H. Maitre, Le traitement des images, Hermes Science Publications, vol.4, pp.7-11, 2003.

Y. Wang, E. K. Teoh, and D. Shen, Lane detection and tracking using b-snake. Image and Vision computing, vol.2, 1928.
DOI : 10.1016/j.imavis.2003.10.003

M. Kass, A. Witkin, and D. Terzopoulos, Snakes : Active contour models. International journal of computer vision, vol.1, issue.4, p.3

C. H. Yeh and Y. H. Chen, Development of vision-based lane and vehicle detecting systems via the implementation with a dual-core dsp, Intelligent Transportation Systems Conference, 2006. ITSC'06, p.1

B. Soheilian, N. Paparoditis, D. Boldo, and J. P. Rudant, Automatic 3d extraction of rectangular roadmarks with centimeter accuracy from stereo-pairs of a ground-based mobile mapping system, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.C i t e s e e r, 2007.

J. C. Mccall and M. M. Trivedi, Video-based lane estimation and tracking for driver assistance : Survey, System, and Evaluation, IEEE transactions on intelligent transportation systems, vol.7, pp.0-3, 2006.

J. C. Mccall and M. M. Trivedi, An integrated, robust approach to lane marking detection and lane tracking, Intelligent Vehicles Symposium, pp.533-537, 2004.

T. Veit, J. P. Tarel, P. Nicolle, and P. Charbonnier, Evaluation of road marking feature extraction, 11th International IEEE Conference on, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00402945

K. C. Kluge, C. M. Kreucher, and S. Lakshmanan, Tracking lane and pavement edges using deformable templates, International Society for Optics and Photonics, vol.3364, pp.167-177, 1998.
DOI : 10.1117/12.317467

URL : http://www-personal.umich.edu/~ckreuche/PAPERS/1998SPIE.pdf

M. Lan, M. Rofouei, S. Soatto, and M. Sarrafzadeh, Smartldws : A robust and scalable lane departure warning system for the smartphones, Intelligent Transportation Systems, 2009. ITSC'09. 12th International IEEE Conference on, pp.1-6, 2009.

R. Danescu, S. Nedevschi, and T. B. To, A stereovision-based lane detector for marked and non-marked urban roads, Intelligent Computer Communication and Processing, 2007.
DOI : 10.1109/iccp.2007.4352145

M. Bertozzi, A. Broggi, G. Conte, and A. Fascioli, Obstacle and lane detection on the argo autonomous vehicle, proceedings of IEEE Intelligent Transportation Systems conference

F. Diebolt, Reconnaissance des marquages routiers par traitement d'images, vol.1, 1996.

H. A. Mallot, H. H. Bülthoff, J. J. Little, and S. Bohrer, Inverse Perspective Mapping simplifies optical flow computation and obstacle detection, Biological cybernetics, vol.6, issue.3, pp.1-7
DOI : 10.1007/bf00201978

M. Nieto, L. Salgado, F. Jaureguizar, and J. Cabrera, Stabilization of Inverse Perspective Mapping images based on robust vanishing point estimation, telligent Vehicles Symposium, 2007.

J. Rebut, A. Bensrhair, and G. Toulminet, Image segmentation and pattern recognition for road marking analysis, Industrial Electronics, 2004.
DOI : 10.1109/isie.2004.1571896

M. Bertozzi and A. Broggi, Real-time lane and obstacle detection on the gold system, Intelligent Vehicles Symposium, pp.213-218, 1996.

J. Serra, Image analysis and mathematical morphology, 1983.

C. Zhang, S. Murai, and E. P. Baltsavias, Road network detection by mathematical morphology, ISPRS Workshop" 3D Geospatial Data Production : y , ETH-Hoenggerberg, 1999.

S. C. Yi, Y. C. Chen, and C. H. Chang, A lane detection approach based on intelligent vision, Computers & Electrical Engineering, 2015.
DOI : 10.1016/j.compeleceng.2015.01.002

K. Ishikawa, T. Onishi, Y. Amano, T. Hashizume, J. I. Takiguchi et al., Precise road line localization using single camera and 3D road model, International Symposium on Robotics and Automation in Construction. ISARC, 2006.

J. W. Lee, A machine vision system for lane-departure detection. Computer vision and image understanding, vol.8, pp.5-7, 2002.

D. J. Kang and M. H. Jung, Road lane segmentation using dynamic programming for active safety vehicles, Pattern Recognition Letters, vol.2, issue.4

C. Kreucher, S. Lakshmanan, and K. Kluge, A driver warning system based on the lois lane detection algorithm, Proceedings of IEEE International Conference on Intelligent Vehicles, pp.1-9

J. Douret, R. Labayrade, J. Laneurit, and R. Chapuis, A reliable and robust lane detection system based on the parallel use of three algorithms for driving safety assistance, MVA

S. J. Wu, H. H. Chiang, J. W. Perng, C. J. Chen, B. F. Wu et al., The heterogeneous systems integration design and implementation for, IEEE Transactions on Intelligent Transportation Systems, vol.9, issue.2, pp.6-263, 2008.

S. S. Huang, C. J. Chen, P. Y. Hsiao, and L. C. Fu, On-board vision system for lane recognition and front-vehicle detection to enhance driver's awareness, Robotics and Automation, p.2, 2004.

K. Kluge and C. Thorpe, The yarf system for vision-based road following. Mathematical and Computer Modelling, vol.2, pp.4-7

D. Frank, Road markings recognition, Proceedings., International Conference on, 1996.

A. S. Huang, D. Moore, M. Antone, E. Olson, and S. Teller, Finding multiple lanes in urban road networks with vision and lidar, Autonomous Robots, vol.2, issue.2 -3, pp.103-122, 2009.

P. Foucher, Y. Sebsadji, J. P. Tarel, P. Charbonnier, and P. Nicolle, Detection and recognition of urban road markings using images, Intelligent Transportation Systems (ITSC), pp.1747-1752, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00850783

E. Pollard, D. Gruyer, J. P. Tarel, S. S. Ieng, and A. Cord, Lane marking extraction with combination strategy and comparative evaluation on synthetic and camera images, Intelligent Transportation Systems (ITSC), p.1, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00875915

C. Nuthong and T. Charoenpong, Lane detection using smoothing spline, Image and Signal Processing (CISP), pp.989-993, 2010.

Z. Kim, Robust lane detection and tracking in challenging scenarios, IEEE Transactions on Intelligent Transportation Systems, vol.9, issue.1, pp.1-6, 2008.

P. Subirats, Conception et validation de méthodes de traitement d'images appliquéespliquéesà la détection de fissures sur les images de surface de chaussées, 2006.

S. Chambon, P. Subirats, and J. Dumoulin, Introduction of a Wavelet Transform based on 2D matched filter in a Markov Random Field for fine structure extraction : Application on road crack detection, Image Processing : Machine Vision Applications II, vol.7251, p.72510, 2009.

H. Salam, Détection automatique de fissures dans des images de chaussée par modélisation markovienne, 2010.

J. Dumoulin, P. Subirats, V. Legeay, D. Meignen, C. Gourraud et al., Progressive automation of pavement surface distress detection by imaging techniques, Actes des journées scientifiques du LCPC, 2005.

S. Iyer and S. K. Sinha, A robust approach for automatic detection and segmentation of cracks in underground pipeline images, Image and Vision Computing, vol.23, issue.10, pp.921-933, 2005.

H. Rababaah, D. Vrajitoru, and J. Wolfer, Asphalt pavement crack classification : A comparison of GA, MLP, and SOM, Proceedings of Genetic and Evolutionary Computation Conference, Late-Breaking Paper, 2005.

H. Cheng, J. Wang, Y. Hu, C. Glazier, X. Shi et al., Novel approach to pavement cracking detection based on neural network, Transportation Research Record : Journal of the Transportation Research Board, vol.7, issue.6, 2001.
DOI : 10.3141/1764-13

R. Oullette, M. Browne, and K. Hirasawa, Genetic algorithm optimization of a convolutional neural network for autonomous crack detection, Evolutionary Computation, 2004. CEC2004. Congress on, 2004.

H. Oliveira and P. L. Correia, Automatic road crack detection and characterization, IEEE Transactions on Intelligent Transportation Systems, vol.1, issue.1, pp.1-5, 2013.
DOI : 10.1109/tits.2012.2208630

M. Gavilán, D. Balcones, O. Marcos, D. F. Llorca, M. A. Sotelo et al., Adaptive road crack detection system by pavement classification, Sensors, vol.1, p.1, 2010.

Y. Shi, L. Cui, Z. Qi, F. Meng, and Z. Chen, Automatic road crack detection using random structured forests, IEEE Transactions on Intelligent Transportation Systems,1, vol.7, issue.2
DOI : 10.1109/tits.2016.2552248

D. Meignen, Laboratoire Central des Ponts et Chaussées, 2003.

H. Cheng, X. Jiang, J. Li, and C. Glazier, Automated real-time pavement distress analysis, Transportation Research Record : Journal of the Transportation Research Board, issue.1, pp.5-6
DOI : 10.3141/1655-09

L. Zhang, F. Yang, Y. D. Zhang, and Y. J. Zhu, Road crack detection using deep convolutional neural network, Image Processing (ICIP), 2016 IEEE International Conference on
DOI : 10.1109/icip.2016.7533052

P. Delagnes and D. Barba, A markov random field for rectilinear structure extraction in pavement distress image analysis, Proceedings., International Conference on, 1995.

N. Coudray, A. Karathanou, and S. Chambon, Multi-resolution approach for fine structure extraction : Application and validation on road images, International Joint Conference on Computer Vision Theory and Applications, p.page sp, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00614116

M. Do and M. Vetterli, The finite ridgelet transform for image representation, IEEE Transactions on image Processing,1, vol.2, issue.1, pp.1-6, 2003.

M. J. Shensa, The discrete wavelet transform : Wedding the a trous and mallat algorithms, IEEE Transactions on signal processing

O. Fabre, Traitement d'images par ondelettes appliquéappliqué`appliquéà la détection de fissures de surface de chaussées, Laboratoire Central des Ponts et Chaussées, 2003.

P. Subirats, J. Dumoulin, V. Legeay, and D. Barba, Automation of pavement surface crack detection using the continuous wavelet transform, Image Processing, p.3, 2006.

S. Chambon and J. M. Moliard, Automatic road pavement assessment with image processing : Review and comparison, International Journal of Geophysics, 2011.
DOI : 10.1155/2011/989354

URL : https://hal.archives-ouvertes.fr/hal-00612165

D. Jouin, J. Cordonnier, A. Cord, and J. M. Moliard, Orsi fissures -opération de développement VISIODEC ii, 2014.

D. Wright and V. Baltazart, Technical rep ort, Tomorrow's Road Infrastructure Monitoring and Management, 2014.

C. Sun and S. Pallottino, Circular shortest path in images, Pattern Recognition, vol.36, issue.3, pp.709-719, 2003.

S. Chambon, Detection of points of interest for geodesic contours : Application on road images for crack detection, International Joint Conference on Computer Vision Theory and Applications, pp.2-2
URL : https://hal.archives-ouvertes.fr/hal-00612526

P. Charbonnier and J. M. Moliard, Calculs de chemins minimaux, suivi de fissures et autres applications, Journées scientifiques du LCPC, 2003.

A. Alfalou, C. Brosseau, and W. Kaddah, Optimization of decision making for face recognition based on nonlinear correlation plane, Optics Communications, vol.343, pp.22-27, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01273008

J. L. Horner and P. D. Gianino, Phase-only matched filtering, Applied optics, vol.23, issue.6, pp.812-816, 1984.

R. Amhaz, S. Chambon, J. Idier, and V. Baltazart, A new minimal path selection algorithm for automatic crack detection on pavement images, IEEE International Conference on Image Processing, pp.788-792, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01387817

L. Yang, Contributions to improve and speed the existing MPS-based algorithm for both the semi-automated and the automated crack segmentation on 2D pavement images, 2015.

V. Baltazart, L. Yang, P. Nicolle, and J. M. Moliard, Pseudo-Ground Truth data collection on pavement images, Signal Processing Conference (EUSIPCO), 2017 25th European

V. Baltazart, P. Nicolle, and L. Yang, Ongoing tests and improvements of the MPS algorithm for the automatic crack detection within grey level pavement images, Signal Processing Conference, pp.2016-2020, 2017.

G. Udny-yule, On the association of attributes in statistics : With illustrations from the material of the childhood society, &c, Philosophical Transactions of the Royal Society of London Series A, vol.1, issue.9

R. , A statistical method for evaluating systematic relationship. University of Kansas science bulletin, vol.2, p.8

D. J. Rogers and T. T. Tanimoto, A computer program for classifying plants

R. R. Sokal and P. H. Sneath, Principles of numerical taxonomy WH freeman and CO, pp.1-9

P. Jaccard, The distribution of the flora in the alpine zone, New phytologist, vol.1, issue.2, pp.37-50, 1912.

L. R. Dice, Measures of the amount of ecologic association between species, Ecology, vol.2, issue.3, pp.1-9

G. G. Simpson, Notes on the measurement of faunal resemblance, American Journal of Science, vol.2, issue.5

Z. Hubalek, Coefficients of association and similarity, based on binary (presenceabsence) data : An evaluation, Biological Reviews, vol.5, issue.4

M. P. Sampat, Z. Wang, S. Gupta, A. C. Bovik, and M. K. Markey, Complex wavelet structural similarity : A new image similarity index, IEEE transactions on image processing, vol.1, issue.8

A. P. Zijdenbos, B. M. Dawant, R. A. Margolin, and A. C. Palmer, Morphometric analysis of white matter lesions in mr images : Method and validation, IEEE transactions on medical imaging, vol.1, issue.4, p.7

S. Chambon, Image database available

. Chambon/crack_detection_database,

D. Wright, V. Baltazart, N. Elsworth, R. Hamrouche, J. Karup et al., D4.3 monitoring structural and surface conditions. Tomorrow's Road Infrastructure Monitoring and Management (TRIMM), FP7 project, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01822657

R. Amhaz, S. Chambon, J. Idier, and V. Baltazart, Minimal Path Selection (MPS) version 00, 2016.

W. Kaddah, M. Elbouz, Y. Ouerhani, V. Baltazart, M. Desthieux et al., Optimized minimal path selection (OMPS) for automatic and unsupervised crack segmentation within Two-Dimensional pavement images, The Visual Computer Journal (TVCJ, vol.7, pp.1-1, 2018.

F. Roli, Measure of texture anisotropy for crack detection on textured surfaces, Electronics Letters, issue.2, 2014.

L. Bruzzone, F. Roli, and S. B. Serpico, Crack detection by a measure of texture anisotropy, International Conference on Image Analysis and Processing, pp.743-747, 1995.

N. Otsu, A threshold selection method from gray-level histograms, IEEE transactions on systems, man, and cybernetics, vol.9, pp.6-8

V. Schmidlin, G. Favier, J. P. Stromboni, and B. Tomasini, Réseaux de neurones et fusion de données, 1993.

V. Baltazart, J. M. Moliard, R. Amhaz, L. M. Cottineau, A. Wright et al., Automatic crack detection on pavement images for monitoring road surface conditions -some results from the collaborative fp7 trimm project, 8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements

W. Kaddah, M. Elbouz, Y. Ouerhani, A. Alfalou, and M. Desthieux, Automatic darkest filament detection (ADFD) : A new algorithm for cracks segmentation on Two-Dimensional V IAP IX R pavement images, The Visual Computer Journal

F. Liu, G. Xu, Y. Yang, X. Niu, and Y. Pan, Novel approach to pavement cracking automatic detection based on segment extending, Knowledge Acquisition and Modeling, 2008. KAM'08. International Symposium on, 2008.

R. A. Fundakowski, R. K. Graber, R. C. Fitch, E. L. Skok, and E. O. Lukanen, Video image processing for evaluating pavement surface distress. Final Report, National Cooperative Highway Research Program, pp.1-2

H. Oliveira and P. L. Correia, Identifying and retrieving distress images from road pavement surveys, 15th IEEE International Conference on, 2008.

A. Ross and A. K. Jain, Multimodal biometrics : An overview, Signal Processing Conference, 2004.

E. W. Weisstein, Moore neighborhood. from mathworld-a wolfram web resource, 2005.

W. Kaddah, M. Elbouz, Y. Ouerhani, A. Alfalou, and M. Desthieux, Automatic Pavement Crack Classification on Two-Dimensional V IAP IX R Images. International Society for Optics and Photonics, 2019.

, ACTRIS technologie & innovation

Q. Li, Q. Zou, D. Zhang, and Q. Mao, Fosa : F* seed-growing approach for crackline detection from pavement images, Image and Vision Computing, vol.29, issue.12, pp.861-872, 2011.

L. Yang, V. Baltazart, R. Amhaz, and P. Jiang, A new a-star algorithm adapted to the semi-automatic detection of cracks within grey level pavement images, Eighth International Conference on Digital Image Processing, vol.10033, p.100333, 2016.

A. Felner, Position paper : Dijkstra's algorithm versus uniform cost search or a case against Dijkstra's algorithm, Fourth annual symposium on combinatorial

. .. Opérateurs-de-la-morphologie-mathématique, , p.222

B. Annexe,

V. Système and . .. Iap-ix-r,

C. Annexe,

C. Sommaire, 1 Introduction : les problématiques du plus court chemin dans le cadre de la thèse

C. De-la-problématique and S. .. , , p.233

W. Kaddah, M. Elbouz, Y. Ouerhani, A. Alfalou, and M. Desthieux, Automatic darkest filament detection (ADFD) : A new algorithm for crack extraction on Two-Dimensional V IAP IX R pavement images, The Visual Computer Journal

W. Kaddah, M. Elbouz, Y. Ouerhani, V. Baltazart, M. Desthieux et al., Optimized minimal path selection (OMPS) method for automatic and unsupervised crack segmentation within Two-Dimensional pavement images, The Visual Computer Journal (TVCJ, pp.1-1

W. Kaddah, Y. Ouerhani, A. Alfalou, M. Desthieux, C. Brosseau et al.,

A. Alfalou, C. Brosseau, and W. Kaddah, Optics Communications, vol.343, pp.22-27, 2015.

W. Kaddah, M. Elbouz, Y. Ouerhani, A. Alfalou, and M. Desthieux, Automatic Pavement Crack Classification on Two-Dimensional V IAP IX R Images, International Society for Optics and Photonics, 2019.

W. Kaddah, M. Elbouz, Y. Ouerhani, A. Alfalou, and M. Desthieux, Ongoing Studies for Automatic Road Anomalies Detection on 2D and 3D Pavement Images, The International Symposium on Optoelectronic Technology and Application (OTA), 2018.

Y. Ouerhani, M. Elbouz, A. Alfalou, and W. , Kaddah,a n dM .geolocation using JTC and V IAP IX R module, Pattern Recognition and Tracking XXIX, 10649, 106490J, International Society for Optics and Photonics, 2018.