, OF THE INDEX PARAMETER FOR THE UNKNOWN DRIFT FUNCTION WHEN ? ?

, OF THE INDEX PARAMETER FOR THE UNKNOWN DRIFT FUNCTION WHEN ? ?

, ESTIMATION OF THE INDEX PARAMETER FOR A STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BY A STABLE LÉVY PROCESS s ) : return np . s q r t

, def Simulation ( n , alpha , sigma , X0 , Euler_sub_pas ) : for j in range ( 1 , 1 1 ) : nEuler=n * Euler_sub_pas Xt =

, V=np . random . uniform (?np . p i / 2 , np . p i / 2 ) W= np . random . exponential

. Xt-[-i-]=-xt, ) / nEuler ) +sigma *

, def SDE_Levy ( n , alpha , sigma , X0 , Euler_sub_pas ) : nEuler=n * Euler_sub_pas Xt =

. Xtemp=, * ( Euler_sub_pas +1) for j in range, vol.1

, V=np . random . uniform (?np . p i / 2 , np . p i / 2 ) W= np . random . exponential

, ? alpha ) / alpha ) )

, PYTHON CODE for j in range

=. Xt and E. X0,

Y. Aït, -. Sahalia, and L. Hansen-hansen, Handbook of Financial Econometrics: Applications, volume 2 of Handbooks in Finance

Y. Aït, -. Sahalia, and J. Jacod, Volatility estimators for discretely sampled Lévy processes

, Ann. Statist, vol.35, issue.1, pp.355-392, 2007.

Y. Aït, -. Sahalia, and J. Jacod,

, Fisher's information for discretely sampled Lévy processes

, Econometrica, vol.76, issue.4, pp.727-761, 2008.

Y. Aït, -. Sahalia, and J. Jacod, Estimating the degree of activity of jumps in high frequency data

, Ann. Statist, vol.37, issue.5A, pp.2202-2244, 2009.

C. Larry and . Andrews, Special functions of mathematics for engineers

, SPIE Optical Engineering Press, 1998.

D. Applebaum,

, Lévy processes and stochastic calculus, Cambridge Studies in Advanced Mathematics, vol.116

O. E. Barndorff-nielsen, T. Mikosch, and S. I. Resnick, Lévy processes: theory and applications

K. Bichteler, J. Gravereaux, and J. Jacod,

, Malliavin calculus for processes with jumps, vol.2, 1987.

J. Birge and V. Linetsky,

, Modeling financial security returns using lévy processes

, Operations Research and Management Science: Financial Engineering, vol.15, 2008.

D. Blackwell, The comparison of experiments

, Proceedings, Second Berkeley Symposium on Mathematical Statistics and Probability, p.93102, 1951.

R. M. Blumenthal and R. K. Getoor, Sample functions of stochastic processes with stationary independent increments

, J. Math. Mech, vol.10, pp.493-516, 1961.

N. Bouleau and L. Denis,

, Dirichlet forms methods for Poisson point measures and Lévy processes, of Probability Theory and Stochastic Modelling, vol.76

. Springer, , 2015.

A. Brouste and H. Masuda, Efficient estimation of stable lévy process with symmetric jumps. Statistical Inference for Stochastic Processes, 2018.

A. D. Bull, Near-optimal estimation of jump activity in semimartingales

, Ann. Statist, vol.44, issue.1, pp.58-86, 2016.

P. Carr and H. Geman, The fine structure of asset returns: An empirical investigation, The Journal of Business, vol.75, issue.2, pp.305-332, 2002.

E. Ç?nlar, Probability and stochastics, Graduate Texts in Mathematics, vol.261

E. Clément and A. Gloter,

, Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes

, Stochastic Process. Appl, vol.125, issue.6, pp.2316-2352, 2015.

E. Clément and A. Gloter, Estimating functions for SDE driven by stable Lévy processes, 2018.

E. Clément, A. Gloter, and H. Nguyen,

, Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process

. Esaim-probab and . Stat, , 2018.

E. Clément, A. Gloter, and H. Nguyen,

, LAMN property for the drift and volatility parameters of a SDE driven by a stable Lévy process

. Esaim-probab and . Stat, , 2018.

A. Debussche and N. Fournier, Existence of densities for stable-like driven SDE's with Hölder continuous coefficients

, J. Funct. Anal, vol.264, issue.8, pp.1757-1778, 2013.

L. Denis, A criterion of density for solutions of Poisson-driven SDEs

, Probab. Theory Related Fields, vol.118, issue.3, pp.406-426, 2000.

P. D. Ditlevsen, Anomalous jumping in a double-well potential

, Phys. Rev. E, vol.60, pp.172-179, 1999.

N. Fournier and J. Printems, Absolute continuity for some one-dimensional processes
DOI : 10.3150/09-bej215

URL : https://hal.archives-ouvertes.fr/hal-00693025

, Bernoulli, vol.16, issue.2, pp.343-360, 2010.

V. Genon-catalot and J. Jacod, Estimation of the diffusion coefficient for diffusion processes: random sampling

. Scand, J. Statist, vol.21, issue.3, pp.193-221, 1994.

-. Valentine-genon, J. Catalot, and . Jacod,

, On the estimation of the diffusion coefficient for multi-dimensional diffusion processes

, Ann. Inst. H. Poincaré Probab. Statist, vol.29, issue.1, pp.119-151, 1993.

E. Gobet,

, Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach

, Bernoulli, vol.7, issue.6, pp.899-912, 2001.

E. Gobet, LAN property for ergodic diffusions with discrete observations

J. Hájek, A characterization of limiting distributions for regular estimators, Ann. Inst. H. Poincaré Probab. Statist, vol.38, issue.5, pp.711-737, 2002.

, Z. Wahrscheinlichkeitsth. Verw. Geb, vol.14, pp.323-330, 1970.

J. Hájek, Local asymptotic minimax and admissibility in estimation

, Theory of Statistics, vol.1, pp.175-194, 1972.

P. Hall and C. Charles-heyde, Martingale limit theory and its application

I. A. Ibragimov, R. Z. Has'minskii, and S. Kotz, Statistical Estimation: Asymptotic Theory, Stochastic Modelling and Applied Probability, vol.16

Y. Ishikawa and H. Kunita,

, Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps

, Stochastic Process. Appl, vol.116, issue.12, pp.1743-1769, 2006.

D. Ivanenko and A. Kulik,

, Malliavin calculus approach to statistical inference for Lévy driven SDE's

, Methodol. Comput. Appl. Probab, vol.17, issue.1, pp.107-123, 2015.

D. Ivanenko, A. M. Kulik, and H. Masuda,

, Uniform LAN property of locally stable Lévy process observed at high frequency

. Alea-lat, Am. J. Probab. Math. Stat, vol.12, issue.2, pp.835-862, 2015.

J. Jacod,

, The Euler scheme for Lévy driven stochastic differential equations: limit theorems

A. Probab, , vol.32, pp.1830-1872, 2004.

J. Jacod and P. Protter,

, Discretization of processes, Stochastic Modelling and Applied Probability, vol.67

. Springer, , 2012.

A. Janicki and A. Weron,

, Simulation and chaotic behavior of ?-stable stochastic processes, Monographs and Textbooks in Pure and Applied Mathematics, vol.178

M. Dekker and . Inc, , 1994.

P. Jeganathan,

, On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal

, Sankhy ¯ a Ser. A, vol.44, issue.2, pp.173-212, 1982.

K. Sato, Lévy Processes and Infinitely Divisible Distributions

, Cambridge Studies in Advanced Mathematics, 1999.

W. Schoutens, Lévy processes in finance: Pricing financial derivatives

, Wiley Series in Probability and Statistics, 2003.

P. Tankov and R. Cont, Financial Modelling with Jump Processes
URL : https://hal.archives-ouvertes.fr/hal-00002693

H. Chapman, CRC Financial Mathematics Series, 2015.

V. Todorov,

, Jump activity estimation for pure-jump semimartingales via self-normalized statistics

, Ann. Statist, vol.43, issue.4, pp.1831-1864, 2015.

V. Todorov and G. Tauchen,

, Limit theorems for power variations of pure-jump processes with application to activity estimation

, Ann. Appl. Probab, vol.21, issue.2, pp.546-588, 2011.

A. W. Van-der and . Vaart,

, Asymptotic statistics, vol.3

W. Feller, An Introduction to Probability Theory and its Applications, vol.2, 1971.