, Fonctions de distribution radiale U R -N n et U R -O n et nombre de coordination correspondant pour les concentrations simulées

, Vues instantanées issues des simulations de dynamique moléculaire repré-sentant les différents modes de coordination de NO ? 3 dans la première, deuxième et troisième sphère de coordination de UO 2+ 2, p.90

, Fonctions de distribution radiale Cl p -Cl p et nombre de coordination correspondant calculés pour les concentrations simulées

, Vues instantanées issues des simulations de dynamique moléculaire repré-sentant les différents modes de coordination entres les ions perchlorate, p.92

, Fonctions de distribution radiale N n -N n et nombre de coordination correspondant calculés pour les concentrations simulées

, Vues instantanées issues des simulations de dynamique moléculaire repré-sentant les différents modes de coordination entre les ions nitrate, p.93

P. Mcmillan-mayer, UO 2+ 2 -ClO ? 4 à dilution infinie et potentiel coulombien

P. Mcmillan-mayer and U. O. 2+, à dilution infinie et potentiel coulombien

, Evolution de la constante d'association déterminée à partir du potentiel McMillan-Mayer UO 2+ 2 -ClO ? 4 et UO 2+ 2 -NO ? 3 à dilution infinie et calculée pour différentes valeurs de constante diélectrique de l'eau, p.98

, Evolution du coefficient osmotique en fonction de la molalité pour les sels UO 2 (ClO 4 ) 2 et UO 2 (NO 3 ) 2 : expériences et calculés en utilisant la Théorie Moléculaire et l'approche AMSA obtenu avec ? r =78,4 et ? r =126, p.99

, Evolution du coefficient osmotique en fonction de la molalité pour les sels UO 2 (ClO 4 ) 2 et UO 2 (NO 3 ) 2 : résultats expérimentaux et calculés avec l'approche AMSA combinée

?. .. , Schéma représentant les distances et les angles utilisés pour les calculs des potentiels en fonction de la distance r et de l'angle ?, p.102

, Probabilité de présence d'un chlorure autour d'un uranyle en échelle log 10 en fonction de la distance U R -Cl et l'angle P w U R Cl

, A1 Fonctions de distribution radiale Cl-H W et U R -H W et nombre de coordination correspondant calculés pour les concentrations simulées, p.125

, A2 Fonctions de distribution radiale Cl-O R et O R -O W et nombre de coordination correspondant calculés pour les concentrations simulées, p.125

, A3 Fonctions de distribution radiale Cl p -H W et N n -H W et nombre de coordination correspondant calculés pour les concentrations simulées, p.126

, A4 Fonctions de distribution radiale O p -H W et O n -H W et nombre de coordination correspondant calculés pour les concentrations simulées, p.126

, A5 Fonctions de distribution radiale Cl p -O R et N n -O R et nombre de coordination correspondant calculés pour les concentrations simulées, p.126

, A6 Fonctions de distribution radiale O p -O W et O n -O W et nombre de coordination correspondant calculés pour les concentrations simulées, p.127

, A7 Fonctions de distribution radiale O p -O R et O n -O R et nombre de coordination correspondant calculés pour les concentrations simulées, p.127

, ClO 4 ) 2 et UO 2 (NO 3 ) 2 et nombre de coordination correspondant calculés pour les concentrations simulées, A8 Fonctions de distribution radiale O R -H W de UO

, ClO 4 ) 2 et UO 2 (NO 3 ) 2 et nombre de coordination correspondant calculés pour les concentrations simulées, A9 Fonctions de distribution radiale O R -O W de UO

, ClO 4 ) 2 et UO 2 (NO 3 ) 2 et nombre de coordination correspondant calculés pour les concentrations simulées, A10 Fonctions de distribution radiale U R -H W de UO

, ClO 4 ) 2 et UO 2 (NO 3 ) 2 et nombre de coordination correspondant calculés pour les concentrations simulées, A11 Fonctions de distribution radiale U R -U R de UO

T. Nguyen, M. Duvail, A. Villard, J. J. Molina, P. Guilbaud et al., « Multi-scale modelling of uranyl chloride solutions, J. Chem. Phys, vol.142, p.24501, 2015.

M. Duvail, A. Villard, T. Nguyen, and J. Dufrêche, Thermodynamics of Associated Electrolytes in Water : Molecular Dynamics Simulations of Sulfate Solutions, vol.119, pp.11184-11195, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02000133

, Communications sous forme de posters -Molecular Liquids and Soft Matter, Rome (Italie), pp.7-12, 2014.

-. School, Journée scientifique de Marcoule, p.137, 2013.

J. M. Mckibben, Chemistry of the Purex Process, vol.36, pp.3-16, 1984.

P. Angelo, A. Zitolo, V. Migliorati, G. Chillemi, M. Duvail et al., « Revised Ionic Radii of Lanthanoid(III) Ions in Aqueous Solution, Inorg. Chem, vol.50, pp.4572-4579, 2011.

A. Ruas, P. Guilbaud, C. Auwer, C. Moulin, J. Simonin et al., Experimental and Molecular Dynamics Studies of Dysprosium(III) Salt Solutions for a Better Representation of the Microscopic Features Used within the Binding Mean Spherical Approximation Theory, J. Phys. Chem. A, vol.110, pp.11770-11779, 2006.

M. Duvail, A. Ruas, L. Venault, P. Moisy, and P. Guilbaud, « Molecular Dynamics Studies of Concentrated Binary Aqueous Solutions of Lanthanide Salts : Structures and Exchange Dynamics », Inorg. Chem, vol.49, pp.519-530, 2010.

C. Beuchat, D. Hagberg, R. Spezia, and L. Gagliardi, « Hydration of Lanthanide Chloride Salts : A Quantum Chemical and Classical Molecular Dynamics Simulation Study, J. Phys. Chem. B, vol.114, pp.15590-15597, 2010.

M. Dobler, P. Guilbaud, A. Dedieu, and G. Wipff, « Interaction of trivalent lanthanide cations with nitrate anions : a quantum chemical investigation of monodentate/bidentate binding modes », New J. Chem, vol.25, pp.1458-1465, 2001.

M. Duvail, M. Souaille, R. Spezia, T. Cartailler, and P. Vitorge, « Pair interaction potentials with explicit polarization for molecular dynamics simulations of La 3+ in bulk water, J. Chem. Phys, vol.127, p.34503

M. Duvail and P. Guilbaud, Understanding the nitrate coordination to Eu 3+ ions 139 in solution by potential of mean force calculations, Phys. Chem. Chem. Phys, vol.13, pp.5840-5847, 2011.

M. Duvail, F. Martelli, P. Vitorge, and R. Spezia, Polarizable interaction potential for molecular dynamics simulations of actinoids(III) in liquid water, J. Chem. Phys, vol.135, p.44503, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00616991

M. Hirata, P. Guilbaud, M. Dobler, and S. Tachimori, « Molecular dynamics simulations for the complexation of Ln 3+ and UO 2+ 2 ions with tridentate ligand diglycolamide (DGA), Phys. Chem. Chem. Phys, vol.5, pp.691-695, 2003.

J. J. Molina, M. Duvail, J. Dufrêche, and P. Guilbaud, Atomistic Description of Binary Lanthanoid Salt Solutions : A Coarse-Graining Approach », J. Phys. Chem. B, vol.115, pp.4329-4340, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02002579

J. J. Molina, M. Duvail, P. Guilbaud, and J. Dufrêche, Coarse-grained lanthanoid chloride aqueous solutions, J. Mol. Liq, vol.153, pp.107-111, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02002610

A. Ruas, P. Moisy, J. Simonin, O. Bernard, J. Dufrêche et al., Lanthanide Salts Solutions : Representation of Osmotic Coefficients within the Binding Mean Spherical Approximation, J. Phys. Chem. B, vol.109, pp.5243-5248, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00164780

R. Atta-fynn, E. J. Bylaska, G. K. Schenter, W. A. De, and J. , « Hydration Shell Structure and Dynamics of Curium (III) in Aqueous Solution First Principles and Empirical Studies, J. Phys. Chem. A, vol.115, pp.4665-4677, 2011.

T. Yang and B. E. Bursten, « Speciation of the Curium(III) Ion in Aqueous Solution : A Combined Study by Quantum Chemistry and Molecular Dynamics Simulation », Inorg. Chem, vol.45, pp.5291-5301, 2006.

D. Hagberg, E. Bednarz, N. M. Edelstein, and L. Gagliardi, « A Quantum Chemical and Molecular Dynamics Study of the Coordination of Cm(III) in Water », J. Am. Chem. Soc, vol.129, pp.14136-14137, 2007.

R. Revel, C. Auwer, C. Madic, F. David, B. Fourest et al., First Investigation on the L Edges of the 249 Cf Aquo Ion by X-ray Absorption Spectroscopy, vol.38, pp.4139-4141, 1999.
URL : https://hal.archives-ouvertes.fr/in2p3-00003018

R. Spezia, C. Beuchat, R. Vuilleumier, P. Angelo, and L. Gagliardi-;-x-=-br, Cl) Water Solutions by Molecular Dynamics Simulations and X-ray Absorption Spectroscopy, Unravelling the Hydration Structure of ThX, vol.4, pp.6465-6475, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00733878

S. O. Odoh and G. Schreckenbach, « Theoretical Study of the Structural Properties of Plutonium(IV) and (VI) Complexes », J. Phys. Chem. A, vol.115, pp.14110-14119, 2011.

P. G. Allen, J. J. Bucher, D. K. Shuh, N. M. Edelstein, and T. Reich, « Investigation of Aquo and Chloro Complexes of UO 2+ 2 , NpO + 2 , Np 4+ , and Pu 3+ by X-ray

, Absorption Fine Structure Spectroscopy », Inorg. Chem, vol.36, pp.4676-4683, 1997.

C. Gaillard, A. Chaumont, I. Billard, C. Hennig, A. Ouadi et al., Uranyl Coordination in Ionic Liquids : The Competition between Ionic Liquid Anions, Uranyl Counterions, and Cl ? Anions Investigated by Extended X-ray Absorption Fine Structure and UV-Visible Spectroscopies and Molecular Dynamics Simulations », vol.46, pp.4815-4826, 2007.
URL : https://hal.archives-ouvertes.fr/in2p3-00166539

C. Hennig, J. Tutschku, A. Rossberg, G. Bernhard, and A. C. Scheinost, « Comparative EXAFS Investigation of Uranium(VI) and -(IV) Aquo Chloro Complexes in Solution Using a Newly Developed Spectroelectrochemical Cell, Inorg. Chem, vol.44, pp.6655-6661, 2005.

A. Ikeda, C. Hennig, A. Rossberg, S. Tsushima, A. C. Scheinost et al., Bernhard, « Structural Determination of Individual Chemical Species in a Mixed System by Iterative Transformation Factor Analysis-Based X-ray Absorption Spectroscopy Combined with UV-Visible Absorption and Quantum Chemical Calculation, Anal. Chem, vol.80, pp.1102-1110, 2008.

K. Servaes, C. Hennig, I. Billard, C. Gaillard, K. Binnemans et al., « Speciation of Uranyl Nitrato Complexes in Acetonitrile and in the Ionic Liquid 1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide », Eur. J. Inorg. Chem, pp.5120-5126, 2007.

U. Wahlgren, H. Moll, I. Grenthe, B. Schimmelpfennig, L. Maron et al., « Structure of Uranium(VI) in Strong Alkaline Solutions. A Combined Theoretical and Experimental Investigation, J. Phys. Chem. A, vol.103, pp.8257-8264, 1999.

C. Chisholm-brause, S. D. Conradson, C. Buscher, P. Eller, and D. E. Morris, « Speciation of uranyl sorbed at multiple binding sites on montmorillonite, Geochim. Cosmochim. Acta, vol.58, pp.3625-3631, 1994.

A. J. Dent, J. D. Ramsay, and S. W. , Swanton, « An EXAFS study of uranyl ion in solution and sorbed onto silica and montmorillonite clay colloids, J. Coll. Int. Sci, vol.150, pp.45-60, 1992.

J. Jiang, J. C. Renshaw, M. J. Sarsfield, F. R. Livens, D. Collison et al., « Solution Chemistry of Uranyl Ion with Iminodiacetate and Oxydiacetate : A Combined NMR/EXAFS and Potentiometry/Calorimetry Study, Inorg. Chem, vol.42, pp.1233-1240, 2003.

D. P. Karim, P. Georgopoulos, and G. S. Knapp, « Extended X-Ray Absorption Fine Structure Studies of Actinide Ions in Aqueous Solution, Nucl. Tech, vol.51, pp.162-168, 1980.

S. Tsushima, A. Rossberg, A. Ikeda, K. Müller, and A. C. Scheinost, Stoichiometry and Structure of Uranyl(VI) Hydroxo Dimer and Trimer Complexes in Aqueous Solution », vol.46, pp.10819-10826, 2007.

V. Vallet, U. Wahlgren, B. Schimmelpfennig, H. Moll, Z. Szabó et al., Solvent Effects on Uranium(VI) Fluoride and Hydroxide Complexes Studied by EXAFS and Quantum Chemistry, vol.40, pp.3516-3525, 2001.

S. R. Wasserman, P. G. Allen, D. K. Shuh, J. J. Bucher, and N. M. Edelstein, « EXAFS and principal component analysis : a new shell game, J. Syn. Rad, vol.6, pp.284-286, 1999.

Z. Zhang, G. Helms, S. B. Clark, G. Tian, P. Zanonato et al., Complexation of Uranium(VI) by Gluconate in Acidic Solutions : a Thermodynamic Study with Structural Analysis, vol.48, pp.3814-3824, 2009.

C. Hennig, K. Schmeide, V. Brendler, H. Moll, S. Tsushima et al., U(IV), and Th(IV) Sulfato Complexes in Aqueous Solution, EXAFS Investigation of U(VI), vol.46, pp.5882-5892, 2007.

J. Neuefeind, L. Soderholm, and S. Skanthakumar, « Experimental Coordination Environment of Uranyl(VI) in Aqueous Solution, J. Phys. Chem. A, vol.108, pp.2733-2739, 2004.

L. Soderholm, S. Skanthakumar, and J. Neuefeind, « Determination of actinide speciation in solution using high-energy X-ray scattering, Anal. Bioanal. Chem, vol.383, pp.48-55, 2005.

L. Soderholm, S. Skanthakumar, and R. Wilson, « Structural Correspondence between Uranyl Chloride Complexes in Solution and Their Stability Constants, J. Phys. Chem. A, vol.115, pp.4959-4967, 2011.

M. Aberg, D. Ferri, I. Glaser, and J. Grenthe, Structure of the hydrated dioxouranium(VI) ion in aqueous solution. An x-ray diffraction and proton NMR study, Inorg. Chem, vol.22, pp.3986-3989, 1983.

N. Bardin, P. Rubini, and C. Madie, Hydration of Actinyl(VI), MO 2+ 2aq (M = U, Np, Pu). An NMR Study, vol.83, pp.189-194, 1998.

A. Fratiello, V. Kubo, R. E. Lee, and R. E. Schuster, « Direct proton magnetic resonance cation hydration study of uranyl perchlorate, nitrate, chloride, and bromide in water-acetone mixtures, J. Phys. Chem, vol.74, pp.3726-3730, 1970.

C. Marie, M. Miguirditchian, D. Guillaumont, A. Tosseng, C. Berthon et al., Complexation of Lanthanides(III), Americium(III), and Uranium(VI) with Bitopic N,O Ligands : an Experimental and Theoretical Study, vol.50, pp.6557-6566, 2011.

M. Aberg, On the Structures of the Predominant Hydrolysis Products of Uranyl(VI) in Solution. », Acta. Chem. Scand, vol.24, pp.2901-2915, 1983.

S. Cotton, «. Lanthanide, and A. Chemistry, Inorganic Chemistry : A Textbook Series, 2007.

K. Hughes and P. C. Burns, Acta Cryst. C, vol.59, issue.2, pp.7-8, 2003.

R. R. Shuvalov and P. C. Burns, « A monoclinic polymorph of uranyl dinitrate trihydrate, Acta Cryst. C, vol.59, pp.71-73, 2003.

J. C. Taylor and M. H. Mueller, « A neutron diffraction study of uranyl nitrate hexahydrate, Acta Cryst, vol.19, pp.536-543, 1965.

J. Bell and R. Biggers, « Absorption spectrum of the uranyl ion in perchlorate media III. Resolution of the ultraviolet band structure

, J. Mol. Spec, vol.25, pp.312-329, 1968.

A. Ikeda-ohno, C. Hennig, S. Tsushima, A. C. Scheinost, G. Bernhard et al., « Speciation and Structural Study of U(IV) and -(VI) in Perchloric and Nitric Acid Solutions », Inorg. Chem, vol.48, pp.7201-7210, 2009.

M. Brooker, C. Huang, and J. Sylwestrowicz, « Raman spectroscopic studies of aqueous uranyl nitrate and perchlorate systems, J. Inorg. Nucl. Chem, vol.42, pp.1431-1440, 1980.

R. H. Betts and R. K. Michels, Ionic association in aqueous solutions of uranyl sulphate and uranyl nitrate, J. Chem. Soc, pp.286-294, 1949.

M. Gál, P. Goggin, and J. Mink, « Mid-, far-infrared and raman spectra of uranyl complexes in aqueous solutions, J. Mol. Struc, vol.114, pp.459-462, 1984.

C. Nguyen-trung, G. M. Begun, and D. Palmer, Aqueous uranium complexes

, Raman spectroscopic study of the complex formation of the dioxouranium(VI) ion with a variety of inorganic and organic ligands », Inorg. Chem, vol.31, pp.5280-5287, 1992.

W. Chien, V. Anbalagan, M. Zandler, M. Van-stipdonk, D. Hanna et al., « Intrinsic hydration of monopositive uranyl hydroxide, nitrate, and acetate cations, J. Am. Soc. Mass Spectrometry, vol.15, pp.777-783, 2004.

G. L. Gresham, A. K. Gianotto, P. B. Harrington, L. Cao, J. R. Scott et al., U(V), and U(VI) Dioxo Monocations », Gas-Phase Hydration of U(IV), vol.107, pp.8530-8538, 2003.

N. G. Tsierkezos, J. Roithová, D. Schröder, M. On?ák, and P. Slaví?ek, Can Electrospray Mass Spectrometry Quantitatively Probe Speciation ? Hydrolysis of Uranyl Nitrate Studied by Gas-Phase Methods », vol.48, pp.6287-6296, 2009.

M. Bühl, H. Kabrede, R. Diss, and G. Wipff, « Effect of Hydration on Coordination Properties of Uranyl(VI) Complexes. A First-Principles Molecular Dynamics Study, J. Am. Chem. Soc, vol.128, pp.6357-6368, 2006.

C. Clavaguéra-sarrio, V. Brenner, S. Hoyau, C. J. Marsden, P. Millié et al.,

. Dognon, Modeling of Uranyl Cation-Water Clusters, J. Phys. Chem. B, vol.107, pp.3051-3060, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00094561

J. S. Craw, M. A. Vincent, I. H. Hillier, and A. L. Wallwork, Ab Initio Quantum Chemical Calculations on Uranyl UO 2+ 2 , Plutonyl PuO 2+ 2 , and Their Nitrates and Sulfates, J. Phys. Chem, vol.99, pp.10181-10185, 1995.

J. A. Greathouse, R. O'brien, G. Bemis, and R. T. Pabalan, Molecular Dynamics Study of Aqueous Uranyl Interactions with Quartz (010), vol.106, pp.1646-1655, 2002.

P. Guilbaud and G. Wipff, « Force field representation of the UO 2+ 2 cation from free energy MD simulations in water. Tests on its 18-crown-6 and NO ? 3 adducts, and on its calix[6]arene 6? and CMPO complexes, J. Mol. Struc : THEOCHEM, vol.366, pp.55-63, 1996.

P. Guilbaud and G. Wipff, « Hydration of uranyl (UO 2+ 2 ) cation and its nitrate ion and 18-crown-6 adducts studied by molecular dynamics simulations, J. Phys. Chem, vol.97, pp.5685-5692, 1993.

D. Hagberg, G. Karlström, B. O. Roos, and L. Gagliardi, « The Coordination of Uranyl in Water : A Combined Quantum Chemical and Molecular Simulation Study, J. Am. Chem. Soc, vol.127, pp.14250-14256, 2005.

L. Hemmingsen, P. Amara, E. Ansoborlo, and M. J. Field, « Importance of Charge Transfer and Polarization Effects for the Modeling of Uranyl-Cation Complexes, J. Phys. Chem. A, vol.104, pp.4095-4101, 2000.

T. L. Jayasinghe, M. Beck, and «. , Molecular Dynamics Simulations of the Structure and Thermodynamics of Carrier-Assisted Uranyl Ion Extraction, J. Phys. Chem. B, vol.113, pp.11662-11671, 2009.

S. Spencer, L. Gagliardi, N. C. Handy, A. G. Ioannou, C. Skylaris et al., Hydration of UO 2+ 2 and PuO 2+

, J. Phys. Chem. A, vol.103, pp.1831-1837, 1999.

S. Tsushima, T. Yang, and A. Suzuki, « Theoretical Gibbs free energy study on UO 2 (H 2 O) 2+ n and its hydrolysis products, Chem. Phys. Lett, vol.334, pp.365-373, 2001.

V. Vallet, T. Privalov, U. Wahlgren, and I. Grenthe, « The Mechanism of Water Exchange in AmO 2 (H 2 O) 2+ 5 and in the Isoelectronic UO 2 (H 2 O) + 5 and NpO 2, p.2

, Complexes as Studied by Quantum Chemical Methods », J. Am. Chem. Soc, vol.126, pp.7766-7767, 2004.

R. Spezia, B. Siboulet, S. Abadie, R. Vuilleumier, and P. Vitorge, « Stability and Instability of the Isoelectronic UO 2+ 2 and PaO + 2 Actinyl Oxo-Cations in Aqueous Solution from Density Functional Theory Based Molecular Dynamics, J. Phys. Chem. B, vol.115, pp.3560-3570, 2011.

S. Tsushima, « Photochemical Reduction of UO 2+ 2 in the Presence of Alcohol Studied by Density Functional Theory Calculations », Inorg. Chem, vol.48, pp.4856-4862, 2009.

M. On?ák, D. Schröder, and P. Slaví?ek, « Theoretical study of the microhydration of mononuclear and dinuclear uranium(VI) species derived from solvolysis of uranyl nitrate in water, J. Comput. Chem, vol.31, pp.2294-2306, 2010.

F. P. Rotzinger, « Mechanism for the Substitution of an Aqua Ligand of UO 2, p.2

». By-chloride, J. Chem. Theory Comput, vol.4, pp.1654-1658, 2008.

P. Nichols, E. J. Bylaska, G. Schenter, and W. De-jong, « Equatorial and apical solvent shells of the UO 2+ 2 ion, J. Chem. Phys, vol.128, p.124507

X. Ye, S. Cui, V. F. De-almeida, B. P. Hay, and B. Khomami, « Uranyl nitrate complex extraction into TBP/dodecane organic solutions : a molecular dynamics study, Phys. Chem. Chem. Phys, vol.12, pp.15406-15409, 2010.

R. Guillaumont, T. Fanghänel, J. Fuger, I. Grentheand, V. Neck et al., Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, 2003.

H. S. Dunsmore, S. Hietanen, and L. G. Sillen, Uranyl Ion UO 2+ 2 in Chloride

N. Perchlorate and S. Media, Survey and Introduction », Acta. Chem

. Scand, , vol.17, pp.2644-2656, 1963.

S. Ahrland, On the Complex Chemistry of the Uranyl Ion. VI. The Complexity of Uranyl Chloride, Bromide and Nitrate », Acta. Chem. Scand, vol.5, pp.1271-1282, 1951.

E. W. Davies and C. B. Monk, « Spectrophotometric studies of electrolytic dissociation, Trans. Faraday Soc, vol.53, pp.442-449, 1957.

R. A. Day and R. M. Powers, « Extraction of Uranyl Ion from Some Aqueous Salt Solutions with 2-Thenoyltrifluoroacetone, J. Am. Chem. Soc, vol.76, pp.3895-3897, 1954.

R. N. Goldberg, Evaluated activity and osmotic coefficients for aqueous solutions : bi-univalent compounds of lead, copper, manganese, and uranium, J. Phys. Chem. Ref. Data, vol.8, pp.1005-1050, 1979.

R. A. Robinson, J. M. Wilson, and H. S. Ayling, « The Activity Coefficients of Some Bivalent Metal Nitrates in Aqueous Solution at 25 ? from Isopiestic Vapor Pressure Measurements, J. Am. Chem. Soc, vol.64, pp.1469-1471, 1942.

R. A. Robinson and C. K. Lim, « The osmotic and activity coefficients of uranyl nitrate, chloride, and perchlorate at 25 ? », J. Chem. Soc, pp.1840-1843, 1951.

J. Simonin, Ionic Solutions in the Mean Spherical Approximation. 2. Pure Strong Electrolytes up to Very High Concentrations, and Mixtures, in the Primitive Model, J. Phys. Chem. B, vol.101, pp.4313-4320, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00162536

A. Ruas, O. Bernard, B. Caniffi, J. Simonin, P. Turq et al., VI) Nitrate Salts : Modeling Thermodynamic Properties Using the Binding Mean Spherical Approximation Theory and Determination of "Fictive" Binary Data, J. Phys. Chem. B, vol.110, pp.3435-3443, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00164729

M. , « Etude des trications lanthanide en solution aqueuse par dynamique moléculaire, 2007.

J. Molina, « Multi-scale modelling of ions in solution : from atomistic descriptions to chemical engineering, 2011.

B. Rotenberg, Modélisation multi-échelles du comportement de l'eau et des ions dans les argiles, 2007.

J. Dufrêche, Dynamique des ions en solution et aux interfaces : Modèles et Applications, 2001.

R. Schurhammer, Simulations par dynamique moléculaire de la solvatation et du comportement interfacial d'espèces hydrophobes : Application à l'hypothèse TATB et à l'extration liquide/liquide de cations par le CO 2 supercritique, 2001.

S. Lectez, « Modélisation de l'interaction de l'ion uranyle à l, p.3

, par la dynamique moléculaire quantique et classique, vol.11, 2012.

P. Virot, Cours de Master 2ème année "Physique Théorique des Systèmes" et "Modélisation, Statistique et Algorithmes des systèmes hors d'équilibre, 2014.

J. Barthel, H. Krienke, and W. Kunz, « Physical Chemistry of Electrolyte Solutions : modern aspects, 1998.

R. Robinson and R. Stokes, « Electrolyte Solutions, 2002.

P. Beale and R. Pathria, Statistical Mechanics, 2011.

D. A. Mcquarrie, « Statistical mechanics, 1975.

L. D. Landau and E. M. Lifshitz, Course of theoretical physics, vol.5, 1951.

D. Frenkel and B. Smit, Understanding Molecular Simulation, 2001.

J. Hansen and I. R. Mcdonald, Theory of Simple Liquids ». Fourth edition édition, 2013.

T. Morita and K. Hiroike, III : General Treatment of Classical Systems, A New Approach to the Theory of Classical Fluids, vol.25, pp.537-578, 1961.

L. Blum, Mean spherical model for asymmetric electrolytes, Mol. Phys, vol.30, pp.1529-1535, 1975.

L. Blum and J. S. Hoeye, Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function, J. Phys. Chem, vol.81, pp.1311-1316, 1977.

L. Blum and Y. Rosenfeld, « Relation between the free energy and the direct correlation function in the mean spherical approximation, J. Stat. Phys, vol.63, pp.1177-1190, 1991.

O. Bernard and L. Blum, « Binding mean spherical approximation for pairing ions : An exponential approximation and thermodynamics, J. Chem. Phys, vol.104, pp.4746-4754, 1996.

T. Morita, III : A New Integral Equation for the Pair Distribution Function, Theory of Classical Fluids : Hyper-Netted Chain Approximation, vol.23, pp.829-845, 1960.

J. K. Percus and G. J. Yevick, « Analysis of Classical Statistical Mechanics by Means of Collective Coordinates, Phys. Rev, vol.110, pp.1-13, 1958.

J. L. Lebowitz, « Exact Solution of Generalized Percus-Yevick Equation for a Mixture of Hard Spheres, Phys. Rev, vol.133, pp.895-899, 1964.

M. S. Wertheim, « Exact Solution of the Percus-Yevick Integral Equation for Hard Spheres, Phys. Rev. Lett, vol.10, pp.321-323, 1963.

R. J. Baxter, « Percus-Yevick Equation for Hard Spheres with Surface Adhesion, J. Chem. Phys, vol.49, pp.2770-2774, 1968.

D. R. Lide, Handbook of Chemistry and Physics, 2005.

H. H. Girault, Electrochimie physique et analytique » (Presses polytechniques et universitaires romandes, 2001.

J. Molina, J. Dufrêche, M. Salanne, O. Bernard, M. Jardat et al., « Models of electrolyte solutions from molecular descriptions : The example of NaCl solutions, Phys. Rev. E, vol.80, p.65103, 2009.

W. G. Mcmillan and J. E. Mayer, « The Statistical Thermodynamics of Multicomponent Systems, J. Chem. Phys, vol.13, pp.276-305, 1945.

B. Diu, D. Lederer, and B. Roulet, Physique statistique, 1996.

H. L. Friedman and . Thermodynamic, Excess Functions for Electrolyte Solutions, J. Chem. Phys, vol.32, pp.1351-1362, 1960.

H. L. Friedman and . Lewis, Randall to McMillan-Mayer conversion for the thermodynamic excess functions of solutions. Part I. Partial free energy coefficients, J. Sol. Chem, vol.1, pp.387-412, 1972.

H. Krienke and J. Barthel, « Some recent developments in the statistical mechanical theory of ionic solvation, Pure Appl. Chem, vol.66, pp.405-410, 1994.

T. Cartailler, P. Turq, L. Blum, and N. Condamine, « Thermodynamics of ion association in the mean spherical approximation, J. Phys. Chem, vol.96, pp.6766-6772, 1992.

J. J. Salacuse and G. Stell, « Polydisperse systems : Statistical thermodynamics, with applications to several models including hard and permeable spheres », J. Chem. Phys, vol.77, pp.3714-3725, 1982.

G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, « Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres », J. Chem. Phys, vol.54, pp.1523-1525, 1971.

L. Verlet and . Computer, Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Phys. Rev, vol.159, pp.98-103, 1967.

L. Verlet and . Computer, Experiments" on Classical Fluids. II. Equilibrium Correlation Functions, Phys. Rev, vol.165, pp.201-214, 1968.

S. Kumar, J. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, « The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method, J. Comput. Chem, vol.13, pp.1011-1021, 1992.

S. Kumar, J. M. Rosenberg, R. H. Bouzida, D. Swendsen, and P. A. Kollman, « Multidimensional free-energy calculations using the weighted histogram analysis method, J. Comput. Chem, vol.16, pp.1339-1350, 1995.

B. Roux, « The calculation of the potential of mean force using computer simulations », Comput. Phys. Commun, vol.91, pp.275-282, 1995.

A. Grossfield, An implementation of WHAM : the Weighted Histogram Analysis Method

M. Souaille and B. Roux, « Extension to the weighted histogram analysis method : combining umbrella sampling with free energy calculations, Comput. Phys. Commun, vol.135, pp.40-57, 2001.

D. A. Case, T. A. Darden, T. Cheatham, C. Simmerling, J. Wang et al.,

J. Hsieh, G. Cui, D. Roe, D. Mathews, M. Seetin et al., , vol.10, 2008.

M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids », 1989.

J. E. Jones, On the Determination of Molecular Fields. II. From the Equation of State of a Gas », Proc. R. Soc. A, vol.106, pp.463-477, 1924.

S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio et al., « A new force field for molecular mechanical simulation of nucleic acids and proteins, J. Am. Chem. Soc, vol.106, pp.765-784, 1984.

W. Van-gunsteren and H. J. Berendsen, Computer Simulation of Molecular Dynamics : Methodology, Applications, and Perspectives in Chemistry, vol.29, pp.992-1023, 1990.

T. Darden, D. York, and L. Pedersen, « Particle mesh Ewald : An N log(N ) method for Ewald sums in large systems, J. Chem. Phys, vol.98, pp.10089-10092, 1993.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, « Equation of State Calculations by Fast Computing Machines, J. Chem. Phys, vol.21, pp.1087-1092, 1953.

C. Auwer, D. Guillaumont, P. Guilbaud, S. D. Conradson, J. J. Rehr et al., « Theoretical chemical contribution to the simulation of the L III X-ray absorption edges of uranyl, neptunyl and osmyl hydrates and hydroxides », New J. Chem, vol.28, pp.929-939, 2004.

P. J. Hay, R. L. Martin, and G. Schreckenbach, « Theoretical Studies of the Properties and Solution Chemistry of AnO 2+ 2 and AnO + 2 Aquo Complexes for An = U, Np, and Pu, J. Phys. Chem. A, vol.104, pp.6259-6270, 2000.

T. Megyes, I. Bakó, S. Bálint, T. Grósz, and T. Radnai, « Ion pairing in aqueous calcium chloride solution : Molecular dynamics simulation and diffraction studies, J. Mol. Liq, vol.129, pp.63-74, 2006.

T. Megyes, T. Grósz, T. Radnai, I. Bakó, and G. Pálinkás, « Solvation of Calcium Ion in Polar Solvents : An X-ray Diffraction and ab Initio Study, J. Phys. Chem. A, vol.108, pp.7261-7271, 2004.

V. Pham and J. L. Fulton, « Ion-pairing in aqueous CaCl 2 and RbBr solutions : Simultaneous structural refinement of XAFS and XRD data, J. Chem. Phys, vol.138, p.44201, 2013.

P. S. Salmon, « Hydration of complexed chloride ions in aqueous zinc(II) chloride solution », J. Phys. Chem, vol.93, pp.1182-1184, 1989.

P. E. Mason, S. Ansell, G. W. Neilson, and J. W. Brady, « Be 2+ Hydration in Concentrated Aqueous Solutions of BeCl 2 », J. Phys. Chem. B, vol.112, pp.1935-1939, 2008.

S. Cummings, J. E. Enderby, G. W. Neilson, J. R. Newsome, R. A. Howe et al.,

A. K. Howells and . Soper, Chloride ions in aqueous solutions », Nature, vol.287, pp.714-716, 1980.

P. A. Bergstroem, J. Lindgren, and O. Kristiansson, « An IR study of the hydration of perchlorate, nitrate, iodide, bromide, chloride and sulfate anions in aqueous solution, J. Phys. Chem, vol.95, pp.8575-8580, 1991.

A. A. Chialvo and J. M. Simonson, « The structure of CaCl 2 aqueous solutions over a wide range of concentration. Interpretation of diffraction experiments via molecular simulation, J. Chem. Phys, vol.119, pp.8052-8061, 2003.

T. Nguyen, M. Duvail, A. Villard, J. J. Molina, P. Guilbaud et al., « Multi-scale modelling of uranyl chloride solutions, J. Chem. Phys, vol.142, p.24501, 2015.

D. Guillaumont, unpublished data -DFT calculations have been performed using Gaussian 03, 2008.

J. Wang, P. Cieplak, Q. Cai, M. Hsieh, J. Wang et al., « Development of Polarizable Models for Molecular Mechanical Calculations. 3. Polarizable Water Models Conforming to Thole Polarization Screening Schemes, J. Phys. Chem. B, vol.116, pp.7999-8008, 2012.

E. C. Meng and P. A. Kollman, « Molecular Dynamics Studies of the Properties of Water around Simple Organic Solutes, J. Phys. Chem, vol.100, pp.11460-11470, 1996.

J. W. Caldwell, P. A. Kollman-;-n-methylacetamide, and ». , Structure and Properties of Neat Liquids Using Nonadditive Molecular Dynamics : Water, Methanol, and, vol.99, pp.6208-6219, 1995.

V. Marry and P. Turq, Microscopic Simulations of Interlayer Structure and Dynamics in Bihydrated Heteroionic Montmorillonites, vol.107, pp.1832-1839, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00168681

S. Koneshan, J. C. Rasaiah, R. M. Lynden-bell, and S. H. Lee, « Solvent Structure, Dynamics, and Ion Mobility in Aqueous Solutions at 25C », J. Phys. Chem. B, vol.102, pp.4193-4204, 1998.

P. Van-duijnen, M. Swart, «. Molecular, and A. Polarizabilities, Thole's Model Revisited, J. Phys. Chem. A, vol.102, pp.2399-2407, 1998.

D. Smith and L. X. Dang, « Computer simulations of NaCl association in polarizable water, J. Chem. Phys, vol.100, pp.3757-3766, 1994.

R. Spezia, M. Duvail, P. Vitorge, T. Cartailler, J. Tortajada et al., « A Coupled Car-Parrinello Molecular Dynamics and EXAFS Data Analysis Investigation of Aqueous Co 2+, J. Phys. Chem. A, vol.110, pp.13081-13088, 2006.

J. C. Taylor and P. W. Wilson, « The structure of uranyl chloride monohydrate by neutron diffraction and the disorder of the water molecule, Acta Crist. B, vol.30, pp.169-175, 1974.

R. Mancinelli, A. Botti, F. Bruni, M. A. Ricci, and A. K. Soper, « Hydration of Sodium, Potassium, and Chloride Ions in Solution and the Concept of Structure Maker/Breaker, J. Phys. Chem. B, vol.111, pp.13570-13577, 2007.

G. Johansson and H. Wakita, « X-ray investigation of the coordination and complex formation of lanthanoid ions in aqueous perchlorate and selenate solutions », Inorg. Chem, vol.24, pp.3047-3052, 1985.

G. Neilson, D. Schiöberg, and W. Luck, « The structure around the perchlorate ion in concentrated aqueous solutions, Chem. Phys. Lett, vol.122, pp.475-479, 1985.

P. Lindqvist-reis, A. Muñoz-páez, S. Díaz-moreno, S. Pattanaik, I. Persson et al., Indium(III), and Chromium(III) Ions in Aqueous Solution. A Large Angle X-ray Scattering and EXAFS Study », The Structure of the Hydrated Gallium(III), vol.37, pp.6675-6683, 1998.

G. Heinje, W. A. Luck, and K. Heinzinger, « Molecular dynamics simulation of an aqueous sodium perchlorate solution, J. Phys. Chem, vol.91, pp.331-338, 1987.

L. Eklund, T. S. Hofer, and I. Persson, « Structure and water exchange dynamics of hydrated oxo halo ions in aqueous solution using QMCF MD simulation, large angle X-ray scattering and EXAFS, Dalton Trans. 44, pp.1816-1826, 2015.

R. Caminiti, G. Licheri, G. Piccaluga, and G. Pinna, « On NO ? 3 -H 2 O interactions in aqueous solutions, J. Chem. Phys, vol.68, pp.1967-1970, 1978.

, Z. Naturforsch. (A), vol.35, p.1368, 1980.

S. P. Dagnall, D. N. Hague, and A. D. Towl, « X-ray diffraction study of aqueous zinc(II) nitrate », J. Chem. Soc., Faraday Trans. 2, vol.78, pp.2161-2167, 1982.

R. Caminiti, P. Cucca, and T. Pintori, « Hydration and ion-pairing in concentrated aqueous Mn(NO 3 ) 2 solutions. An X-ray and raman spectroscopy study, Chem. Phys, vol.88, pp.155-161, 1984.

R. Caminiti, P. Cucca, and T. Radnai, « Investigation on the structure of cadmium nitrate aqueous solutions by x-ray diffraction and Raman spectroscopy, J. Phys. Chem, vol.88, pp.2382-2386, 1984.

X. Liu, S. Zhang, G. Zhou, G. Wu, X. Yuan et al., « New Force Field for Molecular Simulation of Guanidinium-Based Ionic Liquids, J. Phys. Chem. B, vol.110, pp.12062-12071, 2006.

G. F. Velardez, S. Alavi, and D. L. Thompson, « Molecular dynamics studies of melting and solid-state transitions of ammonium nitrate », J. Chem. Phys, vol.120, pp.9151-9159, 2004.

Y. Kataoka-;-m-=-li, K. Na, R. , and C. , Molecular Dynamics Simulation of Aqueous MNO 3, vol.66, pp.2478-2491, 1993.

V. Vchirawongkwin, C. Kritayakornupong, A. Tongraar, and B. M. , Rode, « Symmetry Breaking and Hydration Structure of Carbonate and Nitrate in Aqueous Solutions : A Study by Ab Initio Quantum Mechanical Charge Field Molecular Dynamics, J. Phys. Chem. B, vol.115, pp.12527-12536, 2011.

V. Chizhik, A. Egorov, A. Komolkin, and A. Vorontsova, « Microstructure and dynamics of electrolyte solutions containing polyatomic ions by NMR relaxation and molecular dynamics simulation, J. Mol. Liq, pp.173-182, 2002.

A. Zalkin, L. K. Templeton, and D. H. Templeton, Structure of rubidium uranyl(VI) trinitrate », vol.45, pp.810-811, 1989.