M. P. Wiedeman, Dimensions of blood vessels from distributing artery to collecting vein, Circ. Res, vol.12, pp.375-378, 1963.

E. Kolaczkowska and P. Kubes, Neutrophil recruitment and function in health and inflammation, Nat. Rev. Immunol, vol.13, pp.159-75, 2013.

G. P. Downey, Retention of leukocytes in capillaries: role of cell size and deformability, J. Appl. Physiol, vol.69, pp.1767-78, 1990.

G. S. Worthen, B. I. Schwab, E. L. Elson, and G. P. Downey, Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries, Science, vol.245, pp.183-186, 1989.

V. Vasioukhin, C. Bauer, M. Yin, and E. Fuchs, Directed actin polymerization is the driving force for epithelial cell-cell adhesion, Cell, vol.100, pp.209-219, 2000.

F. Wang, Kinetic mechanism of non-muscle myosin IIB. Functional adaptations for tension generation and maintenance, J. Biol. Chem, vol.278, pp.27439-27448, 2003.

T. Lecuit, P. Lenne, and E. Munro, Force Generation, Transmission, and Integration during Cell and Tissue Morphogenesis, Annu. Rev. Cell Dev. Biol, vol.27, pp.157-184, 2011.
DOI : 10.1146/annurev-cellbio-100109-104027

URL : https://hal.archives-ouvertes.fr/hal-00726446

W. Engl, B. Arasi, L. L. Yap, J. P. Thiery, and V. Viasnoff, Actin dynamics modulate mechanosensitive immobilization of E-cadherin at adherens junctions, Nat. Cell Biol, vol.16, pp.587-94, 2014.

D. Palm, K. Lang, B. Brandt, K. S. Zaenker, and F. Entschladen, In vitro and in vivo imaging of cell migration: two interdepending methods to unravel metastasis formation, Semin. Cancer Biol, vol.15, pp.396-404, 2005.

C. Liang, A. Y. Park, and J. Guan, In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro, Nat. Protoc, vol.2, pp.329-362, 2007.

S. Boyden, The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes, J. Exp. Med, pp.453-466, 1962.

D. R. Senger, The alpha(1)beta(1) and alpha(2)beta(1) integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis, Am. J. Pathol, vol.160, pp.195-204, 2002.

G. Charras and E. Sahai, Physical influences of the extracellular environment on cell migration, Nat. Rev. Mol. Cell Biol, vol.15, pp.813-824, 2014.

J. Wu, X. Wu, and F. Lin, Recent developments in microfluidics-based chemotaxis studies, Lab Chip, vol.13, pp.2484-99, 2013.

P. Maiuri, The first World Cell Race, Curr. Biol, vol.22, pp.673-675, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00744751

N. Li-jeon, Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device, Nat. Biotechnol, vol.20, pp.826-830, 2002.

C. W. Frevert, G. Boggy, T. M. Keenan, and A. Folch, Measurement of cell migration in response to an evolving radial chemokine gradient triggered by a microvalve, Lab Chip, vol.6, pp.849-56, 2006.

C. N. Jones, Spontaneous neutrophil migration patterns during sepsis after major burns, PLoS One, vol.9, pp.1-17, 2014.
DOI : 10.1371/journal.pone.0114509

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0114509&type=printable

M. T. Breckenridge, T. T. Egelhoff, and H. Baskaran, A microfluidic imaging chamber for the direct observation of chemotactic transmigration, Biomed. Microdevices, vol.12, pp.543-553, 2010.

L. Boneschansker, J. Yan, E. Wong, D. M. Briscoe, and D. Irimia, Microfluidic platform for the quantitative analysis of leukocyte migration signatures, Nat. Commun, vol.5, p.4787, 2014.

D. Irimia, G. Charras, N. Agrawal, T. Mitchison, and M. Toner, Polar stimulation and constrained cell migration in microfluidic channels, Lab Chip, vol.7, pp.1783-1790, 2007.

P. M. Davidson, J. Sliz, P. Isermann, C. Denais, and J. Lammerding, Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments, Integr. Biol, vol.7, pp.1534-1546, 2015.

J. R. Lange, Microconstriction Arrays for High-Throughput Quantitative Measurements of Cell Mechanical Properties, Biophys. J, vol.109, pp.26-34, 2015.

A. C. Rowat, Nuclear Envelope Composition Determines the Ability of Neutrophil-type Cells to Passage through Micron-scale Constrictions, J. Biol. Chem, vol.288, pp.8610-8618, 2013.

M. L. Heuzé, O. Collin, E. Terriac, and M. Piel, Cell Migration, vol.769, 2011.

A. Harris, P. Wild, and D. Stopak, Silicone rubber substrata: a new wrinkle in the study of cell locomotion, Science, vol.208, pp.177-179, 1980.

W. R. Legant, Measurement of mechanical tractions exerted by cells in three-dimensional matrices, Nat. Methods, vol.7, pp.969-71, 2010.

, Scientific RepoRts |, vol.6

K. Beningo and Y. L. Wang, Flexible substrata for the detection of cellular traction forces, Trends Cell Biol, vol.12, pp.79-84, 2002.

X. Tang, A. Tofangchi, S. V. Anand, and T. A. Saif, A novel cell traction force microscopy to study multi-cellular system, PLoS Comput. Biol, vol.10, p.1003631, 2014.

J. L. Tan, Cells lying on a bed of microneedles: an approach to isolate mechanical force, Proc. Natl. Acad. Sci. USA, vol.100, pp.1484-1489, 2003.

O. Du-roure, Force mapping in epithelial cell migration, Proc. Natl. Acad. Sci, vol.102, pp.2390-2395, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00188271

R. N. Palchesko, L. Zhang, Y. Sun, and A. W. Feinberg, Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve, PLoS One, vol.7, p.51499, 2012.

T. G. Kuznetsova, M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov, Atomic force microscopy probing of cell elasticity, Micron, vol.38, pp.824-833, 2007.

T. Iskratsch, H. Wolfenson, and M. P. Sheetz, Appreciating force and shape -the rise of mechanotransduction in cell biology, Nat. Rev. Mol. Cell Biol, vol.15, pp.825-833, 2014.

V. Gribova, A material's point of view on recent developments of polymeric biomaterials: control of mechanical and biochemical properties, J. Mater. Chem, vol.21, pp.14354-14366, 2011.

E. Evans and B. Kukan, Passive material behavior of granulocytes based on large deformation and recovery after deformation tests, Blood, vol.64, pp.1028-1035, 1984.

O. Campàs, Quantifying cell-generated mechanical forces within living embryonic tissues, Nat. Methods, vol.11, pp.183-189, 2013.

L. Trichet, O. Campàs, C. Sykes, and J. Plastino, VASP governs actin dynamics by modulating filament anchoring, Biophys. J, vol.92, pp.1081-1090, 2007.

T. Mason and J. Bibette, Emulsification in Viscoelastic Media, Phys. Rev. Lett, vol.77, pp.3481-3484, 1996.

A. Millius and O. D. Weiner, Manipulation of neutrophil-like HL-60 cells for the study of directed cell migration, Methods Mol. Biol, vol.591, pp.147-58, 2010.

Y. Xia and G. M. Whitesides, Soft Lithography. Angew. Chemie Int. Ed, vol.37, pp.550-575, 1998.

P. Vargas, E. Terriac, A. Lennon-duménil, and M. Piel, Study of Cell Migration in Microfabricated Channels, J. Vis. Exp. e51099, 2014.

J. Schindelin, Fiji: an open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-82, 2012.

A. Yeung, T. Dabros, J. Masliyah, and J. Czarnecki, Micropipette: a new technique in emulsion research, Colloids Surfaces A Physicochem. Eng. Asp, vol.174, pp.169-181, 2000.

F. Leal-calderon, V. Schmitt, and J. Bibette, Emulsion Science: Basic Principles, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00801651

M. Ben and K. Barek, Phagocytosis of immunoglobulin-coated emulsion droplets, Biomaterials, vol.51, pp.270-277, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01137459

J. Fattaccioli, J. Baudry, N. Henry, F. Brochard-wyart, and J. Bibette, Specific wetting probed with biomimetic emulsion droplets, Soft Matter, vol.4, pp.2434-2440, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00346107

K. A. Brakke, The Surface Evolver, Exp. Math, vol.1, pp.141-165, 1992.

S. J. Collins, F. W. Ruscetti, R. E. Gallagher, and R. C. Gallo, Normal functional characteristics of cultured human promyelocytic leukemia cells (HL-60) after induction of differentiation by dimethylsulfoxide, J. Exp. Med, vol.149, pp.969-74, 1979.

A. B. Hauert, S. Martinelli, C. Marone, and V. Niggli, Differentiated HL-60 cells are a valid model system for the analysis of human neutrophil migration and chemotaxis, Int. J. Biochem. Cell Biol, vol.34, pp.838-854, 2002.

E. S. Wittchen, Rap1 GTPase inhibits leukocyte transmigration by promoting endothelial barrier function, J. Biol. Chem, vol.280, pp.11675-11682, 2005.

K. Wilson, Mechanisms of leading edge protrusion in interstitial migration, Nat. Commun, vol.4, p.2896, 2013.

S. Gabriele, A. Benoliel, P. Bongrand, and O. Théodoly, Microfluidic investigation reveals distinct roles for actin cytoskeleton and myosin II activity in capillary leukocyte trafficking, Biophys. J, vol.96, pp.4308-4318, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01085256

H. V. Prentice-mott, Biased migration of confined neutrophil-like cells in asymmetric hydraulic environments, Proc. Natl. Acad. Sci. USA, vol.110, pp.21006-21017, 2013.

V. Niggli, Rho-kinase in human neutrophils: A role in signalling for myosin light chain phosphorylation and cell migration, FEBS Lett, vol.445, pp.69-72, 1999.

T. Ishizaki, Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases, Mol. Pharmacol, vol.57, pp.976-983, 2000.

,. De-gennes, F. Brochard-wyart, D. Quéré, W. Capillarity, and . Phenomena, , 2004.

S. Tamilvanan, Oil-in-water lipid emulsions: implications for parenteral and ocular delivering systems, Prog. Lipid Res, vol.43, pp.489-533, 2004.

P. Than, L. Preziosi, D. Josephl, and M. Arney, Measurement of interfacial tension between immiscible liquids with the spinning road tensiometer, Journal of Colloid and Interface Science, vol.124, pp.552-559, 1988.

M. P. Aronson and H. M. Princen, Contact angles associated with thin liquid films in emulsions, Nature, vol.286, pp.370-372, 1980.

V. Ravaine, J. Bibette, and N. Henry, Wetting of Liquid Droplets on Living Cells, J. Colloid Interface Sci, vol.255, pp.270-273, 2002.

W. H. Guilford, R. C. Lantz, and R. W. Gore, Locomotive forces produced by single leukocytes in vivo and in vitro, Am. J. Physiol. Physiol, vol.37, pp.1308-1312, 1995.

C. M. Kraning-rush, J. P. Califano, and . Reinhart-king, Cellular traction stresses increase with increasing metastatic potential, PLoS One, vol.7, 2012.

V. D. Varner and C. M. Nelson, Let's push things forward: disruptive technologies and the mechanics of tissue assembly, Integr. Biol. (Camb), vol.5, pp.1162-73, 2013.

M. Prass, K. Jacobson, A. Mogilner, and M. Radmacher, Direct measurement of the lamellipodial protrusive force in a migrating cell, J. Cell Biol, vol.174, pp.767-72, 2006.

K. Wolf, Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force, J. Cell Biol, vol.201, pp.1069-84, 2013.

T. Harada, Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival, J. Cell Biol, vol.204, pp.669-682, 2014.

N. Bourouina, J. Husson, C. Hivroz, and N. Henry, Biomimetic droplets for artificial engagement of living cell surface receptors: the specific case of the T-cell, Langmuir, vol.28, pp.6106-6119, 2012.

, CG was supported by the Fondation pour la Recherche M edicale (FRM) FDT20170437276. SHD was supported by LabEX ENS-ICFP

E. R. Chapman, Synaptotagmin: A Ca2+ sensor that triggers exocytosis?, Nat Rev Mol Cell Biol, vol.3, pp.498-508, 2002.

. S? and J. E. Rothman, Membrane fusion: grappling with SNARE and SM proteins, Science, vol.323, pp.474-477, 2009.

N. Brose, A. G. Petrenko, . S?, and R. Jahn, Synaptotagmin: a calcium sensor on the synaptic vesicle surface, Science, vol.256, pp.1021-1025, 1992.

S. Martens, M. M. Kozlov, and H. T. Mcmahon, How synaptotagmin promotes membrane fusion, Science, vol.316, pp.1205-1208, 2007.

J. Bai, W. C. Tucker, and E. R. Chapman, PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane, Nat Struct Mol Biol, vol.11, pp.36-44, 2004.

D. Van-bogaart, G. Meyenberg, K. Diederichsen, U. Jahn, and R. , Phosphatidylinositol 4,5-bisphosphate increases Ca2+ affinity of synaptotagmin-1 by 40-fold, J Biol Chem, vol.287, pp.16447-16453, 2012.

W. Kuo, D. Z. Herrick, E. J. Cafiso, and D. S. , The calcium-dependent and calcium-independent membrane binding of synaptotagmin 1: two modes of C2B binding, J Mol Biol, vol.387, pp.284-294, 2009.

D. Arac-ß, X. Chen, H. A. Khant, J. Ubach, S. J. Ludtke et al., Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids, Nat Struct Mol Biol, vol.13, pp.209-217, 2006.

P. Erez-lara, A. Thapa, A. Nyenhuis, S. B. Nyenhuis, D. A. Halder et al., PtdInsP2 and PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium, Elife, vol.5, pp.1-22, 2016.

W. Kuo, D. Z. Herrick, and D. S. Cafiso, Phosphatidylinositol 4,5-bisphosphate alters synaptotagmin 1 membrane docking and drives opposing bilayers closer together, Biochemistry, vol.50, pp.2633-2641, 2011.

E. Hui, J. Bai, and E. R. Chapman, Ca2+ triggered simultaneous membrane penetration of the tandem C2-domains of synaptotagmin I, Biophys J, vol.91, pp.1767-1777, 2006.

D. Z. Herrick, S. Sterbling, K. A. Rasch, A. Hinderliter, and D. S. Cafiso, Position of synaptotagmin I at the membrane interface: cooperative interactions of tandem C2 domains, Biochemistry, vol.45, pp.9668-9674, 2006.

J. M. Mackler, J. A. Drummond, C. A. Loewen, R. Im, and N. E. Reist, The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo, Nature, vol.418, pp.340-344, 2002.

B. E. Paddock, Z. Wang, L. M. Biela, K. Chen, M. D. Getzy et al., Membrane penetration by synaptotagmin is required for coupling calcium binding to vesicle fusion in vivo, J Neurosci, vol.31, pp.2248-2257, 2011.

E. Hui, C. P. Johnson, J. Yao, F. M. Dunning, and E. R. Chapman, Synaptotagmin-mediated bending of the target membrane is a critical step in Ca 2+ -regulated fusion, Cell, vol.138, pp.709-721, 2009.

J. Wang, O. Bello, S. M. Auclair, J. Wang, J. Coleman et al., Calcium sensitive ring-like oligomers formed by synaptotagmin, Proc Natl Acad Sci, vol.111, pp.13966-13971, 2014.

M. N. Zanetti, O. D. Bello, J. Wang, J. Coleman, Y. Cai et al., Ring-like oligomers of synaptotagmins and related C2 domain proteins, Elife, vol.5, pp.1-15, 2016.

J. Wang, F. Li, O. D. Bello, C. V. Sindelar, F. Pincet et al., Circular oligomerization is an intrinsic property of synaptotagmin, Elife, vol.6, pp.1-17, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01589630

J. E. Rothman, S. S. Krishnakumar, K. Grushin, and F. Pincet, Hypothesis: buttressed rings assemble, clamp, and release SNAREpins for synaptic transmission, FEBS Lett, vol.591, pp.3459-3480, 2017.

L. Ma, Y. Cai, Y. Li, J. Jiao, Z. Wu et al., Singlemolecule force spectroscopy of protein-membrane interactions, Elife, vol.6, pp.1-21, 2017.

H. Takahashi, V. Shahin, R. M. Henderson, K. Takeyasu, and J. M. Edwardson, Interaction of synaptotagmin with lipid bilayers, analyzed by single-molecule force spectroscopy, Biophys J, vol.99, pp.2550-2558, 2010.

Q. Zhou, Y. Lai, T. Bacaj, M. Zhao, A. Y. Lyubimov et al., Architecture of the synaptotagmin-SNARE machinery for neuronal exocytosis, Nature, vol.525, pp.62-67, 2015.

G. Schiavo, Q. M. Gu, G. D. Prestwich, . S?, and J. E. Rothman, Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin, Proc Natl Acad Sci, vol.93, pp.13327-13332, 1996.

, FEBS Letters, 2018.

D. Araç, Close membrane-membrane proximity induced by Ca 2+ -dependent multivalent binding of synaptotagmin-1 to phospholipids, Nature Structural and Molecular Biology, vol.13, issue.3, pp.209-217, 2006.

T. Bacaj, Synaptotagmin-1 and Synaptotagmin-7 Trigger Synchronous and Asynchronous Phases of Neurotransmitter Release, Neuron, vol.80, issue.4, pp.947-959, 2013.

J. Bai, W. C. Tucker, and E. R. Chapman, PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane, Nat Struct Mol Biol, vol.11, issue.1, pp.36-44, 2004.

J. Bai, P. Wang, and E. R. Chapman, C2A activates a cryptic Ca(2+)-triggered membrane penetration activity within the C2B domain of synaptotagmin I, Proc Natl Acad Sci U S A, vol.99, issue.3, pp.1665-1670, 2002.

N. Ben-tal, Binding of small basic peptides to membranes containing acidic lipids: Theoretical models and experimental results, Biophysical Journal, vol.71, issue.2, pp.561-575, 1996.

G. Van-bogaart and . Den, Phosphatidylinositol 4,5-bisphosphate increases Ca 2+ affinity of synaptotagmin-1 by 40-fold, Journal of Biological Chemistry, vol.287, issue.20, pp.16447-16453, 2012.

. Van-den and G. Bogaart, One SNARE complex is sufficient for membrane fusion, Nature Structural and Molecular Biology, vol.17, issue.3, pp.358-364, 2010.

. Van-den and G. Bogaart, Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation, Nature Structural and Molecular Biology, vol.18, issue.7, pp.805-812, 2011.

B. J. Bornhorst and J. J. Falke, WITHDRAWN: Reprint of: Purification of Proteins Using Polyhistidine Affinity Tags, Protein Expression and Purification, vol.326, pp.245-254, 1992.

E. R. Chapman, How does synaptotagmin trigger neurotransmitter release? Annual review of biochemistry, vol.77, pp.615-641, 2008.

E. R. Chapman and A. F. Davis, Direct Interaction of a Ca 2+ -binding Loop of Synaptotagmin with Lipid Bilayers, Journal of Biological Chemistry, vol.273, issue.22, pp.13995-14001, 1998.

M. C. Chicka, Synaptotagmin arrests the SNARE complex before triggering fast, efficient membrane fusion in response to Ca 2+, Nature structural & molecular biology, vol.15, issue.8, pp.827-835, 2008.

S. Corbalan-garcia and J. C. Gómez-fernández, Signaling through C2 domains: More than one lipid target, Biochimica et Biophysica Acta -Biomembranes, vol.1838, issue.6, pp.1536-1547, 2014.

B. V. Derjaguin, V. M. Muller, and Y. U. Toporov, Effect of contact deformation on the adhesion of particles, Journal of colloid and interface science, vol.52, issue.3, pp.105-108, 1975.

E. Evans, PROBING THE RELATION BETWEEN FORCE -LIFETIME -AND CHEMISTRY, Annu. Rev. Biophys. Biomol. Struct, 2001.

R. Fernández-chacón, Synaptotagmin I functions as a calcium regulator of release probability, Nature, issue.6824, pp.41-49, 2002.

C. François-martin, J. E. Rothman, and F. Pincet, Low energy cost for optimal speed and control of membrane fusion, Proceedings of the National Academy of Sciences, vol.114, issue.6, pp.1238-1241, 2017.

M. Geppert, Synaptotagmin I: A major Ca 2+ sensor for transmitter release at a central synapse, Cell, vol.79, issue.4, pp.717-727, 1994.

Z. Guan, A synaptotagmin suppressor screen indicates SNARE binding controls the timing and Ca 2+ cooperativity of vesicle fusion. eLife, 6, pp.1-30, 2017.

N. Gustavsson and W. Han, Calcium-sensing beyond neurotransmitters: functions of synaptotagmins in neuroendocrine and endocrine secretion, Bioscience Reports, vol.29, issue.4, p.245, 2009.

P. Hänggi, P. Talkner, and M. Borkovec, Reaction-rate theory: Fifty years after Kramers, Reviews of Modern Physics, vol.62, issue.2, pp.251-341, 1990.

D. Z. Herrick, Position of synaptotagmin I at the membrane interface: Cooperative interactions of tandem C2 domains, Biochemistry, vol.45, issue.32, pp.9668-9674, 2006.

D. Z. Herrick, Solution and Membrane-Bound Conformations of the Tandem C2A and C2B Domains of Synaptotagmin 1: Evidence for Bilayer Bridging, Journal of Molecular Biology, vol.390, issue.5, pp.913-923, 2009.

E. Hui, Synaptotagmin-Mediated Bending of the Target Membrane Is a Critical Step in Ca 2+ -Regulated Fusion, Cell, vol.138, issue.4, pp.709-721, 2009.

E. Hui, J. Bai, and E. R. Chapman, Ca 2+ -triggered simultaneous membrane penetration of the tandem C2-domains of synaptotagmin I, Biophys J, vol.91, issue.5, pp.1767-1777, 2006.

J. N. Israelachvili, Thin film studies using multiple-beam interferometry, Journal of Colloid And Interface Science, vol.44, issue.2, pp.259-272, 1973.

J. N. Israelachvili and G. E. Adams, Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0-100 nm, Journal of the Chemical Society, Faraday Transactions, vol.1, issue.0, p.975, 1978.

J. N. Israelachvili and D. Tabor, The Measurement of Van Der Waals Dispersion Forces in the Range 1.5 to 130 nm, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.331, pp.19-38, 1584.

R. Jahn and D. Fasshauer, Molecular machines governing exocytosis of synaptic vesicles, Nature, vol.490, issue.7419, pp.201-207, 2012.

B. Katz and R. Miledi, Spontaneous and evoked activity of motor nerve endings in calcium Ringer, The Journal of Physiology, vol.203, issue.3, pp.689-706, 1969.

S. Knecht, Oligohis-tags: Mechanisms of binding to Ni2+-NTA surfaces, Journal of Molecular Recognition, vol.22, issue.4, pp.270-279, 2009.

S. S. Krishnakumar, Conformational dynamics of calcium-triggered activation of fusion by synaptotagmin, Biophysical Journal, issue.11, pp.2507-2516, 2013.

W. Kuo, The Calcium-Dependent and Calcium-Independent Membrane Binding of Synaptotagmin 1: Two Modes of C2B Binding, Journal of Molecular Biology, vol.387, issue.2, pp.284-294, 2009.

W. Kuo, D. Z. Herrick, and D. S. Cafiso, Phosphatidylinositol 4,5-bisphosphate alters synaptotagmin 1 membrane docking and drives opposing bilayers closer together, Biochemistry, vol.50, issue.13, pp.2633-2641, 2011.
DOI : 10.1021/bi200049c

URL : http://europepmc.org/articles/pmc3071796?pdf=render

Y. Lai, Molecular origins of synaptotagmin 1 activities on vesicle docking and fusion pore opening, Scientific Reports, vol.5, p.9267, 2015.

H. Lee, Dynamic Ca 2+ -dependent stimulation of vesicle fusion by membraneanchored Synaptotagmin 1, Science, vol.328, issue.5979, pp.760-763, 2010.

F. Li, F. Pincet, E. Perez, and W. S. Eng, Energetics and dynamics of SNAREpin folding across lipid bilayers, Nature structural & molecular biology, vol.14, issue.10, pp.890-896, 2007.
DOI : 10.1038/nsmb1310

L. Li, Phosphatidylinositol Phosphates as Co-activators of Ca 2+ Binding to C2 Domains of Synaptotagmin 1, Journal of Biological Chemistry, vol.281, issue.23, pp.15845-15852, 2006.

C. Lin, Control of membrane gaps by synaptotagmin-Ca 2+ measured with a novel membrane distance ruler, Nature communications, pp.1-7, 2014.

H. Liu, Linker mutations reveal the complexity of synaptotagmin 1 action during synaptic transmission, Nature Neuroscience, vol.17, issue.5, pp.670-677, 2014.

B. Lu, The juxtamembrane linker of full-length synaptotagmin 1 controls oligomerization and calcium-dependent membrane binding, Journal of Biological Chemistry, vol.289, issue.32, pp.22161-22171, 2014.

L. Ma, Single-molecule force spectroscopy of protein-membrane interactions. eLife, pp.1-22, 2017.

J. M. Mackler, The C2B Ca 2+ -binding motif of synaptotagmin is required for synaptic transmission in vivo, Nature, vol.418, pp.340-344, 2002.

S. Martens, M. Kozlov, M. Mcmahon, and H. T. , How Synaptotagmin promotes Membrane Fusion, Science, pp.1205-1207, 2007.
DOI : 10.1126/science.1142614

URL : http://www2.mrc-lmb.cam.ac.uk/groups/hmm/publica/martenssytpap07.pdf

J. A. Martin, Complexin has opposite effects on two modes of synaptic vesicle fusion, Current Biology, vol.21, issue.2, pp.97-105, 2011.

H. T. Mcmahon, M. M. Kozlov, and S. Martens, Membrane Curvature in Synaptic Vesicle Fusion and Beyond, Cell, vol.140, issue.5, pp.601-605, 2010.

G. Van-meer, D. R. Voelker, and G. W. Feigenson, Membrane lipids: Where they are and how they behave, Nature Reviews Molecular Cell Biology, vol.9, issue.2, pp.112-124, 2008.

R. Mohrmann, M. Dhara, and D. Bruns, Complexins: Small but capable, Cellular and Molecular Life Sciences, vol.72, issue.22, pp.4221-4235, 2015.

T. Nishiki and G. J. Augustine, Dual Roles of the C2B Domain of Synaptotagmin I in Synchronizing Ca 2+ -Dependent Neurotransmitter Release, Journal of Neuroscience, vol.24, issue.39, pp.8542-8550, 2004.

B. E. Paddock, Membrane Penetration by Synaptotagmin Is Required for Coupling Calcium Binding to Vesicle Fusion In Vivo, Journal of Neuroscience, vol.31, issue.6, pp.2248-2257, 2011.

Y. Park, Controlling synaptotagmin activity by electrostatic screening, Nature Structural and Molecular Biology, vol.19, issue.10, pp.991-999, 2012.

Á. Pérez-lara, PtdInsP2 and PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium, pp.1-22, 2016.

E. Perez, The Surface Force Apparatus to Reveal the Energetics of Biomolecules Assembly. Application to DNA Bases Pairing and SNARE Fusion Proteins Folding, Cellular and Molecular Bioengineering, vol.1, issue.4, pp.240-246, 2008.

E. Perez and J. Wolfe, A simple, Cheap, Clean, Reliable, Linear, Sensitive, Low-Drift Transducer for Surface Pressure, Langmuir, vol.10, issue.3, pp.974-975, 1994.

A. Radhakrishnan, The Ca 2+ affinity of synaptotagmin 1 is markedly increased by a specific interaction of its C2B domain with phosphatidylinositol 4,5-bisphosphate, Journal of Biological Chemistry, vol.284, issue.38, pp.25749-25760, 2009.

J. Rhee, Augmenting neurotransmitter release by enhancing the apparent Ca 2+ affinity of synaptotagmin 1, Proceedings of the National Academy of Sciences, vol.102, issue.51, pp.18664-18669, 2005.

J. Rizo, X. Chen, and D. Araç, Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release, Trends in Cell Biology, vol.16, issue.7, pp.339-350, 2006.

J. Rizo and J. Xu, The Synaptic Vesicle Release Machinery, Annual Review of Biophysics, vol.44, issue.1, pp.339-367, 2015.

I. M. Robinson, R. Ranjan, and T. L. Schwarz, Synaptotagmins I and IV promote transmitter release independently of Ca 2+ -binding in the C2A domain, Nature, vol.418, pp.3-7, 2002.

J. E. Rothman, Hypothesis -buttressed rings assemble, clamp, and release SNAREpins for synaptic transmission, FEBS Letters, vol.591, issue.21, pp.3459-3480, 2017.

G. Schiavo, Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin, Proceedings of the National Academy of Sciences, vol.93, pp.13327-13332, 1996.

A. B. Seven, Prevalent mechanism of membrane bridging by synaptotagmin-1, Proceedings of the National Academy of Sciences, vol.110, pp.3243-3252, 2013.

T. Söllner, SNAP receptors implicated in vesicle targeting and fusion, Nature, vol.362, issue.6418, pp.318-324, 1993.

A. R. Striegel, Calcium Binding by Synaptotagmin's C2A Domain is an Essential Element of the Electrostatic Switch That Triggers Synchronous Synaptic Transmission, Journal of Neuroscience, vol.32, issue.4, pp.1253-1260, 2012.

T. C. Südhof, A molecular machine for neurotransmitter release: synaptotagmin and beyond, Nature Medicine, vol.19, issue.10, pp.1227-1231, 2013.

T. C. Südhof, Neurotransmitter release: The last millisecond in the life of a synaptic vesicle, Neuron, vol.80, pp.675-690, 2009.

T. C. Südhof and J. E. Rothman, Membrane fusion: grappling with SNARE and SM proteins, Science, pp.474-477, 2009.

H. Takahashi, Interaction of synaptotagmin with lipid bilayers, analyzed by single-molecule force spectroscopy, Biophysical Journal, issue.8, pp.2550-2558, 2010.

S. Takamori, Molecular Anatomy of a Trafficking Organelle, Cell, vol.127, issue.4, pp.831-846, 2006.

J. Wang, Calcium sensitive ring-like oligomers formed by synaptotagmin, Proceedings of the National Academy of Sciences, vol.111, pp.13966-13971, 2014.

Y. J. Wang, Snapshot of sequential SNARE assembling states between membranes shows that N-terminal transient assembly initializes fusion, Proceedings of the National Academy of Sciences, vol.113, issue.13, pp.3533-3538, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02128567

T. Weber, SNAREpins: Minimal machinery for membrane fusion, Cell, vol.92, issue.6, pp.759-772, 1998.

W. Xu, A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion, Journal of the American Chemical Society, vol.138, issue.13, pp.4439-4447, 2016.

M. Xue, The Janus-faced nature of the C(2)B domain is fundamental for synaptotagmin-1 function, Nat Struct Mol Biol, vol.15, issue.11, pp.1160-1168, 2008.

M. N. Zanetti, Ring-like oligomers of synaptotagmins and related C2 domain proteins. eLife, vol.5, pp.1-15, 2016.

Q. Zhou, Architecture of the synaptotagmin-SNARE machinery for neuronal exocytosis, Nature, vol.525, issue.7567, pp.62-67, 2015.

Q. Zhou, The primed SNARE-complexin-synaptotagmin complex for neuronal exocytosis, Nature, vol.548, issue.7668, pp.420-425, 2017.