R. S. Wagner and W. C. Ellis, Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett, vol.4, issue.5, pp.89-90, 1964.

K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi et al., Growth and optical properties of nanometer-scale GaAs and InAs whiskers, J. Appl. Phys, vol.77, issue.2, pp.447-462, 1995.

M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers, Appl. Phys. Lett, vol.61, issue.17, pp.2051-2053, 1992.

M. Yazawa, . Koguchi, K. Muto, and . Hiruma, Semiconductor Nanowhiskers, Adv. Mater, vol.5, issue.7-8, pp.577-580, 1993.

K. Haraguchi, T. Katsuyama, and K. Hiruma, Polarization dependence of light emitted from GaAs p-n junctions in quantum wire crystals, J. Appl. Phys, vol.75, issue.8, pp.4220-4225, 1994.

M. Meyyappan, K. Mahendra, and . Sunkara, Inorganic nanowires : applications, properties, and characterization, 2010.

P. Caroff, M. E. Messing, M. Borg, and K. A. Dick, Knut Deppert, and Lars-Erik Wernersson. InSb heterostructure nanowires : MOVPE growth under extreme lattice mismatch, Nanotechnology, vol.20, issue.49, p.495606, 2009.

P. Caroff, K. A. Dick, J. Johansson, M. E. Messing, K. Deppert et al., Controlled polytypic and twin-plane superlattices in iiiâv nanowires, Nat. Nanotechnol, vol.4, issue.1, pp.50-55, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00471903

K. A. Dick, S. Kodambaka, M. C. Reuter, K. Deppert, L. Samuelson et al., The morphology of axial and branched nanowire heterostructures, Nano Lett, vol.7, issue.6, pp.1817-1822, 2007.

M. Hocevar, G. Immink, M. Verheijen, N. Akopian, V. Zwiller et al., Growth and optical properties of axial hybrid III-V/silicon nanowires, Nat. Commun, vol.3, issue.1, p.1266, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02070690

M. De, L. Mata, R. Leturcq, C. Sébastien-r-plissard, C. Rolland et al., Twin-Induced InSb Nanosails : A Convenient High Mobility Quantum System, Nano Lett, vol.16, issue.2, pp.825-833, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01713072

J. L-d-alegria and . Petta, Controlled MOCVD growth of Bi 2 Se 3 topological insulator nanoribbons, Nanotechnology, vol.23, issue.43, p.435601, 2012.

K. A. Dick, K. Deppert, M. W. Larsson, T. Mårtensson, W. Seifert et al., Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events, Nat. Mater, vol.3, issue.6, pp.380-384, 2004.

M. Li, C. Chen, Y. Shi, and L. Li, Heterostructures based on twodimensional layered materials and their potential applications, vol.19, pp.322-335, 2016.

K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo et al., 3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation, Nanoscale, vol.4, issue.5, p.1515, 2012.

, ITRS. International Technology Roadmap for Semiconductors 2.0 : Executive Report, 2015.

V. Khanna, , 2016.

G. Larrieu and X. Han, Vertical nanowire array-based field effect transistors for ultimate scaling, Nanoscale, vol.5, issue.6, p.2437, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00797210

I. Enculescu, M. E. Toimil-molares, C. Zet, M. Daub, L. Westerberg et al., Current perpendicular to plane single-nanowire GMR sensor, Appl. Phys. A Mater. Sci. Process, vol.86, issue.1, pp.43-47, 2007.

C. Thelander, H. A. Nilsson, L. E. Jensen, and L. Samuelson, Nanowire single-electron memory, Nano Lett, vol.5, issue.4, pp.635-638, 2005.

A. Gruverman, D. Wu, H. Lu, Y. Wang, H. W. Jang et al., Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale, Nano Lett, vol.9, issue.10, pp.3539-3543, 2009.

X. Dong, X. Wu, G. Sun, Y. Xie, H. Li et al., DAC-2008-Circuit and microarchitecture evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement.pdf, 2008.

J. , C. Egues, G. Burkard, and D. Loss, Datta-Das transistor with enhanced spin control, Appl. Phys. Lett, vol.82, issue.16, pp.2658-2660, 2003.

V. Joshi, Spintronics : A contemporary review of emerging electronics devices, 2016.

J. Tarun, S. Huang, Y. Fukuma, H. Idzuchi, Y. Otani et al., Demonstration of spin valve effects in silicon nanowires, J. Appl. Phys, vol.109, pp.7-508, 2011.

H. Kum, J. Heo, S. Jahangir, A. Banerjee, W. Guo et al., Room temperature single GaN nanowire spin valves with FeCo/MgO tunnel contacts, Appl. Phys. Lett, vol.100, issue.18, p.182407, 2012.

K. T. Chan, C. Doran, E. G. Shipton, and E. E. Fullerton, Core-shell structured nanowire spin valves, IEEE Trans. Magn, vol.46, pp.2209-2211, 2010.

P. Nukala and R. Agarwal, Chapter 3 Nanowire Phase-Change Memory, In Semicond. Nanowires From Next-Generation Electron. to Sustain. Energy, pp.111-166, 2015.

B. Yu, S. Ju, X. Sun, G. Ng, M. Thuc-dinh-nguyen et al., Indium selenide nanowire phase-change memory, Appl. Phys. Lett, vol.91, issue.13, 2007.

M. Chen, K. A. Rubin, and R. W. Barton, Compound materials for reversible, phase-change optical data storage, Appl. Phys. Lett, vol.49, issue.9, pp.502-504, 1986.

N. Yamada, E. Ohno, N. Akahira, K. &. Nishiuchi, K. &. Nagata et al., High speed overwritable phase change optical disk material, Jpn. J. Appl. Phys, vol.26, issue.S4, pp.61-66, 1987.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, Rapidâphase transitions of GeTeâSb 2 Te 3 pseudobinary amorphous thin films for an optical disk memory, J. Appl. Phys, vol.69, issue.5, pp.2849-2856, 1991.

J. Tominaga, T. Kikukawa, M. Takahashi, and R. T. Phillips, Structure of the optical phase change memory alloy, Ag-V-In-Sb-Te, determined by optical spectroscopy and electron diffraction, J. Appl. Phys, vol.82, issue.7, pp.3214-3218, 1997.

W. Matthias, Towards a universal memory ?, Nat. Mater, vol.4, p.265, 2005.

S. Meister, H. Peng, K. Mcilwrath, K. Jarausch, X. F. Zhang et al., Synthesis and characterization of phase-change nanowires, Nano Lett, vol.6, issue.7, pp.1514-1517, 2006.

M. Longo, C. Wiemer, O. Salicio, M. Fanciulli, L. Lazzarini et al., Au-catalyzed self assembly of GeTe nanowires by MOCVD, J. Cryst. Growth, vol.315, issue.1, pp.152-156, 2011.

Y. Jung, S. Lee, D. Ko, and R. Agarwal, Synthesis and Characterization of Ge 2 Sb 2 Te 5 Nanowires with Memory Switching Effect, J. Am. Chem. Soc, vol.128, issue.43, pp.14026-14027, 2006.

Y. Se-ho-lee, R. Jung, and . Agarwal, Highly scalable non-volatile and ultra-low-power phase-change nanowire memory, Nat. Nanotechnol, vol.2, issue.10, pp.626-630, 2007.

S. Seok-lee-jin, D. Brittman, H. Yu, and . Park, Vapor-liquid-solid and vapor-solid growth of phase-change Sb2Te3nanowires and Sb2Te3/GeTe nanowire heterostructures, J. Am. Chem. Soc, vol.130, issue.19, pp.6252-6258, 2008.

B. Yu, S. Ju, X. Sun, G. Ng, M. Thuc-dinh-nguyen et al., Indium selenide nanowire phase-change memory, Appl. Phys. Lett, vol.91, issue.13, p.133119, 2007.

Y. Jung, C. Y. Yang, S. Ho-lee, and R. Agarwal, Phase-Change ge-sb nanowires : synthesis, memory switching, and phase-instability, Nano Lett, vol.9, issue.5, pp.2103-2108, 2009.

Y. Jung, S. Ho-lee, A. T. Jennings, and R. Agarwal, Core-shell heterostructured phase change nanowire multistate memory, Nano Lett, vol.8, issue.7, pp.2056-2062, 2008.

W. Zhong-lin and J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science (80-. ), pp.242-246, 2006.

Z. Wang, X. Pan, Y. He, Y. Hu, H. Gu et al., Piezoelectric Nanowires in Energy Harvesting Applications, 2015.

Z. Wang, X. Pan, Y. He, Y. Hu, H. Gu et al., Piezoelectric Nanowires in Energy Harvesting Applications, 2015.

L. Lin, Y. Hu, C. Xu, Y. Zhang, R. Zhang et al., Transparent flexible nanogenerator as self-powered sensor for transportation monitoring, Nano Energy, vol.2, issue.1, pp.75-81, 2013.

J. H. Cheng-ying-chen, J. Huang, Y. Song, L. Zhou, P. Lin et al., Anisotropic outputs of a nanogenerator from obliquealigned ZnO nanowire arrays, ACS Nano, vol.5, issue.8, pp.6707-6713, 2011.

S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang et al., Self-powered nanowire devices, Nat. Nanotechnol, vol.5, issue.5, pp.366-373, 2010.

C. Huang, J. Song, W. Lee, Y. Ding, Z. Gao et al., GaN Nanowire Arrays for High-Output Nanogenerators, J. Am. Chem. Soc, vol.132, issue.13, pp.4766-4771, 2010.

Z. Zhao, X. Pu, C. Han, C. Du, L. Li et al., Piezotronic Effect in Polarity-Controlled GaN Nanowires, ACS Nano, vol.9, issue.8, pp.8578-8583, 2015.

C. Chen, G. Zhu, Y. Hu, J. Yu, J. Song et al., Gallium Nitride Nanowire Based Nanogenerators and Light-Emitting Diodes, ACS Nano, vol.6, issue.6, pp.5687-5692, 2012.

C. T. Huang, J. Song, C. M. Tsai, W. F. Lee, Z. Der-hsien-lien et al., Single-InN-nanowire nanogenerator with upto 1 v output voltage, Adv. Mater, vol.22, issue.36, pp.4008-4013, 2010.

J. Yi-feng-lin, Y. Song, . Ding, Z. Shih-yuan-lu, and . Wang, Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect, Adv. Mater, vol.20, issue.16, pp.3127-3130, 2008.

Y. Zhou, K. Wang, W. Han, C. Satish, Y. Rai et al., Vertically aligned cdse nanowire arrays for energy harvesting and piezotronic devices, ACS Nano, vol.6, issue.7, pp.6478-6482, 2012.

Z. Wang, J. Song, and J. Liu, Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science (80-. ), vol.316, pp.102-105, 2007.

S. Xu, Y. Wei, J. Liu, R. Yang, and Z. Wang, Integrated Multilayer Nanogenerator Fabricated Using Paired Nanotip-to-Nanowire Brushes, Nano Lett, vol.8, issue.11, pp.4027-4032, 2008.

D. Choi, M. Y. Choi, W. M. Choi, H. J. Shin, H. K. Park et al., Fully rollable transparent nanogenerators based on graphene electrodes, Adv. Mater, vol.22, issue.19, pp.2187-2192, 2010.

S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang et al., Self-powered nanowire devices, Nat. Nanotechnol, vol.5, issue.5, pp.366-373, 2010.

G. Zhu, A. C. Wang, Y. Liu, Y. Zhou, and Z. Wang, Functional electrical stimulation by nanogenerator with 58 v output voltage, Nano Lett, vol.12, issue.6, pp.3086-3090, 2012.

Y. Ahn, J. Dunning, and J. Park, Scanning Photocurrent Imaging and Electronic Band Studies in Silicon Nanowire Field Effect Transistors

G. Li, Y. Jiang, Y. Zhang, X. Lan, T. Zhai et al., Highperformance photodetectors and enhanced field-emission of CdS nanowire arrays on CdSe singlecrystalline sheets, J. Mater. Chem. C, vol.2, issue.39, pp.8252-8258, 2014.

C. Yang, J. Carl, F. Barrelet, C. M. Capasso, and . Lieber, Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors, Nano Lett, vol.6, issue.12, pp.2929-2934, 2006.

O. Hayden, R. Agarwal, and C. M. Lieber, Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection, Nat. Mater, vol.5, issue.5, pp.352-356, 2006.

E. Shalev, E. Oksenberg, K. Rechav, R. Popovitz-biro, and E. Joselevich, Guided CdSe Nanowires Parallelly Integrated into Fast Visible-Range Photodetectors, ACS Nano, vol.11, issue.1, pp.213-220, 2017.

J. Salfi, U. Philipose, C. F. Sousa, S. Aouba, and H. E. Ruda, Electrical properties of Ohmic contacts to ZnSe nanowires and their application to nanowire-based photodetection, Appl. Phys. Lett, vol.89, issue.26, p.261112, 2006.

M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti et al., Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector, Phys. Chem. Chem. Phys, vol.16, issue.41, pp.22687-22693, 2014.

G. Reut, E. Oksenberg, R. Popovitz-biro, K. Rechav, and E. Joselevich, Guided growth of horizontal p-type ZnTe nanowires, J. Phys. Chem. C, vol.120, issue.30, pp.17087-17100, 2016.

X. Zhang, B. Liu, Q. Liu, W. Yang, C. Xiong et al., Ultrasensitive and highly selective photodetections of UV-a rays based on individual bicrystalline GaN nanowire, ACS Appl. Mater. Interfaces, vol.9, issue.3, pp.2669-2677, 2017.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. Aplin et al., ZnO nanowire UV photodetectors with high internal gain, Nano Lett, vol.7, issue.4, pp.1003-1009, 2007.

P. Feng, J. Y. Zhang, Q. H. Li, and T. H. Wang, Individual ? -Ga2O3 nanowires as solar-blind photodetectors, Appl. Phys. Lett, vol.88, issue.15, p.153107, 2006.

D. Zhang, C. Li, S. Han, X. Liu, T. Tang et al., Ultraviolet photodetection properties of indium oxide nanowires, Appl. Phys. A Mater. Sci. Process, vol.77, issue.1, pp.163-166, 2003.

H. Zhang, A. Messanvi, C. Durand, J. Eymery, P. Lavenus et al., InGaN/GaN core/shell nanowires for visible to ultraviolet range photodetection, Phys. Status Solidi Appl. Mater. Sci, vol.213, issue.4, pp.936-940, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01875052

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu et al., GaAs/AlGaAs nanowire photodetector, Nano Lett, vol.14, issue.5, pp.2688-2693, 2014.

C. Patrik, T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson et al., Monolithic GaAs/InGaP nanowire light emitting diodes on silicon, Nanotechnology, vol.19, issue.30, p.305201, 2008.

C. Gutsche, A. Lysov, D. Braam, I. Regolin, G. Keller et al., N-GaAs/InGaP/p-GaAs core-multishell nanowire diodes for efficient light-to-current conversion, Adv. Funct. Mater, vol.22, issue.5, pp.929-936, 2012.

R. Wang, P. T. Hieu, A. T. Nguyen, J. Connie, I. Lee et al., Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon, vol.22, p.1768, 2014.

M. Zapf, R. Röder, K. Winkler, L. Kaden, J. Greil et al., Dynamical Tuning of Nanowire Lasing Spectra, Nano Lett, vol.17, issue.11, p.127, 2017.

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy, Nano Lett, vol.10, issue.9, pp.3356-3359, 2010.

H. Michael and . Huang, Room-Temperature Ultraviolet Nanowire Nanolasers. Science (80-. ), vol.292, pp.1897-1899, 2001.

, Chemistryexplained.com. chemistryexplained.com in Wikepedia "Solar Cells

Y. Hu, R. R. Lapierre, M. Li, K. Chen, and J. J. He, Optical characteristics of GaAs nanowire solar cells, J. Appl. Phys, vol.112, issue.10, p.104311, 2012.

N. Anttu and H. Q. Xu, Efficient light management in vertical nanowire arrays for photovoltaics, Opt. Express, vol.21, issue.S3, p.558, 2013.

I. Wikipedia, Solar Cells" Date Retrieved

M. A. Green, Y. Hishikawa, E. D. Dunlop, and D. H. Levi, Jochen Hohl-Ebinger

W. Y. Anita and . Ho-baillie, Solar cell efficiency tables (version 51), Prog. Photovoltaics Res. Appl, vol.26, issue.1, pp.3-12, 2018.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu et al., Efficiency enhancement of InP nanowire solar cells by surface cleaning, Nano Lett, vol.13, issue.9, pp.4113-4117, 2013.

M. Yao, N. Huang, S. Cong, C. Y. Chi, M. Seyedi et al., GaAs nanowire array solar cells with axial p-i-n junctions, Nano Lett, vol.14, issue.6, pp.3293-3303, 2014.

J. M. Burst, J. N. Duenow, D. S. Albin, E. Colegrove, M. O. Reese et al., CdTe solar cells with open-circuit voltage breaking the 1V barrier, Nat. Energy, vol.1, issue.4, p.16015, 2016.

A. Fontcuberta-i-morral, C. Colombo, G. Abstreiter, J. Arbiol, and J. R. Morante, Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires, Appl. Phys. Lett, vol.92, issue.6, p.63112, 2008.

T. Veer-dhaka, H. Haggren, H. Jussila, E. Jiang, T. Kauppinen et al., Markku Sopanen, and Harri Lipsanen. High quality GaAs nanowires grown on glass substrates, Nano Lett, vol.12, issue.4, pp.1912-1918, 2012.

T. Haggren, A. Perros, V. Dhaka, T. Huhtio, H. Jussila et al., GaAs nanowires grown on Al-doped ZnO buffer layer, J. Appl. Phys, vol.114, issue.8, p.84309, 2013.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg et al., ais, A. Cavanna, Y. Jin, and G. F ? ?ve. InP nanowire array solar cells achieving 13.8exceeding the ray optics limit. Science, vol.339, pp.1057-1060, 2013.

K. Tomioka, Y. Kobayashi, J. Motohisa, S. Hara, and T. Fukui, Selectivearea growth of vertically aligned GaAs and GaAs/AlGaAs core-shell nanowires on Si(111) substrate, Nanotechnology, vol.20, issue.14, p.145302, 2009.

Y. Tachibana, L. Vayssieres, and J. R. Durrant, Artificial photosynthesis for solar watersplitting, 2012.

A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, vol.238, issue.5358, pp.37-38, 1972.

D. Hall and K. K. Rao, Importance and role of photosynthesis. Photosynthesis, p.211, 1999.

J. Barber, Photosynthetic energy conversion : natural and artificial, Chem. Soc. Rev, vol.38, issue.1, pp.185-196, 2009.

C. Liu, P. Neil, P. Dasgupta, and . Yang, Semiconductor nanowires for artificial photosynthesis, 2014.

J. Liu and D. Vanderbilt, Topological phase transitions in (Bi 1âx In x ) 2 Se 3 and (Bi 1âx Sb x ) 2 Se 3, Phys. Rev. B, vol.88, 2013.

I. Oh, J. Kye, and S. Hwang, Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode, Nano Lett, vol.12, issue.1, pp.298-302, 2012.

L. Gao, Y. Cui, J. Wang, A. Cavalli, A. Standing et al., Photoelectrochemical hydrogen production on InP nanowire arrays with molybdenum sulfide electrocatalysts, Nano Lett, vol.14, issue.7, pp.3715-3719, 2014.

P. Tang, H. Xie, C. Ros, L. Han, M. Biset-peiró et al., Enhanced photoelectrochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering, Energy Environ. Sci, vol.10, issue.10, pp.2124-2136, 2017.

X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris et al.,

Y. Zhang and . Li, Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting, Nano Lett, vol.9, issue.6, pp.2331-2336, 2009.

J. Feng, M. Gong, M. J. Kenney, J. Z. Wu, B. Zhang et al., Nickelcoated silicon photocathode for water splitting in alkaline electrolytes, Nano Res, vol.8, issue.5, pp.1577-1583, 2015.

P. Varadhan, H. C. Fu, D. Priante, J. Ramon-duran, C. Retamal et al., Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting, Nano Lett, vol.17, issue.3, pp.1520-1528, 2017.

A. Standing, S. Assali, L. Gao, M. A. Verheijen, D. Van-dam et al., Efficient water reduction with gallium phosphide nanowires, Nat. Commun, vol.6, issue.1, p.7824, 2015.

M. G. Kibria, F. A. Chowdhury, S. Zhao, B. Alotaibi, M. L. Trudeau et al., Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays, Nat. Commun, vol.6, issue.1, p.6797, 2015.

J. Zeng, X. Xu, V. Parameshwaran, J. Baker, S. Bent et al., Photoelectrochemical Water Oxidation by GaAs Nanowire Arrays Protected with Atomic Layer Deposited NiO<inf>x</inf>Electrocatalysts, J. Electron. Mater, vol.47, issue.2, pp.932-937, 2018.

X. Chen, Y. Li, and S. Shen, Surface-and interface-engineered heterostructures for solar hydrogen generation, J. Phys. D. Appl. Phys, vol.51, issue.16, p.163002, 2018.

W. Luo, T. Yu, Y. Wang, Z. Li, J. Ye et al., Enhanced photocurrentâvoltage characteristics of WO 3 /Fe 2 O 3 nano-electrodes, J. Phys. D. Appl. Phys, vol.40, issue.4, pp.1091-1096, 2007.

J. Cai, S. Li, H. Pan, Y. Liu, and G. Qin, c-In2O3/?-Fe2O3 heterojunction photoanodes for water oxidation, J. Mater. Sci, vol.51, issue.17, pp.8148-8155, 2016.

Y. Hou, F. Zuo, A. Dagg, and P. Feng, A Three-Dimensional Branched Cobalt-Doped ?-Fe 2 O 3 Nanorod/MgFe 2 O 4 Heterojunction Array as a Flexible Photoanode for Efficient Photoelectrochemical Water Oxidation, Angew. Chemie, vol.125, issue.4, pp.1286-1290, 2013.

M. Nishikawa, M. Fukuda, Y. Nakabayashi, N. Saito, N. Ogawa et al., Kentaro Shinoda, Tetsuo Tsuchiya, and Yoshio Nosaka. A method to give chemically stabilities of photoelectrodes for water splitting : Compositing of a highly crystalized TiO2layer on a chemically unstable Cu2O photocathode using laser-induced crystallization process, Appl. Surf. Sci, vol.363, pp.173-180, 2016.

M. Nishikawa, M. Fukuda, Y. Nakabayashi, N. Saito, N. Ogawa et al., Kentaro Shinoda, Tetsuo Tsuchiya, and Yoshio Nosaka. A method to give chemically stabilities of photoelectrodes for water splitting : Compositing of a highly crystalized TiO2layer on a chemically unstable Cu2O photocathode using laser-induced crystallization process, Appl. Surf. Sci, vol.363, pp.173-180, 2016.

C. Ding, J. Shi, D. Wang, Z. Wang, N. Wang et al., Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias, Phys. Chem. Chem. Phys, vol.15, issue.13, p.4589, 2013.

S. Hernández, G. Gerardi, K. Bejtka, A. Fina, and N. Russo, Evaluation of the charge transfer kinetics of spin-coated BiVO4thin films for sun-driven water photoelectrolysis, Appl. Catal. B Environ, vol.190, pp.66-74, 2016.

T. Matthew, Y. Mcdowell, and . Cui, Chapter 8 Nanowires for High-Performance Li-Ion Battery Electrodes, Semicond. Nanowires From Next-Generation Electron. to Sustain. Energy, pp.363-399, 2015.

N. Vanchiappan-aravindan, N. Arun, J. Shubha, S. Sundaramurthy, and . Madhavi, Overlithiated Li1+xNi0.5Mn1.5O4in all one dimensional architecture with conversion type ?-Fe2O3 : A new approach to eliminate irreversible capacity loss, Electrochim. Acta, vol.215, pp.647-651, 2016.

M. Aaron, . Chockla, C. Kyle, B. Klavetter, B. A. Mullins et al., Tin-seeded silicon nanowires for high capacity li-ion batteries, Chem. Mater, vol.24, issue.19, pp.3738-3745, 2012.

K. Peng, J. Jie, W. Zhang, and S. Lee, Silicon nanowires for rechargeable lithium-ion battery anodes, Appl. Phys. Lett, vol.93, issue.3, p.33105, 2008.

C. K. Chan, H. Peng, and G. Liu,

Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol, vol.3, issue.1, pp.31-35, 2008.

T. Kennedy, E. Mullane, H. Geaney, M. Osiak, O. Colm et al., Highperformance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network, Nano Lett, vol.14, issue.2, pp.716-723, 2014.

H. Kim and J. Cho, Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials, J. Mater. Chem, vol.18, issue.7, p.771, 2008.

H. Wang, Q. Pan, Y. Cheng, J. Zhao, and G. Yin, Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries, Electrochim. Acta, vol.54, issue.10, pp.2851-2855, 2009.

X. Wang, D. Tang, H. Li, W. Yi, T. Zhai et al., Revealing the conversion mechanism of CuO nanowires during lithiationâdelithiation by in situ transmission electron microscopy, Chem. Commun, vol.48, issue.40, p.4812, 2012.

X. Li, Z. Yang, Y. Fu, L. Qiao, D. Li et al., Germanium anode with excellent lithium storage performance in a germanium/lithium-cobalt oxide lithium-ion battery, ACS Nano, vol.9, issue.2, pp.1858-1867, 2015.

M. Wu, P. Chiang, J. Lee, and J. Lin, Synthesis of Manganese Oxide Electrodes with Interconnected Nanowire Structure as an Anode Material for Rechargeable Lithium Ion Batteries, J. Phys. Chem. B, vol.109, issue.49, pp.23279-23284, 2005.

P. L. Taberna, S. Mitra, P. Poizot, P. Simon, and J. M. Tarascon, High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications, 2006.

H. Xia, Y. Wan, W. Assenmacher, W. Mader, G. Yuan et al., Facile synthesis of chain-like LiCoO<inf>2</inf> nanowire arrays as three-dimensional cathode for microbatteries, NPG Asia Mater, vol.6, issue.9, p.126, 2014.

G. Armstrong, A. R. Armstrong, P. G. Bruce, P. Reale, and B. Scrosati, TiO2(B) Nanowires as an Improved Anode Material for Lithium-Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte, Adv. Mater, vol.18, issue.19, pp.2597-2600, 2006.

P. Hyun-wook-lee, R. Muralidharan, C. M. Ruffo, Y. Mari, D. Cui et al., Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries, Nano Lett, vol.10, issue.10, pp.3852-3856, 2010.

T. Song, J. Xia, J. H. Lee, D. H. Lee, M. Seok-kwon et al., Arrays of sealed silicon nanotubes as anodes for lithium ion batteries, Nano Lett, vol.10, issue.5, pp.1710-1716, 2010.

H. Chen, Y. Xiao, L. Wang, and Y. Yang, Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries, J. Power Sources, vol.196, issue.16, pp.6657-6662, 2011.

X. H. Li-qiang-zhang, Y. Liu, S. Liu, T. Huang, L. Zhu et al., Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating, ACS Nano, vol.5, issue.6, p.131, 2011.

M. Ge, J. Rong, X. Fang, and C. Zhou, Porous doped silicon nanowires for lithium ion battery anode with long cycle life, Nano Lett, vol.12, issue.5, pp.2318-2323, 2012.

J. T. Aaron-m-chockla, . Harris, A. Vahid, T. D. Akhavan, . Bogart et al., Silicon nanowire fabric as a lithium ion battery electrode material, J. Am. Chem. Soc, vol.133, issue.51, pp.20914-20921, 2011.

T. Kennedy, M. Bezuidenhout, and K. Palaniappan,

K. M. Ryan, Nanowire Heterostructures Comprising Germanium Stems and Silicon Branches as HighCapacity Li-Ion Anodes with Tunable Rate Capability, ACS Nano, vol.9, issue.7, pp.7456-7465, 2015.

R. Li-feng-cui, C. K. Ruffo, H. Chan, Y. Peng, and . Cui, Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes, Nano Lett, vol.9, issue.1, pp.491-495, 2009.

I. Wikipedia, Thermoelectric effect" Date Retrieved

K. Nielsch, J. Bachmann, J. Kimling, and H. Böttner, Thermoelectric Nanostructures : From Physical Model Systems towards Nanograined Composites, Adv. Energy Mater, vol.1, issue.5, pp.713-731, 2011.

Y. Li, K. Buddharaju, N. Singh, G. Q. Lo, and S. J. Lee, Chip-level thermoelectric power generators based on high-density silicon nanowire array prepared with top-down CMOS technology, IEEE Electron Device Lett, vol.32, issue.5, pp.674-676, 2011.

Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach, Adv. Funct. Mater, vol.20, issue.3, pp.357-376, 2010.

A. Cantarero and . Xavier-Àlvarez, Thermoelectric Effects : Semiclassical and Quantum Approaches from the Boltzmann Transport Equation BT -Nanoscale Thermoelectrics, pp.1-39, 2014.

K. Sabah, R. G. Bux, P. K. Blair, H. Gogna, G. Lee et al., Nanostructured Bulk Silicon as an Effective Thermoelectric Material, Adv. Funct. Mater, vol.19, issue.15, pp.2445-2452, 2009.

I. Akram, Y. Boukai, J. Bunimovich, J. K. Tahir-kheli, W. A. Yu et al., Silicon nanowires as efficient thermoelectric materials, Nature, vol.451, issue.7175, pp.168-171, 2008.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett et al., Enhanced thermoelectric performance of rough silicon nanowires, Nature, vol.451, issue.7175, pp.163-167, 2008.

M. Amato, M. Palummo, S. Ossicini, and R. Rurali, SiGe Nanowires for Thermoelectrics Applications, pp.497-515, 2014.

S. Muller, . Schotz, . Picht, P. Sigle, M. Kopold et al.,

, Electrochemical Synthesis of Bi1-xSbx Nanowires with Simultaneous Control on Size, Composition, and Surface Roughness, Cryst. Growth Des, vol.12, issue.2, pp.615-621, 2012.

A. A. Nikolaeva, L. A. Konopko, T. E. Huber, P. P. Bodiul, and I. A. Popov, Prospects of nanostructures Bi 1-xSb x for thermoelectricity, J. Solid State Chem, vol.193, pp.71-75, 2012.

. Inn-khuan-ng, Y. Kuan, C. Kok, and . Rahman, Nur Ubaidah Saidin, Suhaila Hani Ilias, and Thye Foo Choo. Electrochemically deposited BiTe-based nanowires for thermoelectric applications, AIP Conf. Proc, vol.1584, pp.125-128, 2014.

L. Li, S. Xu, and G. Li, Enhancement of Thermoelectric Properties in Bi-Sb-Te Alloy Nanowires by Pulsed Electrodeposition, Energy Technol, vol.3, issue.8, pp.825-829, 2015.

Y. Ting, M. Ko, K. Shellaiah, and . Sun, Thermal and thermoelectric transport in highly resistive single Sb2Se3 nanowires and nanowire bundles, Sci. Rep, vol.6, issue.1, p.35086, 2016.

Y. Liu, S. Zhou, X. Yuan, S. Lou, T. Gao et al., Synthesis and high-performance thermoelectric properties of beta-Zn4Sb3 nanowires, Mater. Lett, vol.84, pp.116-119, 2012.

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, vol.413, issue.6856, pp.597-602, 2001.

M. Meyyappan and M. Sunkara, Inorganic Nanowires : Applications, Properties, and Characterization, 2009.

B. He, J. Thomas, C. D. Morrow, and . Keating, Nanowire sensors for multiplexed detection of biomolecules, 2008.

G. Zheng, F. Patolsky, Y. Cui, U. Wayne, C. M. Wang et al., Multiplexed electrical detection of cancer markers with nanowire sensor arrays, Nat. Biotechnol, vol.23, issue.10, pp.1294-1301, 2005.

Y. Hu, J. Zhou, P. H. Yeh, Z. Li, T. Y. Wei et al., Supersensitive, fastresponse nanowire sensors by using schottky contacts, Adv. Mater, vol.22, issue.30, pp.3327-3332, 2010.

Z. Fan and J. G. Lu, Gate-refreshable nanowire chemical sensors, Appl. Phys. Lett, vol.86, issue.12, pp.1-3, 2005.

Z. Fan, G. Jia, and . Lu, Chemical sensing with ZnO nanowire field-effect transistor, IEEE Trans. Nanotechnol, vol.5, issue.4, pp.393-396, 2006.

S. Ting-jen-hsueh, C. Chang, Y. R. Hsu, I. Lin, and . Cherng-chen, Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption, Appl. Phys. Lett, vol.91, issue.5, p.53111, 2007.

C. Sekhar-rout, M. Hegde, C. Govindaraj, and . Rao, Ammonia sensors based on metal oxide nanostructures, Nanotechnology, vol.18, issue.20, p.205504, 2007.

C. Sekhar-rout, G. Kulkarni, and C. Rao, Room temperature hydrogen and hydrocarbon sensors based on single nanowires of metal oxides, J. Phys. D. Appl. Phys, vol.40, issue.9, pp.2777-2782, 2007.

L. Li, C. Li, J. Zhang, Z. Du, B. Zou et al., Bandgap narrowing and ethanol sensing properties of In-doped ZnO nanowires, Nanotechnology, vol.18, issue.22, p.225504, 2007.

D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu et al., Detection of NO 2 down to ppb Levels Using Individual and Multiple In 2 O 3 Nanowire Devices, Nano Lett, vol.4, issue.10, pp.1919-1924, 2004.

K. Ryu, D. Zhang, and C. Zhou, High-performance metal oxide nanowire chemical sensors with integrated micromachined hotplates, Appl. Phys. Lett, vol.92, issue.9, p.93111, 2008.

S. V. Kalinin, J. Shin, S. Jesse, D. Geohegan, A. P. Baddorf et al., Electronic transport imaging in a multiwire SnO 2 chemical field-effect transistor device, J. Appl. Phys, vol.98, issue.4, p.44503, 2005.

V. Victor, J. Sysoev, T. Goschnick, E. Schneider, A. Strelcov et al., A Gradient Microarray Electronic Nose Based on Percolating SnO2 Nanowire Sensing Elements, Nano Lett, vol.7, issue.10, pp.3182-3188, 2007.

V. Victor, B. K. Sysoev, K. Button, S. Wepsiec, A. Dmitriev et al., Toward the Nanoscopic " Electronic Nose " : Hydrogen vs Carbon Monoxide Discrimination with an Array of Individual Metal Oxide Nano-and Mesowire Sensors, Nano Lett, vol.6, issue.8, pp.1584-1588, 2006.

A. Byung-hoon-kim, S. Kim, S. Oh, Y. J. Bae, H. Y. Yun et al., Energy gap modulation in V2O5 nanowires by gas adsorption, Appl. Phys. Lett, vol.93, issue.23, p.233101, 2008.

D. S. Luca-francioso, M. Presicce, P. Epifani, A. Siciliano, and . Ficarella, Response evaluation of TiO2 sensor to flue gas on spark ignition engine and in controlled environment, Sensors Actuators, B Chem, vol.107, issue.2, pp.563-571, 2005.

Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani et al., Room temperature gas sensing of p -type Te O2 nanowires, Appl. Phys. Lett, vol.90, issue.17, p.173119, 2007.

S. Won-tae-koo, A. F. Qiao, G. Ogata, J. S. Jha, V. T. Jang et al., Accelerating Palladium Nanowire H2Sensors Using Engineered Nanofiltration, ACS Nano, vol.11, issue.9, pp.9276-9285, 2017.

V. Dobrokhotov, D. N. Mcilroy, M. G. Norton, A. Abuzir, W. J. Yeh et al., Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles, J. Appl. Phys, vol.99, issue.10, p.104302, 2006.

X. T. Zhou, J. Q. Hu, C. P. Li, D. D. Ma, C. S. Lee et al., Silicon nanowires as chemical sensors, 2003.

Y. Shen, T. Yamazaki, Z. Liu, D. Meng, T. Kikuta et al., Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires, Sensors Actuators, B Chem, vol.135, issue.2, pp.524-529, 2009.

X. Y. Xue, Y. J. Chen, Y. G. Liu, S. L. Shi, Y. G. Wang et al., Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires, Appl. Phys. Lett, vol.88, issue.20, p.201907, 2006.

K. Yoo, S. Han, H. Moon, S. Yoon, and C. Kang, Highly Sensitive H2S Sensor Based on the Metal-Catalyzed SnO2 Nanocolumns Fabricated by Glancing Angle Deposition, Sensors, vol.15, issue.7, pp.15468-15477, 2015.

F. Dini, E. Martinelli, R. Paolesse, D. Filippini, D. Schild et al., Data processing for image-based chemical sensors : Unsupervised region of interest selection and background noise compensation, Anal. Bioanal. Chem, vol.402, issue.2, pp.823-832, 2012.

E. Hines, E. Llobet, and J. Gardner, Electronic noses : a review of signal processing techniques

J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng et al., Nanotube molecular wires as chemical sensors. Science (80-. ), vol.287, pp.622-625, 2000.

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science, vol.293, issue.5533, pp.1289-1292, 2001.

W. U. Wang, C. Chen, K. Lin, Y. Fang, and C. M. Lieber, Label-free detection of small-molecule-protein interactions by using nanowire nanosensors, Proc. Natl. Acad. Sci, vol.102, issue.9, pp.3208-3212, 2005.

F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, and X. Zhuang,

M. Charles and . Lieber, Electrical detection of single viruses, Proc. Natl. Acad. Sci. U. S. A, vol.101, issue.39, pp.14017-14039, 2004.

J. Hahm and C. M. Lieber, Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors, Nano Lett, vol.4, issue.1, pp.51-54, 2004.

Y. Qin, D. Liu, T. Zhang, and Z. Cui, Ultrasensitive Silicon Nanowire Sensor Developed by a Special Ag Modification Process for Rapid NH3 Detection, ACS Appl. Mater. Interfaces, vol.9, issue.34, pp.28766-28773, 2017.

K. Risveden, A. Kimberly, S. Dick, P. Bhand, and . Rydberg, Lars Samuelson, and Bengt Danielsson. Branched nanotrees with immobilized acetylcholine esterase for nanobiosensor applications, Nanotechnology, vol.21, issue.5, p.55102, 2010.

K. Wang, X. Qian, L. Zhang, Y. Li, and H. Liu, Inorganic-organic p-n heterojunction nanotree arrays for a high-sensitivity diode humidity sensor, ACS Appl. Mater. Interfaces, vol.5, issue.12, pp.5825-5831, 2013.

J. R. Arthur, Molecular beam epitaxy, Surf. Sci, vol.500, issue.1-3, pp.189-217, 2002.

A. Y. Cho and H. C. Casey, GaAs-AlxGa1-xAs double-heterostructure lasers prepared by molecular-beam epitaxy, Appl. Phys. Lett, vol.25, issue.5, pp.288-290, 1974.

L. L. Chang, L. Esaki, W. E. Howard, and R. Ludeke, The Growth of a GaAsâGaAlAs Superlattice, J. Vac. Sci. Technol, vol.10, issue.1, pp.11-16, 1973.

R. Dingle, W. Wiegmann, and C. H. Henry, Quantum states of confined carriers in very thin AlxGa1-xAsGaAs-AlxGa1-xAs heterostructures, Phys. Rev. Lett, vol.33, issue.14, pp.827-830, 1974.

R. Erni, Wikipedia Retrieved, 2018.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji : an open-source platform for biological-image analysis, Nat. Methods, vol.9, issue.7, pp.676-82, 2012.

. R-core-team, R : A language and environment for statistical computing, 2016.

R. Team, RStudio : Integrated development environment for R, 2016.

H. Wickham and R. Francois, The dplyr package. R Core Team, 2016.

H. Wickham, ggplot2 : Elegant Graphics for Data Analysis, 2009.

V. G. Dubrovskii, Nucleation Theory and Growth of Nanostructures, 2014.

F. Glas, J. C. Harmand, and G. Patriarche, Why does wurtzite form in nanowires of III-V zinc blende semiconductors ?, Phys. Rev. Lett, vol.99, issue.14, p.135, 2007.

, Gibbs Free Energy, 2018.

T. Y. Tan, N. Li, and U. Gösele, On the thermodynamic size limit of nanowires grown by the vapor-liquidsolid process, Appl. Phys. A Mater. Sci. Process, vol.78, issue.4, pp.519-526, 2004.

B. Mandl, W. Anil, J. Dey, M. Stangl, L. E. Cantoro et al., Self-seeded, position-controlled InAs nanowire growth on Si : A growth parameter study, J. Cryst. Growth, vol.334, issue.1, pp.51-56, 2011.

V. Consonni, . Knelangen, . Geelhaar, H. Trampert, and . Riechert, Nucleation mechanisms of epitaxial GaN nanowires : Origin of their self-induced formation and initial radius, Phys. Rev. B -Condens. Matter Mater. Phys, vol.81, issue.8, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01067583

D. Spirkoska, C. Colombo, and M. Heiß, Growth methods and properties of high purity III-V nanowires by molecular beam epitaxy, Adv. Solid State Phys, vol.48, pp.13-26, 2009.

K. Tomioka, J. Motohisa, S. Hara, and T. Fukui, Control of InAs nanowire growth directions on Si, Nano Lett, vol.8, issue.10, pp.3475-3480, 2008.

K. Tomioka, M. Yoshimura, and T. Fukui, A III-V nanowire channel on silicon for high-performance vertical transistors, Nature, vol.488, issue.7410, pp.189-192, 2012.

A. C. Farrell, W. J. Lee, P. Senanayake, M. A. Haddad, V. Sergey et al.,

D. L. Huffaker, High-Quality InAsSb Nanowires Grown by Catalyst-Free Selective-Area MetalOrganic Chemical Vapor Deposition, Nano Lett, vol.15, issue.10, pp.6614-6619, 2015.

S. Ziani-de, G. Schiaber, X. Calabrese, A. Kong, B. Trampert et al., Polarity-induced selective area epitaxy of GaN nanowires, Nano Lett, vol.17, issue.1, pp.63-70, 2017.

Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati et al., Hark Hoe Tan, and Chennupati Jagadish. Selective-area epitaxy of pure wurtzite InP nanowires : High quantum efficiency and room-temperature lasing, Nano Lett, vol.14, issue.9, pp.5206-5211, 2014.

. Wikipedia, Wikepedia "Density Transfer Theory" Retrieved July, vol.17, 2018.

D. S. Sholl and J. A. Steckel, Density Functional Theory, 2009.

C. T. Wanlass and F. Sah, Nanowatt Logic Using Field-Effect Metal-Oxide Semiconductor Triodes, Int. Solid State Circuits Conf. Dig. Tech. Pap, pp.32-33, 1963.

R. Dennard, F. Gaensslen, W. Yu, L. Rideout, E. Bassous et al., Design of Ion-Implanted Small MOSFET ' S Dimensions with Very, IEEE J. Solid State Circuits, vol.9, issue.5, pp.257-268, 1974.

J. Pierre-colinge and A. Chandrakasan, FinFETs and other multi-gate transistors, 2008.

T. Sekigawa and Y. Hayashi, Calculated threshold-voltage characteristics of an XMOS transistor having an additional bottom gate, Solid State Electron, vol.27, issue.8-9, pp.827-828, 1984.

P. Mishra, A. Muttreja, and N. Jha, FinFET circuit design. In Nanoelectron. Circuit Des, pp.23-54, 2011.

K. Tomioka and T. Fukui, Tunnel field-effect transistor using InAs nanowire/Si heterojunction, Appl. Phys. Lett, vol.98, issue.8, p.83114, 2011.

X. Jiang, Q. Xiong, S. Nam, F. Qian, Y. Li et al., InAs/InP radial nanowire heterostructures as high electron mobility devices, Nano Lett, vol.7, issue.10, pp.3214-3218, 2007.

B. , M. Borg, K. A. Dick, and B. Ganjipour, Mats Erik Pistol, Lars Erik Wernersson, and Claes Thelander. InAs/GaSb heterostructure nanowires for tunnel field-effect transistors, Nano Lett, vol.10, issue.10, pp.4080-4085, 2010.

M. Vincent-t-renard, P. Jublot, P. Gergaud, D. Cherns, A. Rouchon et al., Catalyst preparation for CMOS-compatible silicon nanowire synthesis, Nat. Nanotechnol, vol.4, issue.10, pp.654-657, 2009.

C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L. F. Feiner et al., Nanowire-based one-dimensional electronics, Mater. Today, vol.9, issue.10, pp.28-35, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01876884

T. Tanaka, K. Tomioka, S. Hara, J. Motohisa, E. Sano et al., Vertical surrounding gate transistors using single InAs nanowires grown on Si substrates, Appl. Phys. Express, vol.3, issue.2, p.25003, 2010.

K. Tomioka, T. Tanaka, S. Hara, K. Hiruma, and T. Fukui, III-V nanowires on Si substrate : Selective-area growth and device applications, IEEE J. Sel. Top. Quantum Electron, vol.17, issue.4, pp.1112-1129, 2011.

W. Wei, X. Bao, C. Soci, Y. Ding, Z. Wang et al., Direct Heteroepitaxy of Vertical InAs Nanowires on Si Substrates for Broad Band Photovoltaics and Photodetection, Nano Lett, 2009.

T. Li, Y. Chen, W. Lei, X. Zhou, S. Luo et al., Effect of growth temperature on the morphology and phonon properties of InAs nanowires on Si substrates, Nanoscale Res. Lett, vol.6, issue.1, p.463, 2011.

X. Wang, X. Yang, W. Du, H. Ji, S. Luo et al., Thickness influence of thermal oxide layers on the formation of self-catalyzed InAs nanowires on Si(111) by MOCVD, J. Cryst. Growth, vol.395, pp.55-60, 2014.

Y. Jing, X. Bao, W. Wei, C. Li, K. Sun et al., Catalyst-Free Heteroepitaxial MOCVD Growth of InAs Nanowires on Si Substrates, J. Phys. Chem. C, vol.118, issue.3, pp.1696-1705, 2014.

J. Hwang, B. Kim, S. J. Lee, M. Bae, and J. Shin, Catalyst-free heteroepitaxial growth of very long InAs nanowires on Si, Curr. Appl. Phys, vol.15, pp.35-39, 2015.

D. U-p-gomes, N. Ercolani, M. Sibirev, . Gemmi, F. V-g-dubrovskii et al., Catalyst-free growth of InAs nanowires on Si (111) by CBE, Nanotechnology, vol.26, issue.41, p.415604, 2015.

D. U-p-gomes, . Ercolani, . Zannier, . Battiato, . Ubyivovk et al., Heterogeneous nucleation of catalyst-free InAs nanowires on silicon, Nanotechnology, vol.28, issue.6, p.65603, 2017.

T. Shi, X. Wang, B. Wang, W. Wang, X. Yang et al., Nanoscale opening fabrication on Si (111) surface from SiO 2 barrier for vertical growth of III-V nanowire arrays, Nanotechnology, vol.26, issue.26, p.265302, 2015.

D. U-p-gomes, . Ercolani, . Zannier, M. David, . Gemmi et al., Nucleation and growth mechanism of self-catalyzed InAs nanowires on silicon, Nanotechnology, vol.27, issue.25, p.255601, 2016.

K. Tomioka and T. Fukui, Tunnel field-effect transistor using InAs nanowire/Si heterojunction, Appl. Phys. Lett, vol.98, issue.8, p.83114, 2011.

A. Biermanns, E. Dimakis, A. Davydok, T. Sasaki, L. Geelhaar et al., Role of Liquid Indium in the Structural Purity of Wurtzite InAs Nanowires That Grow on Si, vol.14, pp.6878-83, 2014.

G. Koblmüller, . Hertenberger, M. Vizbaras, . Bichler, J. Bao et al., Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy, Nanotechnology, vol.21, issue.36, p.365602, 2010.

S. Hertenberger, D. Rudolph, M. Bichler, J. J. Finley, G. Abstreiter et al., Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy, J. Appl. Phys, vol.108, issue.11, pp.114316-114317, 2010.

S. Hertenberger, . Rudolph, M. Becker, J. Bichler, G. Finley et al., Rate-limiting mechanisms in high-temperature growth of catalyst-free InAs nanowires with large thermal stability, Nanotechnology, vol.23, issue.23, p.235602, 2012.

X. Wang, W. Yang, B. Wang, X. Ji, S. Xu et al., Effect of nanohole size on selective area growth of InAs nanowire arrays on Si substrates, J. Cryst. Growth, 2017.

I. Sébastien-r-plissard, D. Van-weperen, . Car, G. Marcel-a-verheijen, J. Immink et al., Formation and electronic properties of InSb nanocrosses, Nat. Nanotechnol, vol.8, issue.11, pp.859-864, 2013.

C. Thelander, P. Caroff, S. Plissard, W. Anil, K. A. Dey et al., Effects of crystal phase mixing on the electrical properties of InAs nanowires, Nano Lett, vol.11, issue.6, pp.2424-2429, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00603006

C. Thelander, P. Caroff, S. Plissard, and K. A. Dick, Electrical properties of InAs1âxSbx and InSb nanowires grown by molecular beam epitaxy, Appl. Phys. Lett, vol.100, issue.23, p.232105, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00786987

M. J. Hÿtch, E. Snoeck, and R. Kilaas, Quantitative measurement of displacement and strain fields from HREM micrographs, Ultramicroscopy, vol.74, issue.3, pp.131-146, 1998.

S. Plissard, K. A. Dick, G. Larrieu, S. Godey, A. Addad et al., Gold-free growth of GaAs nanowires on silicon : arrays and polytypism, Nanotechnology, vol.21, issue.38, p.385602, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00548717

Q. Gao, V. G. Dubrovskii, P. Caroff, J. Wong-leung, L. Li et al., Hark Hoe Tan, and Chennupati Jagadish. Simultaneous Selective-Area and Vapor-Liquid-Solid Growth of InP Nanowire Arrays, Nano Lett, vol.16, issue.7, pp.4361-4367, 2016.

X. Li, X. L. Wei, T. T. Xu, Z. Y. Ning, J. P. Shu et al., Mechanical properties of individual InAs nanowires studied by tensile tests, Appl. Phys. Lett, vol.104, issue.10, p.103110, 2014.

S. Choi, J. H. Lee, M. W. Pin, D. W. Jang, S. Hong et al., Study on fracture behavior of individual InAs nanowires using an electron-beam-drilled notch, RSC Adv, vol.7, issue.27, pp.16655-16661, 2017.

G. Kresse and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metalâamorphous-semiconductor transition in germanium, Phys. Rev. B, vol.49, issue.20, pp.14251-14269, 1994.

K. John-p-perdew, M. Burke, and . Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett, vol.77, issue.18, pp.3865-3868, 1996.

G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci, vol.6, issue.1, pp.15-50, 1996.

P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B, vol.50, issue.24, pp.17953-17979, 1994.

G. Kresse and . Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, vol.59, issue.3, pp.1758-1775, 1999.

H. Monkhorst and . Pack, Special points for Brillouin zone integrations, Phys. Rev. B, vol.13, issue.12, pp.5188-5192, 1976.

G. Henkelman, G. Jóhannesson, and H. Jónsson, Methods for finding saddle points and minimum energy paths, Theor. Methods Condens. Phase Chem, pp.269-302, 2002.

G. Henkelman and H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys, vol.113, issue.22, pp.9978-9985, 2000.

G. Henkelman, P. Blas, H. Uberuaga, and . Jónsson, Climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys, vol.113, issue.22, pp.9901-9904, 2000.

D. Sheppard, R. Terrell, and G. Henkelman, Optimization methods for finding minimum energy paths, J. Chem. Phys, vol.128, issue.13, p.134106, 2008.

T. Yasaka, K. Kanda, K. S. Ara, S. Miyazaki, and M. Hirose, Chemical stability of HF-treated SI(111) surfaces, Jpn. J. Appl. Phys, vol.30, issue.12, pp.3567-3569, 1991.

M. A. Olmstead, R. D. Bringans, R. I. Uhrberg, and R. Z. Bachrach, Arsenic overlayer on Si(111) : Removal of surface reconstruction, Phys. Rev. B, vol.34, issue.8, pp.6041-6044, 1986.

J. R. Patel, J. A. Golovchenko, P. E. Freeland, and H. J. Gossmann, Arsenic atom location on passivated silicon (111) surfaces, Phys. Rev. B, vol.36, issue.14, pp.7715-7717, 1987.

C. H. Patterson and R. P. Messmer, Structural compromise of the arsenic-terminated silicon (111) surface, Phys. Rev. B, vol.39, issue.2, pp.1372-1374, 1989.

C. Cheng and K. Kunc, Arsenic adatom structures for Ge(111) and Si(111) surfaces : First-principles calculations, Surf. Sci, vol.365, issue.2, pp.383-393, 1996.

E. A. Anyebe and Q. Zhuang, Self-catalysed InAs1-xSbx nanowires grown directly on bare Si substrates, Mater. Res. Bull, vol.60, pp.572-575, 2014.

E. A. Anyebe, A. M. Sanchez, S. Hindmarsh, X. Chen, J. Shao et al., Realization of Vertically Aligned, Ultrahigh Aspect Ratio InAsSb Nanowires on Graphite, Nano Lett, vol.15, issue.7, pp.4348-4355, 2015.

. Q-d-zhuang, . Ezekiel-a-anyebe, H. Chen, A. M. Liu, . Sanchez et al., Sb-Induced Phase Control of InAsSb Nanowires Grown by Molecular Beam Epitaxy, Nano Lett, vol.15, issue.2, pp.1109-1116, 2015.

H. Q-d-zhuang, Z. Alradhi, X. Jin, J. R-chen, . Shao et al., Optically efficient inassb nanowires for silicon-based mid-wavelength infrared optoelectronics, Nanotechnology, vol.28, issue.10, p.105710, 2017.

J. L. Marion, I. Sourribes, M. Isakov, H. Panfilova, P. A. Liu et al., Mobility enhancement by sb-mediated minimisation of stacking fault density in inas nanowires grown on silicon, Nano Letters, vol.14, issue.3, p.24502770, 2014.

. Richard-p-feynman, Simulating physics with computers, Int. J. Theor. Phys, vol.21, issue.6-7, pp.467-488, 1982.

W. Peter and . Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum, Computer. SIAM J. Comput, vol.26, issue.5, pp.1484-1509, 1995.

K. Lov and . Grover, A fast quantum mechanical algorithm for database search, Proc. twenty-eighth Annu. ACM Symp. Theory Comput. -STOC '96, pp.212-219, 1996.

L. Moore, Intro , Qubits , Measurements , Entanglement Lecture 1 1 Why Quantum Computation ? 2 Young ' s double-slit experiment 3 Qubits â Naive introduction. Quantum, Cryptography Quantum, Quantum Mechanics, and Quantum Entanglement, pp.1-6, 2004.

L. Jiang, C. L. Kane, and J. Preskill, Interface between Topological and Superconducting Qubits, Phys. Rev. Lett, vol.106, issue.13, p.130504, 2011.

S. Shen, Topological Insulators, vol.174, 2012.

A. Das, Y. Ronen, Y. Most, and Y. Oreg, Zerobias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions, Moty Heiblum, and Hadas Shtrikman, vol.8, pp.887-895, 2012.

. V-mourik, . Zuo, S. S-m-frolov, E. R-plissard, L. Bakkers et al., Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices, Science, vol.336, issue.6084, pp.1003-1007, 2012.

C. L. Liang-fu, E. J. Kane, and . Mele, Topological Insulators in Three Dimensions, Phys. Rev. Lett, vol.98, issue.10, p.106803, 2007.

L. Fu and C. Kane, Topological insulators with inversion symmetry, Phys. Rev. B -Condens. Matter Mater. Phys, vol.76, issue.4, 2007.

C. L. Kane and E. J. Mele, Z2 topological order and the quantum spin hall effect, Phys. Rev. Lett, vol.95, issue.14, p.146802, 2005.

M. Z. Hasan and C. L. Kane, Colloquium : Topological insulators, Rev. Mod. Phys, vol.82, issue.4, pp.3045-3067, 2010.

D. Hsieh, . Qian, Y. Wray, Y. Xia, R. Hor et al., A topological Dirac insulator in a quantum spin Hall phase, Nature, vol.452, issue.7190, pp.970-974, 2008.

N. James, J. Eckstein, and . Levy, Materials issues for quantum computation, MRS Bull, vol.38, issue.10, pp.783-789, 2013.

M. Sergey, S. Frolov, R. ?-?bastien, S. Plissard, L. P. Nadj-perge et al., Quantum computing based on semiconductor nanowires, MRS Bull, vol.38, issue.10, pp.809-815, 2013.

D. William, P. B. Oliver, and . Welander, Materials in superconducting quantum bits, MRS Bull, vol.38, issue.10, pp.816-825, 2013.

D. A. Hite, Y. Colombe, A. C. Wilson, D. T. Allcock, D. Leibfried et al., Surface science for improved ion traps, MRS Bull, vol.38, issue.10, pp.826-833, 2013.

L. Gordon, J. R. Weber, J. B. Varley, A. Janotti, D. D. Awschalom et al., Quantum computing with defects, MRS Bull, vol.38, issue.10, pp.802-808, 2013.

D. Loss and D. P. Divincenzo, Quantum computation with quantum dots, Phys. Rev. A, vol.57, issue.1, pp.120-126, 1998.

D. P. Divincenzo, The physical implementation of quantum computation, 2000.

L. H. Willems-van-beveren, S. Tarucha, J. M-elzerman, J. Greidanus, . Hanson et al., Few-electron quantum dot circuit with integrated charge read out, Phys. Rev. B -Condens. Matter Mater. Phys, vol.67, issue.16, 2003.

E. Kawakami, P. Scarlino, D. R. Ward, F. R. Braakman, D. E. Savage et al.,

M. A. Coppersmith, L. M. Eriksson, and . Vandersypen, Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot, Nat. Nanotechnol, vol.9, issue.9, pp.666-670, 2014.

A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras, Theory of Spin-Conserving Excitation of the N-V-Center in Diamond, Phys. Rev. Lett, vol.103, issue.18, p.186404, 2009.

G. Davies and M. F. Hamer, Optical Studies of the 1.945 eV Vibronic Band in Diamond, Proc. R. Soc. A Math. Phys. Eng. Sci, vol.348, pp.285-298, 1653.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, Room temperature coherent control of defect spin qubits in silicon carbide, Nature, vol.479, issue.7371, pp.84-87, 2011.

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. Viatcheslav et al., Polytype control of spin qubits in silicon carbide, Nat. Commun, vol.4, issue.1, p.1819, 2013.

D. Kielpinski, C. Monroe, and D. J. Wineland, Architecture for a large-scale ion-trap quantum computer, Nat, vol.417, issue.6890, p.709, 2002.

P. J-i-cirac and . Zoller, Quantum computations with cold trapped ions, Phys. Rev. Lett, vol.74, issue.20, pp.4091-4094, 1995.

A. Kitaev, Unpaired Majorana fermions in quantum wires, Physics-Uspekhi, vol.44, issue.10S, pp.131-136, 2000.

M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff et al., Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device, Nano Lett, vol.12, issue.12, pp.6414-6419, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00786992

A. Das and Y. Ronen, Yonatan Most, Yuval Oreg, and Moty Heiblum. Evidence of Majorana fermions in an Al â InAs nanowire topological superconductor, Arxiv Prepr. arXiv, issue.2, 2012.

J. E. Moore, The birth of topological insulators, p.141, 2010.

M. Z. Hasan, S. Y. Xu, and M. Neupane, Topological Insulators, Topological Dirac semimetals, Topological Crystalline Insulators, and Topological Kondo Insulators, In Topol. Insul. Fundam. Perspect, pp.55-100, 2015.

M. Xie-gang-zhu, L. Stensgaard, W. Barreto, S. Simoes-e-silva, M. Ulstrup et al., Three Dirac points on the (110) surface of the topological insulator Bi1-xSbx, New J. Phys, vol.15, issue.10, p.103011, 2013.

P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh et al., Topological surface states protected from backscattering by chiral spin texture, Nature, vol.460, issue.7259, pp.1106-1109, 2009.

I. Wikipedia, Angle-resolved photoemission spectroscopy

Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal et al.,

. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys, vol.5, issue.6, pp.398-402, 2009.

Y. Chen, J. H. Analytis, . Chu, S. K. Liu, . Mo et al., Experimental realization of a three-dimensional topological insulator, vol.2, pp.178-181, 2009.

D. Hsieh, . Xia, . Qian, . Wray, J. Meier et al., Observation of time-reversal-protected single-dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3, Phys. Rev. Lett, vol.103, issue.14, 2009.

J. Lee, S. Farhangfar, J. Lee, L. Cagnon, R. Scholz et al., Tuning the crystallinity of thermoelectric Bi 2 Te 3 nanowire arrays grown by pulsed electrodeposition, Nanotechnology, vol.19, issue.36, p.365701, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00999410

P. Kumar, M. Pfeffer, N. Peranio, O. Eibl, B. Svenja et al., Ternary, single-crystalline Bi2 (Te, Se)3 nanowires grown by electrodeposition, Acta Mater, vol.125, pp.238-245, 2017.

B. Hamdou, A. Beckstedt, J. Kimling, A. Dorn, L. Akinsinde et al., The influence of a Te-depleted surface on the thermoelectric transport properties of Bi 2 Te 3 nanowires, Nanotechnology, vol.25, issue.36, p.365401, 2014.

B. Hamdou, J. Gooth, T. Böhnert, A. Dorn, L. Akinsinde et al., Thermoelectric Properties of Band Structure Engineered Topological Insulator (Bi 1â x Sb x ) 2 Te 3 Nanowires, Adv. Energy Mater, vol.5, issue.14, p.1500280, 2015.

S. Zastrow, . Gooth, . Boehnert, . Heiderich, . Toellner et al., Thermoelectric transport and Hall measurements of low defect Sb 2 Te 3 thin films grown by atomic layer deposition, Semicond . Sci . Technol . Semicond . Sci . Technol, vol.28, issue.28, pp.35010-35016, 2013.

A. Bansil, H. Lin, and T. Das, Colloquium : Topological band theory, Rev. Mod. Phys, vol.88, issue.2, 2016.

J. G. Analytis, R. D. Mcdonald, S. C. Riggs, J. H. Chu, G. S. Boebinger et al., Two-dimensional Dirac fermions in a topological insulator : transport in the quantum limit, Nat. Phys, vol.6, issue.12, pp.960-964, 2010.

D. Kong, Y. Chen, J. J. Cha, Q. Zhang, J. G. Analytis et al., Ambipolar field effect in the ternary topological insulator (BixSb1-x)2Te3by composition tuning, Nat. Nanotechnol, vol.6, issue.11, pp.705-709, 2011.

M. Liang-wu, R. Brahlek, A. V. Aguilar, C. M. Stier, Y. Morris et al., A sudden collapse in the transport lifetime acros. The topological phase transition in (Bi1-xinx)2Se3, Nat. Phys, vol.9, issue.7, pp.410-414, 2013.

L. D. Alegria, N. Yao, and J. R. Petta, MOCVD synthesis of compositionally tuned topological insulator nanowires, Phys. Status Solidi -Rapid Res. Lett, vol.8, issue.12, pp.991-996, 2014.

S. Tang and M. S. Dresselhaus, Electronic properties of nano-structured bismuth-antimony materials, J. Mater. Chem. C, vol.2, issue.24, p.4710, 2014.

J. P. Dismukes, R. J. Paff, R. T. Smith, and R. Ulmer, Lattice Parameter and Density in Bismuth-Antimony Alloys, J. Chem. Eng. Data, vol.13, issue.3, pp.317-320, 1968.

F. Nakamura, Y. Kousa, A. A. Taskin, Y. Takeichi, A. Nishide et al., Topological transition in Bi 1-xSb x studied as a function of Sb doping, Phys. Rev. B -Condens. Matter Mater. Phys, vol.84, issue.23, 2011.

X. Dou, G. Li, and H. Lei, Kinetic versus thermodynamic control over growth process of electrodeposited Bi/BiSb superlattice nanowires, Nano Lett, vol.8, issue.5, pp.1286-1290, 2008.

X. Dou, G. Li, H. Lei, X. Huang, L. Li et al., Template Epitaxial Growth of Thermoelectric Bi/BiSb Superlattice Nanowires by Charge-Controlled Pulse Electrodeposition, J. Electrochem. Soc, vol.156, issue.9, p.149, 2009.

S. V. Dordevic, M. S. Wolf, N. Stojilovic, M. V. Nikolic, S. S. Vujatovic et al., Magneto-optical effects in semimetallic Bi 1-xSb x (x=0.015), Phys. Rev. B -Condens. Matter Mater. Phys, vol.86, issue.11, 2012.

P. Kumar, J. Singh, and A. C. Pandey, Rational low temperature synthesis and structural investigations of ultrathin bismuth nanosheets, RSC Adv, vol.3, issue.7, pp.2313-2317, 2013.

K. , M. Izumi, and F. , âVESTA : a three-dimensional visualization system for electronic and structural analysisâ, 2008.

, Systat Software Inc. The Automatic Choice for Spectroscopy, Chromatography and Electrophoresis, Peakfit Overview, 2013.

A. L. Jain, Temperature Dependence of the Electrical Properties of Bismuth-Antimony Alloys, Phys. Rev, vol.114, issue.6, pp.1518-1528, 1959.

, Alors que la mobilité électronique de l'InAs est intéressante pour les nanoélectroniques; l'aspect isolant topologique du Bi 1-x Sb x peut être utilisé pour la réalisation de Qubits basés sur les fermions de Majorana. Dans les deux cas, l'amélioration de la qualité du matériau est obligatoire et ceci est l'objectif principal cette thèse où nous étudions l'intégration des nanofils InAs sur silicium (compatibles CMOS) et où nous développons un nouvel, Grâce à leur propriétés uniques, les nanofils d'InAs et de Bi 1-x Sb x sont important pour les domaines de la nanoélectronique et de l'informatique quantique

L. Pour-une-compatibilité-cmos-complète and . Croissance, InAs sur Silicium nécessite d'être autocatalysée, entièrement verticale et uniforme sans dépasser la limite thermique de 450°C. Ces normes CMOS, combinées à la différence de paramètre de maille entre l'InAs et le silicium, ont empêché l'intégration de nanofils InAs pour les dispositifs nanoélectroniques. Dans cette thèse, du mécanisme Vapor-Solid (VS) au mécanisme VaporLiquid-Solid (VLS) est rapporté, Les rapports d'aspect très élevé des nanofils d'InAs

L. D&apos;autre-part and . Bi,

. Dans, peut héberger les fermions de Majorana utilisés comme Qubits. Cependant, la composition du Bi 1-x Sb x doit être comprise entre 0,08 et 0,24 pour que le matériau se comporte comme un isolant topologique. Nous rapportons pour la première fois la croissance de nanofils Bi 1-x Sb x sans défaut et à composition contrôlée sur Si. Différentes morphologies sont obtenues, y compris des nanofils, des nanorubans et des nanoflakes. Leur diamètre peut être de 20 nm pour plus de 10 microns de long, ce qui en fait des candidats idéaux pour des dispositifs quantiques