A. Tallaire, J. Achard, A. Secroun, O. De-gryse, F. De-weerdt et al., Multiple growth and characterization of thick diamond single crystals using chemical vapour deposition working in pulsed mode, Journal of Crystal Growth, vol.291, pp.533-539, 2006.

J. Achard, F. Silva, R. Issaoui, O. Brinza, A. Tallaire et al.,

M. A. Koné, F. Pinault, A. Jomard, and . Gicquel, Thick boron doped diamond single crystals for high power electronics, Diamond and Related Materials, vol.20, pp.145-152, 2011.

M. A. Pinault-thaury, B. Berini, I. Stenger, E. Chikoidze, A. Lusson et al., High fraction of substitutional phosphorus in a (100) diamond epilayer with low surface roughness, Applied Physics Letters, vol.100, p.192109, 2012.

H. Umezawa, K. Ikeda, N. Tatsumi, K. Ramanujam, and S. Shikata, Device scaling of pseudo-vertical diamond power Schottky barrier diodes, Diamond and Related Materials, vol.18, pp.1196-1199, 2009.

I. Takayuki, H. Yuto, T. Kohei, K. Hiromitsu, M. Toshiharu et al., Diamond Junction Field-Effect Transistors with Selectively Grown n + -Side Gates, vol.5, p.91301, 2012.

T. Makino, S. Tanimoto, Y. Hayashi, H. Kato, N. Tokuda et al., Diamond Schottky-pn diode with high forward current density and fast switching operation, Applied Physics Letters, vol.94, p.262101, 2009.

H. Liu and D. S. Dandy, Diamond chemical vapor deposition: nucleation and early growth stages, 1996.

M. A. Prelas, G. Popovici, and L. K. Bigelow, Handbook of industrial diamonds and diamond films, vol.1997

K. E. Spear and J. P. Dismukes, Synthetic diamond: emerging CVD science and technology

F. Bénédic, M. B. Assouar, P. Kirsch, D. Monéger, O. Brinza et al., Very high frequency SAW devices based on nanocrystalline diamond and aluminum nitride layered structure achieved using e-beam lithography, Diamond and Related Materials, vol.17, pp.804-808, 2008.

R. H. Telling, C. J. Pickard, M. C. Payne, and J. E. Field, Theoretical Strength and Cleavage of Diamond, Physical Review Letters, vol.84, pp.5160-5163, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01615574

H. O. Pierson, Handbook of Carbon, Graphite, Diamond, and Fullerenes, Processing, Properties and Applications, 1993.

J. E. Field, The properties of natural and synthetic diamond, Academic Press1992

J. Achard, R. Issaoui, A. Tallaire, F. Silva, J. Barjon et al., Freestanding CVD boron doped diamond single crystals: A substrate for vertical power electronic devices?, physica status solidi, pp.1651-1658, 2012.

A. Collins, Colour centres in diamond, Journal of Gemmology, vol.18, pp.37-75, 1982.

L. Massi, Étude des défauts dans les diamants bruns et les diamants riches en hydrogène, p.331, 2006.

C. A. Klein, T. M. Hartnett, and C. J. Robinson, Critical-point phonon frequencies of diamond, Physical Review B, vol.45, p.12854, 1992.

A. Fiori, J. Bousquet, D. Eon, F. Omnes, E. Bellet-amalric et al., Boron-doped superlattices and Bragg mirrors in diamond, Applied Physics Letters, vol.105, p.81109, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01076903

J. Walker, Optical absorption and luminescence in diamond, Reports on Progress in Physics, vol.42, p.1605, 1979.

A. Mainwood, Electronic band structure of diamond, Properties and Growth of Diamond, pp.3-8

A. Mainwood, Optical constants of diamond in, Properties and Growth of Diamond, 1994.

S. J. Rashid, A. Tajani, L. Coulbeck, M. Brezeanu, A. Garraway et al., Modelling of single-crystal diamond Schottky diodes for high-voltage applications, Diamond and Related Materials, vol.15, pp.317-323, 2006.

J. Isberg, J. Hammersberg, E. Johansson, T. Wikström, D. J. Twitchen et al., High carrier mobility in single-crystal plasma-deposited diamond, Science, vol.297, pp.1670-1672, 2002.

C. Nebel, Electronic properties of CVD diamond, Semiconductor Science and Technology, vol.18, p.1, 2003.

L. Reggiani, S. Bosi, C. Canali, F. Nava, and S. Kozlov, Hole-drift velocity in natural diamond, Physical Review B, vol.23, p.3050, 1981.

J. P. Lagrange, A. Deneuville, and E. Gheeraert, Activation energy in low compensated homoepitaxial boron-doped diamond films1, Diamond and Related Materials, vol.7, pp.1390-1393, 1998.

P. Volpe, Réalisation de composants unipolaires en diamant pour l'électronique de puissance, 2009.

S. Koizumi, T. Teraji, and H. Kanda, Phosphorus-doped chemical vapor deposition of diamond, Diamond and Related Materials, vol.9, pp.935-940, 2000.

D. Electrochemistry, A. Fujishima, Y. Einaga, . Rao, and . Da-tryk, , 2005.

M. Yoshimura, K. Honda, T. Kondo, R. Uchikado, Y. Einaga et al., Factors controlling the electrochemical potential window for diamond electrodes in non-aqueous electrolytes, Diamond and related materials, vol.11, pp.67-74, 2002.

Z. Salmi, A. Lamouri, P. Decorse, M. Jouini, A. Boussadi et al., Grafting polymer-protein bioconjugate to boron-doped diamond using aryl diazonium coupling agents, Diamond and Related Materials, vol.40, pp.60-68, 2013.
DOI : 10.1016/j.diamond.2013.10.007

F. Bundy, H. Hall, H. Strong, and R. Wentorf, Man-made diamonds, nature, vol.176, pp.51-55, 1955.

F. Bundy, H. Strong, and R. Wentorf, Methods and mechanisms of synthetic diamond growth, Chem. Phys. Carbon, pp.213-263, 1973.

F. Bundy, W. Bassett, M. Weathers, R. Hemley, H. Mao et al., The pressuretemperature phase and transformation diagram for carbon, Carbon, vol.34, pp.141-153, 1994.

W. Q. Liu, H. A. Ma, X. L. Li, Z. Z. Liang, R. Li et al., Effects of additive Al on the HPHT diamond synthesis in an Fe-Mn-C system, Diamond and Related Materials, vol.16, pp.1486-1489, 2007.

B. Deljanin, M. Alessandri, A. Peretti, M. Åström, and A. Katrusha, NDT breaking the 10 carat barrier: World record faceted synthetic diamonds investigated

A. F. Khokhryakov, Y. N. Palyanov, I. N. Kupriyanov, Y. M. Borzdov, A. G. Sokol et al., Crystal growth and perfection of large octahedral synthetic diamonds, Journal of Crystal Growth, vol.317, pp.32-38, 2011.
DOI : 10.1016/j.jcrysgro.2011.01.011

H. Sumiya, K. Harano, and K. Tamasaku, HPHT synthesis and crystalline quality of large high-quality (001) and (111) diamond crystals, Diamond and Related Materials, vol.58, pp.221-225, 2015.
DOI : 10.1016/j.diamond.2015.08.006

G. Woods, The "type" terminology for diamond, Properties and Growth of Diamond, INSPEC, 1995.

R. C. Burns, A. I. Chumakov, S. H. Connell, D. Dube, H. P. Godfried et al., HPHT growth and x-ray characterization of high-quality type IIa diamond, Journal of physics. Condensed matter : an Institute of Physics journal, vol.21, p.364224, 2009.

I. and G. Davies, Properties and growth of diamond, INSPEC, the Institution of Electrical Engineers, 19941994.

D. K. Mishra, X. Tian, T. Soga, T. Jimbo, and M. Sharon, Diamond synthesized at room temperature by pulsed laser deposition in vacuum, Japanese journal of applied physics, vol.42, p.1164, 2003.
DOI : 10.1143/jjap.42.l1164

G. S. Risti? and M. S. Trtica, Diamond synthesis by lasers: recent progress, Química Nova, vol.35, pp.1417-1422, 2012.

X. Zhao, R. Roy, K. A. Cherian, and A. Badzian, Hydrothermal growth of diamond in metal-C-H2O systems, 1997.

A. Szymanski, E. Abgarowicz, A. Bakon, A. Niedbalska, R. Salacinski et al., Diamond formed at low pressures and temperatures through liquid-phase hydrothermal synthesis, Diamond and Related Materials, vol.4, pp.234-235, 1995.
DOI : 10.1016/0925-9635(95)00284-7

M. I. Charaa, Etude de la synthèse du diamant sur silicium par PVD assistée aux ions : nouveaux processus de germination et croissance, vol.135, 1996.

T. R. Anthony, Metastable synthesis of diamond, The Physics and Chemistry of Carbides, Nitrides and Borides, pp.133-158, 1990.

A. Gicquel, K. Hassouni, F. Silva, and J. Achard, CVD diamond films: from growth to applications, Current Applied Physics, vol.1, pp.479-496, 2001.
DOI : 10.1016/s1567-1739(01)00061-x

A. Gicquel and P. Bradu, From natural to synthetic diamond, 1997.

A. Gicquel, M. Chenevier, K. Hassouni, A. Tserepi, and M. Dubus, Validation of actinometry for estimating relative hydrogen atom densities and electron energy evolution in plasma assisted diamond deposition reactors, Journal of applied physics, vol.83, pp.7504-7521, 1998.

K. Hassouni, T. Grotjohn, and A. Gicquel, Self-consistent microwave field and plasma discharge simulations for a moderate pressure hydrogen discharge reactor, Journal of Applied Physics, vol.86, pp.134-151, 1999.

K. Hassouni, F. Silva, and A. Gicquel, Modelling of diamond deposition microwave cavity generated plasmas, Journal of Physics D: Applied Physics, vol.43, p.153001, 2010.

A. Gicquel, M. Chenevier, Y. Breton, M. Petiau, J. Booth et al., Ground state and excited state H-atom temperatures in a microwave plasma diamond deposition reactor, Journal de physique III, vol.6, pp.1167-1180, 1996.
URL : https://hal.archives-ouvertes.fr/jpa-00249515

K. Hassouni, O. Leroy, S. Farhat, and A. Gicquel, Modeling of H2 and H2/CH4 moderatepressure microwave plasma used for diamond deposition, Plasma chemistry and plasma processing, vol.18, pp.325-362, 1998.

A. Gicquel, N. Derkaoui, C. Rond, F. Benedic, G. Cicala et al., Quantitative analysis of diamond deposition reactor efficiency, Chemical Physics, pp.239-247, 2012.

A. Gicquel, F. Silva, C. Rond, N. Derkaoui, O. Brinza et al., Ultra-fast deposition of diamond by plasma enhanced CVD, Comprehensive Hard Materials, pp.217-268, 2012.

G. Lombardi, Diagnostics spectroscopiques d'espèces carbonées et modélisation physicochimique de plasmas micro-ondes dans les mélanges H2/CH4 et Ar/H2/CH4 utilisés pour le dépôt de diamant, 2003.

K. Kurihara, K. Sasaki, M. Kawarada, and N. Koshino, High rate synthesis of diamond by dc plasma jet chemical vapor deposition, Applied Physics Letters, vol.52, pp.437-438, 1988.

M. Cappelli, T. Owano, B. Dischler, and C. Wild, , pp.59-84, 1998.

M. H. Loh and M. A. Cappelli, Diamond synthesis in supersonic direct-current arcjet plasma at subtorr pressures, Surface and Coatings Technology, vol.54, pp.408-413, 1992.

P. W. May, Diamond thin films: a 21st-century material, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.358, pp.473-495, 2000.

M. Cappelli and M. Prelas, Handbook of Industrial Diamond and Diamond Films, Handbook of Industrial Diamond and Diamond Films, 1998.

G. W. Faris, E. A. Brinkman, and J. B. Jeffries, Density measurements in a DC arcjet using scanned beam deflection tomography, Opt. Express, vol.7, pp.447-460, 2000.

Y. A. Mankelevich, N. Suetin, M. Ashfold, W. Boxford, A. Orr-ewing et al., Chemical kinetics in carbon depositing dc-arc jet CVD reactors, Diamond and Related Materials, vol.12, pp.383-390, 2003.

N. Ohtake, Y. Kuriyama, M. Yoshikawa, H. Obana, M. Kito et al., Development of an arc-discharge plasma apparatus for the high-rate synthesis of diamond, Bulletin of the Japan Society of Precision Engineering, vol.25, pp.5-10, 1991.

G. V. Janssen, W. J. Schaminee, J. J. Vollenberg, W. Giling, L. J. Seal et al., Journal of Crystal Growth, vol.104, pp.752-757, 1990.

E. Meeks, R. J. Kee, D. S. Dandy, and M. E. Coltrin, Computational simulation of diamond chemical vapor deposition in premixed C 2 H 2/O 2/H 2 and CH4O2-strained flames, Combustion and flame, vol.92, pp.144-160, 1993.

K. Ravi, Combustion synthesis: is it the most flexible of the diamond synthesis processes?, Diamond and Related Materials, vol.4, pp.243-249, 1995.

S. Matsumoto, Y. Sato, M. Tsutsumi, and N. Setaka, Growth of diamond particles from methane-hydrogen gas, Journal of Materials Science, vol.17, pp.3106-3112, 1982.

P. K. Bachmann and W. Van-enckevort, Diamond deposition technologies, Diamond and Related Materials, vol.1, pp.1021-1034, 1992.
DOI : 10.1016/0925-9635(92)90073-w

Y. Ando, Y. Yokota, T. Tachibana, A. Watanabe, Y. Nishibayashi et al., Large area deposition of< 100>-textured diamond films by a 60-kW microwave plasma CVD reactor, Diamond and Related Materials, vol.11, pp.596-600, 2002.

M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, Diamond synthesis from gas phase in microwave plasma, Journal of Crystal Growth, vol.62, pp.642-644, 1983.

P. K. Bachmann, Microwave plasma CVD and related techniques for low pressure diamond synthesis, Thin Film Diamond, pp.31-53, 1994.

P. Bachmann, W. Drawl, D. Knight, R. Weimer, and R. Messier, Extended abstracts: Diamond and Diamond-like Materials Synthesis, Diamond Nucleation and Growth in Bell Jar Microwave Plasma CVD Reactor, p.99, 1988.

M. Füner, C. Wild, and P. Koidl, Novel microwave plasma reactor for diamond synthesis, Applied Physics Letters, vol.72, pp.1149-1151, 1998.

M. Nagatsu, A. Ito, N. Toyoda, and H. Sugai, Characteristics of ultrahigh-frequency surfacewave plasmas excited at 915 MHz, Japanese journal of applied physics, vol.38, p.679, 1999.

H. Toyota, S. Nomura, Y. Takahashi, and S. Mukasa, Submerged synthesis of diamond in liquid alcohol plasma, Diamond and Related Materials, vol.17, pp.1902-1904, 2008.

T. Yoshiyuki, T. Hiromichi, N. Shinfuku, M. Shinobu, I. Toru et al., Synthesis of Diamond Using In-Liquid Plasma Chemical Vapor Deposition, vol.48, p.31601, 2009.

S. Nomura and H. Toyota, Sonoplasma generated by a combination of ultrasonic waves and microwave irradiation, Applied Physics Letters, vol.83, pp.4503-4505, 2003.

Y. Harada, R. Hishinuma, C. Terashima, H. Uetsuka, K. Nakata et al., Rapid growth of diamond and its morphology by in-liquid plasma CVD, Diamond and Related Materials, 2015.

N. Shinfuku, T. Hiromichi, M. Shinobu, T. Yoshiyuki, M. Tsunehiro et al., Discharge Characteristics of Microwave and High-Frequency In-Liquid Plasma in Water, vol.1, p.46002, 2008.

A. Van-der-drift, Evolutionary selection, a principle governing growth orientation in vapour-deposited layers, Philips Res. Rep, vol.22, pp.267-288, 1967.

L. Jiang, P. Wang, Z. Xiu, G. Chen, X. Lin et al., Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method, Materials Characterization, vol.106, pp.346-351, 2015.

N. Vaissière, Synthèse de films de diamant de haute qualité cristalline pour la réalisation de dosimètres pour la radiothérapie, 2014.

A. K. Mallik, N. Dandapat, S. Chakraborty, A. K. Mandal, J. Ghosh et al., Characterizations of microwave plasma CVD grown polycrystalline diamond coatings for advanced technological applications, Processing And Application Of Ceramics, vol.8, pp.69-80, 2014.

Z. Q. Xie, J. Bai, Y. S. Zhou, Y. Gao, J. Park et al., Control of crystallographic orientation in diamond synthesis through laser resonant vibrational excitation of precursor molecules, Scientific reports, p.4, 2014.

C. Wild, R. Kohl, N. Herres, W. Müller-sebert, and P. Koidl, Oriented CVD diamond films: twin formation, structure and morphology, Diamond and Related Materials, vol.3, pp.373-381, 1994.
DOI : 10.1016/0925-9635(94)90188-0

K. Kobashi, K. Nishimura, Y. Kawate, and T. Horiuchi, Synthesis of diamonds by use of microwave plasma chemical-vapor deposition: Morphology and growth of diamond films, Physical Review B, vol.38, p.4067, 1988.

A. K. Mallik, S. Bysakh, K. S. Pal, N. Dandapat, B. K. Guha et al., Large area deposition of polycrystalline diamond coatings by microwave plasma CVD, Transactions of the indian ceramic society, vol.72, pp.225-232, 2013.

T. Izak, O. Babchenko, M. Varga, S. Potocky, and A. Kromka, Low temperature diamond growth by linear antenna plasma CVD over large area, physica status solidi (b), pp.2600-2603, 2012.

M. W. Geis, Diamond transistor performance and fabrication, Proceedings of the IEEE, vol.79, pp.669-676, 1991.

J. Vandersande, Properties and Growth of Diamond, p.9, 1994.

R. Hessmer, M. Schreck, S. Geier, and B. Stritzker, Correlation between breakdown voltage and structural properties of polycrystalline and heteroepitaxial CVD diamond films, Diamond and Related Materials, vol.3, pp.951-956, 1994.

M. Werner, R. Locher, W. Kohly, D. Holmes, S. Klose et al., The diamond Irvin curve, Diamond and Related Materials, vol.6, pp.308-313, 1997.

V. Polyakov, A. Rukovishnikov, N. Rossukanyi, A. Krikunov, V. Ralchenko et al., Photodetectors with CVD diamond films: Electrical and photoelectrical properties photoconductive and photodiode structures, vol.7, pp.821-825, 1998.

B. R. Stoner, G. Ma, S. Wolter, W. Zhu, Y. Wang et al., Epitaxial nucleation of diamond on ?-SiC via bias-enhanced microwave plasma chemical vapor deposition, Diamond and Related Materials, vol.2, pp.142-146, 1993.

A. Chavanne, Heteroepitaxie du diamant sur iridium, 2010.
URL : https://hal.archives-ouvertes.fr/tel-02273855

P. Ascarelli and S. Fontana, Dissimilar grit-size dependence of the diamond nucleation density on substrate surface pretreatments, Applied Surface Science, vol.64, pp.307-311, 1993.

O. A. Williams, O. Douhéret, M. Daenen, K. Haenen, E. ?sawa et al., Enhanced diamond nucleation on monodispersed nanocrystalline diamond, Chemical Physics Letters, vol.445, pp.255-258, 2007.

H. Mehedi, J. Achard, D. Rats, O. Brinza, A. Tallaire et al., Low temperature and large area deposition of nanocrystalline diamond films with distributed antenna array microwave-plasma reactor, Diamond and Related Materials, vol.47, pp.58-65, 2014.

S. Yugo, T. Kimura, and T. Muto, Effects of electric field on the growth of diamond by microwave plasma CVD, Vacuum, pp.1364-1367, 1990.

S. Koizumi, T. Murakami, T. Inuzuka, and K. Suzuki, Epitaxial growth of diamond thin films on cubic boron nitride {111} surfaces by dc plasma chemical vapor deposition, Applied Physics Letters, vol.57, pp.563-565, 1990.

S. Saada, S. Barrat, and E. Bauer-grosse, Silicon substrate preparation for epitaxial diamond crystals, Diamond and Related Materials, vol.10, pp.300-305, 2001.

B. Williams and J. Glass, Characterization of diamond thin films: Diamond phase identification, surface morphology, and defect structures, Journal of Materials Research, vol.4, pp.373-384, 1989.

J. C. Arnault, S. Saada, S. Delclos, L. Rocha, L. Intiso et al., Surface Science Contribution to the BEN Control on Si (100) and 3C-SiC (100): Towards Ultrathin Nanocrystalline Diamond Films, Chemical vapor deposition, vol.14, pp.187-195, 2008.

R. Brescia, M. Schreck, S. Gsell, M. Fischer, and B. Stritzker, Transmission electron microscopy study of the very early stages of diamond growth on iridium, Diamond and Related Materials, vol.17, pp.1045-1050, 2008.

M. Schreck, F. Hörmann, H. Roll, J. K. Lindner, and B. Stritzker, Diamond nucleation on iridium buffer layers and subsequent textured growth: A route for the realization of singlecrystal diamond films, Applied Physics Letters, vol.78, pp.192-194, 2001.

T. B. Massalski, H. Okamoto, P. Subramanian, and L. Kacprzak, Binary alloy phase diagrams, vol.3, pp.628-629, 1990.

F. Hörmann, M. Schreck, and B. Stritzker, First stages of diamond nucleation on iridium buffer layers, Diamond and Related Materials, vol.10, pp.1617-1621, 2001.

M. Schreck, T. Bauer, S. Gsell, F. Hörmann, H. Bielefeldt et al., Domain formation in diamond nucleation on iridium, Diamond and Related Materials, vol.12, pp.262-267, 2003.

H. Bensalah, I. Stenger, G. Sakr, J. Barjon, R. Bachelet et al., Mosaicity, dislocations and strain in heteroepitaxial diamond grown on iridium, vol.66, pp.188-195, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01489123

S. Gsell, T. Bauer, J. Goldfuß, M. Schreck, and B. Stritzker, A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers, Applied Physics Letters, vol.84, pp.4541-4543, 2004.

A. Yutaka, K. Takashi, S. Kazuhiro, and S. Atsuhito, Epitaxial Lateral Overgrowth of Diamonds on Iridium by Patterned Nucleation and Growth Method, Japanese journal of applied physics, vol.51, p.90101, 2012.

K. H. Lee, S. Saada, J. Arnault, R. Moalla, G. Saint-girons et al., Epitaxy of iridium on SrTiO3/Si (001): A promising scalable substrate for diamond heteroepitaxy, Diamond and Related Materials, vol.66, pp.67-76, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01848691

M. Schreck, Single Crystal Diamond Growth on Iridium A2 -Sarin, Vinod K, Comprehensive Hard Materials, pp.269-304, 2014.
DOI : 10.1016/b978-0-08-096527-7.00048-9

H. Aida, S. Kim, K. Ikejiri, Y. Kawamata, K. Koyama et al., Fabrication of freestanding heteroepitaxial diamond substrate via micropatterns and microneedles, Applied Physics Express, vol.9, p.35504, 2016.

T. Yoshikawa, H. Kodama, S. Kono, K. Suzuki, and A. Sawabe, Wafer bowing control of free-standing heteroepitaxial diamond (100) films grown on Ir (100) substrates via patterned nucleation growth, Thin Solid Films, vol.594, pp.120-128, 2015.

D. Takeuchi, S. Koizumi, T. Makino, H. Kato, M. Ogura et al., Negative electron affinity of diamond and its application to high voltage vacuum power switches, pp.1961-1975, 2013.

H. Kato, M. Wolfer, C. Schreyvogel, M. Kunzer, W. Müller-sebert et al., Tunable light emission from nitrogen-vacancy centers in single crystal diamond PIN diodes, Applied Physics Letters, vol.102, p.151101, 2013.

K. Hiroyuki, N. Hitoshi, M. Tsubasa, K. Hiromitsu, O. Masahiko et al., Electronic properties of diamond Schottky barrier diodes fabricated on silicon-based heteroepitaxially grown diamond substrates, Applied Physics Express, vol.8, p.104103, 2015.

D. Takeuchi, T. Makino, H. Kato, M. Ogura, N. Tokuda et al., Free exciton luminescence from a diamond p-i-n diode grown on a substrate produced by heteroepitaxy, pp.2251-2256, 2014.

A. Sawabe, H. Fukuda, T. Suzuki, Y. Ikuhara, and T. Suzuki, Interface between CVD diamond and iridium films, vol.467, pp.845-849, 2000.
DOI : 10.1016/s0039-6028(00)00793-7

C. Stehl, M. Fischer, S. Gsell, E. Berdermann, M. Rahman et al., Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications, Applied Physics Letters, vol.103, p.151905, 2013.

K. Ichikawa, H. Kodama, K. Suzuki, and A. Sawabe, Dislocation in heteroepitaxial diamond visualized by hydrogen plasma etching, Thin Solid Films, 2016.

Y. Kato, H. Umezawa, and S. Shikata, X-ray topographic study of a homoepitaxial diamond layer on an ultraviolet-irradiated precision polished substrate, Acta Physica Polonica A, vol.125, pp.969-971, 2014.

H. Umezawa, Y. Kato, H. Watanabe, A. M. Omer, H. Yamaguchi et al., Characterization of crystallographic defects in homoepitaxial diamond films by synchrotron X-ray topography and cathodoluminescence, Diamond and Related Materials, vol.20, pp.523-526, 2011.

K. Kusakabe, A. Sobana, K. Sotowa, T. Imato, and T. Tsubota, Electrical properties of boron-doped diamond films synthesized by MPCVD on an iridium substrate, Diamond and Related Materials, vol.12, pp.1396-1401, 2003.

T. Tsubota, T. Fukui, T. Saito, K. Kusakabe, S. Morooka et al., Surface morphology and electrical properties of boron-doped diamond films synthesized by microwave-assisted chemical vapor deposition using trimethylboron on diamond (100) substrate, Diamond and Related Materials, vol.9, pp.1362-1368, 2000.

O. Brinza, Stratégies pour la croissance de cristaux de diamant par CVD assisté par plasma micro-onde, vol.1, pp.165-111, 2009.

A. Tallaire, J. Achard, F. Silva, R. S. Sussmann, A. Gicquel et al., Oxygen plasma pre-treatments for high quality homoepitaxial CVD diamond deposition, Phys. Stat. Sol. (a), vol.201, pp.2419-2424, 2004.
DOI : 10.1002/pssa.200405164

M. Yamamoto, T. Teraji, and T. Ito, Improvement in the crystalline quality of homoepitaxial diamond films by oxygen plasma etching of mirror-polished diamond substrates, Journal of Crystal Growth, vol.285, pp.130-136, 2005.

T. Teraji, M. Hamada, H. Wada, M. Yamamoto, and T. Ito, High-quality homoepitaxial diamond (100) films grown under high-rate growth condition, Diamond and Related Materials, vol.14, pp.1747-1752, 2005.
DOI : 10.1016/j.diamond.2005.06.021

C. Tavares, S. Koizumi, and H. Kanda, Effects of RIE treatments for {111} diamond substrates on the growth of P-doped diamond thin films, physica status solidi (a), vol.202, pp.2129-2133, 2005.

J. Achard, A. Tallaire, V. Mille, M. Naamoun, O. Brinza et al., Improvement of dislocation density in thick CVD single crystal diamond films by coupling H2/O2plasma etching and chemo-mechanical or ICP treatment of HPHT substrates, pp.2264-2267, 2014.

J. Achard, A. Tallaire, R. Sussmann, F. Silva, and A. Gicquel, The control of growth parameters in the synthesis of high-quality single crystalline diamond by CVD, Journal of Crystal Growth, vol.284, pp.396-405, 2005.

J. Achard, F. Silva, A. Tallaire, X. Bonnin, G. Lombardi et al., High quality MPACVD diamond single crystal growth: high microwave power density regime, Journal of Physics D: Applied Physics, vol.40, pp.6175-6188, 2007.
DOI : 10.1088/0022-3727/40/20/s04

A. Tallaire, J. Achard, F. Silva, R. S. Sussmann, and A. Gicquel, Homoepitaxial deposition of high-quality thick diamond films: effect of growth parameters, Diamond and Related Materials, vol.14, pp.249-254, 2005.

O. Brinza, J. Achard, F. Silva, X. Bonnin, P. Barroy et al., Dependence of CVD diamond growth rate on substrate orientation as a function of process parameters in the high microwave power density regime, pp.2114-2120, 2008.

A. Tallaire, Croissance de monocristaux de diamant par dépôt chimique en phase vapeur pour des applications en électronique de puissance, vol.266, 2005.

A. Bolshakov, V. Ralchenko, V. Yurov, A. Popovich, I. Antonova et al.,

S. Ashkinazi, A. Ryzhkov, A. Vlasov, and . Khomich, High-rate growth of single crystal diamond in microwave plasma in CH4/H2 and CH4/H2/Ar gas mixtures in presence of intensive soot formation, Diamond and Related Materials, vol.62, pp.49-57, 2016.

R. Issaoui, J. Achard, F. Silva, A. Tallaire, V. Mille et al., Influence of oxygen addition on the crystal shape of CVD boron doped diamond, pp.2023-2027, 2011.

G. S. Gildenblat, S. Grot, C. Hatfield, C. Wronski, A. Badzian et al., High temperature Schottky diodes with boron-doped homoepitaxial diamond base, Materials research bulletin, pp.129-134, 1990.
DOI : 10.1016/0025-5408(90)90172-x

G. Janssen, W. Van-enckevort, W. Vollenberg, and L. Giling, Characterization of singlecrystal diamond grown by chemical vapour deposition processes, Diamond and Related Materials, vol.1, pp.789-800, 1992.
DOI : 10.1016/0925-9635(92)90102-t

T. Borst and O. Weis, Boron-Doped Homoepitaxial Diamond Layers: Fabrication, Characterization, and Electronic Applications, physica status solidi (a), vol.154, pp.423-444, 1996.
DOI : 10.1002/pssa.2211540130

C. Chen, S. Chen, T. Hong, and T. Wang, Boron-doped diamond films using trimethylborate as a dopant source in methane-carbon dioxide gas mixtures, Diamond and Related Materials, vol.3, pp.632-637, 1994.
DOI : 10.1016/0925-9635(94)90239-9

R. Issaoui, J. Achard, F. Silva, A. Tallaire, A. Tardieu et al., Growth of thick heavily boron-doped diamond single crystals: Effect of microwave power density, Applied Physics Letters, p.182101, 2010.

H. Nagasaka, Y. Teranishi, Y. Kondo, T. Miyamoto, and T. Shimizu, Growth Rate and Electrochemical Properties of Boron-Doped Diamond Films Prepared by Hot-Filament Chemical Vapor Deposition Methods, e-Journal of, Surface Science and Nanotechnology, vol.14, pp.53-58, 2016.

P. Azadfar, M. Ghoranneviss, S. M. Elahi, N. Farhadyar, A. Salar et al., Growth of boron-doped diamond nanoclusters using the HFCVD technique, Journal of Crystal Growth, vol.415, pp.166-169, 2015.

A. Tallaire, J. Achard, F. Silva, and A. Gicquel, Effect of increasing the microwave density in both continuous and pulsed wave mode on the growth of monocrystalline diamond films, pp.2059-2065, 2005.

A. Tallaire, J. Achard, F. Silva, O. Brinza, and A. Gicquel, Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges, Comptes Rendus Physique, vol.14, pp.169-184, 2013.

G. Bogdan, K. De-corte, W. Deferme, K. Haenen, and M. Nesládek, Thick single crystal CVD diamond prepared from CH4-rich mixtures, pp.3063-3069, 2006.
DOI : 10.1002/pssa.200671128

T. Teraji and T. Ito, Homoepitaxial diamond growth by high-power microwave-plasma chemical vapor deposition, Journal of Crystal Growth, vol.271, pp.409-419, 2004.
DOI : 10.1016/j.jcrysgro.2004.08.005

F. Silva, X. Bonnin, J. Achard, O. Brinza, A. Michau et al., Geometric modeling of homoepitaxial CVD diamond growth: I. The (100)(111)(110)(113) system, Journal of Crystal Growth, vol.310, pp.187-203, 2008.

F. Silva, J. Achard, X. Bonnin, O. Brinza, A. Michau et al.,

M. Felton, A. Newton, and . Gicquel, Single crystal CVD diamond growth strategy by the use of a 3D geometrical model: Growth on (113) oriented substrates, Diamond and Related Materials, vol.17, pp.1067-1075, 2008.

S. Nad, Y. Gu, and J. Asmussen, Growth strategies for large and high quality single crystal diamond substrates, Diamond and Related Materials, vol.60, pp.26-34, 2015.
DOI : 10.1016/j.diamond.2015.09.018

A. Chayahara, Y. Mokuno, Y. Horino, Y. Takasu, H. Kato et al., The effect of nitrogen addition during high-rate homoepitaxial growth of diamond by microwave plasma CVD, Diamond and Related Materials, vol.13, pp.1954-1958, 2004.

T. Bauer, M. Schreck, and B. Stritzker, Homoepitaxial diamond layers on off-axis Ib HPHT substrates: Growth of thick films and characterisation by high-resolution X-ray diffraction, Diamond and Related Materials, vol.15, pp.472-478, 2006.

A. Tallaire, J. Achard, O. Brinza, V. Mille, M. Naamoun et al., Growth strategy for controlling dislocation densities and crystal morphologies of single crystal diamond by using pyramidal-shape substrates, Diamond and Related Materials, vol.33, pp.71-77, 2013.

S. Nad and J. Asmussen, Analyses of single crystal diamond substrates grown in a pocket substrate holder via MPACVD, Diamond and Related Materials, vol.66, pp.36-46, 2016.

M. Mermoux, B. Marcus, A. Crisci, A. Tajani, E. Gheeraert et al., Micro-Raman scattering from undoped and phosphorous-doped (111) homoepitaxial diamond films: Stress imaging of cracks, Journal of Applied Physics, vol.97, p.43530, 2005.
DOI : 10.1063/1.1849828

M. Mermoux, B. Marcus, A. Crisci, A. Tajani, E. Gheeraert et al., Internal stresses in {111} homoepitaxial CVD diamond, Diamond and Related Materials, vol.13, pp.329-334, 2004.
DOI : 10.1016/s0925-9635(03)00480-1

URL : https://hal.archives-ouvertes.fr/hal-00417859

A. Tajani, M. Mermoux, B. Marcus, E. Bustarret, E. Gheeraert et al., Strains and cracks in undoped and phosphorus-doped{111} homoepitaxial diamond films, pp.87-91, 2003.
DOI : 10.1002/pssa.200303813

URL : https://hal.archives-ouvertes.fr/hal-00418044

I. Sakaguchi, M. Nishitani-gamo, K. P. Loh, S. Hishita, H. Haneda et al., Suppression of surface cracks on (111) homoepitaxial diamond through impurity limitation by oxygen addition, Applied Physics Letters, vol.73, pp.2675-2677, 1998.
DOI : 10.1063/1.122550

M. Kasu, T. Makimoto, W. Ebert, and E. Kohn, Formation of stacking faults containing microtwins in (111) chemical-vapor-deposited diamond homoepitaxial layers, Applied Physics Letters, vol.83, p.3465, 2003.

A. Tajani, C. Tavares, M. Wade, C. Baron, E. Gheeraert et al., Homoepitaxial{111}-oriented diamond pn junctions grown on B-doped Ib synthetic diamond, pp.2462-2466, 2004.
DOI : 10.1002/pssa.200405183

I. Sakaguchi, M. Nishitani-gamo, K. P. Loh, H. Haneda, and T. Ando, Hydrogen incorporation control in high quality homoepitaxial diamond (111) growth, Diamond and Related Materials, vol.8, pp.1291-1295, 1999.
DOI : 10.1016/s0925-9635(99)00123-5

A. Tallaire, J. Achard, A. Boussadi, O. Brinza, A. Gicquel et al.,

G. Palyanov, J. Sakr, and . Barjon, High quality thick CVD diamond films homoepitaxially grown on (111)-oriented substrates, Diamond and Related Materials, vol.41, pp.34-40, 2014.

K. Chiu, J. Tian, Y. Wu, C. Peng, and L. Chang, Stress reduction of (111) homoepitaxial diamond films on nickel-coated substrate, Surface and Coatings Technology, vol.259, pp.358-362, 2014.

K. Chiu, P. Wu, C. Peng, J. Tian, and L. Chang, Homoepitaxial growth and stress analysis of (111) diamond film with embedded gold islands, Vacuum, vol.118, pp.104-108, 2015.
DOI : 10.1016/j.vacuum.2015.01.013

N. Tokuda, M. Ogura, T. Matsumoto, S. Yamasaki, and T. Inokuma, Influence of substrate misorientation on the surface morphology of homoepitaxial diamond (111) films, physica status solidi (a), 2016.

Y. N. Palyanov, Y. M. Borzdov, A. F. Khokhryakov, I. N. Kupriyanov, and A. G. Sokol, Effect of Nitrogen Impurity on Diamond Crystal Growth Processes, vol.10, pp.3169-3175, 2010.

A. F. Khokhryakov and Y. N. Palyanov, Revealing of dislocations in diamond crystals by the selective etching method, J. Cryst. Growth, vol.293, pp.469-474, 2006.

J. Michl, T. Teraji, S. Zaiser, I. Jakobi, G. Waldherr et al.,

N. B. Doherty, J. Manson, and . Isoya, Perfect alignment and preferential orientation of nitrogenvacancy centers during chemical vapor deposition diamond growth on (111) surfaces, Applied Physics Letters, vol.104, p.102407, 2014.

E. Neu, P. Appel, M. Ganzhorn, J. Miguel-sánchez, M. Lesik et al., Photonic nano-structures on (111)-oriented diamond, Applied Physics Letters, vol.104, p.153108, 2014.
DOI : 10.1063/1.4871580

URL : http://edoc.unibas.ch/35515/1/20150119133813_54bcfab5045fc.pdf

M. A. Pinault, J. Barjon, T. Kociniewski, F. Jomard, and J. Chevallier, The n-type doping of diamond: Present status and pending questions, Physica B: Condensed Matter, pp.51-56, 2007.

M. A. Pinault-thaury, T. Tillocher, N. Habka, D. Kobor, F. Jomard et al., Materials Science and Engineering: B, vol.176, pp.1401-1408, 2011.

S. Koizumi, M. Kamo, Y. Sato, H. Ozaki, and T. Inuzuka, Growth and characterization of phosphorous doped {111} homoepitaxial diamond thin films, Applied Physics Letters, vol.71, pp.1065-1067, 1997.

M. Nesládek, K. Haenen, J. D&apos;haen, S. Koizumi, and H. Kanda, N-type P-doped polycrystalline diamond, physica status solidi, pp.77-81, 2003.

E. Gheeraert, N. Casanova, A. Tajani, A. Deneuville, E. Bustarret et al., Stutzmann, n-Type doping of diamond by sulfur and phosphorus, Diamond and Related Materials, vol.11, pp.289-295, 2002.
DOI : 10.1016/s0925-9635(01)00683-5

H. Kato, S. Yamasaki, and H. Okushi, Growth and characterization of phosphorus-doped diamond using organophosphorus gases, physica status solidi (a), vol.202, pp.2122-2128, 2005.

T. Kociniewski, J. Barjon, M. A. Pinault, F. Jomard, A. Lusson et al., Saguy, n-type CVD diamond doped with phosphorus using the MOCVD technology for dopant incorporation, pp.3136-3141, 2006.
DOI : 10.1002/pssa.200671113

T. Grotjohn, D. Tran, M. Yaran, S. Demlow, and T. Schuelke, Heavy phosphorus doping by epitaxial growth on the (111) diamond surface, Diamond and Related Materials, vol.44, pp.129-133, 2014.
DOI : 10.1016/j.diamond.2014.02.009

G. Frangieh, M. A. Pinault, J. Barjon, F. Jomard, and J. Chevallier, Incorporation of arsenic in diamond grown by chemical vapor deposition, pp.2207-2210, 2008.

J. Barjon, F. Jomard, and S. Morata, Arsenic-bound excitons in diamond, Physical Review B, vol.89, p.45201, 2014.
DOI : 10.1103/physrevb.89.045201

T. Miyazaki and H. Okushi, A theoretical study of a sulfur impurity in diamond, Diamond and related materials, vol.10, pp.449-452, 2001.

M. Nishitani-gamo, C. Xiao, Y. Zhang, E. Yasu, Y. Kikuchi et al., Homoepitaxial diamond growth with sulfur-doping by microwave plasmaassisted chemical vapor deposition, Thin Solid Films, vol.382, pp.113-123, 2001.

S. A. Kajihara, A. Antonelli, and J. Bernholc, Impurity incorporation and doping of diamond, Physica B: Condensed Matter, vol.185, pp.144-149, 1993.

H. Kato, S. Yamasaki, and H. Okushi, n-type doping of (001)-oriented single-crystalline diamond by phosphorus, Applied Physics Letters, vol.86, p.222111, 2005.

H. Kato, D. Takeuchi, N. Tokuda, H. Umezawa, S. Yamasaki et al., Electrical activity of doped phosphorus atoms in (001) n-type diamond, pp.2195-2199, 2008.

T. Nakai, O. Maida, and T. Ito, Characterization of phosphorus-doped homoepitaxial (1 0 0) diamond films grown using high-power-density MWPCVD method with a conventional quartz-tube chamber, Applied Surface Science, vol.254, pp.6281-6284, 2008.

G. Frangieh, M. A. Pinault, J. Barjon, T. Tillocher, F. Jomard et al., Phosphorus incorporation and activity in (100)-oriented homoepitaxial diamond layers, pp.2000-2003, 2009.

M. A. Pinault-thaury, T. Tillocher, D. Kobor, N. Habka, F. Jomard et al., Phosphorus donor incorporation in (1&#xa0;0&#xa0;0) homoepitaxial diamond: Role of the lateral growth, J. Cryst. Growth, vol.335, pp.31-36, 2011.

M. A. Pinault-thaury, I. Stenger, F. Jomard, J. Chevallier, J. Barjon et al., Electrical activity of (100) n-type diamond with full donor site incorporation of phosphorus, pp.2454-2459, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01364081

M. Hasegawa, T. Teraji, and S. Koizumi, Lattice location of phosphorus in n-type homoepitaxial diamond films grown by chemical-vapor deposition, Applied Physics Letters, vol.79, pp.3068-3070, 2001.

M. Pinault-thaury, T. Tillocher, N. Habka, D. Kobor, F. Jomard et al., Materials Science and Engineering: B, vol.176, pp.1401-1408, 2011.

I. Sakaguchi, N. Mikka, Y. Kikuchi, E. Yasu, H. Haneda et al., Sulfur: A donor dopant for n-type diamond semiconductors, Physical Review B, vol.60, p.2139, 1999.

R. Kalish, A. Reznik, C. Uzan-saguy, and C. Cytermann, Is sulfur a donor in diamond?, Applied Physics Letters, vol.76, pp.757-759, 2000.

M. Nishitani-gamo, E. Yasu, C. Xiao, Y. Kikuchi, K. Ushizawa et al., Sulfur-doped homoepitaxial (001) diamond with n-type semiconductive properties, Diamond and Related Materials, vol.9, pp.941-947, 2000.

J. Garrido, C. Nebel, M. Stutzmann, E. Gheeraert, N. Casanova et al., Electrical and optical measurements of CVD diamond doped with sulfur, Physical Review B, vol.65, p.165409, 2002.

K. Nakazawa, M. Tachiki, H. Kawarada, A. Kawamura, K. Horiuchi et al., Cathodoluminescence and Hall-effect measurements in sulfur-doped chemical-vapordeposited diamond, Applied physics letters, vol.82, pp.2074-2076, 2003.

H. Zhou, Y. Yokoi, H. Tamura, S. Takami, M. Kubo et al., Quantum chemical calculations of sulfur doping reactions in diamond CVD, Japanese Journal of Applied Physics, vol.40, p.2830, 2001.

H. Katayama-yoshida, T. Nishimatsu, T. Yamamoto, and N. Orita, Codoping method for the fabrication of low-resistivity wide band-gap semiconductors in p-type GaN, p-type AlN and n-type diamond: prediction versus experiment, Journal of Physics: Condensed Matter, vol.13, p.8901, 2001.

A. Lazea, Y. Garino, T. Teraji, and S. Koizumi, High quality p-type chemical vapor deposited {111}-oriented diamonds: Growth and fabrication of related electrical devices, pp.1978-1981, 2012.

M. Mermoux, F. Jomard, C. Tavarès, F. Omnès, and E. Bustarret, Raman characterization of boron-doped {111} homoepitaxial diamond layers, Diamond and Related Materials, vol.15, pp.572-576, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00333305

K. Sato, T. Iwasaki, M. Shimizu, H. Kato, T. Makino et al., Fabrication of diamond lateral p-n junction diodes on (111) substrates, physica status solidi, pp.2548-2552, 2015.

K. Ushizawa, K. Watanabe, T. Ando, I. Sakaguchi, M. Nishitani-gamo et al., Boron concentration dependence of Raman spectra on {100} and {111} facets of Bdoped CVD diamond, Diamond and Related Materials, vol.7, pp.1719-1722, 1998.

S. Ghodbane, F. Omnès, and C. Agnès, A cathodoluminescence study of boron doped {111}-homoepitaxial diamond films, Diamond and Related Materials, vol.19, pp.273-278, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00739731

A. Deneuville, C. Baron, S. Ghodbane, and C. Agnès, Highly and heavily boron doped diamond films, Diamond and Related Materials, vol.16, pp.915-920, 2007.

S. N. Demlow, R. Rechenberg, and T. Grotjohn, The effect of substrate temperature and growth rate on the doping efficiency of single crystal boron doped diamond, Diamond and Related Materials, vol.49, pp.19-24, 2014.

J. Barjon, E. Chikoidze, F. Jomard, Y. Dumont, M. A. Pinault-thaury et al., Homoepitaxial boron-doped diamond with very low compensation, pp.1750-1753, 2012.

R. Monflier, K. Isoird, A. Cazarre, J. Tasseli, A. Servel et al., Diodes Schottky diamant fonctionnant à 200° C, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01245628

A. Tallaire, J. Barjon, O. Brinza, J. Achard, F. Silva et al., Dislocations and impurities introduced from etch-pits at the epitaxial growth resumption of diamond, Diamond and Related Materials, vol.20, pp.875-881, 2011.

P. M. Martineau, S. C. Lawson, A. J. Taylor, S. J. Quinn, D. J. Evans et al., Identification of synthetic diamond grown using chemical vapor deposition (CVD), Gems & Gemology, vol.40, pp.2-25, 2004.

H. Sumiya and K. Tamasaku, Large defect-free synthetic type IIa diamond crystals synthesized via high pressure and high temperature, Japanese journal of applied physics, p.90102, 2012.

Y. Mokuno, Y. Kato, N. Tsubouchi, A. Chayahara, H. Yamada et al., A nitrogen doped low-dislocation density free-standing single crystal diamond plate fabricated by a liftoff process, Applied Physics Letters, vol.104, p.252109, 2014.

P. M. Martineau, M. P. Gaukroger, K. B. Guy, S. C. Lawson, D. J. Twitchen et al.,

G. C. Hansen, T. P. Summerton, R. Addison, and . Burns, High crystalline quality single crystal chemical vapour deposition diamond, Journal of Physics: Condensed Matter, vol.21, p.364205, 2009.

P. Martineau, M. Gaukroger, K. Guy, S. Lawson, D. Twitchen et al., High crystalline quality single crystal chemical vapour deposition diamond, Journal of Physics: Condensed Matter, vol.21, p.364205, 2009.

P. Volpe, P. Muret, F. Omnes, J. Achard, F. Silva et al., Defect analysis and excitons diffusion in undoped homoepitaxial diamond films after polishing and oxygen plasma etching, Diamond and Related Materials, vol.18, pp.1205-1210, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00967297

J. Achard, F. Silva, O. Brinza, X. Bonnin, V. Mille et al., Identification of etch-pit crystallographic faces induced on diamond surface by H2/O2etching plasma treatment, pp.1949-1954, 2009.

M. Bernard, A. Deneuville, L. Ortega, K. Ayadi, and P. Muret, Electron cyclotron resonance oxygen plasma etching of diamond, Diamond and Related Materials, vol.13, pp.287-291, 2004.

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma, Diamond and Related Materials, vol.17, pp.1292-1296, 2008.

F. De-theije, O. Roy, N. Van-der-laag, and W. Van-enckevort, Oxidative etching of diamond, Diamond and Related Materials, vol.9, pp.929-934, 2000.

Y. Yao, Y. Ishikawa, Y. Sugawara, H. Yamada, A. Chayahara et al., Fast removal of surface damage layer from single crystal diamond by using chemical etching in molten KCl + KOH solution, Diamond and Related Materials, vol.63, pp.86-90, 2016.

Y. Kato, H. Umezawa, S. Shikata, and M. Touge, Effect of an ultraflat substrate on the epitaxial growth of chemical-vapor-deposited diamond, Applied Physics Express, vol.6, p.25506, 2013.

J. Achard, A. Tallaire, V. Mille, M. Naamoun, O. Brinza et al., Improvement of dislocation density in thick CVD single crystal diamond films by coupling H2/O2 plasma etching and chemo-mechanical or ICP treatment of HPHT substrates, pp.2264-2267, 2014.

M. Naamoun, A. Tallaire, P. Doppelt, A. Gicquel, M. Legros et al., Reduction of dislocation densities in single crystal CVD diamond by using self-assembled metallic masks, Diamond and Related Materials, vol.58, pp.62-68, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01729247

P. A. Gicquel, H. Mehedi, V. Mille, J. Achard, O. Brinza et al., Procede de formation d'un monocristal de materiau a partir d'un substrat monocristallin, Google Patents WO2015197632 A1, 2015.

N. Fujita, A. T. Blumenau, R. Jones, S. Öberg, and P. R. Briddon, Core reconstructions of the ?100? edge dislocation in single crystal CVD diamond, Phys. Stat. Sol. (a), vol.204, pp.2211-2215, 2007.

O. Svensk, M. Ali, L. Riuttanen, P. Törmä, S. Sintonen et al., Fabrication of GaN structures with embedded network of voids using pillar patterned GaN templates, Journal of Crystal Growth, vol.370, pp.42-45, 2013.

M. Naamoun, A. Tallaire, J. Achard, F. Silva, L. William et al., Influence of surface misorientation of HPHT diamond substrates on crystal morphologies and threading dislocations propagation, pp.1985-1990, 2013.

S. Shikata, Single crystal diamond wafers for high power electronics, Diamond and Related Materials, vol.65, pp.168-175, 2016.

K. Hassouni, S. Farhat, C. Scott, and A. Gicquel, Modeling species and energy transport in moderate pressure diamond deposition H2 plasmas, Journal de Physique III, vol.6, pp.1229-1243, 1996.
URL : https://hal.archives-ouvertes.fr/jpa-00249521

A. Gicquel, E. Anger, M. Ravet, D. Fabre, G. Scatena et al., Diamond deposition in a bell-jar reactor: influence of the plasma and substrate parameters on the microstructure and growth rate, Diamond and Related Materials, vol.2, pp.417-424, 1993.

F. Silva, K. Hassouni, X. Bonnin, and A. Gicquel, Microwave engineering of plasmaassisted CVD reactors for diamond deposition, Journal of physics. Condensed matter : an Institute of Physics journal, vol.21, p.364202, 2009.

F. Silva, X. Bonnin, J. Scharpf, and A. Pasquarelli, Microwave analysis of PACVD diamond deposition reactor based on electromagnetic modelling, Diamond and Related Materials, vol.19, pp.397-403, 2010.

A. Tallaire, A. T. Collins, D. Charles, J. Achard, R. Sussmann et al.,

A. M. Newton, R. J. Edmonds, and . Cruddace, Characterisation of high-quality thick single-crystal diamond grown by CVD with a low nitrogen addition, Diamond and Related Materials, vol.15, pp.1700-1707, 2006.

F. Silva, A. Michau, X. Bonnin, A. Gicquel, N. Boutroy et al., Electromagnetic modelling of a microwave cavity used for the deposit of amorphous carbon films on the inner wall of PET bottles, Diamond and Related Materials, vol.16, pp.1278-1281, 2007.

A. Collins and P. Spear, The 1.40 eV and 2.56 eV centres in synthetic diamond, Journal of Physics C: Solid State Physics, p.963, 1983.
URL : https://hal.archives-ouvertes.fr/hal-00618950

S. C. Lawson, H. Kanda, K. Watanabe, I. Kiflawi, Y. Sato et al., Spectroscopic study of cobalt-related optical centers in synthetic diamond, Journal of applied physics, vol.79, pp.4348-4357, 1996.

V. Nadolinny, A. Yelisseyev, J. Baker, D. Twitchen, M. Newton et al., Mechanisms of nitrogen aggregation in nickel-and cobalt-containing synthetic diamonds, Diamond and Related Materials, vol.9, pp.883-886, 2000.

O. Brinza, Stratégies pour la croissance de cristaux de diamant par CVD assisté par plasma micro-onde, vol.13, 2009.

C. Welbourn, M. Cooper, and P. Spear, De Beers natural versus synthetic diamond verification instruments, 1996.

D. Takeuchi, H. Watanabe, S. Yamanaka, H. Okushi, and K. Kajimura, Defects in Device Grade Homoepitaxial Diamond Thin Films Grown with Ultra-Low CH4/H2 Conditions by Microwave-Plasma Chemical Vapor Deposition, physica status solidi (a), vol.174, pp.101-115, 1999.

F. Silva, A. Gicquel, A. Tardieu, P. Cledat, and T. Chauveau, Control of an MPACVD reactor for polycrystalline textured diamond films synthesis: role of microwave power density, Diamond and Related Materials, vol.5, pp.338-344, 1996.

G. Champier and B. Baudelet, Application de la topographie par diffraction des rayons X à l'étude des métaux, Revue de Physique Appliquee, vol.3, pp.311-320, 1968.

H. Klapper, X-ray topography of organic crystals, Organic Crystals I: Characterization, Springer1991, pp.109-162

A. Lang, Topographic methods for studying defects in diamonds, Diamond and Related Materials, vol.2, pp.106-114, 1993.

T. Tuomi, K. Naukkarinen, and P. Rabe, Use of synchrotron radiation in X-ray diffraction topography, physica status solidi, pp.93-106, 1974.

E. Giacobino, Optique des milieux matériels, Techniques de l'ingénieur, Sciences fondamentales, pp.1080-1081, 1993.

G. Herzberg, Infrared and Raman spectra of polyatomic molecules, Molecular spectra and molecular structure, vol.2, p.1, 1945.

B. Chase, Fourier transform Raman spectroscopy, Analytical Chemistry, vol.59, pp.881-890, 1987.

J. Barbillat, D. Bougeard, G. Buntinx, M. Delhaye, P. Dhamelincourt et al., Techniques de l'ingénieur. Analyse et caractérisation, vol.9, pp.1-31, 1999.

S. J. Harris, A. M. Weiner, S. Prawer, and K. Nugent, Diamond film quality: Effects of gas phase concentrations on the Raman spectra, J. Appl. Phys, vol.80, pp.2187-2194, 1996.

T. Bauer, M. Schreck, H. Sternschulte, and B. Stritzker, High growth rate homoepitaxial diamond deposition on off-axis substrates, Diamond and Related Materials, vol.14, pp.266-271, 2005.

V. Ralchenko, E. Obraztsova, K. Korotushenko, A. Smolin, S. Pimenov et al., Stress in thin diamond films on various materials measured by microRaman spectroscopy, MRS Proceedings, p.153, 1995.

I. Vlasov, V. Ralchenko, E. Obraztsova, A. Smolin, and V. Konov, Stress mapping of chemical-vapor-deposited diamond film surface by micro-Raman spectroscopy, Applied Physics Letters, vol.71, pp.1789-1791, 1997.

L. Bergman and R. Nemanich, Raman and photoluminescence analysis of stress state and impurity distribution in diamond thin films, Journal of Applied physics, vol.78, pp.6709-6719, 1995.

S. A. Stuart, S. Prawer, and P. Weiser, Growth-sector dependence of fine structure in the first-order Raman diamond line from large isolated chemical-vapor-deposited diamond crystals, Applied Physics Letters, vol.62, pp.1227-1229, 1993.

E. Anastassakis, A. Cantarero, and M. Cardona, Piezo-Raman measurements and anharmonic parameters in silicon and diamond, Physical Review B, vol.41, p.7529, 1990.

H. Herchen, M. Cappelli, M. Landstrass, M. Plano, and M. Moyer, First-order Raman scattering in homoepitaxial chemical vapor deposited diamond at elevated temperatures, Thin Solid Films, vol.212, pp.206-215, 1992.

E. Gheeraert, P. Gonon, A. Deneuville, L. Abello, and G. Lucazeau, Effect of boron incorporation on the "quality" of MPCVD diamond films, Diamond and Related Materials, vol.2, pp.742-745, 1993.

F. Pruvost, E. Bustarret, and A. Deneuville, Characteristics of homoepitaxial heavily borondoped diamond films from their Raman spectra, Diamond and Related Materials, vol.9, pp.295-299, 2000.

J. W. Ager, I. , W. Walukiewicz, M. Mccluskey, M. A. Plano et al., Fano interference of the Raman phonon in heavily boron-doped diamond films grown by chemical vapor deposition, Applied Physics Letters, vol.66, pp.616-618, 1995.

M. Bernard, C. Baron, and A. Deneuville, About the origin of the low wave number structures of the Raman spectra of heavily boron doped diamond films, Diamond and Related Materials, vol.13, pp.896-899, 2004.

A. M. Zaitsev, Optical properties of diamond, a data handbook, Chapitre, vol.4, p.90, 2001.

R. Pfeiffer, H. Kuzmany, P. Knoll, S. Bokova, N. Salk et al., Evidence for transpolyacetylene in nano-crystalline diamond films, Diamond and Related Materials, vol.12, pp.268-271, 2003.

G. Prudon, Etude de la sensibilité et de la résolution en profondeur lors de l'analyse par SIMS, 1990.

C. Baron, M. Wade, A. Deneuville, E. Bustarret, T. Kocinievski et al., Excitonic recombinations and energy levels of highly boron doped homoepitaxial diamond films before and after hydrogenation, Diamond and Related Materials, vol.14, pp.350-354, 2005.

J. Barjon, M. A. Pinault, T. Kociniewski, F. Jomard, and J. Chevallier, Cathodoluminescence as a tool to determine the phosphorus concentration in diamond, pp.2965-2970, 2007.

K. Haenen, A. Lazea, J. Barjon, J. D&apos;haen, N. Habka et al., P-doped diamond grown on (110)-textured microcrystalline diamond: growth, characterization and devices, Journal of Physics: Condensed Matter, vol.21, p.364204, 2009.

R. Joshi, K. Schoenbach, C. Molina, and W. Hofer, Studies of electron-beam penetration and free-carrier generation in diamond films, Journal of Applied Physics, vol.74, pp.1568-1574, 1993.

M. O. Ali, Elementary Solid State Physics, 1975.

C. Agnes, Boron doped diamond for bioelectronics: Biocompatibility and Functionalization, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00589317

I. Kiflawi and A. Lang, Linearly polarized luminescence from linear defects in natural and synthetic diamond, Philosophical Magazine, vol.30, pp.219-223, 1974.

M. Kasu, M. Kubovic, A. Aleksov, N. Teofilov, Y. Taniyasu et al., Influence of epitaxy on the surface conduction of diamond film, Diamond and Related Materials, vol.13, pp.226-232, 2004.

E. Gheeraert, Défauts de structure et impuretés dans les couches minces de diamant élaborées par dépôt chimique en phase vapeur, 1992.

A. Tajani, Propriétés structurales, électroniques et optiques des couches minces de diamant dopées n, 2003.

C. Baron, M. Wade, A. Deneuville, F. Jomard, and J. Chevallier, Cathodoluminescence of highly and heavily boron doped (100) homoepitaxial diamond films, Diamond and Related Materials, vol.15, pp.597-601, 2006.

H. Kawarada, H. Matsuyama, Y. Yokota, T. Sogi, A. Yamaguchi et al., Excitonic recombination radiation in undoped and boron-doped chemical-vapor-deposited diamonds, Physical Review B, vol.47, p.3633, 1993.

J. Barjon, T. Tillocher, N. Habka, O. Brinza, J. Achard et al., Boron acceptor concentration in diamond from excitonic recombination intensities, Physical Review B, vol.83, p.73201, 2011.

M. Kadri, D. Araujo, M. Wade, A. Deneuville, and E. Bustarret, Effect of oxygen on the cathodoluminescence signal from excitons, impurities and structural defects in homoepitaxial (100) diamond films, Diamond and Related Materials, vol.14, pp.566-569, 2005.

C. Tavares, F. Omnès, J. Pernot, and E. Bustarret, Electronic properties of boron-doped {111}-oriented homoepitaxial diamond layers, Diamond and Related Materials, vol.15, pp.582-585, 2006.

H. Sternschulte, T. Albrecht, K. Thonke, R. Sauer, M. Grie?er et al., Cathodoluminescence Studies of Bound Excitons and Near Band Gap Emission Lines in Boron-and Phosphorus-Doped CVD-Diamonds, MRS Proceedings, p.693, 1996.

M. Naamoun, Mécanisme de formation et de propagation des dislocations au sein de diamant CVD monocristallin et développement de stratégies visant à réduire leur densité, vol.1, 2013.

J. Barjon, N. Habka, C. Mer, F. Jomard, J. Chevallier et al., Resistivity of boron doped diamond, physica status solidi (RRL)-Rapid Research Letters, vol.3, pp.202-204, 2009.

H. Umezawa, N. Tatsumi, Y. Kato, and S. Shikata, Leakage current analysis of diamond Schottky barrier diodes by defect imaging, Diamond and Related Materials, vol.40, pp.56-59, 2013.

T. Bauer, M. Schreck, J. Härtwig, X. H. Liu, S. P. Wong et al., Structural defects in homoepitaxial diamond layers grown on off-axis Ib HPHT substrates, Phys. Stat. Sol, pp.3056-3062, 2006.

N. Davies, R. Khan, P. Martineau, M. P. Gaukroger, D. Twitchen et al., Effect of off-axis growth on dislocations in CVD diamond grown on {001} substrates, Journal of Physics: Conference Series, vol.281, p.12026, 2011.

F. Silva, X. Bonnin, J. Achard, O. Brinza, A. Michau et al., Geometric modeling of homoepitaxial CVD diamond growth: I. The {100}{111}{110}{113} system, J. Cryst. Growth, pp.187-203, 2008.

F. K. De-theije, O. Roy, N. J. Van-der-laag, and W. J. Van-enckevort, Oxidative etching of diamond, Diam. Relat. Mat, vol.9, pp.929-934, 2000.

A. Secroun, O. Brinza, A. Tardieu, J. Achard, F. Silva et al., Dislocation imaging for electronics application crystal selection, Phys. Stat. Sol. (a), vol.204, pp.4298-4304, 2007.

N. Davies, R. Khan, P. Martineau, M. Gaukroger, D. Twitchen et al., Effect of off-axis growth on dislocations in CVD diamond grown on {001} substrates, Journal of Physics: Conference Series, vol.281, p.12026, 2011.

M. Naamoun, A. Tallaire, F. Silva, J. Achard, P. Doppelt et al., Etch-pit formation mechanism induced on HPHT and CVD diamond single crystals by H2/O2plasma etching treatment, pp.1715-1720, 2012.

A. Tallaire, A. Collins, D. Charles, J. Achard, R. Sussmann et al., Characterisation of high-quality thick single-crystal diamond grown by CVD with a low nitrogen addition, Diamond and Related Materials, vol.15, pp.1700-1707, 2006.

A. Tallaire, M. Kasu, K. Ueda, and T. Makimoto, Origin of growth defects in CVD diamond epitaxial films, Diamond and Related Materials, vol.17, pp.60-65, 2008.

S. B. Iyer, G. Ananthakrishna, B. M. Arora, and J. Chandrasekhar, Vibronic model for band A emission in diamond, Phys.Rev. B, vol.55, p.4093, 1997.

T. Teraji, M. Hamada, H. Wada, M. Yamamoto, K. Arima et al., High rate growth and electrical/optical properties of high-quality homoepitaxial diamond (100) films, Diamond and Related Materials, vol.14, pp.255-260, 2005.

R. Issaoui, Elaboration de films épais de diamant monocristallin dopé au bore par MPAVCD pour la réalisation de substrats de diamant P +, vol.1, 2011.

M. Pinault-thaury, B. Berini, I. Stenger, E. Chikoidze, A. Lusson et al., High fraction of substitutional phosphorus in a (100) diamond epilayer with low surface roughness, Appl. Phys. Lett, vol.100, p.192109, 2012.

S. E. Grillo, J. E. Field, and F. M. Bouwelen, Diamond polishing: the dependency of friction and wear on load and crystal orientation, Journal of Physics D: Applied Physics, vol.33, p.985, 2000.

S. E. Grillo and J. E. Field, The polishing of diamond, Journal of Physics D: Applied Physics, vol.30, p.202, 1997.

A. T. Clark and G. S. Woods, Absorption and luminescence spectroscopy, dans "The properties of natural and synthetic diamonds, p.43, 1992.

F. Silva, J. Achard, O. Brinza, X. Bonnin, K. Hassouni et al., High quality, large surface area, homoepitaxial MPACVD diamond growth, Diamond and Related Materials, vol.18, pp.683-697, 2009.

I. N. Kupriyanov, V. A. Gusev, Y. M. Borzdov, A. A. Kalinin, and Y. N. , Pal'yanov, Photoluminescence study of annealed nickel-and nitrogen-containing synthetic diamond, Diamond and Related Materials, vol.8, pp.1301-1309, 1999.

A. M. Zaitsev, Optical properties of diamond. A data handbook, 2001.

K. Watanabe, S. C. Lawson, J. Isoya, H. Kanda, and Y. Sato, Phosphorescence in highpressure synthetic diamond, Diamond and Related Materials, vol.6, pp.99-106, 1997.

M. Naamoun, A. Tallaire, F. Silva, J. Achard, P. Doppelt et al., Etch-pit formation mechanism induced on HPHT and CVD diamond single crystals by H2/O2 plasma etching treatment, pp.1715-1720, 2012.

N. Tokuda, H. Umezawa, S. Ri, M. Ogura, K. Yamabe et al., Atomically flat diamond (111) surface formation by homoepitaxial lateral growth, Diamond and Related Materials, vol.17, pp.1051-1054, 2008.

M. A. Tamor and M. P. Everson, On the role of penetration twins in the morphological development of vapor-grown diamond films, Journal of Materials Research, vol.9, pp.1839-1849, 1994.

C. Findeling-dufour, A. Vignes, and A. Gicquel, MWPACVD diamond homoepitaxial growth: role of the plasma and the substrate parameters, Diam. Relat. Mat, vol.4, pp.429-434, 1995.

C. Findeling-dufour and A. Gicquel, Study for fabricating large area diamond singlecrystal layers, Thin Solid Films, pp.178-185, 1997.

J. E. Butler and I. Oleynik, A mechanism for crystal twinning in the growth of diamond by chemical vapour deposition, 2008.

C. Wild, R. Kohl, N. Herres, W. Muller-sebert, and P. Koidl, Oriented CVD diamond films: twin formation, structure and morphology, Diam. Relat. Mat, vol.3, pp.373-381, 1994.

C. Wild, P. Koidl, W. Müller-sebert, H. Walcher, R. Kohl et al., Chemical vapour deposition and characterization of smooth {100}-faceted diamond films, Diamond and Related Materials, vol.2, pp.158-168, 1993.

F. Silva and A. Gicquel, Structural characteristics of CVD diamond films versus nitrogen impurities coupled to other deposition parameters, Proceedings of the fifth-International Symposium on Diamond Materials, pp.99-125, 1998.

Y. Hoshino, H. Kato, T. Makino, M. Ogura, T. Iwasaki et al., Electrical properties of lateral p-n junction diodes fabricated by selective growth of n+ diamond, pp.1761-1764, 2012.

N. Habka, J. Barjon, A. Lazea, and K. Haenen, Stress in (110)-textured phosphorus-doped polycrystalline diamond studied by Raman and cathodoluminescence spectroscopies, Journal of Applied Physics, vol.107, p.103531, 2010.

I. Sakaguchi, M. Nishitani-gamo, K. P. Loh, H. Haneda, and T. Ando, Homoepitaxial growth and hydrogen incorporation on the chemical vapor deposited (111) diamond, Journal of Applied Physics, vol.86, pp.1306-1310, 1999.

E. Kondoh, T. Ohta, T. Mitomo, and K. Ohtsuka, Surface reaction kinetics of gas-phase diamond growth, Journal of Applied Physics, vol.73, pp.3041-3046, 1993.

E. M. Wilks, The cleavage surfaces of type I and type II diamonds, Philosophical Magazine, vol.3, pp.1074-1080, 1958.

S. R. Sails, D. J. Gardiner, M. Bowden, J. Savage, and S. Haq, Stress and crystallinity in ? 100?, ?110?, and ?111? oriented diamond films studied using Raman microscopy, Applied Physics Letters, vol.65, pp.43-45, 1994.

H. Okushi, High quality homoepitaxial CVD diamond for electronic devices, Diam. Relat. Mat, vol.10, pp.281-288, 2001.

C. Baron, Contribution à l'estimation de paramètres physiques à l'aide de modèles d'ordre réduit, 2006.

M. Ogura, H. Kato, T. Makino, H. Okushi, and S. Yamasaki, Misorientation-angle dependence of boron incorporation into (001)-oriented chemical-vapor-deposited (CVD) diamond, Journal of Crystal Growth, vol.317, pp.60-63, 2011.

R. Issaoui, Elaboration de films épais de diamant monocristallin dopé au bore par MPAVCD pour la réalisation de substrats de diamant P+, vol.13, 2011.

U. Fano, Effects of configuration interaction on intensities and phase shifts, Physical Review, vol.124, pp.1866-1878, 1961.

P. Dean, Bound excitons and donor-acceptor pairs in natural and synthetic diamond, Physical Review, vol.139, p.588, 1965.

R. Ramamurti, M. Becker, T. Schuelke, T. Grotjohn, D. Reinhard et al., Synthesis of boron-doped homoepitaxial single crystal diamond by microwave plasma chemical vapor deposition, Diamond and Related Materials, vol.17, pp.1320-1323, 2008.

H. Maeda, K. Ohtsubo, M. Kameta, T. Saito, K. Kusakabe et al., Growth behavior of boron-doped diamond in microwave plasma-assisted chemical vapor deposition using trimethylboron as the dopant source, Diamond and related materials, vol.7, pp.88-95, 1998.

C. T. Russo, Etude et réalisation de jonctions p/n en diamant, 2006.

R. Issaoui, J. Achard, F. Silva, A. Tallaire, A. Tardieu et al., Growth of thick heavily boron-doped diamond single crystals: Effect of microwave power density, Applied physics letters, p.182101, 2010.

H. Kato, T. Makino, S. Yamasaki, and H. Okushi, n-type diamond growth by phosphorus doping on (0 0 1)-oriented surface, Journal of Physics D: Applied Physics, vol.40, pp.6189-6200, 2007.

N. Ferreira, E. Abramof, E. Corat, and V. Trava-airoldi, Residual stresses and crystalline quality of heavily boron-doped diamond films analysed by micro-Raman spectroscopy and Xray diffraction, Carbon, pp.1301-1308, 2003.

P. Steven, J. N. Robert, R. Spectroscopy, D. Diamond, and . Diamond, Philosophical Transactions: Mathematical, Physical and Engineering Sciences, vol.362, pp.2537-2565, 2004.

F. Pruvost and A. Deneuville, Analysis of the Fano in diamond, Diamond and Related Materials, vol.10, pp.531-535, 2001.

K. E. Bennet, K. H. Lee, J. N. Kruchowski, S. Chang, M. P. Marsh et al., Development of conductive boron-doped diamond electrode: A microscopic, spectroscopic, and voltammetric study, Materials, vol.6, pp.5726-5741, 2013.

H. Kato, K. Oyama, T. Makino, M. Ogura, D. Takeuchi et al., Diamond bipolar junction transistor device with phosphorus-doped diamond base layer, Diamond and Related Materials, pp.19-22, 2012.

L. Sutcu, C. Chu, M. Thompson, R. Hauge, J. Margrave et al., Atomic force microscopy of (100),(110), and (111) homoepitaxial diamond films, Journal of applied physics, vol.71, pp.5930-5940, 1992.