L. Bettaieb, F. Costa, and J. Lourme, « Transmission d'énergie par couplage inductif. Application aux capteurs biomédicaux intégrés, Symposium de Génie Électrique, 2014.

S. Babic, F. Sirois, C. Akyel, and C. Girardi, « Mutual Inductance Calculation Between Circular Filaments Arbitrarily Positioned in Space: Alternative to Grover's Formula », IEEE Trans. Magn, vol.46, issue.9, pp.3591-3600, 2010.

A. M. Niknejad, R. Gharpurey, and R. G. Meyer, « Numerically stable Green function for modeling and analysis of substrate coupling in integrated circuits, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst, vol.17, issue.4, pp.305-315, 1998.

S. Babic and C. Akyel, « Improvement in calculation of the self-and mutual inductance of thin-wall solenoids and disk coils, IEEE Trans. Magn, vol.36, issue.4, pp.1970-1975, 2000.

J. R. Long, « Monolithic transformers for silicon RF IC design, IEEE J. Solid-State Circuits, vol.35, issue.9, pp.1368-1382, 2000.

J. R. Long and M. A. Copeland, « The modeling, characterization, and design of monolithic inductors for silicon RF IC's », IEEE J. Solid-State Circuits, vol.32, issue.3, pp.357-369, 1997.

M. Dehan, J. Raskin, and I. Huynen, Vanhoenacker-Janvier, « An improved multiline analysis for monolithic inductors, IEEE Trans. Microw. Theory Tech, vol.51, issue.1, pp.100-108, 2003.

R. Prieto, J. A. Oliver, J. A. Cobos, J. Uceda, and M. Christini, « Errors obtained when 1D magnetic component models are not properly applied, Applied Power Electronics Conference and Exposition, 1999. APEC '99. Fourteenth Annual, vol.1, pp.206-212, 1999.

S. Am, P. Lefranc, and D. Frey, « Design methodology for optimising a high insulation voltage insulated gate bipolar transistor gate driver signal transmission function, IET Power Electron, vol.8, issue.6, pp.1035-1042, 2015.

S. Lee and R. D. Lorenz, « Development and Validation of Model for 95%-Efficiency 220-W Wireless Power Transfer Over a 30-cm Air Gap, IEEE Trans. Ind. Appl, vol.47, issue.6, pp.2495-2504, 2011.

P. Meyer, P. Germano, and Y. Perriard, « FEM modeling of skin and proximity effects for coreless transformers, 2012 15th International Conference on Electrical Machines and Systems (ICEMS), pp.1-6, 2012.

H. A. Wheeler, « Formulas for the Skin Effect, Proc. IRE, vol.30, pp.412-424

P. Meyer and Y. Perriard, « Skin and proximity effects for coreless transformers, 2011 International Conference on Electrical Machines and Systems (ICEMS), pp.1-5, 2011.

D. D. Zutter and L. Knockaert, « Skin Effect Modeling Based on a Differential Surface Admittance Operator, IEEE Trans. Microw. Theory Tech, vol.53, issue.8, pp.2526-2538, 2005.

W. K. Mo, D. K. Cheng, and Y. S. Lee, « Design and analysis of planar inductors, Conference Record of the 1995 IEEE Industry Applications Conference, vol.1, pp.817-823, 1995.

H. Hsu, « Effective series-resistance model of spiral inductors, Microw. Opt. Technol. Lett, vol.46, issue.2, pp.107-109, 2005.

Y. Cao, « Frequency-independent equivalent-circuit model for on-chip spiral inductors, IEEE J. Solid-State Circuits, vol.38, issue.3, pp.419-426, 2003.

M. J. Tsuk and J. A. Kong, « A hybrid method for the calculation of the resistance and inductance of transmission lines with arbitrary cross sections, IEEE Trans. Microw. Theory Tech, vol.39, issue.8, pp.1338-1347, 1991.

I. Lope, J. Acero, J. Serrano, C. Carretero, R. Alonso et al., « Minimization of vias in PCB implementations of planar coils with litz-wire structure, 2015 IEEE Applied Power Electronics Conference and Exposition, pp.2512-2517, 2015.

I. Lope, C. Carretero, J. Acero, R. Alonso, and J. M. Burdio, « Frequency-Dependent Resistance of Planar Coils in Printed Circuit Board With Litz Structure », IEEE Trans. Magn, vol.50, pp.1-9, 2014.

C. R. Sullivan, « Optimal choice for number of strands in a litz-wire transformer winding, IEEE Trans. Power Electron, vol.14, issue.2, pp.283-291, 1999.

S. Wang, M. A. De-rooij, W. G. Odendaal, J. D. Van-wyk, and E. D. Boroyevich, « Reduction of highfrequency conduction losses using a planar litz structure, IEEE Trans. Power Electron, vol.20, issue.2, pp.261-267, 2005.

I. Lope, J. Acero, J. M. Burdío, C. Carretero, and R. Alonso, « Design and Implementation of PCB Inductors With Litz-Wire Structure for Conventional-Size Large-Signal Domestic Induction Heating Applications, IEEE Trans. Ind. Appl, vol.51, issue.3, pp.2434-2442, 2015.

C. R. Sullivan, Layered foil as an alternative to litz wire: Multiple methods for equal current sharing among layers, 2014 IEEE 15th Workshop on Control and Modeling for Power Electronics (COMPEL), pp.1-7, 2014.

W. B. Kuhn, X. He, and M. Mojarradi, « Modeling spiral inductors in SOS processes, IEEE Trans. Electron Devices, vol.51, issue.5, pp.677-683, 2004.

J. Sieiro, J. M. López-villegas, J. Cabanillas, J. A. Osorio, and J. Samitier, « A physical frequencydependent compact model for RF integrated inductors, IEEE Trans. Microw. Theory Tech, vol.50, issue.1, pp.384-392, 2002.

K. Mallik, A. Abuelgasim, N. Hashim, P. Ashburn, and C. H. De-groot, Analytical and numerical model of spiral inductors on high resistivity silicon substrates, vol.93, pp.43-48, 2014.

L. Jianbing, S. Yujie, N. Zhongxia, and Z. Dongfang, « Modeling, simulation and optimization design of PCB planar transformer, ICEMS 2005: Proceedings of the Eighth International Conference on Electrical Machines and Systems, vol.3, pp.1736-1739, 2005.

U. Jow and M. Ghovanloo, « Modeling and Optimization of Printed Spiral Coils in Air, Saline, and Muscle Tissue Environments, IEEE Trans. Biomed. Circuits Syst, vol.3, issue.5, pp.339-347, 2009.

C. K. Lee, Y. P. Su, and S. Y. Hui, Printed Spiral Winding Inductor With Wide Frequency Bandwidth, IEEE Trans. Power Electron, vol.26, issue.10, pp.2936-2945, 2011.

A. Zolfaghari, A. Chan, and B. Razavi, « Stacked inductors and transformers in CMOS technology, IEEE J. Solid-State Circuits, vol.36, issue.4, pp.620-628, 2001.

U. Jow and M. Ghovanloo, Design and Optimization of Printed Spiral Coils for Efficient Transcutaneous Inductive Power Transmission, IEEE Trans. Biomed. Circuits Syst, vol.1, issue.3, pp.193-202, 2007.

E. Chen and S. Y. Chou, « Characteristics of coplanar transmission lines on multilayer substrates: modeling and experiments, IEEE Trans. Microw. Theory Tech, vol.45, issue.6, pp.939-945, 1997.

B. Leite, E. Kerherve, J. B. Begueret, and D. Belot, Transformer topologies for mmW integrated circuits, Microwave Conference, pp.181-184, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00385757

I. Awai, Y. Zhang, T. Komori, and T. Ishizaki, « Coupling coefficient of spiral resonators used for wireless power transfer, Proc. 2010 Asia Pacific Microwave Conf, pp.1328-1331, 2010.

I. Awai, « Basic characteristics of "Magnetic resonance" wireless power transfer system, IEICE Electron. Express, vol.10, pp.20132008-20132008, 2013.

I. Awai and Y. Zhang, « Coupling coefficient of resonators-An intuitive way of its understanding, Electron. Commun. Jpn. Part II Electron, vol.90, issue.9, pp.11-18, 2007.

M. Danesh, J. R. Long, R. A. Hadaway, and D. L. Harame, « A Q-factor enhancement technique for MMIC inductors, Microwave Symposium Digest, vol.1, pp.183-186, 1998.

I. J. Bahl, « Improved quality factor spiral inductors on GaAs substrates, IEEE Microw. Guid. Wave Lett, vol.9, issue.10, pp.398-400, 1999.

J. Craninckx and M. S. Steyaert, « A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors, IEEE J. Solid-State Circuits, vol.32, issue.5, pp.736-744, 1997.

J. M. Lopez-villegas, J. Samitier, C. Cane, P. Losantos, and J. Bausells, « Improvement of the quality factor of RF integrated inductors by layout optimization, IEEE Trans. Microw. Theory Tech, vol.48, issue.1, pp.76-83, 2000.

F. Mernyei, F. Darrer, M. Pardoen, and A. Sibrai, « Reducing the substrate losses of RF integrated inductors, IEEE Microw. Guid. Wave Lett, vol.8, issue.9, pp.300-301, 1998.

G. K. Felic, D. Ng, and E. E. Skafidas, « Investigation of Frequency-Dependent Effects in Inductive Coils for Implantable Electronics, vol.49, pp.1353-1360, 2013.

T. Mizuno, S. Yachi, A. Kamiya, and D. Yamamoto, « Improvement in Efficiency of Wireless Power Transfer of Magnetic Resonant Coupling Using Magnetoplated Wire, IEEE Trans. Magn, vol.47, issue.10, pp.4445-4448, 2011.

D. R. Zimmanck and C. R. Sullivan, « Efficient calculation of winding-loss resistance matrices for magnetic components, 2010 IEEE 12th Workshop on Control and Modeling for Power Electronics (COMPEL), pp.1-5, 2010.

J. H. Spreen, « Electrical terminal representation of conductor loss in transformers, IEEE Trans. Power Electron, vol.5, issue.4, pp.424-429, 1990.

W. G. Hurley and M. C. Duffy, « Calculation of self and mutual impedances in planar magnetic structures, IEEE Trans. Magn, vol.31, issue.4, pp.2416-2422, 1995.

W. G. Hurley, M. C. Duffy, J. Zhang, I. Lope, B. Kunz et al., Unified Approach to the Calculation of Self-and Mutual-Inductance for Coaxial Coils in Air, IEEE Trans. Power Electron, vol.30, issue.11, pp.6155-6162, 2015.

S. C. Tang, S. Y. Hui, and H. Chung, « Characterization of coreless printed circuit board (PCB) transformers, 30th Annual IEEE Power Electronics Specialists Conference, 1999. PESC 99, vol.2, pp.746-752, 1999.

M. T. Carpenter and M. A. Broadmeadow, « Design of coreless PCB transformers for power and signal isolation in a modular ADC system for power quality data acquisition, Power Engineering Conference (AUPEC), pp.1-6, 2014.

L. Rulai and Z. Yisheng, « The structure and analysis of coreless printed circuit board transformers, 2003 6th International SYmposium on Antennas, Propagation and EM Theory, pp.758-761, 2003.

Y. P. Su, X. Liu, and S. Y. Hui, « Extended Theory on the Inductance Calculation ofPlanar Spiral Windings Including the Effectof Double-Layer Electromagnetic Shield, IEEE Trans. Power Electron, vol.23, issue.4, pp.2052-2061, 2008.

H. B. Dwight, Some New Formulas for Reactance Coils, vol.XXXVIII, pp.1675-1696, 1919.

B. X. Foo, A. L. Stein, and C. R. Sullivan, « A step-by-step guide to extracting winding resistance from an impedance measurement, 2017 IEEE Applied Power Electronics Conference and Exposition, pp.861-867, 2017.

X. Wei, Z. Wang, and H. Dai, « A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances, vol.7, pp.4316-4341, 2014.

J. U. Hsu and A. P. Hu, « Determining the variable inductance range for an LCL wireless power pickup, 2007 IEEE Conference on Electron Devices and Solid-State Circuits, pp.489-492, 2007.

M. Lipski, Y. Li, M. Misra, and S. Gregori, A Low Forward Bias Active Diode Circuit for Electrostatic Energy Harvesters, 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp.1-5, 2018.

A. Vescan, I. Daumiller, P. Gluche, W. Ebert, and E. Kohn, Very high temperature operation of diamond Schottky diode, IEEE Electron Device Letters, vol.18, issue.11, pp.556-558, 1997.

S. Park and J. Rivas-davila, Power loss of GaN transistor reverse diodes in a high frequency high voltage resonant rectifier, 2017 IEEE Applied Power Electronics Conference and Exposition, pp.1942-1945, 2017.

S. Park and J. M. Rivas, Design of a Class-DE Rectifier with Shunt Inductance and Nonlinear Capacitance for High-Voltage Conversion, IEEE Transactions on Power Electronics, vol.33, issue.3, pp.2282-2294, 2018.

K. Wu and A. Manager, Introduction To SCHOTTKY Rectifier and Application Guidelines, p.11

S. Birca-galateanu and A. Ivascu, Class E low dv/dt and low di/dt rectifiers: energy transfer, comparison, compact relationships, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.48, issue.9, pp.1065-1074, 2001.

M. Fu, Z. Tang, M. Liu, C. Ma, and X. Zhu, Full-bridge rectifier input reactance compensation in Megahertz wireless power transfer systems, 2015 IEEE PELS Workshop on Emerging Technologies: Wireless Power, pp.1-5, 2015.

M. Liu, M. Fu, and C. Ma, A compact Class E rectifier for megahertz wireless power transfer, 2015 IEEE PELS Workshop on Emerging Technologies: Wireless Power, pp.1-5, 2015.

G. Kkelis, J. Lawson, D. C. Yates, M. Pinuela, and P. D. Mitcheson, Integration of a Class-E low DV/DT rectifer in a wireless power transfer system, 2014 IEEE Wireless Power Transfer Conference, pp.72-75, 2014.

A. Ivascu, M. K. Kazimierczuk, and S. Birca-galateanu, Class E resonant low dv/dt rectifier, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.39, issue.8, pp.604-613, 1992.

G. Kkelis, D. C. Yates, and P. D. Mitcheson, Class-E Half-Wave Zero dv/dt Rectifiers for Inductive Power Transfer, IEEE Transactions on Power Electronics, vol.32, issue.11, pp.8322-8337, 2017.

S. Birca-galateanu and J. L. Cocquerelle, Class E half-wave low dv/dt rectifier operating in a range of frequencies around resonance, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.42, issue.2, pp.83-94, 1995.

L. Raymond, W. Liang, J. Choi, and J. Rivas, 27.12 MHz large voltage gain resonant converter with low voltage stress, IEEE Energy Conversion Congress and Exposition, pp.1814-1821, 2013.

G. Kkelis, S. Aldhaher, J. M. Arteaga, D. C. Yates, and P. D. Mitcheson, Hybrid Class-E synchronous rectifier for wireless powering of quadcopters, 2017 IEEE Wireless Power Transfer Conference, pp.1-4, 2017.

G. Di-capua, N. Femia, and G. Lisi, Impact of losses and mismatches on power and efficiency of Wireless Power Transfer Systems with controlled secondary-side rectifier, Integration, the VLSI Journal, vol.55, pp.384-392, 2016.

Y. Sakai and H. Koizumi, Half-Wave Class DE Low dv/dt Rectifier Using Common-Grounded Controlled Shunt Capacitor and Its Design Approach, 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp.1-4, 2018.

K. Fukui and H. Koizumi, Class E Rectifier With Controlled Shunt Capacitor, IEEE Transactions on Power Electronics, vol.27, issue.8, pp.3704-3713, 2012.

G. B. Joun and B. H. Cho, An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer, IEEE Transactions on Power Electronics, vol.13, issue.6, pp.1013-1022, 1998.

D. A. Pedder, A. D. Brown, and J. A. Skinner, A contactless electrical energy transmission system, IEEE Transactions on Industrial Electronics, vol.46, issue.1, pp.23-30, 1999.

S. Ojika, Y. Miura, and T. Ise, Evaluation of Inductive Contactless Power Transfer Outlet with Coaxial Coreless Transformer, Electr Eng Jpn, vol.195, issue.2, pp.57-67, 2016.

J. T. Boys, G. A. Covic, and A. W. Green, Stability and control of inductively coupled power transfer systems, IEE Proceedings -Electric Power Applications, vol.147, pp.37-43, 2000.

W. Q. Niu, J. X. Chu, W. Gu, and A. D. Shen, Exact Analysis of Frequency Splitting Phenomena of Contactless Power Transfer Systems, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.60, issue.6, pp.1670-1677, 2013.

C. Wang, G. A. Covic, and O. H. Stielau, Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems, IEEE Transactions on Industrial Electronics, vol.51, issue.1, pp.148-157, 2004.

D. B. Lin, T. H. Wang, and F. J. Chen, Wireless power transfer via RFID technology for wearable device applications, 2015 IEEE MTT-S 2015 International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), pp.210-211, 2015.

R. C. Fernandes and A. A. De-oliveira, Theoretical bifurcation boundaries for Wireless Power Transfer converters, 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference, pp.1-4, 2015.

N. C. Kuo, B. Zhao, and A. M. Niknejad, Bifurcation Analysis in Weakly-Coupled Inductive Power Transfer Systems, IEEE Transactions on Circuits and Systems I: Regular Papers, issue.99, pp.1-12, 2016.

, Numerical bifurcation and its application in computation of available transfer capability

M. Iordache, D. Niculae, L. I. Bobaru, and L. Mandache, Circuit analysis of frequency splitting phenomena in wireless power transfer systems, 2015 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE), pp.146-151, 2015.

M. Iordache, L. Mandache, D. Niculae, and L. Iordache, On exact circuit analysis of frequency splitting and bifurcation phenomena in wireless power transfer systems, 2015 International Symposium on Signals, Circuits and Systems (ISSCS), pp.1-4, 2015.

R. Huang and B. Zhang, Frequency, Impedance Characteristics and HF Converters of Two-Coil and FourCoil Wireless Power Transfer, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol.3, issue.1, pp.177-183, 2015.

S. Y. Hui, W. Zhong, and C. K. Lee, A Critical Review of Recent Progress in Mid-Range Wireless Power Transfer, IEEE Transactions on Power Electronics, vol.29, issue.9, pp.4500-4511, 2014.

, Une telle alimentation produirait 1.39W de pertes, ce qui est non négligeable, mais dissipable avec un radiateur approprié. Le fait d'utiliser un substrat parfaitement isolant réduirait la puissance à dissiper à 563 mW

, On observe par ailleurs que les fondeurs, notamment X-fab avec lequel nous avons échangé pour ce dernier chapitre se penchent de plus en plus sur cette perspective. Une structure totalement intégrée assurant une isolation de 600 V parait réalisable, mais de nombreux verrous restent à lever. Les obstacles majeurs sont : la résistivité du substrat, l'épaisseur de l'isolant, ainsi que l'épaisseur des couches métalliques. L'utilisation d'un condensateur non intégré, Conclusion Pour clore ce chapitre, il parait nécessaire d'approfondir la faisabilité d'une structure intégrée au travers de réalisations expérimentales

, L'utilisation d'un micro-transformateur imprimé

D. Krakauer, Digital Isolation Offers Compact, Low-Cost Solutions to Challenging Design Problems, p.3

W. B. Kuhn, X. He, and M. Mojarradi, Modeling spiral inductors in SOS processes, IEEE Transactions on Electron Devices, vol.51, issue.5, pp.677-683, 2004.

J. R. Long and M. A. Copeland, The modeling, characterization, and design of monolithic inductors for silicon RF IC's, IEEE Journal of Solid-State Circuits, vol.32, issue.3, pp.357-369, 1997.

M. Park, S. Lee, H. K. Yu, J. G. Koo, and K. S. Nam, High Q CMOS-compatible microwave inductors using double-metal interconnection silicon technology, IEEE Microwave and Guided Wave Letters, vol.7, issue.2, pp.45-47, 1997.

J. Y. Chang, A. A. Abidi, and M. Gaitan, Large suspended inductors on silicon and their use in a 2-mu m CMOS RF amplifier, IEEE Electron Device Letters, vol.14, issue.5, pp.246-248, 1993.

A. C. Reyes, S. M. El-ghazaly, S. J. Dorn, M. Dydyk, D. K. Schroder et al., Coplanar waveguides and microwave inductors on silicon substrates, IEEE Transactions on Microwave Theory and Techniques, vol.43, issue.9, pp.2016-2022, 1995.

A. Sahu, B. Grayczyk, M. Almalkawi, V. Devabhaktuni, and P. Aaen, High-Q spiral inductors with multilayered split-ring resonator (SRR) patterned ground shields, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), pp.346-347, 2014.

C. P. Yue and S. S. Wong, On-chip spiral inductors with patterned ground shields for Si-based RF ICs, IEEE Journal of Solid-State Circuits, vol.33, issue.5, pp.743-752, 1998.

T. S. Cheung and J. R. Long, Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits, IEEE Journal of Solid-State Circuits, vol.41, issue.5, pp.1183-1200, 2006.

F. Mernyei, F. Darrer, M. Pardoen, and A. Sibrai, Reducing the substrate losses of RF integrated inductors, IEEE microwave and guided wave letters, vol.8, pp.300-301, 1998.

H. Jiang, Y. Wang, J. L. Yeh, and N. C. Tien, On-chip spiral inductors suspended over deep copperlined cavities, IEEE Transactions on Microwave Theory and Techniques, vol.48, issue.12, pp.2415-2423, 2000.

R. L. Haner, S. Krishnan, and S. T. Burns, Spiral inductors with projected floating shields: An alternative method for RF shielding, IEEE International Symposium on Circuits and Systems, pp.1771-1774, 2009.

C. A. Chang, S. Tseng, J. Y. Chuang, S. Jiang, and J. A. Yeh, Characterization of spiral inductors with patterned floating structures, IEEE Transactions on Microwave Theory and Techniques, vol.52, issue.5, pp.1375-1381, 2004.

A. Tsuchiya and H. Onodera, aéronautique, le forage ou l'aérospatial. Le fait de placer l'organe de commande au plus proche des éléments de puissance permet d'améliorer la rapidité, la fiabilité ainsi que l'efficacité du système final, tout en le densifiant. Il convient donc de faire en sorte que l'ensemble (organe de commande + transistor de puissance) puisse travailler dans cet environnement. Aujourd'hui le principal élément limitant est l'alimentation isolée, qui doit assurer l'alimentation des composants de puissance (quelques Watts) tout en protégeant la partie basse tension grâce à une isolation statique (kV) et dynamique (<10pF), Patterned Floating Dummy Fill for On-Chip Spiral Inductor Considering the Effect of Dummy Fill, vol.56, pp.3217-3222, 2008.

, En second lieu les résultats obtenus ont été comparés avec des mesures effectuées sur des prototypes. Les estimations analytiques permettent d'estimer précisément l'inductance à vide des bobinages, mais s'avèrent être de piètre qualités pour la détermination de l'inductance mutuelle et de la résistance des bobinages. Suite à cela, nous avons analysé comment assurer une isolation statique avec un transformateur à air. Les différentes formes possibles de transformateur à air ont été explorées. Dans notre cas, la géométrie optimale était deux spirales coaxiales planaires empilées. En effet, une structure planaire permet d'envisager une possible intégration. Des bobinages empilés permettent de placer un isolant entre le primaire et le secondaire afin d'assurer l'isolation requise. Enfin, des spires circulaires coaxiales permettent de maximiser le couplage tout en minimisant la résistance des bobinages, ce qui améliore la transmission de puissance. Pour clore ce chapitre, nous avons étudié des structures permettant de transmettre de l'énergie grâce à un transformateur à air avec notamment une structure flyback. Nous avons conclu que l'utilisation d'une structure résonnante est nécessaire. Pour former une structure résonnante et ainsi compenser l'énergie réactive absorbée par le transformateur, des condensateurs sont ajoutés en série ou en parallèle avec le transformateur. Les quatre configurations possibles ont étés analysées dans le chapitre II. Une méthode de calcul de la valeur des condensateurs de compensation et de la charge permettant de maximiser la transmission de puissance a été présentée. L'approche exposée dans ce chapitre permet de prendre en compte les capacités inter-spires ainsi que les pertes générées par les condensateurs de compensation. Nous avons ensuite comparé les quatre principales topologies formées. Lorsque l'on néglige les capacités inter-spires et la résistance équivalente série des condensateurs, Afin d'étudier la faisabilité d'une telle alimentation isolée, il est nécessaire de comprendre l'élément central, les inductances couplées. Le premier chapitre a donc été centré autour de l'établissement d'un modèle électrique du transformateur à air. Une attention particulière a été portée à l'appréciation des différents phénomènes influant la transmission de puissance entre deux bobinages couplés. Nous avons abordé la résistance des bobinages en tenant compte des effets de peau et de proximité, ainsi que les effets des couplages électrostatiques

A. P. Sample, D. A. Meyer, J. R. Smith, and . Analysis, Experimental Results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer, IEEE Trans. Ind. Electron, vol.58, issue.2, pp.544-554, 2011.

C. J. Stevens, « Magnetoinductive Waves and Wireless Power Transfer, IEEE Trans. Power Electron, vol.30, issue.11, pp.6182-6190, 2015.

S. Cheon, Y. Kim, S. Kang, M. L. Lee, J. Lee et al., Circuit-Model-Based Analysis of a Wireless Energy-Transfer System via Coupled Magnetic Resonances, IEEE Trans. Ind. Electron, vol.58, issue.7, pp.2906-2914, 2011.

B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, « Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers, IEEE Trans. Power Electron, vol.24, issue.7, pp.1819-1825, 2009.

S. Park and J. Rivas-davila, « Isolated resonant DC-DC converters with a loosely coupled transformer, 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics, pp.1-7, 2017.

N. Bertoni, G. Frattini, R. G. Massolini, F. Pareschi, R. Rovatti et al., « An Analytical Approach for the Design of Class-E Resonant DC #x2013;DC Converters, IEEE Trans. Power Electron, vol.31, issue.11, pp.7701-7713, 2016.