P. Jain and E. J. Rymaszewski, Embedded thin lm capacitors-theoretical limits, IEEE Transactions on Advanced Packaging, vol.25, issue.3, p.454458, 2002.

M. Klee, H. Boots, B. Kumar, C. Van-heesch, R. Mauczok et al., Ferroelectric and piezoelectric thin lms and their applications for integrated capacitors, piezoelectric ultrasound transducers and piezoelectric switches, IOP Conference Series: Materials Science and Engineering, vol.8, p.12008, 2010.

T. H. Yeh, Thermal Oxidation of Silicon, Journal of Applied Physics, vol.33, issue.9, p.2849, 1962.

P. Jain and E. J. Rymaszewski, Embedded thin lm capacitors-theoretical limits, IEEE Transactions on Advanced Packaging, issue.3, p.454458

E. Bouyssou, G. Guégan, S. Bruyère, R. Pezzani, L. Berneux et al., Extended reliability study of high density PZT capacitors: Intrinsic lifetime determination and wafer level screening strategy, p.433438, 2007.

J. F. Scott, of Springer Series in Advanced Microelectronics, vol.3, 2000.

F. Chen, R. Schafranek, A. Wachau, S. Zhukov, J. Glaum et al., Barrier heights, polarization switching, and electrical fatigue in Pb, p.3

C. R. Robertson, Fundamental Electrical and Electronic Principles, 2008.

L. Ibrahima-gueye, O. Rhun, and . Renault, Emmanuel Defay, and Nicholas Barrett. Electrical response of Pt/Ru/PbZr 0.52 Ti 0.48 O 3 /Pt capacitor as function of lead precursor excess, Applied Physics Letters, vol.111, issue.22, p.222902, 2017.

Y. , Thin lm pzt for semiconductor: Application trends technology update (feram, ipds and mems), Yole Developpement SA, 2013.

V. Koval, C. Alemany, J. Brianin, and H. Bruncková, Dielectric Properties and Phase Transition Behavior of xPMN-(1-x)PZT Ceramic Systems, Journal of Electroceramics, vol.10, p.1929, 2003.

X. Chen, H. Fan, and S. Ke, Low-temperature synthesis of (Pb,La)(Zr,Ti)O 3 thick lm on Ti substrates by the hydrothermal method using oxide precursors, Applied Physics Letters, vol.88, issue.1, p.12901, 2006.

W. Benhadjala, G. Le-rhun, F. Dieppedale, J. Sonnerat, C. Guillaume et al., Sol-gel doped-PZT thin lms for integrated tunable capacitors, International Symposium on Microelectronics, vol.2015, issue.1, pp.256-000261, 2015.

W. Benhadjala, F. Sonnerat, J. Guillaume, C. Dieppedale, P. Renaux et al., Highly tunable Mn-doped PZT thin lms for integrated RF devices, Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT), vol.2015, pp.2095-002127, 2015.

K. C. Kao, DIELECTRIC PHENOMENA IN SOLIDS With Emphasis on Physical Concepts of Electronic Processes, 2004.

E. Defa¸, Integration of Ferroelectric and Piezoelectric Thin Films, 2011.

C. Kittel, Introduction to Solid State Physics, EIGHTH EDITION, 2005.

C. Huber, Synthèse et caractérisation de nouveaux matériaux ferroélectriques accordables pour applications hyperfréquences, 2003.

J. Valasek, Piezo-Electric and Allied Phenomena in Rochelle Salt, Physical Review, vol.17, issue.4, pp.475-481, 1921.

K. M. Rabe, C. H. Ahn, and J. M. Triscone, Physics of Ferroelectrics A Modern Perspective, Topics in Applied Physics, vol.105, 2007.

C. Kittel, Introduction to Solid State Physics 7th Edition, 2010.

M. D. Nguyen, H. Nazeer, M. Dekkers, D. H. Blank, and G. Rijnders, Optimized electrode coverage of membrane actuators based on epitaxial PZT thin lms, Smart Materials and Structures, vol.22, issue.8, p.85013, 2013.

R. W. Schwartz, Chemical solution deposition of perovskite thin lms, Chemistry of Materials, vol.9, issue.11, p.23252340, 1997.

F. Cordero, F. Trequattrini, F. Craciun, and C. Galassi, Octahedral tilting, monoclinic phase and the phase diagram of PZT, Journal of Physics: Condensed Matter, vol.23, issue.41, p.415901, 2011.

B. Jae, W. R. Cook, and H. Jae, Solid solutions of Pb(Ti, Zr, Sn, Hf)O 3, Piezoelectric Ceramics, p.135183, 1971.

B. Noheda and D. E. Cox, Bridging phases at the morphotropic boundaries of lead oxide solid solutions, Phase Transitions, vol.79, issue.1-2, p.520, 2006.

L. B. Kong, J. Ma, W. Zhu, and O. K. Tan, Preparation and characterization of lead zirconate ceramics from high-energy ball milled powder, Materials Letters, vol.49, issue.2, p.96101, 2001.

K. Iijima, Y. Tomita, R. Takayama, and I. Ueda, Preparation of c-axis oriented PbTiO 3 thin lms and their crystallographic, dielectric, and pyroelectric properties, Journal of Applied Physics, vol.60, issue.1, p.361367, 1986.

V. A. Isupov, Comments on the paper X-ray study of the PZT solid solutions near the morphotropic phase transition, Solid State Communications, vol.17, issue.11, 1975.

S. K. Mishra, D. Pandey, and A. P. Singh, Eect of phase coexistence at morphotropic phase boundary on the properties of Pb(Zr x Ti 1?x )O 3 ceramics, Applied Physics Letters, vol.69, issue.12, pp.1707-1709, 1996.

B. Noheda, J. A. Gonzalo, L. E. Cross, R. Guo, S. E. Park et al., Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: The structure of PbZr 0.52 Ti 0.48 O 3, Physical Review B, vol.61, issue.13, p.86878695, 2000.

B. Noheda, D. E. Cox, G. Shirane, R. Guo, B. Jones et al., Stability of the monoclinic phase in the ferroelectric perovskite PbZr 1?x Ti x O 3, Physical Review B, vol.63, issue.1, p.14103, 2000.

Z. Wu and H. Krakauer, First-principles calculations of piezoelectricity and polarization rotation in Pb(Zr 0.5 Ti 0.5 )O 3, Physical Review B, vol.68, issue.1, p.14112, 2003.

C. B. Carter and M. G. Norton, Ceramic Materials: Science and Engineering, 2007.

L. Pintilie, M. Lisca, and M. Alexe, Epitaxial-quality PZT: Insulator or semiconductor?, Journal of Optoelectronics and Advanced Materials, vol.8, p.712, 2006.

M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, 1977.

R. E. Cohen, Origin of ferroelectricity in perovskite oxides, Nature, vol.358, issue.6382, p.136138, 1992.

Z. X. Chen, Y. Chen, and Y. S. Jiang, Comparative study of ABO 3 perovskite compounds

, ATiO 3 (A = Ca, Sr, Ba, and Pb) perovskites, Journal of Physical Chemistry B, vol.106, issue.39, 2002.

H. Miyazawa, F. Ishii, E. Natori, T. Shimoda, and T. Oguchi, Contribution of Pb to Ferroelectricity in Perovskite-Type Oxides, Ferroelectrics, vol.301, issue.1, p.4953, 2004.

. Ph, J. Ghosez, X. Michenaud, and . Gonze, Dynamical atomic charges: The case of ABO 3 compounds, Physical Review B, vol.58, issue.10, p.62246240, 1998.

W. Zhong, R. D. King-smith, and D. Vanderbilt, Giant LO-TO splittings in perovskite ferroelectrics, Physical Review Letters, vol.72, issue.22, p.36183621, 1994.

Y. Kuroiwa, S. Aoyagi, A. Sawada, J. Harada, E. Nishibori et al., Evidence for Pb-O Covalency in Tetragonal PbTiO 3, Physical Review Letters, vol.87, issue.21, p.217601, 2001.

J. Robertson, Band osets of wide-band-gap oxides and implications for future electronic devices, Nanotechnology and Microelectronics: Materials, Processing, vol.18, p.1785, 2000.

W. Doolittle, G. Namkoong, A. G. Carver, and A. S. Brown, Challenges and potential payo for crystalline oxides in wide bandgap semiconductor technology, Solid. State. Electron, vol.47, issue.12, p.2143, 2003.

V. K. Yarmarkin, B. M. Goltsman, M. M. Kazanin, and V. V. Lemanov, Barrier photovoltaic eects in PZT ferroelectric thin lms, Phys. Solid State, vol.42, issue.3, p.522, 2000.

D. M. Smyth, Defect structure in perovskite titanates, Curr. Opin. Solid State Mater. Sci, vol.1, issue.5, p.692, 1996.

J. F. Scott, Ferroelectric Memories. Springer Seriesin Advanced Microelectronics, vol.3, 2000.

I. Stolichnov, A. K. Tagantsev, E. L. Colla, and N. Setter, Cold-eld-emission test of the fatigued state of Pb(Zr x Ti 1x )O 3 lms, Appl. Phys. Lett, vol.73, issue.10, p.1361, 1998.

D. J. Wouters, G. J. Willems, and H. E. Maes, Electrical conductivity in ferroelectric thin lms, Microelectron. Eng, vol.29, issue.1-4, p.249, 1995.

C. S. Kumar, Surface Science Tools for Nanomaterials Characterization, 2015.

L. Pintilie and M. , Metal-ferroelectric-metal heterostructures with Schottky contacts

I. , Inuence of the ferroelectric properties, Journal of Applied Physics, vol.98, issue.12, 2005.

N. G. Apostol, L. E. Stoea, G. A. Lungu, L. Chirila, R. F. Trupina et al., Charge transfer and band bending at Au/P b(Zr 0.2 T i 0.8 )O 3 interfaces investigated by photoelectron spectroscopy, Applied Surface Science, vol.273, p.415425, 2013.

L. E. Stoea, N. G. Apostol, C. Chirila, L. Trupina, R. Negrea et al., Schottky barrier versus surface ferroelectric depolarization at Cu/P b(Zr, T i)O 3 interfaces, Journal of Materials Science, vol.49, issue.9, p.33373351, 2014.

I. Pintilie, C. M. Teodorescu, C. Ghica, C. Chirila, A. G. Boni et al., Polarization-Control of the Potential Barrier at the Electrode Interfaces in Epitaxial Ferroelectric Thin Films, ACS Applied Materials & Interfaces, vol.6, issue.4, p.29292939, 2014.

J. Bardeen, Surface states and rectication at a metal semi-conductor contact, Physical Review, vol.71, issue.10, p.717727, 1947.

K. V. Saravanan and K. C. Raju, Understanding the inuence of surface chemical states on the dielectric tunability of sputtered Ba 0.5 Sr 0.5 T iO 3 thin lms, Materials Research Express, vol.1, issue.1, 2014.

C. Jia, V. Nagarajan, J. He, L. Houben, T. Zhao et al., Unitcell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric lms, Nature Materials, vol.6, issue.1, p.6469, 2007.

L. A. Bursill and K. G. Brooks, Crystallization of solgel derived leadzirconatetitanate thin lms in argon and oxygen atmospheres, Journal of Applied Physics, vol.75, issue.9, 1994.

M. A. Subramanian, G. Aravamudan, and G. V. Subba-rao, Oxide pyrochlores A review, Progress in Solid State Chemistry, vol.15, issue.2, 1983.

A. D. Polli, F. F. Lange, and C. G. Levi, Metastability of the Fluorite, Pyrochlore, and Perovskite Structures in the P bO ? ZrO 2 ? T iO 2 System, Journal of the American Ceramic Society, vol.83, issue.4, p.873881, 2004.

A. Etin, G. E. Shter, G. S. Grader, and G. M. Reisner, Interrelation of ferroelectricity, morphology, and thickness in sol-gel derived PbZr x Ti 1?x O 3 lms, Journal of the American Ceramic Society, vol.90, issue.1, 2007.

J. Wang, J. M. Xue, D. M. Wan, and B. K. Gan, Mechanically Activating Nucleation and Growth of Complex Perovskites, Journal of Solid State Chemistry, vol.154, issue.2, p.321328, 2000.

P. Muralt, PZT thin lms for microsensors and actuators: Where do we stand?, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.47, issue.4, 2000.

I. M. Reaney, K. Brooks, R. Klissurska, C. Pawlaczyk, and N. Setter, Use of Transmission Electron Microscopy for the Characterization of Rapid Thermally Annealed, SolutionGel, Lead Zirconate Titanate Films, Journal of the American Ceramic Society, vol.77, issue.5, 1994.

M. Stengel, D. Vanderbilt, and N. A. Spaldin, Enhancement of ferroelectricity at metaloxide interfaces, Nature Materials, vol.8, issue.5, p.392397, 2009.

K. Amanuma, T. Mori, T. Hase, T. Sakuma, A. Ochi et al., Ferroelectric Properties of Sol-Gel Derived Pb(Zr, Ti)O 3 Thin Films, Japanese Journal of Applied Physics, vol.32, issue.9B, p.41504153, 1993.

M. Stengel and N. A. Spaldin, Origin of the dielectric dead layer in nanoscale capacitors, Nature, vol.443, issue.7112, p.679682, 2006.

K. Seshan, Handbook of Thin-Film Deposition Processes and Techniques -Principles, Methods, Equipment and Applications, 2002.

M. Chen, T. Wu, and J. Wu, Eect of textured LaNiO 3 electrode on the fatigue improvement of Pb(Zr 0.53 Ti 0.47 )O 3 thin lms, Applied Physics Letters, vol.68, issue.10, p.1430, 1996.

H. N. Al-shareef, K. R. Bellur, O. Auciello, and A. I. Kingon, Phase evolution and annealing eects on the electrical properties of Pb(Zr 0.53 Ti 0.47 )O 3 thin lms with RuO 2 electrodes, Thin Solid Films, vol.256, issue.1-2, p.7379, 1995.

J. S. Cross, M. Fujiki, M. Tsukada, Y. Kotaka, and Y. Goto, Characterization of PZT capacitors with SrRuO 3 electrodes, Integrated Ferroelectrics, vol.21, issue.1-4, p.263271, 1998.

H. Fujisawa, K. Kita, M. Shimizu, and H. Niu, Low-Temperature Fabrication of

/. Ir and . Pb, Ti)O 3 /Ir Capacitors Solely by Metalorganic Chemical Vapor Deposition, Japanese Journal of Applied Physics, vol.1, issue.9B, p.55515553, 2001.

K. Kushidaabdelghafar, H. Miki, K. Torii, and Y. Fujisaki, Electrode induced degradation of Pb(Zr x Ti 1?x )O 3 (PZT) polarization hysteresis characteristics in Pt/PZT/Pt ferroelectric thinlm capacitors, Applied Physics Letters, vol.69, issue.21, p.31883190, 1996.

R. Bruchhaus, D. Pitzer, O. Eibl, U. Scheithauer, and W. Hoesler, Investigation of Pt Bottom Electrodes for, Situ" Deposited Pb(Zr,Ti)O 3 (PZT) thin Films. MRS Proceedings, vol.243, p.123, 1991.

E. Simo, Thin Films on Silicon, Handbook of Silicon Based MEMS Materials and Technologies, p.124205, 2015.

R. Gohdssi and L. Pinyen, MEMS Materials and Processes Handbook, vol.1, 2011.

L. Pardo and J. Ricote, Multifunctional Polycrystalline Ferroelectric Materials: Processing and Properties, Springer Series in Materials Science, 2011.

E. A. Kneer, P. Dunbar, J. C. Birnie, G. Podlesny, and . Teowee, Evolution of surface relief during ring of PZT thin lms, Ferroelectrics, vol.152, issue.1, p.6772, 1994.

Y. Jeon, D. Kim, K. No, S. Kim, and J. Chung, Residual Stress Analysis of Pt Bottom Electrodes on ZrO 2 /SiO 2 /Si and SiO 2 /Si Substrates for Pb(ZrTi)O 3 Thick Films, Japanese Journal of Applied Physics, vol.1, issue.5A, p.27052709, 2000.

T. Maeder, L. Sagalowicz, and P. Muralt, Stabilized Platinum Electrodes for Ferroelectric Film Deposition using Ti, Ta and Zr Adhesion Layers, Japanese Journal of Applied Physics, vol.37, issue.4A, p.20072012, 1998.

C. C. Mardare, E. Joanni, A. I. Mardare, J. R. Fernandes, C. P. De-sá et al., Eects of adhesion layer (Ti or Zr) and Pt deposition temperature on the properties of PZT thin lms deposited by RF magnetron sputtering, Applied Surface Science, vol.243, issue.1-4, p.113124, 2005.

G. Vélu and D. Rèmiens, Electrical properties of sputtered PZT lms on stabilized platinum electrode, Journal of the European Ceramic Society, vol.19, issue.11, 1999.

G. A. Spierings, G. J. Dormans, W. G. Moors, M. J. Ulenaers, and P. K. Larsen, Stresses in Pt/Pb(Zr,Ti)O 3 /Pt thinlm stacks for integrated ferroelectric capacitors, Journal of Applied Physics, vol.78, issue.3, p.19261933, 1995.

M. Cue, Micro-actionneurs piézoélectriques, 2011.

M. Cue, M. Allain, J. Abergel, G. Le-rhun, M. Aid et al., Inuence of the crystallographic orientation of Pb(Zr,Ti)O 3 lms on the transverse piezoelectric coecient d 31, 2011.

C. Sudhama, A. C. Campbell, P. D. Maniar, R. E. Jones, R. Moazzami et al., A model for electrical conduction in metalferroelectric-metal thin-lm capacitors, Journal of Applied Physics, vol.75, issue.2, p.10141022, 1994.

K. D. Budd, S. Y. Dey, and D. A. Payne, Sol-gel processing of PbTiO 3 , PbZrO 3 , PZT, and PLZT thin lms, vol.36, p.107121, 1985.

Y. , Thin lm pzt for semiconductor: Application trends technology update (feram, ipds and mems), Yole Developpement SA, 2013.

U. C. Nwaogu and N. S. Tiedje, Foundry Coating Technology: A Review, Materials Sciences and Applications, vol.02, issue.08, p.11431160, 2011.

A. Mirzaei, M. Bonyani, and S. Torkian, Synthesis and characterization of nanocrystalline PZT powders: From sol to dense ceramics, Processing and Application of Ceramics, vol.10, issue.1, pp.9-16, 2016.

V. Kovacova, Study of correlations between microstructure and piezoelectric properties of PZT thin lms, 2016.

L. L. Hench and J. K. West, The sol-gel process, Chemical Reviews, vol.90, issue.1, p.3372, 1990.

G. Yi, Z. Wu, and M. Sayer, Preparation of Pb(Zr,Ti)O 3 thin lms by sol gel processing: Electrical, optical, and electrooptic properties, Journal of Applied Physics, vol.64, issue.5, p.27172724, 1988.

C. Kittel, Introduction to Solid State Physics 7th Edition, 2010.

K. Vojisavljevi, G. Brankovi, T. Srekovi, A. Renik, and Z. Brankovi, Preparation of ultrathin PZT lms by a chemical solution deposition method from a polymeric citrate precursor, Journal of the European Ceramic Society, vol.30, issue.2, p.485488, 2010.

K. K. Maurya, S. K. Halder, S. Sen, A. Bose, and S. Bysakh, High resolution X-ray and electron microscopy characterization of PZT thin lms prepared by RF magnetron sputtering, Applied Surface Science, vol.313, 2014.

K. Inaba, S. Kobayashi, K. Uehara, A. Okada, S. L. Reddy et al., High Resolution XRay Diraction Analyses of (La,Sr)MnO 3 /ZnO/Sapphire(0001) Double Heteroepitaxial Films, Advances in Materials Physics and Chemistry, vol.3, issue.01, p.7289, 2013.

. Fei-company, An Introduction to Electron microscopy

F. Krumeich, Properties of electrons, their interactions with matter and applications in electron microscopy

. Wikipedia, Electron microscope

S. Utsunomiya, M. Kogawa, E. Kamiishi, and R. C. Ewing, Scanning Transmission Electron Microscopy and Related Techniques for Research on Actinide and Radionuclide Nanomaterials, Actinide Nanoparticle Research, p.3362, 2011.

H. Hertz, Ueber einen Einuss des ultravioletten Lichtes auf die electrische Entladung, Annalen der Physik und Chemie, vol.267, issue.8, p.1887

A. B. Arons and M. B. Peppard, Einstein's Proposal of the Photon Concepta Translation of the Annalen der Physik Paper of 1905, American Journal of Physics, vol.33, issue.5, p.367374, 1965.

C. C. Chusuei and D. W. Goodman, X-Ray Photoelectron Spectroscopy, Encyclopedia of Physical Science and Technology, p.921938, 2003.

C. S. Fadley, Basic Concepts of X-ray Photoelectron Spectroscopy, Electron Spectroscopy: theory, experiments and applications, vol.2, 1978.

S. Hüfner, Photoelectron Spectroscopy, vol.82, 1996.

M. B. Trzhaskovskaya, V. K. Nikulin, V. I. Nefedov, and V. G. Yarzhemsky, Non-dipole second order parameters of the photoelectron angular distribution for elements Z=1100 in the photoelectron energy range 110keV. Atomic Data and Nuclear Data Tables, vol.92, p.245304, 2006.

I. M. Band, Y. I. Kharitonov, and M. B. Trzhaskovskaya, Photoionization cross sections and photoelectron angular distributions for x-ray line energies in the range 0.1324.509 keV targets: 1 ? Z ? 100. Atomic Data and Nuclear Data Tables, vol.23, p.443505, 1979.

J. J. Yeh and I. Lindau, Atomic subshell photoionization cross sections and asymmetry parameters:1 ? Z ? 103. Atomic Data and Nuclear Data Tables, vol.32, p.1155, 1985.

S. Tanuma, C. J. Powell, and D. R. Penn, Calculations of electorn inelastic mean free paths. II. Data for 27 elements over the 50-2000 eV range, Surface and Interface Analysis, vol.17, issue.13, pp.911-926, 1991.

Q. Xiao, X. Cui, Y. Shi, Y. Hu, T. Sham et al.,

B. Philippe, M. Hahlin, K. Edstro-m, T. Gustafsson, H. Siegbahn et al., Photoelectron Spectroscopy for Lithium Battery Interface Studies, Journal of the Electrochemical Society, vol.163, issue.2, pp.178-191, 2015.

J. Rault, Structure chimique et electronique des interfaces metal/ferroelectrique en fonction de la polarisation ferroelectrique, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00840865

T. Schneider, K. Artyushkova, J. E. Fulghum, A. Broadwater, L. Smith et al., Lavrentovich. Oriented monolayers prepared from lyotropic chromonic liquid crystal, Langmuir, vol.21, issue.6, p.23002307, 2005.

M. Repoux, Comparison of background removal methods for XPS, Surface and Interface Analysis, vol.18, issue.7, p.567570, 1992.

C. S. Fadley, S. B. Hagstrom, M. P. Klein, and D. A. Shirley, Chemical Eects on Core-Electron Binding Energies in Iodine and Europium, The Journal of Chemical Physics, vol.48, issue.8, p.37793794, 1968.

M. C. Desjonqueres, D. Spanjaard, Y. Lassailly, and C. Guillot, On the origin of the variation of the binding energy shifts of core levels between surface and bulk atoms in transition metals, Solid State Communications, vol.34, issue.10, p.807810, 1980.

K. S. Kim and N. Winograd, X-ray photoelectron spectroscopic binding energy shifts due to matrix in alloys and small supported metal particles, Chemical Physics Letters, vol.30, issue.1, p.9195, 1975.

P. H. Citrin, G. K. Wertheim, and Y. Baer, Core-Level Binding Energy and Density of States from the Surface Atoms of Gold, Physical Review Letters, vol.41, issue.20, p.14251428, 1978.

W. F. Egelho, Core-level binding-energy shifts at surfaces and in solids, Surface Science Reports, vol.6, issue.6-8, p.253415, 1987.

D. Spanjaard, C. Guillot, M. C. Desjonquères, G. Tréglia, and J. Lecante, Surface core level spectroscopy of transition metals: A new tool for the determination of their surface structure, Surface Science Reports, vol.5, issue.1-2, p.185, 1985.

B. Johansson and N. Mårtensson, Core-level binding-energy shifts for the metallic elements, Physical Review B, vol.21, issue.10, p.44274457, 1980.

, Microscopic Methods in Metals, 1986.

G. Abramovici, M. Desjonqu, and D. Spanjaard, Oxygen Induced Surface Core Level Shifts of W ( 110 ) Deduced From Surface Segregation Energies, Journal de Physique I, vol.5, issue.110, p.907916, 1995.
URL : https://hal.archives-ouvertes.fr/jpa-00247109

A. Rosengren and B. Johansson, Calculated transition-metal surface core-level binding-energy shifts, Physical Review B, vol.22, issue.8, p.37063709, 1980.

E. Martinez, A. Herrera-gomez, M. Allain, A. Renault, O. Faure et al., Characterization of geometrical factors for quantitative angle-resolved photoelectron spectroscopy, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.30, issue.4, p.40605, 2012.

S. Hofmann, Auger-and X-Ray Photoelectron Spectroscopy in Materials Science, Springer Series in Surface Sciences, vol.49, 2013.

J. F. Watts and J. Wolstenholme, An introduction of Surface Analysis and XPS, vol.27, 2003.

F. Allegretti, Characterization of Solid Surfaces and Thin Films by Photoelectron and Auger Electron Spectroscopy. Versuch Nr, Raum 229 F-Praktikum in den Masterstudiengängen Physik, vol.35

M. P. Seah, XPS reference procedure for the accurate intensity calibration of electron spectrometers? results of a BCR intercomparison co-sponsored by the VAMAS SCA TWA, Surface and Interface Analysis, vol.20, issue.3, p.243266, 1993.

N. Fairley, CasaXPS Manual 2.3.15 Rev 1.2 Casa Software Ltd, 2009.

J. C. Woicik, Hard X-ray Photoelectron Spectroscopy (HAXPES), volume 59 of Springer Series in Surface Sciences, 2016.

W. Drube, Preface. Journal of Electron Spectroscopy and Related Phenomena, vol.190, p.125126, 2013.

K. Siegbahn, Preface to hard X-ray photo electron spectroscopy (HAXPES), Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.547, issue.1, p.17, 2005.

S. Kaiser, U. Das, Y. Lu, V. Kundapur, and T. May, Synchrotron Radiation: Applications in Diagnosis and Treatment of Malignant Brain Tumors. In Diagnostic Techniques and Surgical Management of Brain Tumors, 2011.

H. Kamitsubo, SPring-8 Program, Journal of Synchrotron Radiation, vol.5, issue.3, p.162167, 1998.

M. P. Level and P. Morin, SOLEIL : une source synchrotron multidisciplinaire, 2004.

J. P. Rue, J. M. Ablett, D. Céolin, D. Prieur, . Th et al., The GALAXIES beamline at the SOLEIL synchrotron: inelastic X-ray scattering and photoelectron spectroscopy in the hard X-ray range, vol.22, pp.175-179, 2015.

J. M. Ablett, J. Dubuisson, T. Moreno, D. Céolin, D. Prieur et al., New Design Concept for a HighResolution In-Vacuum 4-Bounce Hard X-Ray Monochromator at the GALAXIES Beamline at the SOLEIL Synchrotron, Journal of Physics: Conference Series, vol.425, issue.5, p.52007, 2013.

. Galaxies-synchlotron-beamline,

D. Céolin, J. M. Ablett, D. Prieur, T. Moreno, J. Rue et al., Hard X-ray photoelectron spectroscopy on the GALAXIES beamline at the SOLEIL synchrotron, Journal of Electron Spectroscopy and Related Phenomena, vol.190, p.188192, 2013.

I. Gueye, G. Le-rhun, O. Renault, D. Cooper, D. Ceolin et al., Operando hard X-ray photoelectron spectroscopy study of the Pt/Ru/PbZr 0.52 Ti 0.48 O 3 interface, Applied Physics Letters, vol.111, issue.3, p.32906, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01591616

F. Calame and P. Muralt, Growth and properties of gradient free sol-gel lead zirconate titanate thin lms, Applied Physics Letters, vol.90, issue.6, p.62907, 2007.

V. Phd, Universite Grenoble Alpes Kovacova. Study of correlations between microstructure and piezoelectric properties of PZT thin lms, 2015.

H. D. Chen, K. R. Udayakumar, C. J. Gaskey, and L. E. Cross, Electrical properties maxima in thin lms of the lead zirconatelead titanate solid solution system, Applied Physics Letters, vol.67, issue.23, p.34113413, 1995.

C. B. Carter and M. G. Norton, Ceramic Materials-Science and Engineering, vol.53, issue.9, 2013.

S. Trolier-mckinstry and P. Muralt, Thin Film Piezoelectrics for MEMS, Journal of Electroceramics, vol.12, issue.1, p.717, 2004.

M. I. Yanovskaya, I. E. Obvintseva, L. I. Solovyova, E. P. Kovsman, K. A. Vorotilov et al., Alkoxy-derived ferroelectric PZT lms: The eect of lead acetate dehydration techniques and lead content in the electrochemically prepared solutions on the properties of the lms, Integrated Ferroelectrics, vol.19, 1998.

H. N. Al-shareef, K. R. Bellur, O. Auciello, and A. I. Kingon, Phase evolution and annealing eects on the electrical properties of Pb(Zr 0.53 Ti 0.47 )O 3 thin lms with RuO 2 electrodes, Thin Solid Films, vol.256, issue.1-2, p.7379, 1995.

D. Henry, F. Jacquet, M. Neyret, X. Baillin, T. Enot et al., Through silicon vias technology for CMOS image sensors packaging, 58th Electronic Components and Technology Conference, p.556562, 2008.

, IEEE, 2008.

E. Defay, Ferroelectric Dielectrics Integrated on Silicon, 2011.

Y. A. Gagou, Etude du changement de phase dans le composé PbK 2 LiNb 5 O 1 5 de la famille des TTB, 2002.

. Ch and . Huber, Synthèse et caractérisation de nouveaux matériaux ferroélectriques accordables pour applications hyperfréquences. (French), 2003.

J. F. Scott, B. M. Melnick, L. D. Mcmillan, and C. A. De-araujo, Dielectric breakdown in high-? lms for ULSI DRAMs, Integrated Ferroelectrics, vol.3, issue.3, p.225243, 1993.

J. Suñé, I. Placencia, N. Barniol, E. Farrés, F. Martín et al., On the breakdown statistics of very thin SiO 2 lms, Thin Solid Films, vol.185, issue.2, p.347362, 1990.

R. Degraeve, G. Groeseneken, R. Bellens, J. L. Ogier, M. Depas et al., New insights in the relation between electron trap generation and the statistical properties of oxide breakdown, IEEE Transactions on Electron Devices, vol.45, issue.4, p.904911, 1998.

M. T. Chentir, J. B. Jullien, B. Valtchanov, E. Bouyssou, L. Ventura et al., Percolation theory applied to PZT thin lms capacitors breakdown mechanisms, Microelectronics Reliability, vol.49, p.10741078, 2009.

R. Moazzami, C. Hu, and W. H. Shepherd, Electrical characteristics of ferroelectric PZT thin lms for DRAM applications, IEEE Transactions on Electron Devices, vol.39, issue.9, p.20442049, 1992.

J. F. Scott, C. A. Araujo, B. M. Melnick, L. D. Mcmillan, and R. Zuleeg, Quantitative measurement of spacecharge eects in lead zirconatetitanate memories, Journal of Applied Physics, vol.70, issue.1, p.382388, 1991.

I. K. Yoo and S. B. Desu, Mechanism of Fatigue in Ferroelectric Thin Films, Physica Status Solidi, vol.133, issue.2, p.565573, 1992.

H. M. Duiker, P. D. Beale, J. F. Scott, C. A. Paz-de-araujo, B. M. Melnick et al., Fatigue and switching in ferroelectric memories: Theory and experiment, Journal of Applied Physics, vol.68, issue.11, p.57835791, 1990.

R. A. Schlitz, K. Yoon, L. A. Fredin, Y. Ha, M. A. Ratner et al., Weibull Analysis of Dielectric Breakdown in a Self-Assembled Nanodielectric for Organic Transistors, The Journal of Physical Chemistry Letters, vol.1, issue.22, p.32923297, 2010.

V. Tomer, E. Manias, and C. A. Randall, High eld properties and energy storage in nanocomposite dielectrics of poly(vinylidene uoride-hexauoropropylene), Journal of Applied Physics, vol.110, issue.4, p.44107, 2011.

K. Wu, Y. Wang, Y. Cheng, L. A. Dissado, and X. Liu, Statistical behavior of electrical breakdown in insulating polymers, Journal of Applied Physics, vol.107, issue.6, p.15, 2010.

C. Chauvet and C. Laurent, Weibull Statistics in Short-term Dielectric Breakdown of Thin Polyehtylene Films, IEEE Transactions on Electrical Insulation, vol.28, issue.1, p.1829, 1993.

E. Y. Wu and R. P. Vollertsen, On the weibull shape factor of intrinsic breakdown of dielectric lms and its accurate experimental determination-part I: theory, methodology, experimental techniques, IEEE Transactions on Electron Devices, vol.49, issue.12, p.21312140, 2002.

J. H. Stathis, Percolation models for gate oxide breakdown, Journal of Applied Physics, vol.86, issue.10, p.57575766, 1999.

R. Degraeve, G. Groeseneken, R. Bellens, J. L. Ogier, M. Depas et al., New insights in the relation between electron trap generation and the statistical properties of oxide breakdown, IEEE Transactions on Electron Devices, vol.45, issue.4, p.904911, 1998.

Z. J. Wang, K. Kikuchi, and R. Maeda, Eect of Pb content in target on electrical properties of laser ablation derived lead zirconate titanate thin lms, Regular Papers and Short Notes and Review Papers, vol.1, p.54135417, 2000.

B. J. Kim, J. Lee, J. B. Yoo, and K. S. No, Pb(Zr,Ti)O 3 lms fabrication by sol-gel method for piezoelectric actuated device, Ferroelectrics, vol.232, issue.1, p.247252, 1999.

D. J. Taylor, J. Geerse, and P. K. Larsen, Fatigue of organometallic chemical vapor deposited PbZr x Ti 1x O 3 thin lms with Ru/RuO 2 and Pt/Pt electrodes, Thin Solid Films, vol.263, issue.2, p.230, 1995.

H. N. Al-shareef, Y. L. Chen, O. Auciello, and A. I. Kingon, Microstructural and Electrical Properties of Ferroelectric Capacitors with Pt/RuO 2 Hybrid Electrodes, MRS Proceedings, vol.361, p.229, 1994.

H. L. Ee and W. L. Ee, Preparation and Characterization of Pb(Zr,Ti)O 3 Films Deposited on Pt/RuO 2 Hybrid Electrode for Ferroelectric Random Access Memory Devices, Jpn. J. Appl. Phys, vol.40, issue.11, p.65666573, 2001.

, Chapter

N. J. Seong, K. J. Choi, and S. G. Yoon, Thickness eect of Pb 2 Ru 2 O 7x conductive interfacial layers on ferroelectric properties of Pt/Pb(Zr 0.35 Ti 0.65 )O 3 /Pt capacitors, Thin Solid Films, vol.468, issue.1-2, p.100104, 2004.

S. Ryoo, S. Yoon, and S. Kim, Improvement in ferroelectric properties of Pb(Zr 0.35 Ti 0.65 )O 3 thin lms using a Pb 2 Ru 2 O 7?x conductive interfacial layer for ferroelectric random access memory application, Applied Physics Letters, vol.83, issue.14, p.28802882, 2003.

K. A. Vorotilov, M. I. Yanovskaya, L. I. Solovjeva, A. S. Valeev, V. I. Petrovsky et al., Ferroelectric capacitors for integrated circuits, Microelectronic Engineering, vol.29, issue.1-4, p.4144, 1995.

J. Wang, J. M. Xue, D. M. Wan, and B. K. Gan, Mechanically Activating Nucleation and Growth of Complex Perovskites, Journal of Solid State Chemistry, vol.154, issue.2, p.321328, 2000.

A. D. Polli, F. F. Lange, and C. G. Levi, Metastability of the Fluorite, Pyrochlore, and Perovskite Structures in the PbO-ZrO 2 -TiO 2 System, Journal of the American Ceramic Society, vol.83, issue.4, p.873881, 2004.

W. L. Warren, D. Dimos, G. E. Pike, B. A. Tuttle, R. Raymond et al., Applied Physics Letters

M. Grossmann, O. Lohse, D. Bolten, U. Boettger, T. Schneller et al., The interface screening model as origin of imprint in PbZr x Ti 1?x O 3 thin lms. I. Dopant, illumination, and bias dependence, Journal of Applied Physics, vol.92, issue.5, p.26802687, 2002.

J. J. Lee, C. L. Thio, and S. B. Desu, Retention and imprint properties of ferroelectric thin lms, Physica Status Solidi, vol.151, issue.1, p.171182, 1995.

A. Gruverman, B. J. Rodriguez, A. I. Kingon, R. J. Nemanich, A. K. Tagantsev et al., Mechanical stress eect on imprint behavior of integrated ferroelectric capacitors, Applied Physics Letters, vol.83, issue.4, p.728730, 2003.

Y. Zhou, H. K. Chan, C. H. Lam, and F. G. Shin, Mechanisms of imprint eect on ferroelectric thin lms, Journal of Applied Physics, vol.98, issue.2, p.24111, 2005.

H. Chen and J. Y. Lee, Electron trapping process in ferroelectric leadzirconatetitanate thinlm capacitors, Applied Physics Letters, vol.73, issue.3, p.309311, 1998.

A. K. Tagantsev and G. Gerra, Interface-induced phenomena in polarization response of ferroelectric thin lms, Journal of Applied Physics, vol.100, issue.5, p.51607, 2006.

G. Teowee, C. D. Baertlein, E. A. Kneer, J. M. Boulton, and D. R. Uhlmann, Eect of top metallization on the fatigue and retention properties of Sol-gel PZT thin lms, Integrated Ferroelectrics, vol.7, issue.1-4, p.149160, 1995.

H. Lee, T. H. Kim, J. J. Patzner, H. Lu, J. W. Lee et al., Imprint Control of BaTiO 3 Thin Films via Chemically Induced Surface Polarization Pinning, Nano Letters, vol.16, issue.4, p.24002406, 2016.

K. Kushida-abdelghafar, M. Hiratani, and Y. Fujisaki, Post-annealing eects on antireduction characteristics of IrO 2 /Pb(Zr x Ti 1?x )O 3 /Pt ferroelectric capacitors, Journal of Applied Physics, vol.85, issue.2, p.10691074, 1999.

J. L. Cao, A. Solbach, Y. Fang, U. Boettger, P. J. Schorn et al., Eects of Thermal Annealing on Lead Zirconate Titanate Thin Film Capacitors with Platinum Electrodes, Journal of The Electrochemical Society, vol.154, issue.11, p.251, 2007.

D. R. Professor-uhlmann, Air force oce of scientic research by university of arizona, 1994.

P. Bao, T. J. Jackson, X. Wang, and M. J. Lancaster, Barium strontium titanate thin lm varactors for room-temperature microwave device applications, Journal of Physics D: Applied Physics, vol.41, issue.6, p.63001, 2008.

K. J. Choi and S. G. Yoon, Eect of Pb 2 Ru 2 O 7?x (PRO) conductive interfacial layers on ferroelectric properties of Pt/Pb(Zr 0.35 Ti 0.65 )O 3 /Pt capacitors for nonvolatile memory applications, Applied Physics A, vol.81, issue.4, p.855859, 2005.

S. Kim, D. Park, H. Woo, D. Lee, J. Ha et al., Eects of IrO 2 /Pt Hybrid Electrodes on the Crystallization and Ferroelectric Performances of Sol-gel-derived Pb(Zr,Ti)O 3 Thin Film Capacitors, Journal of Materials Research, vol.17, issue.07, p.17351742, 2002.

K. T. Jacob, V. S. Saji, and Y. Waseda, Standard Gibbs energy of formation of Pb 2 Ru 2 O 6.5, Journal of Materials Research, vol.22, issue.05, p.11741181, 2007.

X. Tan and J. K. Shang, In-situ transmission electron microscopy study of electric-eld-induced grain-boundary cracking in lead zirconate titanate, Philosophical Magazine A, vol.82, issue.8, pp.1463-1478, 2002.

C. Zhou and D. M. Newns, Intrinsic dead layer eect and the performance of ferroelectric thin lm capacitors, Journal of Applied Physics, vol.82, issue.6, p.30813088, 1997.

C. K. Wong and F. G. Shin, Modeling of anomalous shift and asymmetric hysteresis behavior of ferroelectric thin lms, Journal of Applied Physics, vol.96, issue.11, p.66486656, 2004.

M. Stengel and N. A. Spaldin, Origin of the dielectric dead layer in nanoscale capacitors, Nature, vol.443, issue.7112, p.679682, 2006.

L. J. Sinnamon, M. M. Saad, R. M. Bowman, and J. M. Gregg, Exploring grain size as a cause for dead-layer eects in thin lm capacitors, Applied Physics Letters, vol.81, issue.4, p.703705, 2002.

Q. Y. Xiang, K. Zhang, Y. Wang, X. J. Lou, W. Q. Yao et al., Insight into Metalized Interfaces in Nano Devices by Surface Analytical Techniques, ACS Applied Materials & Interfaces, vol.7, issue.49, p.2735127356, 2015.

A. Etin, G. E. Shter, G. S. Grader, and G. M. Reisner, Interrelation of Ferroelectricity, Morphology, and Thickness in Sol-Gel-Derived PbZr x Ti 1?x O 3 Films, Journal of the American Ceramic Society, vol.90, issue.1, p.7783, 2007.

J. L. Wang, F. Gaillard, A. Pancotti, B. Gautier, G. Niu et al., Chemistry and Atomic Distortion at the Surface of an Epitaxial BaTiO 3 Thin Film after Dissociative Adsorption of Water, The Journal of Physical Chemistry C, vol.116, issue.41, p.2180221809, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00777517

J. D. Baniecki, M. Ishii, T. Shioga, K. Kurihara, and S. Miyahara, Surface core-level shifts of strontium observed in photoemission of barium strontium titanate thin lms, Applied Physics Letters, vol.89, issue.16, p.162908, 2006.

R. H. Liang, D. Rémiens, C. Soyer, N. Sama, X. L. Dong et al., Etching characteristics and absence of electrical properties damage of PZT thin lms etched before crystallization, Microelectronic Engineering, vol.85, issue.4, p.670674, 2008.

J. K. Lee, T. Y. Kim, I. Chung, and S. B. Desu, Characterization and elimination of dry etching damaged layer in Pt/Pb(Z 0.53 Ti 0.47 )O 3 /Pt ferroelectric capacitor, Applied Physics Letters, vol.75, issue.3, p.334336, 1999.

J. N. Kim, K. S. Shin, D. H. Kim, B. O. Park, N. K. Kim et al., Changes in chemical behavior of thin lm lead zirconate titanate during Ar + -ion bombardment using XPS, Applied Surface Science, vol.206, issue.1-4, p.119128, 2003.

A. Bose and M. Sreemany, Inuence of processing conditions on the structure, composition and ferroelectric properties of sputtered PZT thin lms on Ti-substrates, Applied Surface Science, vol.289, p.551559, 2014.

S. A. Chambers, T. Droubay, T. C. Kaspar, M. Gutowski, and M. Van-schilfgaarde, Accurate valence band maximum determination for SrTiO 3 (001), vol.554, p.8189, 2004.

T. J. Zhu and L. Lu, X-ray diraction and photoelectron spectroscopic studies of (001)-oriented Pb(Zr 0.52 Ti 0.48 )O 3 thin lms prepared by laser ablation, Journal of Applied Physics, vol.95, issue.1, p.241247, 2004.

, Chapter, SURFACE CHEMISTRY IN Pb PRECURSOR-RICH Pb

S. Films,

Y. Sakai, S. Ninomiya, and K. Hiraoka, XPS depth analysis of CuO by electrospray droplet impact, Surface and Interface Analysis, vol.44, issue.8, p.938941, 2012.

A. M. Ektessabi and S. Hakamata, XPS study of ion beam modied polyimide lms, Thin Solid Films, p.621625, 2000.

S. B. Krupanidhi, H. Hu, and V. Kumar, Multiionbeam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O 3 thin lms, Journal of Applied Physics, vol.71, issue.1, p.376388, 1992.

Y. Ehara, S. Utsugi, T. Oikawa, T. Yamada, and H. Funakubo, Crystal orientation dependency of ferroelectric property in rhombohedral Pb, vol.3

, Japanese Journal of Applied Physics, vol.53, 2014.

W. Zhang, H. Cheng, Q. Yang, F. Hu, and J. Ouyang, Crystallographic orientation dependent dielectric properties of epitaxial BaTiO3 thin lms, Ceramics International, vol.42, issue.3, p.44004405, 2016.

C. Lin, C. Zhang, and J. Lin, Phase Transformation and Photoluminescence Properties of Nanocrystalline ZrO 2 Powders Prepared via the Pechini-type SolGel Process, The Journal of Physical Chemistry C, vol.111, issue.8, p.33003307, 2007.

P. M. Perillo and D. Fabián-rodríguez, Anodization growth of self-organized ZrO2 nanotubes on zircaloy-4. Evaluation of the photocatalytic activity, Matéria (Rio de Janeiro), vol.20, issue.3, p.627635, 2015.

N. Wakiya, K. Kuroyanagi, Y. Xuan, K. Shinozaki, and N. Mizutani, An XPS study of the nucleation and growth behavior of an epitaxial Pb(Zr,Ti)O 3 /MgO(100) thin lm prepared by MOCVD, Thin Solid Films, vol.372, issue.1-2, p.156162, 2000.

J. Abergel, M. Allain, H. Michaud, M. Cue, T. Ricart et al., Optimized gradient-free PZT thin lms for micro-actuators, 2012 IEEE International Ultrasonics Symposium, p.972974, 2012.

F. Calame and P. Muralt, Growth and properties of gradient free sol-gel lead zirconate titanate thin lms, Applied Physics Letters, vol.90, issue.6, p.62907, 2007.

C. Soyer, E. Cattan, and D. Rèmiens, Ion beam etching of PZT thin lms : Inuence of grain size on the damages induced, Journal of the European Ceramic Society, vol.25, issue.12, p.22692272, 2005.

C. S. Park, J. W. Lee, S. M. Lee, S. H. Jun, and H. E. Kim, Eect of excess PbO on microstructure and orientation of PZT(60/40) lms, Journal of Electroceramics, vol.25, issue.1, p.2025, 2010.

A. Sachdeva, M. Kumar, V. Luthra, and R. P. Tandon, Phase evolution studies of solgel derived lead zirconate titanate (PZT) nanopowder using X-ray diraction and X-ray photoelectron spectroscopy, Applied Physics A, vol.104, issue.1, p.103108, 2011.

R. Vaidya, R. J. Simonson, J. Cesarano, D. Dimos, G. P. López et al.,

N. G. Apostol, L. E. Stoea, G. A. Lungu, L. C. Tanase, C. Chirila et al., Band bending in Au/Pb(Zr,Ti)O 3 investigated by X-ray photoelectron spectroscopy: Dependence on the initial state of the lm, Thin Solid Films, vol.545, p.1321, 2013.

N. G. Apostol, L. E. Stoea, G. A. Lungu, C. Chirila, L. Trupina et al., Charge transfer and band bending at Au/Pb(Zr 0.2 Ti 0.8 )O 3 interfaces investigated by photoelectron spectroscopy, Applied Surface Science, vol.273, p.415425, 2013.

M. M. Zhu, Z. H. Du, and J. Ma, Defect enhanced optic and electro-optic properties of lead zirconate titanate thin lms, AIP Advances, vol.1, issue.4, p.42144, 2011.

M. H. Tang, J. Zhang, X. L. Xu, H. Funakubo, Y. Sugiyama et al., Electrical properties and x-ray photoelectron spectroscopy studies of Bi(Zn 0.5 Ti 0.5 )O 3 doped Pb(Zr 0.4 Ti 0.6 )O 3 thin lms, Journal of Applied Physics, vol.108, issue.8, p.84101, 2010.

S. W. Lee, S. H. Joo, S. L. Cho, Y. H. Son, K. M. Lee et al., Plasma-Assisted Dry Etching of Ferroelectric Capacitor Modules and Application to a 32M Ferroelectric Random Access Memory Devices with Submicron Feature Sizes, Japanese Journal of Applied Physics, issue.11B, p.67496753, 2002.

S. Takatani, H. Miki, K. Kushida-abdelghafar, and K. Torii,

, Pt/PbZr x Ti 1?x O 3 interfacial reaction and Schottky barrier formation studied by x-ray photoelectron spectroscopy: Eect of H 2 and O 2 annealing, Journal of Applied Physics, issue.11, pp.7784-7791

M. G. Kang, K. T. Kim, and C. I. Kim, Recovery of plasma-induced damage in PZT thin lm with O 2 gas annealing, Thin Solid Films, p.448453, 2001.

A. C. Galca, V. Stancu, M. A. Husanu, C. Dragoi, N. G. Gheorghe et al., Substratetarget distance dependence of structural and optical properties in case of Pb(Zr,Ti)O 3 lms obtained by pulsed laser deposition, Applied Surface Science, vol.257, issue.14, p.59385943, 2011.

D. W. Zeng, K. Li, K. C. Yung, H. L. Chan, C. L. Choy et al., UV laser micromachining of piezoelectric ceramic using a pulsed Nd:YAG laser, Applied Physics A, vol.78, issue.3, p.415421, 2004.

Y. Y. Lin, Q. Liu, T. A. Tang, and X. Yao, XPS analysis of Pb(Zr 0.52 Ti 0.48 )O 3 thin lm after dry-etching by CHF 3 plasma, Applied Surface Science, vol.165, issue.1, p.3437, 2000.

C. Dragoi, N. G. Gheorghe, G. A. Lungu, L. Trupina, A. G. Ibanescu et al., X-ray photoelectron spectroscopy of pulsed laser deposited Pb(Zr,Ti)O 3?? . physica status solidi (a), vol.209, p.10491052, 2012.

Y. Gao, L. Zhang, Y. Pan, G. Wang, Y. Xu et al., Epitaxial growth of ultrathin ZrO 2 (111) lms on Pt(111), Chinese Science Bulletin, vol.56, issue.6, p.502507, 2011.

H. S. Kim, J. Woo, Y. Joo, and C. Kim, The Use of Inductively Coupled CF 4 / Ar Plasma to Improve the Etch Rate of ZrO 2 Thin Films, Transactions on Electrical and Electronic Materials, vol.14, issue.1, p.1215, 2013.

G. I. Cubillos, J. J. Olaya, M. Bethencourt, G. Cifredo, and G. Blanco, Structural changes in ZrO x N y / ZrO 2 coatings deposited through spray pyrolisis-nitriding, Revista Mexicana de Física, vol.60, p.233242, 2014.

G. I. Cubillos, M. Bethencourt, J. J. Olaya, J. E. Alfonso, and J. F. Marco, The inuence of deposition temperature on microstructure and corrosion resistance of ZrO x N y /ZrO 2 coatings deposited using RF sputtering, Applied Surface Science, vol.309, p.181187, 2014.

R. Brenier, J. Mugnier, and E. Mirica, XPS study of amorphous zirconium oxide lms prepared by solgel, Applied Surface Science, vol.143, issue.1-4, p.8591, 1999.

Y. Pan, Y. Gao, D. Kong, G. Wang, J. Hou et al., Interaction of Au with Thin ZrO 2 Films: Inuence of ZrO 2 Morphology on the Adsorption and Thermal Stability of Au Nanoparticles, Langmuir, vol.28, issue.14, p.60456051, 2012.

V. R. Chinchamalatpure, S. M. Chore, S. S. Patil, and G. N. Chaudhari, Synthesis and Electrical Characterization of ZrO 2 Thin Films on Si(100), Journal of Modern Physics, issue.01, p.6973, 2012.

J. C. Woo, S. G. Kim, J. G. Koo, G. H. Kim, D. P. Kim et al., A study on dry etching for prole and selectivity of ZrO 2 thin lms over Si by using high density plasma, Thin Solid Films, vol.517, issue.14, p.42464250, 2009.

L. M. Eshelman, A. M. Jong, and J. W. Niemantsverdriet, Preparation of ZrO 2 on at, conducting SiO 2 /Si(100) model supports by wet chemical techniques; X-ray photoelectron spectroscopy and Auger depth proling, Catalysis Letters, vol.10, issue.3-4, p.201209, 1991.

J. C. Woo, C. A. Choi, W. S. Yang, Y. S. Chun, and C. I. Kim, Surface properties of ZrO 2 thin lm under Cl 2 / Ar plasma using angle-resolved X-ray photoelectron spectroscopy, Japanese Journal of Applied Physics, vol.53, issue.8S3, pp.8-13, 2014.

B. M. Melnick, J. D. Cuchiaro, L. D. Mcmillian, C. A. De-araujo, and J. F. Scott, Process optimization and characterization of device worthy sol-gel based PZT for ferroelectric memories, Ferroelectrics, vol.112, issue.1, p.329351, 1990.

A. Zomorrodian, A. Mesarwi, N. J. Wu, and A. Ignatiev, XPS oxygen line broadening in lead zirconium titanate and related materials, Applied Surface Science, vol.90, issue.3, p.343348, 1995.

S. A. Impey, Z. Huang, A. Patel, R. Beanland, N. M. Shorrocks et al.,

. Whatmore, Microstructural characterization of solgel leadzirconatetitanate thin lms, Journal of Applied Physics, vol.83, issue.4, p.22022208, 1998.

J. Robertson, High dielectric constant oxides, The European Physical Journal Applied Physics, vol.28, issue.3, p.265291, 2004.

P. W. Peacock and J. Robertson, Band osets and Schottky barrier heights of high dielectric constant oxides, Journal of Applied Physics, vol.92, issue.8, p.47124721, 2002.

C. Soyer, E. Cattan, D. Rèmiens, and M. Guilloux-viry, Ion beam etching of leadzirconatetitanate thin lms: Correlation between etching parameters and electrical properties evolution, Journal of Applied Physics, vol.92, issue.2, p.10481055, 2002.

R. Moazzami, C. Hu, and W. H. Shepherd, Electrical characteristics of ferroelectric PZT thin lms for DRAM applications, IEEE Transactions on Electron Devices, vol.39, issue.9, p.20442049, 1992.

C. Lichtensteiger, P. Zubko, M. Stengel, P. Aguado-puente, J. Triscone et al., Ferroelectricity in ultrathin lm capacitors. Ch. 12 in Oxide Ultrathin Films, Science and Technology, 2011.

L. A. Bursill, I. M. Reaney, D. P. Vijay, and S. B. Desu, Comparison of lead zirconate titanate thin lms on ruthenium oxide and platinum electrodes, Journal of Applied Physics, vol.75, issue.3, p.15211525, 1994.

Z. Jia, T. L. Ren, T. Z. Liu, H. Hu, Z. G. Zhang et al., Study on oxidization of Ru and its application as electrode of PZT capacitor for FeRAM, Materials Science and Engineering: B, vol.138, issue.3, p.219223, 2007.

J. Ze, R. Tian-ling, L. Tian-zhi, H. Hong, Z. Zhi-gang et al., Comparison of Properties of Pt/PZT/Pt and Ru/PZT/Pt Ferroelectric Capacitors, Chinese Physics Letters, vol.23, issue.4, p.10421045, 2006.

M. Epifani, C. Giannini, L. Tapfer, and L. Vasanelli, Sol-Gel Synthesis and Characterization of Ag and Au Nanoparticles in SiO 2 , TiO 2 , and ZrO 2 Thin Films, Journal of the American Ceramic Society, vol.83, issue.10, p.23852393, 2004.

M. I. Yanovskaya, I. E. Obvintseva, L. I. Solovyova, E. P. Kovsman, K. A. Vorotilov et al., Alkoxy-derived ferroelectric PZT lms: The eect of lead acetate dehydration techniques and lead content in the electrochemically prepared solutions on the properties of the lms, Integrated Ferroelectrics, vol.19, issue.1-4, p.193209, 1998.

J. Cheng and Z. Meng, Orientation controlling of PZT thin lms derived from sol-gel techniques, Journal of Materials Science Letters, vol.19, issue.21, p.19451949, 2000.

Y. L. Tu and S. J. Milne, A study of the eects of process variables on the properties of PZT lms produced by a single-layer sol-gel technique, Journal of Materials Science, vol.30, issue.10, pp.2507-2516, 1995.

Z. J. Wang, K. Kikuchi, and R. Maeda, Eect of Pb content in target on electrical properties of laser ablation derived lead zirconate titanate thin lms, Regular Papers and Short Notes and Review Papers, vol.1, p.54135417, 2000.

G. B. Harris, Quantitative measurement of preferred orientation in rolled uranium bars. The London, Edinburgh, and Dublin Philosophical Magazine and, Journal of Science, vol.43, issue.336, pp.113-123, 1952.

S. H. Kim, Y. S. Choi, C. E. Kim, and D. Y. Yang, The eects of PbTiO 3 thin template layer and Pt/RuO 2 hybrid electrode on the ferroelectric properties of sol-gel derived PZT thin lm, Thin Solid Films, vol.325, issue.1-2, p.7278, 1998.

A. P. Wilkinson, J. S. Speck, A. K. Cheetham, S. Natarajan, and J. M. Thomas, situ x-ray diraction study of crystallization kinetics in PbZr 1?x Ti x O 3, vol.6, p.750754, 1994.

J. Zeng, M. Zhang, L. Wang, and C. Lin, Inuence of lead titanate seed layer on orientation behaviour and ferroelectric characteristics of sol-gel derived PZT thin lms, Journal of Physics: Condensed Matter, vol.11, issue.4, p.11391146, 1999.

S. Trolier-mckinstry and P. Muralt, Thin Film Piezoelectrics for MEMS, Journal of Electroceramics, vol.12, issue.1, p.717, 2004.

A. Wu, P. M. Vilarinho, I. M. Salvado, J. L. Baptista, Z. Zhou et al., Eect of Lead Zirconate Titanate Seeds on Pt x Pb Formation during the Pyrolysis of Lead Zirconate Titanate Thin Films, Journal of the American Ceramic Society, vol.85, issue.3, p.641646, 2004.

C. Zhu, Y. Chentao, L. Bo, and Y. Bangchao, Investigation on the eects of PbO content and seeding layers of TiO 2 and ZrO 2 on the orientation and microstructure of Pb, p.3

, ferroelectric lms grown by reverse dip-coating method of solgel, Materials Letters, vol.60, p.15591564, 2006.

T. Tani, Z. Xu, and D. Payne, Preferred Orientations for Sol-Gel Derived Plzt Thin Layers, MRS Proceedings, vol.310, issue.100, p.269, 1993.

G. N. Hassold, E. A. Holm, and D. J. Srolovitz, Eects of particle size on inhibited grain growth, Scripta Metallurgica et Materialia, vol.24, issue.1, p.101106, 1990.

J. F. Scott, Ferroelectric Memories, vol.3

X. J. Lou, Polarization fatigue in ferroelectric thin lms and related materials, Journal of Applied Physics, vol.105, issue.2, p.24101, 2009.

F. Chen, R. Schafranek, A. Wachau, S. Zhukov, J. Glaum et al., Barrier heights, polarization switching, and electrical fatigue in Pb(Zr,Ti)O 3 ceramics with dierent electrodes, Journal of Applied Physics, vol.108, issue.10, p.104106, 2010.

L. Pintilie and M. , Metal-ferroelectric-metal heterostructures with Schottky contacts

I. , Inuence of the ferroelectric properties, Journal of Applied Physics, vol.98, issue.12, 2005.

J. E. Rault, G. Agnus, T. Maroutian, V. Pillard, P. Lecoeur et al., Interface electronic structure in a metal/ferroelectric heterostructure under applied bias, Physical Review B -Condensed Matter and Materials Physics, vol.87, issue.15, p.19, 2013.
URL : https://hal.archives-ouvertes.fr/cea-01477666

F. Chen and A. Klein, Polarization dependence of Schottky barrier heights at interfaces of ferroelectrics determined by photoelectron spectroscopy, Physical Review B -Condensed Matter and Materials Physics, vol.86, issue.9, p.17, 2012.

E. Kroger, A. Petraru, A. Quer, R. Soni, M. Kallane et al., In situ hard x-ray photoemission spectroscopy of barrier-height control at metal/PMN-PT interfaces, Physical Review B, vol.93, issue.23, p.235415, 2016.

I. Pintilie, C. M. Teodorescu, C. Ghica, C. Chirila, A. G. Boni et al., Polarization-control of the potential barrier at the electrode interfaces in epitaxial ferroelectric thin lms, ACS Applied Materials and Interfaces, vol.6, issue.4, pp.2929-2939, 2014.

M. Stengel, D. Vanderbilt, and N. A. Spaldin, Enhancement of ferroelectricity at metaloxide interfaces, Nature Materials, vol.8, issue.5, p.392397, 2009.

P. Zubko, J. C. Wojde, M. Hadjimichael, S. Fernandez-pena, A. Sené et al., Negative capacitance in multidomain ferroelectric superlattices, Nature, vol.534, issue.7608, p.524528, 2016.

C. S. Fadley, X-ray photoelectron spectroscopy: Progress and perspectives, Journal of Electron Spectroscopy and Related Phenomena, p.232, 2010.

G. Kaune, M. A. Ruderer, E. Metwalli, W. Wang, S. Couet et al., Situ GISAXS Study of Gold Film Growth on Conducting Polymer Films, vol.1, p.353360, 2009.

A. Utkin and A. Yushkanov, The Model of the Thin Metal Layer Electrical Conductivity in the Case of Dierent Reection Coecients of its Surfaces, Universal Journal of Applied Mathematics, vol.1, issue.2, p.127130, 2013.

A. Zenkevich, Y. Matveyev, M. Minnekaev, Y. Lebedinskii, S. Thiess et al., Electronic and electrical properties of functional interfaces studied by hard X-ray photoemission, Journal of Electron Spectroscopy and Related Phenomena, vol.190, p.302308, 2013.

J. W. Cooper, Photoelectron-angular-distribution parameters for rare-gas subshells, Physical Review A, vol.47, issue.3, p.18411851, 1993.

S. Tanurna and D. R. Penn, Calculations of Electron Inelastic Mean Free Paths, Surface and Interface Analysis, vol.17, p.927939, 1991.

G. Dana, M. A. Popescu, L. Huanu, L. Trupin, L. Hrib et al., Physical Chemistry Chemical Physics, issue.1, p.509520

L. A. Simpson, M. Thomsen, B. J. Alloway, and A. Parker, A dynamic reaction cell (DRC) solution to oxide-based interferences in inductively coupled plasma mass spectrometry (ICP-MS) analysis of the noble metals, Journal of Analytical Atomic Spectrometry, vol.16, issue.12, pp.1375-1380, 2001.

J. Kristóf, S. Daolio, A. Battisti, C. Piccirillo, J. Mihály et al., Investigations on the Formation of RuO 2 / ZrO 2 -Based Electrocatalytic Thin Films by Surface Analysis Techniques, Langmuir, vol.15, issue.4, p.14981502, 1999.

H. Shinotsuka, S. Tanuma, C. J. Powell, and D. R. Penn, Calculations of electron inelastic mean free paths. X. Data for 41 elemental solids over the 50eV to 200keV range with the relativistic full Penn algorithm, Surface and Interface Analysis, vol.47, issue.9, p.871888, 2015.

D. Sheet, Agilent E4980A Precision LCR Meter How to Use Tables

J. S. Agustsson, U. B. Arnalds, A. S. Ingason, K. B. Gylfason, K. Johnsen et al., Electrical resistivity and morphology of ultra thin Pt lms grown by dc magnetron sputtering on SiO 2, Journal of Physics: Conference Series, vol.100, issue.8, p.82006, 2008.

K. Roodenko, S. K. Park, J. Kwon, L. Wielunski, and Y. J. , Characterization of Ru thin-lm conductivity upon atomic layer deposition on H-passivated Si(111), Journal of Applied Physics, vol.112, issue.11, p.113517, 2012.

T. Analyzer, aixPlorer Software. aixACCT Systems GmbH, (aixPlorer Software Manual

Y. Zhou, H. K. Chan, C. H. Lam, and F. G. Shin, Mechanisms of imprint eect on ferroelectric thin lms, Journal of Applied Physics, vol.98, issue.2, p.9, 2005.

W. Li-cheah, N. Ng, and R. Ahluwalia, Inuence of space charge on domain patterns and susceptibility in a rhombohedral ferroelectric lm, Acta Materialia, vol.100, p.323332, 2015.

M. Aronniemi, J. Sainio, and J. Lahtinen, Chemical state quantication of iron and chromium oxides using XPS: the eect of the background subtraction method, Surface Science, vol.578, issue.1-3, p.108123, 2005.

M. Stengel, P. Aguado-puente, N. A. Spaldin, and J. Junquera, Band alignment at metal/ferroelectric interfaces: Insights and artifacts from rst principles, Physical Review B -Condensed Matter and Materials Physics, vol.83, issue.23, 2011.

E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, Precise determination of the valence-band edge in X-Ray photoemission spectra: Application to measurement of semiconductor interface potentials, Physical Review Letters, vol.44, issue.24, p.16201623, 1980.

N. W. Ashcroft and N. D. Mermin, Solid State Physics, 1976.

K. A. Vorotilov, M. I. Yanovskaya, L. I. Solovjeva, A. S. Valeev, V. I. Petrovsky et al., Ferroelectric capacitors for integrated circuits, Microelectronic Engineering, vol.29, issue.1-4, p.4144, 1995.

M. I. Yanovskaya, I. E. Obvintseva, L. I. Solovyova, E. P. Kovsman, K. A. Vorotilov et al., Alkoxy-derived ferroelectric PZT lms: The eect of lead acetate dehydration techniques and lead content in the electrochemically prepared solutions on the properties of the lms, Integrated Ferroelectrics, vol.19, issue.1-4, p.193209, 1998.

J. M. Thomas and M. J. Tricker, Electronic structure of the oxides of lead. Part 2. An XPS study of bulk rhombic PbO, tetragonal PbO, ? PbO 2 and Pb 3 O 4, J. Chem. Soc., Faraday Trans. 2, vol.71, p.329336, 1975.

G. Leclerc, G. Poullain, C. Yaicle, R. Bouregba, and A. Pautrat, Substrate and orientation inuence on electrical properties of sputtered La-doped PZT thin lms, Applied Surface Science, vol.254, issue.13, p.38673872, 2008.

. Hyeong-ho-park, J. Woo-sik-kim, H. Yang, R. H. Ho-park, and . Hill, Characterization of PLZT thin lm prepared by photochemical deposition using photosensitive metal-organic precursors, Microelectronic Engineering, vol.71, issue.2, p.215220, 2004.

Y. V. Podgornyi, A. S. Vishnevskii, K. A. Vorotilov, P. P. Lavrov, and A. N. Lantsev, Electrophysical properties of lead zirconate titanate lms doped with lanthanum, Russian Microelectronics, vol.43, issue.6, p.438444, 2014.

L. Jin, F. Li, and S. Zhang, Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures, Journal of the American Ceramic Society, vol.97, issue.1, p.127, 2014.

M. Dawber, K. M. Rabe, and J. F. Scott, Physics of thin-lm ferroelectric oxides, vol.77, p.1130, 2005.

S. Rondon and P. M. Sherwood, Core Level and Valence Band Spectra of PbO 2 by XPS, Surface Science Spectra, vol.5, issue.2, p.104110, 1998.

S. Rondon and P. M. Sherwood, Core Level and Valence Band Spectra of Pb 3 O 4 by XPS, Surface Science Spectra, vol.5, issue.2, p.9096, 1998.

S. Rondon and P. M. Sherwood, Core Level and Valence Band Spectra of Lead by XPS, Surface Science Spectra, vol.5, issue.2, p.8389, 1998.

, New Change Limitation, 1972.

. Afsc-usaf-ltr, Lead oxide, 1972.

V. Dimitrov and T. Komatsu, An Interpretation of Optical Properties of Oxides and Oxide Glasses in Terms of the Electronic Ion Polarizability and Average Single Bond Strength, Journal of the University of Chemical Technology and Metallurgy, vol.45, issue.3, p.219250, 2010.

N. V. Mukhin and D. A. Chigirev, Eect of the lead oxide content on the microstructure and properties of PZT lms obtained by RF magnetron sputtering, Journal of Physics: Conference Series, vol.872, p.12045, 2017.

J. P. Maria, W. Hackenberger, and S. Trolier-mckinstry, Phase development and electrical property analysis of pulsed laser deposited Pb(Mg 1/3 Nb 2/3 )O 3 PbTiO 3 (70/30) epitaxial thin lms, Journal of Applied Physics, vol.84, issue.9, p.51475154, 1998.

V. P. Afanasev, G. N. Mosina, A. A. Petrov, I. P. Pronin, L. M. Sorokin et al., Specic properties of the PZT-based thin-lm capacitor structures with excess lead oxide, Technical Physics Letters, vol.27, issue.6, p.467469, 2001.

K. Kushida-abdelghafar, M. Hiratani, and Y. Fujisaki, Post-annealing eects on antireduction characteristics of IrO 2 /Pb(Zr x Ti 1?x )O 3 /Pt ferroelectric capacitors, Journal of Applied Physics, vol.85, issue.2, p.10691074, 1999.

P. C. Chen, H. Miki, Y. Shimamoto, M. Matsui, Y. Hiratani et al., Eects of PostAnnealing Temperatures and Ambient Atmospheres on the Electrical Properties of Ultrathin (Ba,Sr)TiO 3 Capacitors, Japanese Journal of Applied Physics, vol.37, issue.9B, p.51125117, 1998.

E. Skrzyska, A. Wondoowska-grabowska, M. Capron, and F. Dumeignil, Crude glycerol as a raw material for the liquid phase oxidation reaction, Applied Catalysis A: General, vol.482, pp.245-257, 2014.

D. J. Morgan, Resolving ruthenium: XPS studies of common ruthenium materials, Surface and Interface Analysis, vol.47, issue.11, p.10721079, 2015.

S. Doniach and M. Sunjic, Many-electron singularity in X-ray photoemission and X-ray line spectra from metals, Journal of Physics C: Solid State Physics, vol.3, issue.2, p.285291, 1970.

K. Qadir, S. H. Joo, B. S. Mun, D. R. Butcher, F. Renzas et al., Intrinsic Relation between Catalytic Activity of CO Oxidation on Ru Nanoparticles and Ru Oxides Uncovered with Ambient Pressure XPS, Nano Letters, vol.12, issue.11, p.57615768, 2012.

S. Kezilebieke, M. Ali, B. Shadeke, and R. Gunnella, Magnetic properties of ultrathin Ni 81 Fe 19 lms with Ta and Ru capping layers, Journal of Physics: Condensed Matter, vol.25, issue.47, p.476003, 2013.

J. Zhu, X. Wang, Z. Yi, Z. Tang, B. Wu et al., Stability of solid-solution phase and the nature of phase separation in Ru-Zr-O ternary oxide, Journal of Physical Chemistry C, vol.116, issue.49, p.2583225839, 2012.

S. Axnanda, E. J. Crumlin, B. Mao, S. Rani, R. Chang et al., Using Tender X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface, Scientic Reports, vol.5, issue.1, p.9788, 2015.

L. K. Ono and B. Roldan-cuenya,

J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (1st Edition). Perkin-Elmer Corp, Physical Electronics Division, 1992.

J. Prakash, D. A. Tryk, and E. B. Yeager, Kinetic Investigations of Oxygen Reduction and Evolution Reactions on Lead Ruthenate Catalysts, Journal of The Electrochemical Society, vol.146, issue.11, p.4145, 1999.

M. Hrovat, A. Benan, J. Holc, and M. Kosec, Subsolidus phase equilibria in the RuO 2 -TiO 2 -ZrO 2 system, Journal of Materials Science Letters, vol.20, issue.22, 2001.

V. Bobnar, M. Hrovat, J. Holc, and M. Kosec, All-Ceramic Percolative Composites with a Colossal Dielectric Response, Ferroelectrics -Characterization and Modeling, 2011.

J. K. Brendan, Oxygen Vacancies in Pyrochlore Oxides: Powder Neutron Diraction Study of Pb 2 Ir 2 O 6.5 and Bi 2 Ir 2 O 7?y, Journal of Solid State Chemistry, vol.123, issue.1, p.1420, 1996.

W. Li, H. Liu, and E. Iglesia, Structures and properties of zirconia-supported ruthenium oxide catalysts for the selective oxidation of methanol to methyl formate, The journal of physical chemistry. B, vol.110, issue.46, p.2333742, 2006.

C. H. Yang, C. C. Lee, and T. C. Wen, Hypochlorite generation on RuPt binary oxide for treatment of dye wastewater, Journal of Applied Electrochemistry, vol.30, issue.9, p.10431051, 2000.

J. Kristóf, S. Daolio, A. Battisti, C. Piccirillo, J. Mihály et al., Investigations on the Formation of RuO 2 / ZrO 2 Based Electrocatalytic Thin Films by Surface Analysis Techniques, Langmuir, vol.15, issue.4, p.14981502, 1999.

L. D. Burke and M. Mccarthy, Oxygen gas evolution at, and deterioration of, RuO 2 / ZrO 2 -coated titanium anodes at elevated temperature in strong base, Electrochimica Acta, vol.29, issue.2, pp.211-216, 1984.