, Shahragim Tajbakhsh, vol.1, issue.3

F. Cnrs-umr8104,

, Institut Pasteur

, Institute for Stem Cell Biology and Regenerative Medicine

, Josiane Demignon 1,2,3 , Fabien Le Grand 5 , Vincent Mouly 5, Nathalie Chaverot, vol.5, issue.3

U. Inserm and I. Cochin,

F. Cnrs-umr8104,

, Institut Pasteur

M. Institut-de,

, Email address: pascal.maire@inserm.fr

S. Abdelhak, V. Kalatzis, R. Heilig, S. Compain, D. Samson et al., A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family, Nat. Genet, vol.15, pp.157-164, 1997.

A. Abduelmula, R. Huang, Q. Pu, H. Tamamura, G. Morosan-puopolo et al., SDF-1 controls the muscle and blood vessel formation of the somite, Int. J. Dev. Biol, vol.60, pp.29-38, 2016.

R. Abou-khalil, F. L. Grand, G. Pallafacchina, S. Valable, F. Authier et al., Autocrine and Paracrine Angiopoietin 1/Tie-2 Signaling Promotes Muscle Satellite Cell Self-Renewal, Cell Stem Cell, vol.5, pp.298-309, 2009.
DOI : 10.1016/j.stem.2009.06.001

URL : https://hal.archives-ouvertes.fr/hal-02142762

G. R. Adams, S. A. Mccue, P. W. Bodell, M. Zeng, and K. M. Baldwin, Effects of spaceflight and thyroid deficiency on hindlimb development. I. Muscle mass and IGF-I expression, J. Appl. Physiol, vol.88, pp.894-903, 2000.

S. Ahmad, A. T. Jan, M. H. Baig, E. J. Lee, and I. Choi, Matrix gla protein: An extracellular matrix protein regulates myostatin expression in the muscle developmental program, Life Sci, vol.172, pp.55-63, 2017.

M. Ahmed, E. Y. Wong, J. Sun, J. Xu, F. Wang et al., Eya1-Six1 Interaction Is Sufficient to Induce Hair Cell Fate in the Cochlea by Activating Atoh1 Expression in Cooperation with Sox2, Dev. Cell, vol.22, pp.377-390, 2012.

M. Ahmed, J. Xu, and P. Xu, EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear, Development, vol.139, pp.1965-1977, 2012.

H. Alameddine, D. Hantai, M. Dehaupas, and M. Fardeau, Role of persisting basement membrane in the from of myofibres originating cell grafts in the rat, Neuromuscul. Disord, vol.1, pp.143-152, 1991.

C. Alexakis, T. Partridge, and G. Bou-gharios, Implication of the satellite cell in dystrophic muscle fibrosis: a self-perpetuating mechanism of collagen overproduction, 2007.

, Am. J. Physiol. Cell Physiol, vol.293, pp.661-669

L. A. Alfaro, S. A. Dick, A. L. Siegel, A. S. Anonuevo, K. M. Mcnagny et al., CD34 promotes satellite cell motility and entry into proliferation to facilitate efficient skeletal muscle regeneration, Stem Cells, vol.29, pp.2030-2041, 2011.
DOI : 10.1002/stem.759

URL : https://stemcellsjournals.onlinelibrary.wiley.com/doi/pdf/10.1002/stem.759

H. Amthor, B. Christ, and K. Patel, A molecular mechanism enabling continuous embryonic muscle growth -a balance between proliferation and differentiation, Development, vol.126, pp.1041-53, 1999.

E. R. Andersson, R. Sandberg, and U. Lendahl, Notch signaling: simplicity in design, versatility in function, Development, vol.138, pp.3593-3612, 2011.

L. De-angelis, L. Berghella, M. Coletta, L. Lattanzi, M. Zanchi et al., Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration, J. Cell Biol, vol.147, pp.869-877, 1999.

M. Applebaum, R. Ben-yair, and C. Kalcheim, Segregation of striated and smooth muscle lineages by a Notch-dependent regulatory network, BMC Biol, vol.12, p.53, 2014.

M. Atkins, Y. Jiang, L. Sansores-garcia, B. Jusiak, G. Halder et al., Dynamic Rewiring of the Drosophila Retinal Determination Network Switches Its Function from Selector to Differentiation, PLoS Genet, vol.9, 2013.

A. Aulehla and O. Pourquié, On periodicity and directionality of somitogenesis, Anat. Embryol. (Berl), vol.211, pp.3-8, 2006.

M. Aumailley, L. Bruckner-tuderman, W. G. Carter, R. Deutzmann, D. Edgar et al.,

U. Martin, G. Mayer, J. H. Meneguzzi, K. Miner, M. Miyazaki et al.,

J. Tryggvason, I. Uitto, K. Virtanen, . Von-der, U. M. Mark et al., A simplified laminin nomenclature, Matrix Biol, vol.24, pp.326-332, 2005.

F. Bajanca, M. Luz, M. J. Duxson, and S. Thorsteinsdóttir, Integrins in the mouse myotome: Developmental changes and differences between the epaxial and hypaxial lineage, Dev. Dyn, vol.231, pp.402-415, 2004.

F. Bajanca, M. Luz, K. Raymond, G. G. Martins, A. Sonnenberg et al., Integrin a6B1-laminin interactions regulate early myotome formation in the mouse embryo, Development, vol.133, pp.1635-1644, 2006.

F. Bajanca and S. Thorsteinsdottir, Integrin expression patterns during early limb muscle development in the mouse, Mech Dev, vol.119, 2002.

L. Bajard, F. Relaix, M. Lagha, D. Rocancourt, P. Daubas et al., A novel genetic hierarchy functions during hypaxial myogenesis: Pax3 directly activates Myf5 in muscle progenitor cells in the limb, Genes Dev, vol.20, pp.2450-2464, 2006.

M. Barany, ATPase Activity of Myosin Correlated with Speed of Muscle Shortening, J. Gen. Physiol, vol.50, pp.197-218, 1967.

K. Behbakht, L. Qamar, C. S. Aldridge, R. D. Coletta, S. A. Davidson et al., Six1 overexpression in ovarian carcinoma causes resistance to TRAILmediated apoptosis and is associated with poor survival, Cancer Res, vol.67, pp.3036-3042, 2007.

R. Ben-yair and C. Kalcheim, Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates, Development, vol.132, pp.689-701, 2005.

R. Ben-yair and C. Kalcheim, Notch and bone morphogenetic protein differentially act on dermomyotome cells to generate endothelium, smooth, and striated muscle, J. Cell Biol, vol.180, pp.607-618, 2008.

C. F. Bentzinger, P. Barzaghi, S. Lin, and M. Ruegg, Overexpression of mini-agrin in skeletal muscle increases muscle integrity and regenerative capacity in laminin-alpha2-deficient mice, FASEB J, vol.19, pp.934-942, 2005.

C. F. Bentzinger, Y. X. Wang, N. A. Dumont, and M. A. Rudnicki, Cellular dynamics in the muscle satellite cell niche, EMBO Rep, vol.14, pp.1062-72, 2013.

C. F. Bentzinger, Y. X. Wang, J. Von-maltzahn, V. D. Soleimani, H. Yin et al., Fibronectin Regulates Wnt7a Signaling and Satellite Cell Expansion, Stem Cell, vol.12, pp.75-87, 2013.

D. A. Bergstrom and S. J. Tapscott, Molecular Distinction between Specification and Differentiation in the Myogenic Basic Helix-Loop-Helix Transcription Factor Family Molecular Distinction between Specification and Differentiation in the Myogenic Basic Helix-Loop-Helix Transcription Factor, vol.21, pp.2404-2412, 2001.

E. Bertini and G. Pepe, Collagen type VI and related disorders: Bethlem myopathy and Ullrich scleroatonic muscular dystrophy, Eur. J. Paediatr. Neurol, vol.6, pp.193-198, 2002.

M. Bertolessi, L. Linta, T. Seufferlein, A. Kleger, and S. Liebau, A Fresh Look on TBox Factor Action in Early Embryogenesis (T-Box Factors in Early Development). Stem Cells, 2015.

S. Bhattacharyya and M. Bronner-fraser, Hierarchy of regulatory events in sensory placode development, Curr. Opin. Genet. Dev, vol.14, pp.520-526, 2004.

P. Bi, A. Ramirez-martinez, H. Li, J. Cannavino, J. R. Mcanally et al., Control of muscle formation by the fusogenic micropeptide myomixer, vol.356, pp.323-327, 2017.

S. Biressi, G. Messina, P. Collombat, E. Tagliafico, S. Monteverde et al.,

A. Cusella-de-angelis, S. Mansouri, S. Ferrari, V. Tajbakhsh, G. Broccoli et al., The homeobox gene Arx is a novel positive regulator of embryonic myogenesis, Cell Death Differ, vol.15, pp.94-104, 2008.

S. Biressi, M. Molinaro, and G. Cossu, Cellular heterogeneity during vertebrate skeletal muscle development, Dev. Biol, vol.308, pp.281-93, 2007.
DOI : 10.1016/j.ydbio.2007.06.006

URL : https://doi.org/10.1016/j.ydbio.2007.06.006

S. Biressi, E. Tagliafico, G. Lamorte, S. Monteverde, E. Tenedini et al., Intrinsic phenotypic diversity of embryonic and fetal myoblasts is revealed by genome-wide gene expression analysis on purified cells, Dev. Biol, vol.304, pp.633-651, 2007.

R. Bischoff, Interaction between satellite cells and skeletal muscle fibers, Development, vol.109, pp.943-952, 1990.

R. Bischoff, Chemotaxis of skeletal muscle satellite cells, Dev. Dyn, vol.208, pp.505-515, 1997.
DOI : 10.1002/(sici)1097-0177(199704)208:4<505::aid-aja6>3.0.co;2-m

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291097-0177%28199704%29208%3A4%3C505%3A%3AAID-AJA6%3E3.0.CO%3B2-M

C. R. Bjornson, T. H. Cheung, L. Liu, P. V. Tripathi, K. M. Steeper et al., Notch signaling is necessary to maintain quiescence in adult muscle stem cells, Stem Cells, vol.30, pp.232-242, 2012.
DOI : 10.1002/stem.773

URL : https://stemcellsjournals.onlinelibrary.wiley.com/doi/pdf/10.1002/stem.773

F. Bladt, D. Riethmacher, S. Isenmann, A. Aguzzi, and C. Birchmeier, Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud, Nature, vol.376, pp.768-771, 1995.

W. E. Blanco-bose and H. M. Blau, Laminin-induced change in conformation of preexisting alpha7beta1 integrin signals secondary myofiber formation, Dev. Biol, vol.233, pp.148-60, 2001.

E. Bloch-gallego, Mechanisms controlling neuromuscular junction stability, Cell. Mol. Life Sci, vol.72, pp.1029-1043, 2015.
DOI : 10.1007/s00018-014-1768-z

URL : https://hal.archives-ouvertes.fr/inserm-01076426

E. Bober, T. Franz, H. H. Arnold, P. Gruss, and P. Tremblay, Pax-3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells, Development, vol.120, pp.603-612, 1994.

N. M. Bonini, W. M. Leiserson, and S. Benzer, The eyes absent gene: Genetic control of cell survival and differentiation in the developing Drosophila eye, Cell, vol.72, issue.93, pp.90115-90122, 1993.

M. A. Bonnin, C. Laclef, R. Blaise, S. Eloy-trinquet, F. Relaix et al., Six1 is not involved in limb tendon development, but is expressed in limb connective tissue under Shh regulation, Mech. Dev, vol.122, pp.573-585, 2005.

U. Borello, B. Berarducci, P. Murphy, L. Bajard, V. Buffa et al., The Wnt/B-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis, Development, vol.133, pp.3723-3732, 2006.
DOI : 10.1242/dev.02517

URL : http://dev.biologists.org/content/133/18/3723.full.pdf

X. Borue and D. M. Noden, Normal and aberrant craniofacial myogenesis by grafted trunk somitic and segmental plate mesoderm, Development, vol.131, pp.3967-3980, 2004.
DOI : 10.1242/dev.01276

URL : http://dev.biologists.org/content/131/16/3967.full.pdf

A. G. Borycki, B. Brunk, S. Tajbakhsh, M. Buckingham, C. Chiang et al., Sonic hedgehog controls epaxial muscle determination through Myf5 activation, Development, vol.126, pp.4053-63, 1999.

C. A. Boucher, S. K. King, N. Carey, R. Krahe, C. L. Winchester et al.,

M. E. Mehji, F. L. Bailey, S. D. Chartier, M. J. Brown, K. J. Siciliano et al., A novel homeodomain-encoding gene is associated with a large CPG Island interrupted by the myotonic dystrophy unstable (CTG)n repeat, Hum. Mol. Genet, vol.4, pp.1919-1925, 1995.

C. Boucher, N. Carey, Y. H. Edwards, M. J. Siciliano, and K. J. Johnson, Cloning of the human SIX1 gene and its assignment to chromosome 14, Genomics, vol.33, pp.140-142, 1996.

W. Bowman, On the Minute Structure and Movements of Voluntary Muscle, Philos. Trans. R. Soc. London, vol.130, pp.457-501, 1840.

A. S. Brack, I. M. Conboy, M. J. Conboy, J. Shen, and T. Rando, A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis, Cell Stem Cell, vol.2, pp.50-59, 2008.

A. S. Brack, I. M. Conboy, M. J. Conboy, J. Shen, and T. Rando, A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis, Cell Stem Cell, vol.2, pp.50-59, 2008.

P. Braghetta, A. Ferrari, C. Fabbro, D. Bizzotto, D. Volpin et al., An enhancer required for transcription of the Col6a1 gene in muscle connective tissue is induced by signals released from muscle cells, Exp. Cell Res, vol.314, pp.3508-3518, 2008.

B. Brand-saberi, V. Krenn, M. Grim, and B. Christ, Differences in the fibronectindependence of migrating cell populations, Anat. Embryol. (Berl), vol.187, pp.17-26, 1993.

B. Brand-saberi, T. S. Müller, J. Wilting, B. Christ, and C. Birchmeier, Scatter factor/hepatocyte growth factor (SF/HGF) induces emigration of myogenic cells at interlimb level in vivo, Dev. Biol, vol.179, pp.303-311, 1996.

T. Braun and H. Arnold, Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development, vol.14, 1995.

T. Braun, E. Bober, M. Rudnicki, R. Jaenisch, and H. H. Arnold, MyoD expression marks the onset of skeletal myogenesis in Myf-5 mutant mice, Development, vol.120, pp.3083-3092, 1994.

T. Braun, G. Buschhausen-denker, E. Bober, E. Tannich, and H. H. Arnold, A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts, EMBO J, vol.8, pp.701-709, 1989.

T. Braun, M. A. Rudnicki, H. H. Arnold, and R. Jaenisch, Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death, Cell, vol.71, pp.90507-90516, 1992.

A. E. Brent, R. Schweitzer, and C. J. Tabin, A somitic compartment of tendon progenitors, Cell, vol.113, pp.235-248, 2003.

S. Brodbeck, B. Besenbeck, and C. Englert, The transcription factor Six2 activates expression of the Gdnf gene as well as its own promoter, Mech. Dev, vol.121, pp.1211-1222, 2004.

D. Bröhl, E. Vasyutina, M. T. Czajkowski, J. Griger, C. Rassek et al., Colonization of the satellite cell niche by skeletal muscle progenitor cells depends on Notch signals, Dev. Cell, vol.23, pp.469-81, 2012.

M. Buckingham, Skeletal muscle formation in vertebrates, Curr. Opin. Genet. Dev, vol.11, pp.440-448, 2001.

M. Buckingham and A. Mayeuf, Skeletal muscle development. 2. First Edit, pp.749-762, 2012.

M. Buckingham and F. Relaix, PAX3 and PAX7 as upstream regulators of myogenesis, Semin. Cell Dev. Biol, vol.44, pp.115-125, 2015.

A. J. Buller, J. C. Eccles, and R. M. Eccles, Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses, J. Physiol, vol.150, pp.417-439, 1960.

G. Butler-browne, L. Bugaisky, S. Cuénoud, K. Schwartz, and R. Whalen, Denervation of newborn rat muscles does not block the appearance of adult fast myosin heavy chain, Nature, vol.299, pp.830-833, 1982.

A. S. Cachaço, C. S. Pereira, R. G. Pardal, F. Bajanca, and S. Thorsteinsdóttir, Integrin Repertoire on Myogenic Cells Changes During the Course of Primary Myogenesis in the Mouse, Dev. Dyn, vol.232, pp.1069-1078, 2005.

M. Cantini, E. Giurisato, C. Radu, S. Tiozzo, F. Pampinella et al., Macrophage-secreted myogenic factors: A promising tool for greatly enhancing the proliferative capacity of myoblasts in vitro and in vivo, Neurol. Sci, vol.23, pp.189-194, 2002.

Y. Cao, Z. Yao, D. Sarkar, M. Lawrence, G. J. Sanchez et al., Genomewide MyoD Binding in Skeletal Muscle Cells: A Potential for Broad Cellular Reprogramming, Dev. Cell, vol.18, pp.662-674, 2010.

M. Carl, F. Loosli, and J. Wittbrodt, Six3 inactivation reveals its essential role for the formation and patterning of the vertebrate eye, Development, vol.129, pp.4057-4063, 2002.

J. V. Chakkalakal, J. Christensen, W. Xiang, M. T. Tierney, F. S. Boscolo et al., Early forming label-retaining muscle stem cells require p27kip1 for maintenance of the primitive state, Development, vol.141, pp.1649-1659, 2014.

J. V. Chakkalakal, H. Nishimune, J. L. Ruas, B. M. Spiegelman, and J. R. Sanes, Retrograde influence of muscle fibers on their innervation revealed by a novel marker for slow motoneurons, Development, vol.137, pp.3489-3499, 2010.

I. Chakroun, D. Yang, J. Girgis, A. Gunasekharan, H. Phenix et al., , 2015.

, Genome-wide association between Six4, MyoD, and the histone demethylase Utx during myogenesis, FASEB J, vol.29, pp.4738-4755

G. W. Charville, T. H. Cheung, B. Yoo, P. J. Santos, G. K. Lee et al., Ex vivo expansion and in vivo self-renewal of human muscle stem cells, Stem Cell Reports, vol.5, pp.621-632, 2015.

A. E. Chen, D. D. Ginty, and C. Fan, Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins, Nature, vol.433, pp.317-322, 2005.

B. Chen, E. H. Kim, and P. X. Xu, Initiation of olfactory placode development and neurogenesis is blocked in mice lacking both Six1 and Six4, Dev. Biol, vol.326, pp.75-85, 2009.

C. Chen, J. M. Fingerhut, and Y. M. Yamashita, The ins(ide) and outs(ide) of asymmetric stem cell division, Curr. Opin. Cell Biol, vol.43, pp.1-6, 2016.

R. Chen, M. Amoui, Z. Zhang, and G. Mardon, Dachshund and eyes absent proteins form a complex and function synergistically to induce ectopic eye development in Drosophila, Cell, vol.91, pp.893-903, 1997.

B. N. Cheyette, P. J. Green, K. Martin, H. Garren, V. Hartenstein et al., The drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system, Neuron, vol.12, issue.94, pp.90308-90313, 1994.

A. Y. Chiu and J. R. Sanes, Development of Basal Lamina in Synaptic and Extrasynaptic Portions of Embryonic Rat Muscle, Dev. Biol, vol.103, pp.456-467, 1984.

B. Christ, H. J. Jacob, and M. Jacob, Experimental analysis of the origin of the wing musculature in avian embryos, Anat. Embryol. (Berl), vol.150, pp.171-186, 1977.

K. L. Christensen, A. N. Patrick, E. L. Mccoy, and H. L. Ford, The six family of homeobox genes in development and cancer, Adv. Cancer Res, vol.101, pp.93-126, 2008.

C. Christov, F. Chretien, R. Abou-khalil, G. Bassez, G. Vallet et al., Muscle Satellite Cells and Endothelial Cells : Close Neighbors and Privileged Partners, Mol. Biol. Cell, vol.18, pp.1397-1409, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00128985

Y. Cinnamon, R. Ben-yair, and C. Kalcheim, Differential effects of N-cadherinmediated adhesion on the development of myotomal waves, Development, vol.133, pp.1101-1112, 2006.

Y. Cinnamon, N. Kahane, and C. Kalcheim, Characterization of the early development of specific hypaxial muscles from the ventrolateral myotome, Development, vol.126, pp.4305-4315, 1999.

D. D. Clark, M. R. Gorman, M. Hatori, J. D. Meadows, S. Panda et al., Aberrant Development of the Suprachiasmatic Nucleus and Circadian Rhythms in Mice Lacking the Homeodomain Protein Six6, J. Biol. Rhythms, vol.28, pp.15-25, 2013.

I. B. Clark, J. Boyd, G. Hamilton, D. J. Finnegan, and A. P. Jarman, D-six4 plays a key role in patterning cell identities deriving from the Drosophila mesoderm, Dev. Biol, vol.294, pp.220-231, 2006.

R. D. Coletta, E. L. Mccoy, V. Burns, K. Kawakami, J. L. Mcmanaman et al., Characterization of the Six1 homeobox gene in normal mammary gland morphogenesis, BMC Dev. Biol, vol.10, p.4, 2010.

C. Collins, P. S. Olsen, L. Zammit, A. Heslop, T. Petrie et al., Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche, Cell, vol.122, pp.289-301, 2005.

F. Colucci, Dissecting NK cell development using a novel alymphoid mouse model: investigating the role of the c-abl proto-oncogene in murine NK cell differentiation, J. Immunol, vol.162, pp.2761-2765, 1999.

I. M. Conboy, M. J. Conboy, A. J. Wagers, E. R. Girma, I. L. Weissman et al., Rejuvenation of aged progenitor cells by exposure to a young systemic environment, Nature, vol.433, pp.760-764, 2005.

I. M. Conboy and T. A. Rando, The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis, Dev. Cell, vol.3, pp.397-409, 2002.

M. J. Conboy, A. O. Karasov, and T. A. Rando, High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny, PLoS Biol, vol.5, pp.1120-1126, 2007.

K. Condon, L. Silberstein, H. M. Blau, and W. J. Thompson, Development of muscle fiber types in the prenatal rat hindlimb, Dev. Biol, vol.138, p.90196, 1990.

P. J. Cook, B. G. Ju, F. Telese, X. Wang, C. K. Glass et al., Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions, Nature, vol.458, pp.591-597, 2009.
DOI : 10.1038/nature07849

URL : http://europepmc.org/articles/pmc2692521?pdf=render

G. Cossu and M. Molinaro, Cell Heterogeneity in The Myogenic Lineage. Recent Adv. Mamm. Dev, vol.23, issue.08, pp.60625-60625, 1987.

J. Covault and J. R. Sanes, Distribution of N-CAM in synaptic and extrasynaptic portions of developing and adult skeletal muscle, J. Cell Biol, vol.102, pp.716-730, 1986.

C. G. Crist, D. Montarras, and M. Buckingham, Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules, Cell Stem Cell, vol.11, pp.118-144, 2012.

J. Curtiss, M. Burnett, and M. Mlodzik, distal antenna and distal antenna-related function in the retinal determination network during eye development in Drosophila, 2007.

, Dev. Biol, vol.306, pp.685-702

M. G. Cusella-de-angelis, S. Molinari, A. Le-donne, M. Coletta, E. Vivarelli et al., Differential response of embryonic and fetal myoblasts to TGF-beta: a possible regulatory mechanism of skelatal muscle histogenesis, Development, vol.120, pp.925-933, 1994.

M. T. Czajkowski, C. Rassek, D. C. Lenhard, D. Bröhl, and C. Birchmeier, Divergent and conserved roles of Dll1 signaling in development of craniofacial and trunk muscle, 2014.

, Dev. Biol, vol.395, pp.307-316

T. Czerny, G. Halder, U. Kloter, A. Souabni, W. J. Gehring et al., Twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development, Mol. Cell, vol.3, pp.80457-80465, 1999.

E. Dahl, H. Koseki, and R. Balling, Pax genes and organogenesis, BioEssays, vol.19, pp.755-765, 1997.
DOI : 10.1002/bies.950190905

G. Daston, E. Lamar, M. Olivier, and M. Goulding, Pax-3 is necessary for migration but not differentiation of limb muscle precursors in the mouse, vol.1027, pp.1017-1027, 1996.

P. Daubas and M. E. Buckingham, Direct molecular regulation of the myogenic determination gene Myf5 by Pax3, with modulation by Six1/4 factors, is exemplified by the -111 kb-Myf5 enhancer, Dev. Biol, vol.376, pp.236-280, 2013.

R. L. Davis, H. Weintraub, and A. B. Lassar, Expression of a single transfected cDNA converts fibroblasts to myoblasts, Cell, vol.51, pp.987-1000, 1987.

T. L. Davis and I. Rebay, Master regulators in development: Views from the Drosophila retinal determination and mammalian pluripotency gene networks, Dev. Biol, vol.421, pp.93-107, 2017.

M. C. Delfini, M. De-la-celle, J. Gros, O. Serralbo, I. Marics et al.,

M. , The timing of emergence of muscle progenitors is controlled by an FGF/ERK/SNAIL1 pathway, Dev. Biol, vol.333, pp.229-237, 2009.

A. Dellavalle, G. Maroli, D. Covarello, E. Azzoni, L. Innocenzi et al., Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells, Nat. Commun, vol.2, p.499, 2011.
DOI : 10.1038/ncomms1508

URL : https://www.nature.com/articles/ncomms1508.pdf

C. Denardi, S. Ausoni, P. Moretti, L. Gorza, M. Velleca et al., Type 2X-Myosin Heavy Chain Is Coded by a Muscle, J. Cell Biol, vol.123, pp.823-835, 1993.

W. F. Denetclaw and C. P. Ordahl, The growth of the dermomyotome and formation of early myotome lineages in thoracolumbar somites of chicken embryos, Development, vol.127, pp.893-905, 2000.

M. J. Dennis, L. Ziskind-conhaim, and A. J. Harris, Development of neuromuscular junctions in rat embryos, Dev. Biol, vol.81, pp.90290-90296, 1981.

M. Deries, R. Schweitzer, and M. J. Duxson, Developmental fate of the mammalian myotome, Dev. Dyn, vol.239, pp.2898-910, 2010.

C. Desplan, Eye development: Governed by a dictator or a junta?, Cell, vol.91, pp.861-864, 1997.
DOI : 10.1016/s0092-8674(00)80475-4

URL : https://doi.org/10.1016/s0092-8674(00)80475-4

S. Dietrich, F. Abou-rebyeh, H. Brohmann, F. Bladt, E. Sonnenberg-riethmacher et al., The role of SF/HGF and c-Met in the development of skeletal muscle, Development, vol.126, pp.1621-1629, 1999.

R. Diogo, R. G. Kelly, L. Christiaen, M. Levine, J. M. Ziermann et al., A new heart for a new head in vertebrate cardiopharyngeal evolution, Nature, vol.520, pp.466-473, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01432404

K. C. Dobi, V. K. Schulman, and M. K. Baylies, Specification of the somatic musculature in Drosophila, Wiley Interdiscip. Rev. Dev. Biol, vol.4, pp.357-375, 2015.

A. Draeger, A. G. Weeds, and R. B. Fitzsimons, Primary, Secondary and Tertiary Myotubes in Developing Skeletal Muscle: A New Approach to the Analysis of Human Myogenesis, J. Neurol. Sci, vol.81, pp.19-43, 1987.

H. Duan, C. Zhang, J. Chen, H. Sink, E. Frei et al., A key role of Pox meso in somatic myogenesis of Drosophila, Development, vol.134, pp.3985-3997, 2007.

J. L. Duband, S. Dufour, K. Hatta, M. Takeichi, G. M. Edelman et al., Adhesion molecules during somitogenesis in the avian embryo, J. Cell Biol, vol.104, pp.1361-1374, 1987.
DOI : 10.1083/jcb.104.5.1361

URL : http://jcb.rupress.org/content/104/5/1361.full.pdf

N. A. Dumont, Y. X. Wang, J. Von-maltzahn, A. Pasut, C. F. Bentzinger et al., Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division, Nat. Med, vol.21, pp.1455-1463, 2015.
DOI : 10.1038/nm.3990

URL : http://europepmc.org/articles/pmc4839960?pdf=render

N. A. Dumont, Y. X. Wang, and M. A. Rudnicki, Intrinsic and extrinsic mechanisms regulating satellite cell function, compagny Biol, vol.142, pp.1572-1581, 2015.
DOI : 10.1242/dev.114223

URL : http://dev.biologists.org/content/142/9/1572.full.pdf

M. Durbeej, Laminins. Cell Tissue Res, vol.339, pp.259-268, 2010.

M. J. Duxson and Y. Usson, Cellular insertion of primary and secondary myotubes in embryonic rat muscles, Development, vol.107, pp.243-51, 1989.

M. J. Duxson, Y. Usson, and A. J. Harris, The origin of secondary myotubes in mammalian skeletal muscles: ultrastructural studies, Development, vol.107, pp.743-750, 1989.

A. H. El-hashash, D. Alam, G. Turcatel, O. Rogers, X. Li et al.,

. Warburton, Six1 transcription factor is critical for coordination of epithelial, mesenchymal and vascular morphogenesis in the mammalian lung, Dev. Biol, vol.353, pp.242-58, 2011.

A. H. El-hashash, G. Turcatel, D. Alam, S. Buckley, H. Tokumitsu et al.,

. Warburton, Eya1 controls cell polarity, spindle orientation, cell fate and Notch signaling in distal embryonic lung epithelium, Development, vol.138, pp.1395-407, 2011.

D. J. Epstein, M. Vekemans, and P. Gros, splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3, Cell, vol.67, pp.90071-90077, 1991.

P. Esteve and P. Bovolenta, cSix4, a member of the six gene family of transcription factors, is expressed during placode and somite development, Mech. Dev, vol.85, pp.161-165, 1999.

G. Ferrari, M. G. Cusella-de-angelis, M. Coletta, E. Paolucci, A. Stornaiuolo et al., Muscle Regeneration by Bone Marrow-Derived Myogenic Progenitors. Science (80-. ), vol.279, 1998.
DOI : 10.1126/science.279.5356.1528

L. I. Filippin, A. J. Moreira, N. P. Marroni, and R. M. Xavier, Nitric oxide and repair of skeletal muscle injury, Nitric Oxide -Biol. Chem, vol.21, pp.157-163, 2009.
DOI : 10.1016/j.niox.2009.08.002

T. Fladby and J. K. Jansen, Development of homogeneous fast and slow motor units in the neonatal mouse soleus muscle, Development, vol.109, pp.723-755, 1990.

H. L. Ford, Homeobox genes: a link between development, cell cycle, and cancer?, Cell Biol. Int, vol.22, pp.397-400, 1998.
DOI : 10.1006/cbir.1998.0329

T. Franz, The Splotch (Sp1H) and Splotch-delayed (Spd) alleles : differential phenotypic effects on neural crest and limb musculature, Anat. Embryol. (Berl), vol.187, pp.371-377, 1997.
DOI : 10.1007/bf00185895

T. Franz, R. Kothary, M. A. Surani, Z. Halata, and M. Grim, The Splotch mutation interferes with muscle development in the limbs, Anat. Embryol. (Berl), vol.187, pp.153-160, 1993.

C. S. Fry, T. J. Kirby, K. Kosmac, J. J. Mccarthy, and C. A. Peterson, Myogenic Progenitor Cells Control Extracellular Matrix Production by Fibroblasts during Skeletal Muscle Hypertrophy, Cell Stem Cell. 1-14, 2016.
DOI : 10.1016/j.stem.2016.09.010

URL : http://www.cell.com/article/S1934590916303046/pdf

Y. Fujimoto, S. Tanaka, Y. Yamaguchi, H. Kobayashi, S. Kuroki et al.,

, Homeoproteins Six1 and Six4 regulate male sex determination and mouse gonadal development, Dev. Cell, vol.26, pp.416-430

S. Fukada, A. Uezumi, M. Ikemoto, S. Masuda, M. Segawa et al.,

S. Miyagoe-suzuki and . Takeda, Molecular signature of quiescent satellite cells in adult skeletal muscle, Stem Cells, vol.25, pp.2448-59, 2007.

P. J. Gage, H. Suh, and S. A. Camper, Dosage requirement of Pitx2 for development of multiple organs, Development, vol.126, pp.4643-51, 1999.

M. E. Gallardo, J. Lopez-rios, I. Fernaud-espinosa, B. Granadino, R. Sanz et al., Genomic cloning and characterization of the human homeobox gene SIX6 reveals a cluster of SIX genes in chromosome 14 and associates SIX6 hemizygosity with bilateral anophthalmia and pituitary anomalies, Genomics, vol.61, pp.82-91, 1999.

B. Gambke, G. E. Lyons, J. Haselgrove, A. M. Kelly, and N. A. Rubinstein, Thyroidal and neural control of myosin transitions during development of rat fast and slow muscles, FEBS Lett, vol.156, issue.83, pp.80524-80533, 1983.

R. C. Garcez, N. M. Le-douarin, and S. E. Creuzet, Combinatorial activity of Six1-2-4 genes in cephalic neural crest cells controls craniofacial and brain development, Cell, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00920398

. Mol, Life Sci, vol.71, pp.2149-64

K. I. Gawlik, M. Åkerlund, V. Carmignac, H. Elamaa, and M. Durbeej, Distinct roles for laminin globular domains in laminin ?1 chain mediated rescue of murine laminin ?2 chain deficiency, PLoS One, vol.5, 2010.

K. I. Gawlik, U. Mayer, K. Blomberg, A. Sonnenberg, P. Ekblom et al., Laminin ?1 chain mediated reduction of laminin ?2 chain deficient muscular dystrophy involves integrin ?7?1 and dystroglycan, FEBS Lett, vol.580, pp.1759-1765, 2006.

K. Gelse, E. Pöschl, and T. Aigner, Collagens -Structure, function, and biosynthesis, Adv. Drug Deliv. Rev, vol.55, pp.1531-1546, 2003.

X. Geng, C. Speirs, O. Lagutin, A. Inbal, W. Liu et al., Haploinsufficiency of Six3 Fails to Activate Sonic hedgehog Expression in the Ventral Forebrain and Causes Holoprosencephaly, Dev. Cell, vol.15, pp.236-247, 2008.

M. C. Gibson and E. Schultz, The distribution of satellite cells and their relationship to specific fiber types in soleus and extensor digitorum longus muscles, Anat. Rec, vol.202, pp.329-337, 1982.

P. M. Gilbert, K. L. Havenstrite, K. E. Magnusson, N. Sacco, P. Leonardi et al.,

S. Nguyen, M. P. Thrun, H. M. Lutolf, and . Blau, Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture, Science, vol.329, pp.1078-81, 2010.

J. Giordani, L. Bajard, J. Demignon, P. Daubas, M. Buckingham et al., Six proteins regulate the activation of Myf5 expression in embryonic mouse limbs, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.11310-11315, 2007.

D. S. Gokhin, S. R. Ward, S. N. Bremner, and R. L. Lieber, Quantitative analysis of neonatal skeletal muscle functional improvement in the mouse, J. Exp. Biol, vol.211, pp.837-843, 2008.

B. M. Goodell, K. Brose, G. Paradis, A. S. Conner, and R. C. Mulligan, Isolation and Functional Properties of Murine Hematopoietic Stem Cells that are Replicating In Vivo, 1996.

, J. Exp. Med, vol.183, pp.1797-1806

M. Goulding, A. Lumsden, and A. J. Paquette, Regulation of Pax-3 expression in the dermomyotome and its role in muscle development, Development, vol.120, pp.957-971, 1994.

M. D. Goulding, G. Chalepakis, U. Deutsch, J. R. Erselius, and P. Gruss, Pax-3, a novel murine DNA binding protein expressed during early neurogenesis, EMBO J, vol.10, pp.1135-1182, 1991.

L. Grand, F. , R. Grifone, P. Mourikis, C. Houbron et al., Six1 regulates stem cell repair potential and self-renewal during skeletal muscle regeneration, J. Cell Biol, vol.198, pp.815-847, 2012.

L. Grand, F. , A. E. Jones, V. Seale, A. Scimè et al., Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells, Cell Stem Cell, vol.4, pp.535-582, 2009.

S. Grefte, S. Vullinghs, A. M. Kuijpers-jagtman, R. Torensma, J. W. Von-den et al., , 2012.

. Matrigel, but not collagen I , maintains the differentiation capacity of muscle derived cells in vitro, Biomed. Mater, vol.7, pp.1-11

R. Grifone, J. Demignon, J. Giordani, C. Niro, E. Souil et al.,

M. , Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo, Dev. Biol, vol.302, pp.602-618, 2007.

R. Grifone, J. Demignon, C. Houbron, E. Souil, C. Niro et al.,

M. , Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo, Development, vol.132, pp.2235-2284, 2005.

R. Grifone, C. Laclef, F. Spitz, J. Demignon, J. Guidotti et al., Six1 and Eya1 Expression Can Reprogram Adult Muscle from the Slow-Twitch Phenotype into the Fast-Twitch Phenotype, Mol. Cell. Biol, vol.24, pp.6253-6267, 2004.

J. Gros, M. Manceau, V. Thomé, and C. Marcelle, A common somitic origin for embryonic muscle progenitors and satellite cells, Nature, vol.435, pp.954-962, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00118545

J. Gros, M. Scaal, and C. Marcelle, A two-Step mechanism for myotome formation in chick, Dev. Cell, vol.6, pp.875-882, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00311331

J. Gros, O. Serralbo, and C. Marcelle, WNT11 acts as a directional cue to organize the elongation of early muscle fibres, Nature, vol.457, pp.589-593, 2009.

M. K. Gross, L. Moran-rivard, T. Velasquez, M. N. Nakatsu, K. Jagla et al., Lbx1 is required for muscle precursor migration along a lateral pathway into the limb, Development, vol.127, pp.413-424, 2000.

M. D. Grounds, Complexity of extracellular matrix and skeletal muscle regeneration. Skelet. Muscle Repair Regen, 2008.

B. D. Grubb, J. B. Harris, and I. S. Schofield, Neuromuscular transmission at newly formed neuromuscular junctions in the regenerating soleus muscle of the rat, J. Physiol, vol.441, pp.405-421, 1991.

S. Günther, J. Kim, S. Kostin, C. Lepper, C. M. Fan et al., Myf5-Positive Satellite Cells Contribute to Pax7-Dependent Long-Term Maintenance of Adult Muscle Stem Cells, Cell Stem Cell, pp.590-601, 2013.

K. Guo, J. Wang, V. Andrés, R. C. Smith, and K. Walsh, MyoD-induced expression of p21 inhibits cyclin-dependent kinase activity upon myocyte terminal differentiation, 1995.

, Mol. Cell. Biol, vol.15, pp.3823-3832

D. B. Gurevich, D. B. Gurevich, P. D. Nguyen, A. L. Siegel, O. Ehrlich et al.,

P. D. Thomas and . Currie, Asymmetric division of clonal muscle stem cells coordinates muscle regeneration in vivo, vol.9969, 2016.

E. Gussoni, Y. Soneoka, C. D. Strickland, E. A. Buzney, M. K. Khan et al., Dystrophin expression in the mdx mouse restored by stem cell transplantation, Nature, vol.401, pp.390-394, 1999.
DOI : 10.1038/43919

G. Halder, P. Callaerts, S. Flister, U. Walldorf, U. Kloter et al., Eyeless initiates the expression of both sine oculis and eyes absent during Drosophila compound eye development, Development, vol.125, pp.2181-2191, 1998.

G. Halder, P. Callaerts, and W. Gehring, Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science (80-. ), vol.267, pp.1788-1792, 1995.

O. Halperin-barlev and C. Kalcheim, Sclerotome-derived Slit1 drives directional migration and differentiation of Robo2-expressing pioneer myoblasts, Development, vol.138, pp.2935-2980, 2011.
DOI : 10.1242/dev.065714

URL : http://dev.biologists.org/content/138/14/2935.full.pdf

D. Hardy, A. Besnard, M. Latil, G. Jouvion, D. Briand et al., , 2016.

, Comparative Study of Injury Models for Studying Muscle Regeneration in Mice, PLoS One, vol.11

I. Harel, Y. Maezawa, R. Avraham, A. Rinon, H. Ma et al.,

. Tzahor, Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis, Proc. Natl. Acad. Sci, vol.109, pp.18839-18844, 2012.

I. Harel, E. Nathan, L. Tirosh-finkel, H. Zigdon, N. Guimarães-camboa et al.,

. Tzahor, Distinct Origins and Genetic Programs of Head Muscle Satellite Cells, 2009.

, Dev. Cell, vol.16, pp.822-832

A. J. Harris, M. J. Duxson, R. B. Fttzsimons, and F. Rieger, Myonuclear birthdates distinguish the origins of primary and secondary myotubes in embryonic mammalian skeletal muscles, Development, vol.784, pp.771-784, 1989.

P. Hasson, A. Delaurier, M. Bennett, E. Grigorieva, L. A. Naiche et al., Tbx4 and Tbx5 Acting in Connective Tissue Are Required for Limb Muscle and Tendon Patterning, Dev. Cell, vol.18, pp.148-156, 2010.
DOI : 10.1016/j.devcel.2009.11.013

URL : https://doi.org/10.1016/j.devcel.2009.11.013

P. Hasty, A. Bradley, J. H. Morris, D. G. Edmondson, J. M. Venuti et al.,

. Klein, Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene, Nature, vol.364, pp.501-506, 1993.

G. He, S. Tavella, K. P. Hanley, M. Self, G. Oliver et al.,

. Bobola, Inactivation of Six2 in mouse identifies a novel genetic mechanism controlling development and growth of the cranial base, Dev. Biol, vol.344, 2010.

T. Heanue, R. Reshef, R. J. Davis, G. Mardon, G. Oliver et al., Synergistic regulation of vertebrate muscle development by Dach2, Eya2, and Six1, homologs of genes required for Drosophila eye formation, Genes Dev, vol.13, pp.3231-3274, 1999.

S. K. Heath, S. Carne, C. Hoyle, K. J. Johnson, and D. J. Wells, Characterisation of expression of mDMAHP, a homeodomain-encoding gene at the murine DM locus, 1997.

. Mol and . Genet, , vol.6, pp.651-657

S. Heymann, M. Koudrova, H. Arnold, M. Köster, and T. Braun, Regulation and Function of SF/HGF during Migration of Limb Muscle Precursor Cells in Chicken, Dev. Biol, vol.180, pp.566-578, 1996.

E. Hirsinger, D. Duprez, C. Jouve, P. Malapert, J. Cooke et al., Noggin acts downstream of Wnt and Sonic Hedgehog to antagonize BMP4 in avian somite patterning, Development, vol.124, pp.4605-4614, 1997.

M. Hisaoka, S. Okamoto, K. Yokoyama, and H. Hashimoto, Coexpression of NOR1 and SIX3 proteins in extraskeletal myxoid chondrosarcomas without detectable NR4A3 fusion genes, Cancer Genet. Cytogenet, vol.152, pp.101-107, 2004.

A. T. Ho, S. Van, D. Hayashi, F. Bröhl, R. Auradé et al., Neural Crest Cell Lineage Restricts Skeletal Muscle Progenitor Cell Differentiation through Neuregulin1-ErbB3 Signaling, Dev. Cell, vol.21, pp.273-287, 2011.
DOI : 10.1016/j.devcel.2011.06.019

URL : https://doi.org/10.1016/j.devcel.2011.06.019

A. Hollnagel, C. Grund, W. W. Franke, and H. Arnold, The Cell Adhesion Molecule M-Cadherin Is Not Essential for Muscle Development and Regeneration, 2002.
DOI : 10.1128/mcb.22.13.4760-4770.2002

URL : https://mcb.asm.org/content/22/13/4760.full.pdf

. Microbiol, , vol.22, pp.4760-4770

B. E. Hoskins, C. H. Cramer, D. Silvius, D. Zou, R. M. Raymond et al.,

R. J. Kimberling, D. Smith, C. Weil, E. A. Petit, P. Otto et al., Transcription factor SIX5 is mutated in patients with branchio-oto-renal syndrome, Am. J. Hum. Genet, vol.80, pp.800-804, 2007.

S. Hu, A. Mamedova, and R. S. Hegde, DNA-binding and regulation mechanisms of the SIX family of retinal determination proteins, Biochemistry, vol.47, pp.3586-3594, 2008.

S. M. Hughes and H. M. Blau, Migration of myoblasts across basal lamina during skeletal muscle development, Nature, vol.345, pp.350-353, 1990.
DOI : 10.1038/345350a0

D. D. Hunter, V. Shah, J. P. Merlie, and J. R. Sanes, A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction, Nature, vol.338, pp.229-263, 1989.

B. Hurren, J. J. Collins, M. J. Duxson, and M. Deries, First neuromuscular contact correlates with onset of primary myogenesis in rat and mouse limb muscles, PLoS One, vol.10, pp.1-18, 2015.

D. A. Hutcheson, J. Zhao, A. Merrell, M. Haldar, and G. Kardon, Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for B-catenin, Genes Dev, vol.23, pp.997-1013, 2009.
DOI : 10.1101/gad.1769009

URL : http://genesdev.cshlp.org/content/23/8/997.full.pdf

R. O. Hynes, Integrins : Bidirectional , Allosteric Signaling Machines In their roles as major adhesion receptors , integrins, vol.110, pp.673-687, 2002.

K. Ikeda and K. Kawakami, DNA Binding through Distinct Domains of Zinc-FingerHomeodomain Protein AREB6 has Different Effects on Gene Transcription, Eur. J. Biochem, vol.233, pp.73-82, 1995.
DOI : 10.1111/j.1432-1033.1995.073_1.x

K. Ikeda, Y. Watanabe, H. Ohto, and K. Kawakami, Molecular interaction and synergistic activation of a promoter by Six, Eya, and Dach proteins mediated through CREB binding protein, Mol. Cell. Biol, vol.22, pp.6759-6766, 2002.
DOI : 10.1128/mcb.22.19.6759-6766.2002

URL : https://mcb.asm.org/content/mcb/22/19/6759.full.pdf

M. Ikeya and S. Takada, Wnt signaling from the dorsal neural tube is required for the formation of the medial dermomyotome, Development, vol.125, pp.4969-4976, 1998.

A. Irintchev, M. Zeschnigk, A. Starzinski-powitz, and A. Wernig, Expression Pattern of M-Cadherin in Normal , Denervated , and Regenerating Mouse Muscles, Dev. Dyn, vol.199, pp.326-337, 1994.

T. Itoh, I. Toshio, H. Gomi, N. Shinobu, T. Suzuki et al., Unaltered Secretion of ? -Amyloid Precursor Protein in Gelatinase A ( Matrix Metalloproteinase 2 ) -deficient Mice *, J. biolo, vol.272, pp.22389-22392, 1997.

J. K. Jansen and T. Fladby, The perinatal reorganization of the innervation of skeletal muscle in mammals, Prog. Neurobiol, vol.34, pp.39-90, 1990.

A. P. Jarman, E. H. Grell, L. Ackerman, L. Y. Jan, and Y. N. , Atonal is the proneural gene for Drosophila photoreceptors, Nature, vol.369, pp.398-400, 1994.

D. Jean, G. Bernier, and P. Gruss, Six6 (Optx2) is a novel murine Six3-related homeobox gene that demarcates the presumptive pituitary/hypothalamic axis and the ventral optic stalk, Mech. Dev, vol.84, pp.31-40, 1999.

J. Jemc and I. Rebay, The eyes absent family of phosphotyrosine phosphatases: properties and roles in developmental regulation of transcription, Annu. Rev. Biochem, vol.76, pp.513-551, 2007.

L. A. Jerome and V. E. Papaioannou, DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1, Nat. Genet, vol.27, pp.286-91, 2001.

A. W. Joe, L. Yi, A. Natarajan, F. L. Grand, L. So et al., Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis, Nat Cell Biol, vol.12, pp.153-163, 2010.

L. D. Jones and A. J. Wagers, No place like home: anatomy and function of the stem cell niche, Nat. Rev. Mol. Cell Biol, vol.9, pp.11-21, 2008.

A. Jory, I. L. Roux, B. Gayraud-morel, P. Rocheteau, M. Cohen-tannoudji et al., Numb promotes an increase in skeletal muscle progenitor cells in the embryonic somite, Stem Cells, vol.27, pp.2769-80, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00522047

B. Jostes, C. Walther, and P. Gruss, The murine paired box gene, Pax7, is expressed specifically during the development of the nervous and muscular system, Mech. Dev, vol.33, pp.90132-90138, 1990.

B. Kablar, K. Krastel, C. Ying, S. J. Asakura, M. Tapscott et al., MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle, Development, vol.124, pp.4729-4767, 1997.

N. Kahane, Y. Cinnamon, and C. Kalcheim, The origin and fate of pioneer myotomal cells in the avian embryo, Mech. Dev, vol.74, pp.59-73, 1998.

N. Kahane, V. Ribes, A. Kicheva, J. Briscoe, and C. Kalcheim, The transition from differentiation to growth during dermomyotome-derived myogenesis depends on temporally restricted hedgehog signaling, Development, vol.140, pp.1740-50, 2013.

C. Kalcheim, Y. Cinnamon, and N. Kahane, Myotome formation: A multistage process, Cell Tissue Res, vol.296, pp.161-173, 1999.

J. M. Kalhovde, R. Jerkovic, I. Sefland, C. Cordonnier, E. Calabria et al., Fast" and "slow" muscle fibres in hindlimb muscles of adult rats regenerate from intrinsically different satellite cells, J. Physiol, vol.562, pp.847-57, 2005.

O. Kanisicak, J. J. Mendez, S. Yamamoto, M. Yamamoto, and D. J. Goldhamer, Progenitors of skeletal muscle satellite cells express the muscle determination gene, MyoD. Dev. Biol, vol.332, pp.131-172, 2009.

K. C. Kanning, A. Kaplan, and C. E. Henderson, Motor Neuron Diversity in Development and Disease, Annu. Rev. Neurosci, vol.33, pp.409-440, 2010.

G. Kardon, B. D. Harfe, and C. J. Tabin, A Tcf4-positive mesodermal population provides a prepattern for vertebrate limb muscle patterning, Dev. Cell, vol.5, pp.937-944, 2003.

L. Kassar-duchossoy, B. Gayraud-morel, D. Gomes, D. Rocancourt, M. Buckingham et al., Mrf4 determines skeletal muscle identity in Myf5:MyoD double-mutant mice, Nature, vol.431, pp.466-471, 2004.

L. Kassar-duchossoy, E. Giacone, B. Gayraud-morel, A. Jory, D. Gomès et al., Pax3 / Pax7 mark a novel population of primitive myogenic cells during development, Genes Dev, vol.19, pp.1426-1431, 2005.

A. Kaul, M. Köster, H. Neuhaus, and T. Braun, Myf-5 Revisited, Cell, vol.102, pp.17-19, 2000.

Y. I. Kawabe, Y. X. Wang, I. W. Mckinnell, M. T. Bedford, and M. A. Rudnicki, Carm1 regulates Pax7 transcriptional activity through MLL1/2 recruitment during asymmetric satellite stem cell divisions, Cell Stem Cell, vol.11, pp.333-345, 2012.

K. Kawakami, H. Ohto, K. Ikeda, and R. G. Roeder, Structure, function and expression of a murine homeobox protein AREC3, a homologue of Drosophila sine oculis gene product, and implication in development, Nucleic Acids Res, vol.24, pp.303-313, 1996.

K. Kawakami, H. Ohto, T. Takizawa, and T. Saito, Identification and expression of six family genes in mouse retina, FEBS Lett, vol.393, pp.259-263, 1996.

K. Kawakami, S. Sato, H. Ozaki, and K. Ikeda, Six family genes-structure and function as transcription factors and their roles in development, 2000.

, Bioessays, vol.22, pp.616-626

A. M. Kelly, Perisynaptic Satellite Cells in the Developing and Mature Rat Soleus Muscle, Anat. Rec, vol.190, pp.891-903, 1978.

A. M. Kelly and S. I. Zacks, The histogenesis of rat intercostal muscle, J. Cell Biol, vol.42, pp.135-153, 1969.

R. G. Kelly, L. A. Jerome-majewska, and V. E. Papaioannou, The del22q11.2 candidate gene Tbx1 regulates branchiometric myogenesis, Hum. Mol. Genet, vol.13, pp.2829-2840, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00311148

K. L. Kenyon, D. J. Li, C. Clouser, S. Tran, and F. Pignoni, Fly SIX-type homeodomain proteins Sine oculis and Optix partner with different cofactors during eye development, 2005.

, Dev. Dyn, vol.234, pp.497-504

J. Khan, M. L. Bittner, L. H. Saal, U. Teichmann, D. O. Azorsa et al., cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene, Proc. Natl. Acad. Sci, vol.96, pp.13264-13269, 1999.

S. Kherif, C. Lafuma, M. Dehaupas, S. Lachkar, J. G. Fournier et al., Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: a study in experimentally injured and mdx muscles, Dev. Biol, vol.205, pp.158-170, 1999.

J. Kim, G. Han, J. Seo, I. Park, W. Park et al., Sex hormones establish a reserve pool of adult muscle stem cells, Nat. Cell Biol, vol.18, pp.930-970, 2016.

R. J. Kirby, G. M. Hamilton, D. J. Finnegan, K. J. Johnson, and A. P. Jarman, Drosophila homolog of the myotonic dystrophy-associated gene, SIX5, is required for muscle and gonad development, Curr. Biol, vol.11, pp.1044-1049, 2001.

K. Kitamura, H. Miura, S. Miyagawa-tomita, M. Yanazawa, Y. Katoh-fukui et al., , 1999.

, Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra-and periocular mesoderm and right pulmonary isomerism, Development, vol.126, pp.5749-58

T. R. Klesert, D. H. Cho, J. I. Clark, J. Maylie, J. Adelman et al., Mice deficient in Six5 develop cataracts: implications for myotonic dystrophy, Nat Genet, vol.25, pp.105-109, 2000.

T. R. Klesert, A. D. Otten, T. D. Bird, and S. J. Tapscott, Trinucleotide repeat expansion at the myotonic dystrophy locus reduces expression of DMAHP, Nat. Genet, vol.16, pp.402-406, 1997.

K. A. Knudsen and A. F. Horwitz, Tandem events in myoblast fusion, Dev. Biol, vol.58, pp.90095-90096, 1977.

A. Kobayashi, M. T. Valerius, J. W. Mugford, T. J. Carroll, M. Self et al., Six2 Defines and Regulates a Multipotent Self-Renewing Nephron Progenitor Population throughout Mammalian Kidney Development, Cell Stem Cell, vol.3, pp.169-181, 2008.

H. Kobayashi, K. Kawakami, M. Asashima, and R. Nishinakamura, Six1 and Six4 are essential for Gdnf expression in the metanephric mesenchyme and ureteric bud formation, while Six1 deficiency alone causes mesonephric-tubule defects, Mech. Dev, vol.124, pp.290-303, 2007.

Y. Konishi, K. Ikeda, Y. Iwakura, and K. Kawakami, Six1 and Six4 promote survival of sensory neurons during early trigeminal gangliogenesis, Brain Res, vol.1116, pp.93-102, 2006.
DOI : 10.1016/j.brainres.2006.07.103

M. Kottlors and J. Kirschner, Elevated satellite cell number in Duchenne muscular dystrophy, Cell Tissue Res, vol.340, pp.541-548, 2010.

K. Kowalski, A. Ko?odziejczyk, M. H. Sikorska, J. P?aczkiewicz, P. Cichosz et al.,

M. A. Iwanicka-nowicka, E. Ciemerych, and . Brzoska, Stem cells migration during skeletal muscle regeneration -the role of Sdf-1/Cxcr4 and Sdf-1/Cxcr7 axis, Cell Adh, 2016.

. Migr,

R. S. Krauss, G. A. Joseph, and A. J. Goel, Keep Your Friends Close : Cell -Cell Contact and Skeletal Myogenesis, Cold Spring Harb. Perspect. Biol, vol.9, pp.1-16, 2017.
DOI : 10.1101/cshperspect.a029298

URL : http://cshperspectives.cshlp.org/content/9/2/a029298.full.pdf

S. Kuang, K. Kuroda, F. L. Grand, and M. Rudnicki, Asymmetric self-renewal and commitment of satellite stem cells in muscle, Cell, vol.129, pp.999-1010, 2007.

J. P. Kumar, The sine oculis homeobox (SIX) family of transcription factors as regulators of development and disease, Cell. Mol. Life Sci, vol.66, pp.565-83, 2009.

J. P. Kumar, Retinal determination the beginning of eye development. 93, pp.1-28, 2010.

R. Kuschel, Z. Yablonka-reuveni, and A. Bornemann, Satellite cells on isolated myofibers from normal and denervated adult rat muscle, J Histochem Cytochem, vol.47, pp.1375-1384, 1999.
DOI : 10.1177/002215549904701104

E. Kutejova, B. Engist, M. Self, G. Oliver, P. Kirilenko et al., Six2 functions redundantly immediately downstream of Hoxa2, Development, vol.135, pp.1463-1470, 2008.
DOI : 10.1242/dev.017624

URL : http://dev.biologists.org/content/135/8/1463.full.pdf

A. L&apos;honore, M. J.-f.-ouimette, J. Lavertu-jolin, and . Drouin, Pitx2 defines alternate pathways acting through MyoD during limb and somitic myogenesis, Development, vol.137, pp.3847-3856, 2010.

M. A. Labarge and H. M. Blau, Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury, Cell, vol.111, pp.589-601, 2002.

C. Laclef, G. Hamard, J. Demignon, E. Souil, C. Houbron et al., Altered myogenesis in Six1-deficient mice, Development, vol.130, pp.2239-2252, 2003.
DOI : 10.1242/dev.00440

URL : http://dev.biologists.org/content/130/10/2239.full.pdf

C. Laclef, E. Souil, J. Demignon, and P. Maire, Thymus, kidney and craniofacial abnormalities in Six1 deficient mice, Mech. Dev, vol.120, pp.65-65, 2003.
DOI : 10.1016/s0925-4773(03)00065-0

URL : https://doi.org/10.1016/s0925-4773(03)00065-0

C. Laflamme, C. Filion, J. A. Bridge, M. Ladanyi, M. B. Goldring et al., The homeotic protein Six3 is a coactivator of the nuclear receptor NOR-1 and a corepressor of the fusion protein EWS/NOR-1 in human extraskeletal myxoid chondrosarcomas, Cancer Res, vol.63, pp.449-454, 2003.

J. F. Lafreniere, P. Mills, M. Bouchentouf, and J. P. Tremblay, Interleukin-4 improves the migration of human myogenic precursor cells in vitro and in vivo, Exp. Cell Res, vol.312, pp.1127-1141, 2006.

O. V. Lagutin, C. C. Zhu, D. Kobayashi, J. Topczewski, K. Shimamura et al.,

P. J. Russell, L. Mckinnon, G. Solnica-krezel, and . Oliver, Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development, 2003.

, Genes Dev, vol.17, pp.368-379

R. Larder, D. D. Clark, N. L. Miller, and P. L. Mellon, Hypothalamic Dysregulation and Infertility in Mice Lacking the Homeodomain Protein Six6, J. Neurosci, vol.31, pp.426-438, 2011.

B. M. Lassar-paterson, H. Weintraub, and A. B. , Transfection of a DNA locus that mediate the conversion of 10T1/2 fibroblasts to myoblasts, Cell, vol.47, pp.649-656, 1986.

M. Latil, P. Rocheteau, L. Châtre, S. Sanulli, S. Mémet et al., Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity, Nat. Commun, vol.3, p.903, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00711881

J. K. Lee, J. H. Cho, W. S. Hwang, Y. D. Lee, D. S. Reu et al., Expression of neuroD/BETA2 in mitotic and postmitotic neuronal cells during the development of nervous system, Dev. Dyn, vol.217, pp.361-367, 2000.

J. Y. Lee, Z. Qu-petersen, B. Cao, S. Kimura, R. Jankowski et al., Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing, J. Cell Biol, vol.150, pp.1085-100, 2000.

I. Leivo, A. Vaheri, R. Timpl, and J. Wartiovaara, Appearance and distribution of collagens and laminin in the early mouse embryo, Dev. Biol, vol.76, pp.90365-90371, 1980.

C. Lepper and C. M. Fan, Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells, Genesis, vol.48, pp.424-436, 2010.

C. Lepper, T. Partridge, and C. Fan, An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration, Development, vol.138, pp.3639-3685, 2011.

C. Li, M. Guo, A. Borczuk, C. Powell, M. Wei et al., Gene expression in Wilms' tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition, Am. J. Pathol, vol.160, issue.10, pp.61166-61168, 2002.

H. S. Li, J. M. Yang, R. D. Jacobson, D. Pasko, and O. Sundin, Pax-6 is first expressed in a region of ectoderm anterior to the early neural plate: implications for stepwise determination of the lens, Dev Biol, vol.162, pp.181-194, 1994.

X. Li, K. Oghi, J. Zhang, A. Krones, K. T. Bush et al., Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis, Nature, vol.426, pp.247-54, 2003.

X. Li, V. Perissi, F. Liu, D. W. Rose, and M. G. Rosenfeld, Tissue-Specific Regulation of Retinal and Pituitary Precursor Cell Proliferation. Science (80-. ), vol.297, pp.1180-1184, 2002.

J. E. Lima, M. Bonnin, C. Birchmeier, and D. Duprez, Muscle contraction is required to maintain the pool of muscle progenitors via YAP and NOTCH during fetal myogenesis, pp.513-516, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01379132

C. Linker, C. Lesbros, J. Gros, L. Burrus, A. Rawls et al., Beta-Catenindependent Wnt signalling controls the epithelial organisation of somites through the activation of paraxis, Development, vol.132, pp.3895-3905, 2005.

N. Liu, G. A. Garry, S. Li, S. Bezprozvannaya, E. Sanchez-ortiz et al., A Twist2-dependent progenitor cell contributes to adult skeletal muscle, 2017.

W. Liu and A. Cvekl, Six3 in a small population of progenitors at E8.5 is required for neuroretinal specification via regulating cell signaling and survival in mice, Dev. Biol. 1-12, 2017.

W. Liu, E. O.-lagutin, M. Swindell, G. Jamrich, and . Oliver, Neuroretina specification in mouse embryos requires Six3-mediated suppression of Wnt8b in the anterior neural plate, 0120.

Y. Liu, I. Chakroun, D. Yang, E. Horner, J. Liang et al., Six1 Regulates MyoD Expression in Adult Muscle Progenitor Cells, PLoS One, vol.8, 2013.

Y. Liu, A. Chu, I. Chakroun, U. Islam, and A. Blais, Cooperation between myogenic regulatory factors and SIX family transcription factors is important for myoblast differentiation, Nucleic Acids Res, vol.38, pp.6857-6871, 2010.

Y. H. Liu, J. S. Jakobsen, G. Valentin, I. Amarantos, D. T. Gilmour et al., A Systematic Analysis of Tinman Function Reveals Eya and JAK-STAT Signaling as Essential Regulators of Muscle Development, Dev. Cell, vol.16, pp.280-291, 2009.

F. Loosli, S. Winkler, and J. Wittbrodt, Six3 overexpression initiates the formation of ectopic retina, Genes Dev, vol.13, pp.649-654, 1999.

J. Lopez-rios, Six3 and Six6 activity is modulated by members of the groucho family, Development, vol.130, pp.185-195, 2003.

J. Lopez-rios, M. E. Gallardo, S. Rodriguez-de-cordoba, and P. Bovolenta, Six9 (Optx2), a new member of the Six gene family of transcription factors, is expressed at early stages of vertebrate ocular and pituitary development, Mech. Dev, vol.83, pp.155-159, 1999.

A. Lu, J. H. Cummins, J. B. Pollett, B. Cao, B. Sun et al., Isolation of myogenic progenitor populations from Pax7-deficient skeletal muscle based on adhesion characteristics, Gene Ther, vol.15, pp.1116-1125, 2008.
DOI : 10.1038/gt.2008.86

URL : https://www.nature.com/articles/gt200886.pdf

J. Lu, P. Chang, J. Richardson, L. Gan, H. Weiler et al., The basic helixloop-helix transcription factor capsulin controls spleen organogenesis, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.9525-9530, 2000.
DOI : 10.1073/pnas.97.17.9525

URL : http://europepmc.org/articles/pmc16898?pdf=render

J. Lu, R. Webb, J. Richardson, and E. N. Olson, MyoR: a muscle-restricted basic helix-loop-helix transcription factor that antagonizes the actions of MyoD, Proc. Natl, 1999.

. Acad and . U. Sci, , vol.96, pp.552-557

J. R. Lu, R. Bassel-duby, A. Hawkins, P. Chang, R. Valdez et al., Control of facial muscle development by MyoR and capsulin. Science (80-. ), vol.298, pp.2378-2381, 2002.

D. K. Lund and D. D. Cornelison, Enter the matrix: Shape, signal and superhighway, FEBS J, vol.280, pp.4089-4099, 2013.
DOI : 10.1111/febs.12171

URL : https://febs.onlinelibrary.wiley.com/doi/pdf/10.1111/febs.12171

D. Luo, V. M. Renault, and T. A. Rando, The regulation of Notch signaling in muscle stem cell activation and postnatal myogenesis, Semin. Cell Dev. Biol, vol.16, pp.612-622, 2005.

E. Luque, J. Peña, P. Martin, I. Jimena, and R. Vaamonde, Capillary Supply During Development of Individual Regenerating Muscle Fibers, Anat. Histol. Embryol, vol.24, pp.87-89, 1995.

Q. Ma, L. Sommer, P. Cserjesi, and D. J. Anderson, Mash1 and neurogenin1 expression patterns define complementary domains of neuroepithelium in the developing CNS and are correlated with regions expressing notch ligands, J. Neurosci, vol.17, pp.3644-52, 1997.

B. Manavathi, S. Peng, S. K. Rayala, A. H. Talukder, M. H. Wang et al.,

N. Balasenthil, L. J. Agarwal, R. Frishman, and . Kumar, Repression of Six3 by a corepressor regulates rhodopsin expression, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.13128-13161, 2007.

A. Mansouri, A. Stoykova, M. Torres, and P. Gruss, Dysgenesis of cephalic neural crest derivatives in Pax7-/-mutant mice, Development, vol.122, pp.831-839, 1996.

C. Marcelle, M. R. Stark, and M. Bronner-fraser, Coordinate actions of BMPs, Wnts, Shh and noggin mediate patterning of the dorsal somite, Development, vol.124, pp.3955-3963, 1997.

M. Maroto, R. Reshef, E. Münsterberg, S. Koester, M. Goulding et al., Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue, Cell, vol.89, pp.139-148, 1997.
DOI : 10.1016/s0092-8674(00)80190-7

URL : https://doi.org/10.1016/s0092-8674(00)80190-7

M. Marti, C. Pardo, L. Mulero, L. Miquel-serra, B. Kuebler et al.,

. Rodrigues, M-cadherin-mediated intercellular interactions activate satellite cell division, J. Cell Sci, 2009.

G. G. Martins, P. Rifes, R. Amaândio, G. Rodrigues, I. Palmeirim et al., Dynamic 3D cell rearrangements guided by a fibronectin matrix underlie somitogenesis, 2009.
DOI : 10.1371/journal.pone.0007429

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0007429&type=printable

M. E. Massari and C. Murre, Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms, Mol. Cell. Biol, vol.20, pp.429-440, 2000.

S. J. Mathew, J. M. Hansen, A. J. Merrell, and M. M. Murphy,

M. Hansen, G. Angus-hill, and . Kardon, Connective tissue fibroblasts and Tcf4 regulate myogenesis, Development, vol.138, pp.371-384, 2011.

A. Mauro, Satellite cell of skeletal muscle fibers, J. Biophys. Biochem. Cytol, vol.9, pp.493-498, 1961.

A. Mayeuf-louchart, M. Lagha, A. Danckaert, D. Rocancourt, F. Relaix et al., Notch regulation of myogenic versus endothelial fates of cells that migrate from the somite to the limb, Proc. Natl. Acad. Sci, vol.111, pp.8844-8849, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02130260

A. Mayeuf-louchart, D. Montarras, C. Bodin, T. Kume, S. D. Vincent et al., Endothelial cell specification in the somite is compromised in Pax3-positive progenitors of Foxc1/2 conditional mutants, with loss of forelimb myogenesis, Development, vol.143, pp.872-879, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02130220

A. Mcdermott, M. Gustafsson, T. Elsam, C. Hui, C. P. Emerson et al., Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation, Development, vol.132, pp.345-57, 2005.

A. Mcdermott, M. Gustafsson, T. Elsam, C. Hui, C. P. Emerson et al., Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation, Development, vol.132, pp.345-57, 2005.

Z. Meng, S. Li, L. Wang, H. J. Ko, Y. Lee et al., Baf60c drives glycolytic metabolism in the muscle and improves systemic glucose homeostasis through Deptor-mediated Akt activation, Nat. Med, vol.19, pp.640-645, 2013.

D. Mennerich, K. Schäfer, and T. Braun, Pax-3 is necessary but not sufficient for lbx1 expression in myogenic precursor cells of the limb, Mech. Dev, vol.73, pp.147-158, 1998.

J. P. Merlie, J. Mudd, T. C. Cheng, and E. N. Olson, Myogenin and acetylcholine receptor ? gene promoters mediate transcriptional regulation in response to motor innervation, J. Biol. Chem, vol.269, pp.2461-2467, 1994.

G. Messina, S. Biressi, S. Monteverde, A. Magli, M. Cassano et al., Nfix regulates fetal-specific transcription in developing skeletal muscle, Cell, vol.140, pp.554-66, 2010.

I. Michailovici, T. Eigler, and E. Tzahor, Craniofacial Muscle Development. 115, pp.3-30, 2015.

D. P. Millay, J. R. O&apos;rourke, L. B. Sutherland, S. Bezprozvannaya, J. M. Shelton et al., Myomaker is a membrane activator of myoblast fusion and muscle formation, Nature, vol.499, pp.301-306, 2013.

J. B. Miller and F. E. Stockdale, Developmental origins of skeletal muscle fibers: clonal analysis of myogenic cell lineages based on expression of fast and slow myosin heavy chains, Proc. Natl. Acad. Sci. U. S. A, vol.83, pp.3860-3864, 1986.

L. D. Milner, V. F. Rafuse, and L. T. Landmesser, Selective fasciculation and divergent pathfinding decisions of embryonic chick motor axons projecting to fast and slow muscle regions, J. Neurosci, vol.18, pp.3297-3313, 1998.

M. G. Minasi, M. Riminucci, L. De-angelis, U. Borello, B. Berarducci et al.,

G. Bianco and . Cossu, The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues, Development, vol.129, pp.2773-2783, 2002.

K. J. Mitchell, A. Pannérec, B. Cadot, A. Parlakian, V. Besson et al., Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development, Nat. Cell Biol, vol.12, pp.257-66, 2010.

D. Montarras, M. A.-l&apos;honoré, and . Buckingham, Lying low but ready for action: The quiescent muscle satellite cell, FEBS J, vol.280, pp.4036-4050, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01544065

D. Montarras, J. Morgan, C. Collins, F. Relaix, S. Zaffran et al.,

. Buckingham, Direct isolation of satellite cells for skeletal muscle regeneration, Science, vol.309, pp.2064-2071, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00181349

S. A. Moody and A. Lamantia, Transcriptional regulation of cranial sensory placode development. 111, pp.301-50, 2015.
DOI : 10.1016/bs.ctdb.2014.11.009

URL : http://europepmc.org/articles/pmc4425424?pdf=render

S. Morillo, L. R. Braid, E. M. Verheyen, and I. Rebay, Nemo phosphorylates Eyes absent and enhances output from the Eya-Sine oculis transcriptional complex during Drosophila retinal determination, Dev. Biol, vol.365, pp.267-76, 2012.
DOI : 10.1016/j.ydbio.2012.02.030

URL : https://doi.org/10.1016/j.ydbio.2012.02.030

F. P. Moss and C. P. Leblond, Nature of dividing nuclei in skeletal muscle of growing rats, J. Cell Biol, pp.459-462, 1970.

P. Mourikis, S. Gopalakrishnan, R. Sambasivan, and S. Tajbakhsh, Cell-autonomous Notch activity maintains the temporal specification potential of skeletal muscle stem cells, Development, vol.139, pp.4536-4584, 2012.

P. Mourikis, R. Sambasivan, D. Castel, P. Rocheteau, V. Bizzarro et al., A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state, Stem Cells, vol.30, pp.243-252, 2012.

D. Muller, P. Cherukuri, K. Henningfeld, C. H. Poh, L. Wittler et al., Dlk1 Promotes a Fast Motor Neuron Biophysical Signature Required for Peak Force Execution, Science, vol.343, pp.1264-1266, 2014.
DOI : 10.1126/science.1246448

M. M. Murphy, A. C. Keefe, J. A. Lawson, S. D. Flygare, M. Yandell et al., Transiently active wnt/b-catenin signaling is not required but must be silenced for stem cell function during muscle regeneration, Stem Cell Reports, vol.3, pp.475-488, 2014.
DOI : 10.1016/j.stemcr.2014.06.019

URL : https://doi.org/10.1016/j.stemcr.2014.06.019

M. M. Murphy, J. A. Lawson, S. J. Mathew, D. A. Hutcheson, and G. Kardon, Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration, Development, vol.138, pp.3625-3662, 2011.
DOI : 10.1242/dev.064162

URL : http://dev.biologists.org/content/138/17/3625.full.pdf

Y. Nabeshima, K. Hanaoka, M. Hayasaka, E. Esumi, S. Li et al., Myogenin gene disruption results in perinatal lethality because of severe muscle defect, Nature, vol.364, pp.532-537, 1993.

S. Nassari, D. Duprez, and C. Fournier-thibault, Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues, Front. Cell Dev. Biol, vol.5, pp.1-17, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01539045

K. T. Ng, K. Man, C. K. Sun, T. K. Lee, R. T. Poon et al., Clinicopathological significance of homeoprotein Six1 in hepatocellular carcinoma, 2006.

, J. Cancer, vol.95, pp.1050-1055

T. Niimi, M. Seimiya, U. Kloter, S. Flister, and W. J. Gehring, Direct regulatory interaction of the eyeless protein with an eye-specific enhancer in the sine oculis gene during eye induction in Drosophila, Development, vol.126, pp.2253-60, 1999.

A. Niiya, H. Otho, K. Kawakami, and A. Masasuke, Localization of Six4 / AREC3 in the Developing Mouse Retina, Mammalian Retinal Development ?. Exp. Eye Res, vol.67, pp.699-707, 1998.

C. Niro, J. Demignon, S. Vincent, Y. Liu, J. Giordani et al., Six1 and Six4 gene expression is necessary to activate the fast-type muscle gene program in the mouse primary myotome, Dev. Biol, vol.338, pp.168-82, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02130299

T. Nishimura, K. Nakamura, Y. Kishioka, Y. Kato-mori, J. I. Wakamatsu et al., Inhibition of matrix metalloproteinases suppresses the migration of skeletal muscle cells, J. Muscle Res. Cell Motil, vol.29, pp.37-44, 2008.

H. Niwa, Y. Toyooka, D. Shimosato, D. Strumpf, K. Takahashi et al., Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation, Cell, vol.123, pp.917-929, 2005.
DOI : 10.1016/j.cell.2005.08.040

URL : https://doi.org/10.1016/j.cell.2005.08.040

D. M. Noden, Patterning of avian craniofacial muscles, Dev. Biol, vol.116, issue.86, pp.90138-90145, 1986.
DOI : 10.1016/0012-1606(86)90138-7

D. M. Noden, R. Marcucio, A. G. Borycki, and C. P. Emerson, Differentiation of avian craniofacial muscles: I. Patterns of early regulatory gene expression and myosin heavy chain synthesis, Dev. Dyn, vol.216, pp.96-112, 1999.

D. M. Noden and P. A. Trainor, Relations and interactions between cranial mesoderm and neural crest populations, J. Anat, vol.207, pp.575-601, 2005.

J. M. Nogueira, K. Hawrot, C. Sharpe, A. Noble, W. Wood et al., The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development, Front. Aging Neurosci, vol.7, p.62, 2015.

H. Nord, L. N. Skalman, and J. Von-hofsten, Six1 regulates proliferation of Pax7-positive muscle progenitors in zebrafish, J. Cell Sci, vol.126, pp.1868-80, 2013.

A. M. Nunes, R. D. Wuebbles, A. Sarathy, T. M. Fontelonga, M. Deries et al.,

. Thorsteinsdóttir, Impaired fetal muscle development and JAK-STAT activation mark disease onset and progression in a mouse model for merosin-deficient congenital muscular dystrophy, Hum. Mol. Genet, vol.0, pp.1-16, 2017.

H. Ohto, S. Kamada, K. Tago, H. Ozaki, and S. Sato, Cooperation of Six and Eya in Activation of Their Target Genes through Nuclear Translocation of Eya Cooperation of Six and Eya in Activation of Their, 1999.

, Mol. Cell. Biol, vol.19, pp.6815-6824

H. Ohto, T. Takizawa, T. Saito, M. Kobayashi, K. Ikeda et al., Tissue and developmental distribution of Six family gene products, Int. J. Dev. Biol, vol.42, pp.141-148, 1998.

H. C. Olguin, Z. Yang, S. J. Tapscott, and B. B. Olwin, Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination, J. Cell Biol, vol.177, pp.769-779, 2007.

G. Oliver, A. Mailhos, R. Wehr, N. G. Copeland, N. A. Jenkins et al., Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development, Development, vol.121, pp.4045-4055, 1995.

G. Oliver, R. Wehr, N. A. Jenkins, N. G. Copeland, B. N. Cheyette et al.,

P. Zipursky and . Gruss, Homeobox genes and connective tissue patterning, Development, vol.121, pp.693-705, 1995.

G. Oliver, R. Wehr, N. A. Jenkins, N. G. Copeland, B. N. Cheyette et al.,

P. Zipursky and . Gruss, Homeobox genes and connective tissue patterning, vol.705, pp.693-705, 1994.

E. N. Olson, H. H. Arnold, P. W. Rigby, and B. J. Wold, Know your neighbors: Three phenotypes in null mutants of the myogenic bHLH gene MRF4, Cell, vol.85, pp.81073-81082, 1996.

M. Ontell, D. Bourke, and D. Hughes, Cytoarchitecture of the Fetal Murine Soleus Muscle, Am. J. Anat, vol.278, pp.267-278, 1988.

M. Ontell and K. Kozeka, The Organogenesis of Murine Striated Muscle : A Cytoarchitectural Study, Am. J. Anat, vol.148, pp.133-148, 1984.

M. Ontell and K. Kozeka, Organogenesis of the Mouse Extensor Digitorum Logus Muscle : A Quantitative Study, Am. J. Anat, vol.161, pp.149-161, 1984.

C. P. Ordahl and N. M. Le-douarin, Two myogenic lineages within the developing somite, Development, vol.114, pp.339-53, 1992.

A. Otto, C. Schmidt, G. Luke, S. Allen, P. Valasek et al.,

. Patel, Canonical Wnt signalling induces satellite-cell proliferation during adult skeletal muscle regeneration, J. Cell Sci, vol.121, pp.2939-2950, 2008.

S. Oustanina, G. Hause, and T. Braun, Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification, EMBO J, vol.23, pp.3430-3439, 2004.

H. Ozaki, Y. Watanabe, K. Takahashi, K. Kitamura, A. Tanaka et al., Six4, a putative myogenin gene regulator, is not essential for mouse embryonal development, Mol. Cell. Biol, vol.21, pp.3343-50, 2001.

H. Ozaki, Y. Watanabe, K. Takahashi, K. Kitamura, A. Tanaka et al., Six4, a putative myogenin gene regulator, is not essential for mouse embryonal development, Mol. Cell. Biol, vol.21, pp.3343-50, 2001.

G. Pallafacchina, S. François, B. Regnault, B. Czarny, V. Dive et al., An adult tissue-specific stem cell in its niche: A gene profiling analysis of in vivo quiescent and activated muscle satellite cells, Stem Cell Res, vol.4, pp.77-91, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00508865

A. Pannérec, L. Formicola, V. Besson, G. Marazzi, and D. A. Sassoon, Defining skeletal muscle resident progenitors and their cell fate potentials, 2013.

K. S. Pappu, E. J. Ostrin, B. W. Middlebrooks, B. T. Sili, R. Chen et al., Dual regulation and redundant function of two eye-specific enhancers of the Drosophila retinal determination gene dachshund, Development, vol.132, pp.2895-2905, 2005.

F. Parisi, L. Lacour, S. Giordani, P. Colnot, F. L. Maire et al., APC is required for muscle stem cell proliferation and skeletal muscle tissue repair, J. Cell Biol, vol.210, pp.717-726, 2015.

J. S. Park, W. Ma, L. L. O&apos;brien, E. Chung, J. J. Guo et al., Six2 and Wnt Regulate SelfRenewal and Commitment of Nephron Progenitors through Shared Gene Regulatory Networks, Dev. Cell, vol.23, pp.637-651, 2012.

M. S. Parmacek, H. S. Ip, F. Jung, T. Shen, J. F. Martin et al., A novel myogenic regulatory circuit controls slow/cardiac troponin C gene transcription in skeletal muscle, Mol. Cell. Biol, vol.14, pp.1870-1885, 1994.

T. Partridge and J. Sloper, A host contribution to the regeneration of muscle graft, J. Neurol. Sci, vol.33, pp.425-435, 1977.

A. Patapoutian, J. K. Yoon, J. H. Miner, S. Wang, K. Stark et al., Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome, Development, vol.121, pp.3347-58, 1995.

A. N. Patrick, J. H. Cabrera, A. L. Smith, X. S. Chen, H. L. Ford et al., StructureFunction Analyses of the Human SIX1-EYA2 Complex Reveal Insights into Metastasis and BOR Syndrome, Nat. Struct. Mol. Biol, vol.20, pp.447-453, 2013.

A. N. Patrick, B. J. Schiemann, K. Yang, R. Zhao, and H. L. Ford, Biochemical and functional characterization of six SIX1 Branchio-oto-renal syndrome mutations, J. Biol. Chem, vol.284, pp.20781-20790, 2009.

T. Pauli, M. Seimiya, J. Blanco, and W. J. Gehring, Identification of functional sine oculis motifs in the autoregulatory element of its own gene, in the eyeless enhancer and in the signalling gene hedgehog, Development, vol.132, pp.2771-2782, 2005.

G. K. Pavlath and H. M. Blau, Expression of muscle genes in heterokaryons depends on gene dosage, J. Cell Biol, vol.102, pp.124-130, 1986.

H. Peng and J. Huard, Muscle-derived stem cells for musculoskeletal tissue regeneration and repair, Transpl. Immunol, vol.12, pp.311-319, 2004.

K. E. Personius, J. Nautiyal, and S. Reddy, Myotonia and muscle contractile properties in mice with SIX5 deficiency. Muscle and Nerve, vol.31, pp.503-505, 2005.

K. J. Peterson and E. H. Davidson, Regulatory evolution and the origin of the bilaterians, Proc Natl Acad Sci U S A, vol.97, pp.4430-4433, 2000.

M. Pieper, G. W. Eagleson, W. Wosniok, and G. Schlosser, Origin and segregation of cranial placodes in Xenopus laevis, Dev. Biol, vol.360, pp.257-275, 2011.

F. Pignoni, B. Hu, K. H. Zavitz, J. Xiao, P. A. Garrity et al., The eyespecification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development, Cell, vol.91, pp.80480-80488, 1997.

D. F. Pinney, S. H. Pearson-white, S. F. Konieczny, K. E. Latham, and C. P. Emerson, Myogenic lineage determination and differentiation: Evidence for a regulatory gene pathway, Cell, vol.53, pp.90095-90100, 1988.
DOI : 10.1016/0092-8674(88)90095-5

C. Pouget, K. Pottin, and T. Jaffredo, Sclerotomal origin of vascular smooth muscle cells and pericytes in the embryo, Dev. Biol, vol.315, pp.437-447, 2008.

O. Pourquié, C. M. Fan, M. Coltey, E. Hirsinger, Y. Watanabe et al., Lateral and axial signals involved in avian somite patterning: A role for BMP4, Cell, vol.84, pp.461-471, 1996.

A. Pozzi, P. D. Yurchenco, and R. V. Iozzo, The nature and biology of basement membranes, Matrix Biol, 2016.

C. Punzo, M. Seimiya, S. Flister, W. J. Gehring, and S. Plaza, Differential interactions of eyeless and twin of eyeless with the sine oculis enhancer, Development, vol.129, pp.625-659, 2002.

Z. Qu-petersen, B. Deasy, R. Jankowski, M. Ikezawa, J. Cummins et al., Identification of a novel population of muscle stem cells in mice, J. Cell Biol, vol.157, pp.851-864, 2002.

V. F. Rafuse, L. D. Milner, and L. T. Landmesser, Selective innervation of fast and slow muscle regions during early chick neuromuscular development, J. Neurosci, vol.16, pp.6864-77, 1996.
DOI : 10.1523/jneurosci.16-21-06864.1996

URL : http://www.jneurosci.org/content/16/21/6864.full.pdf

M. Z. Ratajczak, M. Majka, M. Kucia, J. Darkula, Z. Pietrzkowski et al., Expression of Functional CXCR4 by Muscle Satellite Cells and Secretion of SDF-1 by Muscle-Derived Fibroblasts is Associated with the Presence of Both Muscle Progenitors in Bone Marrow and Hematopoietic Stem/Progenitor Cells in Muscles, Stem Cells, vol.21, pp.363-371, 2003.

T. Rauch, H. Li, X. Wu, and G. P. Pfeifer, MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells, Cancer Res, vol.66, pp.7939-7947, 2006.

A. Rawls, J. H. Morris, M. Rudnicki, T. Braun, H. Arnold et al., Myogenin's Functions Do Not Overlap with Those of MyoD or Myf-5 during, 1995.
DOI : 10.1006/dbio.1995.0004

URL : https://doi.org/10.1006/dbio.1995.0004

, Mouse Embryogenesis. Dev. Biol, vol.172, pp.37-50

A. Rawls, M. R. Valdez, W. Zhang, J. Richardson, W. H. Klein et al., Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice, Development, vol.125, pp.2349-58, 1998.

K. J. Reichenberger, R. D. Coletta, A. P. Schulte, M. Varella-garcia, and H. L. Ford, Gene amplification is a mechanism of Six1 overexpression in breast cancer, Cancer Res, vol.65, pp.2668-2675, 2005.

F. Relaix, J. Demignon, C. Laclef, J. Pujol, M. Santolini et al., Six homeoproteins directly activate myod expression in the gene regulatory networks that control early myogenesis, PLoS Genet, vol.9, p.1003425, 2013.
DOI : 10.1371/journal.pgen.1003425

URL : https://hal.archives-ouvertes.fr/hal-01308854

F. Relaix, D. Montarras, S. Zaffran, B. Gayraud-morel, D. Rocancourt et al., Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells, J. Cell Biol, vol.172, pp.91-102, 2006.
DOI : 10.1083/jcb.200508044

URL : https://hal.archives-ouvertes.fr/hal-00311188

F. Relaix, D. Rocancourt, A. Mansouri, and M. Buckingham, Divergent functions of murine Pax3 and Pax7 in limb muscle development, Genes Dev, vol.18, pp.1088-1105, 2004.

F. Relaix, D. Rocancourt, A. Mansouri, and M. Buckingham, A Pax3/Pax7-dependent population of skeletal muscle progenitor cells, Nature, vol.435, pp.948-53, 2005.
DOI : 10.1038/nature03594

URL : https://hal.archives-ouvertes.fr/pasteur-00176824

S. J. Rhodes and S. F. Konieczny, Identification of MRF4: A new member of the muscle regulatory factor gene family, Genes Dev, vol.3, pp.2050-2061, 1989.

A. Richard, J. Demignon, I. Sakakibara, J. Pujol, M. Favier et al., Genesis of muscle fiber-type diversity during mouse embryogenesis relies on Six1 and Six4 gene expression, Dev. Biol, vol.359, pp.303-323, 2011.

A. Rinon, S. Lazar, H. Marshall, S. Buchmann-moller, A. Neufeld et al., Cranial neural crest cells regulate head muscle patterning and differentiation during vertebrate embryogenesis, Development, vol.134, pp.3065-3075, 2007.
DOI : 10.1242/dev.002501

URL : http://dev.biologists.org/content/134/17/3065.full.pdf

A. C. Rios, O. Serralbo, D. Salgado, and C. Marcelle, Neural crest regulates myogenesis through the transient activation of NOTCH, Nature, vol.473, pp.532-535, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01780066

P. Rocheteau, B. Gayraud-morel, I. Siegl-cachedenier, M. Blasco, and S. Tajbakhsh, A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division, Cell, vol.148, pp.112-137, 2012.
DOI : 10.1016/j.cell.2011.11.049

URL : https://doi.org/10.1016/j.cell.2011.11.049

J. E. Rooney, P. B. Gurpur, Z. Yablonka-reuveni, and D. J. Burkin, Laminin-111 restores regenerative capacity in a mouse model for alpha7 integrin congenital myopathy, Am. J. Pathol, vol.174, pp.256-64, 2009.
DOI : 10.2353/ajpath.2009.080522

URL : http://europepmc.org/articles/pmc2631338?pdf=render

G. D. Rosen, J. R. Sanes, R. Lachance, J. M. Cunningham, J. Roman et al., Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis, Cell, vol.69, pp.1107-1119, 1992.

M. Rozo, L. Li, and C. Fan, Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice, Nat. Med. 1-11, 2016.
DOI : 10.1038/nm.4116

URL : http://europepmc.org/articles/pmc4974124?pdf=render

M. A. Rudnicki, T. Braun, S. Hinuma, and R. Jaenisch, Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development, Cell, vol.71, pp.383-390, 1992.

M. A. Rudnicki, P. N. Schnegelsberg, R. H. Stead, T. Braun, H. H. Arnold et al., MyoD or Myf-5 is required for the formation of skeletal muscle, Cell, vol.75, issue.93, p.90621, 1993.

A. Rudolf, E. Schirwis, L. Giordani, A. Parisi, C. Lepper et al., B-Catenin Activation in Muscle Progenitor Cells Regulates Tissue Repair, Cell Rep, vol.15, pp.1277-1290, 2016.

R. G. Ruf, P. Xu, D. Silvius, E. A. Otto, F. Beekmann et al.,

E. Hyland, C. Ruf, E. H. Schwartz, R. J. Chang, C. A. Smith et al.,

F. Petit and . Hildebrandt, SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.8090-8095, 2004.

U. Rutishauser, M. Grumet, and G. M. Edelman, Neural cell adhesion molecule mediates initial interactions between spinal cord neurons and muscle cells in culture, J. Cell Biol, vol.97, pp.145-152, 1983.
DOI : 10.1083/jcb.97.1.145

URL : http://jcb.rupress.org/content/97/1/145.full.pdf

A. Sacco, R. Doyonnas, P. Kraft, S. Vitorovic, and H. M. Blau, Self-renewal and expansion of single transplanted muscle stem cells, Nature, vol.456, pp.502-508, 2008.
DOI : 10.1038/nature07384

URL : http://europepmc.org/articles/pmc2919355?pdf=render

M. Sachs, H. Brohmann, D. Zechner, T. ??ller, J. H??lsken et al., Essential role of Gab1 for signaling by the c-Met receptor in vivo, J. Cell Biol, vol.150, pp.1375-1384, 2000.

L. D. Sacks, G. M. Cann, W. Nikovits, S. Conlon, N. R. Espinoza et al., Regulation of myosin expression during myotome formation, Development, vol.130, pp.3391-402, 2003.
DOI : 10.1242/dev.00541

URL : http://dev.biologists.org/content/130/15/3391.full.pdf

M. Saclier, H. Yacoub-youssef, A. L. Mackey, L. Arnold, H. Ardjoune et al., Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration, Stem Cells, vol.31, pp.384-396, 2013.
DOI : 10.1002/stem.1288

URL : https://hal.archives-ouvertes.fr/inserm-00787108

Y. Saga, S. Miyagawa-tomita, A. Takagi, S. Kitajima, J. Miyazaki et al., MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube, Development, vol.126, pp.3437-3447, 1999.

H. Sakai, T. Sato, H. Sakurai, T. Yamamoto, K. Hanaoka et al., Fetal skeletal muscle progenitors have regenerative capacity after intramuscular engraftment in dystrophin deficient mice, PLoS One, vol.8, p.63016, 2013.
DOI : 10.1371/journal.pone.0063016

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0063016&type=printable

I. Sakakibara, M. Santolini, A. Ferry, V. Hakim, and M. Pascal, Six Homeoproteins and a Iinc-RNA at the Fast MYH Locus Lock Fast Myofiber Terminal Phenotype, PLoS Genet, vol.10, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01342678

I. Sakakibara, M. Wurmser, M. Santos, M. Santolini, S. Ducommun et al., Six1 homeoprotein drives myofiber type IIA specialization in soleus muscle, Skelet. Muscle, vol.6, p.30, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01359830

M. Salminen, S. López, P. Maire, D. Kahn, and . Daegelen, Fast-muscle-specific DNA-protein interactions occurring in vivo at the human aldolase A M promoter are necessary for correct promoter activity in transgenic mice, Mol. Cell. Biol, vol.16, pp.76-85, 1996.

R. Sambasivan, G. Comai, I. L. Roux, D. Gomès, J. Konge et al.,

. Tajbakhsh, Embryonic founders of adult muscle stem cells are primed by the determination gene Mrf4, Dev. Biol, vol.381, pp.241-255, 2013.

R. Sambasivan, B. Gayraud-morel, G. Dumas, C. Cimper, S. Paisant et al.,

. Tajbakhsh, Distinct Regulatory Cascades Govern Extraocular and Pharyngeal Arch Muscle Progenitor Cell Fates, Dev. Cell, vol.16, pp.810-821, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00428975

R. Sambasivan, S. Kuratani, and S. Tajbakhsh, An eye on the head: the development and evolution of craniofacial muscles, Development, vol.138, pp.2401-2415, 2011.

R. Sambasivan, R. Yao, A. Kissenpfennig, L. Van-wittenberghe, A. Paldi et al., Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration, Development, vol.138, pp.3647-56, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00667781

R. D. Sanderson, J. M. Fitch, T. R. Linsenmayer, and R. Mayne, Fibroblasts Promote the Formation of a Continuous Basal Lamina during Myogenesis In Vitro, vol.102, pp.740-747, 1986.

J. R. Sanes and J. W. Lichtman, Development of the Vertebrate Neuromuscular Junction, Annu. Rev. Neurosci, vol.22, pp.389-442, 1999.

M. Santolini, I. Sakakibara, M. Gauthier, F. Ribas-aulinas, H. Takahashi et al., MyoD reprogramming requires Six1 and Six4 homeoproteins: genome-wide cis -regulatory module analysis, Nucleic Acids Res. gkw512, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01408973

P. S. Sarkar, B. Appukuttan, J. Han, Y. Ito, C. Ai et al., Heterozygous loss of Six5 in mice is sufficient to cause ocular cataracts, Nat. Genet, vol.25, pp.110-114, 2000.

P. S. Sarkar, S. Paul, J. Han, and S. Reddy, Six5 is required for spermatogenic cell survival and spermiogenesis, Hum. Mol. Genet, vol.13, pp.1421-1431, 2004.

T. Sasaki, R. Giltay, U. Talts, R. Timpl, and J. F. Talts, Expression and Distribution of Laminin ?1 and ?2 Chains in Embryonic and Adult Mouse Tissues: An Immunochemical Approach, Exp. Cell Res, vol.275, pp.185-199, 2002.

A. Schedl, A. Ross, M. Lee, D. Engelkamp, P. Rashbass et al.,

. Hastie, Influence of PAX6 gene dosage on development: Overexpression causes severe eye abnormalities, Cell, vol.86, pp.80078-80079, 1996.

S. Schiaffino, K. A. Dyar, S. Ciciliot, B. Blaauw, and M. Sandri, Mechanisms regulating skeletal muscle growth and atrophy, FEBS J, vol.280, pp.4294-4314, 2013.

S. Schiaffino and C. Reggiani, Fiber types in mammalian skeletal muscles, Physiol. Rev, vol.91, pp.1447-531, 2011.

J. Schienda, K. Engleka, S. Jun, M. S. Hansen, J. Epstein et al., Somitic origin of limb muscle satellite and side population cells, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.945-950, 2006.

H. Schmalbruch and D. M. Lewis, Dynamics of nuclei of muscle fibers and connective tissue cells in normal and denervated rat muscles. Muscle and Nerve, vol.23, pp.617-626, 2000.

E. Schultz, Satellite Cell Proliferative Compartments in Growing Skeletal Muscles, Dev. Biol, vol.175, pp.84-94, 1996.

E. Schultz, D. L. Jaryszak, and C. R. Valliere, Response of satellite cells to focal skeletal muscle injury, Muscle Nerve, vol.8, pp.217-222, 1985.

M. P. Scott, J. W. Tamkun, and G. W. Hartzell, The structure and function of the homeodomain, BBA -Rev. Cancer, vol.989, pp.90033-90037, 1989.

P. Seale, A. Asakura, and M. Rudnicki, The potential of muscle stem cells, Dev. Cell, vol.1, pp.333-342, 2001.

P. Seale, L. Sabourin, . Girgis-gabardo, P. Mansouri, M. Gruss et al., Pax7 is required for the specification of myogenic satellite cells, Cell, vol.102, pp.777-86, 2000.

S. Seenundun, S. Rampalli, Q. Liu, A. Aziz, C. Palii et al., UTX mediates demethylation of H3K27me3 at muscle-specific genes during myogenesis, EMBO J, vol.29, pp.1401-1411, 2010.

M. Seimiya and W. J. Gehring, The Drosophila homeobox gene optix is capable of inducing ectopic eyes by an eyeless-independent mechanism, Development, vol.127, pp.1879-1886, 2000.

M. Self, O. Lagutin, B. Bowling, J. Hendrix, Y. Cai et al., Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney, EMBO J, vol.25, pp.5214-5242, 2006.

H. C. Seo, J. Curtiss, M. Mlodzik, and A. Fjose, Six class homeobox genes in Drosophila belong to three distinct families and are involved in head development, Mech. Dev, vol.83, pp.127-139, 1999.

H. C. Seo, Ø. Drivenes, S. Ellingsen, and A. Fjose, Expression of two zebrafish homologues of the murine Six3 gene demarcates the initial eye primordia, Mech. Dev, vol.73, pp.45-57, 1998.

H. C. Seo, Ø. Drivenes, S. Ellingsen, and A. Fjose, Transient expression of a novel Six3-related zebrafish gene during gastrulation and eye formation, Gene, vol.216, pp.39-46, 1998.

H. C. Seo, Ø. Drivenes, and A. Fjose, A zebrafish Six4 homologue with early expression in head mesoderm, Biochim. Biophys. Acta -Gene Struct. Expr, vol.1442, pp.193-199, 1998.

S. A. Shafiq, M. A. Gorycki, and A. Mauro, Mitosis during postnatal growth in skeletal and cardiac muscle of the rat, J. Anat, vol.103, pp.135-176, 1968.

K. L. Shea, W. Xiang, V. S. Laporta, J. D. Licht, C. Keller et al., Sprouty1 Regulates Reversible Quiescence of a Self-Renewing Adult Muscle Stem Cell Pool during Regeneration, Cell Stem Cell, vol.6, pp.117-129, 2010.

W. Shen and G. Mardon, Ectopic eye development in Drosophila induced by directed dachshund expression, Development, vol.124, pp.45-52, 1997.

V. Shinin, B. Gayraud-morel, D. Gomès, and S. Tajbakhsh, Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells, Nat. Cell Biol, vol.8, pp.677-87, 2006.

C. Smith, K. M. Lau, Z. Rahmani, S. E. Dho, G. Brothers et al., aPKCmediated phosphorylation regulates asymmetric membrane localization of the cell fate determinant Numb, EMBO J, vol.26, pp.468-80, 2007.

C. K. Smith, M. J. Janney, and R. E. Allen, Temporal expression of myogenic regulatory genes during activation, proliferation, and differentiation of rat skeletal muscle satellite cells, J. Cell. Physiol, vol.159, pp.379-385, 1994.

T. Söker, C. Dalke, O. Puk, T. Floss, L. Becker et al., Pleiotropic effects in Eya3 knockout mice, BMC Dev. Biol, vol.8, p.118, 2008.

J. Soulier, E. Clappier, J. M. Cayuela, A. Regnault, M. García-peydró et al., HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL), Blood, vol.106, pp.274-286, 2005.

N. Soulintzi and N. Zagris, Spatial and temporal expression of perlecan in the early chick embryo, Cells Tissues Organs, vol.186, pp.243-256, 2007.

F. Spitz, J. Demignon, . Porteu, J. P. Kahn, D. Concordet et al., Expression of myogenin during embryogenesis is controlled by Six/sine oculis homeoproteins through a conserved MEF3 binding site, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.14220-14225, 1998.

P. L. Ståhl, F. Salmén, S. Vickovic, A. Lundmark, J. F. Navarro et al.,

Å. Codeluppi, F. Borg, P. I. Pontén, P. Costea, J. Sahlén et al., Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science (80-. ), vol.353, pp.78-82, 2016.

D. A. Stark, N. J. Coffey, H. R. Pancoast, L. L. Arnold, J. P. Walker et al., Ephrin-A3 promotes and maintains slow muscle fiber identity during postnatal development and reinnervation, J. Cell Biol, vol.211, pp.1077-1091, 2015.

D. Stark, R. M. Karvas, A. L. Siegel, and D. D. Cornelison, Eph/ephrin interactions modulate muscle satellite cell motility and patterning, Development, vol.138, pp.5279-89, 2011.

R. Steinhardt, G. Bi, and J. Alderton, Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science (80-. ), vol.263, pp.390-393, 1994.

F. E. Stockdale and J. B. Miller, The Cellular Basis of Myosin Heavy Chain lsoform Expression during Development of Avian Skeletal Muscles, Dev. Biol, vol.9, pp.1-9, 1987.

Y. Sun, L. Y. Jan, and Y. N. , Transcriptional regulation of atonal during development of the Drosophila peripheral nervous system, Development, vol.125, pp.3731-3740, 1998.

Y. Suzuki, K. Ikeda, and K. Kawakami, Regulatory role of Six1 in the development of taste papillae, Cell Tissue Res, vol.339, pp.513-525, 2010.

Y. Suzuki, K. Ikeda, and K. Kawakami, Development of gustatory papillae in the absence of Six1 and Six4, J. Anat, vol.219, pp.710-721, 2011.

M. E. Swartz, J. Eberhart, E. B. Pasquale, and C. E. Krull, EphA4/ephrin-A5 interactions in muscle precursor cell migration in the avian forelimb, Development, vol.128, pp.4669-4680, 2001.

V. Taglietti, G. Maroli, S. Cermenati, G. Cossu, M. Beltrame et al., Nfix Induces a Switch in Sox6 Transcriptional Activity to Regulate MyHC-I Expression in Fetal Muscle Article Nfix Induces a Switch in Sox6 Transcriptional Activity to Regulate MyHC-I Expression in Fetal Muscle, CellReports, vol.17, pp.2354-2366, 2016.

S. Tajbakhsh, U. Borello, E. Vivarelli, R. Kelly, J. Papkoff et al., Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5, Development, vol.125, pp.4155-62, 1998.

S. Tajbakhsh, D. Rocancourt, and M. Buckingham, Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice, Nature, vol.384, pp.266-270, 1996.

S. Tajbakhsh, D. Rocancourt, G. Cossu, and M. Buckingham, Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD, Cell, vol.89, pp.127-138, 1997.

K. Tanegashima, K. Suzuki, Y. Nakayama, K. Tsuji, A. Shigenaga et al., CXCL14 is a natural inhibitor of the CXCL12-CXCR4 signaling axis, FEBS Lett, vol.587, pp.1731-1735, 2013.

K. Tanegashima, K. Tsuji, K. Suzuki, A. Shigenaga, A. Otaka et al., Dimeric peptides of the C-terminal region of CXCL14 function as CXCL12 inhibitors, FEBS Lett, vol.587, pp.3770-3775, 2013.

R. Tatsumi, Y. Sankoda, J. E. Anderson, Y. Sato, W. Mizunoya et al.,

R. P. Yamada, Y. Rhoads, R. E. Ikeuchi, and . Allen, Possible implication of satellite cells in regenerative motoneuritogenesis: HGF upregulates neural chemorepellent Sema3A during myogenic differentiation, AJP Cell Physiol, vol.297, pp.238-252, 2009.

R. Tatsumi, T. Suzuki, M. Q. Do, Y. Ohya, J. E. Anderson et al.,

T. Nishimura, R. E. Yagi, and . Allen, Slow-Myofiber Commitment by Semaphorin 3A Secreted from Myogenic Stem Cells. Stem Cells. 1-26, 2017.

K. Thomas, A. J. Engler, and G. A. Meyer, Extracellular matrix regulation in the muscle satellite cell niche, Connect. Tissue Res, vol.56, pp.1-8, 2015.

S. Thorsteinsdóttir, M. Deries, A. S. Cachaço, and F. Bajanca, The extracellular matrix dimension of skeletal muscle development, Dev. Biol, vol.354, pp.191-207, 2011.

J. G. Tidball and S. A. Villalta, Regulatory interactions between muscle and the immune system during muscle regeneration, Am J Physiol Regul Integr Comp Physiol, vol.298, pp.1173-87, 2010.
DOI : 10.1152/ajpregu.00735.2009

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2867520/pdf

M. Tierney, H. Timothy, A. Gromova, F. B. Sesillo, D. Sala et al., Autonomous Extracellular Matrix Remodeling Controls a Progressive Adaptation in Muscle Stem Cell Regenerative Capacity during Development, Cell Rep, vol.14, pp.1940-1952, 2016.

M. T. Tierney and A. Sacco, Satellite Cell Heterogeneity in Skeletal Muscle Homeostasis, Trends Cell Biol. xx, pp.1-11, 2016.
DOI : 10.1016/j.tcb.2016.02.004

URL : http://europepmc.org/articles/pmc4877266?pdf=render

S. Ustanina, J. Carvajal, P. Rigby, and T. Braun, The Myogenic Factor Myf5 Supports Efficient Skeletal Muscle Regeneration by Enabling Transient Myoblast Amplification, Stem Cells, vol.25, pp.2006-2016, 2007.
DOI : 10.1634/stemcells.2006-0736

URL : https://stemcellsjournals.onlinelibrary.wiley.com/doi/pdf/10.1634/stemcells.2006-0736

M. R. Valdez, J. A. Richardson, W. H. Klein, and E. N. Olson, Failure of Myf5 to Support Myogenic Differentiation without Myogenin, MyoD, and MRF4, Dev. Biol, vol.219, pp.287-298, 2000.

E. Vasyutina, J. Stebler, B. Brand-saberi, S. Schulz, E. Raz et al., CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells, Genes Dev, vol.19, pp.2187-2198, 2005.

S. J. Venters and C. P. Ordahl, Asymmetric cell divisions are concentrated in the dermomyotome dorsomedial lip during epaxial primary myotome morphogenesis, Anat. Embryol. (Berl), vol.209, pp.449-460, 2005.
DOI : 10.1007/s00429-005-0461-2

J. M. Venuti, J. H. Morris, J. L. Vivian, E. N. Olson, and W. H. Klein, , 1995.

, Myogenin Is Required, for Late But Not Early Aspects of Myogenesis During Mouse Development, J. Cell Biol, vol.128, pp.563-576

H. Wakimoto, C. T. Maguire, M. C. Sherwood, M. M. Vargas, P. S. Sarkar et al., Characterization of cardiac conduction system abnormalities in mice with targeted disruption of Six5 gene, J. Interv. Card. Electrophysiol, vol.7, pp.127-135, 2002.

F. Wan, X. Miao, I. Quraishi, V. Kennedy, K. E. Creek et al., Gene expression changes during HPV-mediated carcinogenesis: A comparison between an in vitro cell model and cervical cancer, Int. J. Cancer, vol.123, pp.32-40, 2008.
DOI : 10.1002/ijc.23463

URL : http://europepmc.org/articles/pmc2872618?pdf=render

Y. Wang, P. N. Schnegelsberg, J. Dausman, and R. Jaenisch, Funtionnal redundancy of the muscle-specific transcription factors Myf5 and myogenin, pp.823-825, 1996.

B. Weasner, C. Salzer, and J. P. Kumar, Sine oculis, a member of the SIX family of transcription factors, directs eye formation, Dev. Biol, vol.303, pp.756-771, 2007.

S. Weber, J. C. Taylor, P. Winyard, K. F. Baker, J. Sullivan-brown et al., SIX2 and BMP4 mutations associate with anomalous kidney development, J. Am. Soc. Nephrol, vol.19, pp.891-903, 2008.
DOI : 10.1681/asn.2006111282

URL : https://jasn.asnjournals.org/content/19/5/891.full.pdf

M. T. Webster, U. Manor, J. Lippincott-schwartz, and C. M. Fan, Intravital Imaging Reveals Ghost Fibers as Architectural Units Guiding Myogenic Progenitors during Regeneration, Cell Stem Cell, vol.18, pp.243-252, 2016.
DOI : 10.1016/j.stem.2015.11.005

URL : https://doi.org/10.1016/j.stem.2015.11.005

K. M. Weidner, S. Di-cesare, M. Sachs, V. Brinkmann, J. Behrens et al., Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis, Nature, vol.384, pp.173-176, 1996.

Y. Wen, P. Bi, W. Liu, A. Asakura, C. Keller et al., Constitutive Notch Activation Upregulates Pax7 and Promotes the Self-Renewal of Skeletal Muscle Satellite Cells, Mol. Cell. Biol, vol.32, pp.2300-2311, 2012.

R. G. Whalen, J. B. Harris, G. S. Butler-browne, and S. Sesodia, Expression of myosin isoforms during notexin-induced regeneration of rat soleus muscles, Dev. Biol, vol.141, pp.90099-90104, 1990.

N. K. White, P. H. Bonner, D. R. Nelson, and S. D. Hauschka, Clonal Analysis of Vertebrate Myogenesis, Dev. Biol, vol.346361, pp.346-361, 1975.

R. B. White, A. Biérinx, V. F. Gnocchi, and P. S. Zammit, Dynamics of muscle fibre growth during postnatal mouse development, BMC Dev. Biol, vol.10, p.21, 2010.

B. Williams and C. P. Ordahl, Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification, Development, vol.120, pp.785-796, 1994.

J. Wilson-rawls, C. R. Hurt, S. M. Parsons, and A. Rawls, Differential regulation of epaxial and hypaxial muscle development by paraxis, Development, vol.126, pp.5217-5229, 1999.

C. Winchester, S. Robertson, T. Macleod, K. Johnson, and M. Thomas, Expression of a homeobox gene (SIX5) in borderline ovarian tumours, J. Clin. Pathol, vol.53, pp.212-217, 2000.

A. C. Wozniak, O. Pilipowicz, Z. Yablonka-reuveni, S. Greenway, S. Craven et al., C-Met expression and mechanical activation of satellite cells on cultured muscle fibers, J. Histochem. Cytochem, vol.51, pp.1437-1482, 2003.

W. E. Wright, D. A. Sassoon, and V. K. Lin, Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD, Cell, vol.56, issue.89, pp.90583-90590, 1989.

W. Xiong, N. M. Dabbouseh, and I. Rebay, Interactions with the Abelson Tyrosine Kinase Reveal Compartmentalization of Eyes Absent Function between Nucleus and Cytoplasm, Dev. Cell, vol.16, pp.271-279, 2009.

J. Xu, E. Y. Wong, C. Cheng, J. Li, M. T. Sharkar et al., Eya1 interacts with Six2 and Myc to regulate expansion of the nephron progenitor pool during nephrogenesis, Dev. Cell, vol.31, pp.434-447, 2014.

P. Xu, The EYA-SO/SIX complex in development and disease, Pediatr. Nephrol, vol.28, pp.843-54, 2013.

P. Xu, W. Zheng, L. Huang, P. Maire, C. Laclef et al., Six1 is required for the early organogenesis of mammalian kidney, Development, vol.130, pp.3085-3094, 2003.

P. X. Xu, J. Cheng, J. A. Epstein, and R. L. Maas, Mouse Eya genes are expressed during limb tendon development and encode a transcriptional activation function, Proc. Natl. Acad. Sci. U. S. A, vol.94, pp.11974-11983, 1997.
DOI : 10.1073/pnas.94.22.11974

URL : http://europepmc.org/articles/pmc23674?pdf=render

P. X. Xu, I. Woo, H. Her, D. R. Beier, and R. L. Maas, Mouse Eya homologues of the Drosophila eyes absent gene require Pax6 for expression in lens and nasal placode, Development, vol.124, pp.219-231, 1997.

H. Yajima and K. Kawakami, Low Six4 and Six5 gene dosage improves dystrophic phenotype and prolongs life span of mdx mice, Dev. Growth Differ, pp.1-16, 2016.

H. Yajima, N. Motohashi, Y. Ono, S. Sato, K. Ikeda et al., Six family genes control the proliferation and differentiation of muscle satellite cells, Exp. Cell Res, vol.316, pp.2932-2976, 2010.

H. Yajima, M. Suzuki, H. Ochi, K. Ikeda, S. Sato et al., Six1 is a key regulator of the developmental and evolutionary architecture of sensory neurons in craniates, BMC Biol, vol.12, p.40, 2014.

X. Yang, S. Arber, C. William, L. Li, Y. Tanabe et al., Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation, Neuron, vol.30, pp.399-410, 2001.

C. C. Yao, B. L. Ziober, R. M. Squillace, and R. H. Kramer, Alpha7 integrin mediates cell adhesion and migration on specific laminin isoforms1, J.Biol.Chem, vol.271, pp.25598-25603, 1996.

S. Yennek, M. Burute, M. Théry, and S. Tajbakhsh, Cell adhesion geometry regulates non-random DNA segregation and asymmetric cell fates in mouse skeletal muscle stem cells, Cell Rep, vol.7, pp.961-70, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01141085

H. Yin, F. Price, and M. Rudnicki, Satellite cells and the muscle stem cell niche, Physiol. Rev, vol.93, pp.23-67, 2013.

A. P. Young, R. Nagarajan, and G. D. Longmore, Mechanisms of transcriptional regulation by Rb-E2F segregate by biological pathway, Oncogene, vol.22, pp.7209-7217, 2003.

Y. Yu, J. Khan, C. Khanna, L. Helman, P. S. Meltzer et al., Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators, Nat. Med, vol.10, pp.175-181, 2004.

N. Yumoto, N. Kim, and S. J. Burden, Lrp4 is a retrograde signal for presynaptic differentiation at neuromuscular synapses, Nature, vol.489, pp.438-480, 2012.

L. Yvernogeau, G. Auda-boucher, and J. Fontaine-perus, Limb bud colonization by somite-derived angioblasts is a crucial step for myoblast emigration, Development, vol.139, pp.277-287, 2012.

A. L. Zacharias, M. Lewandoski, M. A. Rudnicki, and P. J. Gage, Pitx2 is an upstream activator of extraocular myogenesis and survival, Dev. Biol, vol.349, pp.395-405, 2011.

N. Zagris, V. Stavridis, and A. E. Chung, Appearance and distribution of entactin in the early chick embryo, Differentiation, vol.54, pp.67-71, 1993.

A. Zalc, S. Hayashi, F. Auradé, D. Bröhl, T. Chang et al., Antagonistic regulation of p57kip2 by, 2014.

, Hes/Hey downstream of Notch signaling and muscle regulatory factors regulates skeletal muscle growth arrest, Development, vol.141, pp.2780-90

F. Zappelli, D. Willems, S. Osada, S. Ohno, W. C. Wetsel et al.,

. Bouché, The inhibition of differentiation caused by TGFbeta in fetal myoblasts is dependent upon selective expression of PKCtheta: a possible molecular basis for myoblast diversification during limb histogenesis, Dev. Biol, vol.180, pp.156-64, 1996.

M. Zeschnigk, D. Kozian, C. Kuch, M. Schmoll, and A. Starzinski-powitz, Involvement of M-cadherin in terminal differentiation of skeletal muscle cells, J. Cell Sci, vol.108, pp.2973-2981, 1995.

T. Zhang, S. Ranade, C. Q. Cai, C. Clouser, and F. Pignoni, Direct control of neurogenesis by selector factors in the fly eye: regulation of atonal by Ey and So, Development, vol.133, pp.4881-4890, 2006.

W. Zhang, R. R. Behringer, and E. N. , Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies, pp.1388-1399, 1995.

Z. Zhou, J. Wang, C. Guo, W. Chang, J. Zhuang et al., Temporally Distinct Six2 -Positive Second Heart Field Progenitors Regulate Mammalian Heart Development and Disease Article Temporally Distinct Six2 -Positive Second Heart Field Progenitors Regulate Mammalian Heart Development and Disease, CellReports, vol.18, pp.1019-1032, 2017.

C. C. Zhu, M. Dyer, M. Uchikawa, H. Kondoh, O. Lagutin et al., Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors, Development, vol.129, pp.2835-2884, 2002.

Z. Zhu and J. B. Miller, MRF4 can substitute for myogenin during early stages of myogenesis, Dev. Dyn, vol.209, pp.233-241, 1997.

D. Zou, C. Erickson, E. H. Kim, D. Jin, B. Fritzsch et al., Eya1 gene dosage critically affects the development of sensory epithelia in the mammalian inner ear, 2008.

. Mol and . Genet, , vol.17, pp.3340-3356

D. Zou, D. Silvius, B. Fritzsch, and P. Xu, Eya1 and Six1 are essential for early steps of sensory neurogenesis in mammalian cranial placodes, Development, vol.131, pp.5561-72, 2004.

K. Zou, M. De-lisio, H. D. Huntsman, Y. Pincu, Z. Mahmassani et al., Laminin-111 Improves Skeletal Muscle Stem Cell Quantity and Function Following Eccentric Exercise, Stem Cells Transl. Med, 2014.

Y. Zou, R. Zhang, P. Sabatelli, M. Chu, and C. G. Bönnemann, Muscle Interstitial Fibroblasts Are the Main Source of Collagen VI Synthesis in Skeletal Muscle: Implications for Congenital Muscular Dystrophy Types Ullrich and Bethlem, 2008.

, Neuropathol. Exp. Neurol, vol.67, pp.144-154

M. E. Zuber, M. Perron, A. Philpott, A. Bang, and W. A. Harris, Giant eyes in Xenopus laevis by overexpression of XOptx2, Cell, vol.98, pp.81963-81970, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00740515