing yeast Lipomyces starkeyi, Antonie Van Leeuwenhoek, vol.101, pp.359-68, 2012.

C. S. Oh and C. E. Martin, Candida albicans Spt23p controls the expression of the Ole1p 9 fatty acid desaturase and regulates unsaturated fatty acid biosynthesis, J. Biol. Chem, vol.281, pp.7030-7039, 2006.

C. S. Oh, D. A. Toke, S. Mandala, and C. E. Martin, ELO2 and ELO3, homologs of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation, J. Biol. Chem, vol.272, pp.17376-17384, 1997.

M. Olstorpe, J. Schnürer, and V. Passoth, Screening of yeast strains for phytase activity, FEMS Yeast Research, vol.9, pp.478-488, 2009.

M. Opekarová and W. Tanner, Specific lipid requirements of membrane protein-a putative bottleneck in heterologous expression, Biochim Biophys Acta, vol.1610, pp.11-12, 2003.

M. Palma, A. Goffeau, I. Spencer-martins, and P. V. Baret, A phylogenetic analysis of the sugar porters in hemiascomycetous yeasts, J Mol Microbiol Biotechnol, vol.12, pp.241-248, 2007.

S. Papanikolaou, I. Chevalot, M. Komaitis, G. Aggelis, and I. Marc, Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats, Antonie van Leeuwenhoek, vol.80, pp.215-239, 2001.

S. Papanikolaou, I. Chevalot, M. Komaitis, G. Aggelis, and I. Marc, Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures, Appl Microbiol Biotechnol, vol.58, pp.308-312, 2002.

S. Papanikolaou, M. Galiotou-panayotou, I. Chevalot, M. Komaitis, I. Marc et al., Influence of glucose and saturated free-fatty acid mixtures on citric acid and lipid production by Yarrowia lipolytica, Current Microbiology, vol.52, issue.2, pp.134-142, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00077555

L. W. Parks and W. M. Casey, Physiological implications of sterol biosynthesis in yeast, Ann. Rev. Mcrobiol, vol.49, pp.95-116, 1995.

F. Pascual and G. M. Carman, Phosphatidate phosphatase, a key regulator of lipid homeostasis, Biochim. Biophys. Acta, vol.1831, pp.514-522, 2013.

R. A. Paselk, Fat Metabolism. Introductory Biochemistry, 2006.

V. Passoth, Lipids of Yeasts and Filamentous Fungi and Their Importance for Biotechnology, Biotechnology of Yeasts and Filamentous Fungi, 2017.

O. Pastinen, A. Nyyssölä, V. Pihlajaniemi, and M. H. Sipponen, Fractionation process for the protective isolation of ergosterol and trehalose from microbial biomass, Process Biochem, vol.58, pp.217-223, 2017.

K. Patterson, J. Yu, J. Landberg, I. Chang, F. Shavarebi et al., Functional genomics for oleaginous yeast Yarrowia lipolytica, Metab. Eng, vol.48, pp.184-196, 2018.

L. Pereira, S. Silva, B. Ribeiro, M. Henriques, and J. Azeredo, Influence of glucose concentration on the structure and quality of biofilms formed by Candida parapsilosis, FEMS Yeast Res, vol.15, p.43, 2015.

B. Ploier, U. Petrovic, and G. Daum, Lipid metabolism and Lipidomics. in Molecular Mechanisms in, Yeast Carbon Metabolism. 1 Aufl, pp.169-215, 2014.

Y. Poirier, V. Antonenkov, T. Glumoff, and J. Hiltunen, Peroxisomal ?-oxidation -a metabolic pathway with multiple functions, Biochim. Biophys. Acta, vol.1763, 1413.

G. Prelich, Gene Overexpression: Uses, Mechanisms, and Interpretation, Genetics, vol.190, issue.3, pp.841-854, 2012.

B. Pscheidt and A. Glieder, Yeast cell factories for fine chemical and API production, Microbial Cell Factories, vol.7, p.25, 2008.

J. Pu, C. W. Ha, S. Zhang, J. P. Jung, and W. K. Huh, Interactomic study on interaction between lipid droplets and mitochondria, Protein Cell, vol.2, pp.487-496, 2011.

F. Puig-castellví, C. Bedia, I. Alfonso, B. Piña, and R. Tauler, Lipidomic Patterns Linked to Thermal Acclimation in Saccharomyces cerevisiae, J. Proteome Res, vol.17, 2018.

K. Qiao, S. H. Imama-abidi, H. Liu, H. Zhang, S. Chakraborty et al., Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica, Metab Eng, vol.29, pp.56-65, 2015.

K. Qiao, T. M. Wasylenko, K. Zhou, P. Xu, and G. Stephanopoulos, Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism, Nat. Biotechnol, vol.35, pp.173-177, 2017.

L. Qin, L. Liu, A. Zeng, and D. Wei, From low-cost substrates to single cell oils synthesized by oleaginous yeasts, Bioresource Technol, vol.245, pp.1507-1519, 2017.
DOI : 10.1016/j.biortech.2017.05.163

S. Rahman, P. Arbter, M. Popovic, R. Bajpai, and R. Subramaniam, Microbial lipid production from lignocellulosic hydrolyzates: effect of carbohydrate mixtures and acid-hydrolysis byproducts on cell growth and lipid production by Lipomyces starkeyi, J. Chem. Technol. Biotechnol, vol.92, 1980.

K. Rajakumar, S. L. Greenspan, S. B. Thomas, and M. F. Holick, Solar ultraviolet radiation and vitamin D: a historical perspective, Am. J. Public Health, vol.97, pp.1746-1754, 2007.

S. Rajakumari and G. Daum, Multiple functions as lipase, steryl ester hydrolase, phospholipase, and acyltransferase of Tgl4p from the yeast Saccharomyces cerevisiae, J. Biol. Chem, vol.285, pp.15769-15776, 2010.

C. Ratledge, Regulation of lipid accumulation in oleaginous microorganisms, Biochem Soc Trans, vol.30, pp.1047-50, 2002.

C. Ratledge, Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production, Biochimie, vol.86, pp.807-822, 2004.

C. Ratledge and J. P. Wynn, The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms, Adv. Appl. Microbiol, vol.51, pp.1-51, 2002.

M. Rauter, M. Schwarz, K. Becker, K. Baronian, R. Bode et al., Synthesis of benzyl ?-D-galactopyranoside by transgalactosylation using a ?-galactosidase produces by the over expression of the Klyveromyces lactis LAC4 gene in Arxula adeninivorans, J. Mol. Catal. B: Enzym, vol.108, pp.72-76, 2013.

B. S. Razavi, S. Liu, and Y. Kuzyakov, Hot experience for cold-adapted microorganisms: Temperature sensitivity of soil enzymes, Soil Biol. Biochem, vol.105, pp.236-243, 2017.

W. R. Riekhof, J. Wu, J. L. Jones, and D. R. Voelker, Identification and characterization of the major lysophosphatidylethanolamine acyltransferase in Saccharomyces cerevisiae, J Biol Chem, vol.282, pp.28344-28352, 2007.

A. M. Romero, T. Jordá, N. Rozès, M. T. Martinez-pastor, and S. Puig, Regulation of yeast fatty acid desaturase in response to iron defiency, Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, pp.657-668, 2018.

C. Ronda, J. Maury, T. Jako?i?nas, S. A. Jacobsen, S. M. Germann et al., CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae, Microb. Cell Fact, vol.14, p.97, 2015.

H. Rösel and G. Kunze, Cloning and characterisation of a TEF gene for elongation factor1a from the yeast Arxula adeninivorans, Curr Genet, vol.28, pp.360-366, 1995.

H. Rösel and G. Kunze, Identification of a group-I intron within the 25S rDNA from the yeast Arxula adeninivorans, Yeast, vol.12, pp.1201-1208, 1996.

M. Rossi, A. Amaretti, S. Raimondi, and A. Leonardi, Getting lipids for Biodiesel Production from Oleaginous fungi, Biodiesel-Feedstocks and Processing Technologies, 2011.
DOI : 10.5772/25864

URL : https://www.intechopen.com/citation-pdf-url/22994

M. Rossi, P. Buzzini, L. Cordisco, A. Amaretti, M. Sala et al., Growth, lipid accumulation, and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts, Microb Ecol, vol.69, pp.363-72, 2009.

H. Rossler, C. Rieck, T. Delong, U. Hoja, and E. Schweizer, Functional differentiation and selective inactivation of multiple Saccharomyces cerevisiae genes involved in very-longchain fatty acid synthesis, J. Mol. Gen. Genomics, vol.269, pp.290-298, 2003.

J. Ruiz-herrera and R. Sentandreu, Different effectors of dimorphism in Yarrowia lipolytica, Arch Microbiol, vol.178, pp.477-483, 2002.

N. J. Russell, Membrane components and cold sensing, Psychrophiles: from biodiversity to biotechnology, pp.177-190, 2008.

A. C. Rustan and C. A. Drevon, Fatty acids: structures and properties, 2005.

O. W. Ryan, J. M. Skerker, M. J. Maurer, X. Li, J. C. Tsai et al., Selection of chromosomal DNA libraries using a multiplex CRISPR system, p.3703, 2014.

S. Ryckaert and G. Lerondel, Methods and compositions for displaying a polypeptide on a yeast cell surface. International Patent Application, 2011.

A. Rywinska, P. Juszczyk, and M. Wojtatowicz, Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications, Biomass Bioenergy, vol.48, issue.4, pp.148-66, 2013.

R. Sagnak, S. Cochot, C. Molina-jouve, J. Nicaud, and S. E. Guillouet, Modulation of the glycerol phosphate availability led to concomitant reduction in the citric acid excretion and increase in lipid content and yield in Yarrowia lipolytica, J Biotechnol, vol.265, pp.40-45, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01886449

S. Saha, B. Enugutti, S. Rajakumari, and R. Rajasekharan, Cytosolic Triacylglycerol Biosynthetic Pathway in Oilseeds. Molecular Cloning and Expression of Peanut Cytosolic Diacylglycerol Acyltransferase, Plant Physiology, vol.141, p.153321543, 2006.

D. Salunke, R. Manglekar, R. Gadre, S. Nene, and A. M. Harsulkar, Production of polyunsaturated fatty acids in recombinant Lipomyces starkeyi through submerged fermentation, Bioprocess Biosyst. Eng, vol.38, pp.1407-1414, 2015.

Y. Sanchez, J. Taulien, K. A. Borkovich, and S. Lindquist, Hsp104 is required for tolerance to many forms of stress, EMBO J, vol.11, pp.2357-2364, 1992.

L. Sandager, M. H. Gustavsson, U. Sta?hlsta?hl, A. Dahlqvist, E. Wiberg et al., Storage lipid synthesis is non-essential in yeast, J. Biol. Chem, vol.277, pp.6478-6482, 2002.

J. Sangwallek, Y. Kaneko, T. Tsukamoto, M. Marui, M. Sugiyama et al., Cloning and functional analysis of HpFAD2 and HpFAD3 genes encoding ?12-and ?15-fatty acid desaturases in Hansenula polymorpha, Gene, vol.533, pp.110-118, 2014.

K. Sano, H. Fukuhara, and Y. Nakamura, Phytase of the yeast Arxula adeninivorans, Biotechnol Lett, vol.21, pp.33-38, 1999.

R. Santomartino, L. Riego-ruiz, and M. M. Bianchi, Three, two, one yeast fatty acid desaturases: regulation and function, World J Microbiol Biotechnol, vol.33, p.89, 2017.

T. Satyanarayana and G. Kunze, Yeast Biotechnology: Diversity and Applications, vol.746, p.1402082916, 2010.

V. Saxena, C. D. Sharma, S. D. Bhagat, V. S. Saini, and D. K. Adhikari, Lipid and fatty acid biosynthesis by Rhodotorula minuta, J. Am Oil Chem. Soc, vol.75, pp.501-505, 1998.

R. Schneiter, M. Hitomi, A. S. Ivessa, E. Fasch, S. D. Kohlwein et al., A yeast acetyl coenzyme A carboxylase mutant links very-long-chain fatty acid synthesis to the structure and function of the nuclear membrane-pore complex, Mol. Cell. Biol, vol.16, pp.7161-7172, 1996.

R. Schneiter, V. Tatzer, G. Gogg, E. Leitner, and S. D. Kohlwein, Elo1p-dependent carboxyterminal elongation of C14:1 delta (9) to C16:1 delta (11) fatty acids in Saccharomyces cerevisiae, J. Bacteriol, vol.182, pp.3655-3660, 2000.

H. Schuster, B. Rautenstrauss, M. Mittag, D. Stratmann, and E. Schweizer, Substrate and product binding sites of yeast fatty acid synthase: stoichiometry and binding kinetics of wild-type and in vitro mutated enzymes, Eur. J. Biochem, vol.228, pp.417-424, 1995.

C. Schwartz, M. Shabbir-hussain, K. Frogue, M. Blenner, and I. Wheeldon, Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica, ACS Synth. Biol, vol.6, pp.402-409, 2017.

J. Seip, R. Jackson, H. He, Q. Zhu, and S. Hong, Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica, Appl Environ Microbiol, vol.79, pp.7360-7370, 2013.

Y. Seo, . Hwan, S. Han, and J. I. Han, Economic biodiesel production using algal residue as substrate of lipid producing yeast Cryptococcus curvatus, Renew. Energy, vol.69, 2014.

Q. Sha, A comparative study on four oleaginous yeasts on their lipid accumulating capacity, pp.1-29, 2013.

Z. Shao, H. Zhao, and H. Zhao, DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways, Nucleic Acids Res, vol.37, p.16, 2009.

P. L. Sharpe, R. W. Ye, and Q. Q. Zhu, Carotenoid production in a recombinant oleaginous yeast. International Patent Application WO, pp.73367-73368, 2008.

H. Shen, P. N. Heacock, C. J. Clancey, and W. Dowhan, The CDS1 gene encoding CDPdiacylglycerol synthase in Saccharomyces cerevisiae is essential for cell growth, J Biol Chem, vol.271, pp.789-795, 1996.

S. Shi, Y. Liang, M. M. Zhang, E. L. Ang, and H. Zhao, A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae, Metab. Eng, vol.33, pp.19-27, 2016.

H. Shmeeda, P. Kaspler, J. Shleyer, R. Honen, M. Horowitz et al., Heat acclimation in rats: modulation via lipid polyunsaturation, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.283, pp.389-399, 2002.

J. Shrader, M. M. Etschmann, D. Sell, J. Hilmer, and J. Rabenhorst, Applied biocatalysis for the synthesis of natural flavour compounds-current industrial processes and future prospects, Biotechnology letters, vol.26, issue.6, pp.463-472, 2004.

A. M. Silverman, K. Qiao, P. Xu, and G. Stephanopoulos, Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica, Appl. Microbiol. Biotechnol, vol.100, issue.8, pp.3781-3798, 2016.

G. Singh, A. Jawed, D. Paul, K. K. Bandyopadhyay, A. Kumari et al., Concomitant Production of Lipids and Carotenoids in Rhodosporidium toruloides under Osmotic Stress Using Response Surface Methodology, Frontiers in Microbiology, vol.7, 2016.

M. Sinigaglia, F. Gardini, and M. E. Guerzoni, Relationship between thermal behaviour, fermentation performance and fatty acid composition in two strains of Saccaroymyces cerevisiae, Appl. Microbiol. Biotechnol, vol.39, pp.593-5988, 1993.

I. Sitepu, L. Ignatia, A. Franz, D. Wong, S. Faulina et al., An improved highthroughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species, J Microbiol Methods, vol.91, pp.321-329, 2012.

I. R. Sitepu, M. Jin, J. E. Fernandez, L. Da-costa-sousa, V. Balan et al., Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover, Appl. Microbiol. Biotechnol, vol.98, issue.17, pp.7645-7657, 2014.

I. R. Sitepu, R. Sestric, L. Ignatia, D. Levin, . Bruce et al., Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeasts species, Bioresour. Technol, vol.144, pp.360-369, 2013.

C. M. Souza and H. Pichler, Lipid requirements for endocytosis in yeast, Biochim Biophys Acta, vol.1771, pp.442-454, 2007.

M. Spanova, D. Zweytick, K. Lohner, L. Klug, E. Leitner et al., Influence of squalene on lipid particle/droplet and membrane organization in the yeast Saccharomyces cerevisiae, Biochim Biophys Acta, vol.4, pp.647-653, 2012.

E. L. Steels, R. P. Learmonth, and K. Watson, Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology, vol.140, pp.569-76, 1994.

G. Steinborn, T. Wartmann, G. Gellissen, and G. Kunze, Construction of an Arxula adeninivorans host-vector system based on trp1 complementation, J. Biotechnol, vol.127, pp.392-401, 2007.

C. Stöckmann, T. G. Palmen, K. Schroer, G. Kunze, G. Gellissen et al., Definition of culture conditions for Arxula adeninivorans, a rational basis for studying heterologous gene expression in this dimorphic yeast, Journal of Industrial Microbiology and Biotechnology, vol.41, pp.965-976, 2014.

T. Stressler, T. Eisele, J. Rost, E. M. Haunschild, A. Kuhn et al., Production of polyunsaturated fatty acids by Mortierella alpina using submerse and solid state fermentation, Chem. Ingenieur Tech, vol.85, pp.318-322, 2013.

K. Strijbis, C. W. Van-roermund, J. Van-den-burg, . Van-den, M. Berg et al., Contribution of carnitine acetyltransferase to intracellular acetyl unit transport in Candida albicans, J.Biol. Chem, vol.285, pp.24335-24346, 2010.

M. Sun, C. Madzak, H. Liu, P. Song, L. Ren et al., Engineering Yarrowia lipolytica for efficient ?-linolenic acid production, Biochem. Eng. J, vol.117, pp.172-180, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01530787

S. Sutanto, S. Zullaikah, P. L. Tran-nguyen, S. Ismadji, and Y. Ju, Lipomyces starkeyi: Its current status as a potential oil producer, Fuel Processing Technology, vol.177, pp.39-55, 2018.

M. Suutari, K. Liukkonen, and S. Laakso, Temperature adaptation in yeast: the role of fatty acids, J Gen Microbiol, vol.136, pp.1469-1474, 1990.

M. Tai and G. Stephanopoulos, Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production, Metab Eng, vol.15, pp.1-9, 2013.

X. Tang, H. Chen, Y. Q. Chen, W. Chen, V. Garre et al., Comparison of biochemical activities between high and low lipid-producing strains of Mucor circinelloides: an explanation for the high oleaginicity of strain WJ11, PLoS ONE, vol.10, 2015.

H. Tapiero, D. M. Townsend, and K. D. Tew, The role of carotenoids in the prevention of human pathologies, Biomed Pharmacother, vol.58, pp.100-110, 2004.

O. Tehlivets, K. Scheuringer, and S. D. Kohlwein, Fatty acid synthesis and elongation in yeast, Biochim Biophys Acta, vol.1771, pp.255-270, 2007.

F. Thevenieau, Metabolic engineering of the yeast Yarrowia lipolytica for the production of longchain dicarboxylic acids from renewable oil feedstock, 2006.

F. Thevenieau, M. T. Le-dall, B. Nthangeni, S. Mauersberger, R. Marchal et al., Characterization of Yarrowia lipolytica mutants affected in hydrophobic substrate utilization, Fungal Genet Biol, vol.44, pp.531-542, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00164177

V. I. Titorenko, J. M. Nicaud, H. Wang, H. Chan, and R. A. Rachubinski, Acyl-CoA oxidase is imported as a heteropentameric, cofactor-containing complex into peroxisomes of Yarrowia lipolytica, J Cell Biol, vol.156, pp.481-94, 2002.

D. Toke and C. Martin, J. Biol. Chem, vol.271, pp.18413-18422, 1996.

M. J. Torija, G. Beltran, M. Novo, M. Poblet, J. M. Guillamón et al., Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine, Int. J. Food Microbiol, vol.85, pp.127-136, 2003.

H. Uemura, Synthesis and Production of Unsaturated and Polyunsaturated Fatty Acids in Yeast: Current State and Perspective, Applied Microbiology and Biotechnonlogy, vol.95, p.1, 2012.


J. P. Van-der-walt, The Lipomycetaceae, a model family for phylogenetic studies, Antonie Van Leeuwenhoek, vol.62, issue.4, pp.3-6072, 1992.

J. P. Van-der-walt, M. T. Smith, and Y. Yamada, Arxula gen. nov. (Candidaceae), a new anamorphic, arthroconidial yeast genus, Antonie Van Leeuwenhoek, vol.57, pp.59-61, 1990.

M. P. Veiga, J. L. Arrondo, F. M. Goñi, and A. Alonso, Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases, Biophys J, vol.76, pp.342-350, 1999.

S. C. Viñarta, M. V. Angelicola, J. M. Barros, P. M. Fernández, W. Mac-cormak et al., Oleaginous yeasts from Antarctica: screening and preliminary approach on lipid accumulation, J. Basic Microbiol, vol.56, pp.1360-1368, 2016.

G. M. Walker, Yeast Physiology and Biotechnology, 1998.

T. C. Walther and R. V. Farese, The life of lipid droplets, Biochim. Biophys. Acta, vol.1791, pp.459-466, 2009.

C. W. Wang, Lipid droplet dynamics in budding yeast, Cell. Mol. Life Sci, vol.72, p.2677, 2015.

C. W. Wang, Y. H. Miao, and Y. S. Chang, A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast, J Cell Biol, vol.206, issue.3, pp.357-366, 2014.

G. Wang, X. Xiong, R. Ghogare, P. Wang, Y. Meng et al., Exploring fatty alcoholproducing capability of Yarrowia lipolytica, Biotechnol. Biofuels, vol.9, p.107, 2016.

Q. Wang, Y. Cui, B. Sen, W. Ma, R. L. Zheng et al., Characterization and robust nature of newly isolated oleaginous marine yeast Rhodosporidium spp. from coastal water of Northern China, vol.7, p.30, 2017.

W. Wang, H. Wei, E. Knoshaug, S. Wychen, Q. Xu et al., Fatty alcohol production in Lipomyces starkeyi and Yarrowia lipolytica, Biotechnol. Biofuels, vol.9, p.227, 2016.

Y. Wang, X. Lin, S. Zhang, W. Sun, S. Ma et al., Cloning and evaluation of different constitutive promoters in the oleaginous yeast Rhodosporidium toruloides, Yeast, vol.33, pp.99-106, 2016.

Z. Wang, H. Zhang, L. Zao, and Y. Song, Identification and Characterization of Diacylglycerol Acyltransferase in Oleaginous Yeast Rhodosporidium toruloides, American Journal of Biochemistry and Biotechnology, vol.12, issue.4, 2016.

T. Wartmann, A. Krüger, K. Adler, M. D. Bui, I. Kunze et al., Temperature dependent dimorphism of the yeast Arxula adeninivorans LS3, Antonie Van Leeuwenhoek, vol.68, pp.215-223, 1995.

T. Wartmann and G. Kunze, Genetic transformation and biotechnological application of the yeast Arxula adeninivorans, Appl Microbiol Technol, vol.54, pp.619-624, 2000.

T. Wartmann and G. Kunze, Genetic transformation and biotechnological application of the yeast Arxula adeninivorans, Appl Microbiol Biotechnol, vol.54, pp.619-624, 2000.

T. Wartmann and G. Kunze, Temperature-Dependent Dimorphism of the Non-Conventional Yeast Arxula adeninivorans, Non-Conventional Yeasts in Genetics, 2003.

T. Wartmann, U. W. Stephan, I. Bube, E. Böer, M. Melzer et al., Post-translational modifications of the AFET3 gene product -a component of the iron transport system in budding cells and mycelia of the yeast Arxula adeninivorans, Yeast, vol.19, pp.849-8620, 2002.

L. J. Wei, S. Kwak, J. J. Liu, S. Lane, Q. Hua et al., Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae, Biotechnology and Bioengineering. PMID, 2018.

F. Wilfling, H. Wang, J. T. Haas, N. Krahmer, T. J. Gould et al., Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets, Dev. Cell, vol.24, pp.384-399, 2013.

H. Wolinski, D. Kolb, S. Hermann, R. I. Koning, and S. D. Kohlwein, A role for seipin in lipid droplet dynamics and inheritance in yeast, J. Cell Sci, vol.124, pp.3894-3904, 2011.

S. Wu, X. Zhao, H. Shen, Q. Wang, and Z. K. Zhao, Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions, Bioresour Technol, vol.102, pp.1803-1810, 2011.

M. C. Xavier, A. L. Coradini, A. C. Deckmann, and T. T. Franco, Lipid production from hemicellulose hydrolysate and acetic acid by Lipomyces starkeyi and the ability of yeast to metabolize inhibitors, Biochem. Eng. J, vol.118, pp.11-19, 2017.

D. Xie, E. N. Jackson, and Q. Zhu, Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica : from fundamental research to commercial production, Appl. Microbiol. Biotechnol, vol.99, pp.1599-1610, 2015.

M. Xin and J. Yang, Biodiesel production from oleaginous microorganisms, Renewable energ, vol.34, pp.1-5, 2009.

P. Xu, K. Qiao, W. S. Ahn, and G. Stephanopoulos, Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.10848-10853, 2016.

P. Xu, K. Qiao, and G. Stephanopoulos, Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica, Biotechnol. Bioeng, vol.114, 2017.

Z. Xue, P. L. Sharpe, S. P. Hong, N. S. Yadav, D. Xie et al.,

H. Zhang, D. M. Arcilla, S. A. Bledsoe, K. Croker, E. F. Mccord et al., Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica, Nat Biotechnol, vol.31, pp.734-774, 2013.

X. Yang, G. Jin, Z. Gong, H. Shen, F. Bai et al., Recycling biodiesel-derived glycerol by the oleaginous yeast Rhodosporidium toruloides Y4 through the two-stage lipid production process, Biochem. Eng. J, vol.91, pp.86-91, 2014.

X. Yang, K. Nambou, L. Wei, and Q. Hua, Heterologous production of ?-farnesene in metabolically engineered strains of Yarrowia lipolytica, Bioresour. Technol, vol.216, pp.1040-1048, 2016.

X. X. Yang, T. Wartmann, R. Stoltenburg, and G. Kunze, Halotolerance of the yeast Arxula adeninivorans LS3. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, vol.77, pp.303-311, 2000.

H. Yazawa, H. Kumagai, and H. U. Yazawa, Characterization of triglyceride lipase genes of fission yeast Schizosaccharomyces pombe, Appl. Microbiol. Biotechnol, vol.96, pp.981-991, 2012.

C. L. Yen, S. J. Stone, S. Koliwad, C. Harris, and R. V. Farese, DGAT enzymes and triacylglycerol biosynthesis, Journal of Lipid Research, vol.49, p.228322301, 2008.

A. Q. Yu, T. L. Shi, and B. Zhang, Transcriptional regulation of desaturase genes in Pichia pastoris GS115, Lipids, vol.47, pp.1099-108, 2012.

C. Yu, N. J. Kennedy, C. C. Chang, and J. A. Rothblatt, Molecular cloning and characterization of two isoforms of Saccharomyces cerevisiae acyl-CoA:sterol acyltransferase, J Biol Chem, vol.271, pp.24157-24163, 1996.

C. S. Yu, Y. C. Chen, C. H. Lu, and J. K. Hwang, Prediction of protein subcellular localization, Proteins: Structure, Function and Bioinformatics, vol.64, pp.643-651, 2006.

X. Yu, Y. Zheng, K. M. Dorgan, and S. Chen, Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid, Bioresource Technology, vol.102, issue.10, pp.6134-6140, 2011.

J. Zanghellini, K. Natter, C. Jungreuthmayer, A. Thalhammer, C. F. Kurat et al., Quantitative modeling of triacylglycerol homeostasis in yeast-metabolic requirement for lipolysis to promote membrane lipid synthesis and cellular growth, FEBS J, vol.275, pp.5552-5563, 2008.

J. Zeng, Y. Zheng, X. Yu, L. Yu, D. Gao et al., Lignocellulosic biomass as a carbohydrate source for lipid production by Mortierella isabellina, Bioresour. Technol, vol.128, pp.385-391, 2013.

H. Zhang, L. Zhang, H. Chen, Y. Q. Chen, C. Ratledge et al., Regulatory properties of malic enzyme in the oleaginous yeast, Yarrowia lipolytica, and its non-involvement in lipid accumulation, Biotechnol. Lett, vol.35, pp.2091-2098, 2013.

J. Zhang, X. Fang, X. Zhu, Y. Li, H. Xu et al., Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture, Biomass Bioenergy, vol.35, 1906.

L. Zhang, H. Zhang, and Y. Song, Identification and characterization of diacylglycerol acyltransferase from oleaginous fungus Mucor circinelloides, Journal of Agriculture and food chemistry, vol.66, issue.3, 2018.

M. Zhang, Q. Yu, C. Xiao, K. Zhang, D. Zhang et al., Disruption of SPT23 results in increased heat sensitivity due to plasma membrane damage in Pichia pastoris, FEMS Yeast Research, vol.18, issue.3, 2018.

S. Zhang, M. Ito, J. M. Skerker, A. P. Arkin, and C. V. Rao, Metabolic engineering of the oleaginous yeast Rhodosporidium toruloides IFO0880 for lipid overproduction during high-density fermentation, Applied Microbiology and Biotechnology, vol.100, issue.21, pp.9393-9405, 2016.

Y. Zhang, I. P. Adams, and C. Ratledge, Malic enzyme: the controlling activity for lipid production? Over-expression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation, Microbiology, vol.153, pp.2013-2025, 2007.

Y. Zhang, Y. Wang, M. Yao, H. Liu, X. Zhou et al., Improved campesterol production in engineered Yarrowia lipolytica strains, Biotechnol. Lett, vol.39, pp.1033-1039, 2017.

C. Zhao, T. Zhang, M. Li, C. , and Z. , Single cell oil production from hydrolysates of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a, Process Biochem, vol.45, pp.1121-1126, 2010.

L. Zhao, H. Zhang, L. Wang, H. Chen, Y. Q. Chen et al., 13 C-metabolic flux analysis of lipid accumulation in the oleaginous fungus Mucor circinelloides, Bioresour. Technol, vol.197, pp.23-29, 2015.

X. Zhao, X. Kong, Y. Hua, B. Feng, and Z. K. Zhao, Medium optimization for lipid production through co-fermentation of glucose and xylose by oleaginous yeast Lipomyces starkeyi, Eur. J. Lipid Sci. Technol, vol.110, pp.405-412, 2008.

X. Zhao, F. Peng, W. Du, C. Liu, and D. Liu, Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid, Bioprocess Biosyst. Eng, vol.35, pp.993-1004, 2012.

Q. Zhu and E. N. Jackson, Metabolic engineering of Yarrowia lipolytica for industrial applications, Curr. Opin. Biotechnol, vol.36, pp.65-72, 2015.

Q. Zhu, Z. Xue, N. Yadav, and H. Damude, Metabolic engineering of an oleaginous yeast for the production of omega-3 fatty acids, pp.51-73, 2010.

D. Zweytick, K. Athenstaedt, and G. Daum, Intracellular lipid particles of eukaryotic cells, Biochim. Biophys. Acta, vol.1469, pp.101-120, 2000.