J. W. Swan, US Patent 233,445. 1880 (cit, p.1

, IEA". Key World Energy Statistics, 2016.

H. Muhammad and . Rashid, Power electronics: circuits, devices, and applications. Pearson Education India, 2009.

J. Bardeen and W. Hauser-brattain, The transistor, a semi-conductor triode, Physical Review, vol.74, p.1, 1948.

M. Bellis, Inventors-Electric Cars (1890-1930), In: Inventors. about. com. Retrieved, issue.2, p.1226, 2010.

. Fa-wyczalek, GM electric vehicle technology, INTERNATIONAL SYMPOSIUM ON AUTOMOTIVE TECHNOLOGY, 1991.

B. Walsh and P. Moores, Auto Companies On Fuel Cells. In: Fuel Cells, p.3, 2000.

S. Barley, Hydrogen bus launched on London tourist route, The Guardian, p.3, 2010.

M. Kanechika, T. Uesugi, and T. Kachi, Advanced SiC and GaN power electronics for automotive systems, p.3, 2010.

G. W. Hilton and J. Fitzgerald-due, The electric interurban railways in America, p.3, 2000.

A. G. Siemens, 1879 Siemens presents the world's rst electric railway with an external power source, p.3

C. Michael and . Duy, Electric Railways: 1880-1990. 31. Iet, 2003 (cit, p.3

S. Electrical and . Com, How Electric Locomotives (Electric Trains) Work?, p.4, 2014.

B. Ahmad, Wide Band Gap Power Semiconductor Devices and their Applications, p.3, 2015.

M. Piton, Future Railway Traction Drives based on SiC technology, Nuremberg: ECPE SiC & GaN User Forum, vol.4, 2017.

X. Roboam, Réseaux de bord électriques en aéronautique, Lille: Journées Electrotechnique du club EEA, 2009.

P. Wheeler, The More Electric Aircraft: Why Aerospace Needs Power Electronics? In: Barcelona: 13th European Conference on Power Electronics and Aplications, 2009.

M. Sinnett, 787 No-Bleed Systems: Saving Fuel and Enhancing Operational Eciencies, 2007.

J. Brombach, Optimizing the weight of an aircraft power supply system through a+/-270 VDC main voltage, Gen, vol.360, p.5, 2012.

L. Šukasiak and A. Jakubowski, History of semiconductors, In: Journal of Telecommunications and information technology, issue.7, p.39, 2010.

B. and J. Baliga, Fundamentals of Power Semiconductor Devices, vol.27, p.42, 2008.

C. Buttay, State of the art of high temperature power electronics, Materials Science and Engineering: B, vol.176, issue.7, p.283288, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00413349

J. Berzelius, Undersökning af några mineralier, vol.8, p.1824

E. G. Acheson, Production of Artical Crystalline Carbonaceous Materials. 1895 (cit, vol.8

. Michael-e-levinshtein, L. Sergey, M. S. Rumyantsev, and . Shur, Properties of Advanced Semiconductor Materials, vol.8, 2001.

J. A. Lely, Sublimation process for manufacturing Silicon Carbide crystals, US Pat, vol.2, 1958.

L. J. Kroko and C. H. Chi, Fused junctions in silicon carbide. US Patent 2,937, vol.323, 1960.

L. J. Kroko, Silicon carbide rectier. US Patent 2,937, vol.324, 1960.

R. N. Hall, Silicon carbide semiconductor devices and method of preparation thereof. US Patent 2,918, vol.396, 1959.

H. Albert, H. J. Van-daal, and K. W. Franciscus, Silicon carbide semiconductor device, US Patent, vol.3, 1964.

H. O. Pierson, Handbook of Refractory Carbides and Nitrides, Handb. Refract. Carbides Nitrides, vol.8, 1996.

J. Botsoa, Synthèse de nanostructures de carbure de silicium et étude de leurs propriétés optiques, vol.8, 2008.

A. Fissel, Articially layered heteropolytypic structures based on SiC polytypes: molecular beam epitaxy, characterization and properties, Physics reports, vol.379, p.149255, 2003.

L. Stephen-ramsdell, Studies on silicon carbide, American Mineralogist, vol.32, p.6482, 1947.

T. Ayalew, SiC Semiconductor Devices Technology, Modeling, and Simulation, p.9, 2004.

J. W. Palmour, 6H-silicon carbide devices and applications, Phys. B Phys. Condens. Matter, vol.185, issue.93, p.90278, 1993.

S. I. Vlaskina, Silicon carbide LED, Semiconductor Physics Quantum Electronics & Optoelectronics, vol.8, 2002.

R. Yakimova, Progress in 3C-SiC growth and novel applications, Materials Science Forum, vol.711, p.310, 2012.

B. Van-zeghbroeck, Principles of semiconductor devices, vol.43, p.13, 2004.

G. Nicolas and . Wright, Electrothermal simulation of 4H-SiC power devices, Materials science forum, vol.264, p.14, 1998.

A. G. Chynoweth, Ionization rates for electrons and holes in silicon, physical review, vol.109, p.15, 1958.

A. G. Chynoweth, Uniform Silicon p-n Junctions. II. Ionization Rates for Electrons, Journal of Applied Physics, vol.31, p.15, 1960.

S. Denis-poisson, Remarques sur une équation qui se présente dans la théorie des attractions des sphéroïdes, In: Soc. Phil. Paris, vol.3, p.15, 1813.

E. Johnson, Physical limitations on frequency and power parameters of transistors, IRE International Convention Record, vol.13, p.2734, 1958.

C. Raynaud, Comparison of high voltage and high temperature performances of wide bandgap semiconductors for vertical power devices, Diamond and Related Materials, vol.19, p.20, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02186368

R. W. Keyes, Figure of merit for semiconductors for high-speed switches, Proceedings of the IEEE 60, vol.2, 1972.

B. J. Baliga, Power semiconductor device gure of merit for high-frequency applications, IEEE Electron Device Letters, vol.10, pp.741-3106, 1989.

P. Roussel, SiC market and industry update, In: Int. SiC Power Electron. Appl. Workshop, p.20, 2011.

P. Chow and R. Tyagi, Wide bandgap compound semiconductors for superior high-voltage unipolar power devices, IEEE Transactions on Electron Devices, vol.41, p.21, 1994.

S. Leone, Chloride-based SiC epitaxial growth toward low temperature bulk growth, Crystal Growth & Design, vol.10, p.21, 2010.

. Sv-rendakova, Micropipe and dislocation density reduction in 6H-SiC and 4H-SiC structures grown by liquid phase epitaxy, Journal of electronic materials, vol.27, p.21, 1998.

. Jw-palmour, In: Power Semiconductor Devices and IC's, 1997. ISPSD'97, IEEE International Symposium on. IEEE, p.21, 1997.

R. Singh, Reliability and performance limitations in SiC power devices, In: Microelectronics reliability, vol.46, issue.5, p.2125, 2006.

E. Balkas and A. Burk, Status on WBG Materials, ECPE SiC and GaN User Forum

. Nuremberg, , 2017.

M. Dudley, Stacking faults created by the combined deection of threading dislocations of Burgers vector c and c+ a during the physical vapor transport growth of 4HSiC, Applied Physics Letters, vol.98, p.22, 2011.

M. Abadier, Glide of threading edge dislocations after basal plane dislocation conversion during 4HSiC epitaxial growth, Journal of Crystal Growth, vol.418, p.22, 2015.

B. Asllani, Caractérisation et modélisaton de diodes Schottky et JBS SiC-4H pour des applications haute tension, vol.23, p.22, 2016.

Q. Wahab, Inuence of epitaxial growth and substrate-induced defects on the breakdown of 4HSiC Schottky diodes, Applied Physics Letters, vol.76, p.22, 2000.

G. Philip and . Neudeck, Electrical impact of SiC structural crystal defects on high electric eld devices, Material Science Forum, vol.338, p.22, 2000.

T. Kimoto, High Voltage 4H-SiC Schottky Barrier Diodes Fabricated on (0388) with Closed Micropipes, Japanese journal of applied physics, vol.42, p.22, 2003.

. Aa-lebedev, Heterojunctions and superlattices based on silicon carbide, Semiconductor science and technology, vol.21, p.23, 2006.

. J-peder-bergman, Crystal defects as source of anomalous forward voltage increase of 4H-SiC diodes, Materials Science Forum, vol.353, p.24, 2001.

H. J. and J. , Impact of Stacking Fault on the IV Characteristics of 4H-SiC Schottky Barrier Diode, Materials Science Forum, vol.821, p.24, 2015.

H. Fujiwara, Characterization of in-grown stacking faults in 4HSiC (0001) epitaxial layers and its impacts on high-voltage Schottky barrier diodes, Applied Physics Letters, vol.87, p.24, 2005.

J. Hasegawa, Investigation of Stacking Faults Aecting on Reverse Leakage Current of 4H-SiC Junction Barrier Schottky Diodes Using Device Simulation, Materials Science Forum, vol.778, p.24, 2014.

K. Kojima, Inuence of stacking faults on the performance of 4HSiC Schottky barrier diodes fabricated on (1120) face. In: Applied physics letters, vol.81, p.24, 2002.

M. Yu, V. F. Tairov, and . Tsvetkov, Investigation of growth processes of ingots of silicon carbide single crystals, Journal of crystal growth, vol.43, p.25, 1978.

M. Berthou, Implementation of high voltage Silicon Carbide rectiers and switches, vol.26, p.25, 2012.

T. Seldrum, High Quality 150mm SiC Substrates for Power Electronics Applications, Power Electronics Europe, vol.4, p.25, 2016.

F. Calvo, Control en modo deslizante aplicado a sistemas de acondicionamiento de potencia de satélites, p.26, 2001.

W. Shockley, W. Bardeen, and . Brattain, The rst transistor, Bell Laboratories, p.27, 1947.

V. Barkhordarian, Power MOSFET basics. In: Powerconversion and Intelligent Motion-English Edition, vol.22, p.27, 1996.

S. Safari, A. Castellazzi, and P. Wheeler, Experimental and analytical performance evaluation of SiC power devices in the matrix converter, IEEE Transactions on Power Electronics, vol.29, p.27, 2014.

B. Buono, Modeling and characterization of current gain versus temperature in 4H-SiC power BJTs, IEEE Transactions on Electron Devices, vol.57, p.27, 2010.

S. Krishnaswami, 1000-V, 30-A 4H-SiC BJTs with high current gain, IEEE Electron Device Letters, vol.26, p.27, 2005.

K. Anant and . Agarwal, Large area, 1.3 kV, 17 A, bipolar junction transistors in 4H-SiC, IEEE 15th International Symposium on. IEEE, p.27, 2003.

S. Sundaresan, 10 kV SiC BJTsStatic, switching and reliability characteristics, Power Semiconductor Devices and ICs (ISPSD), 2013 25th International Symposium on. IEEE. 2013, p.27

G. Semiconductor, SiC Junction Transistors, p.28

W. Shockley and . Unipolar, Field-Eect" Transistor, Proceedings of the IRE, vol.40, p.28, 1952.

P. Friedrichs, The vertical silicon carbide JFET-a fast and low loss solid state power switching device, Proceedings of the EPE, p.28, 2001.

S. Round, A SiC JFET driver for a 5 kW, 150 kHz three-phase PWM converter, Industry Applications Conference, 2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005, vol.81, p.28, 2005.

R. Ouaida, Vieillissement et mécanismes de dégradation sur des composants de puissance en carbure de silicium (SIC) pour des applications haute température, Lyon, vol.1, 2014.

. Rajesh-k-malhan, Design, process, and performance of all-epitaxial normally-o

S. Jfets, physica status solidi (a), vol.10, p.28, 2009.

K. Tone, 4H-SiC normally-o vertical junction eld-eect transistor with high current density, IEEE Electron Device Letters, vol.24, p.28, 2003.

H. Jian and . Zhao, Fabrication and characterization of 11-kV normally o 4H-SiC trenched-and-implanted vertical junction FET, IEEE Electron Device Letters, vol.25, p.28, 2004.

Y. Hamieh, Caractérisation et modélisation du transistor JFET en SiC à haute température, vol.41, p.28, 2011.

. Je-lilienfeld, Electric current control mechanism. In: Canadian patent CA 272437, vol.19, p.29, 1927.

K. Dawon, Electric eld controlled semiconductor device, US Patent, vol.3, p.29, 1963.

K. Shenai, Wide Bandgap (WBG) Power Devices for High-Density Power Converters-Excitement and Reality, Applied Power Electronic Conference, p.31, 2014.

W. John and . Palmour, 6H-silicon carbide power devices for aerospace applications, Intersociety Energy Conversion Engineering Conference, vol.1, p.31, 1993.

J. Tan, . Cooper, and . Melloch, High-voltage accumulation-layer UMOS-FET's in 4H-SiC, IEEE Electron Device Letters, vol.19, p.31, 1998.

K. Anant and . Agarwal, 1400 V 4H-SiC Power MOSFETs, Materials Science Forum

, Trans Tech Publ, vol.264, p.31, 1998.

. Cree and . Cree, Launches Industry's First Commercial Silicon Carbide Power MOSFET

, Destined to Replace Silicon Devices in High-Voltage Power Electronics, p.31

V. Pala, 10 kV and 15 kV silicon carbide power MOSFETs for nextgeneration energy conversion and transmission systems, Energy Conversion Congress and Exposition (ECCE), p.31, 2014.

J. Millan, A survey of wide bandgap power semiconductor devices, IEEE transactions on Power Electronics, vol.29, p.31, 2014.

K. Yamagami, Y. Akagiri, and . Transistor, JP Pat. Publication, p.31, 1968.

B. Scharf and J. Plummer, A MOS-controlled triac device. In: 1978 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, p.32, 1978.

B. B-jayant, Enhancement-and depletion-mode vertical-channel MOS gated thyristors, Electronics Letters, vol.15, p.32, 1979.

. Bj-baliga, The insulated gate rectier (IGR): A new power switching device, Electron Devices Meeting, p.32, 1982.

. Sei-hyung-ryu, Ultra high voltage (> 12 kV), high performance 4H-SiC IGBTs, Power Semiconductor Devices and ICs (ISPSD), 2012 24th International Symposium on, p.33, 2012.

E. Van-brunt, 27 kV, 20 A 4H-SiC n-IGBTs, Materials Science Forum

, Trans Tech Publ, vol.821, p.33, 2015.

S. Krishnaswami, 4 kV, 10 A bipolar junction transistors in 4H-SiC. In: Power Semiconductor Devices and IC's, 2006. ISPSD, IEEE International Symposium on. IEEE, p.33, 2006.

K. Anant and . Agarwal, Inuence of basal plane dislocation induced stacking faults on the current gain in SiC BJTs, Materials science forum, vol.527, p.33, 2006.

Y. Gao, Analysis of operational degradation of SiC BJT characteristics. In: Power Semiconductor Devices and IC's, 2007. ISPSD'07. 19th International Symposium on, p.33, 2007.

. B-gunnar-malm, Gated base structure for improved current gain in SiC bipolar technology, Solid-State Device Research Conference (ESSDERC), vol.2017, p.33, 2017.

J. Aivars and . Lelis, Basic mechanisms of threshold-voltage instability and implications for reliability testing of SiC MOSFETs, IEEE Transactions on Electron Devices, vol.62, p.33, 2015.

J. Aivars, R. Lelis, D. B. Green, and . Habersat, SiC MOSFET reliability and implications for qualication testing, Reliability Physics Symposium (IRPS, vol.2, p.33, 2017.

R. Entner, Modeling and Simulation of Negative Bias Temperature Instability

A. N. Tallarico, Investigation of the hot carrier degradation in power LDMOS transistors with customized thick oxide, Microelectronics Reliability, vol.76, p.36, 2017.

. Se-tyaginov, Physical Principles of Self-Consistent Simulation of the Generation of Interface States and the Transport of Hot Charge Carriers in Field-Eect Transistors Based on MetalOxideSemiconductor Structures, Semiconductors, vol.52, p.36, 2018.

T. Nguyen, Gate oxide reliability issues of SiC MOSFETs under shortcircuit operation, IEEE Transactions on Power Electronics, vol.30, pp.2445-2455, 2015.

M. Kimura, Field and temperature acceleration model for time-dependent dielectric breakdown, IEEE Transactions on Electron Devices, vol.46, p.220229, 1999.

. Yu-liangchun, Reliability issues of SiC MOSFETs: A technology for hightemperature environments, IEEE Transactions on Device and Materials Reliability, vol.10, p.3739, 2010.

. En-xia-zhang, Bias-temperature instabilities in 4H-SiC metaloxidesemiconductor capacitors, IEEE Transactions on Device and Materials Reliability, vol.12, p.39, 2012.

T. Grasser, The paradigm shift in understanding the bias temperature instability: From reactiondiusion to switching oxide traps, IEEE Transactions on Electron Devices, vol.58, p.36523666, 2011.

B. Kaczer, Disorder-controlled-kinetics model for negative bias temperature instability and its experimental verication, Reliability Physics Symposium, 2005. Proceedings. 43rd Annual, p.39, 2005.

K. Dieter, J. Schroder, and . Babcock, Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing, Journal of applied Physics, vol.94, p.39, 2003.

H. Aono, Modeling of NBTI degradation and its impact on electric eld dependence of the lifetime, IEEE International Reliability Physics Symposium. Proceedings, p.39, 2004.

A. Chanthaphan, Study on Bias-Temperature Instability in 4H-SiC Metal Oxide Semiconductor Devices, vol.105, p.40

M. Simon, . Sze, K. Kwok, and . Ng, Physics of semiconductor devices, p.40, 2006.

. Si-raider, R. Gregor, and . Flitsch, Transfer of Mobile Ions from Aqueous Solutions to the Silicon Dioxide Surface, Journal of the Electrochemical Society, vol.120, p.40, 1973.

T. Santini, Contribution à l'étude de la abilité des MOSFETs en carbure de silicium, vol.41, p.40, 2016.

L. Yang and A. Castellazzi, High temperature gate-bias and reverse-bias tests on SiC MOSFETs, Microelectronics Reliability, vol.53, p.17711773, 2013.

. Liu, Structure of recombination-induced stacking faults in high-voltage SiC pn junctions, Applied physics letters, vol.80, p.40, 2002.

E. Robert, . Stahlbush, X. Kendrick, M. E. Liu, and . Twigg, Eects of dislocations and stacking faults on the reliability of 4H-SiC PiN diodes, Reliability Physics Symposium Proceedings, p.40, 2006.

A. , A New Degradation Mechanism in High-Voltage SiC Power MOSFETs, IEEE Electron Device Letters, vol.28, 2007.

A. Donald and . Gajewski, Reliability performance of 1200 V and 1700 V 4H-SiC DMOSFETs for next generation power conversion applications, Materials Science Forum

, Trans Tech Publ, vol.778, p.41, 2014.

B. Hull, Reliability and stability of SiC power mosfets and next-generation SiC MOSFETs, Wide Bandgap Power Devices and Applications (WiPDA), p.41, 2014.

J. Hu, Finite element modelling and experimental characterisation of paralleled SiC MOSFET failure under avalanche mode conduction, Power Electronics and Applications (EPE'15 ECCE-Europe), 2015 17th European Conference on, vol.43, p.42, 2015.

A. Fayyaz, UIS failure mechanism of SiC power MOSFETs, Wide Bandgap Power Devices and Applications (WiPDA), p.43, 2016.

K. Fischer and K. Shenai, Electrothermal eects during unclamped inductive switching (UIS) of power MOSFET's, IEEE Transactions on Electron Devices, vol.44, p.43, 1997.

A. Bhalla, Robustness of SiC JFETs and Cascodes, Submitted to the Magazine of Bodo's Power Systems, p.43, 2015.

C. Chen, Studies of SiC power devices potential in power electronics for avionic applications, vol.109, p.107, 2016.

P. Friedrichs and T. Reimann, Behavior of high voltage SiC VJFETs under avalanche conditions, Applied Power Electronics Conference and Exposition, p.44, 2006.

A. Fayyaz, Single pulse avalanche robustness and repetitive stress ageing of SiC power MOSFETs, Microelectronics Reliability, vol.54, p.44, 2014.

S. Tanimoto and H. Ohashi, Reliability issues of SiC power MOSFETs toward high junction temperature operation, physica status solidi (a), vol.10, p.46, 2009.

G. Romano, A comprehensive study of short-circuit ruggedness of silicon carbide power MOSFETs, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol.4, p.48, 2016.

G. Kampitsis, S. Papathanassiou, and S. Manias, Comparative evaluation of the short-circuit withstand capability of 1.2 kV silicon carbide (SiC) power transistors in real life applications, Microelectronics Reliability, vol.55, p.48, 2015.

Y. Gao, Theoretical and Experimental Analyses of Safe Operating Area (SOA) of 1200-V 4H-SiC BJT, IEEE Transactions on Electron Devices, vol.55, p.49, 2008.

M. Domeij, 2.2 kV SiC BJTs with low VCESAT fast switching and short-circuit capability, Materials Science Forum, vol.645, p.49, 2010.

D. Othman, Study of silicon carbide devices for aeronautics applications. Theses, p.49, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01265578

X. Huang, Short-circuit capability of 1200V SiC MOSFET and JFET for fault protection, Applied Power Electronics Conference and Exposition, p.2013

C. M. Dimarino, High temperature characterization and analysis of silicon carbide (SiC) power semiconductor transistors, p.49, 2014.

S. Lefebvre, Z. Khatir, and F. Saint-eve, Experimental behavior of single-chip IGBT and COOLMOS devices under repetitive short-circuit conditions, IEEE Transactions on Electron Devices, vol.52, p.49, 2005.

O. Kusumoto, Reliability of Diode-Integrated SiC Power MOSFET(DioMOS)

, Reliability Issues in Power Electronics, Microelectronics Reliability, pp.26-2714, 2016.

T. Ueda, Reliability issues in GaN and SiC power devices, IEEE International Reliability Physics Symposium. IEEE, vol.74, p.52, 2014.

A. Fayyaz, A. Romano, and . Castellazzi, Body diode reliability investigation of SiC power MOSFETs, Microelectronics Reliability, vol.64, p.53, 2016.

, JESD22-A108D, Temperature, Bias and Operating Life, vol.84, p.85, 2010.

A. Ammous, B. Allard, and H. Morel, Transient temperature measurements and modeling of IGBT's under short circuit, IEEE transactions on power electronics, vol.13, p.54, 1998.

L. Dupont, Y. Avenas, and P. Jeannin, Comparison of junction temperature evaluations in a power IGBT module using an IR camera and three thermosensitive electrical parameters, IEEE Transactions on Industry Applications, vol.49, p.54, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01703887

K. Mrinal and . Das, Evolution of drift-free, high power 4H-SiC PiN diodes, Materials science forum, vol.527, p.66, 2006.

J. Joseph and . Sumakeris, Techniques for minimizing the basal plane dislocation density in SiC epilayers to reduce Vf drift in SiC bipolar power devices, Materials science forum, vol.527, p.66, 2006.

R. Co, SCT2080KE SiC Power Mosfet Datasheet

. St-microelectronics, SCT30N120 Silicon Carbide Power Mosfet Datasheet, Rev. B, 2015.

W. Robert, D. Erickson, and . Maksimovic, Fundamentals of power electronics

E. Balkas and A. Burk, Status on WBG Materials, vol.107, p.80, 2017.

K. Hara, Analysis and Reduction of Stacking Faults in Fast Epitaxial Growth, Silicon Carbide and Related Materials, vol.858, p.80, 2015.

A. Fayyaz and A. Castellazzi, High temperature pulsed-gate robustness testing of SiC power MOSFETs, Microelectronics Reliability, vol.55, p.85, 2015.

B. Hull, Next Generation SiC MOSFETs Performance and Reliability. https:// pdfs.semanticscholar.org/presentation/f3ce/e90bc5b0a7658794279d95ad465e12abbb83. pdf. Online; accessed 19, vol.108, p.85, 2016.

C. Chen, Study of short-circuit robustness of SiC MOSFETs, analysis of the failure modes and comparison with BJTs, Microelectronics Reliability, vol.55, p.93, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01700463

M. Hologne, An experimental approach to the health-monitoring of a silicon carbide MOSFET-based power module, Electric Machines and Drives Conference (IEMDC, p.93, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01532058

J. W. Mcpherson and . Da-baglee, Acceleration factors for thin oxide breakdown, Journal of the Electrochemical Society, vol.132, p.94, 1985.

I. Chen, S. E. Holland, and C. Hu, Electrical breakdown in thin gate and tunneling oxides, IEEE Transactions on Electron Devices, vol.32, p.94, 1985.

J. Mcpherson, Comparison of E and 1/E TDDB models for SiO/sub 2/under long-term/low-eld test conditions, Electron Devices Meeting, p.94, 1998.

, System SourceMeter Instrument, Reference Manual. Rev. C. Cleveland, USA, 2016.

F. Klaus, C. Schuegraf, and . Hu, Hole injection oxide breakdown model for very low voltage lifetime extrapolation, Reliability Physics Symposium, p.98, 1993.

X. Liu, J. Kang, and R. Han, Direct tunneling current model for MOS devices with ultra-thin gate oxide including quantization eect and polysilicon depletion eect, Solid State Communications, vol.125, issue.3-4, p.98, 2003.

K. Okada, K. Kurimoto, and M. Suzuki, Anomalous TDDB statistics of gate dielectrics caused by charging-induced dynamic stress relaxation under constant voltage stress, IEEE Transactions on Electron Devices, vol.63, p.101, 2016.

E. Fabbri, Towards the Next Generation of Solid Oxide Fuel Cells Operating Below 600° C with Chemically Stable Proton-Conducting Electrolytes, Advanced materials, vol.24, p.105, 2012.

R. Gale, Hydrogen migration under avalanche injection of electrons in Si metaloxide-semiconductor capacitors, Journal of applied physics, vol.54, p.105, 1983.

. Joe-w-mcpherson, Trends in the ultimate breakdown strength of high dielectricconstant materials, IEEE transactions on electron devices, vol.50, p.105, 2003.

F. Electronik, Retaining springs for transistors, vol.127

. Bergquist-company, Sil-Pad K10 datasheet, 2008.

. Rtca-norm, DO-160," in: Environmental conditions and test procedures for airborne equipment, vol.20, p.135, 2004.

O. Journal-papers, H. Aviñó-salvadó, C. Morel, D. Buttay, S. Labrousse et al., Threshold voltage instability in SiC MOSFETs as a consequence of current conduction in their body diode. Microelectronics Reliability, vol.88, pp.636-640, 2018.

O. Avino-salvado, C. Cheng, C. Buttay, H. Morel, D. Labrousse et al., , 2018.

, SiC MOSFETs robustness for diode-less applications, EPE Journal, vol.28, issue.3, pp.128-135, 2018.

O. Aviño-salvado, W. Sabbah, C. Buttay, H. Morel, and P. Bevilacqua, , 2017.

, Board Materials for High-Temperature Operation, Journal of Microelectronics and Electronic Packaging, vol.14, issue.4, pp.166-171, 2017.

W. Sabbah, P. Bondue, O. Avino-salvado, C. Buttay, H. Frémont et al.,

. Morel, High temperature ageing of microelectronics assemblies with SAC solder joints, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01564755

, Microelectronics Reliability, pp.362-367, 2017.

W. Sabbah, F. Arabi, O. Avino-salvado, C. Buttay, L. Théolier et al., Lifetime of power electronics interconnections in accelerated test conditions: High temperature storage and thermal cycling. Microelectronics Reliability, pp.444-449, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01562549

F. Sixdenier, J. Morand, O. Salvado, and D. Bergogne, Statistical Study of, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01381386

, Nanocrystalline Alloy Cut Cores From Two Dierent Manufacturers, Transactions on Magnetics, vol.50, issue.4, pp.1-4, 2014.

C. Restrepo, T. Konjedic, C. Guarizo, O. Aviñó-salvadó, J. Calvente et al., Simplied Mathematical Model for Calculating the Oxygen Excess Ratio of a PEM Fuel Cell System in Real-Time Applications. Transaction on Industrial Electronics, vol.61, pp.2816-2825, 2014.

C. Restrepo, O. Avino, J. Calvente, A. Romero, M. Milanovic et al., Reactivation System for Proton-Exchange Membrane Fuel-Cells, Energies 2012, vol.5, pp.2404-2423, 2012.

, Étude de la robustesse de l'oxyde de grille pour des applications aéronautiques, INSA Lyon, tous droits réservés National Conference papers O. Avino-Salvado, H. Morel and C. Buttay, vol.2017, 2017.

O. Avino-salvado, C. Cheng, C. Buttay, H. Morel, D. Labrousse et al., , 2016.

, Analyse de la robustesse des MOSFET SiC pour les applications "Diode-less, Symposium de Génie Électrique 2016 (SGE), 2016.