F. Cavani, S. Albonetti, F. Basile, and . Gandini,

F. Cavani, S. Albonetti, F. Basile, and . Gandini,

F. Cavani, S. Albonetti, F. Basile, and A. Gandini, Chemicals and fuels from biobased building blocks, 2016.

E. V. Makshina, Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene, Chem. Soc. Rev, vol.43, pp.7917-7953, 2014.

G. Pomalaza, M. Capron, V. Ordomsky, and F. Dumeignil, Recent Breakthroughs in the Conversion of Ethanol to, Butadiene. Catalysts, vol.6, p.203, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01772443

T. W. Kim, Butadiene production from bioethanol and acetaldehyde over tantalum oxide-supported spherical silica catalysts for circulating fluidized bed

, Chem. Eng. J, vol.278, pp.217-223, 2015.

H. Chae, Butadiene production from bioethanol and acetaldehyde over tantalum oxide-supported ordered mesoporous silica catalysts, pp.596-604, 2014.

P. I. Kyriienko, O. V. Larina, S. O. Soloviev, S. M. Orlyk, and S. Dzwigaj, High selectivity of TaSiBEA zeolite catalysts in 1,3-butadiene production from ethanol and acetaldehyde mixture, Catal. Commun, vol.77, pp.123-126, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01274278

F. Tielens, T. Shishido, and S. Dzwigaj, What Do Tantalum Framework Sites Look Like in Zeolites? A Combined Theoretical and Experimental Investigation, J. Phys
URL : https://hal.archives-ouvertes.fr/hal-00604808

, Chem, vol.114, pp.9923-9930, 2010.

S. Barman, Single-Site VO x Moieties Generated on Silica by Surface Organometallic Chemistry: A Way To Enhance the Catalytic Activity in the

, Oxidative Dehydrogenation of Propane, ACS Catal, vol.6, pp.5908-5921, 2016.

M. Chabanas, Molecular insight into surface organometallic chemistry through the combined use of 2D HETCOR solid-state NMR spectroscopy and silsesquioxane analogues, Angew. Chemie -Int. Ed, vol.40, pp.4493-4496, 2001.

E. Le-roux, Detailed structural investigation of the grafting of
URL : https://hal.archives-ouvertes.fr/hal-01861681

, Chem. Soc, vol.126, pp.13391-13399, 2004.

J. D. Pelletier and J. Basset, Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts, Acc. Chem. Res, vol.49, pp.664-677, 2016.

A. Quadrelli and J. Basset, On silsesquioxanes' accuracy as molecular models for silica-grafted complexes in heterogeneous catalysis, Coord. Chem. Rev, vol.254, pp.707-728, 2010.

C. Copéret, Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities, Chemical Reviews, 2016.

V. Vidal, A. Théolier, J. Thivolle-cazat, J. Basset, and J. Corker, Synthesis, Characterization, and Reactivity, in the C-H Bond Activation of Cycloalkanes, of a Silica-Supported Tantalum(III) Monohydride Complex: (?SiO)2TaIII-H, J. Am

, Chem. Soc, vol.118, p.4595, 1996.

P. Avenier, M. Taoufik, A. Lesage, . Solans-monfort, and L. Baudouin,

J. B. Veyre, L. O.-eisenstein, and E. A. Emsley, Dinitrogen Dissociation on an Isolated Surface Tantalum Atom, Science, vol.317, pp.1056-1060, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00171186

S. Soignier, Tantalum hydrides supported on MCM-41 mesoporous silica: Activation of methane and thermal evolution of the tantalum-methyl species, Organometallics, vol.25, pp.1569-1577, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00305301

B. B. Corson, H. E. Jones, C. E. Welling, J. A. Hinckley, and E. E. Stahly, Butadiene from Ethyl Alcohol, Catalysis in the One-and Two-Stop Processes

, Industrial & Engineering Chemistry, vol.42, 1950.

P. Müller, Mechanistic Study on the Lewis Acid Catalyzed Synthesis of 1,3-Butadiene over Ta-BEA Using Modulated Operando DRIFTS-MS, ACS Catal, vol.6, pp.6823-6832, 2016.

D. Cavani, F. Albonetti, S. Basile, F. Gandini, and A. , Chemicals and fuels from biobased building blocks, 2016.

E. V. Makshina, Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene, Chem. Soc. Rev, vol.43, pp.7917-7953, 2014.

G. Pomalaza, M. Capron, V. Ordomsky, and F. Dumeignil, Recent Breakthroughs in the Conversion of Ethanol to, Butadiene. Catalysts, vol.6, p.203, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01772443

J. S. Plotkins, The Continuing Quest for Butadiene

P. C. Bruijnincx and B. M. Weckhuysen, Shale Gas Revolution: An Opportunity for the Production of Biobased Chemicals?, Angew. Chemie Int. Ed, vol.52, pp.11980-11987, 2013.

R. S. Middleton, R. Gupta, J. D. Hyman, and H. S. Viswanathan, The shale gas revolution: Barriers, sustainability, and emerging opportunities, Appl. Energy, vol.199, pp.88-95, 2017.

G. O. Ezinkwo, V. P. Tretyakov, A. Aliyu, and A. M. Ilolov, Fundamental Issues of Catalytic Conversion of Bio-Ethanol into, Butadiene. ChemBioEng Rev, vol.1, pp.194-203, 2014.

B. B. Corson, H. E. Jones, C. E. Welling, J. A. Hinckley, and E. E. Stahly, Butadiene from Ethyl Alcohol. Catalysis in the One-and Two-Stop Processes, Industrial & Engineering Chemistry, vol.42, 1950.

W. J. Toussaint, J. T. Dunn, and D. R. , J. Production of Butadiene from Alcohol, 1947.

H. Duan, Y. Yamada, and S. Sato, Future Prospect of the Production, vol.1, pp.1036-1047, 2016.

H. Langeveld, M. Meeusen, and J. Sanders, The biobased economy : biofuels, materials and chemicals in the post-oil era, 2010.

H. Arpe and K. Weissermel, Industrial organic chemistry, 2010.

D. W. Griffin and M. A. Schultz, Fuel and chemical products from biomass syngas: A comparison of gas fermentation to thermochemical conversion routes, Environ. Prog. Sustain. Energy, vol.31, pp.219-224, 2012.

H. Latif, A. A. Zeidan, A. T. Nielsen, and K. Zengler, Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms, Curr. Opin. Biotechnol, vol.27, pp.79-87, 2014.

A. M. Henstra, J. Sipma, A. Rinzema, and A. Stams, J. Microbiology of synthesis Chapter

V. L. Sushkevich, I. I. Ivanova, V. V. Ordomsky, and E. Taarning, Design of a Metal-Promoted Oxide Catalyst for the Selective Synthesis of Butadiene from Ethanol, ChemSusChem, 2014.

Z. Han, X. Li, M. Zhang, Z. Liu, and M. Gao, SI for Sol-gel synthesis of ZrO2-SiO2 catalysts for the transformation of bioethanol and acetaldehyde into 1,3-butadiene, pp.103982-103988, 2015.

J. Liang-cheong, Highly Active and Selective Zr/MCF Catalyst for Production of 1,3-Butadiene from Ethanol in a Dual Fixed Bed Reactor System, 2016.

Y. Xu, Z. Liu, Z. Han, and M. Zhang, Ethanol/acetaldehyde conversion into butadiene over sol-gel ZrO 2 -SiO 2 catalysts doped with ZnO, RSC Adv, vol.7, pp.7140-7149, 2017.

H. Chae, Butadiene production from bioethanol and acetaldehyde over tantalum oxide-supported ordered mesoporous silica catalysts, pp.596-604, 2014.

, Irina Igorevna Ivanova. US, vol.8, pp.635-637, 2011.

P. I. Kyriienko, Effect of the niobium state on the properties of NbSiBEA as bifunctional catalysts for gas-and liquid-phase tandem processes, Journal Mol. Catal. A, Chem, vol.424, pp.27-36, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346172

A. Klein, K. Keisers, and R. Palkovits, Formation of 1,3-butadiene from ethanol in a two-step process using modified zeolite catalysts, Appl. Catal. A Gen, vol.514, pp.192-202, 2016.

Q. Zhu, B. Wang, and T. Tan, Conversion of Ethanol and Acetaldehyde to Butadiene over MgO-SiO2 Catalysts: Effect of Reaction Parameters and Interaction between MgO and SiO2 on Catalytic Performance, ACS Sustain. Chem. Eng, vol.5, pp.722-733, 2017.

J. D. Pelletier and J. Basset, Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts, Acc. Chem. Res, vol.49, pp.664-677, 2016.

C. Copéret, Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities, Chemical Reviews, 2016.

K. Takehira, T. Hayakawa, and T. Ishikawa, Heterogeneous Catalysis in the Liquidphase Oxidation of Olefins. IV. The Activity of a Supported Vanadium or Chromium Oxide Catalyst in the Decomposition of t -Butyl Hydroperoxide, Bull. Chem. Soc. Jpn, vol.53, pp.2103-2110, 1980.

J. C. Dalton, J. M. Austin, T. Groenewald, and M. Spiro, Heterogeneous Catalysis in Solution. Part 18.l The Catalysis by Carbons of Oxidation-Reduction Reactions, J. Chem. Soc., Dalt. Trans, vol.0, pp.854-859, 1980.

S. Soignier, Tantalum hydrides supported on MCM-41 mesoporous silica: E. References 1. Petroff Saint-Arroman, R. Catalyse hétérogène Composés cycliques Hafnium --Composés organiques Peroxydation Tantale --Composés organiques Zirconium --Composés organiques, 2002.
DOI : 10.1021/om050609e

F. Rataboul, Molecular Understanding of the Formation of Surface Zirconium Hydrides upon Thermal Treatment under Hydrogen of [(tSiO)Zr(CH 2 tBu) 3 ] by Using Advanced Solid-State NMR Techniques, J. Am. Chem. Soc, vol.126, pp.12541-12550, 2004.

F. Rataboul, Synthesis, characterization and propane metathesis activity of a tantalum-hydride prepared on high surface area 'silica supported zirconium hydroxide, Dalt. Trans, pp.923-927, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02117630

W. B. Tolman, Binding and Activation of N2 O at Transition Metal Centers: Recent Mechanistic Insights, Angew Chem Int Ed Engl, vol.49, pp.1018-1024, 2010.

P. L. Holland, Metal-Dioxygen and Metal-Dinitrogen Complexes: Where Are The Electrons, Dalt. Trans, vol.39, pp.5415-5425, 2010.

V. Vidal, A. Théolier, J. Thivolle-cazat, J. Basset, and J. Corker, Synthesis, Characterization, and Reactivity, in the C-H Bond Activation of Cycloalkanes, of a Silica-Supported Tantalum(III) Monohydride Complex: (?SiO)2TaIII-H, J. Am. Chem. Soc, vol.118, p.4595, 1996.

S. Soignier, Tantalum hydrides supported on MCM-41 mesoporous silica: Activation of methane and thermal evolution of the tantalum-methyl species, Organometallics, vol.25, pp.1569-1577, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01861685

E. Le-roux, Detailed structural investigation of the grafting of [Ta(=CHtBu)(CH 2tBu)3] and [Cp*TaMe4] on silica partially dehydroxylated at 700 °C and the activity of the grafted complexes toward alkane metathesis, J. Am. Chem. Soc, vol.126, pp.13391-13399, 2004.

M. Chabanas, Molecular insight into surface organometallic chemistry through the combined use of 2D HETCOR solid-state NMR spectroscopy and silsesquioxane analogues, Angew. Chemie -Int. Ed, vol.40, pp.4493-4496, 2001.

C. Chow, M. Taoufik, and E. A. Quadrelli, Ammonia and dinitrogen activation by surface organometallic chemistry on silica-grafted tantalum hydrides, Eur. J. Inorg. Chem, pp.1349-1359, 2011.
DOI : 10.1002/ejic.201000640

G. Zwaschka, Supported sub-nanometer Ta oxide clusters as model catalysts for the selective epoxidation of cyclooctene, New J. Chem. New J. Chem, vol.42, pp.3035-3041, 2018.

N. Merle, Well-defined silica supported bipodal molybdenum oxo alkyl complexes: a model of the active sites of industrial olefin metathesis catalysts
URL : https://hal.archives-ouvertes.fr/hal-01872691

, Chem. Commun. Chem. Commun, vol.53, pp.11338-11341, 1133.

C. Copéret, Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities, Chemical Reviews, 2016.

R. R. Schrock, L. W. Messerle, C. Wood, D. Guggenberger, and L. J. , Multiple Metal-Carbon Bonds-Preparation and Characterization of Several Alkylidene Complexes, 1978.

B. Results and .. .. , Synthesis of TaOx/SiO2 catalysts via oxidation of known silica-supported tantalum alkyl species with molecular O2

, Characterization of surface species for TaOx/SiO2 catalysts

. B3, Synthesis and characterization of TaOx/SiO2 catalysts via oxidation of silicasupported alkoxo tantalum species with molecular O2

C. .. Conclusions,

, General procedure for the preparation of starting materials

. D2, Preparation of surface complexes by SOMC protocol

. D4, Catalyst characterization by EXAFS spectroscopy

E. .. References,

E. Chae and H. , Butadiene production from bioethanol and acetaldehyde over tantalum oxide-supported ordered mesoporous silica catalysts, pp.596-604, 2014.

T. W. Kim, Butadiene production from bioethanol and acetaldehyde over tantalum oxide-supported spherical silica catalysts for circulating fluidized bed, Chem. Eng. J, vol.278, pp.217-223, 2015.

P. I. Kyriienko, O. V. Larina, S. O. Soloviev, S. M. Orlyk, and S. Dzwigaj, High selectivity of TaSiBEA zeolite catalysts in 1,3-butadiene production from ethanol and acetaldehyde mixture, Catal. Commun, vol.77, pp.123-126, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01274278

E. L. Lee and I. E. Wachs, Situ Spectroscopic Investigation of the Molecular and Electronic Structures of SiO 2 Supported Surface Metal Oxides, J. Phys. Chem. C, vol.111, pp.14410-14425, 2007.

Y. Chen, J. L. Fierro, T. Tanaka, and I. E. Wachs, Supported Tantalum Oxide Catalysts: Synthesis, Physical Characterization, and Methanol Oxidation Chemical Probe Reaction, J. Phys. Chem. B, vol.107, pp.5243-5250, 2003.

M. Baltes, Supported Tantalum Oxide and Supported Vanadia-tantala Mixed Oxides : Structural Characterization and Surface Properties, J. Phys. Chem. B, vol.105, pp.6211-6220, 2001.

P. Saint-arroman and R. , Catalyse hétérogène Composés cycliques Hafnium --Composés organiques Peroxydation Tantale --Composés organiques Zirconium --Composés organiques, 2002.

W. B?achucki, Study of the reactivity of silica supported tantalum catalysts with oxygen followed by in situ HEROS, Phys. Chem. Chem. Phys, vol.17, pp.18262-18264, 2015.

W. B?achucki, In situ high energy resolution off-resonant spectroscopy applied to a time-resolved study of single site Ta catalyst during oxidation, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.411, pp.63-67, 2017.

B. M. Weckhuysen, J. Jehng, and I. E. Wachs, Situ Raman Spectroscopy of Supported Transition Metal Oxide Catalysts: 18 O 2 ? 16 O 2 Isotopic Labeling Studies, J. Phys. Chem. B, vol.104, pp.7382-7387, 2000.

P. Saint-arroman, R. Didillon, B. De-mallmann, A. Basset, J. M. Lefebvre et al., Deperoxidation of cyclohexyl hydroperoxide by silica-supported alkoxo-tantalum complexes, Appl. Catal. A, vol.337, pp.78-85, 2008.

R. R. Schrock, Alkylidene complexes of niobium and tantalum, Acc. Chem. Res, vol.12, pp.98-104, 1979.

N. Merle, Well-defined silica supported bipodal molybdenum oxo alkyl complexes: a model of the active sites of industrial olefin metathesis catalysts, Chem. Commun. Chem. Commun, vol.53, pp.11338-11341, 1133.
URL : https://hal.archives-ouvertes.fr/hal-01872691

M. Choi, W. Heo, F. Kleitz, and R. Ryoo, Facile synthesis of high quality mesoporous SBA-15 with enhanced control of the porous network connectivity and wall thickness, Chem. Commun, vol.0, pp.1340-1341, 2003.

B. .. Results, General description of catalytic tests and analytical methods

, Catalytic activity of catalysts synthesized by SOMC protocol

. Ta,

. B3, Butadiene selectivity and product distribution

C. .. Conclusions,

. .. D2-;, Analysis of coke formation by Thermo-gravimetric Analysis (TGA), vol.106

E. .. References,

E. Makshina and E. V. , Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene, Chem. Soc. Rev, vol.43, pp.7917-7953, 2014.

E. V. Makshina, W. Janssens, B. F. Sels, and P. A. Jacobs, Catalytic study of the conversion of ethanol into 1,3-butadiene, Catal. Today, vol.198, pp.338-344, 2012.

J. V. Ochoa, An analysis of the chemical, physical and reactivity features of MgO-SiO 2 catalysts for butadiene synthesis with the Lebedev process, Green Chem, vol.18, pp.1653-1663, 2016.

G. Pomalaza, M. Capron, V. Ordomsky, and F. Dumeignil, Recent Breakthroughs in the Conversion of Ethanol to, Butadiene. Catalysts, vol.6, p.203, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01772443

H. Chae, Butadiene production from bioethanol and acetaldehyde over tantalum oxide-supported ordered mesoporous silica catalysts, pp.596-604, 2014.

P. I. Kyriienko, O. V. Larina, S. O. Soloviev, S. M. Orlyk, and S. Dzwigaj, High selectivity of TaSiBEA zeolite catalysts in 1,3-butadiene production from ethanol and acetaldehyde mixture, Catal. Commun, vol.77, pp.123-126, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01274278

Y. Xu, Z. Liu, Z. Han, and M. Zhang, Ethanol/acetaldehyde conversion into butadiene over sol-gel ZrO 2 -SiO 2 catalysts doped with ZnO, RSC Adv, vol.7, pp.7140-7149, 2017.

M. D. Jones, Investigations into the conversion of ethanol into 1,3-butadienew, Catal. Sci. Technol. Catal. Sci. Technol, vol.1, pp.267-272, 2011.

W. M. Quattlebaum and W. J. , Deoxygenation of Certain Aldehydes and Ketones: Preparation of Butadiene and Styrene, 1947.

C. Angelici, M. E. Velthoen, B. M. Weckhuysen, and P. C. Bruijnincx, Effect of Preparation Method and CuO Promotion in the Conversion of Ethanol into 1,3-Butadiene over SiO2-MgO Catalysts, ChemSusChem, 2014.

Y. Hayashi, Experimental and computational studies of the roles of MgO and Zn in talc for the selective formation of 1,3-butadiene in the conversion of ethanol

, Phys. Chem. Chem. Phys, 2016.

C. Angelici, B. M. Weckhuysen, and P. C. Bruijnincx, Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals, ChemSusChem, vol.6, pp.1595-1614, 2013.

S. K. Bhattacharyya and S. K. Sanyal, Kinetic Study on the Mechanism of the Catalytic Conversion of Ethanol to Butadiene, Journal of Catalysis, vol.7, 1967.

W. M. Quattlebaum, W. J. Toussaint, and J. T. Dunn, Deoxygenation of Certain Aldehydes and Ketones: Preparation of Butadiene and Styrene, J. Am. Chem. Soc, vol.69, pp.593-599, 1947.

C. Copéret, Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities, Chemical Reviews, 2016.

T. Kim, Butadiene production from bioethanol and acetaldehyde over tantalum oxide-supported spherical silica catalysts for circulating fluidized bed

, Chem. Eng. J, vol.278, pp.217-223, 2015.

J. Liang-cheong, Highly Active and Selective Zr/MCF Catalyst for Production of 1,3-Butadiene from Ethanol in a Dual Fixed Bed Reactor System, 2016.

C. Angelici, Ex Situ and Operando Studies on the Role of Copper in CuPromoted SiO2-MgO Catalysts for the Lebedev Ethanol-to

, ACS Catal, 2015.

B. Results and .. .. , Evaluation of surface acidity of SOMC catalysts and its effect on catalytic performance

, Studying the influence of reaction parameters on catalytic activity

, Effect of feed composition on catalytic activity, vol.1

, Effect of contact time on catalytic activity

. B3, Proposed reaction mechanism for transformation of ethanol and acetaldehyde to butadiene

C. .. Conclusions,

, D1.1. By NH3 Temperature programmed desorption (NH3-TPD)

. D2, Surface area by N2adsorption desorption isotherms

E. .. References,

E. Chieregato and A. , On the Chemistry of Ethanol on Basic Oxides: Revising Mechanisms and Intermediates in the Lebedev and Guerbet reactions, ChemSusChem, vol.8, pp.377-388, 2015.

J. V. Ochoa, An analysis of the chemical, physical and reactivity features of MgO-SiO 2 catalysts for butadiene synthesis with the Lebedev process, Green Chem, vol.18, pp.1653-1663, 2016.

V. L. Sushkevich, I. I. Ivanova, V. V. Ordomsky, and E. Taarning, Design of a MetalPromoted Oxide Catalyst for the Selective Synthesis of Butadiene from Ethanol, ChemSusChem, 2014.

S. K. Bhattacharyya and S. K. Sanyal, Kinetic Study on the Mechanism of the Catalytic Conversion of Ethanol to Butadiene, Journal of Catalysis, vol.7, 1967.

W. M. Quattlebaum, W. J. Toussaint, and J. T. Dunn, Deoxygenation of Certain Aldehydes and Ketones: Preparation of Butadiene and Styrene, J. Am. Chem. Soc, vol.69, pp.593-599, 1947.

C. Angelici, B. M. Weckhuysen, and P. C. Bruijnincx, Chemocatalytic Conversion of Ethanol into Butadiene and Other Bulk Chemicals, ChemSusChem, vol.6, pp.1595-1614, 2013.

E. V. Makshina, Review of old chemistry and new catalytic advances in the onpurpose synthesis of butadiene, Chem. Soc. Rev, vol.43, pp.7917-7953, 2014.

G. Pomalaza, M. Capron, V. Ordomsky, and F. Dumeignil, Recent Breakthroughs in the Conversion of Ethanol to, Butadiene. Catalysts, vol.6, p.203, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01772443

V. V. Ordomsky, V. L. Sushkevich, and I. I. Ivanova, Study of acetaldehyde condensation chemistry over magnesia and zirconia supported on silica, Journal Mol. Catal. A, Chem, vol.333, pp.85-93, 2010.

W. Taifan, G. X. Yan, and J. Baltrusaitis, Surface chemistry of MgO/SiO2 catalysts during the ethanol catalytic conversion to 1,3-butadiene: in situ DRIFTS and DFT study, Catal. Sci. Technol, vol.7, pp.4648-4668, 2017.

M. D. Jones, Investigations into the conversion of ethanol into 1,3-butadienew, Catal. Sci. Technol. Catal. Sci. Technol, vol.1, pp.267-272, 2011.

P. I. Kyriienko, Effect of the niobium state on the properties of NbSiBEA as bifunctional catalysts for gas-and liquid-phase tandem processes, Journal Mol. Catal. A, Chem, vol.424, pp.27-36, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346172

P. I. Kyriienko, O. V. Larina, S. O. Soloviev, S. M. Orlyk, and S. Dzwigaj, High selectivity of TaSiBEA zeolite catalysts in 1,3-butadiene production from ethanol and Chapter 5 129 acetaldehyde mixture, Catal. Commun, vol.77, pp.123-126, 2016.

T. Kim, Butadiene production from bioethanol and acetaldehyde over tantalum oxide-supported spherical silica catalysts for circulating fluidized bed, Chem. Eng. J, vol.278, pp.217-223, 2015.

V. L. Sushkevich, D. Palagin, and I. I. Ivanova, With Open Arms: Open Sites of ZrBEA Zeolite Facilitate Selective Synthesis of Butadiene from Ethanol, ACS Catal, vol.5, pp.4833-4836, 2015.

S. Dzwigaj, M. Yannick, M. Che, and . Ta, Single Site BEA Zeolite by Two-Step Postsynthesis Method: Preparation and Characterization, Catal Lett, vol.135, pp.169-174, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00604713

T. W. Kim, Butadiene production from bioethanol and acetaldehyde over tantalum oxide-supported spherical silica catalysts for circulating fluidized bed, Chem. Eng. J, vol.278, pp.217-223, 2015.

F. Tielens, T. Shishido, and S. Dzwigaj, What Do Tantalum Framework Sites Look Like in Zeolites? A Combined Theoretical and Experimental Investigation, J. Phys. Chem, vol.114, pp.9923-9930, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00604808

G. Busca, The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization, Phys. Chem. Chem. Phys, vol.1, pp.723-736, 1999.

T. Barzetti, E. Selli, D. Moscotti, and L. Forni, Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts

Y. Chen, J. L. Fierro, T. Tanaka, and I. E. Wachs, Supported Tantalum Oxide Catalysts: Synthesis, Physical Characterization, and Methanol Oxidation Chemical Probe Reaction, J. Phys. Chem. B, vol.107, pp.5243-5250, 2003.

J. Datka, A. M. Turek, J. M. Jehng, and I. E. Wachs, Acidic Properties of Supported Niobium Oxide Catalysts: An Infrared Spectroscopy Investigation, JOURNAL OF CATALYSIS, vol.135, 1992.

M. Baltes, Supported Tantalum Oxide and Supported Vanadia-tantala Mixed Oxides : Structural Characterization and Surface Properties, J. Phys. Chem. B, vol.105, pp.6211-6220, 2001.

Z. Han, X. Li, M. Zhang, Z. Liu, and M. Gao, SI for Sol-gel synthesis of ZrO2-SiO2 catalysts for the transformation of bioethanol and acetaldehyde into 1,3-butadiene, pp.103982-103988, 2015.

B. B. Corson, H. E. Jones, C. E. Welling, J. A. Hinckley, and E. E. Stahly, Butadiene from Ethyl Alcohol. Catalysis in the One-and Two-Stop Processes, Industrial & Engineering Chemistry, vol.42, 1950.

P. Müller, Mechanistic Study on the Lewis Acid Catalyzed Synthesis of 1,3-Butadiene over Ta-BEA Using Modulated Operando DRIFTS-MS, ACS Catal, vol.6, pp.6823-6832, 2016.