U. Ackelid and M. Svensson, Additive manufacturing of dense metal parts by electron beam melting, Proceedings of the Materials Science and Technology Conference, vol.2529, 2009.

. Afnor, Non-destructive Testing -Test Method for Residual Stress analysis by X-ray Diffraction. rapport, 2009.

T. Ahmed and H. Rack, Phase transformations during cooling in ?+a? titanium alloys, Materials Science and Engineering: A, vol.243, issue.1, pp.206-211, 1998.

, Appendix AITM 1-0011 Constant amplitude fatigue testing of metallic material, Airbus Industrie Test Method standards, pp.1-24, 2001.

S. S. Al-bermani, M. L. Blackmore, W. Zhang, and I. Todd, The Origin of Microstructural Diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V, Metallurgical and Materials Transactions A, vol.41, issue.13, pp.3422-3434, 2010.

J. K. Algardh, T. Horn, H. West, R. Aman, A. Snis et al., Thickness dependency of mechanical properties for thin-walled titanium parts manufactured by Electron Beam Melting (EBM)®. Additive Manufacturing, vol.12, pp.45-50, 2016.

H. Alsalla, L. Hao, and C. Smith, Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique, Materials Science and Engineering: A, vol.669, pp.1-6, 2016.

A. Antonysamy, J. Meyer, and P. Prangnell, Effect of build geometry on the ?-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting, Materials Characterization, vol.84, pp.153-168, 2013.

H. V. Atkinson and S. Davies, Fundamental aspects of hot isostatic pressing: An overview, Metallurgical and Materials Transactions A, vol.31, pp.2981-3000, 2000.

E. Attar, Simulation of selective electron beam melting processes, 2011.

, Standard Guide for Descaling and Cleaning Titanium and Titanium Alloy Surfaces. rapport, pp.600-611, 1994.

I. Bantounas, D. Dye, and T. C. Lindley, The role of microtexture on the faceted fracture morphology in Ti-6Al-4V subjected to high-cycle fatigue, Acta Materialia, vol.58, issue.11, pp.3908-3918, 2010.

O. Basquin, The exponential law of endurance tests, Proc Am Soc Test Mater, vol.10, pp.625-630, 1910.

M. Benedetti, E. Torresani, M. Leoni, V. Fontanari, M. Bandini et al., The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting, Journal of the Mechanical Behavior of Biomedical Materials, vol.71, pp.295-306, 2017.

S. Beretta and S. Romano, A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes, Fatigue and Fracture Behavior of Additive Manufactured Parts, vol.94, pp.178-191, 2017.

A. Borbély, H. Mughrabi, G. Eisenmeier, and H. Höppel, A finite element modelling study of strain localization in the vicinity of near-surface cavities as a cause of subsurface fatigue crack initiation, International Journal of Fracture, vol.115, issue.3, pp.227-232, 2002.

E. Brandl, C. Leyens, and F. Palm, Mechanical Properties of Additive Manufactured Ti-6Al-4V Using Wire and Powder Based Processes, IOP Conference Series: Materials Science and Engineering, vol.26, p.12004, 2011.

E. Brandl, D. Greitemeier, H. J. Maier, and F. Syassen, High Cycle Fatigue Properties Of Electron Beam Melted TI-6AL-4V Samples Without And With Integrated Defects, Effects Of Defects"). 12th European Conference on Spacecraft Structures, vol.691, p.16, 2012.

F. Cao and K. R. Chandran, The role of crack origin size and early stage crack growth on high cycle fatigue of powder metallurgy Ti-6Al-4V alloy, International Journal of Fatigue, vol.102, pp.48-58, 2017.

J. Chao, D. Morris, M. Muñoz-morris, and J. Gonzalez-carrasco, The influence of some microstructural and test parameters on the tensile behaviour and the ductility of a mechanically-alloyed Fe-40Al alloy, Intermetallics, vol.9, issue.4, pp.299-308, 2001.

K. S. Chan, M. Koike, R. L. Mason, and T. Okabe, Fatigue Life of Titanium Alloys Fabricated by Additive Layer Manufacturing Techniques for Dental Implants, Metallurgical and Materials Transactions A, vol.44, issue.2, pp.1010-1022, 2013.

V. Chastand, E. Charkaluk, and V. Chastand, Studying the mechanical behaviour and the damaging mechanisms of metallic parts produced by additive manufacturing. Theses, Fatigue of Additive Manufacturing Specimens: A Comparison with Casting Processes. Proceedings, vol.2, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01484725

C. G. Yan, J. Tian, T. Zhang, X. Li, Z. Zhou et al., On the possible generalizations of the Kitagawa-Takahashi diagram and of the El Haddad equation to finite life, Transactions of Nonferrous Metals Society of China, vol.24, issue.3, pp.1826-1837, 2006.

P. Collins, D. Brice, P. Samimi, I. Ghamarian, and H. Fraser, Microstructural control of additively manufactured metallic materials, Annual Review of Materials Research, vol.46, pp.63-91, 2016.

K. Dai, J. Villegas, Z. Stone, and L. Shaw, Finite element modeling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process, Acta Materialia, vol.52, pp.5771-5782, 2004.

K. Dai and L. Shaw, Comparison between shot peening and surface nanocrystallization and hardening processes, Mukherjee Symposium, vol.463, pp.46-53, 2006.
DOI : 10.1016/j.msea.2006.07.159

P. Edwards, A. O'conner, and M. Ramulu, Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance, Journal of Manufacturing Science and Engineering, vol.135, issue.6, p.61016, 2013.

D. Eylon, Fatigue crack initiation in hot isostatically pressed Ti-6Al-4V castings, Journal of Materials Science, vol.14, issue.8, pp.1914-1922, 1979.

D. Eylon and B. Strope, Fatigue crack initiation in Ti-6wt % Al-4 wt % V castings, Journal of Materials Science, vol.14, issue.2, pp.345-353, 1979.

, Standard Specification for Titanium-6Aluminum-4Vanadium Alloy Castings for Surgical Implants (UNS R56406). rapport, 2014.

, Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401). rapport, pp.136-149, 2013.

L. Facchini, E. Magalini, P. Robotti, and A. Molinari, Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders, Rapid Prototyping Journal, vol.15, issue.3, pp.171-178, 2009.

L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Höges et al., Electron beam melted Ti-6Al-4V: Microstructure, texture and mechanical behavior of the as-built and heat-treated material, Materials Science and Engineering: A, vol.16, issue.6, pp.105-119, 2010.

. For, C. De-formanoir, M. Suard, R. Dendievel, G. Martin et al., Improving the mechanical efficiency of electron beam melted titanium lattice structures by chemical etching, Additive Manufacturing, vol.11, pp.71-76, 2016.

C. De-formanoir, G. Martin, F. Prima, S. Y. Allain, T. Dessolier et al., Micromechanical behavior and thermal stability of a dual-phase ?+? titanium alloy produced by additive manufacturing, Acta Materialia, vol.162, pp.149-162, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01895925

B. Fotovvati, N. Namdari, and A. Dehghanghadikolaei, Fatigue performance of selective laser melted Ti6Al4V components: state of the art, Materials Research Express, vol.6, issue.1, p.12002, 2019.

W. E. Frazier, Metal Additive Manufacturing: A Review, Journal of Materials Engineering and Performance, vol.23, issue.6, pp.1917-1928, 2014.

H. Galarraga, D. A. Lados, R. R. Dehoff, M. M. Kirka, and P. Nandwana, Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM), Additive Manufacturing, vol.10, pp.47-57, 2016.

I. Gibson and M. F. Ashby, The mechanics of three-dimensional cellular materials, Proc. R. Soc. Lond. A, vol.382, pp.43-59, 1982.

P. J. Golden, R. John, W. J. Porter, H. Gong, K. Rafi et al., Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting, Procedia Engineering, vol.2, pp.545-554, 2010.

D. Greitemeier, C. Dalle-donne, F. Syassen, J. Eufinger, and T. Melz, Effect of surface roughness on fatigue performance of additive manufactured Ti-6Al-4V

, Materials Science and Technology, vol.32, issue.7, pp.629-634, 2016.

D. Greitemeier, F. Palm, F. Syassen, and T. Melz, Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting, Fatigue and Fracture Behavior of Additive Manufactured Parts, vol.94, pp.211-217, 2017.

J. Günther, D. Krewerth, T. Lippmann, S. Leuders, T. Tröster et al., Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime, International Journal of Fatigue, vol.94, pp.236-245, 2017.

M. E. Haddad, T. Topper, and K. Smith, Prediction of non propagating cracks, Engineering Fracture Mechanics, vol.11, issue.3, pp.573-584, 1979.

B. V. Hooreweder, Y. Apers, K. Lietaert, and J. Kruth, Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting, Acta Biomaterialia, vol.47, pp.193-202, 2017.

N. Hrabe and T. Quinn, Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), Part 2: Energy input, orientation, and location, Materials Science and Engineering: A, vol.573, pp.271-277, 2013.

N. Hrabe, T. Gnäupel-herold, and T. Quinn, Fatigue properties of a titanium alloy (Ti-6Al-4V) fabricated via electron beam melting (EBM): Effects of internal defects and residual stress, International Journal of Fatigue, vol.94, pp.202-210, 2017.

, Surface texture : profile method. Rules and procedures for the assessment of surface texture. rapport, 1996, International Organization for Standardization

V. Jain and S. Adsul, Experimental investigations into abrasive flow machining (AFM), International Journal of Machine Tools and Manufacture, vol.40, issue.7, pp.1003-1021, 2000.

X. Jiang, C. Man, M. Shepard, and T. Zhai, Effects of shot-peening and re-shot-peening on four-point bend fatigue behavior of Ti6Al-4V, The References McEvily Symposium: Fatigue and Fracture of Traditional and Advanced Materials, TMS, vol.468, pp.137-143, 2006.

V. Juechter, T. Scharowsky, R. Singer, and C. Körner, Processing window and evaporation phenomena for Ti-6Al-4V produced by selective electron beam melting, Acta Materialia, vol.76, pp.252-258, 2014.

M. Kahlin, H. Ansell, and J. Moverare, Fatigue behaviour of notched additive manufactured Ti6Al4V with as-built surfaces, International Journal of Fatigue, vol.101, pp.51-60, 2017.

G. Kasperovich and J. Hausmann, Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting, Journal of Materials Processing Technology, vol.220, pp.202-214, 2015.

H. Kitagawa and S. Takahashi, Applicability of fracture mechanics to very small cracks or the cracks in the early stage, Second International Conference on Mechanical Behavior of Materials. ASM, Metals Park, pp.627-631, 1976.

M. Kobayashi, T. Matsui, and Y. Murakami, Mechanism of creation of compressive residual stress by shot peening, International Journal of Fatigue, vol.20, issue.5, pp.351-357, 1998.

P. Kobryn and S. Semiatin, Microstructure and texture evolution during solidification processing of Ti-6Al-4V, Journal of Materials Processing Technology, vol.135, issue.2, pp.330-339, 2003.

T. Kohut, Surface finishing with abrasive flow machining, Proc. of the Fourth Int'l, vol.2

, Aluminum Extrusion Technology Seminar, 1988.

C. Körner, A. Bauereiß, and E. Attar, Fundamental consolidation mechanisms during selective beam melting of powders. Modelling and Simulation in, Materials Science and Engineering, vol.21, issue.8, p.85011, 2013.

J. Kruzic and R. Ritchie, Kitagawa-Takahashi diagrams define the limiting conditions for cyclic fatigue failure in human dentin, Journal of Biomedical Materials Research Part A, vol.79, issue.3, pp.747-751, 2006.

A. Kuhn, The electropolishing of titanium and its alloys, Metal Finishing, vol.102, issue.6, pp.80-86, 2004.

G. Leopold, Y. Nadot, T. Billaudeau, and J. Mendez, Influence of artificial and casting defects on fatigue strength of moulded components in Ti-6Al-4V alloy, Fatigue & Fracture of Engineering Materials & Structures, vol.38, issue.9, pp.1026-1041, 2015.

S. Leuders, T. Lieneke, S. Lammers, T. Tröster, and T. Niendorf, References On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance, International Journal of Fatigue, vol.48, pp.1911-1919, 2013.

S. Leuders, M. Vollmer, F. Brenne, T. Tröster, and T. Niendorf, Fatigue Strength Prediction for Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting, Metallurgical and Materials Transactions A, vol.46, issue.9, pp.3816-3823, 2015.

C. Leyens and M. Peters, Titanium and titanium alloys: fundamentals and applications, vol.5, pp.153-187, 2003.

P. Lhuissier, C. De-formanoir, G. Martin, R. Dendievel, and S. Godet, Geometrical control of lattice structures produced by EBM through chemical etching: Investigations at the scale of individual struts, Materials and Design, vol.110, pp.485-493, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01451275

P. Li, D. Warner, A. Fatemi, and N. Phan, Critical assessment of the fatigue performance of additively manufactured Ti-6Al-4V and perspective for future research, International Journal of Fatigue, vol.85, pp.130-143, 2016.

C. Lin, C. Ju, and J. Lin, A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys, vol.26, pp.2899-2907, 2005.

X. Liu, P. K. Chu, and C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Materials Science and Engineering: R: Reports, vol.47, issue.3, pp.49-121, 2004.

K. K. Liu and M. R. Hill, The effects of laser peening and shot peening on fretting fatigue in Ti-6Al-4V coupons

, Special Issue: Fifth International Symposium on Fretting Fatigue, vol.42, pp.1250-1262, 2009.

P. Lorenzino, S. Okazaki, H. Matsunaga, and Y. Murakami, Effect of small defect orientation on fatigue limit of carbon steels, Fatigue & Fracture of Engineering Materials & Structures, vol.38, issue.9, pp.1076-1086, 2015.

G. Lütjering and A. Gysler, Fatigue-a, Critical Review. Titanium-Science and Technology, vol.4, pp.2065-2083, 1984.

G. Lütjering, Influence of processing on microstructure and mechanical properties of (Î?+Î?) titanium alloys, Materials Science and Engineering: A, vol.243, issue.1, pp.32-45, 1998.

S. Meguid, G. Shagal, J. Stranart, and J. Daly, Three-dimensional dynamic finite element analysis of shot-peening induced residual stresses, Finite Elements in Analysis and Design, vol.31, issue.3, pp.179-191, 1999.

L. W. Meyer, L. Krüger, K. Sommer, T. Halle, and M. Hockauf, Dynamic strength and failure behavior of titanium alloy Ti-6Al-4V for a variation of heat treatments, Mechanics of Time-Dependent Materials, vol.12, issue.3, pp.237-247, 2008.

N. Mohammadian, S. Turenne, and V. Brailovski, Surface finish control of additively-manufactured Inconel 625 components using combined chemical-abrasive flow polishing, Journal of Materials Processing Technology, vol.252, pp.728-738, 2018.

T. M. Mower, Degradation of titanium 6Al-4V fatigue strength due to electrical discharge machining, International Journal of Fatigue, vol.64, pp.84-96, 2014.

Y. Murakami, Analysis of stress intensity factors of modes I, II and III for inclined surface cracks of arbitrary shape, Engineering Fracture Mechanics, vol.22, issue.1, pp.101-114, 1985.

Y. Murakami and M. Endo, Effects of defects, inclusions and inhomogeneities on fatigue strength, International Journal of Fatigue, vol.16, issue.3, pp.163-182, 1994.

L. Murr, E. Esquivel, S. Quinones, S. Gaytan, M. Lopez et al., Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V, Materials Characterization, vol.60, issue.2, pp.96-105, 2009.

L. E. Murr, S. M. Gaytan, F. Medina, H. Lopez, E. Martinez et al., Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.368, pp.1999-2032, 1917.

M. Niinomi, Mechanical properties of biomedical titanium alloys, Materials Science and Engineering: A, vol.243, issue.1, pp.231-236, 1998.

B. Oberwinkler, M. Riedler, and W. Eichlseder, Importance of local microstructure for damage tolerant light weight design of Ti-6Al-4V forgings, TMS Annual Meeting Symposium on Mechanisms, theory, vol.32, pp.808-814, 2009.

H. Oguma and T. Nakamura, The effect of microstructure on very high cycle fatigue properties in Ti-6Al-4V, Scripta Materialia, vol.63, issue.1, pp.32-34, 2010.

J. Oh, J. G. Lee, N. J. Kim, S. Lee, E. W. Lee et al., Effect of build orientation on the fatigue properties of as-built Electron Beam Melted Ti-6Al-4V alloy, International Journal of Fatigue, vol.39, issue.2, pp.65-76, 2004.

A. K. Polasik, G. Pyka, A. Burakowski, G. Kerckhofs, M. Moesen et al., Surface Modification of Ti6Al4V Open Porous Structures Produced by Additive Manufacturing, Advanced Engineering Materials, vol.14, issue.6, pp.363-370, 2012.

H. K. Rafi, N. Karthik, T. L. Starr, B. E. Stucker, H. K. Rafi et al., Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting, Proceedings of the Solid Freeform Fabrication Symposium, vol.22, pp.3872-3883, 2012.

M. Rakita, M. Wang, Q. Han, Y. Liu, S. Yin-f-;-romano et al., Qualification of AM parts: Extreme value statistics applied to tomographic measurements, International Journal of Computational Materials Science and Surface Engineering, vol.5, issue.3, pp.32-48, 2013.

A. Rotella, Y. Nadot, M. Piellard, and R. Augustin, Influence of natural defects on the fatigue limit of a cast Al-Si alloy, 3rd International Symposium on Fatigue Design and Material Defects, vol.7, pp.513-520, 2017.

A. Safdar, L. Wei, A. Snis, and Z. Lai, Evaluation of microstructural development in electron beam melted Ti-6Al-4V. Materials Characterization, vol.65, pp.8-15, 2012.

J. Schijve, Fatigue of structures and materials, vol.2, pp.23-25, 2001.

J. Schijve, Fatigue of structures and materials, vol.3, pp.45-48, 2001.

M. Seifi, M. Dahar, R. Aman, O. Harrysson, J. Beuth et al., Evaluation of Orientation Dependence of Fracture Toughness and Fatigue Crack Propagation Behavior of As-Deposited ARCAM EBM Ti-6Al-4V, JOM, vol.67, issue.3, pp.597-607, 2015.

M. Seifi, A. Salem, D. Satko, J. Shaffer, and J. J. Lewandowski, Defect distribution and microstructure heterogeneity effects on fracture resistance and fatigue behavior of EBM Ti-6Al-4V, International Journal of Fatigue, vol.94, pp.263-287, 2017.

X. Shui, K. Yamanaka, M. Mori, Y. Nagata, K. Kurita et al., Effects of post-processing on cyclic fatigue response of a titanium alloy additively manufactured by electron beam melting, Materials Science and Engineering: A, vol.680, pp.239-248, 2017.

M. Suard, G. Martin, P. Lhuissier, R. Dendievel, F. Vignat et al., Mechanical equivalent diameter of single struts for the stiffness prediction of lattice structures produced by Electron Beam Melting, Additive Manufacturing, vol.8, pp.124-131, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01240214

M. Suard, Characterization and optimization of lattice structures made by Electron Beam Melting. Theses, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01241583

Y. Y. Sun, S. Gulizia, C. H. Oh, D. Fraser, M. Leary et al., The Influence of As-Built Surface Conditions on Mechanical Properties of Ti-6Al-4V

, Additively Manufactured by Selective Electron Beam Melting. JOM, vol.68, issue.3, pp.791-798, 2016.

K. Tajima, M. Hironaka, K. Chen, Y. Nagamatsu, H. Kakigawa et al., Electropolishing of CP Titanium and Its Alloys in an Alcoholic Solution-based Electrolyte, Dental Materials Journal, vol.27, issue.2, pp.258-265, 2008.

M. Takeuchi, Y. Abe, Y. Yoshida, Y. Nakayama, M. Okazaki et al., Acid pretreatment of titanium implants, Biomaterials, vol.24, issue.10, pp.1821-1827, 2003.

S. Tammas-williams, H. Zhao, F. Lã?onard, F. Derguti, I. Todd et al., XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by Selective Electron Beam Melting, Materials Characterization, vol.102, pp.47-61, 2015.

]. Tam-16a, S. Tammas-williams, P. Withers, I. Todd, and P. Prangnell, Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titanium components, Scripta Materialia, vol.122, pp.72-76, 2016.

. Tam, S. Tammas-williams, P. J. Withers, I. Todd, and P. Prangnell, The Effectiveness of Hot Isostatic Pressing for Closing Porosity in Titanium Parts Manufactured by Selective Electron Beam Melting, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol.47, issue.5, pp.1939-1946, 2016.

S. Tammas-williams, P. Withers, I. Todd, and P. Prangnell, The influence of porosity on fatigue crack initiation in additively manufactured titanium components, Scientific reports, vol.17, p.7308, 2017.

N. Tao, Z. Wang, W. Tong, M. Sui, J. Lu et al., An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta Materialia, vol.50, pp.4603-4616, 2002.

Y. Todaka, M. Umemoto, and K. Tsuchiya, Comparison of Nanocrystalline Surface Layer in Steels Formed by Air Blast and Ultrasonic Shot Peening, MATERIALS TRANSACTIONS, vol.45, issue.2, pp.376-379, 2004.

Y. Todaka, M. Umemoto, Y. Watanabe, and K. Tsuchiya, Formation of Nanocrystalline Structure in Steels by Air Blast Shot Peening and Particle Impact Processing. Designing, Processing and Properties of Advanced Engineering Materials, Materials Science Forum Trans Tech Publications, vol.449, pp.1149-1152, 2004.

M. Torres and H. Voorwald, An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel, International Journal of Fatigue, vol.24, issue.8, pp.877-886, 2002.

N. Tsuji, S. Tanaka, and T. Takasugi, Effects of combined plasma-carburizing and shot-peening on fatigue and wear properties of Ti-6Al-4V alloy, Surface and Coatings Technology, vol.203, issue.10, pp.1400-1405, 2009.

E. Uhlmann, M. Doits, and C. Schmiedel, Development of a Material Model for Visco-elastic, 14th CIRP Conference on Modeling of Machining Operations, vol.8, pp.351-356, 2013.

V. Urlea and V. Brailovski, Electropolishing and electropolishing-related allowances for powder bed selectively lasermelted Ti-6Al-4V alloy components, Journal of Materials Processing Technology, vol.242, pp.1-11, 2017.

B. Vayssette, N. Saintier, C. Brugger, M. Elmay, and E. Pessard, Surface roughness of Ti-6Al-4V parts obtained by SLM and EBM: Effect on the High Cycle Fatigue life, 7th International Conference on Fatigue Design, vol.213, pp.89-97, 2017.

T. Vilaro, C. Colin, and J. D. Bartout, As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting, Metallurgical and Materials Transactions A, vol.42, issue.10, pp.3190-3199, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00624108

T. Watanabe, K. Hattori, M. Handa, N. Hasegawa, K. Tokaji et al., Effect of ultrasonic shot peening on fatigue strength of high strength steel, Proc, vol.8, pp.305-310, 2002.

R. Wauthle, B. Vrancken, B. Beynaerts, K. Jorissen, J. Schrooten et al., Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures, Additive Manufacturing, vol.5, pp.77-84, 2015.

G. Welsch, R. Boyer, E. Collings-e-;-wycisk, A. Solbach, S. Siddique et al., Materials properties handbook: titanium alloys, Effects of Defects in Laser Additive Manufactured Ti-6Al-4V on Fatigue Properties, p.488, 1993.

, 8th International Conference on Laser Assisted Net Shape Engineering, vol.56, pp.371-378, 2014.

Y. Zhai, H. Galarraga, D. A. Lados, and . Microstructure, static properties, and fatigue crack growth mechanisms in Ti-6Al-4V fabricated by additive manufacturing: LENS and EBM, Special issue on the International Conference on Structural Integrity, vol.69, pp.3-14, 2016.

X. Zhao, S. Li, M. Zhang, Y. Liu, T. B. Sercombe et al., Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting, Materials & Design, vol.95, pp.21-31, 2016.

W. Zinn, J. Schulz, R. Kopp, and B. Scholtes,