I. Albert, S. Donnet, C. Guihenneuc-jouyaux, S. Low-choy, K. Mengersen et al., Combining expert opinions in prior elicitation, Bayesian Analysis, vol.7, issue.3, pp.503-532, 2012.
DOI : 10.1214/12-ba717

URL : https://hal.archives-ouvertes.fr/hal-01004440

C. Andrieu, N. De-freitas, A. Doucet, J. , and M. I. , An introduction to mcmc for machine learning, Machine learning, vol.50, issue.1-2, pp.5-43, 2003.

Y. Auffray, P. Barbillon, and J. Marin, Maximin design on non hypercube domain and kernel interpolation, 2010.
DOI : 10.1016/j.sbspro.2010.05.137

URL : https://hal.archives-ouvertes.fr/inria-00638728

F. Bachoc, G. Bois, J. Garnier, and J. Martinez, Calibration and improved prediction of computer models by universal kriging, Nuclear Science and Engineering, vol.176, issue.1, pp.81-97, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01020594

M. J. Bayarri, J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo et al., A framework for validation of computer models, Technometrics, vol.49, issue.2, pp.138-154, 2007.

A. D. Bull, Convergence rates of efficient global optimization algorithms, Journal of Machine Learning Research, vol.12, pp.2879-2904, 2011.

M. Carmassi, CaliCo: Code Calibration in a Bayesian Framework, 2018.

G. Casella and E. I. George, Explaining the gibbs sampler, The American Statistician, vol.46, issue.3, pp.167-174, 1992.
DOI : 10.2307/2685208

URL : http://www.stat.duke.edu/~scs/Courses/Stat376/Papers/Basic/CasellaGeorge1992.pdf

W. Chang, R6: Classes with Reference Semantics, 2017.

D. D. Cox, J. Park, and C. E. Singer, A statistical method for tuning a computer code to a data base, Computational statistics & data analysis, vol.37, issue.1, pp.77-92, 2001.

P. S. Craig, M. Goldstein, J. C. Rougier, and A. H. Seheult, Bayesian forecasting for complex systems using computer simulators, Journal of the American Statistical Association, vol.96, issue.454, pp.717-729, 2001.
DOI : 10.1198/016214501753168370

N. A. Cressie and A. Noel, Cassie (1993). statistics for spatial data, vol.900, 1993.

C. Currin, T. Mitchell, M. Morris, and D. Ylvisaker, Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments, Journal of the American Statistical Association, vol.86, issue.416, pp.953-963, 1991.

S. Da-veiga, Global sensitivity analysis with dependence measures, Journal of Statistical Computation and Simulation, vol.85, issue.7, pp.1283-1305, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00903283

G. Damblin, Contributions statistiques au calage et à la validation des codes de calcul, 2015.

G. Damblin, P. Barbillon, M. Keller, A. Pasanisi, and É. Parent, Adaptive numerical designs for the calibration of computer codes, SIAM/ASA Journal on Uncertainty Quantification, vol.6, issue.1, pp.151-179, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01784898

G. Damblin, M. Couplet, and B. Iooss, Numerical studies of space-filling designs: optimization of latin hypercube samples and subprojection properties, Journal of Simulation, vol.7, issue.4, pp.276-289, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00848240

G. Damblin, M. Keller, P. Barbillon, A. Pasanisi, and É. Parent, Bayesian model selection for the validation of computer codes, Quality and Reliability Engineering International, vol.32, issue.6, pp.2043-2054, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01531713

M. De-lozzo and A. Marrel, New improvements in the use of dependence measures for sensitivity analysis and screening, Journal of Statistical Computation and Simulation, vol.86, issue.15, pp.3038-3058, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01090475

J. Ding and R. Radhakrishnan, A new method to determine the optimum load of a real solar cell using the lambert w-function, Solar Energy Materials and Solar Cells, vol.92, issue.12, pp.1566-1569, 2008.

J. A. Duffie and W. A. Beckman, Solar engineering of thermal processes, 2013.
DOI : 10.1002/9781118671603

C. Dussert, G. Rasigni, M. Rasigni, J. Palmari, and A. Llebaria, Minimal spanning tree: A new approach for studying order and disorder, Physical Review B, vol.34, issue.5, p.3528, 1986.
DOI : 10.1103/physrevb.34.3528

D. Eddelbuettel, R. Francois, J. Allaire, K. Ushey, Q. Kou et al., Rcpp: Seamless R and C++ Integration, 2018.
DOI : 10.18637/jss.v040.i08

URL : https://www.jstatsoft.org/index.php/jss/article/view/v040i08/v40i08.pdf

R. Faivre, B. Iooss, S. Mahévas, D. Makowski, and H. Monod, Analyse de sensibilité et exploration de modèles: application aux sciences de la nature et de l'environnement, 2013.

K. Fang, R. Li, and A. Sudjianto, Design and modeling for computer experiments, 2005.
DOI : 10.1201/9781420034899

J. Franco, D. Dupuy, O. Roustant, G. Damblin, and B. Iooss, DiceDesign: Designs of Computer Experiments, 2015.

J. Franco, O. Vasseur, B. Corre, and M. Sergent, Minimum spanning tree: A new approach to assess the quality of the design of computer experiments, Chemometrics and intelligent laboratory systems, vol.97, issue.2, pp.164-169, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00409737

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian data analysis, 1995.

A. Gelman and D. B. Rubin, Inference from iterative simulation using multiple sequences. Statistical science, pp.457-472, 1992.
DOI : 10.1214/ss/1177011136

URL : https://doi.org/10.1214/ss/1177011136

A. Genz, F. Bretz, T. Miwa, X. Mi, F. Leisch et al., mvtnorm: Multivariate Normal and t Distributions, 2018.

D. Ginsbourger, Multiples metamodeles pour l'approximation et l'optimisation de fonctions numeriques multivariables, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00772384

M. Gu, Jointly robust prior for gaussian stochastic process in emulation, calibration and variable selection, 2018.

M. Gu, RobustCalibration: Robust Calibration of Imperfect Mathematical Models, 2018.

M. Gu and L. Wang, Scaled gaussian stochastic process for computer model calibration and prediction, 2017.
DOI : 10.1137/17m1159890

URL : http://arxiv.org/pdf/1707.08215

H. Haario, E. Saksman, and J. Tamminen, An adaptive metropolis algorithm, Bernoulli, vol.7, issue.2, pp.223-242, 2001.
DOI : 10.2307/3318737

M. S. Handcock and M. L. Stein, A bayesian analysis of kriging, Technometrics, vol.35, issue.4, pp.403-410, 1993.
DOI : 10.2307/1270273

R. K. Hankin, approximator: Bayesian prediction of complex computer codes, 2013.

R. K. Hankin, BACCO: Bayesian Analysis of Computer Code Output (BACCO). R package version 2, pp.0-9, 2013.

R. K. Hankin, calibrator: Bayesian calibration of complex computer codes, 2013.

R. K. Hankin, emulator: Bayesian emulation of computer programs, 2014.

W. K. Hastings, Monte carlo sampling methods using markov chains and their applications, Biometrika, vol.57, issue.1, pp.97-109, 1970.
DOI : 10.2307/2334940

C. Helbert, D. Dupuy, and L. Carraro, Assessment of uncertainty in computer experiments from universal to bayesian kriging, Applied Stochastic Models in Business and Industry, vol.25, issue.2, pp.99-113, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00407651

D. Higdon, J. Gattiker, B. Williams, and M. Rightley, Computer model calibration using high-dimensional output, Journal of the American Statistical Association, vol.103, issue.482, pp.570-583, 2008.
DOI : 10.1198/016214507000000888

URL : http://www.stat.duke.edu/~fei/samsi/Readings/DHigdon/nedd4.pdf

D. Higdon, M. Kennedy, J. C. Cavendish, J. A. Cafeo, and R. D. Ryne, Combining field data and computer simulations for calibration and prediction, SIAM Journal on Scientific Computing, vol.26, issue.2, pp.448-466, 2004.
DOI : 10.1137/s1064827503426693

P. D. Hoff, A first course in Bayesian statistical methods, 2009.

F. Husson, J. Josse, S. Le, and J. Mazet, FactoMineR: Multivariate Exploratory Data Analysis and Data Mining, 2018.

F. Husson, S. Lê, and J. Pagès, Exploratory multivariate analysis by example using R, 2017.
URL : https://hal.archives-ouvertes.fr/hal-00566638

K. Ishaque, Z. Salam, and H. Taheri, Modeling and simulation of photovoltaic (pv) system during partial shading based on a two-diode model, Simulation Modelling Practice and Theory, vol.19, issue.7, pp.1613-1626, 2011.

R. Jin, W. Chen, and A. Sudjianto, An efficient algorithm for constructing optimal design of computer experiments, ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp.545-554, 2003.
DOI : 10.1016/j.jspi.2004.02.014

M. E. Johnson, L. M. Moore, and D. Ylvisaker, Minimax and maximin distance designs, Journal of statistical planning and inference, vol.26, issue.2, pp.131-148, 1990.
DOI : 10.1016/0378-3758(90)90122-b

D. R. Jones, M. Schonlau, and W. J. Welch, Efficient global optimization of expensive black-box functions, Journal of Global optimization, vol.13, issue.4, pp.455-492, 1998.

K. Kamary, Non-informative priors and modelization by mixtures, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01491350

E. Kansa, Application of hardy's multiquadric interpolation to hydrodynamics, 1985.

M. Kennedy and A. O'hagan, Supplementary details on bayesian calibration of computer. rap. tech., university of nottingham, Statistics Section, 2001.

M. C. Kennedy and A. Hagan, Bayesian calibration of computer models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.63, issue.3, pp.425-464, 2001.

B. A. Konomi, G. Karagiannis, K. Lai, L. , and G. , Bayesian treed calibration: an application to carbon capture with ax sorbent, Journal of the American Statistical Association, vol.112, issue.517, pp.37-53, 2017.

D. G. Krige, A statistical approach to some basic mine valuation problems on the witwatersrand, Journal of the Southern African Institute of Mining and Metallurgy, vol.52, issue.6, pp.119-139, 1951.

L. Gratiet and L. , Multi-fidelity Gaussian process regression for computer experiments, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00866770

F. Liu, M. Bayarri, and J. Berger, Modularization in bayesian analysis, with emphasis on analysis of computer models, Bayesian Analysis, vol.4, issue.1, pp.119-150, 2009.

B. Macdoanld, H. Chipman, and P. Ranjan, GPfit: Gaussian Processes Modeling, 2015.

A. Marrel, Mise en oeuvre et exploitation du métamodèle processus gaussien pour l'analyse de modèles numériques-application à un code de transport hydrogéologique, 2008.

A. Marrel, B. Iooss, B. Laurent, and O. Roustant, Calculations of sobol indices for the gaussian process metamodel, Reliability Engineering & System Safety, vol.94, issue.3, pp.742-751, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00239494

B. Matérn, Spatial variation: Meddelanden fran statens skogsforskningsinstitut, Lecture Notes in Statistics, vol.36, p.21, 1960.

G. Matheron, Principles of geostatistics, Economic geology, vol.58, issue.8, pp.1246-1266, 1963.

M. D. Mckay, R. J. Beckman, and W. J. Conover, Comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, vol.21, issue.2, pp.239-245, 1979.

M. Gu, J. P. Berger, and J. , RobustGaSP: Robust Gaussian Stochastic Process Emulation, 2018.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of state calculations by fast computing machines, The journal of chemical physics, vol.21, issue.6, pp.1087-1092, 1953.

A. Mira, On metropolis-hastings algorithms with delayed rejection, Metron, vol.59, issue.3-4, pp.231-241, 2001.

M. D. Morris, Factorial sampling plans for preliminary computational experiments, Technometrics, vol.33, issue.2, pp.161-174, 1991.

M. D. Morris and T. J. Mitchell, Exploratory designs for computational experiments, Journal of statistical planning and inference, vol.43, issue.3, pp.381-402, 1995.

J. E. Oakley and A. Hagan, Probabilistic sensitivity analysis of complex models: a bayesian approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.66, issue.3, pp.751-769, 2004.

A. B. Owen, Orthogonal arrays for computer experiments, integration and visualization, Statistica Sinica, pp.439-452, 1992.

J. Palomo, G. Garcia-donato, R. Paulo, J. Berger, M. J. Bayarri et al., SAVE: Bayesian Emulation, Calibration and Validation of Computer Models, 2017.

K. Pearson, Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine, Journal of Science, vol.2, issue.11, pp.559-572, 1901.

G. Petrone, G. Spagnuolo, and M. Vitelli, Analytical model of mismatched photovoltaic fields by means of lambert w-function. Solar energy materials and solar cells, vol.91, pp.1652-1657, 2007.

D. Picault, B. Raison, S. Bacha, J. De-la-casa, and J. Aguilera, Forecasting photovoltaic array power production subject to mismatch losses, Solar Energy, vol.84, issue.7, pp.1301-1309, 2010.
DOI : 10.1016/j.solener.2010.04.009

URL : https://hal.archives-ouvertes.fr/hal-00488003

M. Plumlee, Bayesian calibration of inexact computer models, Journal of the American Statistical Association, vol.112, issue.519, pp.1274-1285, 2017.
DOI : 10.1080/01621459.2016.1211016

M. Plummer, N. Best, K. Cowles, K. Vines, D. Sarkar et al., coda: Output Analysis and Diagnostics for MCMC, 2016.

L. Pronzato and W. G. Müller, Design of computer experiments: space filling and beyond, Statistics and Computing, vol.22, issue.3, pp.681-701, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00685876

C. E. Rasmussen, Gaussian processes in machine learning, Advanced lectures on machine learning, pp.63-71, 2004.
DOI : 10.1007/978-3-540-28650-9_4

URL : http://mlg.eng.cam.ac.uk/pub/pdf/Ras04.pdf

C. Robert, Méthodes de Monte Carlo par chaînes de Markov, Economica, 1996.

C. Robert, The Bayesian choice: from decision-theoretic foundations to computational implementation, 2007.

C. Robert and G. Casella, , 2013.

, Monte Carlo statistical methods

G. O. Roberts, A. Gelman, and W. R. Gilks, Weak convergence and optimal scaling of random walk metropolis algorithms. The annals of applied probability, vol.7, pp.110-120, 1997.
DOI : 10.1214/aoap/1034625254

URL : https://doi.org/10.1214/aoap/1034625254

E. D. Rocquigny, Quantifying uncertainty in an industrial approach: an emerging consensus in an old epistemological debate, SAPI EN. S. Surveys and Perspectives Integrating Environment and Society, issue.2, 2009.

O. Roustant, D. Gainsbourger, and Y. Deville, DiceKriging: Kriging Methods for Computer Experiments, 2015.

O. Roustant, D. Ginsbourger, and Y. Deville, Dicekriging, diceoptim: Two r packages for the analysis of computer experiments by kriging-based metamodelling and optimization, Journal of Statistical Software, vol.51, issue.1, p.54, 2012.
URL : https://hal.archives-ouvertes.fr/emse-00741762

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and analysis of computer experiments, Statistical science, pp.409-423, 1989.

A. Saltelli, Making best use of model evaluations to compute sensitivity indices, Computer physics communications, vol.145, issue.2, pp.280-297, 2002.
DOI : 10.1016/s0010-4655(02)00280-1

A. Saltelli, K. Chan, and E. M. Scott, Sensitivity analysis, vol.1, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00386559

A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity analysis in practice: a guide to assessing scientific models, 2004.

T. J. Santner, B. J. Williams, and W. I. Notz, The design and analysis of computer experiments, 2013.

R. Schaback, Convergence of unsymmetric kernel-based meshless collocation methods, SIAM Journal on Numerical Analysis, vol.45, issue.1, pp.333-351, 2007.

&. Sobol and I. M. , On sensitivity estimation for nonlinear mathematical models, Matematicheskoe modelirovanie, vol.2, pp.112-118, 1990.

I. M. Sobol, Sensitivity estimates for nonlinear mathematical models, Mathematical modelling and computational experiments, vol.1, issue.4, pp.407-414, 1993.

M. Stein, Large sample properties of simulations using latin hypercube sampling, Technometrics, vol.29, issue.2, pp.143-151, 1987.

M. L. Stein, Interpolation of spatial data: some theory for kriging, 2012.

B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliability Engineering & System Safety, vol.93, issue.7, pp.964-979, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01432217

B. Tang, Orthogonal array-based latin hypercubes, Journal of the American statistical association, vol.88, issue.424, pp.1392-1397, 1993.

H. Tian, F. Mancilla-david, K. Ellis, E. Muljadi, and P. Jenkins, A cell-to-module-to-array detailed model for photovoltaic panels, Solar energy, vol.86, issue.9, pp.2695-2706, 2012.

R. Tuo and C. J. Wu, Efficient calibration for imperfect computer models, The Annals of Statistics, vol.43, issue.6, pp.2331-2352, 2015.

R. Tuo and J. Wu, A theoretical framework for calibration in computer models: parametrization, estimation and convergence properties, SIAM/ASA Journal on Uncertainty Quantification, vol.4, issue.1, pp.767-795, 2016.

E. Vazquez and J. Bect, Convergence properties of the expected improvement algorithm with fixed mean and covariance functions, Journal of Statistical Planning and inference, vol.140, issue.11, pp.3088-3095, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00217562

F. A. Viana, G. Venter, and V. Balabanov, An algorithm for fast optimal latin hypercube design of experiments, International journal for numerical methods in engineering, vol.82, issue.2, pp.135-156, 2010.

H. Wickham and W. Chang, ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics, 2016.

R. K. Wong, C. B. Storlie, and T. Lee, A frequentist approach to computer model calibration, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.79, issue.2, pp.635-648, 2017.