V. Arp, R. Mccarty, and D. Friend, Thermophysical properties of Helium-4 from 0.8 to 1500 K with pressure to, MPa. NIST technical note, 1998.

R. Bird, . Stewart, . We, and E. N. Lightfood, Transport phenomena, 2002.

F. C. Blake, The resistance of packing to fluid flow, Trans. Amer. Inst. Chem. Engrs, vol.14, pp.415-421, 1922.

S. P. Burke and W. B. Plummer, Gas Flow through Packed Columns, Ind. Eng. Chem, vol.20, pp.1196-1200, 1928.

D. Carvalho-lopes, A. Ravex, and J. M. Duval, Développement d'un tube à gaz pulsé très hautes fréquences, 2011.

J. S. Cha, S. M. Ghiaasiaan, and C. S. Kirkconnell, Oscillatory flow in microporous media applied in pulse tube and Stirling cycle cryocooler regenerators. Experimental thermal and fluid science, vol.32, pp.1264-1278, 2008.

S. Colin, Gas microflows in the slip flow regime : a crical review on convective heat transfer, Journal of heat transfer, vol.134, 2012.

D. C. Collis and M. J. Williams, Two-dimensional convection from heated wires at low Reynolds number. Aeronautical research laboratories, Australian defence scientific service, 1959.

D. Colombet, Modélisation de réacteurs Gaz-Liquide de type colonne à bulles en conditions industrielles, 2012.

D. Colombet, D. Legendre, F. Risso, A. Cockx, and P. Guiraud, Dynamics and mass transfer of rising bubbles in a homogenous swarm at large gas volume fraction, Journal of Fluid Mechanics, vol.763, pp.254-285, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01269183

S. C. Costa, H. Barrutia, J. A. Esnaola, and M. Tutar, Numerical study of the pressure drop phenomena in wound woven wire matrix of a Stirling regenerator, Energy Conversion and Management, vol.67, pp.57-65, 2013.

S. C. Costa, M. Tutar, I. Borreno, . Esnola, J. I. Prieto et al., Expenrimental and numerical flow investigation of Stirling engine regenerator, Energy, vol.72, pp.800-812, 2014.

S. C. Costa, M. Tutar, I. Barreno, J. A. Esnaola, H. Barrutia et al., Experimental and numerical flow investigation of Stirling engine regenerator, Energy, vol.72, pp.800-812, 2014.

S. C. Costa, H. Barrutia, J. A. Esnaola, and M. Tutar, Numerical study of the heat transfer in wound woven wire matrix of a Stirling regenerator, Energy Conversion and Management, vol.79, pp.255-264, 2014.

S. C. Costa, I. Barreno, M. Tutar, J. A. Esnaola, and H. Barrutia, The thermal non-equilibrium porous media modelling for CFD study of woven wire matrix of a Stirling regenerator, Energy Conversion and Management, vol.89, pp.473-483, 2015.

A. Dani, Transfert de masse entre une bulle et un liquide : simulations numériques directes et fluorescence induite par nappe LASER, 2007.

C. R. Dennis and G. Z. Chang, Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100, J. Fluid Mech, vol.42, pp.471-489, 1970.

J. H. Derking, . Zalewski, G. Dw, M. Holland, . Hj et al., Progress in Joule-Thomson Microcooling at the University of Twente, vol.16, pp.463-471, 2011.

R. B. Eldridge, , 2014.

S. Ergun, Fluid flow through packed columns, Chem. Engr. Prog, vol.48, pp.89-94, 1952.

M. Favre-marinet, Cours de convection, HMG, 1990.

A. Fery, Étude de la variation de la resistivité des couches minces de platine en fonction de leur épaisseur et de l'influence des corps oxygénés sur de semblable résistance, Journal de Physique Radium, p.3, 1928.

B. Fornberg, A numerical study of steady viscous flow past a circular cylinder, Fluid Mechanics, vol.98, pp.819-855, 1980.

I. Garaway and G. Grossman, A sudy of a high-frequency miniature reservoir-less pulse tube, Advanced in cryogenic engineering, conference-CEC, vol.53, pp.1547-1554, 2008.

S. Garvey, S. Logan, R. , R. Little, and . Wa, Performance characteristics of a lowflow rate 25 mW, lN2 Joule-Thomson refrigerator fabricated by photolithographic means, Appl. Phys. Lett, vol.42, pp.1048-50, 1983.

D. Gedeon and J. G. Wood, Oscillating-flow regenerator test rig : hadware and theory with derived correlations for sreens and felts, p.198442, 1996.

W. E. Gifford and R. C. Longsworth, Pulse tube refrigeration process, Annual Meeting of the American Society of mechanical Engineers, pp.69-78, 1964.

D. J. Gunn, Transfer of heat or mass to particles in fixed and fluidized beds, Intl J. Heat Mass Transfer, vol.21, pp.467-476, 1978.

D. Haywood, R. , J. K. Gschwendtner, and M. A. , Stirling-cycle heat-pumps and refrigerators -a realistic alternative ? IHRACE 2002 conference, 2002.

R. Hilpert, Warmeabgage von geheizten Drahten und Rohren im Luftstrom, ForshArb. Ing. Wes, vol.4, p.215, 1933.

Z. Huang, Efficacité de Capture dans les Procédés de Flottation, 2009.

J. C. Kalita and R. K. Ray, A transformation-free HOC scheme for incompressible viscous flows past an impulsively started circular cylinder, Journal of Computational Physics, vol.228, pp.5207-5236, 2009.

T. Koetting, F. Richter, R. Nawrodt, A. Zimmer, D. Schwarz et al., Application of novel regenerator material within a coaxial two-stage pulse tube refrigerator, Advances in Cryogenic Engineering, vol.53, pp.235-242, 2008.

J. Kozeny, Sitzungber Akd. Wiss. Wien, Abt. IIa, vol.136, pp.271-306, 1927.

R. E. Larson and J. L. Higdon, A periodic grain consolidation model of porous media, Phys. fluids A, vol.1, p.38, 1989.

N. M. Laurendeau, Statistical thermodynamics. Fundamentals and applications, 2005.

D. Legendre and J. Magnaudet, The lift force on a spherical bubble in a viscous linear shear flow, Journal of Fluids Mechanics, vol.368, pp.81-126, 1998.

P. Lerou, . Venhorst, . Gcf, . Berends, . Cf et al., Fabrication of a micro cryogenic cold stage using MEMS-technology, Journal of Micromechanics and Microengineering, vol.16, issue.10, p.1919, 2006.

J. Magnaudet, M. Rivero, and J. Fabre, Accelerated flows past a rigid sphere or a spherical bubble. Part 1 : Steady straining flow, Journal of Fluids Mechanics, vol.284, pp.97-135, 1995.

A. Massol, Simulations numériques d'écoulements au travers des réseaux fixes de sphères monodisperses et bidisperses, pour des nombres de Reynolds modérés, 2004.

R. S. Matos, J. Vargas, T. A. Laursen, and A. Bejan, Optimally staggered finned circular and elliptic tubes in forced convection, Int. J. Heat Mass Transfer, vol.47, pp.1347-1359, 2004.

R. S. Matos, T. A. Laursen, J. Vargas, and A. Bejan, Three-dimensional optimization of staggered finned circular and elliptic tubes in forced convection, International Journal of Thermal Sciences, vol.43, pp.477-487, 2004.

W. H. Mcadams, Heat transmission, 1954.

P. Mcfarlan and F. Semperlotti, Mathematical model and experimental design of an air filled alpha Stirling refrigerator. Department of Aerospace and mechanical Engineering, pp.1-14, 2014.

M. Medrano-munoz, &. Duval, and J. , Etude métier structures régénérateur. CT-13-56, 2014.

E. I. Mikulin, A. A. Tarasov, and M. P. Shkrebyonock, Low temperateure expansion pulse tubes, Advanced in cryogenic Engineering, pp.629-637, 1984.

T. K. Miyauchi, A. , H. Kikuchi, and T. , Gas film coefficient of mass transfer in low Peclet number region for sphere packed beds, Chem. Engng Sci, vol.31, pp.9-13, 1976.

G. Morini and . Luca, Single-phase convective heat transfer in microchannels : a review of experimental results, International Journal of thermal science, vol.43, pp.631-651, 2004.

G. Morini, . Luca, . Lorenzini, . Marco, and M. Spiga, A criterion for experimental validation of slip-flow models for incompressible rarefied gases through microchannels, Microfluid Nanofluid, vol.1, pp.190-196, 2005.

M. Mory, Ecoulements pour les prodédés : application à la réaction chimique et à la séparation mécanique, 2010.

P. Nika, Y. Bailly, J. C. Jeannot, &. De-labachelerie, and M. , An integrated pulse tube refrigeration device with micro exchangers : design and experiments, International Journal of Thermal Sciences, vol.42, pp.1029-1045, 2003.

P. Nika, Y. Bailly, J. C. Jeannot, D. E. Labachelerie, M. et al., Miniature pulse tube for the cooling of electronic devices : functioning principles and practical modelling, Microscale thermophysical engineering, vol.8, pp.301-325, 2004.

P. Perrier, I. A. Graur, T. Ewart, and J. G. Meolans, Mass flow rate measurements in microtubes : from hydrodynamic to near free molecular regime, Physics of fluids, vol.1, pp.190-196, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01443385

G. Popescu, V. Radcenco, E. Gargalian, &. Ramani-bala, and P. , A critical review of pulse tube regenerator research, International Journal of Refrigeration, vol.24, pp.230-237, 2001.

W. E. Ranz and W. R. Marshall, Evaporation from drops, Chem. Eng. Prog, vol.48, pp.173-180, 1952.

I. Roghair, M. Van-sint-annaland, and J. Kuipers, An improved Front-Tracking technique for the simulation of mass transfer in dense bubbly flows, Chemical Engineering Science, vol.152, pp.351-369, 2016.

I. Roghair, A. , M. Kuipers, and J. , An improved Front-Tracking technique for the simulation of mass transfer in dense bubbly flows, Chemical Engineering Science, vol.152, pp.351-369, 2016.

P. N. Rowe and K. T. Claxton, Heat and mass transfer from a single sphere to fluid flowing through an array, Trans. Inst. Chem. Engrs-Lond, vol.43, pp.321-331, 1965.

I. Ruhlich, H. Quack, and . Ross, Investigations on regenerative heat exchangers. Cryocoolers 10Â, pp.265-274, 1999.

A. E. Scheidegger, The physics of flow through porous media, 1963.

L. Schiller and A. Nauman, VDI Zeits, vol.77, p.318, 1933.

G. J. Sheard, K. Hourigan, and M. C. Thompson, Computations of the drag coefficients for low-Reynolds-number flow past rings, J. Fluid Mech, vol.526, pp.257-275, 2005.

E. M. Sparrow, . Grannis, and . Vb, Pressure drop characteristics of heat exchangers consisting of arrays of diamond-shaped pin fins, Int. J. Heat Mass Transfer, vol.34, pp.589-600, 1991.

G. Stanescu, A. J. Fowler, and A. Bejan, The optimal spacing of cylinders in free-stream cross-flow forced convection, Int. J. Heat Mass Transfer, vol.39, pp.311-317, 1996.

M. Tanaka, I. Yamashita, and F. Chisaka, Flow and heat transfer characteristics of the stirling engine regenerator in an oscillationg flow, JSME Int. J, vol.33, issue.2, pp.283-292, 1990.

D. J. Tritton, Experiments on the flow past a circular cylinder at low Reynolds numbers, J. Fluid Mechanics, vol.6, pp.547-567, 1959.

A. Van-der-hoef, R. Beetstra, and J. Kuipers, Lattice-Boltzmann simulations of low-Reynolds-number flow past mono-and bidisperse arrays of spheres : results for the permeability and drag force, J. Fluid Mech, vol.528, pp.233-254, 2005.

S. Vanapalli, J. F. Burger, . Veenstra, . Tt, . Holland et al., Experimental investigation of friction factors for gas flow across dense pillar matrices in microchannels, pp.354-357, 2005.

S. Vanapalli, T. Brake, . Hjm, . Jansen, . Hv et al., Pressure drop of laminar gas flows in a microchannel containing various pillar matrices, Journal of Micromechanics and Microengineering, pp.1381-1386, 2007.

N. Wakao, S. Kaguei, and T. Funazkri, Effect of fluid dispersion coefficients on particleto-fluid heat transfer coefficiens in packed beds, Chem. Eng. Sci, vol.34, p.325, 1979.

X. L. Wang, . Zhao, . Mg, J. H. Cai, J. T. Liang et al., Experimental flow characteristics study of a high frequency pulse tube regenerator, Cryocoolers, vol.13, pp.439-444, 2004.

C. Wieselberger, Neuere feststellungen uussigkeits und Luftwider stands, Phys. Z, vol.22, pp.321-328, 1921.

Y. U. Yampolskii, I. Pinnau, and B. Freeman, Materials Science of Membranes for Gas and Vapor Separation, 2006.

C. L. Yaws, Chemical properties handbook, 1999.

M. Zdravkovich, A CRITICAL REMARK ON USE OF DRAG COEFFICIENT AT LOW REYNOLDS NUMBERS. Recueil des travaux de l'institut Mathématique, vol.3, 1977.

S. Zhu, P. A. Wu, and Z. Chen, Double inlet pulse tube refrigerators :an important improvement, Cryogenics, vol.30, pp.514-520, 1990.

S. Wikipedia, Conductivité thermique : ? Si (300 K) = 148

S. Selon-catalogue-de-fournisseur-de, Good Fellow, Masse volumique : ? Si = 2340

, La diffusivité thermique dépend le plus de la variation de la conductivité thermique. En prenant une valeur max et min on estime les cas extrêmes : D T (Min) = 4.90E-5, pp.12-17

, A.3 Propriétés physiques du Pyrex

, Le Pyrex est un nom commercial du verre borosilicate. D'après la fiche matière de "Sceram ceramics

, Conductivité thermique : ? P yx (20 ? C) = 1.13, p.750

H. Figure, Champ de vitesse pour les géométries de forme sinus : avec de bas en haut ? =

H. Figure, Champ de vitesse pour les géométries de forme sinus : avec de bas en haut ? =, vol.2

H. Figure, 4: Évolution du nombre de Poiseuille pour Re < 10 pour les géométries sinus en fonction de l'angle et de la porosité