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pour leur aide et leur soutient. Je remercie tous les permanents de l’équipe IFAC avec qui j’ai pu
intéragir: Michele, Nicolas, Félix, Karsten, Cyril, Gilbert, Jean-Löıc et Sacha.
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F.3.3 Modèle contraint des sous-halos Galactiques . . . . . . . . . . . . . . . . . 215

F.4 Impact des sous-halos sur les recherches indirectes de matière sombre . . . . . . . 216
F.4.1 Impact sur les recherches avec les rayons gamma . . . . . . . . . . . . . . 216
F.4.2 Impact sur les recherches avec les antiprotons . . . . . . . . . . . . . . . . 216

F.5 L’espace des phases de la matière sombre Galactique . . . . . . . . . . . . . . . . 216
F.5.1 Le formalisme d’Eddington . . . . . . . . . . . . . . . . . . . . . . . . . . 216
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Chapter 1

Introduction

Physicists today are confronted with a wealth of astrophysical and cosmological evidence that a
large fraction of the mass content of the Universe is invisible. Though theorists have come up with
numerous possible explanations for that missing mass, there is at the moment no experimental
data supporting one explanation over the others. This missing mass problem has been resisting
investigations for decades and is considered one of the most important problem of modern physics.
For a historical review on the missing mass problem, we refer to Bertone & Hooper (2016).

Interestingly, this is not the first time physicists have faced an observational missing mass
problem. Back in 1846, French astronomer Le Verrier and English astronomer John Couch Adams
were trying to explain some anomalies observed in the trajectory of Uranus [see e.g., Weinberg
(1972)]. The trajectory seemed to be in contradiction with the Universal law of gravitation
and Newtonian dynamics. To account for this discrepancy, Le Verrier and Adams assumed,
independently, that the trajectory is perturbed by another orbiting body. They computed the
theoretical position this object should have to explain the anomaly and Le Verrier sent his
result to astronomer Johann Gottfried Galle in Berlin. Galle, upon receiving Le Verrier’s letter,
immediately looked for the object and discovered Neptune. This discovery remains one of the
most astonishing successes of Newton’s theory. In that particular case, the missing mass problem
was really a missing matter problem since theory and observations were reconciled thanks to an
object unseen at the time. A few years later, another missing problem appeared in astronomy. It
was Le Verrier, again, who showed that the rate of precession of the perihelion of Mercury’s orbit
was anomalous with respect to Newton’s theory. In light of its past success with Uranus, Le
Verrier suggested that Mercury’s anomaly could be explained by another yet undiscovered planet
he called Vulcan. However, this time, all observational efforts to observe the hypothetical planet
failed. Mercury’s anomaly remained unexplained for decades before being finally accounted
for by the general theory of relativity of Albert Einstein (1915). This new theory of gravity
perfectly accounts for the effect without introducing any unobserved matter, hence in that case,
the missing mass problem was an indication that the theory had to be revised in depth. These
historical examples point toward two ways of solving the current missing mass problem. Either
we have to revise the established theory of gravity (i.e. general relativity), or the Universe is
filled with a new form of matter whose properties are unknown.

We begin by reviewing the astrophysical and cosmological evidence for the missing mass
problem. We then discuss the theoretical approaches currently under investigation, and finally
we present the experimental searches for particle dark matter.

1.1 The missing mass problem on the scale of individual struc-
ture

In this section, we present the astrophysical evidence for a missing mass. We discuss observations
of galaxies and galaxy clusters.



2 1.1. The missing mass problem on the scale of individual structure

Figure 1.1 – Rotation curve for the M33 galaxy, by Stefania Deluca for Wikipedia. The data are taken
from Corbelli & Salucci (2000).

1.1.1 Galactic rotation curves

Perhaps the most striking observation leading to the missing mass problem is the rotation curves
of galaxies, i.e. the circular velocity profile of stars as a function of their distance to the centre of
galaxies. The first measurements of rotation curves were performed in the 1930s and the 1940s
but were limited to the innermost regions of galaxies. The birth of radio astronomy with the
first observation of the 21 cm line of neutral hydrogen (Ewen & Purcell, 1951; van de Hulst,
1951) allowed astronomers to explore the outer parts of galaxies. The realization that rotation
curve data were in apparent disagreement with the observed distribution of matter took place in
the 1970s. Observations showed that the rotation curve of most spiral galaxies flatten at high
radius (Freeman, 1970; Rogstad & Shostak, 1972; Roberts & Rots, 1973; Bosma, 1978; Rubin
et al., 1978). A modern measurement of the rotation curve of M33 is shown in Fig. 1.1. If
the luminosity is a good tracer of the mass density of matter in galaxies, we expect the disc
density to be exponentially falling with radius. We show in Fig. 1.1 the rotation curve of the
galaxy M33. One can see by eye that the luminous matter does not extend much beyond 104 ly.
Such a distribution leads to a prediction for the rotation curve which is shown as a dashed line.
This curve strongly differs from the measured rotation curve, shown by the data points. These
anomalies motivated authors to suggest the presence of a large quantity of unobserved matter in
galaxies (Einasto et al., 1974; Ostriker et al., 1974).

While rotation curves are a spectacular observational proof of the missing mass problem, this
problem is not limited to spiral galaxies. The measured velocity dispersion of stars combined
with the virial theorem allows one to predict the mass of any type of galaxy. It is found that all
types of galaxies, irrespective of their morphology (spiral or elliptical) or their size, contain a
large amount of missing mass. Our own galaxy, the Milky Way, is no exception.

The rotation curves of the Milky Way point toward an invisible mass [see e.g., Fich et al.
(1989); Dehnen & Binney (1998); Catena & Ullio (2010); McMillan (2011); Binney & Piffl (2015)].
Measures of the velocity dispersion of nearby stars also lead to a non-zero invisible matter density
[see for instance the pioneering work of Oort (1932) and the review of Read (2014)].

1.1.2 Galaxy clusters

Though galactic rotation curves provide the most striking astrophysical evidence for a missing
mass, it was not in galaxies that the problem first became quantitatively worrying. The first
evidence for an invisible mass on extragalactic scales came from the analysis of the observations
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of the Coma Cluster by Zwicky (1933). Zwicky found an unusually large velocity dispersion
for several galaxies within the galaxy cluster. He applied the virial theorem to the structure in
order to estimate its mass, assuming an average mass of 109 M⊙ for galaxies, and found that
the large velocity scatter led to a total mass far above the ”luminous” mass. He concluded that
most of the mass in the Coma Cluster had to be made of dark matter. He later returned to his
analysis of the Coma Cluster, this time with the aim of estimating the average mass of galaxies
within the cluster (Zwicky, 1937). This led him to find an average mass-to-light ratio of order
500 for galaxies. It later turned out that this estimate was based on a poorly measured Hubble
parameter. More modern measurements lead to a mass-to-light ratio roughly ten times lower.
This does not change Zwicky’s conclusion that most of the mass in galaxies is dark. Several
methods exist to measure the mass of galaxy clusters. Apart from the measure of the velocity
dispersion of galaxies and the use of the virial theorem, one can study the large amount of gas
which is observable in X-ray. Assuming hydrostatic equilibrium, one can link the gas temperature
profile to its mass profile. Temperatures inferred through this method are approximately an
order of magnitude lower than the temperature measured in X-ray. Theory and observations can
be reconciled if a large fraction of the mass is dark. Finally, a third probe of the mass in galaxy
clusters is gravitational lensing (already suggested by Zwicky (1937), see Massey et al. (2010) for
a review). This method relies on the deflection of light by massive bodies as predicted by the
general theory of relativity. Two distinct regimes are used to study galaxy clusters. In the strong
gravitational lensing regime, photons are significantly deflected and the presence of a massive
object in the foreground (a “lens”) leads to multiple images of background light sources (like
galaxies or quasars). Many strong lensing arcs have been detected by the Hubble space telescope
such as those observed in the Abell 2218 galaxy cluster, see Fig. 1.2. The study of these arcs
allows one to estimate the total mass within the cluster and again a large discrepancy is found
with respect to the luminous mass. Another interesting regime is weak gravitational lensing
which occurs when light rays pass too far from the lens for the distorsion and magnification of the
individual background objects to be detectable. However, two nearby sources are approximately
distorted by the same amount, which enables a statistical treatment of background sources [see
e.g., Hoekstra et al. (2013)]. Strong lensing probes the inner parts of a cluster, while weak
lensing probes the more external parts (also better suited to study). These methods allow one
to reconstruct the mass distribution in galaxy clusters and lead to results consistent with the
previous methods. By combining with spectrometric/photometric-redshift measurements, one
can also use weak lensing to make a tomography of structures in the universe.

1.2 The missing mass problem on cosmological scales

This section focuses on the missing mass problem on cosmological scales. Two pillars of modern
cosmology, the Cosmic Microwave Background (CMB) and Big Bang Nucleosynthesis (BBN),
are briefly reviewed. We also say a few words about the use of large-scale structures (LSS).

1.2.1 The Cosmic Microwave Background

The CMB is fossil radiation emitted approximately 300,000 years after the Big Bang. Its
existence was predicted in the 1940s (Gamow, 1948a,b; Alpher & Herman, 1948a,b). It was
discovered accidentally by Penzias & Wilson (1965) and immediately interpreted as the primordial
background radiation (Dicke et al., 1965). In the hot Big Bang model, this radiation is interpreted
as a remnant of the time of recombination, when the first hydrogen atoms were formed and the
photon temperature decreased below their binding energy. It is of paramount importance for
cosmology because the matter perturbations that later gave rise to cosmological structures left an
imprint on the radiation (Zeldovich & Sunyaev, 1969; Peebles, 1982a,b). These imprints manifest
themselves as small temperature anisotropies on an otherwise perfectly isotropic background
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Figure 1.2 – Lensing arcs in the Abell 2218 galaxy cluster as observed by the Hubble space telescope.
Credit: NASA, ESA, and Johan Richard (Caltech, USA).

radiation. The CMB anisotropies were first observed by the COBE satellite (Smoot et al., 1992)
and found to be in agreement with theoretical predictions. The discovery of the CMB, the
observed low degree of anisotropy and the measured spectrum all provided strong arguments in
favour of the hot Big Bang model (Peebles, 1965; Peebles & Dicke, 1966; Peebles et al., 1991).

A variety of effects contribute to shape the CMB as we observe it today. Reviews on the
subject are for instance Hu (1995); Durrer (2001). The most striking feature found in the
anisotropies is the presence of acoustic peaks, which were predicted long before their discovery
in the 1990s (Silk, 1968; Peebles & Yu, 1970; Sunyaev & Zeldovich, 1970). These peaks appear
because baryons fall into the potential wells created by the primordial perturbations. Because
baryons are tightly coupled to photons, they experience a radiation pressure which drives these
baryons outward from the perturbation. At recombination, baryons stop interacting with photons
and are therefore frozen in a shell surrounding the dark matter perturbation. The radius of this
shell is given by the sound horizon at the time of recombination and leads to a characteristic
angular scale in the CMB. The temperature fluctuation correlation function measured by Planck
is shown in Fig. 1.3 as a function of the multipole l (a multipole is related to an inverse angular
size on the CMB). Acoustic peaks are clearly visible in the figure. The existence of baryonic
acoustic oscillations in the CMB is a robust indication that the Universe contains a form of
non-interacting matter. Without this dark matter, perturbations would be washed out by
radiation pressure. This effect is called Silk damping (Silk, 1968) or diffusion damping. It occurs
because of the departure of the baryon-photon plasma from a perfect fluid. This departure
takes place because photons have a non-zero free-streaming length which allows them to escape
potential wells. Their subsequent collisions with baryons damp the baryon perturbations below
a given scale. If all matter were interacting with photons, high-l peaks in the CMB would be
completely suppressed. Since these peaks are observed, we conclude that a fraction of matter
does not interact with photons.

Baryonic acoustic oscillations and Silk damping are the two main effects shaping primordial
perturbations in the CMB. Also contributing to anisotropies are late-time effects such as the
interaction of CMB photons with electrons in galaxy clusters (Sunyaev & Zeldovich, 1970), or the
blueshifting/redshifting of photons due to the presence of potential wells along the line-of-sight
(Sachs & Wolfe, 1967).

Taking into account all these effects allows one to fit the CMB data to an exquisite precision.
Only six independent parameters are needed to account for all CMB-related observations. These
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parameters constitute the basis of the ΛCDM standard model of cosmology, and include the
baryons abundance relative to the critical density Ωbh2 (the factor h2 allows one to factorize the
uncertainty associated to the Hubble parameter H0 = 100 h km/s/Mpc), the cold dark matter
abundance Ωch

2, the optical depth τ , the amplitude of primordial perturbations (As or σ8),
the primordial spectral index ns and the value of the cosmological constant.1 The parameters
obtained with Planck are shown in Table. 1.1. One sees that the fraction of ordinary matter in
the model is

Ωbh2

Ωbh2 + Ωch2
= 15.8% , (1.1)

hence a bit more than 84% of all matter in the Universe is non-interacting around the time of
recombination. The properties of dark matter in the ΛCDM model are the following: it is a
non-interacting (pressureless), non-relativistic fluid (hence the word “cold”) characterized by its
abundance only.
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Figure 1.3 – Temperature power spectrum of the CMB as obtained by Ade et al. (2016).

Ωbh2 Ωch
2 τ σ8 ns h

Planck 2015 0.02226 0.1186 0.066 0.8149 0.9677 0.6781

Planck 2018 0.02237 0.1200 0.0544 0.8111 0.9649 0.6736

Table 1.1 – Parameters of the ΛCDM model as measured by Ade et al. (2016) and Aghanim
et al. (2018).

1It is also implicitly assumed that the Standard Model of particle physics is valid at all times.
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1.2.2 The Big Bang Nucleosynthesis

Another major part of the current standard model of cosmology is Big Bang Nucleosynthesis
(BBN). This is the theory that describes the formation of light elements (D, 3He, 4He, 7Li).
The foundations of the theory were laid down in the 1940s and 1950s (Gamow, 1946; Alpher
et al., 1948, 1953). Reviews can be found in Sarkar (1996); Olive et al. (2000). Though initially
designed as a theory explaining the formation of all elements, it was soon realized that BBN
could not account for elements heavier than lithium. This is because these elements are produced
through 3-body and 4-body processes which are very unlikely at the time of BBN due to the
small baryon-to-photon ratio. Heavier elements are actually formed much later inside stars,
see Fig. 1.4. As stated, predictions of BBN for the abundances of 3He and 4He depend on the
baryon-to-photon ratio (Peebles, 1966; Wagoner et al., 1967; Reeves et al., 1973). This ratio can
be independently measured from the CMB, and this value leads to good agreement between
predictions of BBN and observations. Hence the primordial formation of elements also points
toward a Universe dominated by a form of non-interacting matter.

Figure 1.4 – The periodic table of elements with their cosmological or astrophysical origin. By Cmglee
for Wikipedia, based on work by Jennifer Johnson at Ohio University.

1.2.3 Large-scale structures

After recombination, the growth and formation of large-scale structures is dominated by dark
matter (Blumenthal et al., 1984). Galaxy surveys such as CfA (de Lapparent et al., 1986; Geller
& Huchra, 1989), 2dFGRS (Colless et al., 2001), SDSS (York et al., 2000) and BOSS (Anderson
et al., 2014) also lead to results in full agreement with the primordial probes that are the
CMB and BBN. In particular, observations of large-scale structure are recovered in numerical
simulations starting with CMB-like initial conditions (see e.g.Springel et al. (2005); Klypin et al.
(2011)). The observation of baryonic acoustic oscillations in the matter power spectrum is another
strong argument in favour of dark matter (Percival et al., 2010). The consistency of large-scale
structures with CMB and BBN data shows that ΛCDM is a robust cosmological model, at least
for all times in between BBN and today and on super-galactic scales.

We would like to mention a tension that appears when the value of the Hubble parameter H0

as inferred from the CMB is compared to the value obtained from local, low redshift measurements
(Bernal et al., 2016). Using Cepheid variables as distance rulers, Riess et al. (2016); Riess et al.
(2018); Riess et al. (2018) measured the Hubble parameter to a value H0 = 73.48±1.66 km/s/Mpc,
which is in disagreement at the 3.6σ level with the CMB value H0 = 67.4±0.5 km/s/Mpc. Minimal
extensions of ΛCDM are not able to resolve the tension on H0 without introducing new tensions
on other cosmological parameters (Ade et al., 2016; Aghanim et al., 2018). Alternatively, the
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discrepancy could be due to a systematic uncertainty on the local measurement as proposed by
Rigault et al. (2015). A clear solution to this issue is yet to be found.

1.3 Theoretical approaches to the missing mass problem

We have presented the astrophysical and cosmological evidence for missing mass in the Universe.
We have discussed how the ΛCDM model accounts for observations by introducing a non-
interacting, non-relativistic matter fluid that makes up most of the mass in the Universe. We
now turn to theories attempting to describe the physics of the dark matter itself. We first discuss
theories of modified gravity and then turn to particle dark matter which is the main focus of this
work.

1.3.1 Modification of the theory of gravity

The general theory of relativity is very well tested on scales from a few centimeters to the size of
the solar system, essentially in the weak-field regime (Will, 2014). A wide variety of phenomena
predicted by the theory have been observed, such as gravitational lensing (Dyson et al., 1920) or
gravitational waves (Hulse & Taylor, 1975; LIGO Scientific Collaboration & Virgo Collaboration,
2016). However, the overwhelming amount of anomalous observations, to which we can add
the discovery of the accelerated expansion (Riess et al., 1998; Perlmutter et al., 1999), might
cast some doubts on the validity of the theory on large scales. This motivates the search for
an alternative theory of gravity which could explain these anomalies while still accounting for
observations consistent with general relativity, just like Einstein’s theory explains Mercury’s
anomaly and reproduces Newton’s gravity in the non-relativistic weak-scale regime. We note
that there are other reasons that might motivate revisions of general relativity, whether it is on
rather philosophical grounds (Brans & Dicke, 1961) or in the perspective of building a theory of
quantum gravity [see e.g., Rovelli (1998)].

In the context of the galactic rotation curve issue, an empirical formulation of modified
gravity was developed by Milgrom (1983) as an alternative to Newtonian gravity, that would
provide an explanation to the flatness of rotation curves without resorting to dark matter. This
theory is known as Modified Newtonian Dynamics (MOND). We refer to Famaey & McGaugh
(2012) for a review. In MOND, the Newtonian acceleration is given by

þaN = µ

(

a

a0

)

þa , (1.2)

where a0 is a constant acceleration and µ is an interpolating function which satisfies

µ(x) →
{

1 for x ≫ 1
x for x ≪ 1 .

(1.3)

This modification of Newton’s law is motivated by the flattening of galactic rotation curves. A
test particle on a circular orbit, in the deep-MOND regime a ≪ a0, around a point-mass M has
a velocity solution of

(v2/r)2

a0
=

GNM

r2
, (1.4)

which leads

v = (GN M a0)1/4 , (1.5)

therefore the speed is independent of the radius, in agreement with the observation of flat rotation
curves. MOND is very successful at explaining galactic dynamics without relying on any invisible
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form of matter. In particular, as seen in Eq. (1.5) where M is the baryonic mass, it naturally
accounts for correlations between dark matter and baryons such as the baryonic Tully-Fisher
relation (Tully & Fisher, 1977) or the mass discrepancy-acceleration relation (McGaugh et al.,
2016), while explaining these relations in the framework of ΛCDM is challenging. However,
MOND has difficulties accounting for the dynamics observed on larger scales. For instance,
in its simplest version, it is not compatible with the inner dynamics of galaxy clusters (The
& White, 1988; Sanders, 1999, 2003; Pointecouteau & Silk, 2005). MOND has also difficulties
with cosmology. In order to get cosmological predictions for MOND, one must first construct a
relativistic extension of MOND. There is no generic way of constructing such a theory, therefore
several examples exist e.g., Bekenstein & Milgrom (1984); Bekenstein (2004); Zlosnik et al. (2007);
Blanchet (2007); Skordis (2008); Milgrom (2009). Since there is no unique theory, there is no
unique prediction for cosmology. It seems difficult for known theories of modified gravity to
account for all observations, especially CMB anisotropies (McGaugh, 1999; Slosar et al., 2005).
This obviously does not rule out modified gravity as an idea.

We would like to mention an interesting observation put forward as a strong case in favour of
particle dark matter over modified gravity. This is the observation of the so-called Bullet cluster
(Clowe et al., 2006). The name actually refers to a pair of clusters having experienced a collision.
Combined lensing and X-ray observations show that the mass distributions and the gas are not
overlapping, see Fig. 1.5. This observation is easy to interpret in the ΛCDM framework. As the
two clusters collided, the dark matter halos passed through each other thanks to the collisionless
nature of the dark matter fluid. In contrast, the two gas clouds originally sitting at the centres
of the two clusters did collide and remained where the collision took place. Note however that
such a high-speed collision might actually be quite rare in a ΛCDM universe (Kraljic & Sarkar,
2015). The situation is more surprising in a modified gravity context since one has to explain
why the centre of mass is not overlapping with the gas cloud. A detailed study of the Bullet
cluster (Angus et al., 2007) showed that to reproduce the observations, MOND typically needs
an amount of collisionless, invisible matter e.g., in the form of neutrinos with mass 2 eV. One of
the biggest challenges of the MOND class of approaches is to come up with predictions that can
help distinguish them from the particle dark matter scenarios.

Figure 1.5 – Segregation of the centres of mass and gas in the Bullet Cluster, as observed
by the Hubble space telescope (the coloration has been added artificially). Credit: X-ray:
NASA/CXC/CfA/M.Markevitch, Optical and lensing map: NASA/STScI, Magellan/U.Arizona/D.Clowe,
Lensing map: ESO WFI .

1.3.2 Particle dark matter

We now turn to the Uranus-like approach to the missing mass problem, i.e. particle dark matter.
In contrast to modified gravity, particle dark matter provides a consistent picture for the dark
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matter from the early universe to the local universe, and is the pillar of our understanding of
structure formation which copes with almost all observed phenomena: CMB, Ly-α, large-scale
structures, rotation curves, galaxy properties (pending ongoing work on baryonic effects). It
is somewhat impressive that starting from initial conditions set by the CMB, we can get the
Universe we observe simply by assuming an extra pressureless cold dark matter component. We
quickly present the main particle candidates and refer to Bertone et al. (2005) and Bergstrom
(2009) for detailed reviews on the subject.

1.3.2.1 Baryonic dark matter

Let us first examine the possibility that dark matter is actually made of ordinary matter. The
requirement that dark matter particles be neutral and stable rules out all known particles with
the exception of neutrinos. Neutrinos are also excluded because of their mass (

∑

mν 6 0.23 eV
(Ade et al., 2016)) which implies these particles decoupled while they were relativistic, hence
neutrinos are hot dark matter. Hot dark matter particles have too large a free-streaming scale to
form galaxies at early times, instead they form first much larger structures like super-clusters.
Forming galaxies in that scenario is only possible through fragmentation of large structures,
however this is not compatible with observations which show that older structures are smaller on
average.

An alternative scenario where dark matter is made of ordinary matter is Massive Astrophysical
Compact Halo Objects (MACHOs) such as planets, neutron stars, brown dwarfs or black holes
(Petrou, 1981; Paczynski, 1986). The amount of observed baryonic matter in galaxies only makes
up a fraction of the total baryonic abundance constrained by BBN and the CMB. Therefore
there is room for a large fraction of invisible baryonic matter in galaxies. However, MACHOs
have been ruled out as the main components of the Milky Way halo through microlensing studies
(Tisserand et al., 2007). Black holes are still alive as dark matter candidates if they are primordial
i.e. they formed during the radiation era (Hawking, 1971) and are consequently seen as part of
the dark matter at the time of the CMB (see Carr et al. (2016) for a review). Numerous bounds
from cosmology and astrophysics are currently available (from lensing, dynamics, gravitational
waves, etc.) yet a couple of mass windows are still open for primordial black holes to make up
nearly all of dark matter. The recent discovery of black hole binaries through their gravitational
radiation (LIGO Scientific Collaboration & Virgo Collaboration, 2016) has renewed interest in
few-solar-mass black holes as dark matter (Bird et al., 2016; Clesse & Garćıa-Bellido, 2017).

1.3.2.2 Weakly Interacting Massive Particles

The most popular class of beyond-the-Standard-Model dark matter candidates are Weakly
Interacting Massive Particles (WIMPs). This term refers to particles being neutral, stable
(or at least very long-lived), interacting weakly (though not necessarily through the SM weak
interaction) and having a mass in the GeV-TeV range (the MeV range is also accessible to scalars
(Boehm & Fayet, 2004)). The main motivation for these particles to be the dark matter is their
very simple production mechanism in the early Universe (Lee & Weinberg, 1977) and the fact
that they are cold dark matter candidates. The next chapter is devoted to the presentation of
the WIMP’s thermal history, therefore we do not enter into these details here. The GeV-TeV
mass range is currently being deeply probed by observations and experiments. The sub-GeV and
multi-TeV ranges are still to be explored.

Supersymmetry Supersymmetry was developed in the early 1970s as an extension of gauge
theories for a variety of reasons, including purely aesthetic ones (Ramond, 1971; Neveu & Schwarz,
1971; Gervais & Sakita, 1971; Golfand & Likhtman, 1971; Wess & Zumino, 1974; Volkov &
Akulov, 1973). It was soon realized however that this framework offers a solution to the gauge
hierarchy problem (Gildener, 1976; ’t Hooft, 1980). Supersymmetry also helps unifying all gauge
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interactions into a grand unified theory (Marciano & Senjanovic, 1982). Moreover, promoting
supersymmetry to a gauge symmetry (i.e. a local one) rather than a global one leads to the
theory of supergravity (Nath & Arnowitt, 1975; Freedman et al., 1976) which can be interpreted
as a low-energy effective theory of superstrings, thus linking supersymmetry to the unification
of all interactions including gravity. On top of this, supersymmetry provides a number of dark
matter candidates (Ellis et al., 1984). The most promising one is the neutralino, which is a
mixing of the superpartners of the gauge and Higgs fields. If the neutralino is the lightest
supersymmetric particle, R-parity ensures its stability. The neutralino is by far the most studied
dark matter candidate in the literature. We refer to Jungman et al. (1996) for a classic review
on supersymmetric dark matter and to Martin (1997) for a review on supersymmetry and the
associated formalism.

Extra dimensions Extra dimensions of space were first considered in the 1920s (Kaluza,
1921; Klein, 1926) in the context of unification of electromagnetism and gravity. They regained
attention in the 1980s when it was demonstrated that string theory is not viable with only three
dimensions of space. Since then, a number of models with extra dimensions has been proposed,
such as new dimensions at a millimetre (Arkani-Hamed et al., 1998; Antoniadis et al., 1998;
Arkani-Hamed et al., 1999), Randall-Sundrum models (Randall & Sundrum, 1999) and Universal
Extra Dimensions (UED). UED provide a dark matter candidate in the form of the lightest
Kaluza-Klein particle, whose stability is protected by the conservation of momentum in the
extra-dimensions (Servant & Tait, 2003; Agashe & Servant, 2004). The most promising dark
matter candidate is the Kaluza-Klein photon B(1), see Hooper & Profumo (2007) for a review.

Simple models Supersymmetry and extra-dimensions are consistent frameworks that are
primarily motivated as solutions to problems other than dark matter, like the hierarchy problem,
but provide a dark matter candidate as a bonus. The absence of discovery of a dark matter
particle (or any new particle) at LEP and LHC renders these framework more and more contrived.
Supersymmetry, for instance, is now less and less favoured as a solution to the hierarchy problem,
due to the lack of ”naturalness” (’t Hooft, 1980) of the supersymmetric models that have not
been excluded yet [although the measure of naturalness and its meaning are still under debate
(Anderson & Castaño, 1995; Wells, 2018)]. In light of this situation, physicists have started
paying attention to simpler models aiming only at providing a dark matter candidate. To
study simple models while still being relevant to more sophisticated theories, one can work on
simplified dark matter models (Abdallah et al., 2015). The dark matter is then assumed to
be a fermion or a scalar interacting with Standard-Model-particles through a single mediator
(scalar or vector). This considerably simplifies the phenomenology and allows one to study a
wide variety of constraints, from theoretical consistency (Kahlhoefer et al., 2016) to experimental
searches. Another guiding principle that can be used to build a dark matter model is minimality,
i.e. the requirement that dark matter be explained with a minimum number of extra particles
added to the Standard Model. This leads to the minimal dark matter model (Chardonnet et al.,
1993; Cirelli et al., 2006, 2007, 2015) where dark matter is part of a SU(2) multiplet and has a
mass at the TeV scale.

1.3.2.3 Axions and axion-like particles

QCD axion The axion is a light boson first introduced to solve the CP problem of strong
interactions (Peccei & Quinn, 1977; Weinberg, 1978; Wilczek, 1978). The original “Standard
Model” axion was very quickly excluded but alternative models of a so-called “invisible” axion
were built. Two main axion models are currently considered: the KSVZ axion (Kim, 1979;
Shifman et al., 1980) and the DFSZ axion (Zhitnitsky, 1980; Dine et al., 1981), which both rely
on new physics above some very high energy scale. It was quickly realised that axions are dark
matter candidates, which can be produced non-thermally in the early Universe (Preskill et al.,
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1983). The QCD axion has a mass in the range 10−12 eV 6 ma 6 10−3 eV (Abbott & Sikivie,
1983) and very feeble interactions with ordinary matter. Its mechanism of production makes
it extremely cold, hence it behaves like any other cold dark matter candidate on cosmological
scales. For a review on the cosmology of axions, we refer to Marsh (2016). The QCD axion as
dark matter is being looked for in resonant microwave cavities (Sikivie, 1983) such as the one
used in the ADMX experiment.

Axion-like-particles One can study light bosons without trying to solve the strong-CP
problem. Such particles are referred to as axion-like particles (ALPs). These particles have an
interesting phenomenology on cosmological and astrophysical scales due to their large de Broglie
wavelength, see Hui et al. (2017) for a review. If ALPs have a mass of order 10−22 eV, their de
Broglie wavelength is λ ∼ 1 kpc and such particles can solve the small-scale issues discussed in
Sec. 1.4 (Hu et al., 2000). However, such a low mass may be in conflict with observations of the
Lyman-α forest (Iršič et al., 2017; Armengaud et al., 2017).

1.3.2.4 Other candidates

There are many dark matter candidates other than WIMPs and axions. We very briefly mention
some of them.

Sterile neutrinos Sterile neutrinos are right-handed neutrinos that are not charged under
SU(2) and have therefore suppressed couplings to other SM particles.. They are very well
motivated as explanations for such phenomena as neutrino oscillations and the matter-antimatter
asymmetry. Their feeble interactions make sterile neutrinos with a mass of a few keV viable
dark matter candidates. Unlike WIMPs and axions, sterile neutrinos are unstable particles but
their lifetime can be longer than the age of the Universe, see e.g.Dodelson & Widrow (1994).
Their dominant decay channel is through a photon and an active neutrino, giving rise to a very
nice astrophysical signature: an X-ray line at half the sterile neutrino mass (for a decay at
rest). Another major difference is that sterile neutrinos behave as warm dark matter i.e. their
free-streaming scale is near the scale of observed dwarf galaxies. For a review on sterile neutrinos
as dark matter, we refer to Boyarsky et al. (2009); Drewes et al. (2017).

Asymmetric dark matter Asymmetric dark matter is motivated by the observation that
dark matter and baryons have similar cosmological abundances Ωc ≃ 5 Ωb. Since the observed
abundance of baryons is due to a baryon-antibaryon asymmetry in the early Universe, it is
natural to assume a similar asymmetry in the dark sector. Therefore, asymmetric models assume
that dark matter is not its own antiparticle (while this is the case in most WIMPs models). The
value of the dark matter relic abundance sets its mass to a few GeV (Gu et al., 2011). There are
many different models of asymmetric dark matter, all with a very rich phenomenology. For a
detailed discussion of these models, we refer to Petraki & Volkas (2013).

1.4 ΛCDM on small scales

The ΛCDM model is extremely successful at describing all cosmological observations on large-scale
and at any redshift currently accessible to observation. It predicts the statistical properties of
galaxies and galaxy clusters starting from the initial conditions given by the CMB. On sub-
galactic scales however, it is not clear yet if ΛCDM gives a good description of observations.
A series of apparent mismatches between observations and ΛCDM numerical simulations have
been identified. We refer to Bullock & Boylan-Kolchin (2017) for a review on these small-scale
challenges.
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1.4.1 Issues

Core versus cusp The absence of pressure in the dark matter fluid leads to the formation of
dark matter halos with very cuspy density profiles in numerical simulations (Navarro et al., 1996;
Navarro et al., 1997; Diemand et al., 2008; Springel et al., 2008). However, many observations
point toward the presence of a central core in DM halos across all scales, from galaxy clusters
to dwarf spheroidal galaxies, see e.g., Flores & Primack (1994); Moore (1994); de Blok et al.
(2001); Oh et al. (2011). This difference between CDM numerical simulations and observations is
called the core-cusp problem and it has been a source of much debate ever since its identification.
It is not clear that observations unambiguously imply the existence of dark matter cores. The
only way to infer the shape of the dark matter profile at the centres of galaxies is to study the
dynamics of luminous matter. However, the central gravitational potential of Milky-Way-like
galaxies is dominated by baryons hence it is difficult to make robust statements about the dark
matter distribution at the centres of galaxies. An alternative is to study dark-matter-dominated
systems such as dwarf galaxies, however these systems contain few stars and analyses are limited
by statistics. The core-cusp problem is actually divided into two different problems: there is an
apparent discrepancy between the density slopes found in simulations and the slopes inferred
from observations, but there is also an excess of dark matter mass at the centres of galaxies
i.e. a problem of normalisation (Bullock & Boylan-Kolchin, 2017). Another related issue is the
so-called ”diversity problem”, the fact that galaxies with the same halo mass can have widely
different rotation curves (Oman et al., 2015).

Missing satellites Another issue concerns the number count of satellite galaxies in the Milky
Way. While we observe a handful of galaxies orbiting the Milky Way (Drlica-Wagner et al., 2015),
cold dark matter numerical simulations predict thousands of objects with similar mass (Moore
et al., 1999). However, dozens of dwarfs are now discovered every year thanks to new surveys
and the discrepancy is getting smaller and smaller.

Too big to fail A third issue, related to the missing satellites problem, is the “too big to
fail” problem (Boylan-Kolchin et al., 2011, 2012). Not only does our Galaxy seem to be missing
satellites, it seems to be missing the most massive ones. Another way of stating the problem is
that the observed satellites are not as massive as we expect them to be on the basis of cold dark
matter simulations. A mismatch appears when comparing the rotation curves of dwarfs to the
rotation curves of the most massive satellites in simulations, the former being generically lower
than the latter. Note that this issue is not restricted to satellite galaxies, as it is also observed in
field dwarfs.

1.4.2 Possible solutions

The small-scale issues have been identified for a long time now (nearly twenty years for the
cusp-core and missing satellites problems) but there is still no consensus on the solution. Two
different approaches are currently explored.

Baryonic physics A possible solution to the small-scale problem might be baryonic feedback,
which should anyway be at play whatever the dark matter scenario. The idea is that a strong
episode of star formation can lead to supernovae-driven winds that expel baryonic matter from
potential wells at the centres of galaxies. This decreases the depth of the potential wells and
removes dark matter from the centre (Navarro et al., 1996). Also, ultraviolet pressure in the early
Universe prevents baryons from cooling in the smallest objects. It has be shown on the basis
of numerical simulations that this process is efficient at depleting the central regions of CDM
halos and turning their initial cusp into cores (Mashchenko et al., 2008; Pontzen & Governato,
2012; Mollitor et al., 2015; Oñorbe et al., 2015; Read et al., 2016). It is also efficient at removing
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baryons and dark matter out of satellites which helps solving the too big to fail and missing
satellites problems. However, one has to keep in mind that baryonic physics is not fully under
control in cosmological simulations. Since the numerical resolution is far too limited to resolve the
scales relevant to star formation, baryonic feedback is modelled using simplified recipes. There
is no consensus yet on which recipe is the most accurate to describe baryonic processes, hence
the resolution of the small-scale problems through baryonic physics is still a matter of debate
(Renaud et al., 2013; Rosdahl et al., 2017). However, this solution is rather elegant since it only
involves interactions that are known to exist and does not require an extension of the unknown
dark matter sector. Moreover, the state of the art has been very successful in reproducing most
of the observed properties of galaxies and galaxy clusters (Pillepich et al., 2018; Springel et al.,
2018).

Departure from ΛCDM One can assume these problems point toward a failure of the CDM
paradigm on small scales, and require a revision of the properties of the dark matter sector.
A way to address these issues from the dark matter sector is to modify the behaviour of dark
matter on small scales, to keep the virtue of CDM on large scales while suppressing some power
on small scales. Two mechanisms are used to suppress formation below a given scale: either dark
matter particles have a free-streaming length much larger than CDM candidates, or a pressure is
introduced to offset gravity.

A way of suppressing power on small scales is to depart from the “cold” regime and assume
the dark matter particle is close to relativistic when structures start to form efficiently. This
is the so-called Warm Dark Matter (WDM) scenario. We refer to Colombi et al. (1996); Bode
et al. (2001); Schneider (2015); Vogelsberger et al. (2016) for numerical studies and e.g., Bond
et al. (1982); Peebles (1982a); Dodelson & Widrow (1994) for analytical studies and models.
If produced thermally, the dark matter particle must have a mass in the keV range to lead to
a suppression scale right below the scale of dwarf galaxies. WDM has become popular with
the advent of a scenario where a sterile neutrino is a viable dark matter candidate, allowing
to incorporate several issues (e.g., neutrino masses, leptogenesis, etc.) in the same framework.
Reviews on particle-physics models can be found in Boyarsky et al. (2009) and in Drewes et al.
(2017). The WDM scenario is constrained by cosmological observations of the Lyman-α forest
and the CMB anisotropies (Viel et al., 2005). The observed number of DM dominated satellite
of the Milky Way also leads to a lower bound on the WDM mass (Polisensky & Ricotti, 2011;
Lovell et al., 2014). In fact, it has been shown that the WDM scenario cannot solve both the
core-cusp and missing satellites problem (Maccio et al., 2012). All these constraints push the
WDM scenario to colder and colder regions of the parameter space, making it less and less
appealing solution per se of the small-scale problems (while still an appealing realization of
particle physics scenarios in the form of sterile neutrinos, bearing in mind that these small-scale
issues could be solved by baryonic physics).

Among the second class of solutions, we find self-interacting dark matter (SIDM) as originally
proposed in the context of dark matter by Carlson et al. (1992) and put forward by Spergel
& Steinhardt (2000) as a solution to the small-scale issues. We refer to Tulin & Yu (2018)
for a review on the subject. In SIDM, dark matter particles are assumed to have a sizeable
self-scattering cross-section. This naturally induces a pressure in high-density regions and turns
cusps into cores. The lower concentration of SIDM halos with respect to CDM halos also helps
to address the too big to fail issue as well as the missing satellite problem (subhalos are more
sensitive to tidal stripping and subject to evaporation). On large scales, SIDM behaves just like
cold dark matter (van den Aarssen et al., 2012). Observations of the Bullet Cluster (Markevitch
et al., 2004) give an upper limit of σ/m . 1 cm2/g on the scattering cross-section divided by
the dark matter mass. Another interesting scenario is fuzzy dark matter (Sin, 1994; Hu et al.,
2000; Arbey et al., 2001). In this case, the DM particle is a boson with an extremely small mass
m ∼ 10−22 eV. Such a small mass implies a de Broglie wavelength λ ∼ 1 kpc which has observable
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consequences on the small-scale structuring of dark matter, see Marsh (2016); Hui et al. (2017)
for reviews. A lower bound on the fuzzy dark matter mass can be set using Lyman-α data (Iršič
et al., 2017; Armengaud et al., 2017) which make this scenario a very contrived solution to the
small-scale issues.

1.5 Experimental searches for particle dark matter

In this section, we review searches for particle dark matter, with an emphasis on WIMP searches.

1.5.1 Particle colliders

Dark matter can be searched for in particle colliders such as the Large Hadron Collider (LHC),
see e.g., Fairbairn et al. (2007). The overwhelming amount of data recorded by the ATLAS (Aad
et al., 2008) and CMS (Chatrchyan et al., 2008) experiments at CERN makes it a necessity to
look into specific directions in order to obtain any valuable information. Three main approaches
are currently used to look for dark matter at the LHC: effective field theories, simplified models
and complete theories (Abercrombie et al., 2015). Since dark matter is stable and very weakly
interacting, it escapes the detector if produced. The creation of a dark matter particle in a
collision manifests itself through missing transverse energy /ET and missing transverse momentum

/pT
. Since the LHC is a proton collider, the typical event being looked for is pp → χχX, where

χ is the dark matter particle and X is a Standard Model contribution (jets from quarks or
gluons, electroweak bosons, Higgs, etc.). LHC constraints on dark matter models can be found
in Goodman et al. (2010, 2011); Askew et al. (2014). It is standard to translate constraints
from the LHC into direct-detection-like constraints in order to compare the two approaches,
generally in terms of effective operators (Fitzpatrick et al., 2013). Collider constraints exhibits
more model-dependence than direct searches in general, which induces the need for specific
analyses. Other older colliders such as the Large Electron-Positron (LEP) collider can also be
used to put complementary constraints on dark matter (Fox et al., 2011). For an overview of
collider searches, we refer to Kahlhoefer (2017); Penning (2018).

1.5.2 Direct searches

1.5.2.1 WIMPs

Direct dark matter searches are based on the assumption that the dark matter particle can
interact with atomic nuclei. Direct detection experiments are designed to observe the nuclear
recoil caused by interactions with dark matter particles from the Galactic halo. This idea was
first proposed for the detection of neutrinos (Drukier & Stodolsky, 1984) then applied to dark
matter (Goodman & Witten, 1985). It was then extended by taking into account the dark matter
distribution in the Galaxy as well as the rotation of the Earth around the Sun which lead to the
very distinct feature of annual modulation (Drukier et al., 1986). A review on annual modulation
can be found in Freese et al. (2013). General reviews on direct searches can be found in Jungman
et al. (1996); Lewin & Smith (1996); Cerdeno & Green (2010); Baudis (2012). There are a
number of direct detection experiments currently probing the WIMP parameter space. Since
no recoil signal unambiguously attributed to dark matter has been detected yet (at the notable
exception of the modulated signal observed in the DAMA experiment, see Bernabei et al. (2018)),
experimental efforts are summarized through upper bounds on the WIMP-nucleon scattering
cross-section. A compilation of exclusion limits is shown in Fig. 1.6.

The main ingredient necessary to make predictions for direct searches is the expected event
rate

R =
n⊙
mA

〈

v′σ(v′)
〉

, (1.6)
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Figure 1.6 – Compilation of direct detection limits taken from various experiments. Also shown is the
expected background from coherent neutrino scattering. This figure was taken from Cooley (2014).

where n⊙ is the local dark matter number density, mA is the mass of the atomic nucleus used in
the experiment, σ is the WIMP-nucleus scattering cross-section and the average is over the local
WIMP velocity distribution. The event rate can also be written

R =
n⊙
mA

〈

v′
∫ Emax(v′)

ET

dEr
dσ

dEr
(Er, v′)

〉

, (1.7)

where the integral is performed over the recoil energy Er. The lower bound on the integral is
the threshold energy ET of the detector. The upper bound is the maximal recoil energy, which
depends on the WIMP velocity. This expression can be transformed into

R =

∫ ∞

ET

dEr
dR

dEr
(Er) , (1.8)

with the differential event rate

dR

dEr
(Er) =

n⊙
mA

∫

v′>vmin(Er)
d3þv′ v′ fþv′

(þv′)
dσ

dEr
(Er, v′) , (1.9)

where vmin(Er) is the minimal speed needed for a WIMP to create a recoil Er. The function fþv′
is

the WIMP velocity distribution in the rest frame of the Earth. The expression in Eq. (1.9) is very
intricate as it mixes elements from particle physics (masses and cross-section) with elements from
astrophysics (number density and velocity distribution). For elastic scattering, the expression
can be simplified by writing the differential cross-section as

dσ

dEr
(Er, v) =

σ0mA

2 µ2v2
F 2(Er) , (1.10)
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where σ0 is a standard cross-section at zero momentum transfer, µ is the reduced dark matter-
nucleus mass

µ ≡ m mA

m + mA
, (1.11)

and F is a form factor associated to the nucleus. More precisely, the cross-section can be divided
into a spin-independent (relevant for scalar interactions) and a spin-dependent (relevant for
axial-vector interactions) part

dσ

dEr
(Er, v) =

mA

2 µ2v2

[

σSI F 2
SI(Er) + σSD F 2

SD(Er)
]

. (1.12)

These two possibilities are usually considered separately. Note that a more general expression
can be written in the language of effective field theories (Fitzpatrick et al., 2013). For a given
channel channel (spin-independent or spin-dependent), the differential event rate can be written
as

dR

dEr
(Er) =

ρ⊙σ0

2 mχµ2
F 2(Er) η(Er) , (1.13)

with σ0 = σSI or σ0 = σSD depending on the channel, and

η(Er) ≡
∫

v′>vmin(Er)
d3þv′ 1

v′ fþv′
(þv′) . (1.14)

This shows that the particle physics and astrophysics contributions can be completely factorized
and therefore treated independently. This is not true if the mediator has a mass m ≪ q, where q
is the exchanged momentum, see e.g., Schwetz & Zupan (2011).

1.5.2.2 Axions

Axions are also being looked for through direct detection techniques. Most experiments looking
directly for axions rely on the Primakoff effect (Primakoff, 1951) which predicts a conversion
of axions into photons in a magnetic field. For instance, the Axion Dark Matter Experiment
(ADMX) (Du et al., 2018) uses a microwave cavity placed in strong magnets to probe the axion
parameter space. For a review on microwave cavity searches, we refer to Shokair et al. (2014).
For a general review on the experimental searches for axions, we refer to Graham et al. (2015).

1.5.3 Indirect searches

Indirect searches rely on the assumption that dark matter can annihilate or decay into Standard
Model particles. One could also include other classes of signatures in this category, for instance:
gravitational signals (dynamics of stellar systems, lensing, or waves), impact on stellar evolution,
etc. In this section, we will focus on the indirect searches for WIMPs. Particles originating for
WIMP annihilation or decay, after having propagated through the Galactic or extra-galactic
medium, could be detected in the Solar System. The main difficulty of these types of searches is
to disentangle a potential dark matter signature from an “ordinary” astrophysical contribution.
For reviews on the subject, we refer to Profumo & Ullio (2010); Lavalle & Salati (2012); Cirelli
(2015).

1.5.3.1 Gamma rays

Indirect detection of annihilating dark matter through gamma rays has been investigated for
a long time (Gunn et al., 1978; Stecker, 1978; Silk & Bloemen, 1987; Bergstrom & Snellman,
1988; Bouquet et al., 1989; Jungman & Kamionkowski, 1995; Bergstrom et al., 1998). We refer
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to Bringmann & Weniger (2012) for a review on this topic. There are several reasons why
gamma rays are extremely appealing for dark matter searches. First of all, photons propagate in
straight lines, which is a considerable advantage with respect to charged cosmic rays. Second,
photons are a generically expected product of dark matter annihilation into Standard Model
particles, irrespective of the annihilation final state (leptons, quarks, gauge bosons,etc).2 The
γ-ray emission from these processes is called prompt emission and it has the very nice feature
of directly tracing the morphology of the underlying dark matter density profile in addition to
providing information on the WIMP mass and its self-annihilation branching ratio. Hence an
unambiguous detection of dark matter annihilation through gamma rays would allow one to
reconstruct the dark matter distribution in our Galaxy (and possibly in others galaxies as well).
Finally, gamma-ray emission from dark matter annihilation may present spectral features that
could enable one to distinguish it from conventional astrophysical sources. In particular, the
detection of a gamma-ray line in the GeV-TeV range would be extremely hard to explain in terms
of known astrophysical phenomena (atomic lines are X-rays and nuclear lines are in the MeV
range).

A number of experiments are currently probing gamma-rays in a range relevant for WIMP
searches, including satellite-based experiments like Fermi-LAT (Atwood et al., 2009) and ground-
based experiments like the High Energy Stereoscopic System (H.E.S.S.), the Major Atmospheric
Gamma-ray Imaging Cherenkov (MAGIC) and the Very Energetic Radiation Imaging Telescope
Array System (VERITAS). For a review of the history and techniques of ground-based telescopes,
we refer to Hillas (2013).

Privileged targets for dark matter annihilation are regions of high density, and ideally of
low signal-to-noise ratio. These include the Galactic centre (see the discussion below) and
satellites like dwarf spheroidal galaxies (Ackermann et al., 2015; Albert et al., 2017). Dark
matter contributions can also be searched for in the diffuse emission (Ackermann et al., 2012b)
which leads to very competitive constraints, see Chang et al. (2018) for a recent study. Finally,
extragalactic contributions are also expected (Ullio et al., 2002; Serpico et al., 2012; Sefusatti
et al., 2014; Hütten et al., 2018). While we have only discussed WIMP annihilation, all the
searches actually extend to any dark matter candidate which can annihilate into gamma rays.
These searches also apply to decaying dark matter (Cirelli et al., 2012).

GeV gamma-ray emission at the Galactic centre Let us briefly discuss a gamma-ray
observation which has been put forward as a potential signature of annihilating dark matter.
A number of studies have found that the gamma-ray emission at the centre of the Galaxy as
measured with Fermi exceeds expectations from supposedly known astrophysical backgrounds
(Goodenough & Hooper, 2009; Vitale et al., 2009; Hooper & Goodenough, 2011; Hooper & Linden,
2011; Abazajian & Kaplinghat, 2012; Macias & Gordon, 2014; Abazajian et al., 2014; Daylan
et al., 2016; Calore et al., 2015,?; Ajello et al., 2016). The Galactic centre has always been a prime
target because the dark matter density is expected to be very high there (Silk & Bloemen, 1987;
Stecker, 1988; Bouquet et al., 1989; Berezinsky et al., 1992; Berezinsky et al., 1994; Bergstrom
et al., 1998). The observation of a gamma-ray emission, which, after subtraction of a background
strongly extrapolated from observations in the disc (where cosmic-ray models are constrained),
points to a morphology that resembles that expected from dark matter annihilation (Daylan et al.,
2016) and the fact that it can be explained by a WIMP with a thermal cross-section has raised a
lot of excitement in the community. It has been realized however that less exotic interpretations
of the gamma-ray excess are possible, such as injection of cosmic rays (Carlson & Profumo, 2014;
Petrović et al., 2014; Gaggero et al., 2015) or a population of unresolved millisecond pulsars
(Abazajian, 2011; Abazajian et al., 2014; Mirabal, 2013). Evidence for a large contribution from
unresolved point-sources (Bartels et al., 2016; Lee et al., 2016) seems to disfavour the dark matter
interpretation (Clark et al., 2016) and favour instead the pulsar scenario, but the debate remains

2A notable exception is the annihilation into neutrino pairs.
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open. However, it should not come as a surprise that unexpected emissions are found in regions
where the astrophysical background is very difficult to predict. The Galactic center is indeed a
region expected to host a plethora of high-energy phenomena and sources (some of them yet to
be discovered), which will take a lot of time to be fully understood. In such difficult regions,
clean signals like gamma-ray lines are likely to be the most reliable smoking gun of dark matter
annihilation or decay (a previous tentative identification in Weniger (2012) looked promising
from this perspective, even though it turned out to be a statistical fluke).

1.5.3.2 Neutrinos

Neutrinos share with photons the appealing property of propagating in straight lines through the
Galactic and intergalactic medium. This makes them an interesting probe of annihilating and
decaying dark matter. Their very feeble interaction with matter also makes them very difficult
to detect. Experiments rely on the Čerenkov light emitted as neutrinos pass though a medium
to infer there momentum and trajectory. Examples of such experiments are IceCube (Ahrens
et al., 2003), Super-Kamiokande (Fukuda et al., 2003) and ANTARES (Aslanides et al., 1999).
Apart from the targets also interesting for gamma-ray searches such as the dark matter halo and
the Galactic centre, neutrino telescopes also look for WIMP annihilation inside the Sun and the
Earth. Indeed, WIMPs can in principle be gravitationally captured by the Sun (Press & Spergel,
1985; Silk et al., 1985; Hagelin et al., 1986; Srednicki et al., 1987; Bouquet et al., 1987) or the
Earth (Krauss et al., 1986; Sivertsson & Edsjö, 2012) and subsequently annihilate at their core.

1.5.3.3 Cosmic rays

The last main detection channel often considered is antimatter charged cosmic rays. A major
difference between cosmic rays and gamma rays or neutrinos is their propagation in the Galaxy.
While photons and neutrinos propagate in straight lines, charged particles are scattered off the
inhomogeneities of the interstellar magnetic field. Therefore, their trajectory is a random walk
and the detection of a charged particle on Earth does not allow one to infer their spatial origin in
general. We leave the details of the propagation of cosmic rays aside for now, it will be reviewed
in Chap. 4. Dark matter being neutral, its annihilation should create an equal number of particles
and antiparticles. Since the overwhelming majority of cosmic rays received on Earth are particles
owing to the matter-antimatter asymmetry of the universe, dark matter contributions are being
looked for in antiparticle channels, for which the background is expected to be not only much
smaller, but also predictable.

Antiprotons Antiprotons are particularly interesting as a probe of dark matter (Silk &
Srednicki, 1984; Stecker et al., 1985; Hagelin & Kane, 1986; Jungman & Kamionkowski, 1994;
Bergström et al., 1999). Antiprotons are appealing because there are no known sources of
primary antiprotons (in contrast to positrons). Their propagation is a bit simpler than that of
positrons because energy losses are negligible in the GeV-TeV range, which makes them having
a larger diffusion horizon with respect to positrons with the same energy (Maurin et al., 2002;
Donato et al., 2004; Barrau et al., 2005; Bringmann & Salati, 2007; Lavalle et al., 2008; Lavalle,
2010; Cerdeño et al., 2012; Boudaud et al., 2015). This makes them a good probe of the dark
matter halo and its substructures, as we will see in Chap. 4. Recently, features above idealized
background models have been reported in the latest antiprotons flux measurements performed
by the AMS-02 collaboration (Aguilar et al., 2016). It has been suggested that this excess
could be due to dark matter annihilation (Cuoco et al., 2017; Cui et al., 2017, 2018) though an
improvement of background models significantly reduces the excess (Giesen et al., 2015; Winkler,
2017; Reinert & Winkler, 2018).
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Positrons Another interesting channel is cosmic-ray positrons. Unlike antiprotons and other
nuclei, the propagation of positrons at high energies is dominated by energy losses. This
makes 0.1-1 TeV positrons a very local probe, complementary to antiprotons. An excess in the
positron fraction e+/(e+ + e−), first hinted by Barwick et al. (1997), has been reported by the
PAMELA collaboration (Aguilar et al., 2007; Adriani et al., 2009, 2013) and then confirmed by
the Fermi (Ackermann et al., 2012a) and AMS-02 collaborations (Aguilar et al., 2013). While an
interpretation of the excess in terms of dark matter is possible in principle (Bergstrom et al.,
2008), it requires a clumpiness enhancement which is very unlikely in the ΛCDM model (Lavalle
et al., 2007; Lavalle et al., 2008; Pieri et al., 2011). An alternative explanation would be a
contribution from nearby pulsars (Hooper et al., 2009; Delahaye et al., 2010; Profumo, 2011;
Linden & Profumo, 2013) which have been known for a long time to be able to efficiently produce
electron-positron pairs and accelerate them to GeV-TeV energies in the surrounding nebulae
(Rees & Gunn, 1974; Gaensler & Slane, 2006). It has been claimed, on the basis of gamma-ray
observations of nearby pulsars by the HAWC collaboration, that these objects cannot account for
the observed excess (Abeysekara et al., 2017) though this conclusion has been contested (Hooper
& Linden, 2017). Questions regarding the origin of the positron excess are still very much open
today, though it is likely that these positrons originate from conventional astrophysical processes.

Cosmic-ray positrons actually turn out to be an excellent probe of MeV WIMPs thanks to
the satellite experiment Voyager I. The latter, launched in 1977, has crossed the heliopause in
the early 2010’s (today at a distance of 140 AU from the Earth) and makes it possible to detect
cosmic rays which are no longer deflected by solar modulation. Voyager I can detect electrons
and positrons in the 10-50 MeV range, the flux of which provides a very strong constraint on
MeV DM annihilation (slightly below the CMB constraints for s-wave annihilation, but much
more stringent for p-wave annihilation), see Boudaud et al. (2017) and Boudaud et al., 2018 (in
preparation).

1.5.3.4 Cosmological probes

While all the probes we have discussed so far are based on the detection of dark matter annihilation
products today, it is actually possible to use cosmology to probe annihilation in the past. In
particular, the CMB is a cosmological probe that is very sensitive to energy injections, which
can affect temperature anisotropies, distort the CMB spectrum and change its polarization. This
allows one to constrain annihilation and decay at the time of recombination but also during
the dark ages (Salati, 1985; Hu & Silk, 1993; Chen & Kamionkowski, 2004; Padmanabhan &
Finkbeiner, 2005; Slatyer et al., 2009; Slatyer, 2016a,b; Slatyer & Wu, 2017; Poulin et al., 2016).
Complementary to CMB constraints, BBN can also be used to place constraints on earlier decay
or annihilation (Jedamzik, 2004, 2006). Finally, the absorption of 21 cm CMB photons by
hydrogen atoms right before the formation of the first stars can be used as a probe of dark matter
at redshifts unexplored so far (Loeb & Zaldarriaga, 2004; Lopez-Honorez et al., 2016).
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Chapter 2

Thermal history of weakly
interacting massive particles

This chapter presents a class of particle dark matter candidates known as WIMPs, which stands
for Weakly Interacting Massive Particles. WIMPs are among the most studied and well-motivated
explanations of the missing mass problem, and they offer a very rich phenomenology which can be
tested through collider experiments as well as direct and indirect dark matter searches. In Sec. 2.1,
we introduce the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological model which is
the basis of the current Standard Model of Cosmology, and discuss the laws of thermodynamics
in an expanding Universe. In Sec. 2.2, we introduce a simplified WIMP model which is used as
an illustration of the processes experienced by WIMPs in general. Sec. 2.3 focuses on the process
of chemical decoupling which fixes the abundance of dark matter particles in the Universe, while
Sec. 2.4 is centred on kinetic decoupling and the birth of the first dark matter structures.

2.1 Thermodynamics in an expanding universe

2.1.1 Friedmann-Lemaitre-Robertson-Walker cosmological model

The Standard Model of Cosmology, also called Λ-Cold Dark Matter (ΛCDM in short), belongs
to the class of Friedmann-Lemaitre-Robertson-Walker (FLRW) models named after Friedmann
(1922); Lemâıtre (1927); Robertson (1935); Walker (1935).1 These models rest on the Cosmological
Principle which states that space-time is statistically homogeneous and isotropic, which is
experimentally verified on the largest observable scales by CMB experiments and large-scale
structure surveys. The most general homogeneous and isotropic metric one can write is the
FLRW metric where the space-time interval reads

ds2 = gµν dXµ dXν

= c2dt2 − a2(t)γij dxi dxj

= c2dt2 − a2(t)

(

dr2

1 − K r2
+ r2dθ2 + r2 sin2(θ)dφ2

)

,

(2.1)

where gµν is the metric tensor, γij is the spatial metric, a is the dimensionless scale factor and
K is the spatial curvature. The coordinates Xµ are called comoving coordinates. Observations of
the CMB are compatible with a flat Universe K = 0, in which case the interval is simply

ds2 = c2dt2 − a2(t) dþx2 . (2.2)

1The first homogeneous and isotropic cosmological models were considered by Friedmann, then independently
by Lemaitre. Later, Robertson and Walker found the most general form of a homogeneous and isotropic metric.
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It is standard to introduce the physical coordinates Y µ which follow the space-time dynamics and
are related to the comoving coordinates through Y 0 = X0 and þy = a(t) þx. The metric measured
by a physical observer is simply the Minkowski metric

ds2 = c2dt2 − dþy2

= ηµν dY µ dY ν .
(2.3)

The energy-momentum tensor T µν is severely constrained by the symmetries of the metric tensor
gµν . It can be shown, see e.g. Weinberg (1972), that the most general energy-momentum tensor
compatible with the cosmological principle is

Tµν =

(

ρ +
p

c2

)

UµUν − p gµν , (2.4)

where U is a 4-velocity. This is the energy-momentum tensor of an ideal fluid with energy density
ρ(t) and pressure p(t). This is also the energy-momentum tensor of a collection of ideal fluids
such that

ρ =
∑

ρi

p =
∑

pi .
(2.5)

The space-time dynamics is related to the matter content through Einstein’s equations

Gµν + Λgµν =
8πGN

3
Tµν , (2.6)

where Gµν is the Einstein tensor and Λ is the cosmological constant. The
(

µ=0
ν=0

)

and
(

µ=i
ν=i

)

components lead to

(

ȧ

a

)2

=
8πGN

3
ρ +

Λc2

3
− K c2

a2
(2.7)

ä

a
= −4πGN

3

(

ρ + 3
p

c2

)

+
Λc2

3
, (2.8)

which are called the Friedmann equations. The Hubble parameter is defined as H ≡ ȧ/a and its
value today H0 ≡ H(t0) is the Hubble constant. It is conventional to fix the value of the scale
factor today a(t0) = 1. Another set of useful equations is given by the covariant conservation of
T µν :

∇µT µν = 0 , (2.9)

which leads to

ρ̇ = −3H

(

ρ +
p

c2

)

. (2.10)

This last equation actually holds separately for each ideal fluid, under the assumption these
fluids are not interacting with each other.

2.1.2 Matter content and time evolution

For a given fluid, it is standard to defined its equation of state as

w(t) =
p(t)

ρ(t)c2
. (2.11)
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Studies of the CMB point toward a Universe containing radiation (photons), pressureless matter
(cold dark matter, and baryons after recombination) and a cosmological constant, see Ade et al.
(2016). The equation of state of each of these components can be computed, see e.g. Weinberg
(1972), and we get

wrad =
1

3
(2.12)

wmat = 0 (2.13)

wΛ = −1 , (2.14)

hence all the equations of state of the known components of the Universe are time-independent
in first approximation. Note that the radiation pressure is purely relativistic in origin and does
not stem from interactions within the radiation fluid. The cosmological constant has its energy
density defined through Eq. (2.7) which leads to ρΛ = Λc2/(8πGN), hence ρΛ is positive and the
cosmological constant has a negative pressure. In General Relativity, the cosmological constant is
often interpreted as a property of space-time itself rather than a fluid. It could also be interpreted
as a new dark energy component with its own dynamics, which the subject of intense research
in cosmology. For more details on the cosmological constant, we refer to the classic review by
Weinberg (1989) and to Martin (2012). For a time-independent equation of state, Eq. (2.10)
leads to

ρ(t) = ρ0 a(t)−3(1+w) , (2.15)

where we set a(t0) = 1 for the value of the scale factor today (with t0 the age of the Universe).
Consequently, we have

ρrad(t) = ρrad,0 a(t)−4 (2.16)

ρmat(t) = ρmat,0 a(t)−3 (2.17)

ρΛ(t) = ρΛ,0 , (2.18)

From these equations, we can already identify three main epochs in an expanding universe where
a goes from zero to one. The universe is initially dominated by the radiation component, hence
the qualification of ”hot Big Bang”. What happens next depends on the relative abundance
between the three species. If ρΛ > ρ4

m,0ρ−3
r,0 , the universe switches from a radiation-dominated

epoch to an epoch dominated by the cosmological constant. Alternatively, if ρΛ < ρ4
m,0ρ−3

r,0 which
is effectively the case in our Universe, the radiation epoch is followed by a period of matter
domination before eventually entering the cosmological constant epoch.

We would like to derive the evolution of the scale factor as a function of the cosmic time. Using
the first Friedmann equation (2.7), and assuming the Universe is flat (K = 0) and dominated by
a single component with equation of state w > −1, we can derive an expression for a(t)

a(t) =



1 − 3(1 + w)

2

√

8πGN

3
ρ0(t0 − t)





2
3(1+w)

. (2.19)

This solution describes an expanding Universe. Note that Eq. (2.7) has an alternative, contracting,
solution which we reject on the basis of observations. If we set the origin of time through
a(t = 0) = 0, we get the age of the universe

t0 =
1

1 + w

√

1

6πGNρ0
, (2.20)

and a very simple expression for the scale factor

a(t) =

(

t

t0

)
2

3(1+w)

. (2.21)
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We see that the FLRW models predict a power-law dilation of space in the absence of a
cosmological constant. The Hubble parameter is then

H(t) =
2

3(1 + w)t
. (2.22)

From this last equality, the age of the Universe can be estimated using the value of the Hubble
constant since we have t0 ≃ H−1

0 up to a factor of order unity. This leads to t0 ≃ 14.4 Gyr, not
too far from the CMB estimate of 13.8 Gyr. The previous time evolutions were derived assuming
w > −1, it is worth doing the analysis for w = −1 i.e. when the Universe is dominated by a
cosmological constant. In that case, the first Friedmann equation leads to the expanding solution

a(t) = exp [H(t − t0)] , (2.23)

with H = c
√

Λ/3 the Hubble parameter which is time-independent. In this case, the Universe
undergoes an exponential growth.

In cosmology, it is standard to use the cosmological redshift rather than the cosmic time. Let
us consider a photon emitted at time t with frequency νem and observed by a comoving observer
at time t0, then we have

νem

νobs
=

1

a(t)
≡ 1 + z , (2.24)

where z is the redshift. The abundance of a given species in the Universe is usually expressed as

Ωi =
ρi

ρc
, (2.25)

where ρc is the critical density, defined as the total density of a FLRW Universe without curvature
(K = 0). According to Eq. (2.7), we have

ρc =
3 H2

8πGN
, (2.26)

and Eq. (2.7) can be written in the very simple form

1 = ΩK(t) +
∑

i

Ωi(t) , (2.27)

where ΩK is the curvature density. The curvature abundance today is compatible with ΩK = 0,
see Ade et al. (2016), therefore our Universe is flat and the total energy density is equal to the
critical density. The Hubble parameter can be expressed as a function of the cosmic abundances
and the redshift as

H(z) = H0

√

Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩΛ,0 , (2.28)

where Ωm,0, Ωr,0 and ΩΛ,0 are today’s matter, radiation and cosmological constant abundances.
The values inferred from the CMB are Ωm,0 ≃ 0.3 with a small baryonic fraction Ωbar,0 ≃ 0.05,
and ΩΛ ≃ 0.7. Hence the energetic content of the Universe is essentially made of CDM and Λ,
with ordinary matter only contributing 5%.

The redshift dependency of each cosmic abundance is

Ωm(z) = Ωm,0(1 + z)3
(

H0

H(z)

)2

(2.29)

Ωr(z) = Ωr,0(1 + z)4
(

H0

H(z)

)2

(2.30)

ΩΛ(z) = ΩΛ,0

(

H0

H(z)

)2

. (2.31)



Chapter 2. Thermal history of weakly interacting massive particles 25

Figure 2.1 – Left panel: Redshift evolution of the cosmic abundances of cold dark matter (blue),
radiation (red) and cosmological constant (green). The epochs of matter-radiation equality (dashed
purple), recombination (dashed cyan) and reionization (dashed orange) are also shown. Right panel:
cosmic time as a function of the redshift.

The evolution of the abundances as a function of z is shown on the left panel in Fig. 2.1. One
notices that the radiation-to-matter ratio is (1 + z) Ωr,0/Ωm,0 so, even though today’s ratio
Ωr,0/Ωm,0 is very small, there is a redshift zeq at which this ratio is equal to one. This transition,
when the Universe leaves the radiation-dominated era and enters the matter-dominated era, is
called the matter-radiation equality and is a crucial epoch for structure formation, as we will
see in Sec. 3.1. CMB studies point toward a value for the redshift at equality zeq = 3365. Since
cosmic time is a more intuitive quantity than redshift, it is useful to relate t to z. We have

dt =
da

ȧ

= − dz

(1 + z)H(z)
,

(2.32)

hence

t0 − t =
1

H0

∫ z

0

dz′

(1 + z′)
√

Ωm(1 + z′)3 + Ωr(1 + z′)4 + ΩΛ

. (2.33)

The quantity t0 − t is shown on the right panel in Fig. 2.1. As one can see, t0 − t saturates for
z > 10 and most of the major events of the cosmological history such as the matter-radiation
equality, the formation of the first hydrogen atoms and the formation of the first stars happens
at least 13 billion years ago.

2.1.3 Statistical mechanics in an expanding universe

We now focus on the radiation-dominated era and assume some species were in thermodynamic
equilibrium. This must be true for photons, electrons and positrons at least, since the interaction
rate of photons with charged particles was much larger than the Hubble rate. The number of
particles in an elementary phase-space volume is

dN = f(þx, þp, t) d3þx d3þp

= f(þx, þp, t) dx1dx2dx3dp1dp2dp3 .
(2.34)
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We have, from the i component of the geodesic equation (B.55), pi ∝ a−2 and the modulus of

the momentum is given by p =
√

−a2δijpipj hence p ∝ 1/a. The elementary phase-space volume

d3þx d3þp is invariant under the expansion. This implies that the phase-space distribution is a
scalar under coordinate transformations, which means we do not have to worry about the choice
of coordinates (comoving or physical for instance) when giving the expression of the phase-space
distribution. The equilibrium phase-space occupation number of particles of species A is

f eq
A (þp) =

1

exp
[

E
kBT

]

+ ǫ
, (2.35)

where ǫ = +1/ − 1 if A is a fermion/boson (Fermi-Dirac/Bose-Einstein statistics). For simplicity,
we use from now on the natural units ~ = c = kB = 1. The number density, energy density and
pressure are defined by

nA(t) = gA

∫

d3þp

(2π)3
fA(þp, t) (2.36)

ρA(t) = gA

∫

d3þp

(2π)3
fA(þp, t) E (2.37)

pA(t) = gA

∫

d3þp

(2π)3
fA(þp, t)

þp.þv

3
, (2.38)

where gA is the number of spin/helicity degrees of freedom of A. These definitions are also
valid out of equilibrium. Alternatively, these quantities can be computed directly from the
energy-momentum tensor Tµν . Note that in the convention we adopt henceforth, the integration
is over the physical momentum such that nA, ρA and pA decrease as the Universe expands.
Equilibrium quantities can be expressed in term of the temperature T rather than time. We
have the explicit expressions

neq
A (T ) =

gA

2π2
T 3

∫ ∞

0

u2

e
√

u2+x2 + ǫ
du (2.39)

ρeq
A (T ) =

gA

2π2
T 4

∫ ∞

0

u2

e
√

u2+x2 + ǫ

√

u2 + x2 du (2.40)

peq
A (T ) =

gA

2π2
T 4

∫ ∞

0

u2

e
√

u2+x2 + ǫ

u2

3
√

u2 + x2
du , (2.41)

where

x ≡ mA/T (2.42)

and mA is the mass of the species under consideration. In the relativistic limit x ≪ 1, we
immediately get ρA = 3 pA hence the equation of state of radiation is w = 1/3. Using the integral
expression of the Riemann zeta function in Appendix A.3, the number density and energy density
in the relativistic limit can be expressed as

neq
A (T ) =

ζ(3)

π2
gA T 3

{

1 if A is a boson
3/4 if A is a fermion

(2.43)

ρeq
A (T ) =

π2

30
gA T 4

{

1 if A is a boson
7/8 if A is a fermion

(2.44)

peq
A (T ) =

π2

90
gA T 4

{

1 if A is a boson
7/8 if A is a fermion

(2.45)
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In the non-relativistic limit x ≫ 1, if the energy is approximated with E ≃ m + p2/(2m)
there is no distinction between bosons and fermions any more (the statistics follows the Maxwell-
Boltzmann law) and we have

neq
A (T ) =

gA m3
A

(2π mA/T )3/2
e−mA/T (2.46)

ρeq
A (T ) = mA nA(T ) =

gA m4
A

(2π mA/T )3/2
e−mA/T (2.47)

peq
A (T ) = ρeq

A (T )/x . (2.48)

The equation of state of non-relativistic matter is then w = 1/x ≃ 0.

Entropy Assuming adiabatic expansion and no entropy production, the entropy in a comoving
volume is conserved therefore we have

s(T ) a3(t) = cst (2.49)

where s is the entropy density. The second law of thermodynamics reads

d(ρa3) = T d(sa3) − p d(a3) , (2.50)

which gives the relation

s(T ) =
ρ + p

T
. (2.51)

In the relativistic limit, we can use p = ρ/3 and Eq. (2.44) to get

seq
A (T ) =

2π2

45
gA T 3

{

1 if A is a boson
7/8 if A is a fermion

(2.52)

Therefore, the entropy density goes like T 3. Since the entropy is conserved in a comoving volume,
it immediately follows that the temperature of a relativistic component goes like

T ∝ 1

a(t)
, (2.53)

i.e. the temperature decreases like the inverse of the scale factor as the Universe expands. This
makes the temperature of the photon bath yet another alternative time variable along with the
scale factor and the redshift. Note that the relation between the temperature and the scale factor
depends on the species at equilibrium in the thermal bath.

Effective degrees of freedom Since photons are always part of the thermal bath, it is
conventional to express the total energy and entropy densities in units of the photon energy and
entropy densities by introducing the effective degrees of freedom geff and heff defined by

ρ(T ) =
π2

30
geff(T ) T 4

s(T ) =
2π2

45
heff(T ) T 3 .

(2.54)

Another more formal definition can be extracted from the equation above

geff ≡
∑

i

gγ
ρi(Ti)

ργ(T )
(2.55)

heff ≡
∑

i

gγ
si(Ti)

sγ(T )
(2.56)
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For relativistic species, the effective degrees of freedom can be written explicitly

geff(T ) ≡
∑

boson i

gi

(

Ti

T

)4

+
7

8

∑

fermion j

gj

(

Tj

T

)4

(2.57)

heff(T ) ≡
∑

boson i

gi

(

Ti

T

)3

+
7

8

∑

fermion j

gj

(

Tj

T

)3

. (2.58)

We introduced specific temperatures Ti and Tj to account for species which are not in thermal
equilibrium with the thermal bath.2 For particles in equilibrium with the bath, we have geff = heff .
The effective degrees of freedom of a particular species A can be expressed using Eqs. (2.40) and
(2.41). We find

geff,A(T ) = gA
15

π4

∫ ∞

0

u2

e
√

u2+x2 + ǫ

√

u2 + x2 du (2.59)

heff,A(T ) = gA
45

4π4

∫ ∞

0

u2

e
√

u2+x2 + ǫ

(

√

u2 + x2 +
u2

3
√

u2 + x2

)

du . (2.60)

Using the definition and recurrence property of the modified Bessel functions, one can express
geff,A and heff,A in term of rapidly converging series

geff,A(T ) = gA
15

π4

∞
∑

n=1

(−ǫ)n+1

{(

6x

n3
+

x3

n

)

K1(nx) +
3x2

n2
K0(nx)

}

(2.61)

heff,A(T ) = gA
45

4π4

∞
∑

n=1

(−ǫ)n+1

{(

8x

n3
+

x3

n

)

K1(nx) +
4x2

n2
K0(nx)

}

(2.62)

These expressions are established in App. B.1. The quantity geff is shown in Fig. 2.2. One notices
an important decrease of geff around T ≃ 150 MeV: this is the QCD phase transition, when the
temperature is low enough so that quarks are confined into hadrons (see e.g., Borsanyi et al.
(2016) for a detailed study of the transition using lattice simulations).

2.2 A simplified WIMP model

2.2.1 Lagrangian

We introduce a very simple model of WIMP dark matter. Our goal is to use this model as
illustration of the typical thermal history of WIMPs. In this spirit, we do not try to address any
potential issues, e.g.consistency with respect to quantum field theory, that this model might have.
We will not try to address questions related to the generation of the dark mass or the impact on
the hierarchy problem. We are considering a simplified model, in the sense of Abdallah et al.
(2015) rather than a fully consistent theory like supersymmetry. We consider a fermion χ as the
dark matter particle. This fermion can be either a Dirac or a Majorana fermion. Dark matter
can interact with SM fermions through a real scalar field φ or a real pseudo-scalar field a. The
scalar/pseudo-scalar particle is massive and the scalar particle is assumed to be different from
the Higgs field. Our working Lagrangian is the following

L = LSM + Lkin + Lint , (2.63)

where Lsm is the SM Lagrangian, Lkin contains the kinetic terms for χ, φ and a, and Lint contains
the mass terms and the interactions terms. The interaction part in the case of Majorana dark

2In the standard cosmological evolution, species that decouple from the thermal bath never maintain thermal
equilibrium on their own and the temperature is not rigorously defined, therefore Ti and Tj should be thought of
as effective temperature instead.
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Figure 2.2 – Effective degrees of freedom geff (blue) and g∗ (red) as functions of the temperature.

matter can be written

Lint = − 1

2
mχ χχ − 1

2
m2

φ φ2 − 1

2
ma a2

− λφ

2
χχ φ − λa

2
χ γ5 χ a

− λ′
φ ff φ − λ′

a f γ5 f a .

(2.64)

If dark matter is a Dirac field, there is no 1/2 factor in front of the dark matter mass term and
coupling term. In Eq. (2.64), f refers to a SM fermion. The scalar and pseudo-scalar particles
can in principle interact with several SM fermions, in which case there are couplings λ′

φ and λ′
a

for each fermion. Free parameters in our model are the masses mχ, mφ, ma, and the couplings
λφ, λa, λ′

φ, λ′
a. Note that such a simplified model is already constrained by several experiments

(e.g., LHC, Xenon, indirect searches).

2.2.2 Tree-level amplitude

Two types of reactions are especially relevant during the thermal history of our dark matter can-
didate: annihilation and elastic scattering. The tree-level Feynman diagrams for the annihilation
are shown in Fig. 2.3. The dark matter particle, whether a Majorana or a Dirac fermion, can
annihilate through the scalar or the pseudo-scalar into a pair of SM fermions. Note that these
diagrams, up to a time-reversal transformation, also control the production of dark matter from
the annihilation of SM fermions. The squared amplitude for the annihilation processes, averaged
over initial spins and summed over final spins, is given by

|Mann|2 = Nc
(λmedλ′

med)2

(

s − m2
med

)2

{
(

s − 4 m2
χ

)

(

s − 4 m2
f

)

scalar

s2 pseudoscalar
(2.65)

This result is demonstrated in App. B. In Eq. (2.65), Nc is the number of non-spin degrees of
freedom of the SM fermion (for instance the number of colors if f is a quark). If p1 and p2 are the
4-momenta of the incoming dark matter particles, and k3 and k4 the 4-momenta of the outgoing
SM fermions, s is the Lorentz-invariant Mandelstam variable accounting for centre-of-mass energy
s = (p1 + p2)2 = (k3 + k4)2.
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φ

χ (p2)

χ (p1)

f (k4)

f (k3)

(a)

a

χ (p2)

χ (p1)

f (k4)

f (k3)

(b)

Figure 2.3 – Pair annihilation of the dark matter particle into SM fermions through the scalar portal
(a) or the pseudo-scalar portal (b).

Tree-level diagrams for the elastic scattering of a dark matter particle off a SM fermion are
shown in Fig. 2.4. These diagrams are simply obtained by rotating the annihilation diagrams in
Fig. 2.3. For the amplitude, this translates into a change s → t, where t = (p1 − p2)2 = (k3 − k4)2

and this time p1 (p2) is the 4-momentum of the incoming (outgoing) dark matter particle and k3

(k4) is the 4-momentum of the incoming (outgoing) SM fermion. The amplitude for the process is

|Mscat|2 = Nc
(λmedλ′

med)2

(

t − m2
med

)2

{
(

t − 4 m2
χ

)

(

t − 4 m2
f

)

scalar

t2 pseudoscalar
(2.66)

φ

f (k3)

χ (p1)

f (k4)

χ (p2)

(a)

a

f (k3)

χ (p1)

f (k4)

χ (p2)

(b)

Figure 2.4 – Elastic scattering of a dark matter particle off a SM fermion through the exchange of a
scalar (a) or a pseudo-scalar (b).

2.2.3 Cross-sections

As shown in the appendix, the Lorentz-invariant annihilation cross-section is given by

σann =
1

16π

(λmedλ′
med)2

(

s − m2
med

)2
+ m2

medΓ2
med











(s − 4 m2)1/2(s − 4 m2
f )3/2 s−1 scalar

(

s−4 m2
f

s−4 m2

)1/2

s pseudoscalar
(2.67)

The cross-sections are shown for both mediators in Fig. 2.5. As one can see, the two cross-sections
have a similar behaviour at high energies. A difference appears at low energies: while the scalar
cross-section is suppressed when the WIMPs annihilate at rest (

√
s = 2 m), the pseudoscalar

cross-section diverges.

2.3 Chemical decoupling

A fundamental element for any dark matter candidate is its production mechanism in the
early Universe. The case of the WIMP was first discussed by Lee & Weinberg (1977) (see also
Vysotsky et al. (1977); Sato & Kobayashi (1977); Hut (1977); Dicus et al. (1977)). In this seminal
paper, Lee and Weinberg established the evolution equation for the number density of a weakly
interacting particle (having in mind a heavy neutrino) and set a lower bound on its mass by
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Figure 2.5 – Annihilation cross-sections as functions of the centre-of-mass energy
√

s (normalized to
the sum of the masses of the incoming particles).

requiring that its energy density does not overclose the Universe. This original calculation has
since then been revisited many times, see for instance Bernstein et al. (1985); Kolb & Olive
(1986); Srednicki et al. (1988); Griest & Seckel (1991); Gondolo & Gelmini (1991); Edsjo &
Gondolo (1997); Steigman et al. (2012), and the astrophysical and cosmological phenomenology
of WIMPs have been investigated in details (Gunn et al., 1978; Tremaine & Gunn, 1979).

In this section, we review the standard calculation of the WIMP relic density. We show that
the number density of WIMPs today is set by the chemical decoupling of the dark matter particle.
Using our toy model, we illustrate the freeze-out and freeze-in scenarios.

2.3.1 The Boltzmann equation

Evolution of the number density In this section, we establish the master equation for the
time evolution of the WIMP number density, following the standard treatment of Gondolo &
Gelmini (1991). We assume that dark matter particles can annihilate into SM particles through
a reaction

1 + 2 → 3 + 4 , (2.68)

where 1 and 2 are dark matter particles, and 3 and 4 are SM particles. In our simplified model,
these SM particles are fermions, however the following treatment holds regardless of the nature
of the outgoing particles. The phase-space number density of 1 obeys the Boltzmann equation

L̂[f1] = Ĉ[f1] (2.69)

where L̂ and Ĉ are the Liouville and collision operators, respectively. As shown in App. B.3,
taking the zeroth-order moment of the Boltzmann equation leads to the evolution equation of
the number density

dn1

dt
+ 3 H n1 = − 〈σannv〉 (n1n2 − n1,eqn2,eq) . (2.70)

Note the equilibrium number densities neq
1 and neq

2 actually represent the plasma production
term. It can be conveniently expressed in terms of the WIMPs equilibrium density thanks to the
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principle of detailed balance. In this equation, 〈σannv〉 is the thermally-averaged cross-section
defined as

〈σannv〉 ≡
∫

d3þp1 d3þp2 f1(þp1) f2(þp2) σann vm
∫

d3þp1 d3þp2 f1(þp1) f2(þp2)
, (2.71)

where fi is the phase-space number density of i, σann is the cross-section of the reaction in
Eq. (2.68), and vm is the Møller velocity

vm ≡

√

(p1.p2)2 − m2
1m2

2

E1 E2
(2.72)

=
√

|þv1 − þv2|2 − |þv1 × þv2|2 . (2.73)

The Moller velocity is such that vm n1 n2 is Lorentz-invariant. Note that the averaged cross-
section depends on the temperature in the dark matter bath through the phase-space distribution
function (DF).

The standard treatment of chemical decoupling assumes thermal equilibrium between dark
matter particles and the thermal bath is maintained during decoupling. For a study of the full
out-of-equilibrium decoupling, see Binder et al. (2017). Two cases are usually considered for 1
and 2: either these particles are identical and the dark matter number density is n = n1 = n2

(which is the case if dark matter is a Majorana fermion), or 1 and 2 are different (which is the
case if dark matter is a Dirac fermion) and we further assume n1 = n2 to get n = n1 + n2 = 2 n1.
In the following, we focus on the case of identical particles where the Boltzmann equation is

dn

dt
+ 3 H n = − 〈σannv〉

(

n2 − n2
eq

)

. (2.74)

For non-identical particles, the evolution equation for n is the same with the replacement
〈σannv〉 → 〈σannv〉 /2. In Eq. (2.74), the first term on the right-hand side accounts for the
depletion of the dark matter density by annihilation of dark matter particles. The second term
accounts for the creation of dark matter particles by annihilation of particles in the thermal
bath. The second term on the left-hand side of the equation is a friction term accounting for the
expansion of the Universe. We know that a constant number of dark matter particles inside a
comoving volume yields a number density n(t) ∝ a−3(t), hence it is useful to introduce a quantity
that remains constant during the expansion. If the total entropy of the Universe is conserved,
the entropy density verifies s ∝ a−3(t) (see Eq. (2.49)), therefore we define a comoving number
density3

Y ≡ n

s
. (2.75)

Plugging the definition of the comoving density in Boltzmann equation (2.74), we get

dY

dt
= −s 〈σannv〉

(

Y 2 − Y 2
eq

)

. (2.76)

Note that the Hubble friction term is gone, as expected. We make use of x = m/T as a time
variable, where m is the dark matter mass and T is the temperature of the thermal bath. With
the substitution

d

dt
=

ds

dt

dx

ds

d

dx

= −3Hs
dx

ds

d

dx
,

(2.77)

3Note that the term comoving density is abusive since Y has units of inverse entropy.
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we get

dY

dx
=

1

3H

ds

dx
〈σannv〉

(

Y 2 − Y 2
eq

)

. (2.78)

We can go further by using the effective degrees of freedom introduced in Eq. (2.54) and the
expression of the Hubble parameter H2 = 8πGNρ/3. We finally get

dY

dx
= −

(

π

45 GN

)1/2 m g
1/2
∗

x2
〈σannv〉

(

Y 2 − Y 2
eq

)

, (2.79)

with

g
1/2
∗ ≡ heff

g
1/2
eff

(

1 +
1

3

d ln heff

d ln T

)

. (2.80)

The behaviour of g∗ with the temperature closely follows that of geff , as shown on the left panel
in Fig. (2.2). Equation (2.79) is the most practical form of the Boltzmann equation when it
comes to numerical calculations.

Thermally-averaged annihilation cross-section Let us comment on the averaged cross-
section defined in Eq. (2.71). If the WIMP has a Maxwell-Boltzmann phase-space distribution,
Gondolo & Gelmini (1991) showed that it can be expressed as a single integral

〈σannv〉 =
1

8m4TK2
2 (m/T )

∫ ∞

4m2
σann(s)

(

s − 4m2
) √

sK1(
√

s/T ) ds . (2.81)

This result is exact and valid if the temperature is low enough for the Maxwell-Boltzmann
approximation to hold. Numerically, it is a very good approximation if T < 3m.

As the temperature gets lower and x ≫ 1, 〈σannv〉 can be expanded in powers of x−1

〈σannv〉 ≃ a +
b

x
+

c

x2
+

d

x3
+ . . . (2.82)

The first, temperature-independent term is referred to as the s-wave contribution, while the
second term is referred to as p-wave. The relation between the cross-section σann and coefficients
a, b, c and d is explicitly given by Srednicki et al. (1988). The coefficients are expressed in terms
of the Lorentz-invariant function

w(s) ≡ E1E2 σann vm

= σann(s)
√

(p1.p2)2 − m2
1m2

2

= σann(s)

√
s

2

√

s +
(m2

1 − m2
2)2

s
− 2(m2

1 + m2
2) ,

(2.83)

and its derivatives. Expressions for a and b in our simplified model are given in App. B.2.4. The
thermal cross-sections are shown in Fig. (2.6). The behaviour as a function of the temperature is
very different depending on the nature of the mediator: while the pseudo-scalar cross-section
keeps a constant value at low temperature, the scalar one is falling like T .

2.3.2 Freeze-out and freeze-in

Freeze-out The Boltzmann equation (2.79) cannot be solved analytically but we can guess
the qualitative behaviour of the solution. Let us suppose the WIMP is in thermal and chemical
equilibrium with the plasma at a given x. When the temperature of the plasma drops well below
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Figure 2.6 – Thermally-averaged annihilation cross-sections as functions of the temperature. We
show the scalar (red) and pseudo-scalar (blue) channels, for both the exact solution (solid) and the 1/x
expansion (dashed).

the WIMP mass, i.e. when x ≫ 1, conservation of energy forbids the creation of WIMPs from
collisions in the plasma. The Boltzmann equation then reduces to

dY

dx
= −

(

π

45 GN

)1/2 m g
1/2
∗

x2
〈σannv〉 Y 2 , (2.84)

which shows that dark matter self-annihilation depletes the comoving density. At some point, as
the number of dark matter particles drops and the Universe expands, self-annihilation becomes
inefficient and the comoving density remains roughly constant. At this point the dark matter is
chemically decoupled from the thermal bath. Chemical decoupling happens when the annihilation
rate drops below the expansion rate

Γann(xcd) ≃ H(xcd) , (2.85)

where Γann = n 〈σannv〉. We assume the decoupling occurs when WIMPs are well into the non-
relativistic regime, hence we can use Eq. (2.46) for the WIMP number density. The annihilation
and Hubble rates are shown on the left panel in Fig. 2.7. The value of xcd at the intersection
between the two rates is solution of

x
1/2
cd e−xcd ≃

(

π5

45
geff

)1/2
1

mp m 〈σannv〉 , (2.86)

where mp ≡ (8πGN)−1/2 is the reduced Planck mass. For a WIMP with mass m = 100 GeV
and a cross-section at the electroweak scale 〈σannv〉 ∼ 10−8 GeV−2, we get xcd ≃ 30. Note that
xcd depends only logarithmically on the mass and the cross-section. We evaluate xcd in our toy
model using the Boltzmann equation as done by Gondolo & Gelmini (1991). The result is shown
in the right panel on Fig. 2.7. The value of xcd changes by ten units over two decades in dark
matter mass. Note that this change is partly due to resonant annihilation at 2 m = mφ/a, which
is clearly visible in the figure.

We now integrate Eq. (2.84) between xcd and x0 (T0 is the temperature of the photon bath
today) to get

1

Y0
− 1

Ycd
=

(

π

45 GN

)1/2

m

∫ x0

xcd

g
1/2
∗
x2

〈σannv〉 dx . (2.87)
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If enough particles annihilate right after xcd, we can neglect 1/Ycd in Eq. (2.87). If we further

assume 〈σannv〉 to be temperature-independent and take an average value for g
1/2
∗ , we get an

expression for today’s relic abundance

Ωcdm =
m s0 Y0

ρc
. (2.88)

Using

ρc =
3

8πGN
H2

0

=
3

8πGN
(100 h km/s/Mpc)2 ,

(2.89)

we get

Ωcdmh2 =
(

5πG3
N

)1/2 s0

g
1/2
∗

xcd

〈σannv〉 (100 km/s/Mpc)−2 . (2.90)

The dark matter abundance does not depend explicitly on the dark matter mass. There is actually
a hidden dependency in xcd but as we have seen before, it is very weak. The evolution of the
dark matter density is shown in the left panel of Fig. 2.8 for a constant annihilation cross-section.
An important feature of the freeze-out scenario is the dependence of the relic abundance on the
inverse of the cross-section: the higher the cross-section, the later the decoupling and the lower
the abundance. In a given model, the cross-section obviously depends on the dark matter mass.
We show the evolution of the dark matter density in our toy model in the right panel on Fig. 2.8
for different values of the dark matter mass.

Figure 2.7 – Left panel: Hubble rate (black curve) compared to the annihilation rate for a scalar
(solid curve) or a pseudoscalar channel (dashed curve) with a dark matter mass m = 100/300/500 GeV
(red/green/blue). Right panel: xcd = m/Tcd with Tcd the temperature of chemical decoupling, as a
function of the dark matter mass. Are shown the scalar (red) and pseudoscalar channels (blue).

The dark matter relic abundance is almost entirely fixed by the annihilation cross-section.
We can turn the expression around and compute the cross-section that leads to the observed
dark matter abundance. We get

〈σannv〉 ≃ 3 × 10−26 cm3s−1 ≃ 10−8 GeV−2 , (2.91)
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which turns out to be the order of magnitude of an electroweak cross-section. The fact that
a massive particle with electroweak scale interactions leads to the correct order of magnitude
for the dark matter relic abundance is dubbed the “WIMP miracle” and is one of the main
reasons why WIMP models have been extensively studied in the literature. The value of the
constant/s-wave annihilation cross-section that leads to the correct relic abundance is shown in
the left panel on Fig. 2.9. The cross-section varies from 4.5 × 10−26 cm3/s to 2 × 10−26 cm3/s
over four orders of magnitude of the dark matter mass. This dependence on the dark matter
mass is also shown in Steigman et al. (2012). The dark matter relic abundance today is shown
as a function of the dark matter mass in the right panel in Fig. 2.9. We can constrain our model
by fixing, for a given dark matter and mediator mass, the product of the coupling constants λλ′

by requiring that the relic abundance matches the value measured by Ade et al. (2016).
Our very simple WIMP model captures the essential features of the freeze-out mechanism. In

more complicated models, such as those coming from supersymmetric theories, the phenomenology
of freeze-out can be significantly modified by the presence of other non-standard particles in the
spectrum. A typical example is coannihilation (Binétruy et al., 1984; Edsjo & Gondolo, 1997).
This occurs when a particle has a mass right above the dark matter mass. In that case, the dark
matter particle can coannihilate with that particle, which opens a new channel changing the dark
matter relic abundance. Interestingly, the Boltzmann equation governing the number density of
non-standard particles in the presence of coannihilation can be written

dn

dt
+ 3 H n = − 〈σeffv〉

(

n2 − n2
eq

)

, (2.92)

i.e. it is exactly the same equation as Eq. (2.74) with an effective annihilation cross-section
〈σeffv〉 whose expression is given in Edsjo & Gondolo (1997). This equation is valid if all the
non-standard particles are in equilibrium. Note that in the non-relativistic limit, we have

neq
2

neq
1

=
g2

g1

(

m2

m1

)3/2

e−∆m/T , (2.93)

with ∆m = m2 −m1. Consequently, the impact of coannihilation of 1 with 2 on the calculation of
the relic density crucially depends on ∆m > 0, and is more important for a small mass difference.

Figure 2.8 – Left panel: chemical decoupling in the freeze-out regime, in the case of a constant
annihilation cross-section (s-wave) 〈σannv〉. Right panel: chemical decoupling for the scalar (solid curve)
and pseudoscalar channel (dashed curve), for a dark matter mass m = 100/300/500 GeV (red/green/blue).
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Figure 2.9 – Left panel: s-wave value of the annihilation cross-section to get the observed relic
abundance (red), compared to the “canonical” value (dashed black). Right panel: Final relic abundance
for the scalar (red) and pseudoscalar channel (blue), compared to the observed abundance from the Planck
collaboration (dashed black).

Freeze-in The main assumption behind the freeze-out scenario is that dark matter has reached
chemical and thermal equilibrium at some temperature T > m. This assumption can be relaxed.
We can instead assume that dark matter is produced by collisions within the plasma through a
continuous process. This can happen in the inflationary scenario: after inflation, the inflaton
decays into Standard Model particles during what is called the reheating epoch (Turner, 1983;
Traschen & Brandenberger, 1990; Kofman et al., 1997). If we assume dark matter is not directly
produced by the inflaton or in negligible proportions, then our initial condition is n(Trh) = 0
where Trh is the reheating temperature. Dark matter is then produced by annihilation of Standard
Model particles and its comoving density follows Eq. (2.79). There are then two possibilities.
Either the production/annihilation cross-section is large enough for the dark matter to reach
chemical and thermal equilibrium before decoupling, in which case we are back to the freeze-
out scenario, or the cross-section is too small for dark matter to ever reach equilibrium. The
latter case is an example of freeze-in scenario, when dark matter chemical decoupling occurs
out-of-equilibrium. Hall et al. (2010) showed that the freeze-in scenario leads to predictions that
are independent of the reheating temperature so long as Trh ≫ Tcd, so the freeze-in scenario
is independent of the high-energy physics just like the freeze-out scenario. Hall et al. (2010)
considered dark matter produced through the decay of some heavier particle, however their
conclusions also holds for dark matter produced through annihilation. We show the chemical
decoupling in the freeze-in regime in Fig. 2.10 for different value of the s-wave cross-section (note
the very low values 〈σannv〉 with respect to the freeze-out scenario). A major difference between
freeze-out and freeze-in is visible in the figure: while the asymptotic value at x ≫ xcd is roughly
proportional to 1/ 〈σannv〉 in the freeze-out case, it goes like 〈σannv〉 in the freeze-in scenario.
This can bee seen from the Boltzmann equation (2.79) where we can assume Y ≪ Yeq. The
Boltzmann equation is then simply

dY

dx
=

(

π

45 GN

)1/2 m g
1/2
∗

x2
〈σannv〉 Y 2

eq , (2.94)
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which can be directly integrated between xrh and x0 to get

Y0 =

(

π

45 GN

)1/2

m 〈σannv〉
∫ x0

xrh

g
1/2
∗

Y 2
eq

x2
dx . (2.95)

This shows that the relic abundance in the freeze-in scenario is indeed proportional to the s-wave
annihilation cross-section. Note that the integral in Eq. (2.95) diverges if xrh → 0 therefore it
strongly depends on xrh, which seems to be in contradiction with what we have stated earlier.
This is because we assumed temperature independent cross-section, which cannot be the case at
low x. In a simple scenario where dark matter is linked to the Standard Model through a single
mediator with mass mmed, the cross-section is suppressed for x ≪ m/mmed, which regularises
the integral if the reheating temperature is such that Trh ≫ mmed. WIMPs which experience a
freeze-in are sometimes referred to as FIMPs for Feebly Interacting Massive Particles i.e. very
weakly interacting massive particles.

Figure 2.10 – Chemical decoupling in the freeze-in regime. The initial condition is Y (xrh) = 0 with
xrh = 0.1. The ”step” features at low x are due to numerical issues.

2.4 Kinetic decoupling and primordial structures

Immediately after dark matter annihilation stops being efficient, elastic scattering between dark
matter and Standard Model particles maintains the two in kinetic equilibrium. Let us show
that kinetic decoupling generically happens after chemical decoupling. We recall that freeze-out
happens roughly when the annihilation rate becomes lower than the Hubble rate

Γann = n 〈σannv〉 < H . (2.96)

and we typically get xcd = m/Tcd ≃ 25 as seen in the previous section. To obtain a precise
estimate of the kinetic decoupling temperature, one must solve the Boltzmann equation

L0[f ] = C0[f ] . (2.97)

with

L0[f ] =
∂f

∂t
− H|þp|2

E

∂f

∂E
. (2.98)
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Let us first try to find a simple estimate. A naive approach would be to compare the scattering
rate to the Hubble rate

Γscat =
∑

i

neq
i 〈σχiv〉 < H , (2.99)

where the sum is over the different targets the dark matter particle can scatter off. We can assume
these targets to be in thermal equilibrium with the photon bath. Comparing the scattering rate
to the Hubble rate is not correct however. Many interactions are actually needed to maintain
local thermal equilibrium. When the WIMP is in equilibrium with the thermal bath, it has an
average momentum p =

√
3mT while the momentum exchange during a single encounter with a

particle from the bath is δp ≃ T hence

δp

p
=

√

T

3 m
≪ 1 , (2.100)

since the WIMP is non-relativistic. What should really be compared to the typical expansion
time is the relaxation time (Hofmann et al., 2001; Bringmann & Hofmann, 2007), i.e. the time
needed to maintain local equilibrium. We assume Ncoll collisions are needed for the change in
momentum to be comparable to the momentum of the dark matter particle. Since scattering is a
random process, this leads to

p = δp
√

Ncoll , (2.101)

i.e.

Ncoll =

(

p

δp

)2

=
3 m

T
. (2.102)

The relaxation time can be written

τrel =
Ncoll

Γscat
≃ Ncoll

neq 〈σscatv〉 . (2.103)

Assuming the Standard Model scattering partners are relativistic and the scattering cross-section
is σscat = G2

FT 2 with GF the Fermi constant, we get by comparing τrel to H−1

Tkd ≃ 10 MeV

(

m

100 GeV

)1/4

. (2.104)

This is indeed lower than the typical freeze-out temperature

Tfo ≃ 4 GeV

(

m

100 GeV

)

. (2.105)

While chemical decoupling takes place at temperatures in the GeV range for a dark matter mass
of 10 − 100 GeV, Tkd is in the MeV range (Schmid et al., 1999; Boehm et al., 2001; Chen et al.,
2001). The scaling of Tkd with respect to the dark matter mass is not necessarily in m1/4 as it
depends on the mass scaling of the scattering cross-section. Note that in some models, kinetic
decoupling happens close enough to chemical decoupling to affect the prediction of the relic
density (Binder et al., 2017).

2.4.1 Boltzmann equation and decoupling temperature

Let us now go back to the Boltzmann equation. In practice, the evolution of the full phase-space
density is not needed if we are only interested in the evolution of the temperature. It is enough
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for our purpose to compute the second-order moment of the Boltzmann equation. Following
Bringmann & Hofmann (2007), we define a dark matter temperature parameter as

Tdm ≡ 2

3

1

n

∫

d3þp

(2π)3

þp2

2 m
f(þp) . (2.106)

Note that Tdm is strictly speaking a temperature only when dark matter is still in equilibrium with
the thermal bath (and we have Tdm = T ). After kinetic decoupling, local thermal equilibrium
cannot be maintained and the temperature is ill-defined. The average kinetic energy in Eq. (2.106)
is however well defined at any time, hence we can use it to define a temperature-like parameter
for the out-of-equilibrium WIMP bath. Taking the second moment of the Boltzmann equation
leads to (Bertschinger, 2006; Bringmann & Hofmann, 2007; Bringmann, 2009; Gondolo et al.,
2012)

a
dTdm

da
+ 2 Tdm = −2

γ(T )

H(T )
(Tdm − T ) , (2.107)

where

γ(T ) =
∑

i

gi

6 m T

∫ ∞

0

d3þp

(2π)3
fi(1 ± fi)

p
√

p2 + m2
i

∫ 0

−4 p2
dt (−t)

dσχi

dt
(2.108)

is the momentum relaxation rate as given in Gondolo et al. (2012). This equation has the
following boundary conditions: at early times, the dark matter is in thermal equilibrium with
the photon bath and we have Tdm ∝ a−1. Inserting this into Eq. (2.107) leads to

T − Tdm =
Tdm

2

H

γ
, (2.109)

and since at high temperature γ ≫ H, we have Tdm ≃ T . At late times, after kinetic decoupling,
the momenta of dark matter particles redshift as p ∝ a−1 and according to the definition of the
temperature parameter in Eq. (2.106), we have Tdm ∝ a−2. Solving the Boltzmann equation in
the general case requires numerical integration, however analytical expressions are available in
some cases (Bertschinger, 2006; Bringmann & Hofmann, 2007; Visinelli & Gondolo, 2015). The
kinetic decoupling temperature can be defined at the intersection between these two asymptotic
regimes (Bringmann & Hofmann, 2007). Alternatively, it can be defined through γ(Tkd) = H(Tkd)
(Visinelli & Gondolo, 2015). Using the former definition and using a zero-momentum transfer
approximation for the collision term leads to a very simple expression for the kinetic decoupling
temperature (Bringmann & Hofmann, 2007)

m

Tkd
=

(

a

n + 2

)1/(n+2)

Γ

[

n + 1

n + 2

]

(2.110)

The expressions of n and a are given in App. B.3.5. The derivation of this expression relies
on the zero-momentum transfer approximation which cannot be applied to the case of the
pseudoscalar portal (this is because in that particular case a = 0 according to the expression
given in the appendix). We limit our analysis to the scalar channel and therefore to the p-wave
annihilation case, assuming the dark matter couples to the three generations of leptons. The
resulting decoupling temperature is shown in the left panel in Fig. 2.11.

2.4.2 Minimal mass of dark matter halos

Kinetic decoupling is of great importance for WIMPs as it sets the size of the first dark matter
structures to be formed in the Universe (Boehm et al., 2001; Hofmann et al., 2001; Berezinsky
et al., 2003; Green et al., 2004; Boehm & Schaeffer, 2005; Loeb & Zaldarriaga, 2005; Green et al.,
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Figure 2.11 – Left panel: kinetic decoupling temperature as a function of the dark matter mass m,
assuming the dark matter-SM mediator is a scalar particle. Right panel: comoving free-streaming length
as a function of the scale factor.

2005; Profumo et al., 2006; Bertschinger, 2006; Bringmann & Hofmann, 2007; Bringmann, 2009).
These primordial structures are the smallest bound dark matter structures and their mass is of
great importance for dark matter searches. The damping scale in the CDM power spectrum is
set by several mechanisms. Before kinetic decoupling, collisions between plasma particles and
dark matter induce a pressure that counteracts the effect of gravity. During kinetic decoupling, a
remaining viscous coupling between baryons and dark matter also suppresses power below some
scale. Finally, once dark matter is kinetically decoupled it enters the free-streaming regime which
further damps matter perturbations. The collisional and free-streaming damping mechanisms
are discussed below.

2.4.2.1 Collisional damping

In the next chapter, we establish the evolution equation for the overdensity δ̂(t, k) of a given
mode k

∂2δ̂

∂t2
+ 2H

∂δ̂

∂t
+

(

c2
s

k2

a2
− 4πGNρ

)

δ̂ = 0 . (2.111)

In this equation, c2
s = dp/dρ is the sound speed in the plasma and ρ the average matter density

of the Universe. Solutions of this equation have a very different behaviour depending on the sign
of the term between brackets. If this term is positive, solutions have an oscillatory behaviour
damped by the Hubble expansion. If this term is negative, solutions are growing like the scale
factor. The transition between these two regimes sets the Jeans scale

kJ ≡ 2πa

cs

√

GNρ

π
, (2.112)

which can also be expressed as a length

λJ ≡ 2πa

kJ
= cs

√

π

GNρ
. (2.113)
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This length defines the scale at which pressure and gravity compensate each other, and below
which the overdensity is damped because of pressure. In the radiation era, the sound speed
is c/

√
3, such that the Jeans scale is almost equal to the horizon scale. The pressure term

characterized by the sound speed is only relevant when WIMPs are kinetically coupled to the
plasma, therefore this damping mechanism is collisional in nature. The minimal mass needed for
a dark matter perturbation to overcome pressure forces is

Mao ≡ 4

3
π ρcdm(tkd)

(

λJ

2

)3

. (2.114)

In this expression, “ao” stands for acoustic oscillations. In a relativistic fluid ρ is given in
Eq. (2.54). Conservation of number density and entropy yields the dark matter mass density as
a function of the photon bath temperature:

ρcdm(T ) = ρcdm(T0)
s(T )

s(T0)
= ρc Ωcdm

heff(T )

heff(T0)

(

T

T0

)3

, (2.115)

where T0 is the CMB temperature today. Putting this together, we get Mao ∝ T −3. We show
Mao as function of the kinetic decoupling temperature in the left panel in Fig. 2.12. We obtain
very small masses, ranging from 10−11 M⊙ to 10−5 M⊙. Note that Mao only depends on the dark
matter mass through the decoupling temperature Tkd.

2.4.2.2 Collisionless damping

After dark matter gets kinetically decoupled, it enters the free-streaming regime, which induces
an additional damping of perturbations. This damping occurs because structures only start
growing efficiently after matter-radiation equality. Before equality, the growth is suppressed
by the Meszaros effect (Meszaros, 1974). Between the time of decoupling and the time when
structures start growing, dark matter particles can free-stream away from perturbations and thus
wash out the small-scale power spectrum. Unlike the previous damping mechanism we discussed,
this damping is collisionless in nature. The physical distance travelled by a dark matter particle
from the time of decoupling tkd to some later time t is (see e.g., Berezinsky et al. (2003))

λfs(t) = a(t)

∫ t

tkd

vcdm(t′)

a(t′)
dt′ , (2.116)

where vdm is the dark matter particle speed. This speed can be estimated from the pseudo-
temperature of the dark matter bath. We have, after decoupling

Tcdm(t) = Tkd

(

a(tkd)

a(t)

)2

, (2.117)

and

vcdm(t) ≃
√

〈v2〉 =

√

3 Tcdm(t)

m
. (2.118)

Changing variable from t to a(t) in Eq. (2.116) and using the expression of the Hubble rate in
Eq. (2.28) we get

λfs(t) =
a(t) a(tkd)

H0

√

3 Tkd

m

∫ a(t)

a(tkd)

da

a3
√

Ωm a−3 + Ωr a−4 + ΩΛ

. (2.119)

It is not very clear at what time t this free-streaming length should be evaluated. In principle,
we should take t = t0 but after matter-radiation equality structures start to grow efficiently
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and WIMPs can get captured by the potential wells and stop free-streaming. Fortunately, the
comoving length λfs(t)/a(t) saturates at matter-radiation equality, see right panel in Fig. 2.11,
therefore we evaluate it there. The free-streaming mass at equality is then defined as

Mfs ≡ 4

3
π ρcdm(teq)

(

λfs

2

)3

. (2.120)

This quantity is shown in the left panel in Fig. 2.12. Unlike the acoustic oscillation mass, it
depends explicitly on the dark matter mass and it gets lower as the mass gets higher. This is
because, at a given Tkd, the speed of high-mass dark matter particles is lower at matter-radiation
equality. Also, for a given xkd, heavier particles have more time to decrease their speed before
equality. Since the smallest dark matter objects observed in the Universe are dwarf spheroidal
galaxies with masses around 107 − 108 M⊙, a lower limit can be set on the dark matter mass by
requiring Mfs . 107 M⊙. This leads to a limit m & keV, which corresponds to the typical mass
of warm dark matter candidates. Note that this bound only applies to thermally produced dark
matter.

The mass under which all perturbations are erased is given by the maximum of Mao and Mfs

Mmin ≡ Max[Mao, Mfs] . (2.121)

It is the typical mass of the first dark matter structures to form and, since structure formation is a
hierarchical process, the core mass of the smallest dark matter halos. Using the mass dependence
of the decoupling temperature given in Eq. (2.110), we can express the minimal mass Mmin as a
function of the dark matter mass m. This is shown in the right panel in Fig. 2.12. We see that the
minimal mass is a decreasing function of the dark matter mass: heavier dark matter candidates
lead to smaller structures. This correlation is also recovered in more complicated model such as
supersymmetry (Bringmann, 2009). This provides a direct link between astrophysics and the
microscopic properties of the dark matter particle. This allows one to put generic constraints
on the dark matter interaction properties using structure formation (Boehm & Schaeffer, 2005;
Cyr-Racine et al., 2016).

Figure 2.12 – Left panel: cut-off mass as a function of the kinetic decoupling temperature, for
collisional damping (red curve) and collisionless damping (blue curve). Right panel: minimal halo mass
as a function of the dark matter mass.

As stated above, the smallest dark matter structures observed today are dwarf spheroidal
galaxies with masses 107 − 108 M⊙. This mass range is orders of magnitude higher than the
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masses we have just computed. There is no contradiction here because halos with masses smaller
than those of ultra-faint dwarf galaxies are too light to efficiently accrete baryons and form
stars, therefore they remain dark and not directly observable. This does not mean these small
structures are impossible to probe. In particular, the presence of such structures in our Galaxy
could impact on dark matter searches. In the next chapter, we explore the formation of dark
matter halos and study their distribution in our Galaxy.
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Chapter 3

Dark matter halos and subhalos in
the Universe

This chapter is devoted to the study of dark matter structures in the Universe. The first
section focuses on the formation of dark matter halos, starting from the theory of cosmological
perturbations in a Newtonian framework. We investigate the statistics of the perturbations and
use the Press-Schechter theory to derive the halo mass function. The internal structure of CDM
halos is discussed based on the results of numerical simulations and theoretical arguments. The
second section focuses on halos within halos, which are called subhalos. The interactions of
these subhalos with their host is studied in details, including the effect of baryonic matter on
these substructures. Finally, we elaborate a semi-analytical model to predict the distribution of
subhalos in our own Galaxy, and we obtain the first kinematically consistent Milky Way halo
model including a self-consistent subhalo population.

3.1 The formation of dark matter structures

3.1.1 Evolution of cosmological perturbations

3.1.1.1 Newtonian perturbation theory

We wish to give a brief description of the theory of cosmological structure formation, following
Mo et al. (2010) and Knobel (2012). We study a non-relativistic ideal fluid with density ρ(þr, t),
pressure p(þx, t) and velocity field þv(þr, t) where t is the cosmic time and þr the physical position
vector. We restrict ourselves to a Newtonian analysis, which is a valid approximation for modes
much smaller than the horizon. The fundamental hydrodynamical equations of Newtonian gravity
are:











∂tρ + þ∇.(ρþv) = 0 (continuity)

∂tþv + (þv.þ∇)þv = −(þ∇p)/ρ − þ∇φ (Euler)
∆φ = 4πGNρ (Poisson) ,

(3.1)

where φ is the gravitational potential. This is not a closed system since we have five equations
for six unknowns (ρ, p, þv and φ). We must add an equation of state for the fluid

p = p(ρ, s) (state) , (3.2)

where s is the entropy per unit mass of the fluid. Finally, we add a conservation equation for the
entropy

∂s

∂t
+ þ∇.(sþv) = 0 (entropy conservation) . (3.3)
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Since we only consider the case of a single fluid, entropy is indeed conserved. The hydrodynamical
treatment is valid if the mean free path of the particles constituting the fluid is much smaller
than the scale of interest. In the case of a collisionless fluid like dark matter, the treatment holds
as long as we are considering scales larger than the free streaming scale (which means dissipative
processes can be neglected). A fully consistent treatment of the growth of perturbations must
rely on the relativistic Boltzmann equation, which we do not discuss here. The generic effect
of free streaming is the damping of perturbations below the free streaming scale, as discussed
in the previous chapter (see e.g., Bertschinger (2006) for a fully consistent treatment of dark
matter perturbations). Note that we only wish to describe the evolution of a non-relativistic
fluid (v ≪ c and p ≪ ρc2) and we ignore the effect of relativistic components (like neutrinos)
and the cosmological constant. The inclusion of such components would introduce relativistic
pressure and also affect the expansion rate. The modern formalism of relativistic perturbation
theory was developed by Bardeen (1980).

We wish to study the growth of perturbations under the effect of gravity, therefore we perturb
our system of equation by defining

ρ(þr, t) = ρ(t) + δρ(þr, t) (3.4)

p(þr, t) = p(t) + δp(þr, t) (3.5)

þv(þr, t) = þv(t, þr) + δþv(þr, t) (3.6)

φ(þr, t) = φ(t, þr) + δφ(þr, t) (3.7)

The over-lined symbols refer to the (homogeneous and isotropic) background quantities. The
perturbation of the velocity field δþv is called the peculiar velocity field. Note that we do not
perturb the entropy, i.e. we are only considering isentropic perturbations (also called curvature
perturbations in a relativistic context). Again, this is because we only consider a single fluid at
all times. Using Eq. (3.2), we express the pressure perturbation as

δp =

(

∂p

∂ρ

)

S

δρ ≡ c2
s δρ , (3.8)

where cs is the speed of sound in the fluid (assumed independent of the density in the following).
It is convenient to perform calculations in comoving coordinates þx = þr/a(t) where þx is time-
independent in a FRW background. The average velocity field is then

þv(t) ≡ þ̇r = H(t)þr , (3.9)

where H = ȧ/a is the Hubble parameter and Eq. (3.9) is simply the Hubble law. Derivatives
transform as

þ∇r =
1

a
þ∇x

∂

∂t

∣

∣

∣

∣

r
=

∂

∂t

∣

∣

∣

∣

x
− Hþx.þ∇x

(3.10)

The hydrodynamical equations can be written, at first order in perturbation theory, as










∂tδρ|x + 3Hδρ + ρ(þ∇x.δþv)/a = 0

∂tδþv|x + Hδþv = −c2
s (þ∇x δρ)/(aρ) − (þ∇x)/a δφ

∆x δφ = 4πGNa2δρ .

(3.11)

Since the equations above are all linear in the perturbed quantities, it is convenient to move to
Fourier space by defining

δρ̂(þk, t) ≡ 1

V

∫

δρ(þx, t) e−iþk.þx d3þx

δρ(þx, t) ≡ V

(2π)3

∫

δρ̂(þk, t) eiþk.þx d3þk
(3.12)
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where þk is the comoving wave vector. The volume V in Eq. (3.12) is introduced to ensure that
δρ(þx) and δρ̂(þk) have the same dimensions. We similarly define δþ̂v(þk, t). Note that the spatial
integral is performed over a large volume V ∝ L3 with L larger than any scale under study here.
In Fourier space, we now get















∂tδρ̂|k + 3Hδρ̂ + ρ iþk.δþv/a = 0

∂tδþ̂v
∣

∣

∣

k
+ Hδþ̂v = −c2

s iþk δρ̂/(aρ) − iþk δφ̂/a

−k2δφ̂ = 4πGNa2δρ̂ .

(3.13)

We introduce the relative density perturbation, or overdensity, as

δ̂(þk, t) ≡ ρ̂(þk, t) − ρ(t)

ρ(t)
=

δρ̂

ρ
. (3.14)

Combining Eqs. (3.13) leads to

∂2δ̂

∂t2

∣

∣

∣

∣

∣

k

+ 2H
∂δ̂

∂t

∣

∣

∣

∣

∣

k

+

(

c2
s

k2

a2
− 4πGNρ

)

δ̂ = 0 . (3.15)

This is the evolution equation for the fluid overdensity δ(þk, t) in an expanding Universe. It is
a second-order differential equation, thereby it has two independent solutions for each Fourier
mode þk.

3.1.1.2 Jeans instability

To understand the behaviour of the overdensity, we first consider the case of a static Universe.
We have H = 0 and ρ is a constant, Eq. (3.15) then simply becomes

∂2δ̂

∂t2

∣

∣

∣

∣

∣

k

+

(

c2
s

k2

a2
− 4πGNρ

)

δ̂ = 0 . (3.16)

The form of the solution depends on the sign of the quantity in front of δ. If this quantity is
negative, then there is an exponentially growing solution and an exponentially decaying one.
If the quantity is positive, we get two independent oscillating solutions. This behaviour is the
result of a competition between pressure and gravity. Thus the time evolution of a perturbation
depends critically on its size, which must be compared to the Jeans length

λJ ≡ 2πa

kJ
= cs

√

π

GNρ
. (3.17)

A perturbation at a (physical) scale larger than λJ either grows and enters the non-linear regime
δ > 1, or decays (depending on the initial condition on δ). Smaller perturbations however are
not able to overcome the pressure and keep oscillating. The criterion is often expressed in terms
of mass rather than length, by defining the Jeans mass

MJ ≡ 4

3
πρ

(

λJ

2

)3

=
c3

s

6

√

π5

G3
Nρ

. (3.18)

This is simply the mass within a sphere of diameter λJ. We can estimate the Jeans length in the
baryonic matter fluid right after recombination. The fluid is then made of hydrogen atoms which
are decoupled from radiation. If the fluid is modelled as an ideal monoatomic gas, the speed of
sound is

cs =

(

γ
kBTrec

mp

)1/2

, (3.19)
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with γ the adiabatic index (γ = 5/3 for a monoatomic gas), Trec ≃ 2.7 × (1 + 1100) K is the
temperature at recombination and mp is the proton mass. We get cs ≃ 193 m/s and this leads to
the comoving Jeans Length

λ̃J ≃ 0.01
(

Ωb,0h2
)−1/2

Mpc , (3.20)

and the corresponding Jeans mass

MJ ≃ 1.5 × 105
(

Ωb,0h2
)−1/2

M⊙ . (3.21)

This is roughly the mass of a globular cluster, therefore after recombination all baryons start
falling efficiently into perturbations the size of globular clusters and beyond. Before recombination,
the tight coupling between matter and radiation induces a large pressure and increases the Jeans
mass by roughly ten orders of magnitude (Mo et al., 2010) which corresponds to the scale
of a super-cluster. The formation of baryonic structures therefore begins only at the end of
recombination.

We neglected the effect of the expansion in the analysis above. The expansion enters through
a friction term in Eq. (3.15). This friction damps the oscillatory modes and slows down the
growth (decay) of the growing (decaying) modes. We can still find solutions in some special cases.
A useful example is a matter-dominated Universe, which is a valid approximation when z ≪ zeq

and the cosmological constant is still negligible. We focus on modes much larger than the Jeans
length, in which case the overdensity is solution of

∂2δ

∂t2

∣

∣

∣

∣

∣

k

+ 2H
∂δ

∂t

∣

∣

∣

∣

k
− 4πGNρ δ = 0 . (3.22)

This equation is also valid for all modes of perturbations in the CDM fluid since it is pressureless
(and therefore has a vanishing speed of sound). In the case of a pressureless fluid, the solutions
of Eq. (3.22) can be found, see e.g., Mo et al. (2010), and they read

δdecay(t) ∝ H(t) ,

δgrowth(t) ∝ H(t)

∫ t

0

dt′

a2(t′)H2(t′)
.

(3.23)

In the case of a matter-dominated universe, it is straightforward to show δdecay ∝ t−1 (also valid
in a radiation-dominated universe) and δgrowth ∝ t2/3. While perturbations grow exponentially
fast in a static Universe, the growth follows a power law in the case of an expanding Universe.
Note that the growing mode has the same time evolution as the scale factor, i.e. δgrowth ∝ a, in
the matter dominated case. The general solution of Eq. (3.22) can be written

δ(þk, t) = δ−(þk)D−(t) + δ+(þk)D+(t) . (3.24)

where δ− and δ+ are set by the initial conditions. We only focus on the growing part. We
simply have δ(þk, t) = δ+(þk)D+(t) with D+ the linear growth function, or linear growth factor
(Heath, 1977). An approximate formula for the growth function is given by Carroll et al. (1992);
Hamilton (2001)

D+(z) =
1

1 + z

g(z)

g(0)
, (3.25)

where

g(z) =
Ωm(z)

Ω
4/7
m (z) − ΩΛ(z) +

(

1 + Ωm(z)
2

) (

1 + ΩΛ(z)
70

) . (3.26)

The growth function is shown in Fig. 3.1.
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Figure 3.1 – Linear growth factor as given in Eq. (3.25), for the cosmology of Ade et al. (2016).

3.1.1.3 Non-linear evolution: the spherical collapse case

Derivation We would like to gain further insights on the evolution of overdensities in the
non-linear regime. Unfortunately, there are no known solutions of the hydrodynamical equation in
the general case. The standard way of investigating the non-linear growth of structures is to rely
on cosmological numerical simulations. It is possible however to derive useful analytical results by
considering simple, highly symmetric cases. Here we focus on the growth of an isolated, spherical
perturbation over a homogeneous and isotropic background, following the treatment given in
Knobel (2012). We consider the matter as being homogeneously distributed in the spherical
perturbed region, with a density ρ = ρ + δρ where ρ is the background density and δρ > 0. By
virtue of the Birkhoff theorem (Weinberg, 1972), the background and the perturbation evolve
independently. The scale factor a(t) of the background obeys the Friedmann equation with zero
curvature (we further assume no cosmological constant)

(

ȧ

a

)2

=
8πGN

3
ρ . (3.27)

The background density evolves as

ρ(t) =
1

6πGNt2
. (3.28)

The “universe” defined by the perturbation, however, has a curvature K = 1 since it is a
collapsing, closed region. The corresponding scale factor A ≡ R(t)/R0 then obeys

(

Ȧ
A

)2

=
8πGN

3
ρ − c2

R2
0

, (3.29)

where R0 = R(t0) is the radius of the perturbation at the present day. We perform the following
change of variable

dt =
AR0

c
dτ =

R

c
dτ , (3.30)

where τ is a (dimensionless) conformal time. Introducing the (constant) mass within the
perturbation M = 4/3 πρ0R3

0, Eq. (3.29) can be written
(

dA
dτ

)2

= 2
GNM

c2R0
A − A2 . (3.31)
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This equation has the following solution for the growing mode

A(τ) =
GNM

c2R0
(1 − cos(τ)) (3.32)

We can now express the cosmic time as a function of the conformal time by using Eq. (3.30)

t(τ) =
GNM

c3
(τ − sin(τ)) , (3.33)

and inject this into the expression of the background density in Eq. (3.28) to get

ρ(τ) =
1

6πGN

[

GNM

c3
(τ − sin(τ))

]−2

. (3.34)

The time evolution of the overdensity is then

δ(τ) =
ρ

ρ
− 1 =

9

2

(τ − sin(τ))2

(1 − cos(τ))3
− 1 . (3.35)

This expression is valid for the entire lifetime of the overdensity, even when it enters the non-linear
regime. Note that it does not explicitly depend on the mass of the perturbation.

Time evolution Let us analyse in detail the evolution of the overdensity. At early times we
have τ ≪ 1 and

δ(τ) =
3

20
τ2 =

3

20

(

6 c3

GNM
t

)2/3

, (3.36)

which is obtained by using Eq. (3.33). The δ ∝ t2/3 behaviour is precisely the one predicted by
linear theory for a matter-dominated universe. The evolution quickly departs from the prediction
of linear theory however, as can be seen on the left panel in Fig. 3.2. While the linear overdensity
remains finite at all times, the spherical model prediction diverges as τ → 2π. On the right panel
in Fig. 3.2, we show the evolution of the scale factor A. At first, A follows the evolution of the
background A ∝ τ2 then quickly decouples and starts collapsing at τ = π.

Virialization The spherical model predicts a collapse of the overdense region to a singularity.
However, a realistic perturbation is not perfectly spherical and the system is expected to reach a
steady state. The equilibrium of a self-gravitating structure can be characterized via the scalar
virial theorem, see e.g., Binney & Tremaine (1987), which states that a system in a steady state
satisfies

2K + W = 0 . (3.37)

In this equation, K is the total kinetic energy and W the potential energy of the system. We
can ask what is the radius at which the spherical perturbation reaches its virial equilibrium.
First, let us compute the potential energy of a homogeneous sphere of mass M and radius R.
We consider a radial shell of thickness dr at radius r, its potential energy is

dW = −GN mshell (4/3 π r3ρ)

r
, (3.38)

where mshell = 4πr2dr. Integrating over all radial shells, we get

W = −3

5

GNM2

R
. (3.39)
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Figure 3.2 – Left panel: Evolution of the overdensity δ as a function of the dimensionless conformal
time τ . Are shown the prediction of the spherical collapse model (red curve) and the linear theory (blue
curve) Right panel: Evolution of the scale factor (with arbitrary normalization) within the perturbation
as a function of the conformal time.

The radius of the spherical density has no choice but to follow the evolution of the scale factor, as
displayed on the right panel of Fig. 3.2. Consequently the scale factor, and therefore the radius,
reaches its maximum at τ = π. At this point we have dR/dτ = 0 and therefore the kinetic energy
is K = 0. Consequently the total energy of the structure is Etot(Rmax) = W (Rmax). Now let us
compute the kinetic energy when the radius is R = Rmax/2:

K(Rmax/2) = Etot − W (Rmax/2)

= W (Rmax) − W (Rmax/2)

= −1

2
W (Rmax/2) ,

(3.40)

which gives the virial relation in Eq. (3.37). Therefore we can assume the structure reaches
equilibrium when its radius has decreased to a value equal to half its maximum Rvir = Rmax/2.
This corresponds to a conformal time τvir = 3π/2. However, simulations show that virial
equilibrium is reached later so τvir = 2π is usually assumed. The corresponding cosmic time is
computed using Eq. (3.33)

tvir = 2π
GNM

c3
. (3.41)

The spherical collapse model predicts an infinite density at this time, which is not of great use.
The prediction of the linear theory, however, remains finite. If the linear overdensity δlin(t) is
defined using Eq. (3.36), we get at the time of virial equilibrium

δlin(tvir) =
3

20

(

6 c3

GNM
tvir

)2/3

=
3

20
(12π)2/3 ≃ 1.686 . (3.42)

This value is independent of the perturbation’s mass or its time of collapse and is therefore
universal. Note this value does not reflect in any way the actual overdensity of the structure since
it has fully entered the non-linear regime by then. It is a very useful result nonetheless because
it allows to define a threshold for the virialization of a non-linear structure through linear theory.
This remarkable result is the starting point to compute the mass function of dark matter halos.
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3.1.2 The halo mass function

The previous section dealt with the time evolution of small perturbations. In this section, we
investigate the statistics of these perturbations and compute the Press & Schechter mass function
of dark matter halos.

3.1.2.1 Power spectrum and transfer function

We previously defined the overdensity field δ(þx). It is standard, when studying the statistics of
cosmological structures, to consider δ as being a random field. This is meaningful if the initial
conditions on the density field are set by a stochastic process. This is the case in the standard
inflationary paradigm where the density fluctuations are seeded by the quantum fluctuations of
a scalar field called the inflaton (Guth & Pi, 1982; Hawking, 1982; Starobinsky, 1982; Bardeen
et al., 1983). When dealing with a random field, it is convenient to introduce its moments, which
characterize the distribution function of the field. By definition of the overdensity field, the first
moment is 〈δ(þx)〉 = 0. The two-point correlation function is a priori less trivial and reads

ξ(þx1, þx2) ≡ 〈δ(þx1)δ(þx2)〉 , (3.43)

where the average is taken over different initial configurations of the overdensity field. In agreement
with the Cosmological Principle, the overdensity field is assumed statistically homogeneous and
isotropic, therefore ξ(þx1, þx2) = ξ(|þx1 − þx2|). Consequently we can write

ξ(r) = 〈δ(þx + þr) δ(þx)〉 . (3.44)

The variance of the field is simply σ2 = ξ(0). Using our definition of the Fourier transform in
Eq. (3.12), we can show

ξ(r) =
1

(2π)3

∫

Pm(k) eiþk.þr d3þk , (3.45)

where

Pm(k) ≡ V
〈

|δ(þk)|2
〉

(3.46)

is the matter power spectrum. Note that the power spectrum has dimensions of a volume. A
dimensionless power spectrum is often introduced

∆2
m(k) =

k3Pm(k)

2π2
, (3.47)

so that integration of a quantity A(k) over momentum þk can be written

∫

d3þk

(2π)3
Pm(k) A(k) =

∫

d ln k ∆2
m(k) A(k) . (3.48)

For the correlation function, integration over the angles gives the simple expression

ξ(r) =

∫ ∞

0
∆2

m(k)
sin(kr)

kr
d ln k . (3.49)

To compute the distribution of cosmological structures, we have to make an assumption on the
distribution function of the overdensity field. The simplest case is to assume the field follows a
Gaussian distribution at each point þx

Px(δ) dδ =
1√

2πσ2
exp

[

− δ2

2σ2

]

dδ . (3.50)
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Since the variance is independent of þx, so is the distribution. The real and imaginary part
of δ(þk) are also distributed according to a Gaussian distribution. Additionally, all modes þk
are independent of each other. A Gaussian distribution is conveniently entirely determined by
its second moment, therefore the power spectrum alone is enough to characterize the whole
distribution. This is a very nice and practical feature, and it is standard to assume a Gaussian
distribution for the overdensity field for this reason. This simple case is also a standard prediction
of many models of inflation (Martin et al., 2014). Furthermore, observations so far do not show
any sign of non-gaussianity. We do not expect the Gaussian assumption to hold in the non-linear
δ & 1 regime however. One reason is that the non-linear evolution mixes the modes, it is therefore
unlikely that their distribution remain independent. Another simpler reason is that by definition
of the overdensity in Eq. (3.14) we have δ > −1, while the Gaussian distribution is even and
extends to arbitrary low values of δ.

Inflationary models predict the power spectrum of primordial fluctuations, which is usually
called the primordial power spectrum. What is needed to compute the mass function of dark
matter halos is the power spectrum today. Perturbation modes today are related to their initial
condition through the transfer function T (k). Parametric fitting formulas for T (k) are given
by Eisenstein & Hu (1998); Eisenstein & Hu (1999). The transfer function is shown on the left
panel in Fig. 3.3. We show T (k) when only CDM is taken into account (blue curve) and when
baryonic features are included (red curve). There is little difference between the two, though one
notes the presence of wiggles in the transfer function accounting for baryonic effects. This is a
signature of baryonic acoustic oscillations. The asymptotic behaviour of the transfer function is
the following:

T (k) =

{

1 for k ≪ keq
ln(k)

k2 for k ≫ keq
(3.51)

where keq is the mode entering the horizon at equivalence. The suppression of power on small scales
in due to the suppression of growth during the radiative era [the Meszaros effect (Meszaros, 1974)]:
small-scale modes entering the horizon before matter-radiation equality grow logarithmically
until equality, while mode entering during the matter-dominated era grow efficiently right away.

The power spectrum today is related to the primordial spectrum Pm,0 through

Pm(k) = |T (k)|2 Pm,0(k) . (3.52)

The primordial power spectrum inferred from observations of the Cosmic Microwave Background
has a power-law behaviour Pi(k) ∝ kns with ns = 0.9677 ± 0.0060 according to Ade et al. (2016).
A spectrum with index ns = 1 is called scale-invariant or Harrison-Zel’dovich spectrum (Harrison,
1970; Zel’dovich & Novikov, 1970; Peebles & Yu, 1970), therefore the power spectrum of the
CMB is nearly scale-invariant. The term scale-invariant can be understood by looking at the
gravitational potential power spectrum Pφ ∝

〈

|δφ|2
〉

. The potential fluctuation is related to the
density fluctuation through Poisson’s equation (3.13) which gives

δφ(k) = −3

2

H2
0 Ωm,0

k2 a
δ(k) . (3.53)

Consequently, we have Pφ ∝ k−4 Pm(k) ∝ kns−4 and the dimensionless power spectrum ∆2
φ ∝

k3 Pφ ∝ kns−1. For a value ns = 1, we see that the dimensionless gravitational potential power
spectrum is independent of k. This is not true for the dimensionless matter power spectrum
however, which has the scaling ∆2

m ∝ kns+3.
The ΛCDM transfer function as shown in the left panel on Fig. 3.3 assumes a perfectly cold

dark matter fluid. If the dark matter particle is a WIMP, the collisional and collisionless damping
mechanisms discussed in Sec. 2.4 leave an imprint on the dark matter transfer function. This
translates into a strongly suppressed transfer function above a comoving mode given by the
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Figure 3.3 – Left panel: CDM transfer function (blue) and matter transfer function (red) from
Eisenstein & Hu (1998). Right panel: linear matter power spectrum in the cosmology of Ade et al.
(2016).

kinetic decoupling of the dark matter particle (Loeb & Zaldarriaga, 2005). Consequently, the
dark matter power spectrum is also suppressed below that scale and strongly departs from the
scale-invariant spectrum (Green et al., 2005).

3.1.2.2 Filtering

Our goal is to derive the halo mass function, that is the number density of dark matter halos per
unit of mass. In order to do this, we need to assign a mass M, or a scale length R, to a region of
space from the overdensity field δ(þx). This is achieved by defining a smoothed density field

δR(þx) =

∫

δ(þx′) W (þx − þx′, R) d3þx′ , (3.54)

where W is a window function (with units of inverse volume). In Fourier space, we have simply

δ̂R(þk) = W̃ (kR) δ̂(þk) . (3.55)

A common choice for the window function is the real-space top-hat

W (þx − þx′, R) =

{

3/(4πR3) if |þx − þx′| 6 R
0 if |þx − þx′| > R .

(3.56)

The associated Fourier transform is

Ŵ (kR) =
3

(kR)3
[sin(kR) − kR cos(kR)] . (3.57)

Another popular choice is the Gaussian window function

W (þx − þx′, R) =

(

1

2πR2

)3/2

exp

[

−|þx − þx′|2
2 R2

]

, (3.58)

with Fourier transform

Ŵ (kR) = exp

[

−(kR)2

2

]

. (3.59)
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A third useful choice is the Fourier-space top-hat window

Ŵ (kR) = Θ(1 − kR) , (3.60)

where Θ is the Heaviside step function. This window does not have a well-defined volume in real
space. A volume can be assigned in a formal way by requiring that W (0, R)V (R) = 1, which
leads V (R) = 6π2R3. Note that the windows are all normalized

∫

W (þx, R) d3þx = 1 . (3.61)

Furthermore, their Fourier transform is defined through

Ŵ (kR) =

∫

W (þx, R) e−iþk.þx d3þx , (3.62)

which differs by a factor 1/V from our definition of the Fourier transform given in Eq. (3.12)
(this factor is actually included in the definition of W ). A variance can be straightforwardly
defined for the smoothed density field

σ2
R ≡

〈

δ2
R(þx)

〉

=
1

(2π)3

∫

Pm(k) |Ŵ (kR)|2 d3þk

=

∫

∆2
m(k) |Ŵ (kR)|2 d ln k .

(3.63)

The smoothing on a length scale R can be translated into a smoothing on a mass scale M through
the volume of the window in real space. This volume can be generically written V (R) = γ R3,
with γ a constant equal to 4π/3 for the top-hat filter, (2π)3/2 for the Gaussian filter and 6π2 for
the k-space top-hat. The mass is then

M = ρ V (R) . (3.64)

with ρ the background density (which is time-dependent in general). For a power-law spectrum
P (k) ∝ kn, we get the scaling of the variance σ2

R ∝ R−(3+n) ∝ M−(3+n)/3. Since the smoothed
density field δR is linearly related to the density field, it also follows a Gaussian statistics, and
its variance is simply σ2

R. The mass root mean square σM is shown in the left panel on Fig. 3.4.

3.1.2.3 The Press-Schechter mass function

We now arrive at the actual computation of the mass function. The original derivation was
performed by Press & Schechter (1974). Though the derivation has some important shortcomings,
which we briefly discuss later on, it leads to a very simple and powerful expression for the mass
function. A nice review on the Press-Schechter mass function and its extensions can be found in
Zentner (2007). The main assumption of Press and Schechter relies on the spherical collapse
model. The idea is that a smoothed fluctuation δM (t) equating some critical overdensity δc

collapses into a halo of mass M . If a region of scale R (mass M) has a density fluctuation δ > δc,
then we can reasonably conceive that a more extended region of scale R′ > R (mass M ′ > M)
would be less contrasted with δ′ < δ, while still with δ′ > δc. This leads to the assumtion that if
δR > δc, there is a region of size R′ > R that crosses the threshold δR′ = δc. This means that
for a given scale R (M), probing δ > δc upward translates into probing more and more massive
collapsed objects of mass M ′ > M . The value of δc is usually set to be δc = 1.69, as predicted by
the spherical collapse model in Eq. (3.42). If we assume the probability distribution of δM is the
Gaussian distribution with variance σ2

M , the fraction of dark matter collapsed into halos of mass
M or higher is

F (M) =

∫ ∞

δc

(

1

2πσ2
M

)3/2

exp

[

− δ2

2σ2
M

]

dδ

=
1

2
erfc

(

ν√
2

)

.

(3.65)
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Here erfc is the complementary error function and ν ≡ δc/σM is the peak height. The number
density of objects with mass between M and M + dM is then

dn

dM
dM =

ρ

M

∣

∣

∣

∣

dF

dM

∣

∣

∣

∣

dM

=
ρ

M2

∣

∣

∣

∣

d ln σM

d ln M

∣

∣

∣

∣

ν

√

2

π
exp

[

−ν2

2

]

dM .

(3.66)

A factor of two has been added by hand to the formula to get the correct estimate. This is related
to the cloud-in-cloud problem which we discuss below. Note that if σM has a weak dependence
with respect to M , which is the case if the power spectrum is scale-invariant, then the mass
function has a power-law behaviour dn/dM ∝ M−2 at small masses and is exponentially cut
off at large masses. The typical mass M∗ at which the transition happens is set by σ(M∗) = δc.
The Press-Schechter mass function multiplied by M2 is shown in the right panel in Fig. 3.4. The
quantity M2 dn/dM spans less than two orders of magnitude over 23 orders of magnitude in
M , which shows the goodness of the approximation dn/dM ∝ M−2 below the galactic scale
M ∼ 1012 M⊙. The mass function falls sharply above M ∼ 1014 M⊙.

3.1.2.4 Beyond the Press-Schechter theory

The Press-Schechter mass function is surprisingly successful at capturing the behaviour of dark
matter halos found in cosmological simulations. The derivation of the formula suffers however
from the multiplication by a factor of two with little justification. There is actually already
a problem in the expression of the halo fraction in Eq. (3.65). This can be understood from

the scaling σ2 ∝ M−(3+n)/3, which implies that σ
M→0−→ ∞, and hence that ν

M→0−→ 0. Hence the
fraction of mass contained in collapsed objects of arbitrary small mass is F (0) = 1/2, i.e. the
model predicts that only half of the dark matter can collapse into halos. This issue was already
noted by the original authors who argued that the discrepant factor of two is linked to the
cloud-in-cloud problem. The idea is that an under-dense region δM (þx) < δc can be embedded in
an over-dense region δM ′(þx) = δc and will eventually collapse into a halo of mass M ′, therefore
under-dense regions should also be included in the halo fraction (3.65). Including these clouds-
in-cloud certainly increases F (M), however it is not clear that this leads to an exact factor of
two.

The cloud-in-cloud problem was solved by Bond et al. (1991) who used the excursion set
theory to consistently derive the mass function. Amazingly, they recovered the Press-Schechter
mass function in Eq. (3.66) with the factor of two lacking in the original derivation. The formalism
they used is therefore often referred to as the extended Press-Schechter formalism. This technique
is not only a tool to derive mass functions, it can also be used to study the formation history of
dark matter halos. In particular, it can be used to simulate merger trees as it was first shown by
Lacey & Cole (1993). The extended Press-Schechter theory motivates the study of generalized
mass functions of the form

dn

dM
=

ρ

M2

∣

∣

∣

∣

d ln σM

d ln M

∣

∣

∣

∣

ν f(ν) , (3.67)

where f(ν) = dF/dν, and for the Press-Schechter mass function f(ν) =
√

2/π exp(−ν2/2). The
derivation of Bond et al. (1991) was extended beyond the spherical collapse approximation by
Sheth & Tormen (1999), see also Sheth et al. (2001), to include ellipsoidal collapse. This leads to
a simple form of the mass function

ν f(ν) = 2A

(

1 +
1

ν ′2q

)

(

ν ′2

2π

)1/2

exp

(

−ν ′2

2

)

, (3.68)



Chapter 3. Dark matter halos and subhalos in the Universe 57

where ν ′ =
√

aν, a = 0.707, q = 0.3, and A ≃ 0.322. The original Press-Schechter mass function
in Eq. (3.66) is recovered with a = 1, q = 0 and A = 1/2. The Sheth-Tormen mass function is
compared to the Press-Schechter mass function in the right panel on Fig. 3.4. The Sheth-Tormen
mass function predicts more structures at very high masses where the function is sharply falling,
less structures below down to M ∼ 106 M⊙, and more structures even below. The latter regime is
not probed by observations nor cosmological simulations, hence the robustness of the Seth-Tormen
and Press-Schechter mass functions in that region is unknown.

Figure 3.4 – Left panel: Root mean square of the smoothed overdensity field as a function of the
mass. Right panel: Press-Schechter mass function (solid line) and Seth-Tormen mass function (dashed
line). We used the cosmology of Planck 2015 (Ade et al., 2016).

3.1.3 The internal structure of dark matter halos

In this section, we describe the internal structure of dark matter halos. Since the evolution of a
virialized dark matter structure is a non-linear process, the prime tool to study it is numerical
simulation. The shape of the density profile of dark matter structure is the result of several
physical processes. Some, such as phase-mixing and violent relaxation (Lynden-Bell, 1967; Binney
& Tremaine, 1987), are internal to the structure and may drive it to its equilibrium state. Others
come from the interaction of the halo with its environment, such as accretion and mergers. A
naive expectation would be that the internal shape of a halo depends on its particular history
and its environment. Quite remarkably, N-body cosmological simulations where all these effects
are accounted for have shown that this is not the case. Indeed, if the effect of baryonic matter is
ignored, virialized dark matter halos have a universal shape. This fundamental result was first
established by Navarro et al. (1996); Navarro et al. (1997) and recently probed further down to
the origin of the first peaks by Angulo et al. (2016). Another investigation based on simulations
was done here Ogiya & Hahn (2018). It was shown by Navarro et al. (1996); Navarro et al. (1997)
that CDM halos are spherical and their density profile is very well fitted by what is now called
the Navarro-Frenk-White (NFW) profile

ρ(r) = ρs
1

x

1

(1 + x)2 (3.69)

x ≡ r

rs
(3.70)
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Fitting parameters ρs and rs are called scale density and scale radius, respectively, and they
depend on the mass and the size of the dark matter halo. The NFW profile exhibits a steep
r−1 diverging behaviour as r ≪ rs and a steeper r−3 tail when r ≫ rs. However, if dark matter
self-annihilates, then a core should appear at the very center of a halo around the radius at which
the dynamical time exceeds the annihilation time

tdyn ≃ [GNρ(rcore)]
−1/2 > tann ≃ m

〈σannv〉 ρ(rcore)
. (3.71)

While the emergence of this profile is reproduced by most simulations, it is still not clear what are
the physical mechanisms setting this power-law scaling. The mass can be expressed analytically

m(r) = 4π

∫ r

0
dr′ r′2 ρ(r′)

= 4πρsr
3
s

[

ln (1 + x) − x

x + 1

]

,
(3.72)

hence it has a logarithmic divergence at large radii. This is not an issue in practice since one
can always associate to a halo a virial radius and compute a finite mass within that radius. A
generalized version of the NFW profile is often used in the literature

ρ(r) = ρs x−γ [1 + xα](γ−β)/α (3.73)

The index γ measures the inner slope of the dark matter profile while β controls the outer
slope, and α sets the transition between the two regimes. The NFW profile is recovered for
(α, β, γ) = (1, 3, 1). Since the original work of Navarro, Frenk and White, it has been found that
the Einasto profile (Einasto, 1965, 1968) actually provides a better fit to CDM halos found in
simulations (Navarro et al., 2004; Merritt et al., 2005; Graham et al., 2006; Gao et al., 2008;
Springel et al., 2008). The Einasto profile takes the following form

ρ(r) = ρs exp

{

− 2

α
[xα − 1]

}

. (3.74)

While the NFW profile has a central cusp, the Einasto profile has a core.1 It involves a free
parameter α which sets the transition between the inner core and the exponential behaviour in
the outskirts, hence it takes the same role as the α parameter in Eq. (3.73). The α parameter in
the Einasto profile is found in simulations to be very small, typically of order α ∼ 0.1, hence the
core is very small. This is a general property of CDM halos: they present little to no core and
exhibit instead a cuspy behaviour in their central regions. Some (α, β, γ) and Einasto profiles
are shown in the left panel of Fig. 3.5, normalised to their scale density ρs.

It has been found in dedicated simulations that near the free-streaming scale, the profile of
halos is significantly cuspier than the NFW profile, exhibiting instead a ρ ∝ r−1.5 behaviour
(Ishiyama et al., 2010; Anderhalden & Diemand, 2013; Ishiyama, 2014; Ogiya & Hahn, 2018). We
do not account for this effect in the following but note that it might have interesting consequences
on indirect searches for instance.

3.1.3.1 The concentration parameter

The shape of a dark matter halo with a given virial mass mvir is often described with a single
parameter called the concentration

cvir =
rvir

r−2
, (3.75)

1Note however that the central region of dark matter halos in simulations suffer from resolution loss, hence the
observation of a core might not reflect the true physical behaviour of the profile.
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Figure 3.5 – Left panel: a variety of density profiles often used to describe CDM halos, including the
NFW profile (α, β, γ) = (1, 3, 1) and several Einasto profiles. Right panel: density contrast ∆ for the
parametrisation of Bryan & Norman (1998) (red), the value in a matter dominated universe (green) and
∆ = 200 (blue).

where rvir is the virial radius of the halo and r−2 is defined as

d ln ρ

d ln r

∣

∣

∣

∣

r=r−2

= −2 . (3.76)

The virial radius is set through the relation

m(rvir)
4
3 π r3

vir

≡ ∆vir ρc , (3.77)

where ρc is the critical density and ∆vir is the density contrast defined by

∆vir ≡ δvir + 1 , (3.78)

with δvir the overdensity at the epoch of virialization. This density contrast can be evaluated
through the spherical collapse model, see Sec. 3.1.1.3, and it depends on redshift and cosmology.
Fitting formulae are provided by Bryan & Norman (1998) in terms of the parameter x = Ωm(z)−1
where Ωm(z) is the matter abundance given in Eq. (2.29). The formulae in the absence of curvature
(ΩK = 0) is

∆vir = 18π2 + 82 x − 39 x2 . (3.79)

Note that ∆ = 18π2 is the value of the density contrast in a matter dominated universe. To
avoid the dependence over the cosmological parameters, it is conventional to fix the value of the
density contrast to ∆ = 200. This is a conservative choice in that it underestimates the virial
radius, as one can see on the right panel in Fig. 3.5. From now on, we fix the virial contrast to
∆ = 200 and consider the virial quantities r200, m200 and c200. The radius r−2 is proportional to
the scale radius rs up to a numerical factor that depends on the profile. For the αβγ profile in
Eq. (3.73), we have

r−2 = rs

(

2 − γ

β − 2

)1/α

. (3.80)
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hence r−2 = rs for the NFW profile. Similarly, we also have r−2 = rs for the Einasto profile.
Note that r−2 is ill-defined for β = 2, which happens in the case of the cored isothermal sphere
(α, β, γ) = (2, 2, 0) for instance

ρ(r) =
ρs

1 + r2

r2
s

. (3.81)

In that case, one can simply choose r−2 ≡ rs.

The concentration parameter is directly related to the scale density ρs. Given the virial mass
and concentration m200 and c200, one can compute the scale parameters ρs and rs. As shown
before, we have

m(r200)
4
3 π r3

200

= 200 ρc . (3.82)

For a given density profile, we introduce a dimensionless mass profile m̃ such that

m(r) = 4πρs r3
s m̃

(

r

rs

)

, (3.83)

hence Eq. (3.82) becomes

4πρs m̃
(

r200
rs

)

4
3 π

(

r200
rs

)3 = 200 ρc . (3.84)

The ratio r200/rs is related to the concentration up to profile-dependent numerical factor therefore
we write

r200

rs
= η c200 , (3.85)

with η = [(β − 2)/(2 − γ)]1/α for αβγ profiles according to Eq. (3.80). We get the scale density
as a function of the concentration only

ρs =
200 ρc

3

(η c200)3

m̃ (η c200)
. (3.86)

The virial mass is simply

m200 ≡ m(r200) =
4

3
π r3

200 200 ρc

=
4

3
π (η c200 rs)

3 200 ρc

(3.87)

therefore

rs =
1

η c200

(

3 m200

4π 200 ρc

)1/3

. (3.88)

This shows that the mass and the concentration together completely determine the density profile
of a dark matter halo.
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3.1.3.2 The mass-concentration relation

Though mass and concentration are independent parameters, a correlation between the two is
found in cosmological simulations as already noticed by Navarro et al. (1996). This is quite
natural in the context of hierarchical clustering since smaller structures are more likely to collapse
earlier, when the Universe was denser. A variety of studies have proposed semi-analytical models
of this mass-concentration relation, see e.g., Navarro et al. (1996); Bullock et al. (2001); Macciò
et al. (2008); Prada et al. (2012); Dutton & Macciò (2014); Ludlow et al. (2014); Diemer &
Kravtsov (2015); Ludlow et al. (2016); Diemer & Joyce (2018). A fit of the relation for field
halos is provided by Sanchez-Conde & Prada (2014), and by Moliné et al. (2017) for subhalos in
simulated Milky-Way-like galaxies – we will further investigate the later case based on theoretical
grounds.

We review the model of Bullock et al. (2001) as modified by Macciò et al. (2008) that helps
understand and predict this relation. The first step is to relate the mass of a halo at the redshift
of collapse zc to its virial mass at redshift z < zc

m∗(zc) = F m200(z) , (3.89)

where F is a free parameter to be determined, assumed to be independent of the redshift of
collapse, and m200 is the virial mass

m200 =
4

3
π r3

200 200 ρc(z) . (3.90)

The spherical collapse model prediction in Eq. (3.42) defines the characteristic mass as the one
crossing the non-linear threshold at the collapse redshift zc

σ(m∗, zc) = 1.686 . (3.91)

Note that

σ(m∗, z) = σ(m∗, 0) D+(z) , (3.92)

where D+ is the linear growth factor already introduced in Eq. (3.25). The redshift of collapse
is shown as a function of the mass in the left panel on Fig. 3.6. The redshift is a decreasing
function of the mass i.e. more massive halos collapse later as expected in the hierarchical scenario
of structure formation. All structures collapse at a much lower redshift than matter-radiation
equality which takes place at zeq ≃ 3300 (Ade et al., 2016). The choice of the window function
defining σ(M) introduces a small uncertainty on the redshift. In the right panel, we compare
the redshift of collapse to the redshift when structures enter the non-linear regime, defined for a
given mass m by

σ(m, znl) = 1 . (3.93)

Obviously, this redshift is always superior to the redshift of collapse zc. We note that the redshifts
of collapse we obtain are significantly smaller than those found in other studies (Diemand et al.,
2005; Green et al., 2005). This might be due to differences in the cosmological parameters since
we used the cosmology of Ade et al. (2016) while older studies relied on the results from WMAP.

Let us go back to the concentration model. We introduce a characteristic density ρ̃s defined
as

ρ̃s(z) =
m200(z)
4
3 π r3

s (z)

=

(

r200(z)

rs(z)

)3

200 ρc(z)

= [η c200(z)]3 200 ρc(z) ,

(3.94)
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Figure 3.6 – Left panel: redshift of collapse as defined by σ(F m200, zc) = 1.686, with F = 0.01 and
for various choices of the window function. Right panel: redshift of collapse and redshift of non-linear
evolution, defined by σ(F m200, zc) = 1.686 and σ(F m200, znl) = 1 respectively. We used the real space
top-hat window function, and show the results for two values of the F parameter: F = 0.01 (solid line)
and F = 1 (dashed line).

with the η parameter introduced in Eq. (3.85). Note that ρ̃s is a priori different from the scale
density ρs. In the model of Macciò et al. (2008), the characteristic density is assumed to be
independent of the redshift, which implicitly entails that further evolution of the halo after
virialization does not strongly affect its very internal structure. If we further assume that the
density contrast ρ̃s/(200 ρc) is universal at any collapse redshift zc, and set to a constant K3 to
be determined, then we get2

c200(z) = K

[

ρc(zc)

ρc(z)

]1/3

= K

[

H(zc)

H(z)

]2/3

. (3.95)

The concentration is therefore related to the mass m200 through the redshift of collapse zc. The
model has two independent free parameters F and K that must be calibrated on cosmological
simulations. For the cosmology of Planck 2013 (Ade et al., 2014), it is found by Dutton & Macciò
(2014) that F = 0.01 and K = 4.2 provide a good fit to their simulations. Even though this
model is tested over five decades of mass from dwarf galaxies to galaxy clusters, it is shown by
Sanchez-Conde & Prada (2014) that it also agrees with simulations of Earth-mass halos with
m200 ∼ 10−6 M⊙ (Diemand et al., 2005; Ishiyama et al., 2010). We show the mass-concentration
relation in the Planck cosmology in the left panel on Fig. 3.7. We show the model of Prada
et al. (2012), using the fitting function provided by Sanchez-Conde & Prada (2014) (P12 in the
legend), as well as the concentration from the Bullock et al. (2001); Macciò et al. (2008) model
we discussed above (P01/B08 in the legend). Both models give a close prediction over eighteen
decades in mass, with a predicted concentration of around 10 for Milky-Way-like halos and
around 60 for Earth-mass halos. Since the scale density of a halo is uniquely determined by its
concentration, we can compute ρs as a function of the mass using a model for the concentration.
The result is shown in the right panel on Fig. 3.7. Unlike the concentration, the scale density
depends on the functional form of the density profile. This leads to large differences as we show
by comparing ρs for an NFW and an Einasto profile.

2This assumes that halos are isolated, or do not experience major mergers after their formation (accretion of
much smaller objects only).
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In the following, we use the fitting formulae for c200(m200) provided by Sanchez-Conde &
Prada (2014) of the model of Prada et al. (2012) and do not consider the Bullock et al. (2001);
Macciò et al. (2008) model.

Figure 3.7 – Left panel: concentration c200 at z = 0 for the model of Prada et al. (2012) with the
fitting function given in Sanchez-Conde & Prada (2014) (red line), and the model of Bullock et al. (2001)
revised by Macciò et al. (2008); Dutton & Macciò (2014) (green, blue and magenta lines). Right panel:
scale density ρs in units of the local density, for the concentration models shown in the left panel, and two
inner profiles (NFW and Einasto).

3.2 Subhalos and their evolution

The previous section describes the formation of dark matter halos and their statistics from
a cosmological point of view. The hierarchical scenario of structure formation predicts that
large dark matter halos are formed by the collapse of a collection of smaller, already formed
halos. We can wonder whether these small objects survive the collapse of their larger host
structure and are still present in galactic halos today. This is a crucial question for particle
dark matter searches as these subhalos can strongly impact predictions for direct and indirect
searches as well as gravitational searches, as discussed in Chap. 4. The evolution of a subhalo
inside a galactic halo is a priori very complex as it experiences a variety of gravitational effects
from the host galaxy: tidal stripping, shocking, heating, dynamical friction, interactions with
baryons (shocking by the disc, encounter with stars), etc. To account for all these effects in
a self-consistent way, study of subhalos often rely on numerical cosmological simulations like
Via Lactea II Diemand et al. (2008) or Aquarius Springel et al. (2008) for dark matter-only
simulations. For numerical studies of subhalos in simulations including baryons, see e.g., Zhu
et al. (2015); Garrison-Kimmel et al. (2017); Rodriguez-Puebla et al. (2016). These simulations
allow to self-consistently follow the evolution of subhalos from their collapse to z = 0. A major
drawback is the very high computational cost of numerical simulations, which strongly limits
their resolution. As an example, the best mass resolution achieved in the Aquarius simulation is
Mres ≃ 103 M⊙ which is orders of magnitude higher than the lowest mass achievable in typical
WIMP models mmin ≃ 10−6 M⊙, see Sec. 2.4. Some simulations focus on the smallest scales, see
e.g., Diemand et al. (2005); Ishiyama et al. (2010); Anderhalden & Diemand (2013); Ishiyama
(2014), but can only do so at very high redshifts and therefore cannot investigate subhalos in
galactic halos today. Moreover, it has recently be pointed out that cosmological simulations
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are very likely to strongly overestimate the tidal disruption of subhalos due to resolution limit
(van den Bosch et al., 2018; van den Bosch & Ogiya, 2018). It is therefore important to question
this survival issue on first-principle grounds.

An alternative approach to the subhalo problem is semi-analytic modelling, see e.g., Berezinsky
et al. (2003); Green & Goodwin (2007); Kamionkowski et al. (2010); Gan et al. (2010); Bartels
& Ando (2015); Han et al. (2016); Stref & Lavalle (2017); Hiroshima et al. (2018), see also
Berezinsky et al. (2014) for a review. Given the complexity of the issue, analytic calculations
are possible only at the cost of approximations and therefore partial loss of consistency. A
major benefit of this approach is the possibility of investigating all scales at play in one unified
framework. It also provides ways to account for known cosmological and dynamical constraints.
This is especially appealing for dark matter searches which is why we focus on this approach in
the following. We still keep an eye on the results of numerical simulations to qualitatively check
the validity of our calculations.

In what follows we present semi-analytic methods to model tidal effects, including the
contribution of the host halo, the galactic disc and the stars. Before going into the details, let
us give a rough estimate of the typical number of subhalos in a Milky-Way-like galaxy. An
estimation of this number can be obtained from cosmological simulations. For instance, in the
Aquarius simulation of Springel et al. (2008) the number of subhalos found in the best resolved
Milky-Way-sized halo is ∼ 300 000, with the mass resolution Mres ≃ 105 M⊙. Extrapolating the
M−2 behaviour of the halo mass function to subhalo masses down to mmin = 10−6 M⊙, we get a
total number of subhalos Nsub ≃ 3 × 1016! Such a gigantic number suggests that subhalos do
not ”see” the clumpy nature of the galactic halo and essentially behave as if they were moving
through a smooth potential. This simplifies our study of tidal effects.

3.2.1 Tidal stripping

The first effect we investigate is tidal stripping. When a subhalo orbits a host potential, part of
its material is stripped away by the host galaxy. This effect has long been known to be relevant
in Galactic dynamics as it explains for instance the observed finite extensions of globular clusters
(King, 1962).

3.2.1.1 Tidal radius for point masses

Let us consider two point masses m and M orbiting each other at a fixed separation R, with
M ≫ m, such that the rotation angular frequency about the center of mass is given by

ω =

√

GN(m + M)

R3
. (3.96)

Placing ourselves in the co-rotating frame, we now investigate the motion of a vanishingly
light test-mass particle in the joint potential induced by the two bodies, assuming it is initially
positioned at a distance x ≪ R from the lightest one. This can be thought of as a WIMP orbiting
a point-like subhalo embedded in the potential generated by a point-like host halo. This is called
the restricted three-body problem (Spitzer, 1987; Binney & Tremaine, 1987). We consider a
massless test particle confined to the axis linking the masses m and M , and call x its distance to
the mass m. The equations of motion for the test particle are

ẍ =
GN m

x2
− GN M

(R − x)2
+

GN(M + m)

R3

(

M

M + m
R − x

)

, (3.97)

where the last term accounts for the centrifugal force in the co-rotating frame. We look for a
stationary point ẍ = 0. To get a close expression for x, we assume M ≫ m, hence M represents
a galactic halo and m a satellite subhalo. This implies x ≪ R and we get the solution

x ≃ R

(

m

3M

)1/3

. (3.98)
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This stationary solution is actually the approximate position of a Lagrange point. It also defines
the radius of the Hill sphere, or Roche sphere (named after astronomers George William Hill
and Édouard Roche) which is the region of influence of a celestial body. More precisely, it is the
region inside which a particle is bound to the satellite rather than the host halo, therefore it
gives the maximal spatial extent of the satellite. This spatial boundary is referred to as the tidal
radius.

A very rough estimation of the tidal radius is obtained by assuming a point-like structure for
the Galaxy. Using Eq. (3.98), we get

rt,point1 ≡ R

(

mint(rt,point1)

3 Mtot

)1/3

, (3.99)

where Mtot = Mdm + Mbar is the total mass of the Galaxy, including both dark matter and
baryons. From now on, we refer to this definition as the first point-like Jacobi radius. This is an
implicit definition since the tidal radius appears on both sides of the equation. In practice we
solve this equation numerically to get the radius.

Assuming the Galaxy has a point-like structure is of course a very bad approximation, except
for subhalos orbiting in the outskirts of the dark halo. For a subhalo on a circular orbit of radius
R, we can instead define its tidal radius by replacing the total mass Mtot in Eq. (3.99) with
the mass M(R) within the orbit. We refer to this new definition as the second point-like Jacobi
radius

rt,point2 ≡ R

(

mint(rt,point2)

3 M(R)

)1/3

. (3.100)

Note that M(R) also includes both dark matter and baryons. As we go to very large radii, we
expect the value of rt,point1 and rt,point2 to coincide. We can rewrite Eq. (3.100) as

3 mint(rt,point2)

4π r3
t,point2

= 3 × 3 M(R)

4π R3
, (3.101)

which is

ρsub(rt,point2) = 3 ρhost(R) , (3.102)

where ρsub and ρhost(R) are the mean density of the subhalo and the host, respectively. Note
that the definition of the tidal radius in Eq. (3.100) is not considered in Stref & Lavalle (2017).

What is the mass and concentration dependence of the Jacobi radii? We saw in Sec. 3.1.3
that the scale density ρs is determined by the concentration parameter c200 alone, ρs = ρs(c200),
and is independent of the cosmological mass m200. The mass profile can be expressed

mint(r) = 4π

∫ r

0
r′2 ρ(r′) dr′ = 4πρsr

3
s m̃int(r/rs) , (3.103)

with m̃int a dimensionless function. For both point-like radii, we have

m̃int(rt,point/rs)

(rt,point/rs)3
=

3

ρs(c200)

M

R3
, (3.104)

where ρs and rs are the scale density and radius of the subhalo, and M refers to Mtot or M(R)
depending on the definition of the tidal radius. This shows that the ratio rt,point/rs only depends
on the concentration c200 and the radius of the orbit R, and is independent of the cosmological

mass m200. Consequently, rt,point depends on m200 like rs does, so rt,point ∝ m
1/3
200.



66 3.2. Subhalos and their evolution

3.2.1.2 Tidal radius for a smooth mass distribution

The case where the host has an extended mass distribution can be treated in a consistent way,
although the computation is more involved (Binney & Tremaine, 1987; Tollet et al., 2017). It
can be shown that the Jacobi radius is modified to

rt,smooth ≡ R







mint(rt,smooth)

3M(R)
(

1 − 1
3

d ln M
d ln R (R)

)







1/3

. (3.105)

We refer to this definition as the smooth Jacobi radius. As for the point-like case, the ratio
rt,smooth/rs is independent of m200. Indeed the ratio is solution of the equation

m̃int(rt,smooth/rs)

(rt,smooth/rs)3
=

3

ρs(c200)

M(R)

R3

(

1 − 1

3

d ln M

d ln R
(R)

)

, (3.106)

It has therefore the scaling with the cosmological mass rt,smooth ∝ m
1/3
200, similar to the point-like

radius. We note that if the host halo has a constant density d ln M/d ln R = 3, the right-hand
side of Eq. (3.105) diverges and the definition of the tidal radius breaks down. This is because
a subhalo evolving in a constant-density field experiences tidal compression which prevents its
mass from being transferred to its host, see Dekel et al. (2003) for a detailed discussion.

For the sake of comparison, we introduce another tidal radius rt,dens based on a simple
criterion involving only the density of the satellite and the host:

ρint(rt,dens) ≡ ρhost(R) . (3.107)

Unlike the Jacobi radii, this radius is not motivated by first principles. It is a rather phenomeno-
logical definition, as the radial boundary of a halo is defined as the point where its density reaches
the background density. Like in the case of the Jacobi radii, the ratio rt,dens/rs is independent of
m200 since the mass density profile is ρint(r) = ρs ρ̃int(r/rs) with ρ̃int a dimensionless function.
Consequently, rt,dens/rs is solution of

ρ̃int

(

rt,dens

rs

)

=
ρ(R)

ρs(c200)
, (3.108)

and only depends on c200 and R.
The tidal radii defined above assume a circular orbit for the satellite. However, we do not

expect subhalos to have circular orbits in general. A more realistic description should involve
elliptical orbits. Despite this approximation, it is found that a simple prescription such as
Eq. (3.105) gives a radius which is tightly correlated to the observed radius of subhalos in N-body
simulations, see e.g., Fig. 15 in Springel et al. (2008).

The different definitions of the tidal stripping radius rt are compared in Fig. 3.8. The position
dependence of the ratio rt/rs is shown for two Milky Way mass models from McMillan (2017):
the NFW model (left panel) and the (α, β, γ) = (1, 3, 0) model (right panel). Irrespective of the
definition, the tidal radius gets smaller and smaller as the subhalo orbits closer and closer to
the center of the Galaxy. The only exception is the smooth Jacobi radius in the cored dark
matter-only mass model, but as we discussed above, this definition of the tidal radius breaks
down when the density is too flat. This potential problem disappears when the baryons are
added to the mass model, hence it does not have any consequences in a realistic framework. We
observe that the point-like approximation leads to the strongest tides, while the smooth and
density-based models give rather close predictions. Interestingly, the exact shape of the Galactic
dark matter profile has no impact on the calculation when baryons are also included. This can
be seen by comparing the left and right panels of Fig. 3.8. The red curves (NFW+baryons)
and green curves (core+baryons) are nearly identical, hence the calculation of the tidal radius
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is robust and insensitive to the largely unknown inner shape of the dark halo profile. Fig. 3.9
shows the concentration dependence of the tidal radius for subhalos at the position of the Sun
(R⊙ = 8.21 kpc for the mass model considered here). This shows that tides have a stronger effect
on less concentrated structures. We compare subhalos with two different density profiles: either
an NFW profile, or an Einasto profile with αE = 0.17, see Eq. (3.74). The difference between the
two profiles is small over most of the relevant concentration range.

Both Fig. 3.8 and Fig. 3.9 show that the first Jacobi radius is smaller than all the other radii,
at all position in the host Galaxy and for all concentrations. The other radii, i.e. the second
and smooth Jacobi radii as well as the density-based radius, lead to comparable values. This is
an indication that the first Jacobi radius probably overestimates the effect of tides on subhalos.
Consequently, we do not consider this tidal radius in the following. From now on, each time a
tidal radius is referred to as ”point-like”, it actually refers to the second Jacobi radius defined in
Eq. (3.100). We stress that this is different from Stref & Lavalle (2017), where the only point-like
radius considered was the one defined in Eq. (3.99).

Figure 3.8 – Left panel: tidal radius to scale radius ratio as a function of the position inside the
Galaxy, for the NFW mass model of McMillan (2017). The subhalo internal profile is an NFW with
concentration c200 = 60. Right panel: same as left panel for the cored mass model of McMillan (2017).

3.2.2 Tidal shocking

We described tidal stripping which is the effect on a satellite of a constant or slowly-varying
gravitational potential. We now discuss the opposite situation where the gravitational potential
rapidly varies in time: this is called tidal shocking. The physical effect is very simple to
understand: as a subhalo passes by or passes trough a dense object (a dark matter cusp, a stellar
disc, a star,etc.), it experiences a strong gravitational field which strips away some particles
previously bounded to the subhalo. In the following, we investigate in details the shocking effect
induced by the Galactic disc.

3.2.2.1 Shocking by the Galactic disc

A very important effect is the shocking induced by the Galactic disc. This effect was first
discussed, in the context of star clusters affected by the passing of a nearby cloud, by Spitzer
(1958). This paper makes use of the impulsive approximation which consists in ignoring the
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Figure 3.9 – Tidal radius to scale radius ratio as a function of the concentration, at the position of the
Sun R⊙ = 8.21 kpc. We show the ratio for the first Jacobi radius (red), the second Jacobi radius (green),
the smooth Jacobi radius (blue) and the density-based radius (magenta). We compare the prediction for
two different internal density profiles: NFW (solid lines) and Einasto (dashed lines).

inner dynamics of the cluster when evaluating the effect of the shock. Tidal shocking was then
investigated by Ostriker et al. (1972) to evaluate the impact of the Galactic disc on globular
clusters, again using the impulsive approximation. The importance of adiabatic invariance was
pointed out by Weinberg (1994b,a) and the shocking calculation was revised and generalized by
Gnedin et al. (1999); Gnedin & Ostriker (1999). The impact of disc shocking on subhalos has
been numerically studied in a cosmological context by D’Onghia et al. (2010); Yurin & Springel
(2015); Errani et al. (2017) and generically found to be a major source of stripping in the inner
part of the host halo. Here we provide several semi-analytic methods to evaluate the impact of
the disc on subhalos.

First, we reproduce the original computation of Ostriker et al. (1972). We consider an object
(subhalo, globular cluster) crossing the galactic disc. We work in the rest frame of the disc and
define the z-axis as perpendicular to the disc. The object is on a circular orbit of radius R.
Let zc and zp be the z-coordinate of the object’s center and of a particle orbiting in the object,
respectively. We define ∆z ≡ zp − zc, vz ≡ d∆z/dt and the equation of motion is

dvz

dt
= gd(R, zp) − gd(R, zc)

≃ ∆z
∂gd

∂z
(R, zc) ,

(3.109)

where gd is the gravitational acceleration caused by the disc. If the disc has a mass density ρd,
the modulus of the acceleration is given by

|gd(R, z)| = 4πGN zd ρd(R, z) . (3.110)

Integrating Eq. (3.109) over time, we get the net velocity change

∆vz =

∫

dt ∆z(t)
∂gd

∂z
[zc(t)] . (3.111)

We now make the impulsive approximation: the dynamics within the object is considered very
slow compared to the crossing of the disc, hence ∆z is roughly time-independent. Changing the
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integration variable from t to zc we get

∆vz =
∆z

Vz
2 gd(R, 0) , (3.112)

where Vz is the z-velocity of the object’s center and the factor of two comes from the odd-parity
of gd. Consequently, the kinetic-energy gain per unit of particle mass in the rest frame of the
object is

δǫ =
1

2
(∆vz)2 =

2 g2
d

V 2
z

(∆z)2

=
2 g2

d

V 2
z

r2 cos2(θ) ,

(3.113)

where r is the distance between the particle and the object’s center, and θ is the angle between
the radial and vertical directions. This result holds if Tcross(R) ≪ τsub(r) where Tcross is the
object crossing time and τsub(r) the orbital period of the particle within the object. This is the
content of the impulsive approximation. This approximation might break down for particles near
the center of the object which have a very short period. These particles are then protected by
adiabatic invariance, which can be accounted for by multiplying the right-hand side of Eq. (3.113)
by a corrective factor A(η) (Weinberg, 1994b,a). Using analytical and numerical studies, Gnedin
et al. (1999); Gnedin & Ostriker (1999) proposed a parametric form for this factor

A(η) = (1 + η2)−3/2 , (3.114)

where η is the adiabatic parameter defined as

η ≡ ωint(r)Tcross , (3.115)

with ωint the orbital frequency of particles within the clump. The energy gain is modified to

δǫ(r, θ) =
2 g2

d

V 2
z

r2 cos2(θ) A(η) . (3.116)

If η ≫ 1 i.e. the orbital time of a test particle in the subhalo is much smaller than the disk-crossing
time, then the impulsive approximation breaks down and A(η) → 0: particles are adiabatically
protected against tidal shocking. Let us estimate the importance of adiabatic invariance in
subhalos. With zd the length scale of the disk along the z-axis, the typical crossing-time is
Tcross(R) = zd/Vz(R). The z-component of the velocity should be close to the velocity dispersion
along z, i.e. Vz ≃ σz. Assuming an isotropic velocity distribution of subhalos, we have σ2

z = σ2/3
where σ is the total velocity dispersion. To evaluate this velocity dispersion, we may assume a
Maxwell-Boltzmann velocity distribution for subhalos in the Galaxy. As we will see in Chap. 5,
this is equivalent to assuming a singular isothermal sphere for the subhalo spatial distribution.
In that case, the velocity dispersion is simply related to the circular velocity

σ2(R) =
1

2
v2

c (R) , (3.117)

where

vc(R) =

√

GN m(R)

R
(3.118)

with m(R) the Galactic mass within R. This should give the right order of magnitude of Vz even
if the subhalo distribution does not strictly follow the isothermal profile. The crossing time is
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then

Tcross(R) =
√

2
zd

vc(R)
= zd

√

2R

GN m(R)

≃ 0.45 Myr

(

zd

100 pc

) (

200 km/s

Vz

)

.

(3.119)

Assuming the internal density profile of subhalos is also not too far from the singular isothermal
sphere, we can express the internal velocity dispersion as

σ2
int =

3

2

GN mint(r)

r
(3.120)

and the orbital frequency

ωint(r) =
σint

r

=

√

3 GN mint(r)

2 r3

= 2.4 × 10−2 Myr−1
(

mint(r)

10−6 M⊙

)1/2
(

3.5 × 10−3 pc

r

)3/2

(3.121)

Note that ωint, expressed as a function of r/rs, depends only on the concentration c200 and
not on the mass m200. We find that the adiabatic correction becomes relevant only when
r < 10−3 rs i.e. subhalos are stripped down to their very center. This only happens for the
most extreme stripping and shocking models discussed in this section [like the first point-like
Jacobi radius in Eq. (3.99)], and only in the inner parts of the Galaxy. This means that the
impulsive approximation is a good approximation in most cases. Nevertheless, we performed our
calculations including the corrective factor regardless of the modelling of tidal effects.

Shocking radius: differential method What is the tidal radius induced by disc shocking?
There is no prescription available in the literature to compute this radius, therefore we propose
several definitions. One way to identify a maximal radius is to compare the kinetic energy gain
in Eq. (3.116) to the potential energy of a dark matter particle in the subhalo. Let us consider a
subhalo with pre-crossing radial extension r0, and a dark matter particle on a circular orbit at
r < r0 in that subhalo. Assuming a hard truncation of the subhalo at radius r0, the potential
energy (per unit of particle mass) is given by

φint(r) − φint(r0) (3.122)

where

φint(r) = −GN

∫ ∞

r

mint(r
′)

r′2 dr′ , (3.123)

is the solution of Poisson’s equation cancelling at infinity. If the kinetic energy gain by a particle
inside a subhalo during the crossing of the disc exceeds its potential energy, this particle becomes
unbound to the subhalo. The new radius r1 after a single crossing of the disc can be evaluated
by equating the kinetic energy gain and the potential energy:

δǫ(r1) ≡ φint(r0) − φint(r1) . (3.124)

This definition is meaningful because |φint(r) − φint(r0)| is a decreasing function of r, hence the
dark matter particles removed by that procedure are in the outskirts of the clump, see the left
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panel in Fig. 3.10. Note that the energy gain given in Eq. (3.116) has an angular dependence,
hence we use instead the energy gain averaged on the sphere of radius r:

〈δǫ〉 (r) ≡ 1

4π

∫ 2π

0
dφ

∫ π

0
d(cos θ)δǫ(r, θ)

=
2 g2

d

3 V 2
z

r2 A(η) ,

(3.125)

and the radius r1 after disc shocking is really defined by

〈δǫ〉 (r1) ≡ φint(r0) − φint(r1) . (3.126)

This definition of the tidal shocking radius depends on the radial extension r0 before crossing.
This means that the radius of the clump has to be computed after each crossing of the stellar
disc. We call the final radius obtained via this procedure the differential radius rt,diff . The ratio
rt,diff/rs is independent of m200. Indeed the adiabatic correction A(η) only depends on ρs(c200),
the energy gain scales like r2

s and the potential energy like ρsr
2
s hence the ratio only depends on

the scale density ρs(c200), the position of the subhalo R and its radius before crossing r0. The
angle-averaged energy gain and the potential energy for a single crossing, for a clump at the
position of the Solar System R = R⊙, are shown on the left panel in Fig. 3.10. The ratio rt,diff/rs

is the x-axis value of the intersection between the red curve (energy gain) and the blue curve
(potential). The radius before crossing is chosen to be the cosmological radius r200 such that
r200/rs = c200.

Shocking radius: integral method We consider an alternative definition of the shocking
radius based on integrated quantities. The idea is to compute the total energy gain of a subhalo
and compare it to its binding energy. The total energy gain is computed from Eq. (3.116)

∆E(< r0) =

∫

δǫ ρint(þr) d3þr

= 2π

∫ r0

0
dr r2

∫ 1

−1
d cos θ δǫ(r, θ) ρint(r)

(3.127)

If the adiabatic correction is neglected and the subhalo has an NFW profile, the total energy
gain is analytical

∆E(< r0) ≃ 8π

3

g2
d

V 2
z

ρsr
5
s

[

(x0 − 3)x2
0 − 6x0

2(x0 + 1)
+ 3 ln (1 + x0)

]

, (3.128)

where x0 = r0/rs. This energy has to be compared with the binding energy of the subhalo, which
is defined by

U(< r0) = GN

∫

mint(þr)

|þr| ρint(þr) d3þr . (3.129)

This is also an analytical function for the NFW profile

U(< r0) = 16π2GNρ2
s r5

s

[

1

2

(

1 − 1

(1 + x0)2

)

− ln(1 + x0)

1 + x0

]

. (3.130)

Having computed the total energy gain and the total binding energy of a subhalo, we can define
its extension rt,int after disc shocking as follow

∆E(< rt,int) = U(< rt,int) . (3.131)
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Beyond rt,int, the total energy gain is larger than the binding energy of the clump as shown in
the right panel on Fig. 3.10. This gives the shocking radius after one single crossing. For the
radius after Ncross crossing, we prescribe

Ncross∆E(< rt,int) = U(< rt,int) . (3.132)

The ratio rt,int/rs is, again, independent of m200 which can be seen from Eqs. (3.128)(3.130).
We have ∆E ∝ ρsr

5
s and U ∝ ρ2

s r5
s therefore rt,int/rs only depends on ρs(c200) and R. The total

energy gain for a single crossing, at the position of the Sun R = R⊙, is compared to the binding
energy and the total potential energy on the right panel in Fig. 3.10. The ratio rt,int/rs is defined
by the x-axis value of the intersection between the green curve and the blue curve. Fixing the
integral radius with the potential energy (red curve) rather than the binding energy leads to a
similar, though slightly lower, numerical value.

Shocking radius: simulation-based estimate We finally consider a third definition of the
shocking radius based on a numerical study by D’Onghia et al. (2010). This study focuses on
the effect of a Galactic disc on subhalos and shows that it is very efficient at disrupting these
structures. The authors propose an empirical criterion to model the effect of disc shocking. They
propose an expression for the total energy gain in units of the binding energy

∆Ẽ

U
=

(1.84 r1/2)2g2
d

3 σ̃2V 2
z

, (3.133)

where r1/2 is the radius containing half the subhalo’s mass and σ̃ is an estimate of the internal
velocity dispersion of the clump

σ̃2 = 0.4
GNmtot

sub

r1/2
, (3.134)

where mtot
sub is the total subhalo mass. The dynamical grounds for this expression are taken

from Binney & Tremaine (1987). The authors argue that a subhalo is destroyed when the total
energy after Ncross crossing of the galactic disc is comparable to the binding energy. Whether
clumps are actually destroyed in numerical simulations or disappear due to limited resolution is
a difficult question which has very likely not fully been addressed in the past. Indeed, recent
work has shown that criteria based on the binding energy strongly overestimate the disruption
efficiency (van den Bosch et al., 2018; van den Bosch & Ogiya, 2018). This can be understood
from the adiabatic invariance argument stated before, which makes the dense cores of subhalos
very resilient to tidal effects. For the sake of comparison, we define a disc shocking radius through

Ncross
∆Ẽ

U
(rt,sim) = 1 , (3.135)

This radius is similar to our integral definition, with a different expression for the total energy
gain. This simulation-based definition also leads to a ratio rt,sim/rs independent of m200 because
the total energy gain has the scaling ∆Ẽ ∝ ρsr

5
s just like our integral definition. The energy ∆Ẽ

is shown on the right panel in Fig. 3.10. We see that for c200 < 10, we have ∆Ẽ > ∆E hence the
simulation-based estimate is more efficient at stripping subhalos. Note that the simulations of
D’Onghia et al. (2010) focuses on massive subhalos m & 106 M⊙ hence their results might not
apply to smaller, more concentrated structures.

3.2.2.2 Encounter with stars

Another effect quite similar to disc shocking is the effect of individual stars on subhalos passing
close by. This effect has been investigated in several studies (Berezinsky et al., 2006; Angus
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Figure 3.10 – Left panel: angle-averaged energy gain (red) compared to the potential energy (blue)
of a dark matter particle at a radius r within a subhalo orbiting at R = R⊙. Two possible values of the
concentration are shown c200 = 60 and c200 = 30. Right panel: integrated energy gain following the
definition in Eq. (3.127) (green) and in Eq. (3.133) (purple), for c200 = 60 and c200 = 30. Are shown the
binding energy (blue) and the total potential energy (red).

& Zhao, 2007; Zhao et al., 2007; Green & Goodwin, 2007; Schneider et al., 2010), using both
analytical and numerical estimates. It can be shown that for subhalos, the effect of disc shocking
dominates over the shocking from each star (Berezinsky et al., 2014). Encounters with stars
might be more important for ultracompact minihalos which are halos having collapsed during
the radiation-dominated era (Berezinsky et al., 2010). These structures are dense enough to be
practically immune against regular tidal effects, in which case stellar encounters might be the
only potential source of disruption.

3.2.3 Disruption of subhalos

All the tidal radii we have introduced to model the effects of halo stripping and disc shocking
are compared in Fig. 3.11. The ratio rt/rs where rt is the tidal radius is shown for a particular
concentration c200 (we recall that this ratio is independent of the subhalo’s mass). The coloured
curves show the tidal radii for the stripping methods discussed in Sec. 3.2.1 and the black curves
show the tidal radii for the disc shocking methods discussed in Sec. 3.2.2. Irrespective of the
particular methods chosen for stripping and shocking, the effect of disc shocking is sub-dominant
at large radius R ≫ 10 kpc with respect to halo stripping. This is not a surprise since the
Galactic disc extends to Rdisc ∼ 15 kpc and we assumed subhalos are on circular orbits. For
subhalos on radial orbits, we expect disc shocking to play a role even at distances R > Rdisc but
we do not take this possibility into account. More interesting is the hierarchy below 10 kpc: disc
shocking is generically more important than halo stripping in that region. However, the choice of
the shocking radius definition leads to important differences in that region: while the differential
and integral methods lead to similar results, the simulation-based method is much more efficient
at stripping subhalos. We recall however that this criterion has only been probed on massive
subhalos which tend to be less concentrated due to their late collapse, see Sec. 3.1.3.

We now discuss the possible disruption of subhalos by tidal effects. We have seen that tidal
effects are very efficient at stripping subhalos down to their scale radius and below, the question
is then: can a structure survive after having lost most of its mass? This is crucial for indirect
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dark matter searches for instance, as the impact of a clump on these searches depends on its
luminosity ∝

∫

ρ2d3þr rather than its mass, and most of the luminosity comes from the structure’s
core, see e.g., Berezinsky et al. (2008). The question of survival under tidal effects also concerns
luminous structures. Star clusters in particular have been under investigation for a long time, see
e.g., Spitzer (1958). However these stellar systems are subject to phenomena like relaxation and
evaporation which facilitate their disruption but are not relevant for the particle dark matter
scenario (at the notable exception of primordial black hole dark matter). The question of the
survival of dark matter subhalos is a more recent one. It has been investigated numerically,
in dedicated studies Tormen et al. (1998); Hayashi et al. (2003) or within general studies on
subhalos Diemand et al. (2004, 2008); Springel et al. (2008); van den Bosch (2017). Cosmological
simulations seem to agree on the fact that subhalos are very efficiently disrupted by the tidal field
of the host galaxy. Hayashi et al. (2003) find that subhalos are disrupted when their tidal radii
become similar to their scale radii rt ∼ rs. The numerical study of disruption is unfortunately
complicated by the resolution limit inherent to simulations. A recent detailed analytical and
numerical investigation van den Bosch et al. (2018); van den Bosch & Ogiya (2018) point toward
a resilience of subhalos against tidal effects. It is shown by the authors that the disruption
observed in simulations could be almost entirely explained by numerical artefacts and therefore
vastly overestimated. This very recent result needs confirmation and calls for more dedicated
studies of artificial disruption in simulations.

In order to account for all possible scenarios (disruption when rt ∼ rs, complete resilience,
and everything in between) we model subhalo disruption in a flexible way. Concretely, we assume
a subhalo is fully disrupted if its tidal radius verifies

rt

rs
6 ǫt , (3.136)

where ǫt is a free parameter we refer to as the disruption parameter. To get results in agreement
with Hayashi et al. (2003), we can fix ǫt = 1 while a value compatible with van den Bosch et al.
(2018) would be much lower, for instance ǫt = 10−2. We recall that, incidentally, the ratio rt/rs

is mass-independent for all the tidal radius definitions considered here, and only depends on c200

and R. Hence Eq. (3.136) can be rewritten as a condition on the concentration c200

c200 > cmin(R) , (3.137)

where cmin(R) is the minimal concentration a subhalo needs to survive tidal effects at a position
R. This concentration is the solution of

rt

rs
(cmin, R) ≡ ǫt . (3.138)

and therefore it is a function of the position R only. The minimal concentration is shown in
Fig. 3.12 for ǫt = 1 (left panel) and ǫt = 10−2 (right panel). The value of cmin(R) is very roughly
ten times lower in the ǫt = 10−2 case compared to the ǫt = 1 case. The hierarchy between the
different definitions of the tidal radius is left essentially unaffected by the choice of ǫt. The
relative position of the coloured and black curves shows, again, that disc shocking dominates in
the inner parts of the Galaxy (R < 10 kpc) while halo stripping dominates outside. Note that,
unlike Fig. 3.11 which shows rt/rs(R) for only one particular value of the concentration c200,
the entire information on rt/rs is contained in Fig. 3.12. Hence the minimal concentration is a
very convenient tool to compare the different definitions of the tidal radius, irrespective of the
survival of subhalos under tidal effects and the realistic value of ǫt.

3.3 A constrained model of Galactic subhalos

In this section, we use our knowledge of tidal effects to build a semi-analytic model of Galactic
subhalos. This is essentially the content of Stref & Lavalle (2017), though we also discuss
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Figure 3.11 – Tidal-to-scale radius ratio rt/rs as a function of the position R in the Galaxy, for the
different definitions of the stripping and shocking radii given in Secs. 3.2.1 and 3.2.2. The concentration is
fixed to c200 = 60.

Figure 3.12 – Minimal concentration cmin for the survival of a subhalo as a function of the position R
in the Galaxy, for two values of the disruption parameter: ǫt = 1 (left panel) and ǫt = 10−2 (right panel).

here cases that are not considered in the original paper. Let us first discuss the other subhalo
models available in the literature. The small-scale structuring of CDM is of great interest
for essentially two distinct communities: cosmologists working on structure formation, and
astroparticle physicists interested in dark matter searches. Models built by cosmologists tend to
focus on a consistent modelling of the formation, mergers and evolution of dark matter structures
with redshift, see e.g., Taylor & Babul (2004); Penarrubia & Benson (2005); Van Den Bosch
et al. (2005); Zentner et al. (2005); Gan et al. (2010); Pullen et al. (2014); Han et al. (2016).
Astroparticle physicists, on the other hand, are, for instance, interested in computing the boost
factor for indirect searches for annihilating dark matter. Hence all is needed is the subhalo
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distribution today and the full modelling of the redshift evolution is not required. Semi-analytic
models are in general calibrated on N-body simulations, see e.g., Lavalle et al. (2007); Lavalle
et al. (2008); Kamionkowski et al. (2010); Pieri et al. (2011); Bartels & Ando (2015); Hiroshima
et al. (2018) though some rely only on first principles e.g., Berezinsky et al. (2003). Our model
belongs to the dark matter-searches-oriented category. Its originality with respect to other models
resides in the implementation of dynamical constraints: the model is built in such a way that it
is, by construction, consistent with existing observations of our own Galaxy. This is of crucial
importance for dark matter searches as observations of the Milky Way have become more and
more precise, peaking with the recent results of the Gaia mission, see Gaia Collaboration et al.
(2018).

3.3.1 Outline of the model

Before going into the details of the modelling, we give a general outline of the method. A
subhalo in our Galaxy is characterized by three quantities: its mass m, its concentration c and
its position within the Galaxy þr – we further assume spherical symmetry, so we will consider the
radial position |þr| = R. We have knowledge of the cosmological mass and concentration PDFs
of isolated dark matter halos, as we have seen in Secs. 3.1.2 and 3.1.3. The main assumption
of our model is that the mass, concentration and position PDFs of subhalos is only affected
by the tidal effects experienced by these subhalos. The construction of the model is as follows.
We start from a virtual configuration where the dark matter halo of the Galaxy is made of
smoothly distributed dark matter and non-interacting subhalos. By non-interacting, we mean
that subhalos in this initial configuration do not ”feel” the tides from the host. The subhalos are
considered as test particles and initially follow the dark matter distribution as inferred by studies
of the Galactic dynamics, for instance the dynamically constrained NFW profile constructed by
McMillan (2017). Their mass and concentration PDFs are the cosmological ones. We then plug
in tidal effects, considering stripping by the Galactic potential and shocking by the Galactic
disc. Tidal effects remove matter from subhalos, which is transferred to the smooth dark matter
component. Since tides affect subhalos according to their mass, concentration and position, the
initial (cosmological) PDFs are all modified by stripping and shocking. The posterior PDFs are
computable and constitute outputs of our model. These modified PDFs completely determine
the subhalo population in the Galaxy today and therefore allow us to compute all the quantities
relevant for dark matter searches such as the boost factor, the subhalo number density, etc.

3.3.2 Initial subhalo PDFs

Mass function Let us start by describing the initial (pre-tides) PDFs. We assume the mass
PDF to be the cosmological mass function given by the Press-Schechter theory in Eq. (3.66). On
scales far smaller than that of galaxy clusters, the Press-Schechter mass function behaves as a
power law

dP

dm200
(m200) =

1

Km

(

m200

M⊙

)−αm

, (3.139)

with αm ≃ 2. The factor Km is set by requiring that the mass PDF be normalized to one over
the range of mass m200 explored by subhalos. If we impose m200 ∈ [mmin, mmax], the factor is
given by

Km =

∫ mmax

mmin

(

m

M⊙

)−αm

dm =
M⊙

αm − 1

[

(

mmin

M⊙

)1−αm

−
(

mmax

M⊙

)1−αm
]

. (3.140)

The minimal cosmological mass mmin is set by the free-streaming scale of the dark matter particle,
see Sec. 2.4 for details. Assuming dark matter is thermally produced in the early Universe, the
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epoch of free streaming follows kinetic decoupling and therefore depends on the microscopic
interactions of the dark matter particle. To be as general as possible, we take mmin as a free
parameter, keeping in mind its very low value in typical WIMPs models mmin ∼ 10−6 M⊙, see
e.g., Green et al. (2004, 2005); Bringmann & Hofmann (2007); Bringmann (2009). The maximal
mass is set to mmax = 10−2 Mhalo where Mhalo is the total (virial) mass of the Galactic dark
matter halo. This value of the maximal mass is set by the pre-infall mass scale of satellite galaxies
like Draco (Read et al., 2018). Note the smallness of mmin implies

Km ≃ M⊙
αm − 1

(

mmin

M⊙

)1−αm

, (3.141)

hence the normalization is not sensitive to the value of mmax. Note that we account for
the suppression of power below the free-streaming scale through a sharp cutoff in the mass
function. A more realistic description could be obtained by multiplying the power law by a factor
1 − exp (−(m200/mmin)n) with an index n controlling the sharpness of the mass cutoff. Finally,
a fully consistent treatment would require the computation of the power spectrum including the
free-streaming (and collisional) damping, and the computation of the mass function using the
Press-Schechter formalism as done in e.g., Schneider et al. (2013).

Concentration PDF The cosmological concentration PDF is given by a log-normal distribu-
tion

dP

dc200
(c200, m200) =

1

Kc

1

c200

√
2π σc

exp

[

−
(

ln c200 − ln c(m200)√
2σc

)2
]

, (3.142)

with a scatter σc, and a mass-dependent median concentration c(m200). This mass dependence
induces a correlation between c200 and m200. We recall that this correlation has a cosmological
origin: dark matter halos of low mass are more likely to collapse earlier, in a denser Universe,
and are therefore more concentrated on average. For the median mass-concentration relation,
we use the relation given by Sanchez-Conde & Prada (2014), which is obtained by fitting the
relation found in CDM numerical simulations

c(m200) =
5

∑

n=0

cn

[

ln

(

m200

h−1M⊙

)]n

, (3.143)

where h is the scaled Hubble parameter and cn = [37.5153, −1.5093, 1.636 × 10−2, 3.66 ×
10−4, −2.89237 × 10−5, 5.32 × 10−7]. The scatter σc is found to be mass independent in CDM
numerical simulations, see Macciò et al. (2008). We fix its value to σc = 0.14 dex = 0.14 ln(10),
as in Macciò et al. (2008); Sanchez-Conde & Prada (2014); Dutton & Macciò (2014). Note that
the concentration PDF differs from the usual log-normal PDF by a factor 1/Kc. This is because
c200 > 1 by definition, hence we have

Kc =

∫ +∞

1
dc

1√
2πσcc

exp

[

−
(

ln c − ln c√
2σc

)2
]

=
1

2
erfc

(

− ln c√
2σc

)

.

(3.144)

In practice however, we find that Kc is equal to one over the entire range of m200. The n-th
moment of the concentration PDF takes the following form

〈cn〉 =
cn

2Kc
en2σ2

c /2 erfc

[

− 1√
2

(

nσc +
ln c

σc

)]

. (3.145)

The average concentration 〈c200〉 is compared to the median concentration c on the left panel
in Fig. 3.13. The average is close to the median for all masses though it is systematically
higher. The concentration PDF is shown on the right panel in Fig. 3.13 for three subhalo masses
m200 = 10−6/100/106 M⊙.
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Figure 3.13 – Left panel: median concentration (red curve) and average concentration (blue
curve) as functions of the mass m200. Right panel: concentration PDF for m200 = 10−6/100/106 M⊙

(red/blue/green curve, respectively).

Spatial distribution In our initial, virtual set-up, subhalos are test particles thus their spatial
distribution is given by the global dark matter density profile

dP

dV
(R) =

ρDM(R)

MDM
, (3.146)

where MDM is the virial mass of the dark matter halo, so that the spatial distribution is normalized
to one over the virialized halo. As a reference, we use the dynamically constrained NFW profile
of McMillan (2017) for ρDM. We insist on the fact that this spatial distribution corresponds to
a virtual configuration since tides are ignored. Indeed, while the NFW profile is in general a
good fit to the global dark matter profiles (smooth dark matter and subhalos together) found
in N-body simulations, it is not a good description of the subhalo spatial distribution. While
galactic halos have a cuspy profile, the subhalo distribution is in general cored, which means
most of the dark matter at the center of galaxies is smooth. We will see that this feature can
be entirely explained in our model, even when starting from test particles spatially tracing the
smooth potential. Once these effects are plugged in, the initial spatial PDF in Eq. (3.146) is
strongly modified and a core naturally emerges, as we show in the following.

Phase-space number density Having characterized the PDFs of our three parameters
c200, m200 and R, we can define a subhalo phase-space number density d3N/dw3 where dw3 =
4πR2dR dc200 dm200.3 To slightly simplify the notation, we introduce

F0(c200, m200, R) ≡ d3N

dw3
, (3.147)

and we have

F0(c200, m200, R) =
Nsub,0

K0

dP

dc200
(c200, m200) × dP

dm200
(m200) × dP

dV
(R) . (3.148)

3What is referred to as the phase space here is the parameter space with coordinates (c200, m200, R). In chapters
5 and 6, the notion of phase space is also used but it refers to the usual statistical-physics space with coordinates
(þr,þv) where þr is the position and þv is the velocity.
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The quantity Nsub,0 is the total number of subhalos in the absence of tidal effects, which is not
the real number of subhalos in the Galaxy. The factor K0 ensures the normalization of F0 to
Nsub,0 over the entire phase-space. Since all the individual PDFs are normalized to one, we
immediately have

K0 =

∫

dV
dP

dV

∫

dm200
dP

dm200

∫

dc200
dP

dc200
= 1 . (3.149)

We stress here that in the initial, virtual configuration all the PDFs factorize. This will not be
the case when we will plug in tidal effects. Note that in many subhalo models, this separability
of the PDFs is often assumed [see e.g., Charbonnier et al. (2012)].

We would like to define a mass density profile ρsub(R) associated with the subhalo population.
This density profile has to verify

4π

∫ R200

0
dR R2 ρsub(R) = Msub , (3.150)

where Msub is total dark matter mass within subhalos in the virialized Galactic halo. This mass
is also given by

Msub = 4π

∫ R200

0
dR R2

∫

dm200

∫

dc200 F0(c200, m200, R) m200 , (3.151)

hence the definition of the subhalo mass density

ρsub(R) ≡
∫

dm200

∫

dc200 F0(c200, m200, R) m200 . (3.152)

Without tidal effect, the integration over c200 is trivial and the subhalo mass density simplifies to

ρsub(R) = Nsub,0
dP

dV
(R)

∫ mmax

mmin

dm200
dP

dm200
m200

=
Nsub,0 〈m200〉

MDM
ρDM(R)

(3.153)

We introduce the subhalo mass fraction

fsub,200 ≡ Nsub,0 〈m200〉
MDM

=
Msub

MDM
(3.154)

which is the proportion of dark matter mass inside subhalos. If the dark halo of the Galaxy
was initially entirely made of subhalos, i.e. there was no smooth component, we would have
fsub,200 = 1 and consequently ρsub = fsub,200ρDM = ρDM. The number of subhalos would then be

Nsub,0 =
MDM

〈m200〉 . (3.155)

For a mass index αm = 2, and using the approximation in Eq. (3.141), we get

Nsub,0 =
MDM

mmin ln(mmax/mmin)
≃ 3.5 × 1016 , (3.156)

for MDM = 1.3 × 1012 M⊙, mmax = 10−2MDM and mmin = 10−6 M⊙. Note that this is a rough
approximation since we expect some dark matter to be smoothly accreted to the Galactic halo
during its lifetime.

In general, we assume that the Galactic halo is partly made of subhalos and partly made
of smoothly distributed dark matter. The consistency with respect to dynamical constraints is
ensured by the definition of the smooth density:

ρsmooth(R) = ρDM(R) − ρsub(R) . (3.157)
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In words, the constrained profile ρDM constitutes our Galactic dark matter ”budget” and we
assume that all the dark matter that is not in clumps in necessarily smoothly distributed. Note
that this is a consistent picture only if ρsmooth(R) > 0 at all R i.e. we do not predict a subhalo
mass distribution in disagreement with observations. Nothing in our model ensures this to be
true in general, however we did not find any configuration where the smooth density becomes
negative at some radii.

We now plug-in tidal effects. We know that the general consequence of tides is to remove
dark matter from subhalos, hence adding a smooth dark matter component to the Galaxy. This
smooth component must satisfy Eq. (3.157). To compute ρsub, we need to find the subhalo
phase-space number density with tidal effects. The subhalo number density is only modified if
tides change the number of subhalos. This happens if some subhalos are disrupted. According to
the disruption criterion in Eq. (3.136), a subhalo with phase-space coordinates (c200, m200, R) is
disrupted if

rt

rs
(c200, R) 6 ǫt . (3.158)

Taking into account this disruption, the phase-space number density becomes

Ft(c200, m200, R) =
Nsub

Kt
× dP

dc200
(c200, m200) × dP

dm200
(m200) × dP

dV
(R)

× Θ

[

rt

rs
(c200, R) − ǫt

]

,

(3.159)

where Θ is the Heaviside step-function and Kt is an overall normalization factor given by

Kt = 4π

∫

dR R2 dP

dV
(R)

∫

dm200
dP

dm200
(m200)

×
∫

dc200
dP

dc200
(c200, m200) Θ

[

rt

rs
(c200, R) − ǫt

]

.

(3.160)

The tidal-to-scale-radius ratio rt/rs can be computed as a function of c200, m200 and R using
the stripping and shocking methods discussed in Sec. 3.2. We recall that for all the definitions
we have considered, the ratio rt/rs is independent of m200. The dependence of rt/rs on c200

and R makes the new phase-space number density a very intricate function of all the initial
PDFs. In particular, the property of separability of the PDFs is not valid any more. In our
initial configuration, the mass and concentration parts of the phase-space are independent of
the position part, but tidal effects introduce a correlation between the concentration and the
position. Since the mass and the concentration are already correlated through the median
mass-concentration relation, the phase-space is now completely entangled.

Note that the number of subhalos Nsub is different a priori from the initial number Nsub,0.
We need an additional constraint to compute this number.

3.3.3 Calibrating the subhalo mass fraction

We choose to calibrate the subhalo mass fraction on a dark matter-only cosmological simulation,
where tidal effects are consistently accounted for. We use a numerical calibration out of
convenience rather than necessity since the mass fraction can be computed from first principles,
though the calculation is involved and requires several approximations, see Berezinsky et al.
(2014).

Using a dark-matter-only N-body simulation presents a couple of advantages with respect to
a hydrodynamical run including baryons. First, the high-resolution N-body simulations available
like Via Lactea II (Diemand et al., 2008) and Aquarius (Springel et al., 2008) have a spatial
resolution comparable to or better than any other cosmological simulation performed since then
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[see e.g., Springel et al. (2018)].4 Second, the properties of baryons in simulations differ from
the observed properties of baryons in the Milky Way. The point is that galaxies in simulations
are identified as ”Milky-Way-like” on the criteria such as the dark matter mass, the baryonic
mass, the dark-matter-to-baryons mass ratio, the presence of a disc, etc. However the detailed
kinematics of the Milky Way is in general not recovered by simulated Milky-Way-like galaxies.
Since we want our model to be predictive regarding the effect of tides in general, and the impact
of the disc in particular, we calibrate on a CDM simulation.

We calibrate on the VL2 simulation of Diemand et al. (2008). One has to keep in mind
that a cosmological simulation is run for a particular set of cosmological parameters. Three
parameters are especially important for the formation and evolution of dark matter halos: the
matter abundance Ωm, the normalization of the power spectrum σ8 and the spectral index ns.
The most recent estimates for these parameters are provided by Ade et al. (2016) who find
Ωm ≃ 0.31, σ8 ≃ 0.82 and ns ≃ 0.97. The matter abundance Ωm and the normalization σ8

impact the concentrations of halos on all scales with larger values leading to more concentrated
structures, while ns controls the amount of power on small scales, see Guo et al. (2013). The
cosmological parameters used in VL2 are Ωm = 0.24, σ8 = 0.74 and ns = 0.951, based on the
WMAP-3 cosmology Spergel et al. (2007). This makes VL2 a rather conservative simulation
in terms of subhalo abundance and concentration. For comparison, the Aquarius simulation of
Springel et al. (2008) was run with Ωm = 0.25, σ8 = 0.9 and ns = 1 with a spatial resolution
similar to VL2.

The authors of VL2 provide the cumulative number of subhalos above a given maximal
velocity NVL2(> vmax), see Fig. 3 in Diemand et al. (2008). The velocity vmax is the peak height
of the subhalo circular velocity

vmax = Max





√

GN mint(r)

r



 =

√

GN mint(rvmax)

rvmax

. (3.161)

Assuming subhalos have an NFW profile and they follow the mass-concentration relation given
in Eq. (11) of Pieri et al. (2011) (which is fitted over the VL2 subhalos) we can associate, in
a unique way, a value of m200 to a maximal velocity vmax. This association is possible if the
subhalo internal profiles are not strongly modified by tidal effects, i.e. their scale parameters ρs

and rs remain roughly unchanged. The subhalo mass fraction between vmax,1 and vmax,2 is given
by

fVL2
sub,200 =

1

M200,VL2

∫ vmax,2

vmax,1

dvmax
dNVL2

dvmax
m200(vmax) . (3.162)

Note that fsub,200 is an effective mass fraction in terms of m200 rather than the actual mass
fraction fsub. The latter cannot be estimated however since we do not know the actual mass of
stripped subhalos in VL2. A fit of NVL2 is provided in Diemand et al. (2008)

NVL2(> vmax) = 0.036

(

vmax

201 km/s

)−3

, (3.163)

which is very accurate for vmax ∈ [3 km/s, 20 km/s]. Using this fit and the virial mass of the
galactic halo in VL2 M200,VL2 = 1.42 × 1012 M⊙, we get the subhalo mass fraction

fVL2
sub,200 = 0.116 for vmax ∈ [3 km/s, 20 km/s] . (3.164)

4The reason why simulations performed ten years ago have a resolution comparable to simulations being
performed now is a change of focus in the numerical simulation community. Now that CDM physics is under
control on sub-galactic scales and the small-scale issues have been clearly identified, the challenge is to incorporate
realistic baryonic physics in the picture or explore departures from ΛCDM (Bullock & Boylan-Kolchin, 2017).
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Using the relation between vmax and m200, we convert it into a fraction on a mass interval

fVL2
sub,200 = 0.116 for m200 ∈ [3.14 × 106 M⊙, 1.25 × 109 M⊙] . (3.165)

Dividing by the total dark matter mass, we get

fVL2
sub,200 ≃ 11% for

m200

M200
∈ [2.2 × 10−6, 8.8 × 10−4] . (3.166)

We use this last equation to calibrate the mass fraction in our subhalo model, replacing M200

by the total dark matter mass in the particular mass model we use. We note that the use of a
different N-body simulation like Aquarius leads to a similar mass fraction.

Having estimated the mass fraction in VL2, we must now express the same mass fraction
in our subhalo model. By definition, the mass fraction in subhalos with cosmological masses
between m1 and m2 is

fsub,200 =
1

MDM

∫

dV

∫ m2

m1

dm200

∫ ∞

1
dc200 F sim

t (c200, m200, R) m200 , (3.167)

where F sim
t is the subhalo phase-space density as defined in Eq. (3.159). There are some subtleties

associated with the computation of tidal effects while doing the calibration. The calibration is
done on a dark matter-only simulation, hence the baryonic effects (stripping by the baryonic
potential and shocking by the Galactic disc) should not be included in F sim

t . The only effect that
should be included when doing the calibration is tidal stripping by the dark matter halo. Another
important point concerns the relevant value of the disruption parameter ǫt. As discussed in
Sec. 3.2.3, the value of this parameter has been found in simulation to be ǫsim

t ≃ 1 (Hayashi et al.,
2003). However, subhalo disruption in simulations might be entirely explained by numerical
artefacts as argued by van den Bosch et al. (2018), hence the realistic value of this parameter
might be much lower, possibly ǫt ≃ 0 if subhalos are never completely disrupted (they should be
strongly resilient to tidal shocks in the regime of very large inner density and when the inner
orbital timescale is small with respect to the timescale of gravitational encounter).

Irrespective of the realistic value of ǫt, the artificial disruption discussed by van den Bosch et
al. should be present in VL2 or any other N-body simulation used for the calibration. Therefore,
when computing the mass fraction in Eq. (3.167) to perform the calibration, one should fix the
disruption parameter to ǫt = ǫsim

t = 1 for consistency. The masses m1 and m2 in Eq. (3.167) are
set to the VL2 values in Eq. (3.166)

m1 = 2.2 × 10−6 MDM

m2 = 8.8 × 10−4 MDM .
(3.168)

Using the definition of the minimal concentration (3.138), we have

fsub,200 =
4πN sim

sub

MDMKsim
t

×
∫ R200

0
dR R2 dP

dV
(R)

∫ m2

m1

dm
dP

dm200
(m) m

∫ ∞

csim
min(R)

dc
dP

dc200
(c, m) .

(3.169)

Equating the mass fraction in Eq. (3.169) with the value found for VL2, we can deduce the
number of subhalos N sim

sub in our model. We stress that this is the number of subhalos in the
simulation-like configuration, i.e. without baryons and with ǫt = ǫsim

t = 1.
Since the calibration is only performed on the CDM part only, our model is predictive

regarding the effect of the baryonic distribution on subhalos. However, before doing predictions
we must compute the total number of subhalo Nsub beyond the simulation-like configuration.
Starting from N sim

sub , we want to add the effects of tidal stripping by the full baryonic potential
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and disc shocking. We also want to investigate situations where the disruption parameter is
much smaller than the simulation value. A simple way to compute the number of subhalos in
these cases is to assume the subhalo density profile ρsub in the outer region of the dark halo is
left unchanged compared to the simulation-like case (dark-matter-only and ǫt = 1). This is a
reasonable assumption since subhalos near the virial radius of the Galactic halo experience nearly
no tidal effects and behave as field halos. The asymptotic preservation of ρsub at R ≃ R200 can
be written using Eq. (3.152)

N sim
sub

Ksim
t

∫ mmax

mmin

dm200

∫ +∞

csim
min(R)

dc200 Ft m200 =
Nsub

Kt

∫ mmax

mmin

dm200

∫ +∞

cmin(R)
dc200 Ft m200 , (3.170)

where N sim
sub (Nsub) and Ksim

t (Kt) are the number of subhalos and normalization factor in
the simulation-like case (”realistic” case, respectively). According to Fig. 3.12, the minimal
concentration in the outer region of the halo is cmin ≃ 1, irrespective of the value of ǫt or the
inclusion of baryonic effects. This just means subhalos are not affected by tidal effects when they
orbit far from the Galactic center. We have cmin(R200) ≃ csim

min(R) = 1, hence the simple relation

N sim
sub

Ksim
t

=
Nsub

Kt
. (3.171)

This relation allows us to compute Nsub regardless of the presence of baryons or the value of
ǫt. We computed the number of subhalos for several values of αm and mmin, the results are
featured in Tab. 3.1. The upper (lower) panel shows values obtained for ǫt = 1 (ǫt = 0). We
first note the high sensitivity of Nsub to the mass index αm. Going from an index of αm = 2
to αm = 1.9, Nsub drops by a factor of more than fifty for Mmin = 10−10 M⊙ and more than
twenty for Mmin = 10−6 M⊙. This points toward the crucial importance of the small-scale power
spectrum when dealing with subhalos. The fact that this spectrum is almost completely unprobed
at these scales (see however constraints from ultracompact mini-halos considerations Bringmann
et al. (2012); Aslanyan et al. (2015)) makes the actual number of subhalos greatly uncertain.
The value of the mass cutoff is also crucial, as it changes the number of subhalos by orders of
magnitude. The impact of Mmin is more important for high values of the mass index αm. Note
however that the mass cutoff can be determined in principle from the interaction properties of
the dark matter particle (Green et al., 2005; Bringmann & Hofmann, 2007; Bringmann, 2009),
hence it is calculable in the framework of a specific dark matter model. The disruption parameter
has a much smaller impact than the mass functions parameters, as a change from ǫt = 0 to ǫt = 1
only increases Nsub by roughly 3%. The main reason why this number is not very sensitive to ǫt

is that most subhalos reside in the outer regions of the Galaxy, where tidal effects are ineffective.
Another reason is that the subhalos most exposed to disruption are the less concentrated ones.
Since subhalos with low concentration are among the most massive on average, their number is
low and their survival does not impact the total number of structures.

Nsub (ǫt = 1) Mmin = 10−10 M⊙ Mmin = 10−6 M⊙
αm = 1.9 4.79 × 1018 1.20 × 1015

αm = 2 2.60 × 1020 2.59 × 1016

Nsub (ǫt = 0) Mmin = 10−10 M⊙ Mmin = 10−6 M⊙
αm = 1.9 4.97 × 1018 1.25 × 1015

αm = 2 2.70 × 1020 2.70 × 1016

Table 3.1 – Number of subhalos for several value of αm and mmin, and two values of the disruption
parameter: ǫt = 1 (Upper panel) and ǫt = 0 (Lower panel). The computation is done for the NFW
mass model of McMillan (2017), with the smooth stripping radius and the differential shocking method
introduced in Sec. 3.2
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3.3.4 Post-tides parameter space

3.3.4.1 Mass density profiles

In the previous section, we showed how to compute the number of subhalos Nsub for all types
of tidal effects and for any value of the disruption parameter ǫt. We can now evaluate any
subhalo-related quantity, starting with the global mass density profile of the subhalo population

ρsub(R) =
Nsub

Kt

∫ mmax

mmin

dm200

∫ ∞

cmin(R)
dc200 Ft(c200, m200, R) mt . (3.172)

Note that we integrate the tidal mass mt, and not the cosmological mass m200, to get the true
subhalo population mass density profile. For a subhalo with internal mass density ρint, the tidal
mass is simply defined through

mt(c200, m200, R) ≡ 4π

∫ rt(c200,m200,R)

0
dr r2 ρint(r) , (3.173)

where rt(c200, m200, R) is the tidal radius. Hence the tidal mass depends on all our parameters
in a non-trivial way. We can exploit the m200-independence of rt/rs to rewrite the tidal mass

mt = 4πρsr
3
s

∫ rt/rs

0
dx x2 ρ̃int(x) . (3.174)

Moreover ρs only depends on c200, and r3
s ∝ m200, hence mt/m200 only depends on c200 and R.

The tidal mass mt is simply proportional to the cosmological mass m200.
We investigate the impact of tidal effects on the subhalo mass density profile. We compare

the different tidal radius recipes introduced in Sec. 3.2 on the left panel in Fig. 3.14. The results
are consistent with the hierarchy observed through the minimal concentration in Fig. 3.12: the
point-like stripping method is the most destructive while the smooth and density-based ones lead
to similar results. Disc shocking has a dramatic impact on the subhalo distribution regardless of
the method used, although the simulation-based one is by far the most destructive. Note that
here disc shocking is added on top of halo stripping, which was not the case when we discussed
the minimal concentration for instance. This is done by computing the stripping radius first
and then using it as the initial radius before subhalos experience disc shocking. The impact of
the disruption parameter is shown on the right panel in Fig. 3.14. The value of this parameter
has very important consequences on the subhalo distribution. Lowering its value from ǫt = 1 to
ǫt = 0.1 increases the subhalo density at R = 0.1 kpc by more than five orders of magnitude!
Further dividing ǫt by ten only increases ρsub by less than an order of magnitude though.

Another source of uncertainty on the subhalo mass distribution is the global dark matter
distribution in our Galaxy. For instance, McMillan (2017) fits a set of kinematic data with
an NFW dark matter profile and a cored profile (α, β, γ) = (1, 3, 0). Both these models are in
agreement with the data used by McMillan though they lead to a very different dark matter
abundance in the inner region of the Milky Way. The subhalo mass density profile for these
two mass models is shown on the left panel of Fig. 3.15. Note that assuming as we did at the
beginning that subhalos initially behave as test particles in a global potential allows us to remain
agnostic as for the possible origin of a cored halo profile, which should affect identically the
smooth and subhalo components. The subhalo density in the cored model (red dashed line) is
lower than in the NFW model (red solid line) by roughly the same factor as the total dark matter
density (black lines). Note that a lower total density implies a lower subhalo number density
because we define the initial spatial distribution as

dP

dV
(R) =

ρDM(R)

MDM
. (3.175)

Note that a lower total dark matter density also leads to weaker tidal effects, however tides from
dark matter are subdominant compared to baryonic contributions in the inner region of the
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Galaxy. This leads to a prediction for the local mass fraction inside subhalos which is independent
of the global dark matter density profile in the Galaxy. This has strong consequences on dark
matter searches with cosmic rays, as we will see in the next chapter. We look at the impact
of the mass function parameters αm and mmin on the right panel in Fig. 3.15. Changing the
mass cutoff from mmin = 10−6 M⊙ to mmin = 10−10 M⊙ increases the subhalo central density by
roughly an order of magnitude, while changing from αm = 1.9 to αm = 2 leads to a comparable,
somewhat bigger increase.

Figure 3.14 – For both panels, we use the NFW model of McMillan (2017) and the mass function
parameters αm = 2 and mmin = 10−6 M⊙. Left panel: subhalo mass density profile for the different tidal
effect recipes discussed in Sec. 3.2. Are shown the stripping by the total potential through the point-like
(red), smooth (green) and density-based (blue) methods. Disc shocking is added to tidal stripping with
the integral (dashed), differential (dotted-dashed) and simulation-based (dotted) methods. Right panel:.
For the smooth halo stripping and differential disc shocking, we show the subhalo mass density for
different value of the disruption parameter ǫt = 1/0.5/10−1/10−2 (solid/dashed/dotted-dashed/dotted
line, respectively).

3.3.4.2 Number density profiles

A quantity complementary to the mass density is the subhalo number density profile, defined as

nsub(R) =

∫ mmax

mmin

dm200

∫ ∞

1
dc200 Ft(c200, m200, R)

=
Nsub

Kt

dP

dV

∫ mmax

mmin

dm200
dP

dm200

∫ ∞

cmin(R)
dc200

dP

dc200
.

(3.176)

Note that the number density is related to the spatial distribution through

nsub(R) = Nsub
dP

dV

∣

∣

∣

∣

t
(R) . (3.177)

The function dP/dV |t is the subhalo spatial distribution when tidal effects are accounted for.
According to Eq. (3.176), it is given by

dP

dV

∣

∣

∣

∣

t
(R) =

1

Kt

dP

dV

∫ mmax

mmin

dm200

∫ ∞

cmin(R)
dc200

dP

dm200

dP

dc200
(3.178)
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Figure 3.15 – For both panels, we use the smooth halo stripping and differential disc shocking, and
the disruption parameter is fixed to ǫt = 1 Left panel: total dark matter (black) and subhalo (red) mass
density profiles for the NFW (solid line) and cored (dashed line) models of McMillan (2017). Right
panel: subhalo mass density profile in the NFW model of McMillan (2017), for different values of the
mass function power index αm and mass cutoff mmin.

It is a priori different from the initial subhalo distribution dP/dV . The number density is shown
on the left panel in Fig. 3.16 for different values of αm and mmin. As for the mass density
profile, tidal effects strongly impact the number density in the central region of the Galaxy.
When all effects are included, the number density is depleted for radii smaller than R ≃ 10 kpc.
Depending on the values of αm and mmin, nsub(10 kpc) varies between 8 pc−3 (for αm = 1.9 and
mmin = 10−6 M⊙) and 2 × 106 pc−3 (for αm = 2 and mmin = 10−10 M⊙). The number of subhalos
at the position of the Sun R ≃ 8.2 kpc depends crucially on the careful modelling of disc shocking.
Indeed, if the only effect considered is stripping by the Galactic potential the subhalo number
density peaks at R ≃ 4 kpc instead of 10 kpc. The disruption parameter ǫt has also a strong
influence on nsub as shown on the right panel in Fig. 3.16. The lower ǫt, the closer nsub is to the
number density without tidal effects (dashed black line). For a parameter ǫt = 10−2, the number
density profiles with and without tides are almost indistinguishable, which means ǫt = 10−2 is
low enough for nearly all subhalos to survive tidal effects. These subhalos still lose most of their
mass, which can be seen by looking at the subhalo mass density on Fig. 3.14. For ǫt = 10−2, the
mass density is significantly depleted at the center of the Galaxy and strongly differs from the
overall dark matter profile.

3.3.4.3 Concentration

In our initial set-up, there is no correlation between concentration and position in the halo. If
subhalo can be disrupted by tidal effects, this introduces a correlation. Indeed, low-concentration
halos are more susceptible to tides than more concentrated ones, consequently they are more
likely to be disrupted. By a selection effect, the tidally-stripped subhalo population is more
concentrated than the same population without tides. This can be seen by computing the average
cosmological concentration at a position R, for a given cosmological mass m200

〈c200〉 (m200, R) =

∫ +∞
cmin(R) dc200

dP
dc200

c200
∫ +∞

cmin(R) dc200
dP

dc200

. (3.179)
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Figure 3.16 – The NFW mass model of McMillan (2017) is used for both panels. Left panel: subhalo
number density without tides (dashed lines), with stripping (dotted-dashed lines) and with stripping
and shocking (solid lines). The number density is shown for different values of αm and mmin. Right
panel: subhalo number density for different values of the disruption parameter ǫt = 1/0.5/10−1/10−2

(solid/dashed/dotted-dashed/dotted lines, respectively).

We recall that the mass dependence is coming from the cosmological correlation between c200

and m200 which is implemented in dP/dc200. The average concentration in Eq. (3.179) should
be compared to the average for field halos given in Eq. (3.145). Both are shown on Fig. 3.17.
One can see that in the presence of tides, 〈c200〉 rises at the center of the Galaxy. The lower
the disruption parameter gets, the closer the average concentration is from the cosmological,
radius-independent value. When ǫt = 0, the minimal concentration is cmin = 1 everywhere and
there is no selection any more, hence the average concentration is given by Eq. (3.145).

We recall that we assume the internal profile of subhalos is not modified by tidal effects, in
particular the scale parameters ρs and rs remain constant. In principle, these parameters can
change as the dark matter rearranges within the subhalo after part of it has been stripped. It was
shown by Penarrubia et al. (2008), based on a numerical study, that the maximal velocity vmax

and the associated radius rmax change as functions of the mass stripped from the subhalo only.
The radius rmax decreases as the subhalo lose mass, hence the structure gets artificially more
concentrated as some of its mass is stripped away. This increase in concentration is artificial in
the sense that is does not mean the subhalo gets denser as some of the matter is stripped away.
In fact, the density in the inner parts of the subhalo decreases with the mass loss. Scaling laws
for the evolution of vmax and rmax are given by Penarrubia et al. (2008); Errani et al. (2018),
although it is not completely clear whether the numerical artefacts pointed out by van den Bosch
et al. could also be at play here. An analytic study of the phase space of tidally stripped halos
leads to similar conclusions, see Drakos et al. (2017); Lacroix et al. (2018).

3.3.4.4 Mass function modification

The mass function is also affected by tides. To see how tides affect the mass function, it is more
meaningful to look at the physical mass mt rather than the cosmological mass m200. Therefore
we would like to compute a mass function dn/dmt with respect to the physical mass. We noted
earlier that the tidal mass is related to the cosmological mass through a scaling relation

mt = m200 ∆(c200, R) , (3.180)
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Figure 3.17 – Average cosmological concentration as a function of the position in the Galaxy, for
different values of ǫt.

where ∆ is an integral depending on the tidal radius. We can define a new phase-space number
density where m200 is replaced by mt by performing the following operation

F̃t(c200, m200, R) =

∫ mmax

mmin

dm200 Ft(c200, m200, R) δ [mt − m200∆(c200, R) ] (3.181)

=

∫ mmax

mmin

dm200

m200
Ft(c200, m200, R) δ

[

mt

m200
− ∆(c200, R)

]

, (3.182)

Further integration over the cosmological concentration c200 leads to the number density dn/dmt

per unit of physical mass

dn

dmt
(mt, R) =

Nsub

Kt

dP

dV

∫ mmax

mmin

dm200

m200

dP

dm200

∫ ∞

cmin(R)
dc200

dP

dc200
δ

[

mt

m200
− ∆(c200, R)

]

(3.183)

This quantity, multiplied by the mass squared, is shown in Fig. 3.18. We show the mass function
inside the disc (R = 8 kpc), at the very end of the disc (R = 20 kpc) and far from the disc
(R = 100 kpc). The initial mass function, when tides are unplugged, is shown as the dotted curves.
It is perfectly flat i.e. it goes like m2

200. The mass function with respect to the cosmological
mass m200 when tides are plugged in is shown as the dashed curves. There is a significant
departure from the m2

200 regime, especially at high masses. The departure is stronger in the
central region of the halo. This is easily understood in terms of stripping: the most massive
halos are also the less concentrated and therefore the most likely to be disrupted by tidal effects.
If the disruption parameter was set to zero, the slope would not be affected because all subhalos
would survive tidal effects. Finally, we look at the ”true” mass function dn/dmt, defined with
respect to the physical mass as in Eq. (3.183). The slope of the mass function is also modified,
in more or less the same way as it was for dn/dm200. The normalization of the mass function is
much different however, with dn/dmt being much lower than dn/dm200 at a value of the mass
m = mt = m200 > mmin. Below the cosmological mass cutoff mmin, the situation is reversed.
While dn/dm200 is zero, we have dn/dmt Ó= 0. This happens because some subhalos with a
cosmological mass m200 > mmin get stripped to a mass mt < mmin hence the power spectrum
extends below the cutoff scale. This analysis shows the cosmological information imprinted in
the mass function is partly lost in the local Galaxy due to tidal effects. The mass index αm

differs significantly from the Press-Schechter prediction of αm ≃ 2 and the mass cutoff mmin,
related to the kinetic decoupling of the dark matter particle, is significantly lowered.
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Figure 3.18 – Left panel: mass-differential number density dn/dm in terms of both the cosmo-
logical mass (dotted/dashed curves for tidal effects unplugged/plugged) and the real tidal mass (solid
curves), assuming a cutoff mass mmin = 10−6 M⊙, and calculated at 3 positions (R = 8/20/100 kpc in
blue/red/black), as a function of the relevant mass (a scaling of m2 is applied as αm = 2 is chosen here).
Right panel: same as in the left panel but with mmin = 10−10 M⊙.
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Chapter 4

Impact of dark matter subhalos on
indirect searches

The WIMP miracle has motivated several avenues of research based on the interaction between
dark and ordinary matter through means other than gravitation. These include particle accelerator
searches, direct and indirect searches. The latter are the focus of this chapter. Indirect searches
aim at identifying the dark matter particle(s) by detecting the products of its annihilation or
decay, assuming these interactions are possible. Dark matter is being looked for in a number
of channels, including gamma rays, neutrinos and charged cosmic rays such as antiprotons and
positrons. The observability of dark matter through its annihilation or decay depends on its
detailed microscopic interactions and on its clustering properties. In this chapter, we aim at
evaluating the uncertainty coming from the sub-galactic scale clustering, focusing on the case of
annihilating dark matter. We first work out the generic impact of subhalos on indirect searches
in Sec. 4.1. We investigate two detection channels to illustrate the effect of clustering. We first
look at gamma rays in Sec. 4.2. After describing the propagation of charged cosmic rays in the
Galaxy in Sec. 4.3, we investigate the case of cosmic-ray antiprotons in Sec. 4.3.

4.1 Boost factor

The impact of clustering on indirect searches for annihilating dark matter was first pointed out
by Silk & Stebbins (1993). The idea is quite simple: since subhalos are overdense regions with
respect to the smooth dark matter distribution, the annihilation rate is locally enhanced in
subhalos. This means that a clustered dark matter halo should yield a higher overall annihilation
rate than a perfectly smooth one. Since we expect CDM to structure on small-scales, the size of
this effect should be estimated and its impact on indirect searches evaluated.

Given a halo with internal mass density profile ρint and radial extension rt, we define its
luminosity as

Lt ≡ 4π

∫ rt

0
dr r2 ρ2

int(r) . (4.1)

The luminosity of a structure is directly related to its average annihilation rate

Γann =
〈σannv〉

2 m2
Lt . (4.2)

The luminosity is a function of the cosmological mass m200 and concentration c200 through the
internal profile, and a function of the spatial extension rt. Using the links between m200, c200, ρs

and rs, one can show that

Lt =
200 ρc

3
m200c3

200

∫ xt
0 dx x2 ρ̃2(x)

[

∫ c200r−2/rs

0 dx x2 ρ̃(x)
]2 , (4.3)
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with xt = rt/rs and ρ̃ = ρ/ρs as already introduced in Eq. (3.108). This shows that the luminosity
is proportional to the cosmological mass and goes roughly like c3

200. As shown in Fig. 4.1, most
of the luminosity of a dark matter halo comes from its inner region: more than 80% of the
luminosity originates from the core of the structure (r < rs), regardless of its density profile.

Figure 4.1 – Ratio of the truncated luminosity to the cosmological luminosity as a function of the
truncation radius, for the NFW profile (red) and the cored isothermal sphere (blue).

For a tidally stripped subhalo, the radial extension is given by the tidal radius rt =
rt(c200, m200, R) where R is the distance from the Galactic centre. This makes Lt a func-
tion of c200, m200 and R. The luminosity of the whole Galactic subhalo population is obtained
by summing the contribution from each individual subhalo

Lsub =
∑

subhalo i

Lt(c200,i, m200,i, Ri) . (4.4)

In our statistical description of the subhalo population in the previous chapter, we introduced
and computed the parameter-space subhalo number density Ft(c200, m200, R) (see Sec. 3.3.2).
Using this density, the luminosity can be written as

Lsub =

∫

dV

∫

dm200

∫

dc200 Ft(c200, m200, R) Lt(c200, m200, R) . (4.5)

The luminosity Lsub is a single number characterising the entire subhalo population. It is
convenient to introduce a luminosity density Lsub(R) such that

Lsub ≡
∫

dV Lsub . (4.6)

With Eq. (4.5), the subhalo luminosity density can be written

Lsub(R) =

∫

dm200

∫

dc200 Ft(c200, m200, R) Lt(c200, m200, R)

=
Nsub

Kt

dP

dV

∫ mmax

mmin

dm200

∫ ∞

cmin(R)
dc200

dP

dm200

dP

dc200
Lt(c200, m200, R) .

(4.7)

Of course, annihilation in the Galaxy is not sourced only by subhalos. Two other contributions
should be taken into account: annihilation between dark matter particles in the smooth halo,
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and annihilation of subhalo particles onto dark matter particles in the smooth halo. Let us work
out all these contributions in a consistent way. The luminosity of the whole Galaxy, including
the subhalo and the smooth contribution, is given by

Ltot =

∫

dV

[

ρsmooth(þR) +
∑

i

ρint,i

(∣

∣

∣

þR − þri

∣

∣

∣

)

]2

, (4.8)

where we used the exact contribution of subhalos by summing over all the objects. The
development of Ltot leads to three terms

Ltot =

∫

dV ρ2
smooth + 2

∫

dV

[

ρsmooth

∑

i

ρint,i

]

+

∫

dV

[

∑

i

ρint,i

]2

, (4.9)

namely the smooth, cross (subhalo particles on smooth particles) and subhalo contributions. We
neglect the possible overlap between subhalos which simplifies the subhalo contribution into

∫

dV

[

∑

i

ρint,i

]2

≃
∑

i

∫

vol. sub.
dV ρ2

int,i

=
∑

i

Lt,i .

(4.10)

Using our statistical description of the subhalo population, the average value of this sum leads
precisely to the expression of Lsub in Eq. (4.5). Likewise, the cross term simplifies to

2

∫

dV

[

ρsmooth

∑

i

ρint,i

]

= 2
∑

i

∫

vol. sub.
dV ρsmooth ρint,i . (4.11)

Assuming the smooth background is constant within the volume of a subhalo, we get the
luminosity of the ”cross” contribution

Lcross ≃ 2
∑

i

ρsmooth,i mt,i . (4.12)

where ρsmooth,i is the value of the smooth density in subhalo i and mt,i the mass of that subhalo.
In our statistical description, this is

Lcross = 2

∫

dV ρsmooth

∫

dm200

∫

dc200 Ft mt

= 2

∫

dV ρsmooth ρsub ,
(4.13)

where we used the definition of ρsub in Eq. (3.152). Putting everything together, we get

Ltot = Lsmooth + Lcross + Lsub

=

∫

dV (Lsmooth + Lcross + Lsub) ,
(4.14)

with the expressions of the luminosity densities:

Lsmooth = ρ2
smooth (4.15)

Lcross = 2 ρsmooth ρsub (4.16)

Lsub =

∫

dm200

∫

dc200 Ft Lt . (4.17)

These luminosity density profiles serve as the basis to compute the annihilation signal in indirect
searches, irrespective of the particular messenger used (gamma rays, antiprotons, positrons, etc.).
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As realized by Silk & Stebbins (1993), a clumpy halo generically leads to a stronger annihilation
signal than a smooth halo. A convenient way to quantify this enhancement is through a boost
factor. The integrated boost factor is defined as the ratio of the luminosity of a clumpy halo to
the luminosity of the same halo if all the dark matter was smoothly distributed. In other words,
the boost factor is

B ≡
∫

dV (Lsmooth + Lcross + Lsub)
∫

dV ρ2
DM

, (4.18)

where Lsmooth, Lcross and Lsub are given in Eqs. (4.15) to (4.17). By definition, the boost factor
is an annihilation signal multiplier equal to 1 in the absence of small-scale clustering.1 The
integrated boost factor is a single number characterizing the clumpiness enhancement within
a given volume. A local information on the impact of clumps on the annihilation rate can be
obtained with the differential boost factor

B(R) ≡ Lsmooth(R) + Lcross(R) + Lsub(R)

ρ2
DM(R)

. (4.19)

Using the luminosity density rather than the integrated luminosity allows us to identify regions
in the host halo where the enhancement is stronger and thus point toward potentially interesting
targets for indirect searches. So far, our definitions are not specific to any detection channel. We
will see in the following that our definition of the boost has to be modified when looking at a
particular channel. For now, our definition in Eq. (4.19) is enough to find the regions in the
Galaxy most affected by the clustering of CDM.

The luminosity densities are shown in Fig. 4.2. The left panel shows the impact of the
minimal mass mmin and the right panel shows the impact of the mass index αm. The bottom
panels show the associated differential boost. We see that the boost is 1 for radii smaller than
R ∼ 5 kpc and it grows to very high values at large radii. This difference is entirely due to tidal
effects which, as we have seen in the previous chapter, deplete of subhalos the central region
of the Galaxy while leaving the outer part unchanged. Both mmin and αm have a high impact
on the luminosity and the boost. The impact of the disruption parameter is shown in Fig. 4.3.
While the luminosity of the subhalo contribution alone is strongly affected by the value of ǫt,
especially within R . 10 kpc, the overall luminosity is not very sensitive to this value. The
reason is that enough dark matter in the inner region (R < 4 kpc) is in the smooth component of
the halo for this contribution to dominate the luminosity. The subhalo contribution dominates
at large radii but the value of ǫt is unimportant there because tides have little effects in that
region. On the bottom panel in Fig. 4.3, we see that a small difference appears in the transition
region 4 kpc< R <10 kpc. This surely is of interest because this is precisely where the Solar
system is located.

4.2 Indirect searches with gamma rays

The impact of dark matter clumpiness on gamma-ray searches has been investigated in numerous
studies, see e.g. Bergstrom et al. (1999); Ullio et al. (2002); Berezinsky et al. (2003); Kamionkowski
et al. (2010); Pieri et al. (2011); Blanchet & Lavalle (2012); Serpico et al. (2012); Bartels & Ando
(2015); Hiroshima et al. (2018). Subhalos could affect gamma-ray searches in a number of ways.
The individual detection of subhalos is a possibility (Tasitsiomi & Olinto, 2002; Koushiappas,
2006; Moore et al., 2005; Pieri et al., 2008; Ando et al., 2008; Kuhlen et al., 2008; Hütten et al.,
2016; Calore et al., 2017). Observed satellites like dwarf spheroidal galaxies constitute privileged
targets in this context (Ackermann et al., 2015; Albert et al., 2017). The vast majority of subhalos
have masses much too small to allow their individual detection unless they are very close to

1Note that an alternative definition can be found in the literature where the boost is shifted by one so that it is
zero if there is no enhancement. We will not use this definition in the following.
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Figure 4.2 – Left, upper panel: luminosity density profile for subhalos (dotted lines), smooth
dark matter (dashed lines) and the cross contribution (dotted-dashed lines), as well as the sum of all
contributions (solid lines), for two values of the minimal mass mmin. Left, lower panel: differential
boost factor, as defined in Eq. (4.19). Right panel: same as left panel, with mmin = 10−6 M⊙ and
αm = 2 or αm = 1.9.

Figure 4.3 – Upper panel: luminosity density profile for subhalos (dotted lines), smooth dark matter
(dashed lines) and the cross contribution (dotted-dashed lines), as well as the sum of all contributions
(solid lines), for different values of the disruption parameter ǫt. Lower panel: differential boost factor,
as defined in Eq. (4.19).

the Earth. However, these structures should contribute significantly to the diffuse gamma-ray
background (Ackermann et al., 2012b).

In order to estimate the contribution of dark matter clumps to the annihilation signal, let us
first express the gamma-ray flux for a smooth galactic halo. The energy-differential flux per unit
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of solid angle is given by

dφ

dE dΩ

∣

∣

∣

∣

l.o.s.
=

1

4π

〈σannv〉
2 m2

dNγ

dE

∫

l.o.s.
ds ρ2(s) , (4.20)

where dNγ/dE is the gamma-ray spectrum emitted at annihilation.2 Interpolation functions for
all possible spectra are given in Cirelli et al. (2011). In this expression, l.o.s. stands for line of
sight. The line of sight is usually characterized by two angles: the latitude b and the longitude
l, with −90◦ 6 b 6 90◦ and 0 6 l 6 360◦. Relations between these coordinates and Cartesian
coordinates are given in App. C. The differential flux is obtained by integrating over the solid
angle (defined by the region of interest or the angular resolution of the detector)
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∆Ω
dΩ

∫

l.o.s.
ds ρ2(s) . (4.21)

Much like the expression of the event rate in direct detection experiments, the particle physics
and astrophysical of the expression can be factorized. The astrophysical part is referred to as the
J-factor

J(∆Ω) ≡
∫

∆Ω
dΩ

∫

l.o.s.
ds ρ2(s) . (4.22)

When looking at targets within the Milky Way, a different definition of the J-factor is sometimes
used

J⊙(∆Ω) ≡
∫

∆Ω
dΩ

∫

l.o.s.
ds

(

ρ(s)

ρ⊙

)2

, (4.23)

where ρ⊙ is the local dark matter density. The J-factor is highly sensitive to the shape of the
dark matter density profile. Since the profile is poorly known at the centre of the Galaxy, this
is a major source of uncertainty for gamma-ray searches. This uncertainty is illustrated in the
right panel on Fig. 4.4 where we show the J-factor as a function of the longitude, for a latitude
b = 0◦ (so that for l = 0◦, the line of sight points toward the Galactic centre). While there is
little difference above l = 60◦, predictions at the centre varies by several orders of magnitude
depending on the central slope.

It is straightforward to express the J-factor including the contribution from substructures
given our discussion in the previous section. One simply has to replace in Eq. (4.22) or Eq. (4.23)
the density ρ2 by the luminosity densities defined in Eqs. (4.15) to (4.17). Hence the J-factor
along any line of sight can be separated into three contributions: annihilation in subhalos, in the
smooth halo and the ”cross” contribution

J(∆Ω) =

∫

∆Ω
dΩ

∫

l.o.s.
ds [Lsub + Lsmooth + Lcross] . (4.24)

These contributions are shown in the right panel on Fig. 4.4, for the mass function parameters
αm = 2 and mmin = 10−6 M⊙ and a disruption parameter ǫt = 1. The inclusion of substructures
significantly affects the J-factor, which is increased by a factor of more than two with respect to
the no-subhalo configuration for longitudes l > 50◦. We note that the contribution from subhalos
is nearly independent of the latitude, which is a consequence of their spatial distribution which
is mainly shaped by tidal effects. The cross contribution is always at least an order of magnitude
below the other contributions, which is why it is often neglected in the literature.

Since subhalos can have a sizeable contribution to the gamma-ray flux, it is worth defining a
boost factor. Its definition is straightforward given our discussion in the previous section:

BJ =

∫

∆Ω dΩ
∫

l.o.s. ds [Lsub + Lsmooth + Lcross]
∫

∆Ω dΩ
∫

l.o.s. ds ρ2(s)
, (4.25)

2This expression is valid for dark matter particles which are there own antiparticle. If that is not the case, the
flux should be multiplied by a factor of 1/2.
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i.e. it is simply the ratio between the J-factor including subhalos to the J-factor assuming all
the dark matter is smoothly distributed. Unlike our definition of the differential boost in the
previous section, see Eq. (4.19), this boost factor depends on the direction of the line of sight
and not on the distance to the Galactic centre. The ”J-factor boost factor” is very sensitive to
the parameters characterizing the clump distribution. In particular, the disruption parameter ǫt

can significantly affect the boost, as shown in Fig. 4.5. For αm = 2 and mmin = 10−6 M⊙ (top
left panel), and for very low values of ǫt, motivated by the recent results of van den Bosch et al.
(2018), we get a boost of BJ = 2 at l = 40◦ and more than BJ = 4 at l = 90◦, to nearly 6 at the
anti-centre at l = 180◦. Such high values should strongly impact dark matter searches using
the diffusive gamma-ray background, see for instance the recent analysis of Chang et al. (2018).
However, the impact of subhalos is strongly sensitive to the mass index αm and the mass cutoff
mmin, as shown in the top right panel and the bottom panel in Fig. 4.5. For a value of αm = 1.9,
as found in the simulation of Springel et al. (2008), the boost is greatly suppressed and stays
below 2 at all longitudes.

Figure 4.4 – Left panel: J-factor has defined in Eq. (4.22) as a function of the longitude, for a latitude
l = 0◦. We used the mass models of McMillan (2017) and the angular resolution is 0.5◦. Right panel:
J-factor including the contribution of substructures (red) compared to the no-subhalos case (black). The
mass function parameters are αm = 2 and mmin = 10−6 M⊙, and the disruption parameter is ǫt = 1.

4.3 Indirect searches with antimatter cosmic rays

Since their discovery by Hess in 1912 (F. Hess, 1912), cosmic rays have been collected by a wide
variety of ground-based and spatial experiments. Cosmic rays are relativistic charged particles
wandering in the interstellar medium. They are composed primarily of nuclei (99%) and leptons
(1%). Among the nuclei, around 90% are protons, 9% are helium nuclei and 1% heavier nuclei.
Leptons are composed essentially of electrons 90% and positrons 10%. The cosmic-ray spectrum
is measured over several decades in energy and behaves approximately as a power-law, see Fig. 4.6
(Blasi, 2013; Aloisio et al., 2018). Measurements are precise enough to show features in the
spectrum, which depart from a perfect power-law. Below 10 GeV, cosmic rays received at the
Earth are affected by solar modulation which we discuss below. Between 10 GeV and 3 PeV, the
data are well-fitted by a power law with an index of γ ≃ 2.7. At 3 PeV, there is a first breaking
of the power-law called the ”first knee”. Between 3 PeV and 300 PeV, the spectrum softens to
γ ≃ 3.1. At 300 PeV, another feature called the ”second knee” marks the transition between an
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Figure 4.5 – Top panel: J-factor has a function of the longitude for different values of the disruption
parameter ǫt (coloured lines). We also show the J-factor for a smooth halo (black line). The bottom
panel shows the boost factor for each ǫt. The mass function index is αm = 2 and the mass cutoff is
mmin = 10−6 M⊙ (left panel) or mmin = 10−10 M⊙ (right panel). Bottom panel: same figure as the top
panel, for αm = 1.9.

index γ ≃ 3.1 and γ ≃ 3.3. This regime holds up to the ”ankle” at 1 EeV (= 1018 eV), where
it hardens to γ ≃ 2.6. At 50 EeV, cosmic rays have enough energy to efficiently interact with
CMB photons which strongly limit their propagation in the intergalactic medium. The effect is
referred to as the GZK effect after Greizen, Zatsepin and Kuzmin (Greisen, 1966; Zatsepin &
Kuz’min, 1966).3

The two knees in the cosmic-ray spectrum are thought to mark the transition between
Galactic cosmic rays and extragalactic cosmic rays. The radius of gyration of a charged species
with momentum p and charge number Z, interacting with a constant magnetic field þB is

rg ≃ 1 pc

(

p

PeV

) (

B

µG

)−1

Z−1 , (4.26)

3Note that the limit of 50 EeV is only valid for protons. Heavier elements can violate this limit, which explains
why some cosmic rays have been detected at much higher energies.
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therefore in the 1-100 PeV range the radius is comparable to the size of the Milky Way. Below
this energy range, we expect cosmic rays to have mainly a Galactic origin, while cosmic rays
with higher energies are expected to come from extragalactic sources.
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Figure 4.6 – Observed cosmic-ray spectrum as a function of the kinetic energy. Figure taken from
Hillas (2006).

4.3.1 Origin and acceleration of cosmic rays

4.3.1.1 Acceleration mechanisms

To accelerate a charged particle, one needs a non-zero electric field. Large scale electric fields are
rare in astrophysics because astrophysical plasmas are highly conductive. However, stochastic
acceleration can be achieved by small-scale electric fields. We very briefly present the two main
mechanisms of acceleration of cosmic rays. For reviews, we refer to Drury (1983); Blandford &
Eichler (1987); Malkov & Drury (2001).

Second-order Fermi acceleration A mechanism to accelerate cosmic rays was originally
proposed by Fermi (1949). The idea is that cosmic rays can be deflected by molecular clouds,
which contain magnetic fields stronger than those found in the interstellar medium. The random
motion of molecular clouds in the Galaxy tend to increase the average energy of cosmic rays. A



100 4.3. Indirect searches with antimatter cosmic rays

calculation shows that the average relative energy gain is given by
〈

∆E

E

〉

≃ 4

3
β2 , (4.27)

where β = V/c and V is the average speed of molecular clouds in the Galactic referential
(typically a few hundred of km/s). The dependence on the square of β justifies the designation
of second-order for this acceleration mechanism. Though this mechanism does play a role in
accelerating cosmic rays, its suppression in β2 limits its importance.

First-order Fermi acceleration The dominant process in the acceleration of cosmic rays is
believed to be the so-called first-order Fermi mechanism (Axford et al., 1977; Bell, 1978a,b).
The principle is the same as the second-order mechanism except the interaction is between a
cosmic ray and a shock wave rather than a molecular cloud. A shock can be described as a
frontier between two mediums with different thermodynamic variables (temperature, pressure,
density): the upstream medium (interstellar medium) and the downstream medium (the inside
of the shell). Charged particles can diffuse on magnetic inhomogeneities and cross the shock
front back and forth, as represented in the lower right bubble in Fig. 4.9. The average relative
energy gain can be computed to get

〈

∆E

E

〉

=
4

3

∆v

c
=

4

3
β , (4.28)

where ∆v = v2 − v1 is the difference between the upstream medium velocity and the downstream
medium velocity (typically more than a thousand km/s). Unlike the previous acceleration
mechanism, here the relative energy gain is linear in β hence it is referred to as a first-order
Fermi acceleration mechanism. It is much more efficient at accelerating cosmic rays than the
second-order mechanism and is actually thought to be the dominant acceleration mechanism up
to the ankle.

4.3.1.2 Interactions with the interstellar medium

Energy losses Cosmic rays lose energy by interacting with the interstellar medium. These
interactions are the following:

• ionization of the interstellar atomic gas

• Coulomb interaction with electrons and protons in an ionized plasma

• Bremmsstrahlung: photon emission from interactions between electrons and the gas nuclei

• inverse Compton: scattering of a relativistic electrons on a photon

• synchrotron: photon emission when an electron propagates in a magnetic field

These interactions are relevant for all charged species. However, the relative importance of the
loss mechanism depends on the particle’s mass. Consequently, nuclei are mostly affected by the
first two processes, while all interactions are important for leptons. As a result, the propagation
of high-energy leptons is dominated by energy losses, while losses can often be neglected for
high-energy nuclei.

Destruction Cosmic-ray nuclei can be destroyed by inelastic interactions with other atoms or
ions in the interstellar gas. Nuclear reactions of spallation split nuclei into smaller products. For
a nucleus N interacting with a nucleus C from the gas to create a product P , the interaction
rate can be expressed

ΓN+C→P = nC vN σN+C→P , (4.29)
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where nC is the number density of C, vN is the speed of N and σN+C→P the cross-section.

Destruction is also relevant for antimatter which can annihilate with the interstellar matter
(this concerns positrons and antiprotons, but is relevant mostly close to or in the non-relativistic
regime).

4.3.1.3 Sources of cosmic rays

Cosmic rays below a few tens of MeV come from the Solar wind while ultra-high energy ones
(T > 1018 eV) have an extragalactic origin. In between, cosmic rays must have a Galactic origin.
We will focus on Galactic cosmic rays below.

Galactic primary cosmic rays A primary cosmic ray is a cosmic ray directly accelerated at
its source. Major contributors to the injection and acceleration of cosmic rays in the Galaxy are
supernovae. A supernova is the explosion of a star at the end of its life. As the star explodes, all
the elements synthesized in its core are injected into the interstellar medium (Baade & Zwicky,
1934; Sekido et al., 1951). A shock wave is also created which expands at high speed away from
the supernova. The most famous and spectacular example of supernova remnant (SNR) is the
Crab nebula, see Fig. 4.7. Supernovae explosions occur at a rate of three per century in our
Galaxy. While supernovae inject heavy nuclei in the interstellar medium, they also accelerate
particles with their shock wave through the first-order Fermi mechanism. This acceleration is
powerful enough to explain cosmic rays with energies up to the ankle and it is therefore thought
to be the main source of acceleration in the Galaxy. Another major source of primary cosmic
rays are Pulsar Wind Nebulae (PWNe) which are the by-products of core-collapse supernovae
(ending with a rotating and magnetized neutron star). Each PWN is in principle associated to a
SNR but contributes to the acceleration of cosmic rays at relativistic shocks (a large fraction of
cosmic rays accelerated by PWNe are electron/positron pairs).

Figure 4.7 – The Crab nebula. The associated supernova exploded in 1024 and was observed at the
time by Chinese and Japanese astronomers. Picture taken by the Hubble space telescope.
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Galactic secondary cosmic rays In opposition to primary sources, a secondary origin for
cosmic rays is spallation. Spallation is a nuclear process where a nucleus is hit by another particle
or a gamma-ray and subsequently split into a lighter nucleus and other particles (neutrons,
protons, antiprotons, etc.). The process occurs when cosmic rays interact with atoms in the
interstellar medium, mostly hydrogen and helium but also carbon, nitrogen and oxygen. Thus,
spallation is a process that converts primary cosmic rays into secondary cosmic rays (Berezhko
et al., 2003). Light nuclei like beryllium and boron are entirely created by spallation, see Fig. 1.4.
Secondary cosmic rays provide a powerful test of the cosmic-ray transport properties, since
the source acceleration properties may somewhat factorize in the ratio of secondary-to-primary
cosmic-ray fluxes. Note that secondaries, if produced in the acceleration zone at a source, may
also be accelerated themselves, gaining the status of primaries. Finally, note that secondaries
can also experience inelastic processes, and be either destroyed or inelastically driven to lower
energies: in the latter case, we talk about ”tertiaries” (this happens for instance to antiprotons
at low energy).

4.3.1.4 Solar modulation

For cosmic rays to reach the Earth, they have to enter the zone of magnetic influence of the Sun
(Potgieter, 2013). This zone is called the heliosphere and is created by the Solar wind, a flow
of magnetized plasma ejected from the Sun. The heliosphere ends at the heliopause which is
determined by the equilibrium between the pressure from the Solar wind and the pressure of
the interstellar medium. The properties of the Solar wind strongly depend on the Solar activity
which is known to have periodicity of 11 years. This period corresponds to the time between two
inversions of the Sun’s magnetic poles.

Cosmic rays lose energy due to their interaction with the Solar wind. This strongly affects
the cosmic-ray flux below 10-20 GeV, with a periodicity of 11 years. The equation governing the
propagation of cosmic rays in the heliosphere is complex and getting solutions requires numerical
calculations. An alternative is to use the effective descrition of Gleeson & Axford (1968) in terms
of force-field. Let ΦIS and ΦTOA be the interstellar and top-of-atmosphere fluxes, respectively.
We consider a nucleus with atomic number A and Z, then the top-of-atmosphere flux is given by

ΦTOA(TTOA) = ΦIS(TIS)
p2

TOA

p2
IS

(4.30)

TIS = TTOA +
Z e φF

A
(4.31)

where pTOA and pIS are the top-of-atmosphere and interstellar momentum per nucleon, i.e.

p2
TOA = (TTOA + mp)2 − m2

p (4.32)

p2
IS = (TIS + mp)2 − m2

p , (4.33)

where mp is the proton mass. The parameter φF is called the Fisk potential and it has to be
inferred from experimental measurements. This parameter depends on time, it is periodic with a
period of 11 years. The effect of solar modulation in this simple parametric model is shown for a
primary antiproton flux in Fig. 4.8.

4.3.2 The master equation

Let us know introduce the phenomenological model of cosmic-ray propagation. For classic
textbooks on cosmic rays, we refer to Ginzburg & Syrovatskii (1964); Berezinsky et al. (1990).
The magnetic halo is approximated to a cylinder of radius Rgal = 20 kpc and half-height L
between 1 and 15 kpc. All the matter is concentrated in the Galactic disc, which is itself identified
to a cylinder with radius Rgal and half-height h ∼ 100 pc. This model is referred to as a 2D
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Figure 4.8 – Effect of solar modulation of the antiproton flux using the Fisk potential. We show the
flux for a smooth NFW profile and a thermal annihilation cross-section 〈σannv〉 = 3.10−26 cm3/s. We used
the propagation model of Kappl et al. (2015), see Tab. 4.1.

model because the cosmic-ray density only depends on the cylindrical radius R and the altitude
z.

We denote Ψ the cosmic-ray density per unit energy

Ψ(E, t, þx) ≡ dn

dE
. (4.34)

The evolution of Ψ follows a Fokker-Planck equation (Blandford & Eichler, 1987). Instead of
deriving the transport equation from first principles, we simply sketch the main physical processes
coming into play. For a detailed review on cosmic-ray propagation, we refer to Strong et al.
(2007). The cosmic-ray density obeys a continuity equation

∂tΨ + þ∇. þJ + ∂EJE = Q − S , (4.35)

where Q and S are the source and sink term, respectively. The spatial current can be written

þJ = þVc Ψ − K þ∇Ψ , (4.36)

where þVc encodes the convection due to the Galactic wind and K is the coefficient of spatial
diffusion. The structure of the Galactic wind is widely unknown (Cox, 2005). From now on, we
make the very simplistic assumption that the wind is perpendicular to the disc and goes away
from it i.e.

þVc = sign(z) Vc þez . (4.37)

The diffusion coefficient is assumed homogeneous and isotropic. The non-linear diffusion theory
(Shalchi, 2009) and numerical simulations (Casse et al., 2002) show that it has a power-law
dependence on the rigidity

K(E) = K0 β

( R
1 GV

)δ

, (4.38)

where β = v/c and R = p/q is the rigidity. In the particular case of Kolmogorov magnetic
turbulence, we have δ = 1/3 (Kolmogorov, 1941). Note that since we expect different sources of
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turbulence on different scales, the diffusion coefficient should somewhat reflect these features.
This is actually observed as breaks in the spectra of nuclei and in the B/C ratio, and can be
interpreted as breaks in the diffusion coefficient (Panov et al., 2009; Ahn et al., 2010; Adriani
et al., 2011; Aguilar et al., 2015b,a; Aguilar et al., 2016). For theoretical studies, we refer to
Génolini et al. (2017); Evoli et al. (2018).

The energy current is given by

JE = −b Ψ − D ∂EΨ , (4.39)

where b = bloss + badia with

bloss = −
〈

dE

dt

〉

(4.40)

is the average energy loss rate (from synchrotron, inverse Compton, etc...) and

badia = −
þ∇.þVc

3
T

(

2 m c2 + T

m c2 + T

)

(4.41)

is the adiabatic loss rate due to the convective wind (Maurin et al., 2001). Cosmic rays diffuse on
the inhomogeneities of the magnetic halo which themselves are moving at the Alfvén speed Va.
At the encounter with inhomogeneities, cosmic rays are reaccelerated following the second-order
Fermi mechanism. The energy diffusion coefficient is linked to the Alfvén speed and the spatial
diffusion through

D(E) =
2

9
V 2

a

E2β2

K
. (4.42)

If reacceleration is intimately linked to spatial diffusion, it should occur all over the magnetic
halo. However, we could think about cases where reacceleration is more efficient where sources
are confined, in the disc. This assumption notably helps in solving the transport equation
analytically. Formally, the reacceleration region can however be rescaled to an arbitrary size by
rescaling the Alfvén speed Va, which should be thought about as an effective speed.

A term of energy gain should in principle be added to the transport equation as in Strong &
Moskalenko (1998), however it is not necessary to account for experimental results hence we do
not consider it in the following. To summarize, the transport equation is

∂tΨ + þ∇.
[

þVcΨ − K þ∇Ψ
]

− ∂E [b Ψ + D∂EΨ] = Q − S . (4.43)

The sink term can in general be written

S = ΓtotΨ , (4.44)

where Γtot is the total destruction rate taking into account all processes that can remove the
species under study, at a given position, time, and/or energy. (including decay if the species is
unstable). Since the half-height of the disc is much smaller than the half-height of the magnetic
halo in most propagation models, we can assume the disc to be infinitely thin. In that case, all
processes that occur only in the disc come with a pre-factor 2hδ(z), hence we get

∂tΨ + þ∇.
[

þVcΨ − K þ∇Ψ
]

− ∂E [b Ψ + 2hδ(z) D∂EΨ] + ΓtotΨ = Q . (4.45)

All processes of acceleration and diffusion included in the equation are schematically represented
in Fig. 4.9.

A cosmic-ray proton spends millions of years diffusing in the Galactic disc, and hundreds
of millions of years diffusing in the whole halo, while the rate of supernovae explosions is a few
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Figure 4.9 – Schematic edge-on view of the Milky Way diffusive halo. The stellar and gaseous disk
is sandwiched between two thick layers which contain turbulent magnetic fields. After having been
accelerated by supernova driven shock waves or produced by dark matter species annihilating in the
Galactic halo, cosmic rays diffuse on magnetic inhomogeneities and are wiped away by a Galactic wind
with velocity Vc. They can lose energy and are also mildly subject to diffusive reacceleration. The former
process is by far the dominant one in the case of electrons and positrons. This figure is taken from Maurin
et al. (2002).

per century. Since supernovae are likely to be the main source of injection and acceleration of
cosmic rays, it is natural to look for a steady-state solution of the transport equation. Eq. (4.43)
is usually solved numerically. Public codes are available for this purpose. Some codes use a
fully numerical approach to solve the equation in a general context, e.g. GALPROP (Strong &
Moskalenko, 1998), DRAGON (Maccione et al., 2011) and PICARD (Kissmann, 2014; Kissmann
et al., 2015). These codes allow one to explore more realistic, full 3D configurations. The code
USINE (Maurin, 2016) relies instead on semi-analytic solutions, valid under some restrictive
assumptions. The transport equation can slightly differ from code to code, a fact that must be
kept in mind when comparing results.

The propagation equation has essentially two types of solutions: full solutions, and solutions
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based on Green functions. The latter are most suited for the study of subhalos because they
allow us to compute the moments of the subhalo flux distribution, and study the associated
statistical variance.

4.3.3 Propagation parameters and dark matter searches

Free parameters in the propagation model are δ, K0, L, Vc and Va. While in principle these
parameters could be derived from the microscopic properties of the interstellar plasma, the
lack of knowledge on the interstellar medium limits this approach. Instead, this parameters are
constrained using measurements of cosmic-ray fluxes at the Earth. The ratio of secondary to
primary species is particularly interesting because it is sensitive to the propagation parameters
and mostly independent of the primaries injection spectrum. The boron-to-carbon ratio B/C is
used because the boron is entirely secondary in origin. The high precision of the data on B/C
also makes this ratio the most interesting to derive the propagation parameters.

Using the USINE code, Donato et al. (2004) derived sets of parameters compatible with
the B/C data available at the time. They classified the sets of parameter in terms of their
contribution to the expected flux of antiprotons from dark matter annihilation. The propagation
parameters for these models (MIN/MED/MAX) are given in Tab. 4.1. The MIN model gives the
smallest antiproton flux while the MAX model gives the largest flux. A parameter especially
important for dark matter annihilation is the half-height of the magnetic halo L, because it
determines the part of the dark matter halo which is actually probed by cosmic rays. This is
the main reason why the MIN model, which has a half-height of 1 kpc, leads to a smaller flux
than the MAX model which has L = 13.5 kpc. The effect of L on the primary antiproton flux is
illustrated in the left panel on Fig. 4.10. We also show the effect of the normalization K0 of the
diffusion coefficient in the right panel. The effect of δ and Vc are also shown in the appendix on
Fig. C.2. Note that the MIN and MED models have since then been excluded by low-energy
positron data (Lavalle et al., 2014; Boudaud et al., 2017).

Recently, very accurate measurements of B/C by the AMS collaboration (Aguilar et al., 2016)
have allowed the best-fitting parameters to be recomputed. This exercise was done by Kappl
et al. (2015) on preliminary data from 2015, with the resulting model (hereafter K15) shown in
Tab. 4.1. For a more recent analysis, we refer to Reinert & Winkler (2018). The recent data point
toward a break in the diffusion coefficient at high rigidity (Génolini et al., 2017). The recent B/C
data favour a large diffusive halo, comparable in size to the one found in the MAX model. Unlike
the MAX model however, a low convective wind (Vc) and diffusive reacceleration (Va) is preferred
which will actually improve the quality of our predictions as for the effect of dark matter subhalos
(the Green function method that we use cannot account for diffusive reacceleration).

δ K0 [kpc2/Myr] L [kpc] Vc [km/s] Va [km/s]

K15 0.408 0.0967 13.7 0.2 31.9

MIN 0.85 0.0016 1 13.5 22.4

MED 0.70 0.0112 4 12 52.9

MAX 0.46 0.0765 13.5 5 117.6

Table 4.1 – Propagation parameters for the model of Kappl et al. (2015) (K15) and the MIN/MED/MAX
models (Maurin et al., 2002; Donato et al., 2004).

4.3.4 Boost factor for cosmic-rays

The computation of the boost factor for indirect searches with cosmic rays has first been performed
in a consistent way by Lavalle et al. (2007). It has been subsequently shown that the enhancement
had been greatly overestimated in the past and that it is in fact limited to a factor of a few
(Lavalle et al., 2008; Pieri et al., 2011). The most convenient way to compute the boost factor is
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Figure 4.10 – Left panel: effect of the half-height L on the primary antiproton flux from dark matter
annihilation. We used a smooth NFW profile and a thermal cross-section 〈σannv〉 = 3.10−26 cm3/s. The
propagation model is K15 (see table below) apart from the value of K0. Right panel: same as left panel,
but varying the normalization K0 of the diffusion coefficient.

through the Green’s function formalism. The source term in the propagation equation for dark
matter annihilation is

Q(þx, E) =
〈σannv〉

2

(

ρ(þx)

m

)2 dNp

dE
, (4.46)

As for the gamma-ray flux, dNp/dE is the antiproton spectrum generated at annihilation, see
Cirelli et al. (2011).4 The cosmic-ray density can be written

Ψ(þx, E) =
〈σannv〉

2 m2

∫

dEs

∫

d3þxs G(þxs, Es → þx, E)
dNp

dE
(Es) ρ2(þxs) . (4.47)

To get the flux per unit of solid angle, one simply has to multiply the density by vp/(4π) where
vp is the antiproton speed at energy E. Since we neglected all the terms inducing a change in
energy during the transport, the integral over Es is trivial and we get the (differential) flux

dφ

dE
=

〈σannv〉
2 m2

vp

4π

dNp

dE

∫

d3þxs G(þxs, E → þx, E) ρ2(þxs) . (4.48)

Just like the gamma-ray contribution, the cosmic-ray flux can be separated into a particle-physics
part and an astrophysics part. The latter is the diffusive halo integral

D(þx, E) =

∫

d3þxs G(þxs, E → þx, E) ρ2(þxs) . (4.49)

To get the contribution from substructures, one has to replace the squared-density ρ2 by the
luminosity densities defined in Eqs. (4.15),(4.16),(4.17). It is then straightforward to define a
boost factor

Bcr(þx, E) =

∫

d3þxs G(þxs, E → þx, E) [Lsub + Lsmooth + Lcross]
∫

d3þxs G(þxs, E → þx, E) ρ2(þxs)
(4.50)

Since þx is the position of the observer i.e. the Earth, the boost only depends on the energy. Since
the energy-dependence comes from the Green’s function which encodes the propagation, the
boost factor is a priori different for each cosmic ray species.

4Like for gamma rays, this expression is valid for self -annihilating dark matter. It should be multiplied by 1/2
in alternative cases.
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4.3.5 Impact of subhalos on searches with antiprotons

4.3.5.1 Propagation equation for antiprotons

The transport equation for antiprotons is given in Eq. (4.43). Antiprotons are not affected by
energy losses, and reacceleration can also be neglected at high energies (neglecting reacceleration
is also consistent with the latest B/C data (Kappl et al., 2015; Reinert & Winkler, 2018)), hence
the equation simplifies to

∂tΨ + Vc ∂zΨ − K(E)∆Ψ + S = Q . (4.51)

We write the sink term as

S = ΓspalΨ , (4.52)

where

Γspal(E) = vp [nH σp+H(E) + nHe σp+He(E)] (4.53)

is the total spallation rate. The cross-sections σp+H and σp+He are the total inelastic interaction
cross-sections of antiprotons with H and He. The energy dependence of these cross-section is
taken from Tan & Ng (1983). The gas densities in the disc are fixed to nH = 0.9 cm−3 and
nHe = 0.1 cm−3.

The Green’s function, solution of the stationary equation

{−K∆ + Vc ∂z + 2h Γspalδ(z)} Gp = δ(3)(þxs − þx) , (4.54)

can be explicitly written in terms of r = |þxs − þx| and z = zs, assuming þx is the position of the
Sun (x⊙ = R⊙, y⊙ = 0, z⊙ = 0). We have (Lavalle et al., 2008)

Gp(r, z) =
e−kvz

2πK L

∞
∑

n=0

c−1
n K0

(

r
√

k2
n + k2

v

)

sin [knL] sin [kn(L − z)] , (4.55)

where K0 is the modified Bessel function of the second kind. The quantity kn is the solution of

2kn cos [knL] = −kd sin [knL] , (4.56)

and

cn = 1 − sin [knL] cos [knL]

knL
. (4.57)

We also have

kv ≡ Vc

2 K
(4.58)

kd ≡ 2h Γspal

K
+ 2 kv . (4.59)

4.3.6 Antiproton analysis

Since the release by the AMS collaboration of new measurements of the antiproton flux (Aguilar
et al., 2016) and the B/C ratio (Aguilar et al., 2016), several groups have re-evaluated the
secondary backgrounds and primary contribution from dark matter annihilation (Giesen et al.,
2015; Kappl et al., 2015; Cui et al., 2017; Cuoco et al., 2017; Winkler, 2017; Reinert & Winkler,
2018; Cui et al., 2018). The latest estimations show that the data at low and high energies can
entirely be explained by secondary antiprotons. Between a few GeVs and a few tens of GeVs,
however, the secondary background underestimates the data. The significance of this excess
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depends on the analysis (Cuoco et al., 2017; Winkler, 2017; Cui et al., 2018). This excess can be
interpreted has a signature of dark matter annihilation (Cui et al., 2017; Cuoco et al., 2017).
It could also point toward a need to revise some of the basic assumptions of the propagation
models, which may now be challenged by the very high precision of the data. In any case, it is
timely to evaluate the astrophysical uncertainties associated to the dark matter signal. All the
analyses done so far have focused on a smooth dark matter halo. We know that CDM predicts
a clumpy structure for the Galactic halo and that this clumpiness systematically enhances the
dark matter annihilation rate.

4.3.6.1 Boost factors and primary fluxes

The flux of primary antiprotons as well as the boost factor are shown, for the K15 propagation
model, in Fig. 4.11. The flux and boost factor for the MED propagation model are shown in
Fig. 4.12. The choice of the propagation model has a strong impact on the amplitude of the
primary antiproton flux, with the K15 model leading to higher values than the MED model
as expected from the value of the half-height L in each model. However, the choice of the
propagation model has little impact on the amplitude of the boost factor, which is comparable
in both models at a given value of αm and mmin. The prediction of the boost for antiprotons is
therefore robust. Nevertheless, we note that the boost in K15 is slightly higher than in MED
over most of the kinetic energy range. This difference comes from the size of the diffusive region.
The larger diffusive region in K15 includes a part of the outer region of the dark halo which
is dominated by subhalos and therefore leads to a slightly higher boost. As for gamma rays,
the flux and the boost are sensitive to the value of the disruption parameter ǫt, with lower ǫt

leading to a larger boost. The flux and the boost are also highly sensitive to the value of αm and
mmin. In the K15 model for instance, the flux for mmin = 10−10 M⊙ can be enhanced by 10% for
αm = 1.9 up to 130% for αm = 2. We recall that the matter power spectrum on these scales is
completely unknown and unconstrained.

We compare the primary antiproton flux to the experimental data from AMS and the
secondary prediction from Winkler (2017) in Fig. 4.13. The left panel shows the prediction from
the MED model, which has a half-height L = 4 kpc, and the right panel shows the prediction from
the propagation model of Kappl et al. (2015) (K15) with L = 13.7 kpc. As expected from the
difference in half-heights, the K15 model leads to a higher prediction than MED. In both models,
subhalos lead to a sizeable enhancement of the primary flux for αm = 2 and mmin = 10−6 M⊙.
The case αm = 2 and mmin = 10−10 M⊙ leads to an even stronger enhancement as shown in
Fig. 4.14. However, as already shown by our analysis of the boost factor, the case αm = 1.9 leads
to a boost too small to be interesting, see Fig. 4.15.

4.3.6.2 Exclusion curves

We can now derive exclusion curves on the annihilation cross-section 〈σannv〉 and the mass m of
the dark matter particle by comparing our predictions to the data. We perform a ∆χ2 analysis
and derive the 3σ exclusion curves by requiring

∆χ2 = χ2(primaries + secondaries) − χ2(secondaries) > 32 (4.60)

for a model to be excluded. We include the experimental uncertainty (statistic and systematic)
on the AMS data. We associate to the primaries and secondaries a 5% theoretical uncertainty on
propagation. For secondaries, we add a 20% uncertainty on nuclear cross-sections relevant for
spallation processes. For a much more detailed treatment of these uncertainties, we refer to the
analysis of Winkler (2017). We show in Fig. 4.16 to 4.18 the exclusion curves corresponding to
the fluxes shown in Fig. 4.13 to 4.15. Our best constraints our obtained with the K15 propagation
model, with the mass function parameters αm = 2 and mmin = 10−10 M⊙, as shown in the right
panel on Fig. 4.17. In that case, for a dark matter particle annihilating into bb, we exclude a
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Figure 4.11 – Top panel: we show the primary antiproton flux, multiplied by T 2, for different values of
the disruption parameter ǫt. The minimal mass is set to mmin = 10−6 M⊙ (left panel) or mmin = 10−10 M⊙

(right panel), and the mass index is αm = 2. The bottom panels show the corresponding boost factors.
Bottom panel: same as the top panel, for αm = 1.9.

thermal relic up to m ∼ 200 GeV. Without subhalos, the thermal relic is excluded up to m ∼ 100
GeV. These constraints have been derived using an NFW profile for the Galactic halo. In App. C,
we show the same constraints derived with a cored profile. The difference between the two
profiles is rather small.

This shows that the inclusion of subhalos can have an important effect on indirect searches,
in particular in the antiproton channel. Given the high precision of the data now available, this
enhancement should be taken into account in searches for CDM particle candidates.

4.3.6.3 Statistical variance

So far, we have computed the average value of the primary antiproton differential flux 〈Φ〉 where

Φ ≡ dφ

dT
. (4.61)
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Figure 4.12 – Same as Fig. 4.11, for the MED propagation model.

The average is taken over the subhalo parameter-space distribution function. The Green’s
function formalism provides us with a way to compute the statistical variance associated to the
average value as

σ2
Φ ≡

〈

Φ2
〉

− 〈Φ〉2 . (4.62)

We must first compute the variance σ2
1 in the case where the number of subhalos is Nsub = 1,

then we get the variance for Nsub > 1 through

σ2
Φ = Nsub σ2

Φ,1 . (4.63)

Let us first compute
〈

Φ2
〉

. We saw that the flux can be written as the sum of three contributions:
the subhalos, the smooth halo and the cross contribution. Hence we have

〈

Φ2
〉

=
〈

Φ2
sub + Φ2

smooth + Φ2
cross + 2 ΦsubΦsmooth + 2 ΦsubΦcross + 2 ΦsmoothΦcross

〉

. (4.64)

The smooth component is constant with respect to the statistical averaging over the subhalos
parameters therefore

〈Φn
smooth〉 = Φn

smooth, ∀n > 1 . (4.65)
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Figure 4.13 – In both panels, we assume 〈σannv〉 = 3 × 10−26 cm3/s, αm = 2 and mmin = 10−6 M⊙.
Left panel: annihilation-induced primary antiprotons flux with/without subhalos (solid red/dashed
blue), for three different mass of the dark matter particle. The propagation model used is MED. The
primary flux is compared to the measurement of AMS-2 (blue points) and the secondary prediction by
Winkler (2017) (black dashed). Right panel: same as the left panel, for the K15 propagation model.
For both panels, the Fisk potential is set to φF = 0.83 GV (max of Ghelfi et al. (2016)).

Figure 4.14 – Same as Fig. 4.13 for αm = 2 and mmin = 10−10 M⊙.

This allows us to rewrite
〈

Φ2
〉

=
〈

Φ2
sub

〉

+
〈

Φ2
cross

〉

+ Φ2
smooth + 2 Φsmooth 〈Φsub + Φcross〉 + 2 〈ΦsubΦcross〉 (4.66)

The expressions of all the second order terms are given in the Appendix. We can express the
relative flux variation due to our limited knowledge of the clump population as σΦ/ 〈Φ〉. We
computed this number and found that it is less than 10−3 over the entire range of energy, hence
the statistical uncertainty is very small. This is because antiprotons probe a large volume
containing many subhalos. Positrons, on the other hand, have their propagation dominated by
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Figure 4.15 – Same as Fig. 4.13 for αm = 1.9 and mmin = 10−10 M⊙.
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Figure 4.16 – Exclusion curves obtained using the data from Aguilar et al. (2016). Left panel: MED
propagation model. Right panel: same as left panel for the K15 propagation model.

energy losses and probe a much smaller volume at high energies therefore the variance of the
positron flux is in general more important (Lavalle et al., 2007; Lavalle et al., 2008).
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Figure 4.17 – Same as Fig. 4.16 for αm = 2 and mmin = 10−10 M⊙.
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Figure 4.18 – Same as Fig. 4.16 for αm = 1.9 and mmin = 10−10 M⊙..



115

Chapter 5

The dark matter phase space of the
Galaxy

In this chapter, we focus on the study of the dark matter phase space in our Galaxy. We first
describe the structure of the Milky Way as inferred from observations then introduce some basic
notions of statistical physics for gravitational systems. We then turn to our main subject of
interest: the study of the Eddington inversion formalism. We present this formalism in details
and then discuss its limitations and issues.

5.1 Milky Way mass models

In this section, we give a short overview on the structure of the Milky Way and review the mass
models available in the literature. For detailed reviews on the structure of our Galaxy, we refer
to Bland-Hawthorn & Gerhard (2016) and Binney & Tremaine (1987).

5.1.0.1 Structure of the Galaxy

A schematic view of the Milky Way galaxy, as it would be seen for an observer at latitude b = 90◦

far from the Galactic plane, is shown in Fig. 5.1. The main structures, such as the spiral arms
and the central bars, are represented. There are ample evidences that galaxies are embedded in
large dark matter halos, as reviewed in the introduction. This of course includes the Milky Way
where we know, using for instance the kinematics of satellite galaxies (Watkins et al., 2010), that
the dark halo extends far beyond the Galactic disc.

A great number of authors tried to build consistent mass models for the Milky Way. A
mass model is a description of the different components of the Galaxy in terms of density, mass
or gravitational potential, in a way that agrees with a set of observational constraints. The
improvements of observations over the last decades has allowed to build more and more refined
models, see e.g.Dehnen & Binney (1998); Widrow & Dubinski (2005); Catena & Ullio (2010);
McMillan (2011); Catena & Ullio (2012); Fornasa & Green (2014); Piffl et al. (2015); Binney &
Piffl (2015); Pato et al. (2015); Cole & Binney (2017); McMillan (2017). The recent data release
from the Gäıa collaboration is a major step forward that will help sharpen our understanding of
the dynamics and history of our Galaxy.

In this work, we use the Milky Way mass models of McMillan (2017), which are detailed in
App. D. The author models the bulge, two stellar discs (thin and thick), two gas discs (H and
H2) and the dark halo. The parameters of the model are constrained using kinematic data from
maser observations, the solar velocity, terminal velocity curves, measurements of the vertical
force and the mass within large radii.
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Figure 5.1 – Schematic view of the Milky Way. Source: NASA/JPL-Caltech/R. Hurt (SSC/Caltech).

5.1.0.2 Spherical approximation

In Sec. 5.3, we present the Eddington inversion method to derive the DM phase-space distribution
given the dark matter density profiles and the total baryonic potential. This method only applies
to spherically symmetric systems. To apply it to the Galaxy, we need to make a spherical
approximation for the baryonic components. Given an axisymmetric component ρ(R, z), we
compute its mass within a spherical shell of radius r

m(r) = 2π

∫ r

−r
dz

∫

√
r2−z2

0
dR R ρ(R, z) , (5.1)

and defined a spherically-averaged density

ρ(r) ≡ 1

4πr2

dm

dr

=
1

r

∫ r

0
dz ρ

[
√

r2 − z2, z
]

.
(5.2)

The spherically-averaged density profile is compared to the original profile along the R and z
axis on the upper panel in Fig. 5.2. Since the bulge and the disc are significantly oblate, the
spherical average overestimates the density profile along the z axis and underestimates it in the
Galactic plane. The spherical density of the baryonic components is compared to the DM density
on the lower panel in Fig. 5.2.
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Figure 5.2 – For the mass model of McMillan (2017) Upper left panel: mass density and spherically-
averaged density for the bulge and the disc in the Galactic plane. Upper right panel: mass density and
spherically-averaged density for the bulge and the disc along the z-axis. Lower panel: Spherical mass
density of the different Galactic components.

5.2 Statistical mechanics of gravitational systems

This section briefly describes some basic notions of statistical physics applied to gravitational
systems.

5.2.1 The Liouville theorem and the Boltzmann equation

Let us consider a system of N interacting particles and let f (N) be the N -particle phase-space
DF of the system. We consider for simplicity that all the particles are identical, therefore we
can take as phase-space coordinates the position þr and the velocity þv (rather than the position
and the momentum). The N -particle DF is a function of the phase-space coordinates of every
particle in the system

f (N) ≡ f (N)(t;þr1, ..., þrN;þv1, ..., þvN ) . (5.3)



118 5.2. Statistical mechanics of gravitational systems

The distribution is normalised

∫

(

N
∏

i=1

d3þri d3þvi

)

f (N) = 1 . (5.4)

If the system is isolated, f (N) obeys the Liouville theorem

df

dt

(N)

≡ ∂f

∂t

(N)

+
N

∑

i=1

(

þ̇ri.þ∇þri
f (N) + þ̇vi.þ∇þvi

f (N)
)

= 0 . (5.5)

This equation states that the phase-space density of the system is conserved during its evolution.
This theorem is valid regardless of the interactions between the particles and the state of
equilibrium of the system, see Binney & Tremaine (1987). In particular, it applies in the
out-of-equilibrium regime. If the only interaction between particles is gravitation, we have

þ̇vi =
∑

j Ó=i

GN m (þrj − þri)

|þrj − þri|3

= −
∑

j Ó=i

þ∇þri
Φji ,

(5.6)

where

Φji ≡ − GN m

|þrj − þri|
(5.7)

is the gravitational potential between particle i and j. The Liouville equation can then be written

df

dt

(N)

=
∂f

∂t

(N)

+
N

∑

i=1



þvi.þ∇þri
f (N) −

∑

j Ó=i

þ∇þri
Φji.þ∇þvi

f (N)



 = 0 . (5.8)

For our purposes, it is more convenient to work with the 1-particle distribution function

f (1)(t, þr1, þv1) ≡
∫

(

N
∏

k=2

d3þrk d3þvk

)

f (N) . (5.9)

Since all particles are identical, we simply write f (1) ≡ f and we call f the phase-space DF from
now on. The DF is normalised

∫

d3þr d3þv f(t, þr,þv) = 1 . (5.10)

We want to derive an equation for f starting from the Liouville equation (5.5). We integrate the
Liouville equation over

∏N
k=2 d3þrk d3þvk. This removes all terms in the sum except the i = 1 term

if we assume f (N) decreases sufficiently fast at infinity so that

∫

d3þri
þ∇þri

f (N) = 0 (5.11)
∫

d3þvi
þ∇þvi

f (N) = 0 . (5.12)

We are left with

∂f

∂t
+ þv1.þ∇þr1

f −
∫

(

N
∏

k=2

d3þrk d3þvk

)

þ∇þv1
f (N).þ∇þr1

N
∑

j=2

Φj1 = 0 . (5.13)
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To simplify the last term in this equation, we further assume f (N) is separable which means it
can be written

f (N) =
N
∏

n=1

f(t, þrn, þvn) . (5.14)

This implies in particular that the phase-space coordinates of the particles in the system are
completely uncorrelated. This leads to

∂f

∂t
+ þv1.þ∇þr1

f − (N − 1)þ∇þv1
f(t, þr1, þv1).þ∇þr1

∫

d3þr2 d3þv2 Φ21 f(t, þr2, þv2) = 0 , (5.15)

where we have used the individual normalization of f and the equality of each term in the sum
over j. We define the average gravitational potential at position þr1 through

Φ(þr1) ≡ N

∫

d3þr2 d3þv2 Φ12 f(t, þr2, þv2) , (5.16)

and we get

∂f

∂t
+ þv1.þ∇þr1

f − (N − 1)

N
þ∇þv1

f(t, þr1, þv1).þ∇þr1
Φ = 0 . (5.17)

We now take the N → ∞ limit and get the collisionless Boltzmann equation

df

dt
≡ ∂f

∂t
+ þv.þ∇þrf − þ∇þr Φ.þ∇þvf = 0 . (5.18)

This equation is also often called the Vlasov equation, as it is identical to the equation that
determines the evolution of a plasma. It is less general than the Liouville equation since it relies
on the separability of f (N) and N → ∞. Similar to the Liouville equation, it expresses the
conservation of the phase-space density around a particle in the system. Note that according to
this equation, particles are only sensitive to a smooth gravitational potential Φ and do not ”see”
the potential generated by each individual particle.

If correlation between particles cannot be neglected, then f (N) cannot be considered separable.
In that case, it is useful to consider the 2-particle phase space DF

f (2)(þr1, þr2;þv1, þv2) = f(þr1, þv1)f(þr2, þv2) + g(þr1, þr2;þv1, þv2) , (5.19)

where g is the correlation function of particle 1 and 2. In that case, the Boltzmann equation is
not called collisionless any more and takes the form

df

dt
= C[f ] , (5.20)

where

C[f ] ≡ N

∫

d3þr2 d3þv2
þ∇þr1

Φ12.þ∇þv1
g (5.21)

is the collision operator or encounter operator.

Which equation should we choose to study dark matter systems? We will see in the next
section that most self-gravitating systems can be considered as being essentially collisionless.
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5.2.2 Relaxation time

We compute the relaxation time of a self-gravitating, homogeneous system, following the derivation
of Binney & Tremaine (1987). We consider a test particle moving through a medium consisting
of homogeneously distributed point-mass particles. We want to estimate the difference in velocity
induced by the particles distribution with respect to a case where the total mass of these particles
is smoothly distributed. First, we focus on the case of a single encounter: the test particle
A passes-by a particle B which we consider at rest, see 5.3. We assume the velocity is small
δv/v ≪ 1, in which case the trajectory of A is approximately a straight line. Consequently, the
velocity change parallel to the trajectory averages to zero and we are left with a perpendicular
velocity change. The perpendicular force felt by A at a given time is then

F⊥ =
GN mA mB

x2 + b2
cos(θ)

=
GN mA mB

b2

[

1 +
x2

b2

]−3/2

=
GN mA mB

b2

[

1 +

(

vt

b

)2
]−3/2

,

(5.22)

where t = 0 is the moment when the distance between A and B is equal to the impact parameter
b. By Newton’s second law, we have

mA
dþv

dt
= þF , (5.23)

which projected to the direction perpendicular to the trajectory leads to

δv =
GN mB

b2

∫ +∞

−∞

[

1 +

(

vt

b

)2
]−3/2

dt

=
2 GN mB

bv
.

(5.24)

We recall that this expression is only valid if δv ≪ v which translates into b ≫ bmin where

bmin =
2 GN mB

v2
. (5.25)

We now have to evaluate the number of encounter experienced by A as it orbits in the mass
distribution. We assume this distribution to be a homogeneous sphere of radius R containing N
particles. The number of encounters with impact parameter between b and b + db after one orbit
in the system is then

δn =
N

πR2
2πb db . (5.26)

We can now compute the velocity variance created by these encounters

(δv)2δn =

(

GN mB

bv

)2 N

πR2
2πb db . (5.27)

Integrating over the impact parameter, we get

∆v2 = 8N

(

GN mB

vR

)2

ln

(

bmax

bmin

)

. (5.28)
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The maximal impact parameter bmax is set by our assumption of a homogeneous distribution,
which cannot be true for b > R. Therefore we assume bmax ≃ R. The expression of ∆v2 can be
simplified by considering A is on a circular orbit, in which case we have

v ≃
√

GNN mB

R
, (5.29)

and

bmax

bmin
=

R v2

2 GN mB
≃ N

2
. (5.30)

We finally get the relative change in v2 after one crossing of the system

∆v2

v2
=

8

N
ln

(

N

2

)

. (5.31)

The number of crossing needed to have a deviation in v2 comparable to the original value is then

ncross =
N

8 ln
(

N
2

) , (5.32)

and two body encounters become relevant after a time

trelax =
N

8 ln
(

N
2

) tcross , (5.33)

where tcross = R/v = R3/2/(GNM)1/2 is the typical crossing time. The crossing time has the
more general expression tcross = (GNρ)−1/2 and is also called the dynamical time. trelax is the
(two-body) relaxation time. At a time t ≪ trelax, the effect of two-body encounters is subdominant
and the dynamics of the system should obey the collisionless Boltzmann equation (5.18). At time
t > trelax, two-body encounters start to dominate the dynamics, particles have a diffusive motion
and the phase-space DF is solution of the Boltzmann equation with collisions (5.20). Note that if
the system is not homogeneous the dynamical time depends on the position through the density,
therefore relaxation might be important at the center while remaining irrelevant at the edges.

What is the relaxation time of realistic self-gravitating systems? Some stellar systems such
as globular clusters are known to be affected by relaxation. What about dark matter systems? If
the DM particle has a mass around the electroweak scale m ∼ 100 GeV, the number of particles
in a halo is gigantic and relaxation is completely irrelevant. As an illustration, we consider
a DM structure of mass M = 10−10 M⊙ which is near the smallest mass reachable in WIMP
models, see e.g.Bringmann (2009). The number of particles is M/m ≃ 1050 and the crossing
time tcross ≃ 1 Myr, so relaxation is indeed of no importance there.1 Relaxation can only be of
relevance for very heavy DM particles. For instance, we can consider the case of Primordial Black
Holes DM with mass MPBH ≃ 10 M⊙ and a halo composed of ∼ 100 PBHs. The cosmological
radius of the structure is roughly R200 ≃ 0.2 kpc and the relaxation time is trelax ∼ 5 Gyr, so
relaxation should impact structure formation is this case.

5.2.3 Thermodynamic equilibrium?

The statistical treatment exposed so far is very reminiscent of the statistical mechanics of gaseous
systems developed by Maxwell, Boltzmann and Gibbs. A major difference is the nature of the
force driving the evolution of the system. While gaseous systems evolve because of the numerous

1This does not mean the particle nature of DM is irrelevant for WIMP DM structures. In particular, the
free-streaming of DM particles is what sets the minimal mass of DM halos in WIMP models.
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Figure 5.3 – A test particle A approaches at speed v a stationary particle B with an impact parameter
b. The trajectory of A is assumed to be a straight line during the encounter.

collisions between their constituents, gravitational systems can be considered as being essentially
collisionless and driven by the long-ranged gravitational interaction. One can wonder if the results
of thermodynamics apply in that case. In particular, is there a thermodynamic equilibrium for
gravitational systems? The answer to that question is negative: gravitational systems do not
have a thermal equilibrium. A very simple way of seeing this is given by Binney & Tremaine
(1987). Let us consider an N-body gravitational system and assume it is in thermal equilibrium.
The N-particle phase-space DF should take the usual form

f (N)(þr1, ..., þrN ;þv1, ..., þvN ) =
1

K
exp [−β H(þr1, ..., þrN ;þv1, ..., þvN )] , (5.34)

where K is a normalization constant, β = 1/(kBT ), T is the system’s temperature and H its
Hamiltonian. The constant K should be fixed by requiring the normalization over the full
phase-space

K =

∫

(

N
∏

i=1

d3þri d3þvi

)

exp [−β H(þr1, ..., þrN ;þv1, ..., þvN )] . (5.35)

However, the spatial part of the integral diverges for a gravitational system. It diverges at short
distances because of the singular behaviour of the gravitational potential, and it diverges at large
distances because the Hamiltonian becomes independent of the position while still being velocity
dependent. Consequently, the DF cannot be normalized and there is no thermal equilibrium!
In fact, many results of statistical mechanics are not valid for gravitational systems: the heat
capacity is negative, there is no micro-canonical ensemble, entropy cannot be maximized (and
consequently there is no canonical ensemble), etc...

5.2.4 The Jeans equations

The characterization of the dynamics of self-gravitating systems involves solving the collisionless
Boltzmann equation

∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi
= 0 . (5.36)

Summation over the indices is assumed. There is unfortunately no known classification of the
solutions of this equation. It is possible however to learn about the dynamics of a system without
solving the full equation. The idea is to compute the velocity moments of Eq. (5.36). The
zeroth-order moment is

∫

∂f

∂t
d3þv +

∫

vi
∂f

∂xi
d3þv −

∫

∂Φ

∂xi

∂f

∂vi
d3þv = 0 . (5.37)
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Multiplying by the total mass of the system (assumed constant), this leads to

∂ρ

∂t
+

∂(ρvi)

∂xi
= 0 . (5.38)

which is simply the continuity equation for the mass density ρ. Note that this equation involves
four unknowns, ρ and the components of the mean velocity vi, and therefore cannot be solve
unless further assumptions are made. Taking the first-order moment leads to

∂(ρvi)

∂t
+

∂(ρvivj)

∂xj
= −ρ

∂Φ

∂xi
. (5.39)

The first term can be replaced by using the continuity equation and we get

∂vi

∂t
+ vj

∂vi

∂xj
= − ∂Φ

∂xi
− 1

ρ

∂(ρσ2
ij)

∂xj
, (5.40)

where σ2
ij = vivj − vivj is the velocity variance tensor. This equation has the same form as the

Euler equation in Eqs. (3.1) with a pressure tensor pij = ρσ2
ij . Hence, in collisionless systems,

the velocity dispersion acts as an effective pressure. Note that Eq. (5.40) together with Eq. (5.38)
have again too many unknowns to be solved. Other equations can be added to the system by
considering the second-order moment of the Boltzmann equation, but this also introduces new
unknowns such as vivjvk. We can actually form a system of hierarchical equations by taking
moments of higher and higher order. These are called the Jeans equations after Jeans (1919).
Obviously the system of equations has to be truncated at some order, and closed by making
assumptions on the unknown quantities. The time-independent version of Eq. (5.40) is often
written is spherical coordinates

1

ρ

∂(ρv2
r )

∂r
+ 2

β

r
v2

r = −∂Φ

∂r
, (5.41)

where we introduced the anisotropy parameter

β(r) ≡ 1 −
v2

θ + v2
φ

2 v2
r

. (5.42)

This can be seen as a differential equation for ρv2
r where β(r) is an unknown function. Usually, a

specific form is assumed for β(r) so the equation can be solved.
Unlike the Boltzmann equation, the Jeans equation gives informations about the moments of

the phase-space DF rather than the DF itself. In the next section, we present the Eddington
formalism which enables the determination of the full DF of a spherical system.

5.3 The Eddington formalism

5.3.1 Jeans Theorem

The starting point of the Eddington formalism is the theorem of Jeans (1915). To state this
theorem, we first need to define the integrals of motion. An integral of motion is a function of the
phase-space coordinates I[x(t), v(t)] which is conserved along the trajectory of the system, i.e.

d

dt
I[x(t), v(t)] =

dx

dt

∂I

∂x
+

dv

dt

∂I

∂v
= 0 . (5.43)

We see that an integral of motion is by definition a solution of the stationary collisionless
Boltzmann equation, and therefore any function depending on the phase-space coordinates only
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through integrals of motion is also solution of the Boltzmann equation since we have

d

dt
f [I1, ..., In] =

n
∑

i=1

dIi

dt

∂f

∂Ii

= 0 .

(5.44)

Reciprocally, if f is a solution of the stationary collisionless Boltzmann equation then it is also
an integral of motion, hence the Jeans theorem: any solution of the stationary collisionless
Boltzmann equation depends on the phase-space coordinates only through integrals of motion.
Finding phase-space DFs therefore reduces to finding quantities that are conserved along the
trajectory of the system.

5.3.2 Isotropic velocity distributions

The simplest case we can consider is a phase-space DF that only depends on the energy
E/m = Φ + v2/2, where m is the particle’s mass and Φ the gravitational potential. This was first
considered by Eddington (1916). Since for bounded particles the energy is negative, we instead
consider the variable E = Ψ − v2/2 where Ψ = Φ0 − Φ up to a constant. This is simply minus the
energy divided by the particle’s mass (we do refer to E as the energy and to Ψ as the potential in
the following). Since the energy only depends on the modulus of the velocity, any phase-space DF
that depends only on the energy describes an isotropic velocity distribution. Consequently, we
refer to a DF of the type f(E) as isotropic.2 It is conventional in statistical physics to normalize
the DF to unity so that it can be interpreted as a probability density function, however it is
more convenient for our purposes to normalize the DF to the mass of the system of interest:

ρ(r) =

∫

f(E) d3þv

= 4π

∫ +∞

0
v2 f

(

Ψ(r) − v2

2

)

dv ,
(5.45)

where ρ is the mass density of the system. Note that the system under study (a galaxy for
instance) can have several components (dark matter and baryons for instance). We are only
interested in describing the phase space of the dark matter, therefore in such a case ρ refers
to the dark matter mass density ρ = ρDM. The potential Ψ, however, is the total potential
Ψ = ΨDM + Ψbar. Note that the DM density and the total potential are independent variables
since one cannot compute the total potential from the DM density alone.

We restrict ourselves to the study of a completely bounded system, where all the particles
have positive energy E and therefore f(E < 0) = 0. The normalization of f is then written as

ρ(r) = 4π

∫ vesc

0
v2 f

(

Ψ − v2

2

)

dv , (5.46)

where vesc(r) =
√

2Ψ(r) is the escape speed, that is the minimal speed needed for a particle at r
to become unbounded. We can perform the change of variable v =

√

2(Ψ − E) in Eq. (5.46) to
get

ρ(Ψ) = 4π
√

2

∫ Ψ

0

√
Ψ − E f(E) dE . (5.47)

Since the potential Ψ is a monotonically decreasing function of the radius, it can be used as a
substitute variable for r and ρ(Ψ) is well defined. We derive Eq. (5.47) with respect to Ψ

dρ

dΨ
=

√
8π

∫ Ψ

0

f(E)√
Ψ − E

dE . (5.48)

2The term ergodic is also used in the literature to describe a DF of this type, see Binney & Tremaine (1987)
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This is an Abel integral equation. The following mathematical result helps us to go further: the
equation

f(x) =

∫ x

0

g(t)

(x − t)α
dt, 0 < α < 1 (5.49)

has the solution

g(t) =
sin(πα)

π

d

dt

∫ t

0

f(x)

(t − x)1−α
dx . (5.50)

Applied to Eq. (5.48) this leads to Eddington’s formula

f(E) =
1√
8π2

d

dE

{

∫ E

0

1√
E − Ψ

dρ

dΨ
dΨ

}

. (5.51)

Thus we have found the expression of the phase-space DF in terms of the mass density ρ and the
gravitational potential Ψ. This solution is unique, there is only one possible DF that describes
a spherical isotropic system. The expression of the DF can be simplified by performing an
integration by parts, then apply the derivative with respect to E . We get

f(E) =
1√
8π2

[

1√
E

(

dρ

dΨ

)

Ψ=0
+

∫ E

0

1√
E − Ψ

d2ρ

dΨ2
dΨ

]

. (5.52)

A striking feature of this expression is a term ∝ E−1/2 which diverges at small energies. The
meaning of this term and the theoretical issues it poses are discussed in Sec. 5.4.

5.3.2.1 Concrete examples

The singular isothermal sphere The mass density profile of the singular isothermal sphere
(SIS) is

ρ(r) =
σ2

2πGN r2
, (5.53)

where σ is a free parameter homogeneous to a velocity. This is actually the one-dimension
velocity dispersion of the system, as it is shown later. This density profile strongly diverges at
the center of the system. The regularization of this divergence is discussed in Sec. 5.4. The mass
profile is

m(r) =
2σ2

GN
r , (5.54)

and therefore the total mass of the system is infinite. This is not a big problem from the point of
view of Eddington’s method since it accommodates with a finite boundary for the system. Using
the expression of the mass, one immediately finds the circular speed

v2
c = 2 σ2 (5.55)

which is independent of the radius. The gravitational potential can be found by solving Poisson’s
equation

1

r2

d

dr

(

r2 dΨ

dr

)

= −4πGN ρ = −2σ2

r2
. (5.56)

With the boundary conditions (r2dΨ/dr)r=0 = 0 and Ψ(r0) = 0, we get

Ψ(r) = −2σ2 ln

(

r

r0

)

. (5.57)
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Note that the potential diverges both at large and short distances. We can express the mass
density as a function of the potential

ρ(Ψ) =
σ2

2πGN r2
0

exp

(

Ψ

σ2

)

= ρ0 exp

(

Ψ

σ2

)

(5.58)

and inject it in Eddington’s formula Eq. (5.51)

f(E) =
ρ0√

8π2σ2

d

dE

∫ E

0

1√
E − Ψ

exp

(

Ψ

σ2

)

dΨ . (5.59)

This leads to

f(E) =
ρ0

(2πσ2)3/2







1√
π

√

σ2

E + eE/σ2
erf





√

E
σ2











. (5.60)

The DF diverges at small E , where we have

f(E) ≃ ρ0

(2πσ2)3/2

1√
π

√

σ2

E . (5.61)

The behaviour f(E) ∝ E−1/2 at small energies is intrinsic to the Eddington procedure, as seen in
Eq. (5.52). Since the potential diverges at the center of the system, the energy E takes arbitrary
large values as a particle falls down the potential well. It is therefore interesting to consider the
limit E ≫ σ2 in Eq. (5.60). This limit considers particles whose energy is dominated by their
potential energy rather than their kinetic energy. We get

f(E) ≃ ρ0

(2πσ2)3/2
eE/σ2

, (5.62)

which is the Boltzmann distribution function, and therefore f diverges at large E . This phase-space
DF predicts in particular that the velocity distribution is, at any position, the Maxwell-Boltzmann
distribution

fr(þv) =
1

(2πσ2)3/2
e−v2/(2σ2) (5.63)

The velocity dispersion at radius r is then given by

σ2
þv ≡

〈

þv2
〉

− 〈þv〉2 = 3 σ2 (5.64)

and is therefore independent of the radius. The velocity distribution extends to arbitrary large
velocities, i.e. there is no escape speed to the system. This is not surprising since the escape
speed is defined by E = 0 and we took the limit E ≫ σ2. Note that this approximation breaks
down when the radius gets close to r0 where we have Ψ(r0) = 0, therefore we expect the velocity
distribution to depart from the Maxwell-Boltzmann DF in the outskirts of the system. The DF
in Eq. (5.60) and the Boltzmann DF are shown in the left panel of Fig. 5.4.

It is interesting to consider the DF of a system with the SIS profile which contains unbounded
particles. We have to remove the condition f(E < 0) = 0 in Eddington’s calculation to get the
correct result. This leads to a change of the lower bound of the integral in Eq. (5.60) from E = 0
to E = −∞. The expression of the DF is again

f(E) =
ρ0

(2πσ2)3/2
eE/σ2

. (5.65)

This expression is valid at all energies (positive or negative). The escape speed is still well-defined
by vesc =

√

2(Φ(r0) − Φ(r) however, unlike the phase space described by the distribution in
Eq. (5.60), this phase space contains unbound particles at all positions. In other words, at any
position r, the phase-space DF includes particles with v > vesc(r). In such a system, the radius
r0 is the position of the bound particle farthest from the center of the system.



Chapter 5. The dark matter phase space of the Galaxy 127

The Plummer model The Plummer mass density profile is

ρ(r) = ρs

(

1 +
r2

r2
s

)−5/2

. (5.66)

This profile has a core (of radius rs), unlike the SIS. It was first introduced by Plummer (1911)
who used it to describe the inner density of globular clusters. The associated mass is

m(r) =
4

3
πρsr

3
s

(r/rs)
3

[1 + (r/rs)2]3/2
, (5.67)

which tends toward the finite value M = 4/3 πρsr
3
s at infinity. The gravitational potential obtained

from Poisson’s equation with the boundary conditions (r2dΦ/dr)r=0 = 0 and Φ(r → ∞) = 0 is

Φ(r) = −4

3
π GNρsr

2
s

(

1 +
r2

r2
s

)−1/2

Ψ(r) = Φ(r0) − Φ(r) ,

(5.68)

with r0 some arbitrary radius. Note that the potential stays finite at the center of the system.
The density can be expressed as a function of the potential

ρ(Ψ) = ρs

(

Ψ − Φ0

)5
, (5.69)

where X = X/(4/3 πGNρsr
2
s ).3 Eddington’s formula leads to

f(E) =
ρs

(4πGNρsr2
s )3/2

1

π2
√

2E

(

Φ
4
0 − 20 Φ

3
0E + 40 Φ

2
0E2 − 32 Φ0E3

+
64

7
E4

)

. (5.70)

This DF features the standard E−1/2 divergence at low energies and behaves like a power-law
E7/2 at large energies. Note that there is no divergence at high energies because the potential,
and therefore the energy, has a finite maximum in r = 0 equal to Ψ(0) = 1 − (1 + r2

0/r2
s )−1/2.

Unlike in the SIS case, we cannot compute the DF if some particles are unbound because the
integral in Eddington’s formula does not converge if the lower bound is E = −∞. This means the
Plummer density profile is not compatible with particles having arbitrary large velocities, though
it is not clear why that is the case for this profile and not for the SIS for instance. Another
difference with the SIS is that the Plummer profile offers the possibility to consider an infinite
system, since both the total mass and the potential at large distances are finite quantities. The
DF in that case can be very simply deducted from Eq. (5.70) by taking the limit Φ0 → 0, which
leads

f(E) =
ρs

(4πGNρsr2
s )3/2

64

7π2
√

2
E7/2

. (5.71)

Hence the DF is a pure power-law. Note that the entire system is still bound as we have
f(E 6 0) = 0 and the escape speed with respect to infinity is well-defined. The DF in Eq. (5.70)
and the DF in Eq. (5.71) are shown in the right panel of Fig. 5.4.

5.3.3 Anisotropic extensions

A DF which is function of the energy only cannot describe an isotropic velocity distribution. To
model anisotropic systems, we must include another integral of motion. The simplest choice is to
consider the modulus of the angular momentum (per particle mass)

L = |þr × þv| , (5.72)

3Note that Φ0 ≡ Φ(r0) is negative with our convention.
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Figure 5.4 – Left panel: isotropic DF of the bound singular isothermal sphere (blue) compared to
the Boltzmann-Gibbs DF (red) Right panel: Isotropic DF of the finite Plummer model (blue) compared
to the infinite model (red).

and a DF of the form f(E , L). Similar to the isotropic case, we normalize the DF to the mass
through

ρ =

∫

f(E , L) d3þv . (5.73)

Changing variables, we get

ρ(Ψ) = 4π

∫ Ψ

0

dE
r
√

8(Ψ − E)

∫

√
2r2(Ψ−E)

0

f(E , L)
√

2r2(Ψ − E) − L2
dL , (5.74)

where r = r(Ψ) is a function of the potential. This integral equation cannot be inverted like
in the isotropic case, and the solution is not unique for a given ρ(Ψ). We must give a precise
measure of the anisotropy to go any further. This is done through the anisotropy parameter as
defined by Binney (1980)

β(r) ≡ 1 −
σ2

θ + σ2
φ

2σ2
r

= 1 − σ2
t

2σ2
r

. (5.75)

In this equation, σ2
i is the velocity dispersion along spatial coordinate i

σ2
i (r) ≡

〈

v2
i

〉

− 〈vi〉2 =
1

ρ(r)

∫

v2
i f(r,þv) d3þv . (5.76)

If particles at a position r are on mostly circular orbits, we have σ2
r ≪ σ2

t and β → −∞. If
particles are on mostly radial orbits, we have σ2

r ≫ σ2
t and β ≃ 1. The system is locally isotropic

if β = 0, i.e. 2σ2
r = σ2

t . For a given system ρ(Ψ) there are several anisotropy profiles possible,
therefore we need to specify β(r) to find an explicit solution to Eq. (5.74).

5.3.3.1 Constant anisotropy models

The simplest case we can consider is a system with an anisotropy parameter independent of the
radius, i.e. β(r) = β0 is a constant. It was shown by Cuddeford (1991) that the corresponding
DF takes the form

f(E , L) = G(E)L−2β0 . (5.77)
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That this DF effectively leads to a constant anisotropy parameter with β0 is shown in App. D.2.
The expression of G can be found by considering the normalization equation

ρ =

∫

f(E , L) d3þv

= 2π

∫ π

0
dη sin(η)

∫ vesc

0
dv v2 G(E) [rv sin(η)]−2β0 .

(5.78)

Using the integral

∫ π

0
[sin(η)]1−2α dη =

√
π

Γ (1 − α)

Γ
(

3
2 − α

) , (5.79)

and performing the change of variable v =
√

2(Ψ − E), we get

r2β0ρ = λ(β0)

∫ Ψ

0

G(E)

(Ψ − E)β0−1/2
dE , (5.80)

where

λ(β0) = 23/2−β0π3/2 Γ (1 − β0)

Γ
(

3
2 − β0

) (5.81)

This is an Abel integral equation of the form in Eq. (5.49) only if 1/2 < β0 < 1. If β0 6 1/2,
then we derive Eq. (5.80) n times with respect to Ψ

dn

dΨn

(

r2β0ρ
)

= λ(β0)

(

1

2
− β0

)

!

∫ Ψ

0

G(E)

(Ψ − E)β0−1/2+n
dE , (5.82)

where

n ≡
[

3

2
− β0

]

(5.83)

is the floor of 3/2 − β0 and

(

1

2
− β0

)

! =

{
(

1
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) (

−1
2 − β0

)

...
(

1
2 − β0 − (n − 1)

)

for β0 < 1
2

1 for β0 > 1
2

(5.84)

This ensures that 0 < β0−1/2+n < 1 and Eq. (5.82) is an Abel equation. This equation is actually
identical to the Abel equation found in the isotropic case Eq. (5.48) with the correspondence
ρ → r2β0ρ and 1 → n. The solution of Eq. (5.82) is

G(E) =
sin([n − 1/2 + β0]π)

πλ(β0)(1/2 − β0)!

d

dE

∫ E

0

dn

dΨn

(

r2β0ρ
)

(E − Ψ)n−3/2+β0 dΨ . (5.85)

Note that in the particular case β0 = 0, G is equal to the isotropic DF in Eq. (5.51) therefore
the isotropic case is included in the constant-β models. Just like in the isotropic case, we can
develop this expression to get

G(E) =
sin([n − 1/2 + β0]π)

πλ(β0)(1/2 − β0)!

×
[

1

E3/2−β0−n

(

dn

dΨn
r2β0ρ

)

Ψ=0
+

∫ E

0

dn+1

dΨn+1

(

r2β0ρ
) dΨ

(E − Ψ)3/2−β0−n

] (5.86)
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5.3.3.2 Osipkov-Merritt models

An alternative anisotropic DF was found independently by Osipkov (1979) and Merritt (1985)
and takes the form

fom(Q) ≡ f

(

E − L2

2r2
a

)

. (5.87)

The corresponding anisotropy parameter is

β(r) =
r2

r2 + r2
a

, (5.88)

as demonstrated in App. D.2. Unlike the constant-β models, the Osipkov-Merritt (OM) models
lead to a radius-dependent anisotropy. The anisotropy tends to zero at the center of the system,
which is therefore almost isotropic for r ≪ ra, and becomes close to one when r ≫ ra. The
radius ra is a free parameter called the anisotropy radius, it controls the transition between the
isotropic center and the radial orbits at large radius. The DF is normalized so that

ρ =

∫

fom(Q) d3þv

=
4π

√
2

1 + r2

r2
a

∫ Ψ

0

√

Ψ − Q fom(Q) dQ .
(5.89)

This leads to the Abel integral equation

dρOM

dΨ
=

√
8π

∫ Ψ

0

fom(Q)√
Ψ − Q

dQ , (5.90)

where

ρOM(r) ≡
(

1 +
r2

r2
a

)

ρ(r) . (5.91)

The solution of the Abel equation is

fom(Q) =
1√
8π2

d

dQ

∫ Q

0

1√
Q − Ψ

dρOM

dΨ
dΨ

=
1√
8π2

[

1√
Q

(

dρOM

dΨ

)

Ψ=0
+

∫ Q

0

1√
Q − Ψ

d2ρOM

dΨ2
dΨ

]

.

(5.92)

This is the same expression as the isotropic DF with the correspondence ρ → ρOM. Note that
the OM models include the isotropic model which is recovered in the limit ra → ∞.

5.3.3.3 More complicated models

The two classes of models presented above (constant-β and OM) both feature one single inde-
pendent parameter which completely determines the anisotropy profile. While these models are
appealing because of their simplicity, they also lack flexibility and in general their anisotropy
profile is different from those observed in cosmological simulations, see Wojtak et al. (2008);
Ludlow et al. (2011); Lemze et al. (2012); Sparre & Hansen (2012); Wojtak et al. (2013). It is
therefore useful to consider alternatives models which involve a larger number of parameters.
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Cuddeford models A simple extension of the constant-β and OM models was considered by
Cuddeford (1991), who looked at DFs of the form

f(E , L) = fom(Q)L−2β0 . (5.93)

This class of models involves two free parameters, β0 and ra. The constant-β models are recovered
in the limit ra → 0 and the OM models are recovered when β0 = 0. The anisotropy parameter is

β(r) =
r2 + β0r2

a

r2 + r2
a

, (5.94)

as demonstrated in App. D.2. Thus it has radial orbits at large distances β ≃r≫ra 1 but an
arbitrary central anisotropy β ≃r≪ra β0. The anisotropy at r = ra is also equal to (1 + β0)/2
instead of 1/2 in the OM models. The anisotropy parameter in the constant-β, Osipkov-Merritt
and Cuddeford models are compared in Fig. 5.5.

Figure 5.5 – Anisotropy parameter β as defined in Eq. (5.75) as a function of the radius, in the
constant-β model with β0 = 0.3 (red curve), in the Osipkov-Merritt model (blue curve) and in the
Cuddeford model with β0 = 0.3 (green curve).

Models of Bozorgnia et al The radial anisotropy predicted by the Cuddeford models is still
too high with respect to that observed in simulations. To solve this problem, Bozorgnia et al.
(2013) proposed a DF which is a linear combination of the constant-β DF and the OM DF:

f(E , L) = w f1(Q) + (1 − w) f2(E)L−2β0 . (5.95)

The DFs f1 and f2 are computed from Eq. (5.92) and Eq. (5.85), respectively. These models
have three free parameters which can be tuned to fit the average anisotropy profile observed in
simulated galactic halos. Unfortunately, the anisotropy parameter does not take a fully analytical
expression in that case. It can be expressed as

β(r) =
w r2

r2 + r2
a

σ2
r (f1)

σ2
r (f)

+ β0(1 − w)
σ2

r (f2)

σ2
r (f)

. (5.96)

This anisotropy parameter depends on the underlying mass density profile and gravitational
potential, unlike all the other models we have seen so far.
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Models of Wojtak et al To reproduce the anisotropy profiles observed in simulations of
massive DM halos, Wojtak et al. (2008) proposed the following three-parameters models

f(E , L) = fE(E)

(

1 +
L2

2L0

)β0−β∞

L−2β0 . (5.97)

The constants β0 and β∞ are the asymptotical anisotropies at the center and at large radii,
respectively. L0 is an angular momentum constant that sets the radius of transition between
these two asymptotical regimes. The energy-dependent part fE is derived from the mass density
as usual, though this involves an iterative procedure which makes these models slightly harder to
handle numerically.

5.4 Theoretical issues and limitations

We presented in the previous section the Eddington formalism and some of its anisotropic
extensions, which is a powerful method to find phase-space DFs that are solutions of the
collisionless Boltzmann equation. This formalism is especially appealing for DM searches since it
provides a way to built the DM phase-space DF starting from a dynamically constrained mass
model. Using this method however requires the knowledge of its limitations. In particular, its
range of application has to be well delimited. This section is devoted to the study of the solutions
of the Eddington inversion method. We first discuss non-physical features that generically appear
in the phase-space DF, and present several techniques to remove these features. Second, we
discuss the positivity and stability of the solutions, and the consequences these considerations
have on the applicability of Eddington’s method. The content of this section is based mainly on
Lacroix et al. (2018).

5.4.1 Finite-size systems instability

A generic issue with the Eddington formalism and its extensions is the presence of diverging
term in the phase-space DF. We recall the expression of the isotropic DF

f(E) =
1√
8π2

[

1√
E

(

dρ

dΨ

)

Ψ=0
+

∫ E

0

1√
E − Ψ

d2ρ

dΨ2
dΨ

]

, (5.98)

which features a term ∝ E−1/2 diverging in E = 0, as illustrated in Fig. 5.4. This term is
proportional to the derivative of the density with respect to the potential (dρ/dΨ)Ψ=0 evaluated
at the radial boundary of the system where the potential cancels, hence it is related to the shape
of the density profile at the boundary. A divergence at E = 0 is a sign of instability in the system.
This can be seen clearly by considering the speed distribution fþr(v) at a given position þr in the
system

fþr(v) ≡ v2

ρ(þr)

∫

f(þr,þv) dΩ . (5.99)

For an isotropic DF f(þr,þv) = f(E), this is simply

fr(v) =
4πv2

ρ(r)
f

(

Ψ(r) − v2

2

)

, (5.100)

hence the speed distribution is directly related to the phase-space DF in the isotropic case. From
Eq. (5.100), we see that the divergence at E = 0 translates into a divergence at v =

√

2Ψ(r) in
the speed distribution, as illustrated with the Plummer profile in Fig. 5.6. This speed is precisely
the escape speed at r, i.e. the minimal speed needed for a particle at r to escape to the radius
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Figure 5.6 – Left panel: Speed distribution for the Plummer profile at r = rs, in the finite case with
extension r0 = 10 rs (blue curve) and the infinite case (red). The speed distribution is scaled to the halo
parameters. Right panel: Speed distribution for the OM DF of the NFW model of McMillan (2017) for
the finite case rmax = 500 kpc (red), the infinite case rmax = ∞ (blue) and the case where the diverging
term is removed (green).

where Ψ = 0. In a system which has the speed distribution shown in Fig. 5.6 many particles
have a speed very close to the escape speed and are therefore susceptible to leave the system if
perturbed. This a clear sign of instability. To apply the Eddington formalism to a stable system
like the Galactic halo, we need to remove the instability. Note that this instability issue is in no
way limited to the isotropic case. The OM and constant anisotropy DF also have a diverging
behaviour as one can see from Eq. (5.92) and Eq. (5.85). In the OM models, the divergence is at
Q = E − L2/(2 r2

a) = 0. Integration over the angles in Eq. (5.99) moves the divergence to a speed
lower than

√
2Ψ and therefore the speed distribution present a non-physical peak right in the

middle of the speed range as shown on the right panel in Fig. 5.6.

5.4.1.1 Radial boundary and escape speed

We recall that there is a freedom in choosing the radius r where the potential cancels. This
freedom is inherent to the very definition of the gravitational potential as a solution of the
Poisson equation

∆Ψ = −4πGN ρ , (5.101)

which is defined up to an arbitrary constant. Since the diverging term in the Eddington DF
depends on the derivative dρ/dΨ evaluated at the radius rmax where Ψ(rmax) = 0, we can ask if
there is a particular choice of rmax that removes the divergence. There is actually such a choice,
one simply has to assume the potential cancels at infinity

Ψ −−−→
r→∞

0 , (5.102)

i.e. rmax = ∞. For a power-law profile ρ ∝ r−β , which is the general behaviour of CDM halos far
from the scale radius, we have dρ/dr ∝ r−β−1 and dΨ/dr ∝ m(r)/r2 ∝ r1−β hence

dρ

dΨ
∝ r−2 −−−→

r→∞
0 (5.103)
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and our phase-space DF is divergence-free while still being solution of the Boltzmann equation.
The speed distribution is also regularized, as shown on the left panel in Fig. 5.6 (red curve).
Though this is a mathematically sound solution, it is not entirely satisfying.

First, while setting the potential to zero at infinity removes the divergence in the constant
anisotropy case (isotropic case included), in general it does not work for the OM models. This
is because the troublesome derivative in that case is (dρOM/dΨ)Ψ=0 where ρOM is given in
Eq. (5.91). Let us consider a pure power-law density profile ρ ∝ r−β . The OM pseudo-profile is
then ρOM ∝ r2−β when r ≫ ra. We then have

dρOM

dr
∝ r1−β (5.104)

dΨ

dr
=

GN m(r)

r2
∝ r1−β , (5.105)

and the derivative

dρOM

dΨ
=

dρOM

dr

dr

dΨ
−−−→
r→∞

constant (5.106)

therefore the derivative is non-zero at infinity and the phase-space DF is still divergent. This
shows that for most DM profiles, the OM models cannot be regularized by taking the radial
boundary of the system to infinity. This is illustrated by the speed distribution on the right
panel in Fig. 5.6. This is the speed distribution at r = 20 kpc predicted by the OM when applied
to the NFW mass model of McMillan (2017), with the anisotropy radius ra = rs = 19.6 kpc. The
distribution in the case rmax = ∞ features a clear unstable behaviour due to the sharp peak at
340 km/s, very similar to the peak observed in the distribution computed for rmax = 500 kpc.

A more serious problem is posed by the physical interpretation of the radius rmax. This
radius is in some sense the true physical extension of the bound system. Indeed a particle at a
radius r > rmax has a negative potential Ψ(r) < 0 and is therefore not bound to the system. The
question is then: can we pick an arbitrary large value for that physical extension? This extension
is in fact set by the neighbouring systems. In the case of the Milky Way halo, the distance to
the Andromeda galaxy naturally gives a maximal extension. Since the center of Andromeda is
approximately 800 kpc away from the center of the Milky Way, we do not expect our dark halo
to extend much farther than 450-500 kpc. A crucial point is that the physical size of the system
has consequences on observables deep within the halo, because this size determines the local
escape speed. More precisely, the escape speed at radius r is

vesc(r) =
√

2Ψ(r) =
√

2(φ(rmax) − φ(r)) , (5.107)

where φ(r) is the (negative-defined) gravitational potential cancelling at infinity. This shows that
vesc(r) explicitly depends on rmax. The escape speed is crucial because it is the maximal speed a
particle can have at r if the system is in equilibrium. The local value of the escape speed is in
principle an observable quantity. It can be inferred from the distribution of nearby high-velocity
stars (Leonard & Tremaine, 1990; Piffl et al., 2014) or computed within a full Galactic mass
model (see Sec. 5.1). Changing the value of rmax can strongly impact the escape speed This
illustrated in Fig. 5.7. We show the relative change in vesc induced by increasing rmax, starting
from a reference value of rmax = 500 kpc. At 8 kpc, vesc is increased by more than 8%. This is a
sizeable change because the experimental uncertainty on the local value of vesc is of order 10%,
see Piffl et al. (2014). The change in vesc gets more important farther away from the center. For
r = 100 kpc, vesc can be modified by up to 24%. This shows that sending rmax to infinity is not
a good approach to regularize the solution of Eddington’s inversion, since it leads to a sizeable
modification of the escape speed everywhere in the system.

In the following, we discuss regularization methods that remove the divergence while keeping
the escape speed essentially unchanged.
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Figure 5.7 – Relative difference between the escape speed for rmax = 500 kpc and the escape speed for
rmax > 500 kpc, at different positions in the halo.

5.4.1.2 Modification of the density profile

The divergence in the Eddington DF when the system has a finite extension is an indication that
the density profile is not realistic in the outer region. This is not surprising since most of the DM
profiles used in the literature are coming from fits within the inner 200 kpc of Milky-Way-like
halos found in simulations. Observational constraints are also local, mostly based on kinematic
data coming from the inner 50 kpc (McMillan, 2017). The kinematics of satellite galaxies have
also been used to set constraints on the MW mass within 300 kpc, though with large uncertainties
(Watkins et al., 2010). Therefore the behaviour of the DM density around rmax ∼ 500 kpc is
completely unprobed and might depart from the typical power-law ρ ∝ r−3 of NFW-like profiles.
Here we attempt to modify the initial density profile ρ so that (dρ/dΨ)Ψ=0 = 0 at finite rmax.
Let us first consider the Eddington DF in the isotropic case Eq. (5.52) and remove ”by-hand”
the diverging term to get a modified DF

F (E) =
1√
8π2

∫ E

0

dΨ√
E − Ψ

d2ρ

dΨ2
. (5.108)

Assuming the gravitational potential of the system is not modified by the removal of this term,
we can reconstruct the density profile starting from the DF in Eq. (5.108) by computing the
integral

ρ̃(Ψ) = 4π
√

2

∫ Ψ

0
F (E)

√
Ψ − E dE . (5.109)

By definition of F , this is

ρ̃(Ψ) = 4π
√

2

∫ Ψ

0

[

f(E) − 1√
8π2

1√
E

(

dρ

dΨ

)

Ψ=0

] √
Ψ − E dE , (5.110)

and the initial density profile is given by

ρ(Ψ) = ρ(rmax) + 4π
√

2

∫ Ψ

0
f(E)

√
Ψ − E dE , (5.111)
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therefore we get the modified density

ρ̃(Ψ) = ρ(Ψ) − ρ(rmax) − 2

π

(

dρ

dΨ

)

Ψ=0

∫ Ψ

0

√
Ψ − E√

E
dE

= ρ(Ψ) − ρ(rmax) − Ψ

(

dρ

dΨ

)

Ψ=0
.

(5.112)

This modified profile has a radial derivative

dρ̃

dr
=

dρ

dr
− dΨ

dr

(

dρ

dΨ

)

Ψ=0

=
dρ

dr
− dΨ

dr

(

dρ

dr

)

r=rmax

(

dr

dΨ

)

r=rmax

,

(5.113)

hence
(

dρ̃

dr

)

r=rmax

= 0 (5.114)

by construction. Our calculation is not fully consistent because we assumed the potential is not
modified by the removal of the diverging term. Nevertheless, the Eddington formalism itself
points toward a modification of the density profile that regularizes the phase-space DF. Based on
this simple calculation we propose, given a density-potential pair (ρ, Ψ), the following modified
profile

ρ̃ ≡ ρ − Ψ

(

dρ

dΨ

)

Ψ=0
. (5.115)

This definition differs from Eq. (5.112) by the constant ρ(rmax). This ensures ρ̃(rmax) = ρ(rmax),
unlike the profile in Eq. (5.112) which goes to zero in rmax. The two modified profiles are
compared on the left panel in Fig. 5.8 for a NFW profile cut at rmax = 500 kpc. Both modified
profiles significantly differ from the original one near rmax. The biggest difference appears above
the virial radius R200 ≃ 230 kpc and the density below remains essentially unchanged. The profile
in Eq. (5.115) has a 30% deficit at R200 while the profile in Eq. (5.112) has a 40% deficit which
shows the importance of keeping the constant ρ(rmax). The mass profiles, shown on the right
panel in Fig. 5.8 have an approximate 10% deficit.

If the system has two components (DM and baryons) and its total potential is written
Ψ = Ψdm + Ψbar, we define the modified profile using the DM component only

ρ̃ ≡ ρ − Ψdm

(

dρ

dΨdm

)

Ψdm=0
. (5.116)

The modified potential can be computed from Poisson’s equation

Ψ̃(r′) =

∫ rmax

r

m̃(r′)

r′2 dr′ , (5.117)

and the derivative with respect to this potential vanishes in rmax by construction, therefore we
know without even constructing the DF that it is non-singular. The radial boundary of the
system is also preserved by this method. Note that the escape speed, which is the true observable,
is still slightly modified because the potential is. Indeed, the original escape speed associated to
the divergent DF is

vesc(r) =
√

2Ψ(r) , (5.118)

while the modified escape speed is

ṽesc(r) =
√

2Ψ̃(r) . (5.119)
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While both these functions go to zero in r = rmax, they are not identical for smaller radii as
shown in Fig. 5.9. The relative difference between the escape speed in the different configurations
is only of a few percent.

The discussion above is based on the isotropic case, let us now comment on the anisotropic
extensions. The definition of the modified density profile has to be adapted to cancel the
divergence when the density is non-zero. For the constant-β case, we need to cancel the derivative
(d(r2β0ρ)/dΨ)Ψ=0 therefore we define the modified density as

ρ̃β0 = ρ − Ψdm

r2β0

(

d(r2β0ρ)

dΨdm

)

Ψdm=0

. (5.120)

Developing the derivative, this definition leads to

ρ̃β0 = ρ − Ψdm

(

rmax

r

)2β0
(

dρ

dΨdm

)

− 2β0Ψdm

(

rmax

r

)2β0 ρ(rmax)

rmax

(

dr

dΨdm

)

Ψdm=0
. (5.121)

Comparing this expression to the isotropic case in Eq. (5.116), we notice that this modified
profile is more or less close to the original depending on the sign of β0. If β0 > 0, the difference
is bigger than in the isotropic case while it is smaller if β0 < 0. This illustrated in Fig. 5.10
where we show the modified density profile (left panel) and mass profile (right panel) for different
anisotropy model.

For the OM models, our definition is

ρ̃OM = ρ − Ψdm

1 + r2/r2
a

(

dρOM

dΨdm

)

Ψdm=0
. (5.122)

Working the derivative, we get

ρ̃OM = ρ − Ψdm
r2

a + r2
max

r2
a + r2

(

dρ

dΨdm

)

Ψdm=0
− Ψdm

r2
a + r2

2rmaxρ(rmax)

(

dr

dΨdm

)

Ψdm=0
. (5.123)

This expression shows that the difference between the modified and the original profile is larger in
the OM models than in the isotropic model. The modified density and mass profiles for the OM
models are shown in Fig. 5.10. Unlike the isotropic modification, this profile is vastly different
from the original, especially below the virial radius where the difference goes to a maximum of
60% in density and 50% in mass.

Our regularization of the density profile works well for systems with a low or negative
anisotropy parameter. It fails badly for systems that are radially biased like those following the
OM phase-space DF.

5.4.1.3 Regularization of the phase-space DF

We now turn to an alternative way of getting rid of the divergence in phase-space. While the
previous method relies on a modification a priori of the density profile used in Eddington’s
inversion method, here we modify a posteriori the phase-space DF to get a physically meaningful
quantity.

Removal of the diverging term The simplest way of regularizing the DF is to simply remove
the diverging term. This is what we did in the previous section to get the approximative form of
the modified density profile. Our derivation was not fully consistent however since we assumed
the potential was not modified by the removal of the divergence. Here we perform the same
procedure but in a consistent way. We remove the diverging term to get a new DF

F (Ẽ) ≡ f(Ẽ) − 1√
8π2

1√
Ẽ

(

dρ

dΨ

)

Ψ=0
=

1√
8π2

∫ Ẽ

0

d2ρ

dΨ2

dΨ
√

Ẽ − Ψ
. (5.124)
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Figure 5.8 – Left panel: NFW density profile (black line) cut at rmax = 500 kpc, with rs = 19.6 kpc.
Are also shown the approximative density profile in Eq. (5.112) obtained when removing the divergence
(blue line), and our prescription for the regularized density in Eq. (5.115) (red line). Right panel: same
thing for the mass profile.

Note that we also defined a new energy Ẽ which is different from E because the potential of the
system has been modified. To find the potential of the new system, we have to solve Poisson’s
equation

∆Ψ̃dm = −4πGNρ̃

= −4πGN ×
[

ρ̃0 + 4π
√

2

∫ Ψ̃

0
dẼ F (Ẽ)

√

Ψ̃ − Ẽ
]

.
(5.125)

The constant ρ̃0 is there to allow for a non-zero density where the potential cancels. This equation
must be solved for the DM gravitational potential Ψ̃dm, even though the right-hand side involves
the total potential Ψ̃ = Ψ̃dm + Ψ̃bar. Since we only modify the DM phase-space DF, the baryons
potential is left unchanged Ψ̃bar = Ψbar. We need boundary conditions on Ψ̃dm and dΨdm/dr to
solve this equation. The original DF is defined for E ∈ [0, Ψ(r = 0)] hence our definition of F
implies Ẽ ∈ [0, Ψ̃(r = 0)] with Ψ̃(r = 0) 6 Ψ(r = 0). We want our modified density profile to be
as close as possible to the original one therefore we choose the following boundary conditions

{

Ψ̃(r = 0) = Ψ(r = 0)
dΨ̃
dr (r = 0) = dΨ

dr (r = 0) .
(5.126)

While the original potential cancels at rmax, there is no reason for Ψ̃ to do the same. We only
impose that the original and modified potential be equal at the center of the system, and do not
require a cancellation of Ψ̃ at rmax. The radius r̃max verifying Ψ̃(r̃max) = 0 is found after solving
the Poisson equation. Once the equation is solved for Ψ̃dm, the evaluation of the second term
yields the modified density ρ̃ up to a factor −4πGN.

The density profile obtained after removal of the divergence is shown in Fig. 5.11. The
calculation was performed in a consistent way by solving the Poisson equation to get the potential.
However, as we saw in the previous section, removing the divergence by hand essentially leads to
the modified density profile in Eq. (5.112) hence Fig. 5.8 and 5.10 also apply to this situation. In
practice, we find the boundary of the system to be very close to the initial boundary r̃max ≃ rmax.



Chapter 5. The dark matter phase space of the Galaxy 139

Figure 5.9 – Escape speed as a function of radius for the two modified profiles shown in Fig. 5.8.

Figure 5.10 – Left panel: NFW density profile (black dashed line) compared to its modification in
the isotropic model (red line), constant-β model with β0 = 0.3 and β0 = −0.3 (green and magenta) and
the OM model (blue line). Right panel: same as in the left panel for the mass profile.
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King models We now turn to a more physically motivated modification of the DF based
on the so-called King model, named after King (1966) (see also Woolley (1954); Woolley &
Robertson (1956); King (1962); Michie (1963); Michie & Bodenheimer (1963); King (1981)). This
model was originally designed to deal with the divergences appearing in the singular isothermal
sphere system, see 5.3.2.1. While this model was originally designed to study globular clusters, it
has since been applied to galactic halos (Widrow & Dubinski, 2005; Strigari et al., 2017) and
subhalos (Drakos et al., 2017). The general idea is to start from the DF f(E) obtained for an
infinite system rmax = ∞ and defined a new DF

F (Ẽ) ≡
{

f(Ẽ + Ec) − f(Ec) for Ẽ > 0

0 for Ẽ < 0
(5.127)

Note that this is the definition used by Drakos et al. (2017), which slightly differs from the
original King model. The new DF is by definition continuous in Ẽ = 0 and non-divergent.
Building the density profile requires solving the Poisson equation (5.125). The definition of the
DF implies Ẽ ∈ [0, Ψ̃(r = 0)] with Ψ̃(r = 0) + Ec 6 Ψ(r = 0). To minimize the difference in
potential/density between the original and final profiles, we set

{

Ψ̃(r = 0) = Ψ(r = 0) − Ec
dΨ̃
dr (r = 0) = dΨ

dr (r = 0) .
(5.128)

The definition of F guarantees the finiteness of the final density profile. The final radial extension
r̃max is set by the value of the energy cutoff Ec. The relation between r̃max and Ec is not clear
however. One needs to solve the Poisson equation for a given Ec and find the radius at which
the potential goes to zero. If one wants the potential to cancel at a specific radius, one has to
tune Ec until agreement is reached. In practice however, we find that a good guess for the energy
cutoff is Ec = Ψ(r̃max) where Ψ is the potential of the initial, infinite system.

Unlike the removal ”by-hand” of the divergence, the King-like regularization has a possible
physical interpretation in terms of tidal stripping. Assuming DM particles (or stars in a stellar
system) are removed by tidal interactions based on their energy (rather than their angular
momentum). This is supported by some numerical simulations (Choi et al., 2009). The cut in
energy in the initial DF can then be interpreted as the result of tidal interactions between our
Galaxy and neighbouring systems. We show the resulting density and mass profiles in Fig. 5.11.

5.4.1.4 Summary

We shortly summarize our results. We found two main ways of regularizing the DF resulting
from Eddington’s inversion methods. One way consists in modifying the DM density profile
such that it cancels the troublesome derivative appearing in the expression of the DF. The other
way is to modify directly the DF to render it finite. We investigated two possible modifications
of the DF, namely the removal ”by-hand” of the diverging term and the so-called King model
approach. We stress that the modification of the DF is technically slightly more challenging than
the modification of the density profile because it involves solving Poisson’s equation to get the
modified potential and density of the regularized system. In any case, we found that all methods
lead to satisfactory modified profiles in the isotropic and tangentially-biased cases. When the
system is radially-biased however, as in the OM models for instance, all regularization methods
strongly affect the density profile even in its inner regions. This is because very radial orbits
contribute to the density on a wide range of radius. Removing particles in the outer regions to
get rid of the divergence inevitably decreases the density at lower radii as well.

5.4.2 Positivity

We turn to a different though complementary issue concerning the solutions of Eddington-like
inversion methods: the requirement of positivity. Since we want to interpret our solution as
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Figure 5.11 – Same as in Fig. 5.8 with the modified profiles obtained by removing the divergence in
the DF (green curve) or using the King model with a tuning of the initial condition (red) or a particular
choice of the cutoff energy (blue). Left panel: density profiles Right panel: mass profiles.

phase-space DF, it is obvious that it has to be positive over the entire phase space. There is
no guarantee that this holds for an arbitrary density-potential pair (ρ, Ψ). In fact, necessary
and sufficient conditions for the positivity of the DF in the isotropic and OM models have been
identified by Ciotti & Pellegrini (1992) (see also Ciotti (1996)). We consider a multicomponent
system with potential

Psi =
∑

k

Ψk (5.129)

and consider a particular component i with density profile ρi. The OM pseudo-density is
ρOM,i = ρi × (1 + r2/r2

a) and the OM phase-space DF is fi. A necessary condition for the
positivity of fi is then

dρOM,i

dΨi
> 0 for 0 6 Ψi 6 Ψi(0) . (5.130)

If this necessary condition is satisfied, a strong sufficient condition is

d

dΨi

[

dρOM,i

dΨi

(

dΨ

dΨi

)−1 √
Ψ

]

> 0 for 0 6 Ψi 6 Ψi(0) . (5.131)

The proof of that theorem is given in Ciotti & Pellegrini (1992). A much simpler, though weaker,
sufficient condition for positivity is given by

d2ρOM,i

dΨ2
i

> 0 for 0 6 Ψi 6 Ψi(0) . (5.132)

This last condition is very easily proved using the expression of the DF in Eq. (5.92). These two
theorems apply to multicomponent OM models which include the isotropic case in the ra → ∞
limit.

We would like to stress that negativity issues are not restricted to multicomponent systems.
Though many DM density profiles used in the literature lead to a positive DF (such as NFW,
Einasto, Burkert), some profiles are not compatible with the isotropic assumption. These profiles
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can be identified starting from the Abel equation (5.48). If the derivative dρ/dΨ goes to zero at
some radius r0, then we have

0 =

∫ Ψ0

0

f(E)√
Ψ0 − E dE , (5.133)

with Ψ0 ≡ Ψ(r0). This is only possible if f is negative for a range of potential between 0 and Ψ0.
Cored density profiles are expected to have a null derivative at their center. Let us look at a
class of cored profiles parametrized as

ρ(r) = ρs

[

1 +

(

r

rs

)α]−β/α

. (5.134)

This is simply the generalized NFW profile defined in Eq. (3.73) with γ = 0. The radial derivative
of the density is

dρ

dr
= −βρsrs

(

r

rs

)α−1 [

1 +

(

r

rs

)α]−1−β/α

(5.135)

∼
r→0

−βρsr
2−α
s rα−1 , (5.136)

and the derivative of the potential is

dΨ

dr
= −GN m(r)

r2
∼

r→0
−4

3
πGN ρs r , (5.137)

therefore we get

dρ

dΨ
∼

r→0

3 β

4πGN

(

r

rs

)α−2

. (5.138)

If α 6 2, the derivative goes to infinity or, if α = 2, to a finite positive value. If α > 2 however,
the derivative goes to zero and the Abel equation imposes

0 =

∫ Ψ(0)

0

f(E)
√

Ψ(0) − E
dE , (5.139)

which implies that f is negative for some E . To summarize, a single-component system with
density given by Eq. (5.134) has a positive isotropic DF only if α 6 2. Since our proof is based
on the asymptotic behaviour as r → 0, it also extends to the Osipkov-Merrit models which are
isotropic when r ≪ ra. The condition α 6 2 is necessary but not sufficient to ensure positivity.

We now turn to the impact of anisotropy on the positivity of the DF. Let us reconsider the
previous example but assuming now a constant anisotropy parameter β0 Ó= 0. We take β0 6 1/2
for now and still consider a single-component system. The pseudo-density is given by r2β0ρ with
ρ in Eq. (5.134), therefore the asymptotic limits become

dρ

dr
∼

r→0
2β0r2β0−1 , (5.140)

and

dΨ

dr
∼

r→0
− 4πGN

1 − 2β0
r−1−2β0 . (5.141)

The derivative is now

dρ

dΨ
∼

r→0
−2β0(1 − 2β0)

4πGN
r4β0 →

r→0

{

+∞ if β0 < 0
0 if β0 > 0

(5.142)
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We can see that a negative β0, which corresponds to tangentially-biased system, ensures the
necessary condition for positivity is satisfied. Note that the asymptotic behaviour no longer
depends on α, only on the sign of β0. If β0 > 0, i.e. the system is radially-biased, the DF is
necessarily non-positive. There is no need to take an asymptotic limit to see that a positive β0

generically endangers the positivity of the DF. This is because a necessary condition for positivity,
in the case of constant β0, is

d(r2β0ρ)

dΨ
> 0 for 0 6 Ψ 6 Ψ(0) . (5.143)

Let us consider a generalized NFW profile for ρ. If we have 2β0 > γ then d(r2β0ρ)/dr is non-
negative and condition (5.143) is violated. This is a particular case of the cusp slope-anisotropy
theorem (An & Evans, 2006), which states that a necessary condition for the positivity of the
DF is

γ > 2β (5.144)

where γ is the cusp slope and β the central anisotropy. It has been postulated, and demonstrated
for a wide class of models, that this condition holds at any radius (Ciotti & Morganti, 2010),
namely

γ(r) > 2β(r) , (5.145)

where

γ(r) ≡ − dρ

d ln r
(5.146)

is the logarithmic slope and β(r) is the anisotropy parameter at radius r. This condition further
restricts the domain of application of Eddington’s method. We illustrate this limitation by
considering again the generalized NFW profiles in Eq. (3.73) for which we have

γ(r) = γ + (β − γ)
xα

1 + xα
. (5.147)

This function must be compared to the anisotropy parameter in Eq. (5.88). The slope γ(r) and
2β(r) are shown in Fig. 5.12. We see that 2β(r) can be larger than γ(r) at some radii, if the
anisotropy parameter ra is low enough. In a given mass model, with fixed parameters (α, β, γ),
this leads to a lower bound on ra. From now on, we only consider the case ra = rs which has the
double advantage of leading to a positive DF and only requiring a single length scale.

5.4.3 Stability

Though positivity is a restrictive criterion on the pair (ρ, Ψ) that are compatible with Eddington’s
method, it is not a sufficient condition for the DF to give a good description of DM galactic halos.
Another crucial condition is stability. While the Jeans theorem ensures that the Eddington DF
is a solution of the collisionless Boltzmann equation, it does not say anything about the stability
of this solution. Since DM halos are stable as far as we can tell, we need to discriminate between
stable and unstable DFs to make reliable predictions.

5.4.3.1 Analytic criteria

Stability being a very complex issue, it is mainly studied through numerical simulations. Fortu-
nately, a few analytic results have been derived. In particular, Antonov’s second law (Antonov,
1962; Lebovitz, 1965; Lynden-Bell & Wood, 1968) states that a sufficient condition for an isotropic
DF to be stable against non-radial perturbation modes is df/dE > 0. Stability against radial
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Figure 5.12 – Value of γ(r) defined in Eq. (5.147) (coloured lines) compared to 2β(r) (black lines).

modes is also assured under the same condition according to the Doremus-Feix-Baumann theorem
(Doremus et al., 1971; Kandrup & Sygnet, 1985). Putting these two results together, we get a
sufficient condition for an isotropic DF to be stable:

df

dE > 0, ∀E > 0 . (5.148)

We wish to test mass models according to this condition. First of all, let us remark the phase-space
divergence discussed in Sec. 5.4.1 violates condition (5.148), which is in agreement with our
interpretation of this divergence being an unstable phase-space configuration of the system. We
want to know if realistic halo configurations can lead to additional instabilities. To this end,
we remove the diverging term in the Eddington DF and its extensions, either by considering a
modified density profile or removing the divergence by hand.

When studying stability, it is more convenient to have a criterion that does not involve the
computation of the full DF. The expression of the isotropic DF without the diverging term is

f(E) =
1√
8π2

∫ E

0

d2ρ

dΨ2

dΨ√
E − Ψ

. (5.149)

It is obvious from this expression that df/dE > 0, ∀E > 0 only if d2ρ/dΨ2 > 0, ∀Ψ > 0. The
reverse implication is also true, as one can see by considering the Abel equation

dρ

dΨ
=

√
8π

∫ Ψ

0

f(E)√
Ψ − E

dE , (5.150)

and performing an integration by parts to get

dρ

dΨ
= 2

√
8π

∫ Ψ

0

√
Ψ − E df

dE dE . (5.151)

We can see from this last identity that dρ/dΨ is a growing function of Ψ only if df/dE > 0 ∀E > 0.
This proves the equivalence between two sufficient conditions for stability

df

dE > 0, ∀E > 0 ⇐⇒ d2ρ

dΨ2
> 0, ∀Ψ > 0 . (5.152)
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The latter condition is much simpler to test in practice. We already encountered this condition
in Eq. (5.132) as a sufficient condition for positivity. Unsurprisingly, a stable DF is also positive.
Note that Eq. (5.152) is a sufficient condition but it is not necessary a priori, hence there might
exist systems that violate Eq. (5.152) but still have a stable Eddington DF. In the following,
we look at realistic mass models and disregard those that do not satisfy (5.152) as potentially
unstable. Though this criterion is limited to the isotropic case, it can be partially extended to
anisotropic systems. For a DF of the form f(E , L), Doremus et al. (1973) showed that a sufficient
condition for stability against radial modes of perturbations is ∂f/∂E > 0 for all (E , L). For the
constant-β and OM models in Eqs. (5.85) and (5.92), this condition translates into

dG

dE > 0, ∀E > 0 (constant-β) (5.153)

dfom

dQ
> 0, ∀Q > 0 (Osipkov-Merritt) (5.154)

Anisotropic systems are sensitive to non-radial perturbations in a very complex way. The possible
appearance of radial-orbit instabilities make the study of stability a very complicated issue in
that case. We refer to analytical (Antonov, 1987; Perez & Aly, 1996; Guo & Rein, 2003; Maréchal
& Perez, 2010) and numerical studies (Merritt & Aguilar, 1985; Barnes et al., 1986; Meza &
Zamorano, 1997) on this subject. The bottom line is that there is no simple criterion ensuring
stability against non-radial perturbations, therefore we only consider Eq. (5.154) when looking
at anisotropic DFs but we regard the criterion as a necessary one rather than a sufficient one.

5.4.3.2 Stability of Galactic mass models

We analyse the stability of the isotropic DFs computed for the mass models of McMillan (2017).
The isotropic DFs for four different mass models are shown on the upper left panel in Fig. 5.13.
When baryons do not contribute to the potential, the DFs are all growing functions of the energy
E irrespective of the central slope γ. According to the stability criterion (5.148), these DFs
are stable. When the full mass models are considered, i.e. when baryons do contribute to the
total potential, the DFs significantly flatten and in the γ = 0 case, the stability criterion is
violated. This means that the γ = 0 configuration is not compatible with the assumptions of
spherical symmetry and isotropy: one of these two assumptions should be relaxed to find a
stable phase-space description. We check the alternative, equivalent criterion in Eq. (5.152) on
the upper right panel in Fig. 5.13. We note that the presence of a dip in the DF, as for the
γ = 0 case, has consequences on the shape of the speed distribution. This is shown in Fig. 5.14.
While DM speed distributions usually present a single peak, the distribution in the γ = 0 case
(magenta line) has two peaks: a very large and high one at v ∼ 450 km/s, and a much smaller
one at v ∼ 30 km/s. Note that this unusual feature appears very close to the Galactic center
at r = 0.01 kpc while the speed distribution at larger radii takes a more common shape. It is
not straightforward to interpret this puzzling feature as a mark of instability because it also
appears in the speed distribution of the γ = 0.25 model (blue line) even though this model is
stable according to the upper panel in Fig. 5.13. We note that the third derivative d3ρ/dΨ3

takes negative values for both the γ = 0 and γ = 0.25 models, see the lower panel in Fig. 5.13.
This lead us to the following conjecture:

d3ρ

dΨ3
> 0, ∀Ψ > 0 (5.155)

is a sufficient criterion to get a single-peak speed distribution at any radius. As stated, this is a
conjecture and we do not have a proof of that statement. In the following, we remain agnostic
about the origin of the camel-back shape of speed distributions and only consider the stability
criterion given in Eq. (5.152). According to this criterion, an isotropic description of the γ = 0.25
is acceptable.
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Figure 5.13 – Several quantities computed for the mass models of McMillan (2017), with or without
baryons (solid or dashed lines, respectively). Top left panel: isotropic phase-space DF as a function

of the energy. The DFs are in units of (4πGN)−3/2r−3
s ρ

−1/2
s . Top right panel: second derivative with

respect to the total potential as a function of the potential. The derivatives are in units of (4πGNρsr
2
s )−2.

Bottom panel: third derivative with respect to the total potential as a function of the potential. The
derivatives are in units of (4πGNρsr

2
s )−3.

It is clear from our analysis that baryons can destabilize a DM phase-space configuration
which would have been stable otherwise. Let us try to quantify that statement. We consider a
system with a DM and a baryonic component and write its total mass m = mdm + mbar and
potential Ψ = Ψdm + Ψbar. The stability criterion is d2ρ/dΨ2 > 0 for all Ψ > 0. Using Poisson’s
equation, the radial of the potential can be written

dΨi

dr
= −GN mi(r)

r2
. (5.156)

Let us try to express the derivative with respect to the full potential as a function of the derivative



Chapter 5. The dark matter phase space of the Galaxy 147

over the DM potential:

d2ρ

dΨ2
=

d

dΨ

(

dρ

dΨ

)

=
dΨdm

dΨ

d

dΨdm

(

dΨdm

dΨ

dρ

dΨdm

)

=
mdm

mdm + mbar

d

dΨdm

(

mdm

mdm + mbar

dρ

dΨdm

)

=

(

mdm

mdm + mbar

)2 d2ρ

dΨ2
dm

+
mdm

mdm + mbar

dρ

dΨdm

d

dΨdm

(

mdm

mdm + mbar

)

.

(5.157)

The derivative of the mass ratio on the can be further expressed as

d

dΨdm

(

mdm

mdm + mbar

)

=
mdm

mdm + mbar

d

dΨdm
ln

(

mdm

mdm + mbar

)

=
d

dΨ
ln

(

mdm

mdm + mbar

)

= − d

dΨ
ln

(

mbar

mdm
+ 1

)

= −
d

dΨ

(

mbar
mdm

)

mbar
mdm

+ 1

= − mdm

mdm + mbar

d

dΨ

(

mbar

mdm

)

.

(5.158)

Injecting this result into the expression of d2ρ/dΨ2 we finally get

d2ρ

dΨ2
=

(

mdm

mdm + mbar

)2
[

d2ρ

dΨ2
dm

− dρ

dΨdm

d

dΨ

(

mbar

mdm

)

]

. (5.159)

Using this expression, we find that the stability criterion translates into the inequality

d2ρ

dΨ2
dm

/

dρ

dΨdm
>

d

dΨ

(

mbar

mdm

)

, (5.160)

where the left-hand side contains only DM-related quantities and all the baryonic contributions
are on the right-hand side. The criterion shows that the impact of baryons on the stability
depends on the slope of the ratio mbar/mdm rather than the value of the mass mbar. This
means that ”adding more baryons” does not necessarily destabilizes an otherwise stable DF. The
mbar/mdm ratio is shown as a function of the total potential on the right panel in Fig. 5.14. We
note that the ratio (mbulge + mdisc/mdm grows slower than mbulge/mdm, hence the disc stabilizes
the DF with respect to the bulge only configuration, even though the baryonic mass is much
higher when the two components are included.

We also investigated the impact of changing the bulge’s scale parameters on the stability of
the isotropic DF. This is illustrated in Fig. 5.15 where we show the sign of Min

[

d2ρ/dΨ2
]

. If
this quantity is negative, the stability criterion is violated and the system is possibly unstable.
The symbols represent the mass models and the red-coloured area the (potential) instability
region. One sees that the γ = 0 is inside its own instability region which means it violates the
stability criterion. A significant change in the bulge parameters is required to destabilize the
γ > 0 models.

5.5 Test of the Eddington formalism on hydrodynamic cosmo-
logical simulations

We discussed the Eddington formalism in the previous sections and established its validity range.
So far the discussion has focused on the formalism itself and its inner limits. A crucial aspect
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Figure 5.14 – Left panel: isotropic speed distribution at r = 0.01 kpc for the mass models of McMillan
(2017). Right panel: ratio of the baryons mass to the DM mass as a function of the total potential in
units of 4πGNρsr
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Figure 5.15 – Sign of the minimum of d2ρ/dΨ2 in the plane (ρ0,b/ρs, rb/rs) with ρ0,b and rb the scale
parameters of the bulge and ρs and rs the scale parameters of the DM halo. The disc parameters are
fixed to the value of McMillan (2017).

that remains to be addressed is the performance of the Eddington method. How well does this
technique capture the phase-space distribution function of dark matter halos? To answer this
question, we test the Eddington method on hydrodynamic cosmological simulations. We choose a
set of observables relevant for dark matter searches, such as the velocity distribution at different
radii, and compare the predictions of the Eddington formalism with the observable extracted
from the simulations. We systemically perform our comparison for both the Eddington model
and the Standard Halo Model (SHM). A crucial point of our analysis is the study of composite
systems, including both dark matter and baryons, such as Milky-Way-like disc galaxies.

This work is done in collaboration with Arturo Nũnez, Thomas Lacroix, Emmanuel Nezri
and Julien Lavalle.
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5.5.1 Cosmological simulations

5.5.1.1 Description of the simulations

Two sets of simulations are used in this study. The first one consists of two high-resolution
simulations published in Mollitor et al. (2015), which we labelled Halo B and Halo C. These
simulations were run with the RAMSES package (Teyssier, 2002) in 20 Mpc cosmological boxes
and using the zoom-in technique with a carefully decomtaminated Lagrangian volume. The
initial conditions were generated with the MUSIC package (Hahn & Abel, 2011). Conventional
recipes were used for cooling, ultraviolet background and self-shielding. The gas dynamics, star
formation scheme and supernovae (SN) feedback are all described in Mollitor et al. (2015). The
star formation follows a standard Schmidt law with an adapted density threshold and efficiency
(Schmidt, 1959; Kennicutt, 1998). The SN feedback is carried out through a thermal energy
injection after 10 Myr with a Chabrier initial mass function (Chabrier, 2003) with a thermal
energy of 1051 erg per SN event. A non-thermal energy injection is also implemented. We refer
to Mollitor et al. (2015) for a detailed analysis of these simulations. One of their main features is
to exhibit both a compression of the dark matter profile around the scale radius of the disc and
a flattening of the dark matter profile below due to the SN feedback.

The second set of simulations are also two cosmological hydrodynamic zoom-in simulations
performed with the RAMSES package, with a slightly lower resolution. The stellar physics (star
formation and SN feedback) is the same. The corresponding high-resolution runs are part of a
suite of simulations that will be soon published in a forthcoming paper (Nũnez et al., 2018) where
the authors will consider different subgrid physics of star formation and SN feedback, which
is far beyond the scope of the present study. Those two simulations are labelled respectively
Mochima and Adicora after two Venezuelian beaches favoured by our colleague Arturo.

Regardless of their precise Milky-Way-like morphology and features, we will use these
simulations as consistent frameworks with regard to gravity to study the phase-space distribution
of dark matter and test the Eddington method in a numerical galaxy environment. For the four
objects we consider (Halo B, Halo C, Mochima and Adicora), both dark-matter-only (DMO) and
hydrodynamic runs including baryons are studied.

The mass resolution (mDM, m⋆) and spatial resolution (hsml), as well as the pseudo-virial
mass and radius M200 and R200 and the total baryonic mass M⋆, are given in Tab. 5.1 for all the
objects under study.

Run M200 R200 M⋆ mDM m⋆ hsml
(1010M⊙) (kpc) (1010M⊙) (M⊙) (M⊙) (pc)

Halo B DMO 49.60 163.5 2.757 × 105

Hydro 50.06 177.54 7.96 2.308 × 105 2.87 × 104 151.67

Halo C DMO 62.48 176.36 2.757 × 105

Hydro 55.02 182.23 9.56 2.308 × 105 2.87 × 104 151.67

Mochima DMO 91.35 206.34 2.27 × 105

Hydro 82.14 213.2 10.87 1.536 × 106 1.836 × 105 281.1

Adicora DMO 91.67 202.46 2.27 × 105

Hydro 81.07 212.7 11.07 1.536 × 106 1.836 × 105 281.1

Table 5.1 – Main features of the four simulations at z = 0. The columns are the pseudo-virial
mass M200 and radius R200, the baryonic mass M⋆, the mass resolution for dark matter mDM,
the mass resolution for baryons m⋆ and the spatial resolution (hsml).
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5.5.1.2 Halo shape and level of equilibrium

The Eddington method only applies to spherical systems in dynamical equilibrium. We do not
expect realistic simulated galactic halos to be perfectly spherical nor in perfect equilibrium,
therefore we need to measure the departure from these two regimes.

A system of N particles with mass mk, k = 1...N at position þrk can be characterized by its
mass distribution tensor

Mij ≡
∑

k

mk rki rkj , (5.161)

where rij ≡ þri ⊗ þrj . We denote the three square root of the eigenvalues of M by a, b and c with
a > b > c. We then define the sphericity, the elongation and the triaxiality by

S ≡ c

a
(5.162)

e ≡ b

a
(5.163)

T ≡ a2 − b2

a2 − c2
. (5.164)

A system with spherical symmetry has a = b = c, and therefore S = e = 1 and T is ill-defined.
Otherwise a low triaxiality T ≪ 1 corresponds to an oblate system while a high triaxiality T ≃ 1
corresponds to a prolate system [see e.g., Bryan et al. (2013)]. The sphericity and triaxiality
of the dark matter halo in the hydrodynamical runs are shown as functions of the radius in
Fig. 5.16. Halos are close to spherical though slightly oblate.

In cosmological simulations, there is no definitive test to assess the level of virialization of a
halo. We use the criterion of Zjupa & Springel (2017) who define a virial ratio

q ≡ 2 Ekin

Epot
+ 1 , (5.165)

such that q = 0 for an isolated structure in equilibrium according to the virial theorem. The
kinetic and potential energies are computed according to

Ekin =
∑

i

1

2
mi v2

i +
∑

j

3

2
kB Tj (5.166)

Epot =
∑

i

∑

j

GN mi mj

|þri − þrj | fij , (5.167)

where the second term on the right-hand side of Eq. (5.166) accounts for the kinetic energy of
gas cells, and the fij factor in Eq. (5.167) accounts for the particular prescription used for the
force-softening on short distances (Shapiro et al., 2004). The virial ratio q in shown on the right
panel in Fig. 5.16. The Mochima galaxy in the hydrodynamical run is the only one satisfying
the virial criterion, though we have |q| < 0.2 in all the other cases.

5.5.2 Fitting the galactic components

The dark matter halos are fitted with a generalized NFW density profile

ρDM(r) = ρ0

(

r

rs

)−γ [

1 +

(

r

rs

)α](γ−β)/α

. (5.168)

A density can be assigned to each dark matter particle in the simulation through the procedure
described in Dehnen (2002). We refer to this density as the particle density ρpar. A density
variance σ(ρpar) can also be computed. The density profile can then be fitted by minimizing

χ2
ρ =

∑

bin i

(

log10 [ρDM(ri)] − log10 [ρshell(ri)]

σ [log10(ρpar(ri))]

)2

. (5.169)
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Figure 5.16 – Left panel: sphericity (upper panel) and triaxiality (lower panel) for the hydrodynamic
simulations used, as functions of the distance to the galaxy centre. Right panel: virial ratio as defined
in Eq. (5.165) for the four simulations considered here.

In this equation, ρshell(ri) is the mean density within a spherical shell of radius ri. The
minimisation is performed on log10(ρ) rather than ρ to get a good fit over a wide range of
radius. An alternative fitting procedure makes use of the mass within a spherical shell rather
than the mean density. In this case, the fit is obtained by minimizing

χ2
m =

∑

bin i

(log10 [mDM(ri)] − log10 [mshell(ri)])
2 . (5.170)

We show the density measured in Halo B along with the fits in Fig. 5.17. As one can see, both
fitting procedure lead to very similar results. From definiteness, we used the fits obtained with
the mass fitting procedure in Eq. (5.170). The high density variance above 20-30 kpc in Fig. 5.17
is due to the presence of substructures, which start to significantly contribute to the mean dark
matter density (see Chap. 3). The fitting parameters obtained for Halo B are shown in Tab. 5.2.
The main differences between the DMO and hydrodynamical runs are seen on parameters rs and
γ. Adiabatic compression of the dark halo decreases the value of rs, and supernovae feedback
decreases the value of γ from an NFW-like value of γ ≃ 1 to a smaller value γ ≪ 1. These two
effects are also observed in the other halos. The dark matter parameters for the other halos are
shown in App. D.3.

Halo B log10(ρ0) rs α β γ
[M⊙/kpc3] [kpc]

DMO 7.101± 0.532 10.338± 6.592 1.0± 0 2.785± 0.258 1.101± 0.182

Hydro 7.622± 0.096 4.885± 0.514 2.639± 0.858 2.621± 0.117 0.127± 0.097

Table 5.2 – Parameters of the dark matter halo in Halo B.

The same fitting procedure is applied to baryons in the hydrodynamical runs. We fit the
baryon distribution using the same parametrisation as in McMillan (2017), see App. D.1. For
each hydrodynamical run, we fit a bulge, a thin stellar disc, a thick stellar disc and one gas disc
(for the gas disc, we use the same mass distribution as the stellar disc i.e. a double exponential).
The mass profile and fitting parameters for the baryons in Halo B are shown in Fig. 5.18. The
mass profiles for the other galaxies are shown in App. D.1.
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Figure 5.17 – Left panel: mean density in spherical shells (blue curve) with the associated 1σ
band (green) for the DMO run of Halo B. We show the fit obtained using the χ2 defined in Eq. (5.169)
(black curve) and the χ2 in Eq. (5.170) (dashed red curve). Right panel: same as left panel, for the
hydrodynamical run.

5.5.3 Radial boundary and escape speed

As we saw when we discussed the theoretical issues associated with the Eddington formalism,
the definition of a finite radial boundary is essential to correctly account for the local value of
the escape speed. While the radial extension of physical systems like the Milky Way is in general
difficult to infer, we can extract this information for the simulated galaxies.

The radial boundary Rmax is define as the maximum of the (negative) gravitational potential
averaged in spherical shells centred on the simulated galaxy. As the radius of the shells gets
larger the potential increases to reach a maximum, then decreases again when entering the region
of influence of the nearest neighbouring galaxy. The maximum between the two potential wells
defines Rmax. This procedure is illustrated in Fig. 5.19 for Halo B, where a radial border of
Rmax ≃ 800 kpc is found.

Once the radial border Rmax has been measured, the gravitational potential is defined so
that is is zero at Rmax i.e.

Ψ(r) ≡ − (Φ(Rmax) − Φ(r)) , (5.171)

where Φ is the local potential which is computed within the simulation. The potential is positive
at radii r < Rmax with our definition, which is the convention we used when we discussed the
Eddington formalism in the two previous sections. As we have seen before, the escape speed at a
radius r is defined by

vesc(r) ≡
√

2Ψ(r) . (5.172)

An alternative measure of this speed can be obtained by looking at the maximum velocity of
particles inside radial shells. We refer to this maximum speed as vmax. In a spherical system in
dynamical equilibrium, we should have vesc(r) = vmax(r) at all r. We compare vesc and vmax for
Halo B on Fig. 5.20. The two method roughly agree although we have vesc > vmax in the inner
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Figure 5.18 – Mass profile and fitting parameters for the stellar discs and bulge (upper panel) and the
gas disc (lower panel) for the Halo B galaxy.

Figure 5.19 – Left panel: gravitational potential averaged in spherical shells centred on Halo B (gray
line). The maximum of the potential, which defines Rmax, is shown by the dashed vertical line. We
also show the potential along the line of sight connecting the two potential wells (blue line) and the 1σ
dispersion around (dashed blue lines). Right panel: projected density in a cone around the line of sight.
The center of the nearest ”big” neighbour is marked by a blue point.

region r < 10 kpc. Note however that the measure of vmax is limited by statistics in this region
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and therefore not reliable. Beyond the virial radius, we observe vesc < vmax. The comparison of
vesc and vmax for the other galaxies is shown in App. D.3.2, where similar features are observed.

Figure 5.20 – Escape speed computed from the potential (blue) compared to maximal velocity
of particles in radial shells (green). The comparison is made in the DMO run (left panel) and the
hydrodynamical run (right panel).

5.5.4 Velocity distributions

We now turn to the comparison between the Eddington formalism and the simulations. The
fitting procedure provides us with the dark matter density profile as well as the total gravitational
potential for each galaxy in our sample. Thus we have all we need to compute the phase-space
DF following the inversion procedure described in Sec. 5.3.2. From the phase-space DF, we
can compute the velocity distribution at any radius r. Here we only show results regarding the
isotropic Eddington inversion, where the velocity distribution is simply related to phase-space
DF through

fþv(þv) =
1

ρDM(r)
f

(

Ψ(r) − v2

2

)

. (5.173)

Our full analysis will include study of anisotropic cases. We also compare the velocity distribution
measured in the simulations to the prediction of the SHM. In this model, it is assumed that the
velocity distribution follows the Maxwell-Boltzmann distribution

fmb(þv) ≡
(

πv2
0

)−3/2
exp

[

−v2

v2
0

]

, (5.174)

where the speed v0 is chosen to be the circular speed at radius r: vcirc(r). This model is not
dynamically consistent since this distribution is not a solution of the collisionless Boltzmann
equation consistent with the dark matter distribution under study. Indeed, the only density
profile compatible with a Maxwell-Boltzmann velocity distribution is the singular isothermal
sphere (see Sec. 5.3.2.1), which does not give a good description of galactic halos. In particular,
the Maxwell-Boltzmann extends to arbitrary large velocities i.e. it does not account for a local
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escape speed. It can be truncated at the escape speed for a more realistic modelling, for a
instance with a smooth truncations

fsmooth(þv) ≡ 1

Nsmooth

{

exp

[

−v2

v2
0

]

− exp

[

−v2
esc

v2
0

]}

, (5.175)

with a normalisation factor

Nsmooth ≡
(

πv2
0

)3/2
[

erf(z) − 2 z√
π

(

1 +
2 z2

3

)

e−z2

]

, (5.176)

with z = v0/vesc.
The velocity distributions in Eq. (5.173), Eq. (5.174) and Eq. (5.175) are compared to the

simulation data from Halo B in Fig. 5.21. We show the comparison for the DMO and the
hydrodynamical runs. The escape velocity vesc computed from the gravitational potential is
shown with its 1σ uncertainty band.

To make a quantitative comparison between the three models, we perform a χ2 test. The
value of χ2 is shown on the plots. Regardless of the radius and the model used, the value of χ2

is very high. This means that none of the models give a satisfactory description of the observed
velocity distribution. This is valid for all the objects we considered, see App. D.3.3. This is
hardly a surprising fact however, given the crudity of the Maxwell-Boltzmann description or even
the Eddington method, which assumes spherical symmetry, isotropy and perfect equilibrium.
More interesting is the relative performance of the models. We note that the Eddington
velocity distribution performs better, in most cases, than the Maxwell-Boltzmann distribution in
Eq. (5.174). This is especially true at low radii, for 2 kpc < r < 4 kpc and 7 kpc < r < 9 kpc, and
it is true for both the DMO and hydrodynamical runs. The reason for the lack of performance of
the Maxwellian approximation is the difference in the peak velocity. Simulations show a peak
velocity higher than the circular velocity in the central regions. This is compatible with the
observation that simulated halos are in general isotropic at the center, see e.g., Bozorgnia et al.
(2013). Since by construction, the Maxwell-Boltzmann distribution has its peak velocity at the
circular velocity, it fails at reproducing the simulations in their central region. This lack of
performance is also observed for the truncated Maxwell-Boltzmann distribution in Eq. (5.175).
However, this distribution performs just as well, if not better, than the Eddington distribution
at most radii and in most of our simulated objects. We should recall that this distribution is ad
hoc and not motivated by first principles, unlike the Eddington formalism. The shape of the
cut at vesc is in particular completely arbitrary, which is a limitation of this method since the
presence of this cut is precisely what improves the fit at large radii.

5.5.5 Moments of the velocity distributions

Although all the information is contained in the velocity distribution, dark matter searches are
only sensitive to some of its moments. For instance, direct detection is essentially sensitive to
〈1/v〉. The exact moments relevant for dark matter searches will be listed and studied in the
next chapter. For now, we limit ourselves to the quantity 〈vn〉 (r). We directly compare its
predicted value from the distributions in Eq. (5.173), Eq. (5.174) and Eq. (5.175) to the same
quantity measured in the simulation. The results for Halo B are shown in Fig. 5.22 while the
results for the other halos are shown in App. D.3.4. The Eddington prediction is compared to the
(uncut) Maxwell-Boltzmann prediction. In agreement with the observations made on the velocity
distribution, we see that the Eddington prediction follows the general trend of the moments as
functions of the radius much better the SHM. Quantitative comparisons and the inclusion of the
smoothly-cut Maxwell-Boltzmann distribution will be featured in the final work.

To conclude on these very preliminary results, we see that the Eddington formalism not only
provides a consistent framework to compute the phase-space DF of dark matter halos but also
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Figure 5.21 – Velocity distributions measured in Halo B, at 2 kpc < r < 4 kpc (upper left panel),
7 kpc < r < 9 kpc (upper right panel), 19 kpc < r < 21 kpc (lower left panel), and 49 kpc < r < 51 kpc.
We also show the distribution predicted by the Eddington method, the Maxwell-Boltzmann distribution
and the smoothly-truncated Maxwell-Boltzmann distribution.

seems to roughly capture the main features observed in the simulations. In particular, it seems
to perform better than the Maxwell-Boltzmann approximation, which is widely used in dark
matter studies. When completed, our study will include direct comparison of the phase-space
distributions from the Eddington method and the simulations, as well as the study of anisotropic
cases. This will allow us to have a quantitative estimate of the astrophysical uncertainties in
dark matter studies based on Eddington-like methods, and a good idea of the global performance
of this framework in dark-matter-related searches.
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Figure 5.22 – Left panel: moments of the velocity distributions as functions of the radius (blue curves)
in the DMO run of Halo B, compared to the moments of the Maxwell-Boltzmann velocity distribution
(red curves) and the Eddington velocity distribution (black curves). Right panel: same as left panel, for
the hydro run of Halo B.
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Chapter 6

Impact of the phase space on dark
matter searches

In this section, we study the impact of the Eddington inversion formalism on predictions for
DM searches. The DM phase-space DF is an important quantity which enters a number of
different searches for DM, such as direct searches, indirect searches for p-wave annihilating DM
and Sommerfeld-enhanced annihilation, microlensing searches for compact objects and capture
of DM by stars. We present general results relevant for all these approaches. We investigate the
impact of the regularization methods discussed in the previous chapter on some key observables.
Finally, we apply the Eddington formalism to indirect searches for p-wave annihilating DM
through cosmic-ray positrons.

6.1 Direct-searches-like observables

6.1.1 Direct searches

The impact of the velocity distribution on the direct detection event rate in Eq. (1.9) has been
extensively studied in the literature through numerical (Hansen et al., 2006; Fairbairn & Schwetz,
2009; Vogelsberger et al., 2009; Kuhlen et al., 2010; Mao et al., 2013) and analytical calculations
(Evans et al., 2000; Green, 2001, 2017b). The Eddington method, including its anisotropic
extensions, has also been used to make predictions (Ullio & Kamionkowski, 2001; Vergados &
Owen, 2003; Catena & Ullio, 2012; Pato et al., 2013; Bhattacharjee et al., 2013; Bozorgnia et al.,
2013; Fornasa & Green, 2014; Lavalle & Magni, 2015). In particular, differences between the
predictions of the Eddington formalism and those of the Standard Halo Model (SHM) have been
shown to be important. In the SHM, the velocity distribution in the rest frame of the Galactic
halo is assumed to follow the Maxwell-Boltzmann law

fmb(þv) =
(

πv2
0

)−3/2
exp

[

−v2

v2
0

]

. (6.1)

The peak velocity v0 is usually chosen to be the local circular velocity v0 = vcirc(R⊙). The
distribution in Eq. (6.1) extends to arbitrary large velocities while in a collisionless system in
equilibrium we do not expect particles to have a speed exceeding the local escape speed vesc(R⊙).
The Maxwell-Boltzmann distribution is often truncated to account for vesc. A sharp cut is
sometimes implemented

fsharp(þv) =
1

Nsharp

[

−v2

v2
0

]

Θ(vesc − v) , (6.2)

with a normalization

Nsharp =
(

πv2
0

)3/2
[

erf(z) − 2 z√
π

e−z2
]

, (6.3)
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and z = v0/vesc. A sharp truncation is obviously not physical hence a smooth cut is also found
in the literature

fsmooth(þv) =
1

Nsmooth

{

exp

[

−v2

v2
0

]

− exp

[

−v2
esc

v2
0

]}

Θ(vesc − v) , (6.4)

with

Nsmooth =
(

πv2
0

)3/2
[

erf(z) − 2 z√
π

(

1 +
2 z2

3

)

e−z2

]

. (6.5)

Note that the Maxwell-Boltzmann velocity distribution gives a dynamically consistent description
of a collisionless system only if the density profile is that of the (infinite) singular isothermal
sphere, see Sec. 5.3.2.1. This is not in agreement with observations hence the Maxwell-Boltzmann
approximation has little theoretical motivation. Nevertheless, it is often assumed to give a
reasonable description of the DM velocity distribution. Speed distributions with the different
conventions found in the literature are shown on the left panel in Fig. 6.1. These distributions
are computed at the position of the Sun. One sees small differences in the high velocity tail and
in the height of the peak.

Figure 6.1 – At the position of the Sun R⊙ = 8.21 kpc in the NFW mass model of McMillan (2017).
Left panel: Speed distribution in the SHM . Are shown the Maxwell-Boltzmann (red curve), sharply cut
(green curve) and smoothly cut (blue curve) speed distributions. Right panel: Smoothly cut SHM speed
DF compared to the Eddington theory for the isotropic (red), Osipkov-Merritt (green) and β0 = −0.3
(blue) cases.

We want to compare the Eddington formalism to the SHM with a particular emphasis on
the regularization methods we discussed in the previous chapter. We first show the speed
distributions predicted by the isotropic (red), OM (green) and constant-β with β0 = −0.3 (blue)
at R = R⊙ together with the smoothly-cut SHM on the right panel in Fig. 6.1. The phase-space
divergence has been removed by hand and the speed distribution artificially renormalized to
one. Significant differences between the SHM and the Eddington formalism are visible by eye.
Irrespective of the model, the peak of the distribution is at v > vcirc rather than vcirc. The peak
is also higher in the constant-β model. This is not surprising since β0 < 0 leads to more circular
orbits hence a higher peak close to vcirc. Large differences also appear in the tail: the OM model
in particular presents a bump where the divergence was present. The isotropic prediction also
has more power in the tail. These features have already been pointed out in the literature (see
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e.g.Ullio & Kamionkowski (2001); Vergados & Owen (2003); Fornasa & Green (2014)). Several
regularization methods are introduced in the previous chapter to deal with the phase-space
divergence and these methods lead to different speed distributions for a given mass model. We
define a general function to investigate the impact of these regularizations on direct-searches-like
observables:

Ξn(vmin, vmax, r) ≡ ω−1(r)

∫

vmin6v6vmax

d3þv vn fþv(þv, r)

ω(r) ≡
∫

vmin6v6vmax

d3þv fþv(þv, r) .
(6.6)

This function Ξ allows to investigate moments of the velocity distribution relevant for different
DM searches including direct searches and capture by stars (n = −1) and microlensing (n = 1). A
normalization ω is explicitly introduced to get a well-defined average even when the Eddington DF
is modified by hand and thus not consistently normalized. We compute the velocity distribution
and its moments in the rest frame of the halo and neglect the effects induced by the Galilean
transformation to the rest frame of the Earth. This is justified because we essentially try to
quantify the differences between the Eddington approach and the SHM, and we do not expect
these differences to depend much on the frame of reference. For direct searches, the relevant
moment is η given in Eq. (1.14). Ignoring the change of frame, this is

η(vmin) ≃ Ξ−1(vmin, vesc, R⊙) . (6.7)

We show η as a function of vmin in Fig. 6.2. The isotropic prediction is shown in the left panel
and the Osipkov-Merritt one is shown in the right panel. The lower panel show the relative
difference between the Eddington prediction and the SHM. The largest differences are observed at
high values of vmin, when the contribution of the tail of the speed distribution is most important.
This is also where the different regularization methods give the most different results. Neither
the sharply-cut nor smoothly-cut SHM are in good agreement with Eddington, though the
smoothly-cut SHM is doing significantly better. Comparison with the OM model is shown in
the right panel. The differences there are much larger than in the isotropic case. This is not
surprising given we have not found any satisfactory way of regularizing the divergence in the
OM models, see Sec. 5.4.1. Either the divergence is not removed or the DM density profile is
significantly modified.

In conclusion, the prediction of the Eddington theory departs from the SHM in a significant
way. The choice of the regularization method is also important, particularly at high vmin. This
could have implication for direct searches of low mass WIMPs, since these DM candidates
typically need a large velocity to give a detectable recoil and are therefore sensitive to the high
velocity tail of the speed distribution.

6.1.2 Capture by compact objects, microlensing

The function Ξ is related to observables relevant for other types DM searches. In particular, the
quantity

η(vmax, r) = Ξ−1(0, vmax, r) (6.8)

appears when computing the number of DM particles captured by stars or planets. This is
important since dark matter particles can have an effect on stellar evolution or annihilate at the
core into detectable particles like neutrinos (Press & Spergel, 1985; Silk et al., 1985; Gould, 1987;
Salati & Silk, 1989; Bouquet & Salati, 1989b,a; Kouvaris, 2008; Bertone & Fairbairn, 2008; Scott
et al., 2009). The varying value of vmax accounts for the escape speed from the particular object
under consideration (star, planet, etc..). The quantity η at the position of the Sun is shown in
Fig. 6.3. Again, differences are observable between Eddington’s theory and the SHM. For the
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Figure 6.2 – Left panel: η integral as a function of vmin. The various curves shown are the sharply-cut
SHM (solid magenta), the smoothly-cut SHM (dashed magenta), and the predictions of the Eddington
formalism for an isotropic system, with the regularizations of the phase-space divergence discussed in
Sec. 5.4.1, namely setting Rmax to infinity (green), removing the diverging term (red), modifying the
density profile (blue), regularizing à la King with Ec = Ψ(Rmax) (yellow) or with Ψ̃(Rmax) = 0 (cyan).
Right panel: Same as left panel, for Osipkov-Merritt.

isotropic case (left panel), the regularization method has little impact on the final prediction.
This is because most of the difference resides in the tail of the speed distribution while η is only
sensitive to speeds below vmax. Differences between the methods are still important in the OM
models (right panel).

Figure 6.3 – Same as Fig. 6.2 for η = Ξ−1(0, vmax, R⊙).

Finally, for the sake of completeness we look the mean speed

〈v〉 (r) ≡ Ξ1(0, vesc, r) , (6.9)

which is important for computing expected microlensing event rates (Griest, 1991; Green, 2017a).
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Microlensing is an interesting probe if DM is made of compact objects. It is relevant for primordial
black holes DM (Garćıa-Bellido & Clesse, 2018) and axion DM if it forms miniclusters (Fairbairn
et al., 2018). The mean speed is shown as a function of the radius in Fig. 6.4 in the isotropic
(top left panel), Osipkov-Merritt (top right panel) and β0 = −0.3 model (bottom panel). Again,
we observe important difference between the Eddington technique and the SHM. While the two
methods agree in the outer parts, there prediction significantly differ at the center of the Galaxy,
by up to an order of magnitude.

Figure 6.4 – Mean speed profiles for the Standard Halo Model and the Eddington formalism for the
isotropic (top left panel), Osipkov-Merritt (top right panel) and β0 = −0.3 (bottom panel) cases. Here we
show the DM-only (thin line) and DM+baryons (thick line) cases, for the McMillan (2017) mass models
providing well-behaved Eddington-inverted DFs.
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6.2 Indirect-searches-like observables

In this section, we investigate the impact on indirect searches for annihilating DM. The Eddington
method has been used in a few studies to constrain p-wave annihilating DM, see Ferrer & Hunter
(2013); Boddy et al. (2017); Petac et al. (2018). Relevant for annihilation is the relative velocity
distribution rather than the speed distribution, therefore we introduce a new function

〈vn
r 〉 ≡ κ−1(r)

∫

d3þv1

∫

d3þv2 |þvr|n fþv(þv1, r) fþv(þv2, r)

κ(r) ≡
∫

d3þv1

∫

d3þv2 fþv(þv1, r) fþv(þv2, r) ,
(6.10)

where þvr = vþv2 − þv1 is the relative velocity. Searches for p-wave annihilating DM typically
probe the n = 2 moment i.e. the relative velocity dispersion. In some cases, the annihilation
cross-section can be strongly impacted by non-perturbative effects that lead to the so-called
Sommerfeld enhancement (Sommerfeld, 1931; Hisano et al., 2003, 2004, 2005; Profumo, 2005;
Cirelli et al., 2007; March-Russell et al., 2008; Arkani-Hamed et al., 2009; Pospelov & Ritz, 2009;
Lattanzi & Silk, 2009). In that particular case, the relevant moment is n = −1, or n = −2 near
the resonance features appearing in the cross-section. It is more convenient for computations to
perform a change of variables (þv1, þv2) → (þvc, þvr) in Eq. (6.10) with

{

þvc = (þv1 + þv2)/2
þvr = þv2 − þv1

⇐⇒
{

þv1 = þvc − þvr/2
þv2 = þvc + þvr/2

(6.11)

as it is usually done when computing the DM annihilation rate in the early Universe (Gondolo &
Gelmini, 1991). Details on the computation are given in App. E. The computation of the moments
in the general anisotropic case is an original result. We show the moments n = −2, −1, 1, 2 in
Fig. 6.5 for the isotropic case, in Fig. 6.6 for the Osipkov-Merritt models and Fig. 6.7 for the
constant-β model. Following our discussion regarding the stability of the DFs in the previous
chapter, we only consider here mass models leading to stable solutions of the Boltzmann equation.
The velocity distribution in the Eddington case have been computed without the diverging term.
We recall that this is in practice similar to assuming a flattened density profile at the outskirts of
the halo. One see in Fig. 6.5 that, for both the SHM and the Eddington model, the moments with
and without baryons converge at large radii. This is because the total mass, and therefore the
gravitational dynamics, is then fully dominated by dark matter, and baryons become irrelevant.
Though similar in shape, predictions from the two models are numerically quite different. For the
n > 0 moments, the Eddington model’s predictions typically exceed the SHM’s. At the center
of the Galaxy, the two models differ by at least an order of magnitude, up to three orders of
magnitude. The hierarchy of the moments with respect to the value of the dark matter inner
slope is also reverted. While the cuspiest mass model (γ = 1) leads to the largest prediction
for the SHM, it is the model the closest to the core (γ = 0.25) that dominates the Eddington
result. We stress that even locally at r = R⊙ ∼ 8 kpc, and for all n, there are sizeable differences
between the Eddington formalism and the Maxwell-Boltzmann approximation. Therefore, since
the Eddington formalism turns out to better capture the dynamical properties of the dark matter
halo than the SHM, the latter should only be used to make very rough estimates of p-wave
annihilating dark matter signals, even when isotropy is assumed.

We also compared the (isotropic) SHM with some of the anisotropic extensions of the
Eddington formalism. The prediction of the Osipkov-Merritt model is shown in Fig. 6.6 for a
particular choice of the anisotropy radius ra = rs. Note that the value of rs depends on the
underlying mass model. The result is close to the isotropic case at radii r ≪ ra, as expected from
the behaviour of the anisotropy parameter. At large radii however, the slope of the moments
steepens significantly. The steepening starts roughly where r ≃ ra which is where the system
begins to be strongly anisotropic. We stress again that the regularization of the diverging term
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changes considerably the underlying profile density profile in the Osipkov-Merritt case (see the
previous chapter). The behaviour of 〈vn

r 〉 beyond r = ra should therefore be treated with caution.
We also studied the constant-β case, focusing on β0 = −0.3. We considered a negative anisotropy
to get a well-defined DF for all the mass models of relevance here. The corresponding relative
speed moments are shown in Fig. 6.7. They differ from the isotropic ones at all radii, unlike
the Osipkov-Merritt ones, which is not surprising since the constant anisotropy is non-zero
everywhere.

Regardless of the assumption made on the anisotropy, the Eddington formalism generically
predicts huge differences with respect to the SHM. The various anisotropic models used allow us
to bracket the theoretical uncertainty on the Eddington method.

Figure 6.5 – Moments of the relative velocity distribution, for the Standard Halo Model and the
Eddington formalism (isotropic case). Here we show the DM-only (thin line) and DM+baryons (thick
line) cases, for several mass models from McMillan (2017).



166 6.3. New bounds on p-wave annihilating dark matter

Figure 6.6 – Same as Fig. 6.5, for the Osipkov-Merritt model with ra = rs.

6.3 New bounds on p-wave annihilating dark matter

We turn to a direct application of the Eddington formalism: the constraint of p-wave annihilating
dark matter using cosmic-ray positrons. This work is an extension of the study done by Boudaud
et al. (2017) (hereafter B16). We first review the analysis and results of B16, then use the same
idea to derive new bounds on p-annihilating dark matter. This work was done in collaboration
with Mathieu Boudaud, Thomas Lacroix, Julien Lavalle and Pierre Salati.

The authors of B16 derived new constraints on the s-wave annihilation cross-section for
dark matter masses in the MeV to TeV range. They studied the contribution of dark matter
annihilation, as well as decay, into electrons and positrons and use measurements of the cosmic-ray
fluxes of these species to derive new limits. These limits are especially important in the MeV
mass range. WIMPs with MeV masses are not light enough to differ significantly from CDM
on observable scales, however a variety of scenarios involve dark matter particles in this range
and provide potential solutions to the small-scale issues (we refer to Sec. 1.4 for a discussion
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Figure 6.7 – Same as Fig. 6.5, for the constant-β model with β0 = −0.3.

on these small-scale problems). For instance, self-interacting dark matter (Chu et al., 2016)
and strongly-interacting dark matter (Hochberg et al., 2014) can both be produced thermally if
the dark matter particle has a mass in the MeV range. Alternatively, if dark matter is coupled
to radiation long enough, an oscillatory pattern appears in the power spectrum which can
help resolve the small-scale tensions (Boehm et al., 2004, 2014). MeV dark matter is already
constrained by a number of observables, including indirect searches with gamma rays (Beacom
et al., 2005; Essig et al., 2013). The most stringent bounds currently available are coming from
the CMB which is very sensitive to energy injection by annihilation or decay at the time of
recombination (Chen & Kamionkowski, 2004; Slatyer, 2016a; Liu et al., 2016; Poulin et al., 2016).

Dark matter annihilation in the MeV mass range is difficult to probe with cosmic radiation
because sub-GeV cosmic rays are affected by Solar modulation (see Sec. 4.3). The Solar magnetic
field forbid charged particles with sub-GeV energies to reach the Earth. This Solar shielding
extends up to a region called the heliopause. Fortunately, the Voyager 1 spacecraft (Krimigis
et al., 1977) crossed the heliopause during the summer of 2012 (Stone et al., 2013). The spacecraft
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carries a ”golden record”, destined to advanced extra-terrestrial civilizations, containing among
other things music from such luminaries as Johann Sebastian Bach and Chuck Berry. Of more
direct interest to us is the presence on-board of a cosmic-ray detector sensitive to electrons and
positrons (without discrimination between the two). High-statistics measurements of the e+ + e−

flux unaffected by Solar modulation is therefore available in Stone et al. (2013); Cummings et al.
(2016).

6.3.1 Bounds on s-wave annihilation

The authors of B16 used two propagation models for e±. The first model, dubbed A in their
analysis, is the MAX model whose propagation parameters are shown in Tab. 4.1. The second
model, dubbed B, is the model of Kappl et al. (2015) (K15), whose parameters are also shown in
Tab. 4.1. Both propagation models have comparable values for all parameters except the Alfven
speed Va. This speed controls the efficiency of reacceleration processes in the magnetic halo.
Cosmic rays injected at a given energy E and subject to a strong reacceleration can be detected
at energies E′ > E. In this case, model A has an efficient reacceleration (Va = 117.6 km/s) while
reacceleration in model B is much less efficient (Va = 31.9 km/s). This has strong consequences
on the e± flux, as shown in the right panel in Fig. 6.8. For a dark matter particle with mass
m = 10 MeV annihilating into e+e−, the e+ + e− flux is shown for model A (green) and model B
(blue). While the flux in the B model sharply falls at E = 10 MeV, it extends up to more than 1
GeV in the A model. This also implies that at a given mass, the A propagation model is more
sensitive to the data points of AMS than the B model.

Solving the propagation equation for electrons and positrons is technically very involved
because energy losses and reacceleration are not confined to the disc, as is the case for nuclei,
but extend to the whole diffusive halo. A semi-analytic framework to consistently solve the
propagation equation was successfully built by Boudaud et al. (2017). This ”pinching” method
was used in B16 and is also used in our new p-wave analysis.

The bounds on the s-wave annihilation cross-sections obtained by B16 are shown in the right
panel on Fig. 6.8, for different annihilation channels. The most stringent bound is obtained,
unsurprisingly, for dark matter annihilating directly to electrons and positrons. These bounds are
conservative: the B propagation model, with low reacceleration, is used and the Fisk potential
accounting for solar modulation is fixed to φF = 0.83 GV (which the maximum value found
in Ghelfi et al. (2016)). We note the presence of a ”gap” in the exclusion curve i.e. the curve
increases then sharply decreases again. This is due to the energy range 0.4 MeV to 2 GeV left
unexplored by both Voyager 1 and AMS. These bounds are about an order of magnitude less
stringent than those found with the CMB (Liu et al., 2016) and slightly better than those inferred
from gamma rays (Essig et al., 2013).

6.3.2 Bounds on p-wave annihilation

We now turn to the computation of the p-wave bounds. The best p-wave bounds currently
available at low masses are coming from the CMB (Liu et al., 2016). A rough order-of-magnitude
estimate tells us that our bounds should be much better than the CMB’s. The CMB bounds are
derived assuming a velocity dispersion σv = 100 km/s for WIMPs at the time of recombination.
In the Solar neighbourhood, the WIMP velocity dispersion should be comparable to the local
circular velocity σMW

v /
√

2 ∼ vc(R⊙) ≃ 240 km/s. To obtain the ”CMB-like” p-wave bound from
the s-wave bound shown in Fig. 6.8, one can rescale the curves by a factor (σv/σCMB

v )2 0.1. This
leads to an exclusion curve which is about five orders of magnitude better than the CMB’s. This
motivates us to investigate the p-wave calculation in a more detailed fashion.

Let us write the annihilation cross-section as

〈σannv〉 = 〈σannv〉0 + σ1c

〈

v2
r

〉

c2
+ ... (6.12)
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Figure 6.8 – Left panel: predictions (e±) for two template cases: a 10 MeV WIMP annihilating
into e+e− (plus final-state radiation), and a 10 GeV WIMP annihilating into bb. We show the e+ + e−

data from Voyager (red trianges) and the 2e+ data from AMS-2 (black squares). The AMS-2 e+ data is
multiplied by two to compare with the e+ + e− data from Voyager. The AMS-2 data are demodulated
with a Fisk potential φF = 0.83 GV. Propagation models A and B, and the NFW and cored profiles were
used. Right panel: limits from different annihilation channels, assuming model B, an NFW profile and
φF = 0.83. Both plots are taken from Boudaud et al. (2017).

where 〈σannv〉0 is the s-wave contribution, σ1c is the amplitude of the p-wave contribution and
〈

v2
r

〉

is the relative velocity dispersion. Here we assume 〈σannv〉0 = 0 and put constraints on σ1c.
All higher-order terms are neglected.

The electron/positron flux can be written in the Green’s function formalism

dφ

dΩ dE
=

σ1c

2 m2

∫

dEs

∫

d3þxs Ge(Es, þxs → E, þx)
dNe

dE
(Es) ρ(þxs)

〈

v2
r

〉

c2
. (6.13)

The injection spectrum dNe/dE is generated with the MicrOMEGAs code (Bélanger et al.,
2015). The function Ge is a Green’s function of the propagation equation Eq. (4.43). It is
convenient to define an effective annihilation profile

ρ2
eff(r) ≡ ρ2(r)

〈

v2
r

〉

c2
, (6.14)

which contains all the relevant information on the dark matter phase-space distribution. We
compute the relative velocity dispersion using the Eddington formalism. We considered three
cases: the isotropic DF, the Osipkov-Merritt model, and the constant anisotropy model with
β0 = −0.3. We also compare with the prediction of the Standard Halo model given in Eq. (??).
Two dark matter profiles are considered: the γ = 1 and γ = 0.25 profiles of McMillan (2017). We
do not consider the cored profile (γ = 0) because the Eddington method leads to an unstable DF
in that case (see Sec. 5.4). The effective annihilation profiles are shown in Fig. 6.9. As we have
already seen in the previous section, the prediction of the Eddington model and its extensions
lead to a larger velocity dispersion than the SHM over a wide range of radii.

We show the resulting bounds in Fig. 6.10. Our bounds are derived for the same propagation
models A and B as B16. The left panel shows the bounds assuming an NFW dark matter profile
and the right panel shows the bounds for γ = 0.25. We note that the central slope of the dark
matter profile has very impact on the bound obtained with B propagation model, while the A
model is more sensitive to the shape of the dark halo. This difference in sensitivity is due to
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reacceleration: in model A, electrons and positrons being injected near the center of the halo are
subject to efficient enough reacceleration to reach the Earth. In model B, however, e+ and e−

have a more local origin. The uncertainty due to our lack of knowledge of the anisotropy in the
dark halo is represented with a coloured band around each exclusion curve. This uncertainty is
estimated thanks to our three models for anisotropy (isotropic, Osipkov-Merrit, constant-β). It is
found to be very small regardless of the propagation model or the shape of the dark matter halo.
The uncertainty associated with propagations, however, is very important especially at low mass
and in the ”gap” corresponding to the unexplored energy range. We compare our bounds to
those obtained from the CMB by Liu et al. (2016) and the bound from dwarf spheroidal galaxies
computed by Zhao et al. (2016).
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Figure 6.9 – Effective annihilation profiles as defined in Eq. (6.14). We show the prediction of
Eddington’s method in the isotropic case (solid line), the Osipkov-Merrit model (dotted-dashed), the
constant-β model with β0 = −0.3 (dashed) and SHM (dotted). Effective profiles are shown for the γ = 1
(red) and γ = 0.25 (blue) mass models.
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Figure 6.10 – Left panel: p-wave exclusion curves for the propagation model A (green) and B (blue).
We highlight the region unaffected by Solar modulation, corresponding to the data points from Voyager 1.
The dark matter halo is the NFW profile of McMillan (2017). Right panel: same as the left panel for
the γ = 0.25 mass model.
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Conclusion

In this work, we have focused on several aspects of particle dark matter on the Galactic
scale. Several general guidelines were followed. We focused on building models and developing
tools which allow to capture the structuring of dark matter while remaining consistent with
observational constraints. This is of importance since Galactic dynamics is now entering an era
of very high precision with the recent data release from the Gäıa satellite. A precise evaluation
of the astrophysical uncertainties affecting dark matter searches was one of our main objective.
Another was to develop techniques applicable to a wide range of dark matter models.

Our main achievement is the construction of the first model of Galactic subhalos consistent
with dynamical constraints. We recall the main ingredients of this model. First, we start from a
dynamically constrained mass model of the Galaxy (or any other galaxy, since our model is not
specific to the Milky Way). We assume subhalos are spatially distributed along the constrained
dark matter density profile. The mass and concentration distributions of subhalos are those
of field halos, which can be safely extracted from N-body simulations or derived from analytic
computations (following the Press-Schechter theory for the mass function and the Bullock et
al. model for the concentration, for instance). We then account for the interactions between
subhalos and the host galaxy by computing a tidal for each subhalo. This computation is done
in performed using the mass distributions given by the mass model i.e. it is also consistent
with observational constraints. We take into account the effect of the tidal stripping by the
gravitational potential of the galaxy, as well as the effect of shocking induced by the stellar disc.
For this last effect, we propose our own simple definition of the tidal radius and shown that
tidal shocking is very efficient at stripping subhalos from their mass, a result in agreement with
simulations. From this computations, we built a distribution function describing the Galactic
subhalo population. The post-tides mass and concentration distributions, as well as the subhalo
number and mass densities are evaluated. We show that all these quantities strongly depart from
their initial, cosmological value.

Our model of subhalos can be applied to a number of dark-matter-related studies. Perhaps
the most obvious application is indirect searches, where subhalos have been known to play an
important role. The systematic enhancement of the annihilation signal, the ”boost”, is estimated
thanks to our model. Theoretical uncertainties associated to the small-scale power spectrum, the
dark matter free-streaming scale and the disruption of subhalos by tidal effects are estimated. We
first apply our model to gamma-ray searches and show that the boost can very easily be of more
than 100%, which we should dramatically improve exclusion bounds set with the diffuse gamma
ray background. We investigated another complementary channel with cosmic-ray antiprotons.
There again, the boost is shown to be significant. Using several propagation models, we compute
exclusion bounds by exploiting the latest data from AMS-2. This shows in particular how
important it is to incorporate subhalos when trying to interpret an excess in terms of dark matter
annihilation.

A complementary work was done on the Eddington inversion method, a tool devised to
infer the phase-space distribution function of collisionless system starting from its density and
gravitational potential. This method is of great interest for dark matter searches because it
allows to make prediction which are both theoretically consistent (we are using solutions of the
collisionless Boltzmann equation) and in agreement with the observed dynamics (which gives the
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density profile and potential). While the appealing character of this method was already pointed
before, its limitations have been overlooked when applied to dark matter searches. A serious
problem appears when this technique is applied to finite systems. In this case, the Eddington
solution present an unphysical divergence, which must be removed to get acceptable results. We
propose a number of possible solutions to this issue. Another problem is related to the stability of
Eddington’s solution. We show that stability considerations restrict the domain of applicability of
Eddington’s method and that some realistic halo configurations actually outside of this domain.

We investigate in a rather general way the impact of these considerations on observables
relevant for direct and indirect searches. We show that these theoretical issues are of importance
if one wants to make reliable prediction using Eddington’s theory. To illustrate the potential
of this method for dark matter searches, we use cosmic-ray electrons and positrons measured
by Voyager 1 to get new stringent bounds on p-wave annihilating dark matter. The use of
Eddington’s method allows to bracket the uncertainties due to our lack of knowledge of the
velocity anisotropy in the dark halo.

A number of projects related to these topics are currently being worked out. We are currently
working on the application of our subhalo model to gamma-ray searches with the aim of deriving
stringent bounds using the data from Fermi and making prospects for CTA. I am also working
together with J. Silk and T. Nakama on deriving new constraints on ultracompact minihalos, a
natural extension of CDM subhalos. The clustering of CDM is also relevant for primordial black
holes and axion miniclusters. The impact of clustering on microlensing constraints on the fraction
of these objects in the halo is currently largely unexplored. We are currently investigating this
problem with Sébastien Clesse. Finally, I would like to mention projects related to Galactic
dynamics. I am working together with Raphaël Errani and Thomas Lacroix on the use of the
Eddington method to model the effect of tides on subhalos. We are also investigating potential
signatures of the collective effect of a large population of subhalos on stellar objects such as
binaries and stellar streams.
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Appendix A

Mathematical functions and
identities

A.1 Error function

The error function is defined as

erf(x) ≡ 2√
π

∫ x

0
e−t2

dt . (A.1)

It is normalized so that

erf(x) →
x→∞

1 . (A.2)

Also useful is the complementary error function

erfc(x) ≡ 1 − erf(x)

=
2√
π

∫ ∞

x
e−t2

dt .
(A.3)

A.2 Gamma and beta functions

The gamma function is defined for all complex numbers except non-positive integers as

Γ(x) ≡
∫ ∞

0
tx−1e−tdt . (A.4)

It has the following remarkable property

Γ(x + 1) = x Γ(x) , (A.5)

which immediatly leads

Γ(n) = (n − 1)! if n > 1 is an integer . (A.6)

It has the following particular values

Γ

(

1

2

)

=
√

π

Γ

(

3

2

)

=

√
π

2

Γ

(

5

2

)

=
3
√

π

4
.
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A closely-related function is the beta function

B(x, y) ≡
∫ 1

0
tx−1(1 − t)y−1 dt , (A.7)

which is related to Γ through

B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
. (A.8)

A.3 Riemann zeta function

The Riemann zeta function is defined for all complex number s with Re(s) < 1 as the analytic
continuation of the series

ζ(s) ≡
∞

∑

n=1

1

ns
. (A.9)

It is related to the gamma function through the identity

ζ(x) Γ(x) =

∫ ∞

0

tx−1

et − 1
dt . (A.10)

It has the particular values

ζ(−1) = − 1

12

ζ(0) = −1

2

ζ(2) =
π2

6

ζ(4) =
π4

90

The motivated reader can try to prove that all the non-trivial zeros s of ζ have Re(s) = 1/2.

A.4 Bessel functions

A.4.1 Bessel function of the first kind

The Bessel function of the first kind Jα is defined as the solution of the ordinary differential
equation

x2 d2Jα

dx2
+ x

dJα

dx
+ (x2 − α2) Jα = 0 . (A.11)

The solution has the expression

Jα(x) =
∞

∑

n=0

(−1)n

n! Γ(n + α + 1)

(

x

2

)2n+α

. (A.12)

If α is an integer, it has an integral representation

Jα(x) =
1

π

∫ π

0
cos(απ − x sin(τ)) dτ . (A.13)
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A.4.2 Modified Bessel functions of the second kind

The modified Bessel function of the second kind Kα is defined as the decaying solution of the
differential equation

x2 d2y

dx2
+ x

dy

dx
− (x2 + α2)y = 0 . (A.14)

If α > −1/2, this solution can be expressed as an integral

Kα(x) =

√
π

Γ(α + 1/2)

(

x

2

)α ∫ ∞

1
e−tx(t2 − 1)α−1/2dt . (A.15)

The following recurrence relation is useful

Cα−1(x) − Cα+1(x) =
2α

x
Cα(x) , (A.16)

where Cα ≡ eiαπKα.

A.5 Fourier transform

The Fourier transform of a function f is defined as

f̂(þk) ≡
∫

f(þx) e−iþx.þk dnþx , (A.17)

where n is the number of space dimensions. The function f can be expressed with the inverse
Fourier transform

f(þx) ≡
∫

f̂(þk) eiþx.þk dnþk

(2π)n
. (A.18)

In physics, the Fourier transform is often used to go from real space to momentum space. If þr is
a position vector and þp a momentum vector, we have in n dimensions

f̂(þp) ≡
∫

f(þr) e−iþr.þp/~ dnþr , (A.19)

and

f(þr) ≡
∫

f̂(þp) eiþr.þp/~ dnþp

(2π~)n
. (A.20)

These definitions are used to define the Dirac delta distribution on momentum space.

(2π~)nδ(n)(þp) ≡
∫

e−iþr.þp/~ dnþr . (A.21)





181

Appendix B

The WIMP template

B.1 Thermodynamics

The number of effective degrees of freedom in energy is given by

geff(T ) = g
15

π4

∫ ∞

0

u2

e
√

u2+x2 + ǫ

√

u2 + x2 du . (B.1)

We introduce y2 ≡ u2 + x2 and y > 0 such that

geff(T ) = g
15

π4

∫ ∞

x

√

y2 − x2 y2

ey + ǫ
dy (B.2)

= g
15

π4

∫ ∞

x
e−y

√

y2 − x2 y2

1 + ǫ e−y
dy . (B.3)

We expand the denominator into a power series

geff(T ) = g
15

π4

∞
∑

n=1

(−ǫ)n+1
∫ ∞

x

√

y2 − x2 y2 e−ny dy , (B.4)

and separate the integral into

geff(T ) = g
15

π4

∞
∑

n=1

(−ǫ)n+1
{∫ ∞

x

(

y2 − x2
)3/2

y2 e−ny dy + x2
∫ ∞

x

√

y2 − x2 y2 e−ny dy

}

. (B.5)

Using Eq. (A.15), we get

geff(T ) = g
15

π4

∞
∑

n=1

(−ǫ)n+1

{

3 x2

n2
K2(nx) +

x3

n
K1(nx)

}

. (B.6)

Finally, we use the recursion relation (A.16) to get

geff(T ) = g
15

π4

∞
∑

n=1

(−ǫ)n+1

{(

6 x

n3
+

x3

n

)

K1(nx) +
3 x2

n2
K0(nx)

}

. (B.7)

A similar calculation leads to the number of effective degrees of freedom in entropy

heff(T ) = g
45

4π4

∞
∑

n=1

(−ǫ)n+1

{(

8x

n3
+

x3

n

)

K1(nx) +
4x2

n2
K0(nx)

}

. (B.8)



182 B.2. Particle physics

B.2 Particle physics

B.2.1 Conventions and Diracology

We use the following conventions for our calcutions. The Minkowski metric has signature
(+ − −−). The Dirac gamma matrices are written in the Dirac basis where they take the form

γ0 =











1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1











γ1 =











0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0











γ2 =











0 0 0 −i
0 0 i 0
0 i 0 0

−i 0 0 0











γ1 =











0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0











(B.9)

These matrices are defined through there anticommutation relations

{γµ, γν} = 2ηµνI4 . (B.10)

In particular, we
(

γ0
)2

= I4 and
(

γi
)2

= −I4 for i = 1, 2, 3. This immediately leads to

(γµ)† = γ0γµγ0.
The fifth gamma matrix γ5 is defined as γ5 ≡ iγ0γ1γ2γ3, which leads to

γ5 =











0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0











(B.11)

It verifies
(

γ5
)2

= I4 , (B.12)

and
{

γ5, γµ
}

= 0 . (B.13)

We recall the expression of the Dirac spinors for particles

u(þp, ↑) =
√

E + m











1
0
p3

E+m
p1+ip2

E+m











u(þp, ↓) =
√

E + m











0
1

p1−ip2

E+m−p3

E+m











(B.14)

and for antiparticles

v(þp, ↑) =
√

E + m











p1−ip2

E+m−p3

E+m

0
1











v(þp, ↓) =
√

E + m











p3

E+m
p1+ip2

E+m

1
0











(B.15)

where ↑↓ refers to the direction of the spin (up or down). These spinors are by definition solutions
of the Dirac equation

(/p + m I4)u(þp) = 0 (B.16)

(−/p + m I4)v(þp) = 0 , (B.17)
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with the Feynman notation /p ≡ γµpµ. The completeness relations are
∑

s=↑↓
u(þp, s) u(þp, s) = /p + m I4 (B.18)

∑

s=↑↓
v(þp, s) v(þp, s) = /p − m I4 , (B.19)

where

u ≡ u†γ0 . (B.20)

When computing a spin-averaged amplitude, it is very convenient to use the Casimir trick: let
Γ1 and Γ2 be two 4 × 4 matrices, then

∑

spins

[u1Γ1u2] [u1Γ2u2]∗ = Tr
[

Γ2(/p1
+ m)Γ1(/p2

+ m)
]

(B.21)

∑

spins

[u1Γ1v2] [u1Γ2v2]∗ = Tr
[

Γ2(/p1
+ m)Γ1(/p2

− m)
]

(B.22)

∑

spins

[v1Γ1u2] [v1Γ2u2]∗ = Tr
[

Γ2(/p1
− m)Γ1(/p2

+ m)
]

(B.23)

∑

spins

[v1Γ1v2] [v1Γ2v2]∗ = Tr
[

Γ2(/p1
− m)Γ1(/p2

− m)
]

, (B.24)

where Γi ≡ γ0Γ†
i γ

0. The following trace identities are useful

Tr [γµ1 ...γµ2n+1 ] = 0 (B.25)

Tr
[

γ5γµ1 ...γµ2n+1

]

= 0 (B.26)

Tr [γµγν ] = 4 ηµν (B.27)

Tr [γµγνγργσ] = 4 (ηµηnu − ηµρηνσ + ηµσηνρ) (B.28)

Tr
[

γ5
]

= Tr
[

γ5γµγν
]

= 0 (B.29)

(B.30)

B.2.2 Amplitudes

B.2.2.1 Tree-level Annihilation

We compute the amplitudes shown on Fig. 2.3. Impulsion along each line of the diagram are
going from the left to the right. We compute the amplitude for both the scalar and pseudo-scalar
case by using the Feynman rules for the vertices −iλ(α + βγ5) (we drop the identity I4 in front
of α to lighten the notation). The case (α, β) = (1, 0) is the scalar channel and (α, β) = (0, 1) is
the pseudo-scalar channel. The amplitude is

−iM = v(þp2) × −iλmed(α + βγ5) × u(þp1) × i

s − m2
med + immedΓmed

× u(þk3) × −iλ′
med(α + βγ5) × v(þk4) ,

where p1 and p2 are the 4-momenta of the incoming DM particle and anti-particle respectively,
and k3 and k4 are the 4-momenta of the outgoing SM fermion and anti-fermion respectively. We
introduced a decay constant Γmed for the mediator in the propagator (Breit-Wigner form). We
perform our calculation in the case where the DM particle is a Dirac fermion, one can check that
the final result is the same if its a Majorana fermion (though the calculation is different). The
squared amplitude is

|M|2 =
(λmedλ′

med)2

(

s − m2
med

)2
+ m2

medΓ2
med

[

v2(α + βγ5)u1

] [

u3(α + βγ5)v4

]

×
[

v2(α + βγ5)u1

]∗ [

u3(α + βγ5)v4

]∗
(B.31)
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We average over initial spins, sum over final spins and use the Casimir trick to get

|M|2 ≡ 1

4

∑

spins

|M|2 =
1

4

(λmedλ′
med)2

(

s − m2
med

)2
+ m2

medΓ2
med

Tr
[

(α − βγ5)(/p2
− mχ)(α + βγ5)(/p1

+ mχ)
]

× Tr
[

(α − βγ5)(/k3 + mf)(α + βγ5)(/k4 − mf)
]

(B.32)

Developping the traces, we get

|M|2 =
(λmedλ′

med)2

(

s − m2
med

)2
+ m2

medΓ2
med

[

α2(s − 4 m2
χ) + β2 s

] [

α2(s − 4 m2
f ) + β2 s

]

, (B.33)

which leads to Eq. (2.65) in the scalar and pseudo-scalar limits.

B.2.2.2 Tree-level scattering

The amplitudes for tree-level scattering are shown on Fig. 2.4. We call p1 the 4-momentum of
the incoming DM particle and p2 the 4-momentum of the outgoing DM particle, while k3 and k3

refer to the incoming and outgoing 4-momenta of the SM fermion. We compute the amplitude
with the same trick as for the annihilation by writing α + βγ5, we get

−iM = u(þp2) × −iλmed(α + βγ5) × u(þp1) × i

t − m2
med + immedΓmed

× u(þk4) × −iλ′
med(α + βγ5) × u(þk3) ,

and the spin-averaged squared amplitude is

|M|2 =
(λmedλ′

med)2

(

t − m2
med

)2
+ m2

medΓ2
med

[

α2(t − 4 m2
χ) + β2 t

] [

α2(t − 4 m2
f ) + β2 t

]

. (B.34)

This can be obtain immediately by taking the annihilation amplitude and substituting s → t.

B.2.3 Invariant phase space and cross-sections

B.2.3.1 Lorentz-invariant phase-space

Let us consider a process 1 + 2 → 3 + 4 + . . . + n. The elementary cross-section for this process is

dσ ≡ 1

4F
|M|2(2π)4δ4

(

p1 + p2 −
n

∑

i=3

pi

)

d4LIPS , (B.35)

where M is the amplitude of the process, F is the flux factor

F ≡
√

(p1.p2)2 − m2
1m2

2 , (B.36)

and we introduced the Lorentz-invariant phase-space element of volume

d4LIPS ≡
n

∏

i=3

d4pi

(2π)4
Θ(pi,0)(2π)δ

(

pµ
i pi,µ − m2

i

)

. (B.37)

The Lorentz invariance is manifest in the definition of d4LIPS however it is more convenient for
computations to move to another form. We introduce the energy E2 ≡ |þp|2 + m2, rewrite the
phase-space element

d4LIPS ≡
n

∏

i=3

d4pi

(2π)4
Θ(pi,0)(2π)δ

(

p2
i,0 − E2

i

)

, (B.38)
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and integrate over pi,0 to get

d3LIPS =
n

∏

i=3

d3þp

(2π)32Ei(þpi)
. (B.39)

This form is also Lorentz-invariant since we started from d4LIPS, though it is not manifest.
Note that the integration over pi,0 can be performed regardless of the amplitude since the
components of the 4-momentum are not independent. One just has to keep in mind the relation
E =

√

|þp|2 + m2 when performing the integral over þp.

B.2.3.2 Cross-sections

Annihilation cross-sections The elementary cross-section for the annihilation process 1+2 →
3 + 4, where 1 and 2 are DM particles and 3 and 4 SM fermions, is given by

dσann =
1

4 F
|M|2(2π)4δ4 (p1 + p2 − k3 − k4)

d3þk3

(2π)32E3

d3þk4

(2π)32E4

=
1

4 F
|M|2(2π)4δ (E1 + E2 − E3 − E4) δ3

(

þp1 + þp2 − þk3 − k4

) d3þk3

(2π)32E3

d3þk4

(2π)32E4
.

(B.40)

We perform our calculation in the center-of-mass frame

E1 + E2 =
√

s

þp1 + þp2 = þk3 + þk4 = 0 .
(B.41)

Since both SM fermions have the same mass mf , the integration over þk4 leads E3 = E4 = E and
we get

dσann =
1

4 F
|M|2(2π)4δ

(√
s − 2E

) d3þk

(2π)64 E2

=
1

4 F
|M|2(2π)4δ

(√
s − 2E

) k dEdΩ

(2π)64 E

=
1

4 F
|M|2(2π)4 1

2
δ

(√
s

2
− E

)

k dEdΩ

(2π)64 E
.

(B.42)

Since the amplitude depends on s only, integration of the solid angle Ω leads a factor of 4π. Since
for the case of annihilation, the flux factor can be expressed as

F =

√
s

2

√

s − 4 m2 , (B.43)

integration of the elementary cross-section over E finally leads

σann =
1

16π

1

s

√

s − 4 m2
f

s − 4 m2
|M|2 . (B.44)

For the two annihilation channels we considered, the expression of the cross-section is

σann =
1

16π

(λmedλ′
med)2

(

s − m2
med

)2
+ m2

medΓ2
med











(s − 4 m2)1/2(s − 4 m2
f )3/2 s−1 scalar

(

s−4 m2
f

s−4 m2

)1/2

s pseudoscalar
(B.45)

Since the cross-sections are manifestely Lorentz-invariant, these expressions are valid in any
frame even though we made the computation in the rest frame.
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B.2.4 Thermally-averaged cross-section

Here we compute the temperature expansion of the thermally-averaged cross-section as done
by Srednicki et al. (1988). Let x = m/T where T is the temperature of DM particles, then the
annihilation cross-section can be developped as

〈σannv〉 = a +
b

x
+

c

x2
+ ... (B.46)

The expressions for a and b are given by Srednicki et al. (1988) in terms of the function

w(s) ≡ σann(s) F = σann

√
s

2

√

s − 4 m2 , (B.47)

and its derivative with respect to s, both evaluated at s = 4 m2. The general expressions for the
first two coefficient are

a =
w(4 m2)

m2
(B.48)

b = − 3

2 m2

[

2 w(4 m2) − 4 m2 dw

ds

∣

∣

∣

∣

4 m2

]

. (B.49)

For the scalar channel, this leads to

a = 0 (B.50)

b =
3

4π

(λmedλ′
med)2

(

4 m2 − m2
med

)2
+ m2

medΓ2
med

(m2 − m2
f )3/2

m
. (B.51)

For the pseudo-scalar channel, we have

a =
1

2π

(λmedλ′
med)2

(

4 m2 − m2
med

)2
+ m2

medΓ2
med

(m2 − m2
f )1/2m (B.52)

b = w(4 m2)

[

− 2(4 m2 − m2
med)

(

4 m2 − m2
med

)2
+ m2

medΓ2
med

+
1

2(4 m2 − 4 m2
f )

+
3

8 m2

]

(B.53)

B.3 The Boltzmann equation in an expanding Universe

In this section, we work out the form of the Boltzmann equation in General Relativity, following
the treatment given by Bernstein (1988). The general-covariant Liouville operator for the
one-particle phase-space distribution function takes the form

L̂[f ] ≡ d

dλ
f [x(λ), p(λ)] =

dxµ

dλ

∂f

∂xµ
+

dpµ

dλ

∂f

∂pµ
, (B.54)

where λ is a scalar parameter of motion (for instance the proper time). The momentum is defined
through pµ ≡ dxµ/dλ and, if the particles are free-falling, it obeys the geodesic equation

dpµ

dλ
+ Γµ

αβpαpβ = 0 , (B.55)

where Γµ
αβ are the Christoffel symbols of the second kind. Casting this equation into the Liouville

operator, we get

L̂[f ] = pµ ∂f

∂xµ
− Γµ

αβpαpβ ∂f

∂pµ
. (B.56)
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B.3.1 Liouville operator in the flat FLRW metric

The Liouville operator simplifies in a particular metric with the expression of the Christoffel
symbols

Γµ
αβ =

1

2
gµν

[

∂gαν

∂xβ
+

∂gβν

∂xα
− ∂gαβ

∂xν

]

. (B.57)

We restrict our calculations to the flat Friedmann-Lemaitre-Robertson-Walker (FLRW) metric,
which has the simple form

ds2 = dt2 − a2(t) δijdxidxj , (B.58)

It is straightforward to compute

Γi
0j =

ȧ

a
δi

j

Γ0
ij = aȧ δij .

(B.59)

Note that the FLRW metric is homogeneous and isotropic by definition. Since it is related to the
mass distribution f through Einstein’s equations, we expect f to only depend on the time t, the

energy p0 and the modulus of the momentum |þp| =
√

−a2δijpipj . Injecting the expression of Γµ
αβ

into Eq. (B.56), we get

L̂[f ] = p0 ∂f

∂x0
+ pi ∂f

∂xi
− aȧ δijpipj ∂f

∂p0
− 2

ȧ

a
p0pi ∂f

∂pi
. (B.60)

The factor of 2 in the last term accounts for the components 0i and i0. The energy is related to
the momentum through Einstein’s relation p0 =

√

m2 + |þp|2 = E which we implement through a
mass-shell integral

L̂0[f ] ≡
∫

dp0 δ

(

p0 −
√

m2 + |þp|2
)

L̂[f ]
1

p0
. (B.61)

This defines a mass-shell Liouville operator L̂0. With the mass-shell condition, we get the
following simplification

∂

∂xi
=

dp0

dxi

∂

∂p0

=
d

dxi

(

√

−a2δjkpjpk + m2

)

∂

∂p0

= 0

∂

∂pi
= −a2 pi

p0

∂

∂p0

(B.62)

which leads to the final expression

L̂0[f ] =
∂f

∂t
− H|þp|2

E

∂f

∂E
(B.63)

B.3.2 Liouville operator for the number density

Integrating Eq. (B.63) over the 3-momentum leads to the Liouville operator for the number
density. We recall the definion of the number density n as

n(t) ≡ g

∫

d3þp

(2π)3
f(þp, t) , (B.64)
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where g is the number of internal degrees of freedom. By integration by parts, we get the identity

∫

d3þp

(2π)3

p2

E

∂f

∂E
= −3

∫

d3þp

(2π)3

∂f

∂p
, (B.65)

and the integrated Liouville operator simplifies to

∫

d3þp

(2π)3
L̂0[f ] =

dn

dt
+ 3 H n . (B.66)

B.3.3 Collision operator for two-body annihilation processes

Here we simplify the collision operator appearing in the Boltzmann equation for a process
1 + 2 → 3 + 4, closely following the pedagogical treatment given by Gondolo & Gelmini (1991).
The full collision operator is quite complicated since it involves all the processes that modify the
phase-space distribution of 1. Following Bernstein (1988), we split the operator into two terms,
one for the elastic collisions and one for the inelastic ones

Ĉ[f1] = ĈE[f1] + ĈI[f1] . (B.67)

The inelastic collision operator can be written

ĈI[f1] ≡ −1

2

∑

spins

∫

[

f1f2(1 ± f3)(1 ± f4) |M12→34|2 − f3f4(1 ± f1)(1 ± f2) |M34→12|2
]

× (2π)4δ(4) (p1 + p2 − p3 − p4)

× d3þp2

(2π)32E2

d3þp3

(2π)32E3

d3þp4

(2π)32E4
,

(B.68)

where the sum is over initial and final spins, the ± sign is +/− for bosons/fermions and M is a
probability amplitude. We want to derive the evolution equation for the number density therefore
we integrate over the momenta þp1 as in Eq. (B.64). This integration suppress all processes that
do not change the number density n1, which include elastic collisions. Hence we have

∫

d3þp1

(2π)3
ĈE[f1] = 0 , (B.69)

and the only relevant operator is the one accounting for inelastic collisions. We implement
the mass-shell condition Eq. (B.61) and integrate over the momenta as in Eq. (B.64) to get a
”number-density collision operator”

Ĉ0[n1] ≡ g1

∫

d3þp1

(2π)3E1
ĈI[f1]

= −
∑

spins

∫

[

f1f2(1 ± f3)(1 ± f4) |M12→34|2 − f3f4(1 ± f1)(1 ± f2) |M34→12|2
]

× (2π)4δ(4) (p1 + p2 − p3 − p4)

× d3þp1

(2π)32E1

d3þp2

(2π)32E2

d3þp3

(2π)32E3

d3þp4

(2π)32E4
.

(B.70)

We neglect the quantum mechanical factors i.e. 1 ± fi ≃ 1. Particles 3 and 4 are assumed in
chemical and thermal equilibrium with the bath, hence f3 = f3,eq and f4 = f4,eq. The DM
particle is assumed to be in thermal equilibrium during chemical decoupling, so we can write

fDM(þp) =
nDM(T )

nDM,eq(T )
fDM,eq(þp) , (B.71)
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i.e. the DM phase-space density is proportional to the full chemical and thermal equilibrium
density, with a temperature-dependent proportionality factor. This assumption of thermal
equilibrium of the DM can be relaxed, see Binder et al. (2017) for details. The detailed balance
on 1 + 2 → 3 + 4 implies

f3,eq f4,eq = f1,eq f2,eq . (B.72)

and unitarity leads

∑

spins

∫

|M34→12|2 (2π)4δ(4) (p1 + p2 − p3 − p4)
d3þp3

(2π)32E3

d3þp4

(2π)32E4

=
∑

spins

∫

|M12→34|2 (2π)4δ(4) (p1 + p2 − p3 − p4)
d3þp3

(2π)32E3

d3þp4

(2π)32E4

(B.73)

We introduce the unpolarized cross-section (averaged over incoming spins and summed over
outgoing spins)

4F12 σ12→34 ≡ 1

g1g2

∑

spins

∫

|M12→34|2 (2π)4δ(4) (p1 + p2 − p3 − p4)
d3þp3

(2π)32E3

d3þp4

(2π)32E4
, (B.74)

where F12 ≡
√

(p1.p2)2 − m2
1m2

2 is the flux factor. With the introduction of the Moller velocity

vm ≡ F12

E1E2
, (B.75)

and the definition of the thermally-averaged cross-section

〈σv〉 ≡
∫

d3þp1d3þp2 σvm f1f2
∫

d3þp1d3þp2 f1f2
, (B.76)

the collision operator finally simplifies into

Ĉ0[n1] = − 〈σv〉 (n1n2 − n1,eqn2,eq) . (B.77)

B.3.4 Liouville operator for the temperature

Here we derive the form of the Liouville operator when taking the second-moment of Eq. (B.63).
With the definition

Tdm ≡ 2

3

1

n

∫

d3þp

(2π)3

þp2

2 m
f(þp) , (B.78)

and the identity

∫

d3þp

(2π)3
þp2 H þp2

E

∂f

∂E
= −5 H 3 n m Tdm (B.79)

obtained by integration by parts, we immediately get

2

3

1

n

∫

d3þp

(2π)3

þp2

2 m
L[f ] =

∂Tdm

∂t
+ 5 H Tdm . (B.80)

We can use the photon temperature T as an alternate time variable. We have

Ṫdm = ȧ
dTdm

da
= a H

dT

da

dTdm

dT
. (B.81)



190 B.3. The Boltzmann equation in an expanding Universe

Using the constancy of the entropy sa3 = cst and its expression in terms of the effective degrees
of freedom Eq. (2.54), we get

dT

da
=

ds

da

dT

ds
= −s

a

45

2π2

1

heffT 2

(

1 +
1

3

d ln heff

d ln T

)−1

, (B.82)

i.e.

Ṫdm = −s g
−1/2
∗

2πmp

dTdm

dT
, (B.83)

where g∗ is defined in Eq. (2.80) and mp is the reduced Planck mass.

B.3.5 Kinetic decoupling temperature

The expression of the kinetic decoupling temperature is given in Bringmann & Hofmann (2007)

m

Tkd
=

(

a

n + 2

)1/(n+2)

Γ

[

n + 1

n + 2

]

. (B.84)

The index n is defined through an expansion of the scattering cross-section

|M|2t=0, s=m2+2mω = cn

(

ω

m

)n

+ O
(

(

ω

m

)n+1
)

, (B.85)

and

a =
∑

f

(

5

2(2π)9geff

)1/2

gSM cn Nn+3
MPl

m
, (B.86)

where the sum is over SM scattering partners, gSM is their number of internal degrees of freedom,
MPl is the Planck mass and

N+
j = (1 − 2−j)(j + 1)!ζ(j + 1) (B.87)

N−
j = (j + 1)!ζ(j + 1) . (B.88)

The + sign applies to fermions while the − sign applies to bosons.
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Appendix C

Impact of subhalos on indirect dark
matter searches

C.1 Indirect searches with gamma rays

The Galactic latitude b and longitude l are defined in Fig. C.1. The relations between these
coordinates and Cartesian coordinates are:

x = dobs − s cos(b) cos(l)

y = −s cos(b) sin(l)

z = s sin(b)

(C.1)

z

Sun (S) Galactic 
center (C)

(P)

y

x d
obs

s

l

b

Galactic plane

r
cyl

Figure C.1 – Galactic coordinates (s, b, l) used for the integral along the line of sight.

C.2 Indirect searches with cosmic rays

C.2.1 Effect of propagation parameters

C.2.2 Moving clumps

Here we derive the solution of the transport equation

∂tΨ + þ∇.(þv Ψ) − K∆Ψ = Q(þx, t) , (C.2)
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Figure C.2 – Same as Fig. 4.10 but varying the diffusion index δ (left panel) or the convective wind Vc

(right panel).

We look for a Green’s function G(t0, þx0 → t, þx) of this equation

∂tG + þ∇.(þv G) − K∆G = δ(t − t0) δ(3)(þx − þx0) . (C.3)

The spatial Fourier transform of the Green’s function Ĝ is solution of

∂tĜ + (iþk.þv + K k2) Ĝ = e−iþk.þx0 δ(t − t0) (C.4)

We choose the solution

Ĝ(t0, t;þk) = Θ(t − t0) e−iþk.þx0 e−(iþk.þv+K k2)(t−t0) (C.5)

Taking the inverse Fourier transform, this leads to

G(t0, þx0 → t, þx) =
Θ(t − t0)

(2π)3

∫

d3þk eiþk.(þx−þx0) e−(iþk.þv+K k2)(t−t0) , (C.6)

which can be straightforwardly integrated to get

G(t0, þx0 → t, þx) = Θ(t − t0)

{

1

4πK (t − t0)

}3/2

exp

[

−{þx − þx0 − þv(t − t0)}2

4 K (t − t0)

]

. (C.7)

C.2.3 Fluxes and exclusion curves

C.2.4 Variance

The primary antiproton flux from subhalos only can be written as

〈Φsub〉 =
dφ

dE dΩ
= S

∫

d3þxs G(þxs → þx) Lsub , (C.8)

where Lsub is the subhalo luminosity density given in Eq. (4.17). The factor S depends on
particle-physics-related quantities (mass, cross-section, spectrum). Using the expression of the
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Figure C.3 – Contribution from a few annihilation channels. We used the NFW profile of McMillan
2017.
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Figure C.4 – Same as Fig. 4.16 for cored Galactic dark matter profile.

luminosity, we have

〈Φsub〉 = S
∫

dV G

∫

dm

∫

dc Ft ξt (C.9)

= S Nsub

Kt

∫

dV

∫

dm

∫

dc
dP

dV

dP

dm

dP

dc
G ξt (C.10)

= S Nsub

Kt

∫

dV
dP

dV
G 〈ξt〉m,c . (C.11)

This is the average contribution for the whole subhalo population. For a single subhalo, the
average contribution is simply 〈Φsub〉 /Nsub. From this, it is quite clear that we have

〈

Φ2
sub,1

〉

=
S2

Kt

∫

dV
dP

dV
G2

〈

ξ2
t

〉

m,c
. (C.12)
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Figure C.5 – Same as Fig. 4.17 for cored Galactic dark matter profile.
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Figure C.6 – Same as Fig. 4.18 for cored Galactic dark matter profile.

In the same way, we find the following expressions

〈

Φ2
cross

〉

=
4 S2

Kt

∫

dV
dP

dV
G2 ρ2

smooth

〈

m2
t

〉

m,c
(C.13)

〈ΦsubΦcross〉 =
2 S2

Kt

∫

dV
dP

dV
G2 ρsmooth 〈ξt mt〉m,c . (C.14)

These are all the expressions needed to compute the flux variance σ2
Φ,1 for a single clump. We

can then compute the full variance

σ2
Φ = Nsub σΦ,1 . (C.15)
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Appendix D

The dark matter phase space of the
Galaxy

D.1 Mass models of McMillan (2017)

In this work, we make extensive use of the mass models built by McMillan (2017). In these
models, the bulge mass density is described by

ρb(R, z) =
ρ0,b

(1 + r′/r0)αb
exp

[

−(r′/rb)2
]

, (D.1)

with

r′ =
√

R2 + (z/q)2 . (D.2)

The author fixed αb = 1.8, r0 = 0.075 kpc, rb = 2.1 kpc and q = 0.5. The best fitting model has
ρ0,b = 98.4 M⊙.pc−3.

The stellar discs have a density

ρd(R, z) =
Σ0

2 zd
exp

[

−|z|
zd

− R

Rd

]

. (D.3)

The scale heights are fixed to zd = 300 pc for the thin disc and zd = 900 pc for the thick disc.
The best fit parameters for the thin and thick discs are given in Tab. D.1.

The gas discs (H and H2) have the density profile

ρg(R, z) =
Σ0

4 zd
exp

[

−Rm

R
− R

Rd

]

sech2
(

z

2 zd

)

, (D.4)

where

sech(x) =
1

cosh(x)
=

2

ex + e−x
(D.5)

is the hyperbolic secant. The parameters of the gas discs are fixed and their value is given in
Tab. D.1.

The dark matter halo has a density profile parametrized with

ρ(r) =
ρs

xγ

1

(1 + x)3
. (D.6)

The best fitting values of ρs and rs for different γ are given in Tab. D.2.
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Σ0 [M⊙.pc−2] Rd [kpc]

thin 896 2.50

thick 183 3.02

Σ0 [M⊙.pc−2] Rd [kpc] Rd [kpc] zd [kpc]

H 53.1 7 4 0.085

H2 2180 1.5 12 0.045

Table D.1 – Left panel: best fitting parameters for the stellar discs. Right panel: fixed parameters
for the gas discs.

γ 0 0.25 0.5 1

ρs [M⊙.pc−3] 0.09086 0.05261 0.03190 0.00852

rs [kpc] 7.7 9.6 11.7 19.6

Table D.2 – Best fitting parameters of the dark matter halo.

D.2 Anisotropy in the Cuddeford models

This section focuses on the models of Cuddeford (1991) with DF

f(E , L) = G(Q)L−2β0 . (D.7)

We prove that the anisotropy parameter for these models takes the form

β(r) ≡ 1 − σ2
t

2σ2
r

=
r2 + β0r2

a

r2 + r2
a

.

(D.8)

Since this is a generalization of the constant-β and Osipkov-Merritt models, this also demonstrates
the form of the anisotropy profile in these two cases. We start by computing the radial velocity
variance σ2

r ≡
〈

þv2
r

〉

− 〈þvr〉2 =
〈

v2 cos2(η)
〉

:

ρ σ2
r =

∫

v2
r f(E , L) d3þv

= 2π

∫ ∫

v2 cos2(η) G(Q) L−2β0v2 sin(η) dη dv

= 4π

∫ ∫

v2µ2G(Q) L−2β0v2 dµ dv ,

(D.9)

where we used the change of variable cos(η) → µ and µ-parity of the integrand to get the last
identity. We now make the following change of variable (v, µ) → (Q, L2). One can compute the
Jacobian and finds

v2dv dµ = − 1

2r2

[

2(Ψ − Q) − L2

r2

(

1 +
r2

r2
a

)]−1/2

dQ dL2 . (D.10)

What are the bounds on Q and L2 ? As for the Osipkov-Merritt models, we have Q > 0 and
since Q = Ψ − v2/2 − L2/(2r2

a), we have Q 6 Ψ. To find the upper bound on L2, we notice that

Q = Ψ − v2

2
cos2(η) − L2

2r2

(

1 +
r2

r2
a

)

, (D.11)

and therefore

L2 6 L2
max ≡ 2r2(Ψ − Q)

1 + r2/r2
a

. (D.12)
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We now have

ρ σ2
r =

2π

r2

∫ Ψ

0
dQ G(Q)

∫ L2
max

0
dL2

√

2(Ψ − Q) − L2

r2

(

1 +
r2

r2
a

)

L−2β0 , (D.13)

where we replace v2µ2 in Eq. (D.9) using Eq. (D.11). We rescale L2 by L2
max to finally obtain

ρ σ2
r = 2π

r−2β0

(1 + r2/r2
a)1−β0

∫ Ψ

0
dQ G(Q)[2(Ψ − Q)]3/2−β0

∫ 1

0
dx

√
1 − x x−β0 . (D.14)

The integral over x is a particular value of the beta function, see Sec. A.2. Its relation to the
gamma function leads

ρ σ2
r = π3/2 r−2β0

(1 + r2/r2
a)1−β0

Γ(1 − β0)

Γ(5/2 − β0)

∫ Ψ

0
dQ G(Q)[2(Ψ − Q)]3/2−β0 . (D.15)

Let us now compute the tangential velocity dispersion

ρ σ2
t = 2π

∫ ∫

v2 sin2(η) G(Q) L−2β0v2 sin(η) dη dv

=
4π

r2

∫ ∫

G(Q) L2−2β0v2 dµ dv ,
(D.16)

where we used v2 sin(η) = L2/r2. Performing the same change of variables as before, we obtain

ρ σ2
t = 2π

r−2β0

(1 + r2/r2
a)2−β0

∫ Ψ

0
dQ G(Q)[2(Ψ − Q)]3/2−β0

∫ 1

0
dx (1 − x)−1/2 x1−β0 . (D.17)

Using again the properties of the beta and gamma functions, we finally get

ρ σ2
t = 2π3/2 r−2β0

(1 + r2/r2
a)2−β0

Γ(2 − β0)

Γ(5/2 − β0)

∫ Ψ

0
dQ G(Q)[2(Ψ − Q)]3/2−β0 . (D.18)

We can now compute the ratio

σ2
t

2σ2
r

=
1

1 + r2/r2
a

Γ(2 − β0)

Γ(1 − β0)

=
1 − β0

1 + r2/r2
a

,

(D.19)

and the anisotropy parameter

β(r) =
r2 + β0r2

a

r2 + r2
a

. (D.20)

D.3 Numerical simulations

D.3.1 Fitting the simulated galaxies

D.3.2 Escape speed

D.3.3 Velocity distributions

D.3.4 Moments of the velocity distributions
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Halo C log10(ρ0) rs α β γ
[M⊙/kpc3] [kpc]

DMO 6.848± 0.472 14.291± 8.514 1.0± 0 2.805± 0.297 1.065± 0.142

Hydro 7.746± 0.126 4.210± 0.441 2.165± 0.627 2.504± 0.104 0.189± 0.122

Table D.3 – Parameters of the dark matter halo in Halo C.

Adicora log10(ρ0) rs α β γ
[M⊙/kpc3] [kpc]

DMO 7.181± 0.5 11.288± 6.955 1.0± 0 2.744± 0.257 0.975± 0.195

Hydro 7.667± 0.033 6.671± 0.860 1.407± 0.191 2.756± 0.146 0.090± 0.038

Table D.4 – Parameters of the dark matter halo in Adicora.

Mochima log10(ρ0) rs α β γ
[M⊙/kpc3] [kpc]

DMO 6.963± 0.442 13.786± 7.744 1.0± 0 2.721± 0.251 1.066± 0.134

Hydro 7.414± 0.185 7.364± 1.115 1.768± 0.573 2.633± 0.165 0.468± 0.171

Table D.5 – Parameters of the dark matter halo in Mochima.

Figure D.1 – Same as Fig. 5.18, for Halo C.
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Figure D.2 – Same as Fig. 5.18, for Adicora.
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Figure D.3 – Same as Fig. 5.18, for Mochima.

Figure D.4 – Same as Fig. 5.20, for Halo C.
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Figure D.5 – Same as Fig. 5.20, for Adicora.

Figure D.6 – Same as Fig. 5.20, for Mochima.
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Figure D.7 – Same as Fig. 5.21, for Halo C.
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Figure D.8 – Same as Fig. 5.21, for Adicora.
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Figure D.9 – Same as Fig. 5.21, for Mochima.
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Figure D.10 – Same as Fig. 5.22, for Halo C.
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Figure D.11 – Same as Fig. 5.22, for Adicora.
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Figure D.12 – Same as Fig. 5.22, for Mochima.
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Appendix E

Impact of the phase space on dark
matter searches

E.1 Relative velocity distribution

Here we detail the computation of the moments of the relative velocity distribution

〈vn
r 〉 =

∫

d3þvr vn
r Fþvr

(þvr, r) , (E.1)

with the relative velocity distribution defined as

Fþvr
(þvr, r) = κ−1(r)

∫

d3þvc fþv(þv1, r) fþv(þv2, r) , (E.2)

with the normalization

κ(r) =

∫

d3þv1

∫

d3þv2 fþv(þv1, r) fþv(þv2, r) . (E.3)

We performed the change of variables
{

þvc = (þv1 + þv2)/2
þvr = þv2 − þv1

⇐⇒
{

þv1 = þvc − þvr/2
þv2 = þvc + þvr/2 .

(E.4)

E.1.1 Isotropic case

If the velocity distribution is isotropic, we have fþv(þv, r) = fþv(|þv|, r) and the relative velocity
distribution is also isotropic therefore

〈vn
r 〉 = 4π

∫ vmax
r

vmin
r

dvr v2
r Fþvr(|þvr|, r) vn

r . (E.5)

We introduce θ as the angle between þvc and þvr, and define µ ≡ cos(θ). The speed of particles 1
and 2 can then be expressed as

v1 =

√

v2
c +

v2
r

4
− vcvr µ

v2 =

√

v2
c +

v2
r

4
+ vcvr µ .

(E.6)

In the Galactic frame, we have v1 6 vesc(r) and v2 6 vesc(r) which leads

|µ| 6 µ0 , (E.7)
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with

µ0 =
vesc(r) − v2

c − v2
r /4

vc vr
. (E.8)

Eq. (E.4) also leads to vc 6 vesc(r) and vr 6 2 vesc(r). Note that the quantity fþv(þv1, r) fþv(þv2, r)
is invariant under the transformation µ → −µ. The relative velocity distribution can then be
written

Fþvr(þvr, r) = 4πκ−1(r)

∫ vesc(r)

0
dvc v2

c

∫ µ0

0
dµ fþv(þv1, r) fþv(þv2, r) , (E.9)

and the n-order moment

〈vn
r 〉 = 4π

∫ 2 vesc

0
dvr v2

r Fþvr(þvr, r) vn
r . (E.10)

E.1.2 Anisotropic case

In the anisotropic models, the velocity distribution also depends also depends on the modulus of
the angular momentum L through

fþv(þv, r) =
f(E , L)

ρ(r)
. (E.11)

In this case, it is still convenient to perform a change of variables from þv1, þv2 to þvc, þvr, provided
one uses the appropriate coordinate systems to describe the quantities of interest. We introduce
the radial unit vector þer: the system is invariant under rotation around þer hence the integral
over þvc leads a factor of 2π, see the left panel in Fig. E.1. There is also an integration over the
modulus vcm and the angle αcm between þvcm and þer. To perform the integration over þvr, we
move to a frame with the z-axis defined by þvcm and the y-axis chosen orthogonal to þer, see the
right panel in Fig. E.1. In that frame, we have

þvcm = vcm þez

þer = cos(αcm)þez + sin(αcm)þex

þvr = vr [cos(θ)þez + sin(θ) cos(φ)þex + sin(θ) sin(φ)þey]

(E.12)

with θ the angle between þvr and þvcm (already introduced in the isotropic case) and φ the
complemetary spherical angle. This allows us to write the relative speed distribution as

Fvr(vr, r) = 2πκ−1(r) v2
r

∫ vesc(r)

0
dvc v2

c

∫ 1

−1
dµcm

∫ 2π

0
dφ

∫ µ0

−µ0

dµ fþv(þv1, r) fþv(þv2, r) . (E.13)

We used µcm ≡ cos(αcm) in the equation above. We give the expressions of the angular momentum
for each particle

L2
1 =

∣

∣

∣

∣

þr ×
(

þvcm − vr

2

)∣

∣

∣

∣

2

= r2

[

v2
r

4
(1 − µ2) sin2(φ) +

{

−vr

2
µcm

√

1 − µ2 cos(φ) −
√

1 − µ2
cm

(

vcm − vr

2
µ

)}

]

L2
2 =

∣

∣

∣

∣

þr ×
(

þvcm +
vr

2

)∣

∣

∣

∣

2

= r2

[

v2
r

4
(1 − µ2) sin2(φ) +

{

+
vr

2
µcm

√

1 − µ2 cos(φ) −
√

1 − µ2
cm

(

vcm +
vr

2
µ

)}

]

.

(E.14)

E.2 Bounds on p-wave annihilating dark matter
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Figure E.1 – Coordinate systems for the derivation of the relative velocity DF for an anisotropic system.
Left panel: frame associated with þr, in which we define þvc. Right panel: coordinate system associated
with þvc.
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Figure E.3 – Top panel:. Uncertainties related to the anistropy in the propagation model A, for
the NFW profile (left) and the γ = 0.25 profile (right) Bottom panel: same as the top panel, for the
propagation model B.
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Appendix F

Résumé en français

F.1 Introduction

F.1.1 Le problème de la masse manquante: preuves observationnelles

Les physiciens et astronomes sont aujourd’hui confrontés à une multitude de données observa-
tionnelles pointant vers un déficit de masse dans notre Univers.

La manifestation la plus frappante de ce déficit est à l’échelle des galaxies, notamment les
galaxies spirales. La mesure des courbes de rotation de ces galaxies permet d’estimer leur masse,
et l’on constate que celle-ci diffère fortement de la masse extrapolée à partir de la luminosité.
Un problème similaire est présent à l’échelle des amas de galaxies, où des méthodes telles que
le lentillage graviationnel permettent d’estimer la masse indépendamment de la luminosité. Là
encore, une différence considérable est constatée entre la masse totale et la masse lumineuse.

Un problème de masse manquante est également présent aux échelles cosmologiques. L’analyse
des anisotropies de température du fond diffus micro-ondes a permis l’établissement du modèle
ΛCDM qui est aujourd’hui le modèle standard de la cosmologie. Ce modèle stipule que le budget
énergétique de l’Univers est composé à 70% d’une constante cosmologique Λ, à 25% d’une
matière ”froide” (non-relativiste) et sans interactions, et à 5% de matière baryonique, c’est-à-dire
de matière ordinaire. Cela qu’environ 80% de la matière dans l’Univers est d’origine et de
composition inconnue. Il est naturel d’identifier cette matière étrange avec la masse manquante
mesurée dans les galaxies et les amas de galaxies.

F.1.2 Le modèle ΛCDM aux petites échelles

Le modèle ΛCDM rencontre un succés phénoménale lorqu’on le confronte aux observations liées
à des échelles super-galactiques. A l’échelle des galaxies, en revanche, des points de désaccord
entre la théorie et les observations apparaissent.

Ces problèmes aux petites échelles se manifestent de différentes manières. Tout d’abord, le
profile de densité aux centres de galaxies semblent être, dans la plupart des cas, assez plat alors
que ΛCDM prédit un profile très piqué pour les halos de matière sombre. D’autre part, ΛCDM
prédit une multitude de petites galaxies satellites associée à notre Voie Lactée, hors seule une
poignée de ces satellites est observée. Finalement, les satellites qui sont effectivement observés
sont moins massifs que ce que la théorie prédit.

Plusieurs solutions ont été proposées pour résoudre ces problèmes. Deux grandes classes de
solutions peuvent êtres distinguées. On peut tout d’abord supposé que ces tensions montrent
un échec du modèle ΛCDM, qui doit donc être modifié. Parmis ces solutions, on peut citer les
modèles de matière sombre ”tiède” ou la matière sombre auto-intéragissante. Une autre approche
consiste à supposer que le modèle ΛCDM est correct et les problèmes aux petites échelles sont en
fait dues aux effets de la matière ordinaire qui sont encore mal compris à l’échelle galactique.
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F.1.3 Approches théoriques du problèmes de la matière sombre

Deux approches théoriques radicalement différentes sont aujourd’hui envisagées pour résoudre le
problème de la matière sombre.

Une première approche consiste à interpreter la masse manquante comme un échec de la
théorie de la gravitation actuellement admise. Selon cette approche, la gravitation Newtonienne et
la relativité générale doivent être modifiées pour expliquer les observations sans faire intervenir une
nouvelle forme de matière. Parmis les théories proposées, on peut citer la Gravité Newtonienne
Modifiée et ses extensions relativistes.

La seconde approche consiste à supposer que la masse manquante est bien constituée d’une
forme de matière exotique. Il a été établit que la matière ordinaire ne peut pas être la matière
sombre, cette matière doit donc être constituée de particules encore inconnues. De très nombreux
modèles de physique des particules incorporent des candidats au titre de particule de matière
sombre. On peut citer, entres autres, la supersymétrie, les théories à dimensions supplémentaires,
les axions et les neutrinos stériles.

F.1.4 Recherches expérimentales des particules de matière sombre

Si la matière sombre est constituée de particules exotiques et que ces particules ont des interactions
autres que gravitationnelles avec la matière ordinaires, on peut espérer identifiée ces particules
en suivant plusieurs démarches expérimentales.

On peut tout d’abord espérer produire les particules de matière sombre dans des accélerateurs
de particules comme le LHC au Cern. Si la matière sombre peut intéragir avec les noyaux
atomiques, on peut également espérer détecter une collision entre une particule de matière sombre
cosmique et un noyau terrestre. C’est ce que l’on nomme la détection directe. Enfin, si la matière
sombre peut s’annihilaler ou est instable, on peut espérer détecter les produits de son annihilation
(ou de sa désingration) dans le rayonnement cosmique. On parle alors de détection indirecte.

F.2 Histoire thermique des particules massives intéragissant faible-
ment

On suppose dans cette section que la particule de matière sombre est stable, qu’elle a une masse
très élevée (typiquement entre quelques GeV et quelques TeV) et des interactions faibles avec
les particules standards. On suppose de plus que cette particule peut s’auto-annihiler. Des
particules de ce type sont appelées WIMPs pour Weakly Interacting Massive Particles.

F.2.1 Découplage chimique

Lorsque la température du plasma primordial T est supérieure à la masse m de la matière sombre
la réaction χ + χ ⇋ f + f , où χ est la matière sombre et f une particule standard (un lepton ou
un quark, par exemple), est à l’équilibre. L’univers étant en expansion, la température décroit et
le taux d’annihilation Γann de la matière sombre chute. Lorsque T < m la réaction f + f → χ + χ
ne se produit plus. Enfin arrive un instant où Γann < H où H est le paramètre de Hubble et
l’annihilation de χ devient hautement improbable. On parle de découple chimique de la matière
sombre. Le nombre de particules de matière sombre est alors fixé et la densité de matière sombre
aujourd’hui peut être prédite. On peut exprimer l’abondance de χ en fonction de la section
efficace d’annihilation 〈σannv〉 et on trouve

Ωχh2 ≃ 0.1

( 〈σannv〉
3 × 10−26 cm3/s

)−1

. (F.1)

La cöıncidence de la valeur observée de Ωcdmh2 avec une section efficace électrofaible est appelée
le ”miracle du WIMP”.
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F.2.2 Découplage cinétique

Aprés le découplage chimique, la matière sombre reste en équilibre thermique avec le plasma à
travers les réactions de diffusion χ + f ⇌ χ + f . Au bout d’une certain temps, on a Γdiff < H où
Γdiff est le taux de diffusion, et la diffusion devient inefficace. On parle de découplage cinétique
de la matière sombre. Ce découplage est très important car il fixe la taille des toutes premières
structures de matière sombre qui se forment dans l’Univers. Un calcul détaillé montre que la
masse de ces structures est très faible

Mmin ∼ 10−10 − 10−4 M⊙. (F.2)

F.3 Halos et sous-halos de matière sombre dans l’Univers

F.3.1 Formation des structures

Après l’égalité matière-radiation, les perturbations de matière sombre croissent efficacement
jusqu’à s’effondrer et former des halos. Le formalisme de Press-Schechter permet de calculer la
fonction de masse de ces objets, et l’on trouve pour le modèle ΛCDM

dn

dm
∝ m−2 . (F.3)

Le profile de densité ρ des halos est mesuré dans les simulations cosmologiques et on trouve
une forme universelle, identique pour tous les halos. La densité est fortement piquée au centre
du halo ρ(r) ∝ r−1 et se comporte comme ρ(r) ∝ r−3 dans les parties externes. La taille de la
région centrale rapportée à la taille totale de la structure définit sa concentration. Cette quantité
est corrélée à la masse de sorte que les plus petits halos sont aussi les plus concentrés.

F.3.2 Évolution des sous-halos

Les halos galactiques comme celui de la Voie Lactée sont formés par l’accrétion de halos plus
petits. La majeure partie de ces petits halos survit en fait à l’accrétion et sont toujours présents
dans les galaxies aujourd’hui. On parle alors de sous-halos. L’intéraction de ces sous-halos avec le
potentiel gravitationnel de la galaxie hôte, que l’on nomme effets de marée, épluche ces structures,
qui perdent ainsi une grande partie de leur masse. Ces intéractions, en particulier l’effet de choc
du disque stellaire, sont modélisées en détails et la forme finale des sous-halos est précisement
calculée.

F.3.3 Modèle contraint des sous-halos Galactiques

Avec tous éléments en main, nous construisons un modèle de la population Galactique de sous-
halos. Ce modèle a l’originalité de reposer sur des contraintes observationnelles, c’est-à-dire
qu’il est cohérent par construction avec la dynamique de notre Galaxie telle qu’elle est observée.
Nous démontrons que la distribution des sous-halos dans la Galaxies est fortement affectée
par les effets de marée. En particulier, les sous-halos sont épluchés bien plus efficacement au
centre de la Galaxie qu’au bord. De plus, une sélection des structures s’opère en fonction de
leur concentration. Les moins concentrées sont détruites alors que les plus concentrées résistent
davantages aux marées. Ceci augmente la concentration moyenne des structures au centre de
la Galaxies. La fonction de masse est elle aussi affectée du fait de la corrélation entre masse et
concentration.
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F.4 Impact des sous-halos sur les recherches indirectes de matière
sombre

La présence de sous-halos, qui sont des régions de surdensité de matière sombre au sein de
la Galaxie, augmente la taux d’annihilation de ces particules. On s’attend donc à ce que les
prédictions pour les recherches indirectes soient affectées par la structuration de la matière sombre
aux petites échelles. En utilisant notre modèle de sous-halos, nous calculons précisement le
”boost” attendus sur les signaux indirectes. Deux canaux complémentaires sont ensuite considérés:
les rayons gamma et les antiprotons cosmiques.

F.4.1 Impact sur les recherches avec les rayons gamma

Les rayons gamma permettent d’explorer le halo de matière sombre le long d’une ligne de visée.
Nous calculons le facteur de ”boost” en fonction de la ligne de visée et montrons comment ce
facteur dépend des paramètres de la distribution des sous-halos, en particulier les paramètres
de la fonction de masse. Nous trouvons un boost important au dessus d’une latitude de 30◦, ce
qui doit fortement impacter les contraintes sur les modèles microscopiques dérivées à partir des
données sur les rayons gamma.

F.4.2 Impact sur les recherches avec les antiprotons

Les antiprotons cosmiques forment un canal complémentaire des rayons gamma du fait de leur
propagation dans la Galaxie. Contrairement aux photons, les antiprotons sont des particules
chargés qui diffusent sur les inhomogénéités du champ magnétique turbulent de la Galaxie. Leur
trajectoire est donc aléatoire. Les antiprotons reçus sur Terre ont donc exploré un volume moyen
contenue dans une sphère autour de la Terre, sphère dont le rayon dépend par ailleurs de l’énergie
des antiprotons. Nous calculons le boost pour le signal d’antiprotons et montrons sa dépendance
dans les paramètres des sous-halos. Nous montrons enfin comment l’inclusion des sous-halos
modifie les contraintes sur la section efficaces d’annihilation obtenues à partir des données de
l’expérience AMS-2.

F.5 L’espace des phases de la matière sombre Galactique

F.5.1 Le formalisme d’Eddington

La dynamique des particules de matière sombre dans la Galaxie est gouvernée par l’équation de
Boltzmann sans collisions. La méthode d’Eddington permet d’obtenir une fonction de distribution
dans l’espace des phases f(þr,þv) solution stationnaire de cette équation. Dans l’hypothèse où
la distribution de vitesse des particules de matière sombre est isotrope, f est simplement une
fonction de l’énergie et peut s’exprimer directement en fonction du profile de densité du halo de
matière sombre et du potentiel gravitationnel total du système.

L’hypothèse d’isotropie peut-être levée, auquel cas f dépend à la fois de l’énergie et de
la norme du moment angulaire. Plusieurs extensions du modèle d’Eddington incorporant de
l’anisotropie ont été découvertes. Nous en discutons deux en détails: les modèles à anisotropie
constante, et les modèles de Osipkov-Merrit.

F.5.2 Problèmes et limitations du formalisme d’Eddington

Bien que la méthode d’Eddington soit connue depuis longtemps, relativement peu d’attention à
été portée sur ses limites d’applicabilité. Ces deux aspects sont étudiés en détail.

Une première limite du formalisme d’Eddington apparâıt lorqu’on l’applique à un système de
taille finie. La présence d’un bord induit une divergence dans la distribution f . Cette divergence
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n’a pas d’origine physique et doit être régularisée. Nous proposons plusieurs méthodes permettant
de traiter cette divergence et quantifions précisement l’impact de ces méthodes sur f .

Une autre limit concerne le problème de la stabilité. Rien ne garantit que la solution
d’Eddington soit stable, il faut donc s’en assurer. Il se trouve que de nombreuses configurations
[profile de densité, potentiel gravitationnel] amènent à des solutions qui sont instables. Nous
développons des critères analytiques permettant de déterminer la stabilité a priori, et classifions
les systèmes problématiques où le formalisme ne peut pas être appliqué.

F.6 Impact de l’espace des phases sur les recherches de matières
sombre

F.6.1 Impact générique sur les observables

Les conséquences de notre étude sur l’applicabilité du formalisme d’Eddington sont étudiées en
détail dans le contexte des recherches de matière sombre. Nous considérons plusieurs observables
intervenant dans les recherches directes et indirectes, et évaluons l’impact des méthodes de
régularisations discutées dans le chapitre précédent. Nous comparons systématiquement les
prédictions de la méthode d’Eddington avec celles du ”Modèle Standard du Halo” qui est très
souvent utilisé dans ce cadre, et montrons que la différence entre ces deux approches est en
générale très importante.

F.6.2 Application aux positrons cosmiques

La méthode d’Eddington est appliquée de manière concrète à l’étude des électrons et positrons
cosmiques. L’exploitation des données de la sonde Voyager 1 nous permet de dériver des
contraintes très fortes sur la section efficace d’annihilation des particules de matière sombre.

F.7 Conclusion

Plusieurs aspects de la recherche de la matière sombre ont été abordés au cours de ce travail. En
partant autant que possible de principes élémentaires issus de la physique des particules et de la
cosmologie, nous avons construit et développé un ensemble de modèles et d’outils permettant
d’attaquer le problème de l’identification de la matière sombre dans la Galaxie. Nous tenons à
souligner que les outils que nous avons développé sont suffisament généraux pour s’appliquer
à de nombreux modèles de matière sombre, comme les WIMPs, les axions et les trous noirs
primordiaux. Un grand nombre de pistes de recherches sont ouvertes à l’issue de ce travail. Nous
allons continuer à exploiter notre connaissance de la structuration aux petites échelles et de
l’espace des phase pour explorer l’espace des modèles de matière sombre. L’application aux
recherches directes et indirectes, déjà en parti réalisé, sera complété par une étude des effets
gravitationnels des petites structures sur la matière observables.
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Cuoco A., Krämer M., Korsmeier M., Novel Dark Matter Constraints from Antiprotons in Light
of AMS-02, Phys. Rev. Lett. 118, 191102 (2017), arXiv:1610.03071. 18, 108, 109

Cyr-Racine F.-Y., Sigurdson K., Zavala J., Bringmann T., Vogelsberger M., Pfrommer C.,
ETHOS—an effective theory of structure formation: From dark particle physics to the matter
distribution of the Universe, Phys. Rev. D93, 123527 (2016), arXiv:1512.05344. 43

Daylan T., Finkbeiner D. P., Hooper D., Linden T., Portillo S. K. N., Rodd N. L., Slatyer
T. R., The characterization of the gamma-ray signal from the central Milky Way: A case for
annihilating dark matter, Phys. Dark Univ. 12, 1-23 (2016), arXiv:1402.6703. 17

de Blok W. J. G., McGaugh S. S., Rubin V. C., High-Resolution Rotation Curves of Low Surface
Brightness Galaxies. II. Mass Models, Astron. J. 122, 2396-2427 (2001). 12

de Lapparent V., Geller M. J., Huchra J. P., A Slice of the Universe, Astrophys. J. 302, L1
(1986). 6

Dehnen W., A Hierarchical &lt;E10&gt;O&lt;/E10&gt;(N) Force Calculation Algorithm, Journal
of Computational Physics 179, 27-42 (2002), arXiv:astro-ph/0202512. 150

Dehnen W., Binney J., Mass models of the Milky Way, Mon. Not. Roy. Astron. Soc. 294, 429
(1998), arXiv:astro-ph/9612059. 2, 115

Dekel A., Devor J., Hetzroni G., Galactic halo cusp-core: tidal compression in mergers, Monthly
Notices of the Royal Astronomical Society 341, 326-342 (2003). 66

Delahaye T., Lavalle J., Lineros R., Donato F., Fornengo N., Galactic electrons and positrons
at the Earth: new estimate of the primary and secondary fluxes, Astron. Astroph. 524, A51
(2010), arXiv:1002.1910. 19



232 Bibliography

Dicke R. H., Peebles P. J. E., Roll P. G., Wilkinson D. T., Cosmic Black-Body Radiation.,
Astrophys. J. 142, 414-419 (1965). 3

Dicus D. A., Kolb E. W., Teplitz V. L., Cosmological Upper Bound on Heavy Neutrino Lifetimes,
Phys. Rev. Lett. 39, 168 (1977). 30

Diemand J., Kuhlen M., Madau P., Zemp M., Moore B., Potter D., Stadel J., Clumps and
streams in the local dark matter distribution, Nature 454, 735-738 (2008), arXiv:0805.1244.
12, 63, 74, 80, 81

Diemand J., Moore B., Stadel J., Velocity and spatial biases in cold dark matter subhalo
distributions, Monthly Notices of the Royal Astronomical Society 352, 535-546 (2004). 74

Diemand J., Moore B., Stadel J., Earth-mass dark-matter haloes as the first structures in the
early Universe, Nature 433, 389-391 (2005), arXiv:astro-ph/0501589. 61, 62, 63

Diemer B., Joyce M., An accurate physical model for halo concentrations, (2018),
arXiv:1809.07326. 61

Diemer B., Kravtsov A. V., A universal model for halo concentrations, Astrophys. J. 799, 108
(2015), arXiv:1407.4730. 61

Dine M., Fischler W., Srednicki M., A Simple Solution to the Strong CP Problem with a Harmless
Axion, Phys. Lett. 104B, 199-202 (1981). 10

Dodelson S., Widrow L. M., Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72, 17-20 (1994),
arXiv:hep-ph/9303287. 11, 13

Donato F., Fornengo N., Maurin D., Salati P., Antiprotons in cosmic rays from neutralino
annihilation, Phys. Rev. D69, 063501 (2004), arXiv:astro-ph/0306207. 18, 106

D’Onghia E., Springel V., Hernquist L., Keres D., Substructure Depletion in the Milky Way Halo
by the Disk, Astrophys. J. 709, 1138-1147 (2010), arXiv:0907.3482. 68, 72

Doremus J. P., Baumann G., Feix M. R., Stability of a Self Gravitating System with Phase Space
Density Function of Energy and Angular Momentum, Astron. Astroph. 29, 401 (1973). 145

Doremus J.-P., Feix M. R., Baumann G., Stability of Encounterless Spherical Stellar Systems,
Physical Review Letters 26, 725-728 (1971). 144

Drakos N. E., Taylor J. E., Benson A. J., The phase-space structure of tidally stripped haloes,
Mon. Not. Roy. Astron. Soc. 468, 2345-2358 (2017), arXiv:1703.07836. 87, 140

Drewes M. et al., A White Paper on keV Sterile Neutrino Dark Matter, JCAP 1701, 025 (2017),
arXiv:1602.04816. 11, 13

Drlica-Wagner A., Bechtol K., Rykoff E. S., Luque E., Queiroz A., Mao Y. Y., Wechsler R. H.,
Simon J. D., Santiago B., Yanny B., Balbinot E., Dodelson S., Fausti Neto A., James D. J., Li
T. S., Maia M. A. G., Marshall J. L., Pieres A., Stringer K., Walker A. R., Abbott T. M. C.,
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Dutton A. A., Macciò A. V., Cold dark matter haloes in the Planck era: evolution of structural
parameters for Einasto and NFW profiles, Mon. Not. Roy. Astron. Soc. 441, 3359-3374 (2014),
arXiv:1402.7073. 61, 62, 63, 77

Dyson F. W., Eddington A. S., Davidson C., A Determination of the Deflection of Light by
the Sun’s Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919,
Philosophical Transactions of the Royal Society of London Series A 220, 291-333 (1920). 7

Eddington A. S., The distribution of stars in globular clusters, Mon. Not. Roy. Astron. Soc. 76,
572-585 (1916). 124

Edsjo J., Gondolo P., Neutralino relic density including coannihilations, Phys. Rev. D56, 1879-
1894 (1997), arXiv:hep-ph/9704361. 31, 36

Einasto J., On the Construction of a Composite Model for the Galaxy and on the Determination
of the System of Galactic Parameters, Trudy Astrofizicheskogo Instituta Alma-Ata 5, 87-100
(1965). 58

Einasto J., On constructing models of stellar systems. II. The descriptive functions and parame-
ters., Publications of the Tartu Astrofizica Observatory 36, 357-378 (1968). 58

Einasto J., Kaasik A., Saar E., Dynamic evidence on massive coronas of galaxies, Nature 250,
309-310 (1974). 2

Eisenstein D. J., Hu W., Baryonic features in the matter transfer function, Astrophys. J. 496,
605 (1998), arXiv:astro-ph/9709112. 53, 54

Eisenstein D. J., Hu W., Power Spectra for Cold Dark Matter and Its Variants, Astrophys.
J.:astro-ph/9710252. 53

Ellis J. R., Hagelin J. S., Nanopoulos D. V., Olive K. A., Srednicki M., Supersymmetric Relics
from the Big Bang, Nucl. Phys. B238, 453-476 (1984). 10
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Hütten M., Combet C., Maier G., Maurin D., Dark matter substructure modelling and sensitivity
of the Cherenkov Telescope Array to Galactic dark halos, JCAP 9, 047 (2016), arXiv:1606.04898.
94
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Petrović J., Serpico P. D., Zaharijaš G., Galactic Center gamma-ray ”excess” from an active past
of the Galactic Centre?, JCAP 1410, 052 (2014), arXiv:1405.7928. 17

Pieri L., Bertone G., Branchini E., Dark Matter Annihilation in Substructures Revised, Mon.
Not. Roy. Astron. Soc. 384, 1627 (2008), arXiv:0706.2101. 94

Pieri L., Lavalle J., Bertone G., Branchini E., Implications of high-resolution simulations on
indirect dark matter searches, Phys. Rev. D 83, 023518 (2011), arXiv:0908.0195. 19, 76, 81,
94, 106

Piffl T. et al., The RAVE survey: the Galactic escape speed and the mass of the Milky Way,
Astron. Astrophys. 562, A91 (2014), arXiv:1309.4293. 134

Piffl T., Penoyre Z., Binney J., Bringing the Galaxy’s dark halo to life, Mon. Not. Roy. Astron.
Soc. 451, 639-650 (2015), arXiv:1502.02916. 115

Pillepich A., Springel V., Nelson D., Genel S., Naiman J., Pakmor R., Hernquist L., Torrey
P., Vogelsberger M., Weinberger R., Marinacci F., Simulating galaxy formation with the
IllustrisTNG model, Mon. Not. Roy. Astron. Soc. 473, 4077-4106 (2018), arXiv:1703.02970. 13

Plummer H. C., On the problem of distribution in globular star clusters, Mon. Not. Roy. Astron.
Soc. 71, 460-470 (1911). 127

Pointecouteau E., Silk J., New Constraints on MOND from galaxy clusters, Mon. Not. Roy.
Astron. Soc. 364, 654-658 (2005), arXiv:astro-ph/0505017. 8



248 Bibliography

Polisensky E., Ricotti M., Constraints on the Dark Matter Particle Mass from the Number of
Milky Way Satellites, Phys. Rev. D83, 043506 (2011), arXiv:1004.1459. 13

Pontzen A., Governato F., How supernova feedback turns dark matter cusps into cores, Mon.
Not. Roy. Astron. Soc. 421, 3464 (2012), arXiv:1106.0499. 12

Pospelov M., Ritz A., Astrophysical Signatures of Secluded Dark Matter, Phys. Lett. B671,
391-397 (2009), arXiv:0810.1502. 164

Potgieter M. S., Solar Modulation of Cosmic Rays, Living Reviews in Solar Physics 10, 3 (2013),
arXiv:1306.4421. 102

Poulin V., Serpico P. D., Lesgourgues J., A fresh look at linear cosmological constraints on a
decaying dark matter component, JCAP 1608, 036 (2016), arXiv:1606.02073. 19, 167

Prada F., Klypin A. A., Cuesta A. J., Betancort-Rijo J. E., Primack J., Halo concentrations
in the standard Λ cold dark matter cosmology, Mon. Not. Roy. Astron. Soc. 423, 3018-3030
(2012), arXiv:1104.5130. 61, 62, 63

Preskill J., Wise M. B., Wilczek F., Cosmology of the Invisible Axion, Phys. Lett. B120, 127-132
(1983). 10

Press W. H., Schechter P., Formation of Galaxies and Clusters of Galaxies by Self-Similar
Gravitational Condensation, Astrophys. J. 187, 425-438 (1974). 55

Press W. H., Spergel D. N., Capture by the sun of a galactic population of weakly interacting,
massive particles, Astrophys. J. 296, 679-684 (1985). 18, 161

Primakoff H., Photoproduction of neutral mesons in nuclear electric fields and the mean life of
the neutral meson, Phys. Rev. 81, 899 (1951). 16

Profumo S., TeV gamma-rays and the largest masses and annihilation cross sections of neutralino
dark matter, Phys. Rev. D72, 103521 (2005), arXiv:astro-ph/0508628. 164

Profumo S., Dissecting cosmic-ray electron-positron data with Occam’s Razor: the role of known
Pulsars, Central Eur. J. Phys. 10, 1-31 (2011), arXiv:0812.4457. 19

Profumo S., Sigurdson K., Kamionkowski M., What mass are the smallest protohalos?, Phys.
Rev. Lett. 97, 031301 (2006), arXiv:astro-ph/0603373. 41

Profumo S., Ullio P., Multi-wavelength Searches for Particle Dark Matter, ArXiv e-prints (2010),
arXiv:1001.4086. 16

Pullen A. R., Benson A. J., Moustakas L. A., Nonlinear evolution of dark matter subhalos and
applications to warm dark matter, Astrophys. J. 792, 24 (2014), arXiv:1407.8189. 75

Ramond P., Dual Theory for Free Fermions, Phys. Rev. D3, 2415-2418 (1971). 9

Randall L., Sundrum R., A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett.
83, 3370-3373 (1999), arXiv:hep-ph/9905221. 10

Read J. I., The Local Dark Matter Density, J. Phys. G41, 063101 (2014), arXiv:1404.1938. 2

Read J. I., Agertz O., Collins M. L. M., Dark matter cores all the way down, Mon. Not. Roy.
Astron. Soc. 459, 2573-2590 (2016), arXiv:1508.04143. 12

Read J. I., Walker M. G., Steger P., The case for a cold dark matter cusp in Draco, (2018),
arXiv:1805.06934. 77



Bibliography 249

Rees M. J., Gunn J. E., The origin of the magnetic field and relativistic particles in the Crab
Nebula, Mon. Not. Roy. Astron. Soc. 167, 1-12 (1974). 19

Reeves H., Audouze J., Fowler W. A., Schramm D. N., On the Origin of Light Elements,
Astrophys. J. 179, 909-930 (1973). 6

Regis M., Ullio P., The contribution to the antimatter flux from individual dark matter substruc-
tures, ArXiv e-prints (2009), arXiv:0907.5093.

Reinert A., Winkler M. W., A Precision Search for WIMPs with Charged Cosmic Rays, JCAP
1801, 055 (2018), arXiv:1712.00002. 18, 106, 108

Renaud F., Bournaud F., Emsellem E., Elmegreen B., Teyssier R., Alves J., Chapon D., Combes
F., Dekel A., Gabor J., Hennebelle P., Kraljic K., A sub-parsec resolution simulation of the
Milky Way: global structure of the interstellar medium and properties of molecular clouds,
Mon. Not. Roy. Astron. Soc. 436, 1836-1851 (2013), arXiv:1307.5639. 13

Riess A. G., Casertano S., Yuan W., Macri L., Anderson J., MacKenty J. W., Bowers J. B.,
Clubb K. I., Filippenko A. V., Jones D. O., Tucker B. E., New Parallaxes of Galactic Cepheids
from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant,
Astrophys. J. 855, 136 (2018), arXiv:1801.01120. 6

Riess A. G. et al., A 2.4% Determination of the Local Value of the Hubble Constant, Astrophys.
J. 826, 56 (2016), arXiv:1604.01424. 6

Riess A. G. et al., Milky Way Cepheid Standards for Measuring Cosmic Distances and Appli-
cation to Gaia DR2: Implications for the Hubble Constant, Astrophys. J. 861, 126 (2018),
arXiv:1804.10655. 6

Riess A. G., Filippenko A. V., Challis P., Clocchiatti A., Diercks A., Garnavich P. M., Gilliland
R. L., Hogan C. J., Jha S., Kirshner R. P., Leibundgut B., Phillips M. M., Reiss D., Schmidt
B. P., Schommer R. A., Smith R. C., Spyromilio J., Stubbs C., Suntzeff N. B., Tonry J.,
Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological
Constant, Astron. J.:astro-ph/9805201. 7

Rigault M. et al., Confirmation of a Star Formation Bias in Type Ia Supernova Distances and its
Effect on Measurement of the Hubble Constant, Astrophys. J. 802, 20 (2015), arXiv:1412.6501.
7

Roberts M. S., Rots A. H., Comparison of Rotation Curves of Different Galaxy Types, Astron.
Astroph. 26, 483-485 (1973). 2

Robertson H. P., Kinematics and World-Structure, Astrophys. J. 82, 284 (1935). 21

Rodriguez-Puebla A., Behroozi P., Primack J., Klypin A., Lee C., Hellinger D., Halo and subhalo
demographics with Planck cosmological parameters: Bolshoi–Planck and MultiDark–Planck
simulations, Mon. Not. Roy. Astron. Soc. 462, 893-916 (2016), arXiv:1602.04813. 63

Rogstad D. H., Shostak G. S., Gross Properties of Five Scd Galaxies as Determined from
21-CENTIMETER Observations, Astrophys. J. 176, 315 (1972). 2

Rosdahl J., Schaye J., Dubois Y., Kimm T., Teyssier R., Snap, crackle, pop: sub-grid supernova
feedback in AMR simulations of disc galaxies, Mon. Not. Roy. Astron. Soc. 466, 11-33 (2017),
arXiv:1609.01296. 13

Rovelli C., Loop quantum gravity, Living Rev. Rel. 1, 1 (1998), arXiv:gr-qc/9710008. 7



250 Bibliography

Rubin V. C., Ford Jr. W. K., Thonnard N., Extended rotation curves of high-luminosity spiral
galaxies. IV - Systematic dynamical properties, SA through SC, Astrophys. J. Lett. 225,
L107-L111 (1978). 2

Sachs R. K., Wolfe A. M., Perturbations of a Cosmological Model and Angular Variations of the
Microwave Background, Astrophys. J. 147, 73 (1967). 4

Salati P., The distortions of the microwave background radiation, heavy neutral decaying leptons
and decaying gravitinos, Physics Letters B 163, 236-242 (1985). 19

Salati P., Silk J., A STELLAR PROBE OF DARK MATTER ANNIHILATION IN GALACTIC
NUCLEI, Astrophys. J. 338, 24-31 (1989). 161

Sanchez-Conde M. A., Prada F., The flattening of the concentration mass relation towards low
halo masses and its implications for the annihilation signal boost, Mon. Not. Roy. Astron. Soc.
442, 2271-2277 (2014), arXiv:1312.1729. 61, 62, 63, 77

Sanders R. H., Resolving the virial discrepancy in clusters of galaxies with modified newtonian
dynamics, Astrophys. J. 512, L23 (1999), arXiv:astro-ph/9807023. 8

Sanders R. H., Clusters of galaxies with modified Newtonian dynamics (MOND), Mon. Not. Roy.
Astron. Soc. 342, 901 (2003), arXiv:astro-ph/0212293. 8

Sarkar S., Big bang nucleosynthesis and physics beyond the standard model, Rept. Prog. Phys.
59, 1493-1610 (1996), arXiv:hep-ph/9602260. 6

Sato K., Kobayashi M., Cosmological Constraints on the Mass and the Number of Heavy Lepton
Neutrinos, Prog. Theor. Phys. 58, 1775 (1977). 30

Schmid C., Schwarz D. J., Widerin P., Amplification of cosmological inhomogeneities from the
QCD transition, Phys. Rev. D59, 043517 (1999), arXiv:astro-ph/9807257. 39

Schmidt M., The Rate of Star Formation, Astrophys. J. 129, 243 (1959). 149

Schneider A., Structure formation with suppressed small-scale perturbations, Mon. Not. Roy.
Astron. Soc. 451, 3117-3130 (2015), arXiv:1412.2133. 13

Schneider A., Krauss L., Moore B., Impact of Dark Matter Microhalos on Signatures for Direct
and Indirect Detection, Phys. Rev. D82, 063525 (2010), arXiv:1004.5432. 73

Schneider A., Smith R. E., Reed D., Halo Mass Function and the Free Streaming Scale, Mon.
Not. Roy. Astron. Soc. 433, 1573 (2013), arXiv:1303.0839. 77

Schwetz T., Zupan J., Dark matter attempts for CoGeNT and DAMA, JCAP 8, 008 (2011),
arXiv:1106.6241. 16

Scott P., Fairbairn M., Edsjo J., Dark stars at the Galactic centre - the main sequence, Mon.
Not. Roy. Astron. Soc. 394, 82 (2009), arXiv:0809.1871. 161

Sefusatti E., Zaharijas G., Serpico P. D., Theurel D., Gustafsson M., Extragalactic gamma-ray
signal from dark matter annihilation: an appraisal, Mon. Not. Roy. Astron. Soc. 441, 1861-1878
(2014), arXiv:1401.2117. 17

Sekido Y., Masuda T., Yoshida S., Wada M., The Crab Nebula as an Observed Point Source of
Cosmic Rays, Physical Review 83, 658-659 (1951). 101

Serpico P. D., Sefusatti E., Gustafsson M., Zaharijas G., Extragalactic gamma-ray signal from
dark matter annihilation: a power spectrum based computation, Mon. Not. Roy. Astron. Soc.
421, L87-L91 (2012), arXiv:1109.0095. 17, 94



Bibliography 251

Servant G., Tait T. M. P., Is the lightest Kaluza-Klein particle a viable dark matter candidate?,
Nuclear Physics B:hep-ph/0206071. 10

Shalchi A., ed. 2009, Nonlinear Cosmic Ray Diffusion Theories Vol. 362 of Astrophysics and
Space Science Library. 103

Shapiro P. R., Iliev I. T., Martel H., Ahn K., Alvarez M. A., The Equilibrium structure of CDM
halos, (2004), arXiv:astro-ph/0409173. 150

Sheth R. K., Mo H. J., Tormen G., Ellipsoidal collapse and an improved model for the number
and spatial distribution of dark matter haloes, Mon. Not. Roy. Astron. Soc. 323, 1 (2001),
arXiv:astro-ph/9907024. 56

Sheth R. K., Tormen G., Large-scale bias and the peak background split, Mon. Not. Roy. Astron.
Soc.:astro-ph/9901122. 56

Shifman M. A., Vainshtein A. I., Zakharov V. I., Can Confinement Ensure Natural CP Invariance
of Strong Interactions?, Nucl. Phys. B166, 493-506 (1980). 10

Shokair T. M. et al., Future Directions in the Microwave Cavity Search for Dark Matter Axions,
Int. J. Mod. Phys. A29, 1443004 (2014), arXiv:1405.3685. 16

Sikivie P., Experimental Tests of the Invisible Axion, Phys. Rev. Lett. 51, 1415-1417 (1983). 11

Silk J., Cosmic black body radiation and galaxy formation, Astrophys. J. 151, 459-471 (1968). 4

Silk J., Bloemen H., A gamma-ray constraint on the nature of dark matter, Astrophys. J. Lett.
313, L47-L51 (1987). 16, 17

Silk J., Olive K. A., Srednicki M., The Photino, the Sun and High-Energy Neutrinos, Phys. Rev.
Lett. 55, 257-259 (1985). 18, 161

Silk J., Srednicki M., Cosmic-ray antiprotons as a probe of a photino-dominated universe, Physical
Review Letters 53, 624-627 (1984). 18

Silk J., Stebbins A., Clumpy cold dark matter, Astrophys. J. 411, 439-449 (1993). 91, 94

Sin S.-J., Late time cosmological phase transition and galactic halo as Bose liquid, Phys. Rev.
D50, 3650-3654 (1994), arXiv:hep-ph/9205208. 13
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Understanding the nature of dark matter is one of the greatest challenges of modern physics.
If dark matter is made of particles, we can hope to detect it, directly or indirectly, using
Earth-based or spatial experiments. Make predictions for the outcome of these experiments, or
interpret the results in case of a detection, requires a deep understanding of the structuring of
dark matter in our Galaxy. Starting from particle physics and cosmological considerations, I
built a dynamically constrained model of the Galactic dark halo including a detailed description
of its inhomogeneities. The impact of these inhomogeneities on searches with cosmic rays is then
analysed in details. I also study a method allowing to predict the phase-space distribution of
dark matter particles, and discuss its possible application to dark matter searches. This method
is then applied to searches with cosmic-ray electrons and positrons, and new very stringent
constraints are obtained on microscopic models of dark matter.


