, nature | Definition of nature in English by Oxford Dictionaries

, Montréal: International Civil Aviation Organization, 2011.

J. W. Gerdes and S. K. Gupta, A REVIEW OF BIRD-INSPIRED FLAPPING WING MINIATURE AIR VEHICLE DESIGNS, p.16
DOI : 10.1115/detc2010-28513

URL : http://terpconnect.umd.edu/~skgupta/Publication/JMR12_Gerdes_draft.pdf

L. Petricca, P. Ohlckers, and C. Grinde, Micro-and Nano-Air Vehicles: State of the Art, Int. J. Aerosp. Eng, vol.2011, pp.1-17, 2011.

S. K. Banala, Y. Karakaya, S. Mcintosh, Z. Khan, and S. K. , Design and Optimization of a Mechanism for Out of Plane Insect Wing Like Motion With Twist, p.7, 2004.

S. P. Sane, The aerodynamics of insect flight, J. Exp. Biol, vol.206, issue.23, pp.4191-4208, 2003.

M. H. Dickinson and K. G. Götz, Unsteady aerodynamic performance of model wings at low reynolds numbers, p.21

, IEMN -Institut d"Electronique, de Microélectronique et de Nanotechnologie

C. H. Greenewalt and H. , , 1990.

D. Faux, O. Thomas, E. Cattan, S. Grondel, and L. A. Doan, Two modes resonant combined motion for insect wings kinematics reproduction and lift generation, EPL Europhys. Lett, vol.121, issue.6, p.66001, 2018.
DOI : 10.1209/0295-5075/121/66001

URL : https://iopscience.iop.org/article/10.1209/0295-5075/121/66001/pdf

|. Accueil, . Arts, and . Métiers, , p.23, 2018.

&. Onera, , p.23, 2018.

, Conception et Intégration de produits électroniques -Thurmelec à Pulversheim, p.23, 2018.

, Page d"accueil ENSIAME | ENSIAME | Université de Valenciennes

, Understanding Empire: Technology, Power, Politics, History of U.S. Drones, vol.21, 2012.

, Remote Piloted Aerial Vehicles

V. K. Saxena, The Amazing Growth and Journey of UAV's and Ballastic Missile Defence Capabilities: Where the Technology is Leading to? Vij Books India Pvt Ltd, 2013.

C. Kennedy and J. I. Rogers, Virtuous drones?, Int. J. Hum. Rights, vol.19, issue.2, pp.211-227, 2015.
DOI : 10.1080/13642987.2014.991217

, Drones smuggling porn, drugs to inmates around the world | Fox News, p.18, 2017.

C. Zhang and J. M. Kovacs, The application of small unmanned aerial systems for precision agriculture: a review, Precis. Agric, vol.13, issue.6, pp.693-712, 2012.

G. J. Grenzdörffer, A. Engel, and B. Teichert, The photogrammetric potential of lowcost UAVs in forestry and agriculture, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, vol.31, issue.B3, pp.1207-1214, 2008.

F. G. Costa, J. Ueyama, T. Braun, G. Pessin, F. S. Osório et al., The use of unmanned aerial vehicles and wireless sensor network in agricultural applications, Geoscience and Remote Sensing Symposium (IGARSS), pp.5045-5048, 2012.

L. Hassan-esfahani, A. Torres-rua, A. M. Ticlavilca, A. Jensen, and M. Mckee, Topsoil moisture estimation for precision agriculture using unmmaned aerial vehicle multispectral imagery, Geoscience and Remote Sensing Symposium (IGARSS), pp.3263-3266, 2014.

J. Berni, P. J. Zarco-tejada, L. Suarez, and E. Fereres, Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle, IEEE Trans. Geosci. Remote Sens, vol.47, issue.3, pp.722-738, 2009.

G. J. Verhoeven, Providing an archaeological bird"s-eye view -an overall picture of ground-based means to execute low-altitude aerial photography (LAAP) in Archaeology, Archaeol. Prospect, vol.16, issue.4, pp.233-249, 2009.

F. Chiabrando, F. Nex, D. Piatti, and F. Rinaudo, UAV and RPV systems for photogrammetric surveys in archaelogical areas: two tests in the Piedmont region (Italy), J. Archaeol. Sci, vol.38, issue.3, pp.697-710, 2011.

F. Rinaudo, F. Chiabrando, A. M. Lingua, and A. T. Spanò, Archaeological site monitoring: UAV photogrammetry can be an answer, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, vol.39, issue.B5, pp.583-588, 2012.
DOI : 10.5194/isprsarchives-xxxix-b5-583-2012

URL : https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXIX-B5/583/2012/isprsarchives-XXXIX-B5-583-2012.pdf

U. Niethammer, M. R. James, S. Rothmund, J. Travelletti, and M. Joswig, UAVbased remote sensing of the Super-Sauze landslide: Evaluation and results, Eng. Geol, vol.128, pp.2-11, 2012.

W. Hartmann, S. Tilch, H. Eisenbeiss, and K. Schindler, Determination of the UAV position by automatic processing of thermal images, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, vol.39, p.6, 2012.

B. Shrediquette,

, Les drones au service des entreprises | SNCF Réseau, p.25, 2018.

, Eyesee : le drone pour automatiser les inventaires des entrepôts logistiques, Hardis Group, vol.16, 2015.

U. Bristol, 2014: Drone helps Fukushima clean-up | Cabot Institute for the Environment | University of Bristol

, Drone Adventures in Haiti | Robohub

, Fukushima -a Drones Eye View -Drone Adventures

G. C. De-croon, M. Perçin, B. D. Remes, R. Ruijsink, C. De-wagter et al., , 2016.

R. J. Wood, The First Takeoff of a Biologically Inspired At-Scale Robotic Insect, IEEE Trans. Robot, vol.24, issue.2, pp.341-347, 2008.

B. Singh, Dynamics and aeroelasticity of hover-capable flapping wings: Experiments and analysis, 2007.

J. Grasmeyer and M. Keennon, Development of the Black Widow Micro Air Vehicle, 2001.

D. Gyllhem, K. Mohseni, D. Lawrence, and P. Geuzaine, Numerical simulation of flow around the Colorado micro aerial vehicle, AIAA Fluid Dynamics Conference and Exhibit, pp.6-9, 2005.

W. Shyy, B. Mats, and L. Daniel, Flapping and fexible wings for biological and micro air vehicles, Prog. Aerosp. Sci, vol.35, issue.5, pp.455-506, 1999.

M. R. Waszak, L. N. Jenkins, and P. Ifju, Stability and control properties of an aeroelastic fixed wing micro aerial vehicle, AIAA Pap, vol.4005, p.2001, 2001.

V. Brion, M. Aki, and S. Shkarayev, Numerical simulation of low Reynolds number flows around micro air vehicles and comparison against wind tunnel data, AIAA Applied Aerodynamics Conference, pp.5-8, 2006.

Y. Lian and W. Shyy, Numerical Simulations of Membrane Wing Aerodynamics for Micro Air Vehicle Applications, J. Aircr, vol.42, issue.4, pp.865-873, 2005.

B. Stanford, D. Viieru, R. Albertani, W. Shyy, and P. Ifju, A numerical and experimental investigation of flexible micro air vehicle wing deformation, 2006.

D. Viieru, R. Albertani, W. Shyy, and P. G. Ifju, Effect of Tip Vortex on Wing Aerodynamics of Micro Air Vehicles, J. Aircr, vol.42, issue.6, pp.1530-1536, 2005.

B. Singh, Dynamics and Aeroelasticity of Hover-Capable Flapping Wings: Experiments and Analysis, 2006.

A. Datta, The martian autonomous rotary-wing vehicle (MARV), Tech. Rep, 2000.

L. Petricca, P. Ohlckers, and C. Grinde, Micro-and Nano-Air Vehicles: State of the Art, Int. J. Aerosp. Eng, vol.2011, pp.1-17, 2011.

, Black Hornet Nano, Wikipedia. 23, 2018.

, Crazyflie 2.0, p.11, 2017.

I. Kroo, The Mesicopter: A Miniature Rotorcraft Concept Phase II Final Report, p.138

P. Muren, Picoflyer description, 2005.

F. Bohorquez and D. Pines, Hover performance of rotor blades at low reynolds numbers for rotary wing micro air vehicles, AIAA Pap, vol.6567, issue.2, 2003.

, Twisting blade propeller and profile pitch, p.11, 2018.

H. Dong, A. T. Bode-oke, and C. Li, Learning from Nature: Unsteady Flow Physics in Bioinspired Flapping Flight," in Flight Physics -Models, Techniques and Technologies, K. Volkov, 2018.

C. Gali?ski and R. ?bikowski, Some problems of micro air vehicles development, Bull. Pol. Acad. Sci. Tech. Sci, vol.55, issue.1, 2007.

T. N. Pornsin-sirirak, Y. Tai, C. Ho, and M. Keennon, Microbat: A palm-sized electrically powered ornithopter, Proceedings of NASA/JPL Workshop on Biomorphic Robotics, pp.14-17, 2001.

M. Groen, B. Bruggeman, B. Remes, R. Ruijsink, B. W. Van-oudheusden et al., Improving flight performance of the flapping wing MAV DelFly II, Int. Micro Air Vehicle Conf. and Competition, 2010.

G. C. De-croon, M. A. Groen, C. De, B. Wagter, R. Remes et al., Design, aerodynamics and autonomy of the DelFly, Bioinspir. Biomim, vol.7, issue.2, p.25003, 2012.

, New RoboBee flies, dives, swims, and explodes out the of water, Wyss Institute, vol.25, p.24, 2017.

J. W. Kruyt, E. M. Quicazan-rubio, G. F. Van-heijst, D. L. Altshuler, and D. Lentink, Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors, J. R. Soc. Interface, vol.11, issue.99, pp.20140585-20140585, 2014.

C. Evangelista, P. Kraft, M. Dacke, J. Reinhard, and M. V. Srinivasan, The moment before touchdown: landing manoeuvres of the honeybee Apis mellifera, J. Exp. Biol, vol.213, issue.2, pp.262-270, 2010.

G. Card and M. H. Dickinson, Visually Mediated Motor Planning in the Escape Response of Drosophila, Curr. Biol, vol.18, issue.17, pp.1300-1307, 2008.

B. Singh, M. Ramasamy, I. Chopra, and J. G. Leishman, Experimental studies on insect-based flapping wings for micro hovering air vehicles, AIAA Pap, vol.2293, p.2005, 2005.

R. H. Brown, The flight of birds, J. Exp. Biol, vol.30, issue.1, pp.90-103, 1953.

S. A. Ansari, R. ?bikowski, and K. Knowles, Aerodynamic modelling of insect-like flapping flight for micro air vehicles, Prog. Aerosp. Sci, vol.42, issue.2, pp.129-172, 2006.

P. Seshadri, M. Benedict, and I. Chopra, A novel mechanism for emulating insect wing kinematics, Bioinspir. Biomim, vol.7, issue.3, p.36017, 2012.

C. T. Bolsman, B. Palsson, H. Goosen, R. Schmidt, and F. Van-keulen, The use of resonant structures for miniaturizing FMAVs, 3rd US-European Competition and Workshop on Micro Air Vehicle & European Micro Air Vehicle Conference and Flight Competition, vol.4, 2007.

S. M. Walker, In Vivo Time-Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor, PLoS Biol, vol.12, issue.3, p.1001823, 2014.

C. P. Ellington, The Aerodynamics of Hovering Insect Flight. I. The Quasi-Steady Analysis, Philos. Trans. R. Soc. B Biol. Sci, vol.305, issue.1122, pp.1-15, 1984.

F. Lehmann, The mechanisms of lift enhancement in insect flight, Naturwissenschaften, vol.91, issue.3, pp.101-122, 2004.

, Kutta condition, 2017.

W. Shyy, Recent progress in flapping wing aerodynamics and aeroelasticity, Prog. Aerosp. Sci, vol.46, issue.7, pp.284-327, 2010.

S. P. Sane and M. H. Dickinson, The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight, J. Exp. Biol, vol.205, issue.8, pp.1087-1096, 2002.

M. H. Dickinson, F. Lehmann, and K. G. Gotz, The active control of wing rotation by Drosophila, J. Exp. Biol, vol.182, issue.1, pp.173-189, 1993.

M. H. Dickinson, Wing Rotation and the Aerodynamic Basis of Insect Flight, Science, vol.284, issue.5422, pp.1954-1960, 1999.

V. Arabagi and M. Sitti, Simulation and analysis of a passive pitch reversal flapping wing mechanism for an aerial robotic platform, Intelligent Robots and Systems, pp.1260-1265, 2008.

P. Zdunich, Development and Testing of the Mentor Flapping-Wing Micro Air Vehicle, J. Aircr, vol.44, issue.5, pp.1701-1711, 2007.

, Gliding flight, Wikipedia. 15, 2018.

J. M. Wakeling and C. P. Ellington, Dragonfly flight i. Gliding flight and steady-state aerodynamic forces, p.14

W. Shyy, H. Aono, C. Kang, and H. Liu, An introduction to flapping wing aerodynamics. Cambridge, 2013.

U. M. Norberg, Structure, form, and function of flight in engineering and the living world, J. Morphol, vol.252, issue.1, pp.52-81, 2002.

M. Karasek and A. Preumont, Robotic hummingbird: Design of a control mechanism for a hovering flapping wing micro air vehicle, 2014.

, Bird flight, 2017.

C. P. Ellington, the novel aerodynamics of insect flight: applications to micro-air vehicles, p.10

B. Tobalske and K. Dial, Flight kinematics of black-billed magpies and pigeons over a wide range of speeds, J. Exp. Biol, vol.199, issue.2, pp.263-280, 1996.

A. , Nature"s flyers: birds, insects, and the biomechanics of flight, Choice Rev. Online, vol.40, issue.02, pp.40-0906, 2002.

W. Shyy, Y. Lian, J. Tang, D. Viieru, and H. Liu, Aerodynamics of Low Reynolds Number Flyers, p.213, 2007.

. Wild-west-nature, Osprey hovers like a hummingbird hunting in Yellowstone National Park, 2013.

J. Song, H. Luo, and T. L. Hedrick, Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird, J. R. Soc. Interface, vol.11, issue.98, pp.20140541-20140541, 2014.

L. Ristroph and S. Childress, Stable hovering of a jellyfish-like flying machine, J. R. Soc. Interface, vol.11, issue.92, pp.20130992-20130992, 2014.

L. Hines, D. Campolo, and M. Sitti, Liftoff of a motor-driven, flapping-wing microaerial vehicle capable of resonance, Robot. IEEE Trans. On, vol.30, issue.1, pp.220-232, 2014.

W. Trimmer and R. Jebens, Actuators for micro robots, Proc, vol.3, pp.1547-1552, 1989.

, Servomoteurs C.C. sans balais 0308

A. Bontemps, F. Valenciennes, S. Grondel, S. Dupont, T. Vanneste et al., Modeling and evaluation of power transmission of flapping wing nano air vehicle, 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), pp.1-6, 2014.

W. Shyy, C. Kang, P. Chirarattananon, S. Ravi, and H. Liu, Aerodynamics, sensing and control of insect-scale flapping-wing flight, Proc. R. Soc. Math. Phys. Eng. Sci, vol.472, issue.2186, p.20150712, 2016.

R. D. Kornbluh, Electroelastomers: applications of dielectric elastomer transducers for actuation, generation, and smart structures, presented at the SPIE"s 9th Annual International Symposium on Smart Structures and Materials, pp.254-270, 2002.

C. Zhang, Design and Control of Flapping Wing Micro Air Vehicles, 2016.

G. Lau, H. Lim, J. Teo, and Y. Chin, Lightweight mechanical amplifiers for rolled dielectric elastomer actuators and their integration with bio-inspired wing flappers, Smart Mater. Struct, vol.23, issue.2, p.25021, 2014.

Z. Liu, X. Yan, M. Qi, and L. Lin, Electrostatic flapping wings with pivot-spar brackets for high lift force, pp.1133-1136, 2016.

X. Yan, M. Qi, and L. Lin, Self-lifting artificial insect wings via electrostatic flapping actuators, pp.22-25, 2015.

Y. Zou, W. Zhang, and Z. Zhang, Liftoff of an Electromagnetically Driven InsectInspired Flapping-Wing Robot, IEEE Trans. Robot, vol.32, issue.5, pp.1285-1289, 2016.

Z. E. Teoh and R. J. Wood, A bioinspired approach to torque control in an insectsized flapping-wing robot, 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pp.911-917, 2014.

K. Y. Ma, P. Chirarattananon, and R. J. Wood, Design and fabrication of an insectscale flying robot for control autonomy, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.1558-1564, 2015.

B. M. Finio and R. J. Wood, Distributed power and control actuation in the thoracic mechanics of a robotic insect, Bioinspir. Biomim, vol.5, issue.4, p.45006, 2010.

K. Y. Ma, P. Chirarattananon, S. B. Fuller, and R. J. Wood, Controlled Flight of a Biologically Inspired, Insect-Scale Robot, Science, vol.340, issue.6132, pp.603-607, 2013.

Z. E. Teoh, S. B. Fuller, P. Chirarattananon, N. O. Prez-arancibia, J. D. Greenberg et al., A hovering flapping-wing microrobot with altitude control and passive upright stability, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.3209-3216, 2012.

T. Dargent, Micromachining of an SU-8 flapping-wing flying micro-electromechanical system, J. Micromechanics Microengineering, vol.19, issue.8, p.85028, 2009.

J. F. Goosen, H. J. Peters12, Q. Wang, P. Tiso, and F. Van-keulen, Resonance B Resonance Based Flapping Wing Micro Air Vehicle

G. De-croon, K. M. De-clercq, R. Ruijsink, B. Remes, and C. De-wagter, Design, aerodynamics, and vision-based control of the DelFly, Int. J. Micro Air Veh, vol.1, issue.2, pp.71-97, 2009.

C. Hsu, J. Evans, S. Vytla, and P. G. Huang, Development of flapping wing micro air vehicles-design, CFD, experiment and actual flight, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p.1018, 2010.

F. Van-breugel, W. Regan, and H. Lipson, From insects to machines, IEEE Robot. Autom. Mag, vol.15, issue.4, pp.68-74, 2008.

C. Richter and H. Lipson, Untethered hovering flapping flight of a 3D-printed mechanical insect, Artif. Life, vol.17, issue.2, pp.73-86, 2011.

M. Keennon, K. Klingebiel, and H. Won, Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle, 2012.

, BionicOpter | Festo Corporate

A. J. Bergou, S. Xu, and Z. J. Wang, Passive wing pitch reversal in insect flight, J. Fluid Mech, vol.591, 2007.

H. V. Phan, Stable Vertical Takeoff of an Insect-Mimicking Flapping-Wing System Without Guide Implementing Inherent Pitching Stability, J. Bionic Eng, vol.9, issue.4, pp.391-401, 2012.

F. Leys, D. Reynaerts, and D. Vandepitte, Outperforming hummingbirds" load-lifting capability with a lightweight hummingbird-like flapping-wing mechanism, Biol. Open, vol.5, issue.8, pp.1052-1060, 2016.

J. Zhang, B. Cheng, J. A. Roll, X. Deng, and B. Yao, Direct drive of flapping wings under resonance with instantaneous wing trajectory control, Robotics and Automation (ICRA), pp.4029-4034, 2013.

D. Coleman and M. Benedict, On the Development of a Robotic Hummingbird, 2016.

C. H. Greenewalt, The Flight of Birds: The Significant Dimensions, Their Departure from the Requirements for Dimensional Similarity, and the Effect on Flight Aerodynamics of That Departure, Trans. Am. Philos. Soc, vol.65, issue.4, p.1, 1975.

J. J. Craig, Gear Motor :: Solarbotics, 2005.

S. P. Sane and M. H. Dickinson, The control of flight force by a flapping wing: lift and drag production, J. Exp. Biol, vol.204, issue.15, pp.2607-2626, 2001.

H. Liu and K. Kawachi, A Numerical Study of Insect Flight, J. Comput. Phys, vol.146, issue.1, pp.124-156, 1998.

H. Liu, C. P. Ellington, K. Kawachi, C. Van-den, A. P. Berg et al., A computational fluid dynamic study of hawkmoth hovering, J. Exp. Biol, vol.201, issue.4, pp.461-477, 1998.

H. Liu, T. Nakata, N. Gao, M. Maeda, H. Aono et al., Micro air vehiclemotivated computational biomechanics in bio-flights: aerodynamics, flight dynamics and maneuvering stability, Acta Mech. Sin, vol.26, issue.6, pp.863-879, 2010.

M. Sun, J. Wang, and Y. Xiong, Dynamic flight stability of hovering insects, Acta Mech. Sin, vol.23, issue.3, pp.231-246, 2007.

M. Sun, Dynamic flight stability of a hovering bumblebee, J. Exp. Biol, vol.208, issue.3, pp.447-459, 2005.

M. Sun, High-lift generation and power requirements of insect flight, Fluid Dyn. Res, vol.37, issue.1-2, pp.21-39, 2005.

A. K. Brodsky, Vortex formation in the tethered flight of the peacock butterfly Inachis io L.(Lepidoptera, Nymphalidae) and some aspects of insect flight evolution, J. Exp. Biol, vol.161, issue.1, pp.77-95, 1991.

A. P. Willmott and C. P. Ellington, The mechanics of flight in the hawkmoth Manduca sexta. II. Aerodynamic consequences of kinematic and morphological variation, J. Exp. Biol, vol.200, issue.21, pp.2723-2745, 1997.

S. P. Sane and M. H. Dickinson, Quasi-steady model of flapping flight, p.10

, Lagrangian mechanics, Wikipedia, vol.15, 2017.

, Inventor | Mechanical Design & 3D CAD Software | Autodesk, p.15, 2017.

, 20-sim home page, p.11, 2018.

R. T. Mcbride, System analysis through bond graph modeling, 2005.

, Pololu DRV8835 Dual Motor Driver Shield for Arduino, p.28, 2017.

, Arduino Playground -Timer1

, Transducer Technique, p.8, 2017.

&. Hooke and . Law, , p.8, 2017.

J. Wijker, Mechanical Vibrations in Spacecraft Design, 2004.

B. Balachandran, E. B. Magrab, . Vibrations, and . Australia, Cengage Learning, 2009.

, Lò xo xo?n -vanel.com, p.1, 2017.

, XD Series Desktop 3D printers -Mass Portal 3D Printers

H. E. Taha, M. R. Hajj, and A. H. Nayfeh, Flight dynamics and control of flappingwing MAVs: a review, Nonlinear Dyn, vol.70, issue.2, pp.907-939, 2012.

M. Oppenheimer, D. Doman, and D. Sigthorsson, Dynamics and Control of a Minimally Actuated Biomimetic Vehicle: Part II-Control, AIAA Guidance, Navigation, and Control Conference, 2009.

D. B. Doman, M. W. Oppenheimer, and D. O. Sigthorsson, Wingbeat Shape Modulation for Flapping-Wing Micro-Air-Vehicle Control During Hover (Postprint), p.18

D. Doman, M. Oppenheimer, and D. Sigthorsson, Dynamics and Control of a Biomimetic Vehicle Using Biased Wingbeat Forcing Functions: Part II -Controller, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010.

M. Oppenheimer, D. Doman, and D. Sigthorsson, Dynamics and Control of a Biomimetic Vehicle Using Biased Wingbeat Forcing Functions: Part I -Aerodynamic Model, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010.

B. Cheng and X. Deng, Near-hover dynamics and attitude stabilization of an insect model, Proceedings of the 2010 American Control Conference, pp.39-44, 2010.

X. Deng, L. Schenato, and S. Sastry, Hovering Flight Control of a Micromechanical Flying Insect, p.6

X. Deng, L. Schenato, and S. S. Sastry, Flapping flight for biomimetic robotic insects: part II-flight control design, IEEE Trans. Robot, vol.22, issue.4, pp.789-803, 2006.

J. Geder, R. Ramamurti, W. Sandberg, and A. Flynn, Modeling and Control Design for a Flapping-Wing Nano Air Vehicle, AIAA Guidance, Navigation, and Control Conference, 2010.

A. Serrani, B. Keller, M. Bolender, and D. Doman, Robust Control of a 3-DOF Flapping Wing Micro Air Vehicle*, AIAA Guidance, Navigation, and Control Conference, 2010.

H. Rifai, N. Marchand, and G. Poulin, Bounded control of a flapping wing micro drone in three dimensions, 2008 IEEE International Conference on Robotics and Automation, pp.164-169, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00195832

H. Duan and Q. Li, Dynamic model and attitude control of Flapping Wing Micro Aerial Vehicle, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp.451-456, 2009.

H. Duan and D. Gu, Sliding mode adaptive control for flying robot based on recurrent CMAC algorithm, 2011 IEEE International Conference on Mechatronics and Automation, pp.440-445, 2011.

P. Chirarattananon, K. Y. Ma, and R. J. Wood, Adaptive control for takeoff, hovering, and landing of a robotic fly, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.3808-3815, 2013.

L. L. Hines, V. Arabagi, and M. Sitti, Free flight simulations and pitch and roll control experiments of a sub-gram flapping-flight micro aerial vehicle, Robotics and Automation (ICRA), pp.1-7, 2011.

Q. Guo, M. Hu, R. Wei, J. Xu, and H. Song, Hovering control based on fuzzy neural networks for biomimetic flying robotic, 2008 International Conference on Information and Automation, pp.504-508, 2008.

, Median filter, 2018.

M. Keennon, K. Klingebiel, and H. Won, Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle, 2012.

. "arduino-zero, , p.10, 2018.

, MPU-6050 | TDK

, MPU-9250 | TDK

K. Saidi, M. Zwingelstein, A. Khanafer, M. Asmani, and S. Grondel, A practical method for improving mobile devices trajectory estimation via MEMs accelerometers, 2016 11th France-Japan & 9th Europe-Asia Congress on Mechatronics (MECATRONICS) /17th International Conference on Research and Education in Mechatronics (REM), pp.103-110, 2016.

C. Scensor and . Decawave, , p.10, 2018.

, SparkFun Energy Harvester Breakout -LTC3588 -BOB-09946 -SparkFun Electronics, p.10, 2018.

L. Hines, D. Colmenares, and M. Sitti, Platform design and tethered flight of a motordriven flapping-wing system, Robotics and Automation (ICRA), 2015 IEEE International Conference on, pp.5838-5845, 2015.

S. S. Baek, K. Y. Ma, and R. S. Fearing, Efficient resonant drive of flapping-wing robots, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2854-2860, 2009.

J. Zhang, B. Cheng, J. A. Roll, X. Deng, and B. Yao, Direct drive of flapping wings under resonance with instantaneous wing trajectory control, Robotics and Automation (ICRA), pp.4029-4034, 2013.

J. A. Roll, B. Cheng, and X. Deng, An Electromagnetic Actuator for High-Frequency Flapping-Wing Microair Vehicles, IEEE Trans. Robot, vol.31, issue.2, pp.400-414, 2015.
DOI : 10.1109/tro.2015.2409451

G. Lau, Y. Chin, J. T. , .. Goh, and R. J. Wood, Dipteran-Insect-Inspired Thoracic Mechanism With Nonlinear Stiffness to Save Inertial Power of Flapping-Wing Flight, IEEE Trans. Robot, vol.30, issue.5, pp.1187-1197, 2014.

C. T. Bolsman, J. F. Goosen, and F. Van-keulen, Design Overview of a Resonant Wing Actuation Mechanism for Application in Flapping Wing MAVs, Int. J. Micro Air Veh, vol.1, issue.4, pp.263-272, 2009.

G. Lau, Y. Chin, and T. La, Development of elastomeric flight muscles for flapping wing micro air vehicles, p.1016320, 2017.

D. Campolo, M. Azhar, G. Lau, and M. Sitti, Can DC Motors Directly Drive Flapping Wings at High Frequency and Large Wing Strokes?, IEEE ASME Trans. Mechatron, vol.19, issue.1, pp.109-120, 2014.

J. P. Whitney and R. J. Wood, Conceptual design of flapping-wing micro air vehicles, Bioinspir. Biomim, vol.7, issue.3, p.36001, 2012.

X. Q. Bao, A. Bontemps, S. Grondel, and E. Cattan, Design and fabrication of insectinspired composite wings for MAV application using MEMS technology, J. Micromechanics Microengineering, vol.21, issue.12, p.125020, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00783487

A. Bontemps, T. Vanneste, J. Paquet, T. Dietsch, S. Grondel et al., Design and performance of an insect-inspired nano air vehicle, Smart Mater. Struct, vol.22, issue.1, p.14008, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00796466

S. N. Fry, R. Sayaman, and M. H. Dickinson, The Aerodynamics of Free-Flight Maneuvers in Drosophila, vol.300, p.5, 2003.

D. Faux, O. Thomas, S. Grondel, and E. Cattan, Dynamic Optimization of Artificial Insect-Sized Flapping Wings for a Bioinspired Kinematics Using a Two Resonant Vibration Modes Combination, Submitt. J. Sound Vib, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02292288

W. Borutzky, Bond Graph Methodology, 2010.

A. Bontemps, Prototypage d"un Objet Volant Mimant l"Insecte, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00912362

T. Weis-fogh, Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production, J. Exp. Biol, vol.59, issue.1, pp.169-230, 1973.

M. Le, An Unconventional Lift-Enhancing Mechanism: Clap and Fling | Bio-Aerial Locomotion

J. M. Birch, The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight, J. Exp. Biol, vol.206, issue.13, pp.2257-2272, 2003.

G. Bagan, Algorithmes et complexité des problèmes d"énumération pour l"évaluation de requêtes logiques, 2009.

T. Weis-fogh, Energetics of hovering flight in hummingbirds and in Drosophila, J. Exp. Biol, vol.56, issue.1, pp.79-104, 1972.

J. M. Rayner, A vortex theory of animal flight. Part 1. The vortex wake of a hovering animal, J. Fluid Mech, vol.91, issue.4, pp.697-730, 1979.

C. P. Ellington, The aerodynamics of hovering insect flight-The aerodynamics of hovering insect flight. V. A vortex theory, Phil Trans R Soc Lond B, vol.305, issue.1122, pp.115-144, 1984.

S. Sunada and C. P. Ellington, A new method for explaining the generation of aerodynamic forces in flapping flight, Math. Methods Appl. Sci, vol.24, pp.1377-1386, 2001.

M. F. Osborne, Aerodynamics of flapping flight with application to insects, J. Exp. Biol, vol.28, issue.2, pp.221-245, 1951.

C. P. Ellington, The Aerodynamics of Hovering Insect Flight. IV. Aeorodynamic Mechanisms, Philos. Trans. R. Soc. B Biol. Sci, vol.305, issue.1122, pp.79-113, 1984.

A. Azuma, The Biokinetics of Flying and Swimming, 1992.

S. A. Ansari, A Nonlinear, Unsteady, aerodynamic model for insect-like flapping wings in the hover with micro air vehicle applications, 2004.

J. A. Walker and M. W. Westneat, Mechanical performance of aquatic rowing and flying, Proc. R. Soc. B Biol. Sci, vol.267, issue.1455, pp.1875-1881, 2000.

L. W. Traub, Analysis and Estimation of the Lift Components of Hovering Insects, J. Aircr, vol.41, issue.2, pp.284-289, 2004.

M. J. Tarascio, M. Ramasamy, I. Chopra, and J. G. Leishman, Flow Visualization of Micro Air Vehicle Scaled Insect-Based Flapping Wings, J. Aircr, vol.42, issue.2, pp.385-390, 2005.

G. J. Berman and Z. J. Wang, Energy-minimizing kinematics in hovering insect flight, J. Fluid Mech, vol.582, p.153, 2007.

F. O. Minotti, Unsteady two-dimensional theory of a flapping wing, Phys. Rev. E, vol.66, issue.5, 2002.

C. B. Pedersen, An indicial-polhamus model of aerodynamics of insect-like flapping wings in hover, 2003.

Y. Yongliang, T. Binggang, and M. Huiyang, An analytic approach to theoretical modeling of highly unsteady viscous flow excited by wing flapping in small insects, Acta Mech. Sin, vol.19, issue.6, pp.508-516, 2003.

D. I. Pullin and Z. J. Wang, Unsteady forces on an accelerating plate and application to hovering insect flight, p.21

S. A. Ansari and K. Knowles, A nonlinear unsteady aerodynamic model for insectlike flapping wings in the hover: Part I. Methodology and analysis, p.52

S. A. Ansari, R. ?bikowski, and K. Knowles, Non-linear unsteady aerodynamic model for insect-like flapping wings in the hover. Part 2: Implementation and validation, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng, vol.220, issue.3, pp.169-186, 2006.

A. Gogulapati, Nonlinear Approximate Aeroelastic Analysis of Flapping Wings in Hover and Forward Flight, 2011.

H. Taha and M. Hajj, Unsteady Nonlinear Aerodynamics of Hovering MAVs/Insects, 2013.

D. Faux, Couplage modal pour la reproduction de la cinématique d"une aile d"insecte et la génération de portance d"un nano-drone bio-inspiré, VALENCIENNES ET DU HAINAUT-CAMBRESIS, 2017.

T. Vanneste, . Valenciennes, and . Du-hainaut-cambresis, Développement d"un outil de modélisation aéroélastique du vol battu de l"insecte appliqué à la conception d"un nano-drone résonant, 2017.