A. R. Adams, Strained-Layer Quantum-Well Lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol.17, p.3, 2011.

J. Bardeen and W. Shockley, Deformation Potentials and Mobilities in Non-Polar Crystals, In: Physical Review, vol.80, pp.72-80, 1950.

A. Barlian, W. Park, J. Mallon, A. Rastegar, and B. Pruitt, Review: Semiconductor Piezoresistance for Microsystems, Proceedings of the IEEE 97, vol.3, p.3, 2009.

G. L. Bir, G. E. Pikus, P. Shelnitz, and D. Louvish, Symmetry and straininduced effects in semiconductors, vol.624, 1974.

P. Chadwick, Continuum mechanics, p.10, 1976.

M. Chu, Y. Sun, U. Aghoram, and S. E. Thompson, Strain: A Solution for Higher Carrier Mobility in Nanoscale MOSFETs, In: Annual Review of Materials Research, vol.39, issue.1, pp.203-229, 2009.

B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, In: Archive for Rational Mechanics and Analysis, vol.13, pp.167-178, 1963.

J. Coleman, Strained-layer InGaAs quantum-well heterostructure lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol.6, p.3, 2000.

J. F. Creemer, F. Fruett, G. C. Meijer, and P. J. French, The piezojunction effect in silicon sensors and circuits and its relation to piezoresistance, IEEE Sensors Journal, vol.1, p.98, 2001.

J. Creemer and P. French, The piezojunction effect in bipolar transistors at moderate stress levels: a theoretical and experimental study, In: Sensors and Actuators A: Physical, vol.82, issue.1 -3, pp.181-185, 2000.

J. F. Creemer, The effect of mechanical stress on bipolar transistor characteristics, vol.146, pp.148-150, 2002.

A. Datta, J. Damon-lacoste, P. Roca-i-cabarrocas, and P. Chatterjee, Defect states on the surfaces of a P-type c-Si wafer and how they control the performance of a double heterojunction solar cell, In: Solar Energy Materials and Solar Cells, vol.92, p.50, 2008.

X. Ding, W. H. Ko, and J. M. Mansour, Residual stress and mechanical properties of boron-doped p+-silicon films, In: Sensors and Actuators A: Physical, vol.23, p.22, 1990.

F. Ericson and J. Schweitz, Micromechanical fracture strength of silicon, In: Journal of Applied Physics, vol.68, p.22, 1990.

M. V. Fischetti and S. E. Laux, Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys, In: Journal of Applied Physics, vol.80, p.2234, 1996.

S. Fonash, Solar cell device physics, 2012.

L. Freund and H. Johnson, Influence of strain on functional characteristics of nanoelectronic devices, In: Journal of the Mechanics and Physics of Solids, vol.49, pp.1925-1935, 2001.

E. Fried and M. E. Gurtin, Coherent Solid-State Phase Transitions with Atomic Diffusion: A Thermomechanical Treatment, In: Journal of Statistical Physics, vol.95, pp.1361-1427, 1999.

E. Fried and M. E. Gurtin, A Unified Treatment of Evolving Interfaces Accounting for Small Deformations and Atomic Transport with Emphasis on Grain-Boundaries and Epitaxy, In: Advances in Applied Mechanics, vol.40, pp.1-177, 2004.

P. Friedel, M. S. Hybertsen, and M. Schlüter, Local empirical pseudopotential approach to the optical properties of Si/Ge superlattices, Phys. Rev. B, vol.39, issue.11, p.138, 1989.

J. D. Goddard, On the Thermoelectricity of W. Thomson: Towards a Theory of Thermoelastic Conductors, In: Journal of Elasticity, vol.104, p.11, 2011.

M. E. Gurtin and A. S. Vargas, On the classical theory of reacting fluid mixtures, In: Archive for Rational Mechanics and Analysis, vol.43, pp.179-197, 1971.

C. Herring and E. Vogt, Transport and Deformation-Potential Theory for Many-Valley Semiconductors with Anisotropic Scattering, In: Physical Review, vol.101, pp.944-961, 1956.

H. T. Johnson, L. B. Freund, C. D. Aky´'aky´aky´'uz, and A. Zaslavsky, Finite element analysis of strain effects on electronic and transport properties in quantum dots and wires, In: Journal of Applied Physics, vol.84, pp.3714-3725, 1998.

H. Johnson and L. Freund, The influence of strain on confined electronic states in semiconductor quantum structures, In: International Journal of Solids and Structures, vol.38, issue.6-7, pp.1045-1062, 2001.

Y. Kanda, Effect of Stress on Germanium and Silicon p -n Junctions, In: Japanese Journal of Applied Physics, vol.6, p.475, 1967.

Y. Kanda, Piezoresistance effect of silicon, In: Sensors and Actuators A: Physical, vol.28, pp.83-91, 1991.

C. Kittel, Introduction to Solid State Physics. 8th, p.3, 2004.

C. Kittel and H. Kroemer, Thermal physics. Macmillan (cit, vol.17, p.14, 1980.

P. Kleimann, B. Semmache, M. L. Berre, and D. Barbier, Stress-dependent hole effective masses and piezoresistive properties of p-type monocrystalline and polycrystalline silicon, Phys. Rev. B, vol.57, pp.8966-8971, 1998.

A. Kovetz, Electromagnetic theory, 2000.

H. Kroemer, Quasi-electric and quasi-magnetic fields in nonuniform semiconductors, pp.332-342, 1957.

D. Lange, P. Roca-i-cabarrocas, N. Triantafyllidis, and D. Daineka, Piezoresistivity of thin film semiconductors with application to thin film silicon solar cells, {EMRS} 2015 Spring meeting ? U Symposium C on Advanced Inorganic Materials and Structures for Photovoltaics, vol.145, pp.93-103, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01230428

H. G. Lorenzi, H. F. De, and . Tiersten, On the interaction of the electromagnetic field with heat conducting deformable semiconductors, In: Journal of Mathematical Physics, vol.16, p.4, 1975.

T. Manku and A. Nathan, Electrical properties of silicon under nonuniform stress, In: Journal of Applied Physics, vol.74, pp.1832-1837, 1993.

P. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductor Equations, p.33, 1990.

P. A. Markowich, The stationary semiconductor device equations, 1986.
DOI : 10.1007/978-3-7091-3678-2

P. A. Markowich and C. A. Ringhofer, A Singularly Perturbed Boundary Value Problem Modelling a Semiconductor Device, In: SIAM Journal on Applied Mathematics, vol.44, p.5, 1984.
DOI : 10.1137/0144018

A. H. Marshak and C. M. Vliet, Electrical current and carrier density in degenerate materials with nonuniform band structure, Proceedings of the IEEE 72, vol.2, pp.148-164, 1984.

A. H. Marshak and K. M. Van-vliet, Electrical current in solids with position-dependent band structure, Solid-State Electronics 21, vol.2, pp.417-427, 1978.

I. Müller, A thermodynamic theory of mixtures of fluids, In: Archive for Rational Mechanics and Analysis, vol.28, p.11, 1968.

K. Najafi and K. Suzuki, Measurement of fracture stress, young's modulus, and intrinsic stress of heavily boron-doped silicon microstructures, Thin Solid Films, vol.181, p.22, 1989.

J. Nelson, The physics of solar cells, vol.1, 2003.

R. F. Pierret, Advanced semiconductor fundamentals, vol.6, p.9, 1987.

C. P. Please, An Analysis of Semiconductor P-N Junctions, In: IMA Journal of Applied Mathematics, vol.28, p.5, 1982.

D. Ritter, K. Weiser, and E. Zeldov, Steady-state photocarrier grating technique for diffusion-length measurement in semiconductors: Theory and experimental results for amorphous silicon and semi-insulating GaAs, In: Journal of Applied Physics, vol.62, p.50, 1987.

C. Sah, R. Tang, W. Noyce, and . Shockley, Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics, Proceedings of the IRE 45.9, p.44, 1957.

S. Selberherr, Analysis and Simulation of Semiconductor Devices, p.21, 1984.

W. Shockley, The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors, Bell System Technical Journal, vol.28, p.24, 1949.

C. S. Smith, Piezoresistance Effect in Germanium and Silicon, In: Physical Review, vol.94, pp.42-49, 1954.
DOI : 10.1103/physrev.94.42

I. P. Sobkowicz, Study and optimization of the growth of a-Si:H on wet-chemically textured c-Si substrates for the enhancement of a-Si:H/cSi heterojunction solar cells, Theses. Ecole Doctorale Polytechnique, p.50, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01120054

D. J. Steigmann, On the Formulation of Balance Laws for Electromagnetic Continua, In: Mathematics and Mechanics of Solids, vol.14, pp.390-402, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00771740

S. Suckow, 2/3-Diode Fit, p.46, 2014.

S. Suckow, T. M. Pletzer, and H. Kurz, Fast and reliable calculation of the two-diode model without simplifications, Progress in Photovoltaics: Research and Applications, vol.22, p.44, 2012.

Y. Sun, S. E. Thompson, and T. Nishida, Strain Effect in Semiconductors, p.149, 2010.

S. M. Sze and K. K. Ng, Physics of semiconductor devices, John wiley & sons, 2006.

E. B. Tadmor, R. E. Miller, and R. S. Elliott, Continuum mechanics and thermodynamics: from fundamental concepts to governing equations, p.14, 2012.

M. Taguchi, E. Maruyama, and M. Tanaka, Temperature Dependence of Amorphous/Crystalline Silicon Heterojunction Solar Cells, In: Japanese Journal of Applied Physics, vol.47, p.49, 2008.

S. Thompson, A 90-nm Logic Technology Featuring StrainedSilicon, IEEE Transactions on Electron Devices, vol.51, p.3, 2004.

S. Thompson, G. Sun, Y. S. Choi, and T. Nishida, Uniaxial-processinduced strained-Si: extending the CMOS roadmap, IEEE Transactions on Electron Devices, vol.53, p.3, 2006.

C. G. Walle and . Van-de, Band lineups and deformation potentials in the model-solid theory, Phys. Rev. B, vol.39, issue.3, p.138, 1989.

M. Wolf, G. Noel, and R. Stirn, Investigation of the double exponential in the current-Voltage characteristics of silicon solar cells, IEEE Transactions on Electron Devices, vol.24, p.44, 1977.

J. J. Wortman and R. A. Evans, Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium, In: Journal of Applied Physics, vol.36, issue.1, p.37, 1965.

J. J. Wortman and J. R. Hauser, Effect of Mechanical Stress on p-n Junction Device Characteristics. II. Generation-Recombination Current, In: Journal of Applied Physics, vol.37, p.4, 1966.

J. J. Wortman, J. R. Hauser, and R. M. Burger, Effect of Mechanical Stress on p-n Junction Device Characteristics, In: Journal of Applied Physics, vol.35, pp.2122-2131, 1964.

Y. Xiao and K. Bhattacharya, A Continuum Theory of Deformable, Semiconducting Ferroelectrics, pp.59-95, 2008.

G. S. Bales and A. Zangwill, Morphological instability of a terrace edge during step-flow growth, In: Physical Review B, vol.41, p.81, 1990.

W. K. Burton, N. Cabrera, and F. C. Frank, The Growth of Crystals and the Equilibrium Structure of their Surfaces, In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.243, issue.866, p.62, 1951.

P. Cermelli and M. E. Jabbour, Possible mechanism for the onset of step-bunching instabilities during the epitaxy of single-species crystalline films, Phys. Rev. B, vol.75, issue.16, p.63, 2007.

P. Cermelli and M. Jabbour, Multispecies epitaxial growth on vicinal surfaces with chemical reactions and diffusion, In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.461, pp.3483-3504, 2005.

S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, p.103, 1981.

A. A. Chernov, The spyral growth of crystals, In: Soviet Physics Uspekhi, issue.1, p.62, 1961.

W. F. Chung and M. S. Altman, Kinetic length, step permeability, and kinetic coefficient asymmetry on the Si(111) (7X7) surface, In: Physical Review B, vol.66, p.119, 2002.

B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, In: Archive for Rational Mechanics and Analysis, vol.13, pp.167-178, 1963.

M. Degawa, H. Minoda, Y. Tanishiro, and K. Yagi, Direct-currentinduced drift direction of silicon adatoms on Si(111)-(1×1) surfaces, Surface Science, vol.461, issue.1-3, p.125, 2000.

M. Degawa, H. Minoda, Y. Tanishiro, and K. Yagi, New Phase Diagram of Step Instabilities on Si(111) Vicinal Surfaces Induced by DC Annealing, In: Journal of the Physical Society of Japan, vol.70, p.123, 2001.

M. Dufay, T. Frisch, and J. Debierre, Role of step-flow advection during electromigration-induced step bunching, In: Physical Review B, vol.75, pp.84-86, 2007.

J. D. Eshelby, The Force on an Elastic Singularity, In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.244, pp.87-112, 1951.
DOI : 10.1007/1-4020-4499-2_6

E. S. Fu, D. Liu, M. Johnson, J. Weeks, and E. D. Williams, The effective charge in surface electromigration, Surface Science, vol.385, issue.2-3, p.59, 1997.

R. Ghez and S. S. Iyer, The kinetics of fast steps on crystal surfaces and its application to the molecular beam epitaxy of silicon, In: IBM Journal of Research and Development, vol.32, p.86, 1988.

R. Ghez, H. G. Cohen, and J. B. Keller, Stability of crystals that grow or evaporate by step propagation, In: Applied Physics Letters, vol.56, p.86, 1990.
DOI : 10.1063/1.103016

R. Ghez, H. G. Cohen, and J. B. Keller, The stability of growing or evaporating crystals, In: Journal of Applied Physics, vol.73, pp.3685-3693, 1993.

B. Gibbons, Electromigration induced step instabilities on silicon surfaces, p.123, 2006.

B. Gibbons, J. Noffsinger, and J. Pelz, Influence of Si deposition on the electromigration induced step bunching instability on Si(111), vol.131, pp.123-125, 2005.

B. Gibbons, S. Schaepe, and J. Pelz, Evidence for diffusion-limited kinetics during electromigration-induced step bunching on Si(111), vol.12, pp.2417-2424, 2006.

F. Gillet, Dynamique non linéaire de surfaces vicinales hors de équili-bre, vol.133, pp.84-87, 2000.

M. E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, p.66, 1993.

K. Hata, A. Kawazu, T. Okano, T. Ueda, and M. Akiyama, Observation of step bunching on vicinal GaAs(100) studied by scanning tunneling microscopy, In: Applied Physics Letters, vol.63, p.118, 1993.

H. Hibino, K. Sumitomo, T. Fukuda, Y. Homma, and T. Ogino, Disordering of Si(111) at high temperatures, Phys. Rev. B, vol.58, issue.19, p.156, 1998.

Y. Homma and N. Aizawa, Electric-current-induced step bunching on Si(111), In: Physical Review B 62, vol.12, p.59, 2000.
DOI : 10.1103/physrevb.62.8323

A. Ichimiya, Y. Tanaka, and K. Ishiyama, Quantitative Measurements of Thermal Relaxation of Isolated Silicon Hillocks and Craters on the Si(111)-(7X7) Surface by Scanning Tunneling Microscopy, In: Physical Review Letters, vol.76, p.118, 1996.

J. Ishizaki, S. Ya, M. Goto, T. Kishida, H. Fukui et al., Mechanism of Multiatomic Step Formation during Metalorganic Chemical Vapor deposition Growth of GaAs on (001) Vicinal Surface Studied by Atomic Force Microscopy, Japanese Journal of Applied Physics, vol.33, p.721, 1994.

J. Ishizaki, K. Ya, T. Ohkuri, and . Fukui, Simulation and Observation of the Step Bunching Process Grown on GaAs (001) Vicinal Surface by Metalorganic Vapor Phase Epitaxy, In: Japanese Journal of Applied Physics, vol.35, p.118, 1996.

M. E. Jabbour, Epitaxy of Binary Compounds and Alloys, In: Journal of Elasticity, vol.80, pp.153-182, 2005.

H. Jeong and E. D. Williams, Steps on surfaces: experiment and theory, In: Surface Science Reports, vol.34, issue.6, p.158, 1999.

M. Johnson, K. Leung, A. Birch, B. Orr, and J. Tersoff, Adatom concentration on GaAs(001) during MBE annealing, Surface Science, vol.350, p.156, 1996.

M. Johnson, K. Leung, A. Birch, and B. Orr, American Crystal Growth 1996 and Vapor Growth and Epitaxy, In: Journal of Crystal Growth, vol.174, p.156, 1996.

D. Kandel and E. Kaxiras, Microscopic Theory of Electromigration on Semiconductor Surfaces, In: Physical Review Letters, vol.76, p.59, 1996.

M. Kasu and T. Fukui, Multi-Atomic Steps on Metalorganic Chemical Vapor Deposition-Grown GaAs Vicinal Surfaces Studied by Atomic Force Microscopy, Japanese Journal of Applied Physics, vol.31, p.118, 1992.

J. B. Keller, H. G. Cohen, and G. J. Merchant, The stability of rapidly growing or evaporating crystals, In: Journal of Applied Physics, vol.73, pp.3694-3697, 1993.

S. Kosolobov and A. Latyshev, Step Bunching on Silicon Surface Under Electromigration, p.60, 2010.

J. Krug, Origins of scale invariance in growth processes, In: Advances in Physics, vol.46, p.118, 1997.

J. Krug, Introduction to Step Dynamics and Step Instabilities, pp.69-95, 2005.

R. V. Kukta, A. Peralta, and D. Kouris, Elastic Interaction of Surface Steps: Effect of Atomic-Scale Roughness, In: Physical Review Letters, vol.88, p.75, 2002.

R. Kukta and K. Bhattacharya, A micromechanical model of surface steps, In: Journal of the Mechanics and Physics of Solids, vol.50, p.75, 2002.

. Latyshev and . Si, ) stepped surface during sublimation, Surface Science 213.1, pp.157-169

A. Latyshev, L. Fedina, S. Kosolobov, S. Sitnikov, D. Rogilo et al., Atomic Processes on the Silicon Surface, Advances in Semiconductor Nanostructures, p.58, 2017.

D. Liu, Relaxation of the step profile for different microscopic mechanisms, In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, p.59, 1996.

D. Liu and J. D. Weeks, Quantitative theory of current-induced step bunching on Si(111), In: Physical Review B, vol.57, p.59, 1998.

A. E. Love, A treatise on the mathematical theory of elasticity, p.75, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01307751

R. Magri, S. K. Gupta, and M. Rosini, Step energy and step interactions on the reconstructed GaAs(001) surface, In: Physical Review B, vol.90, p.159, 2014.

R. Magri, S. K. Gupta, and M. Rosini, Erratum: Step energy and step interactions on the reconstructed GaAs(001) surface, In: Physical Review B, vol.90, p.159, 2014.

K. Man, A. Pang, and M. Altman, Kinetic length and step permeability on the Si(111) (1×1) surface, Surface Science, vol.601, p.160, 2007.

V. Marchenko and A. Y. Parshin, Elastic properties of crystal surfaces, In: Sov. Phys. JETP, vol.52, p.73, 1980.

J. Métois and S. Stoyanov, Impact of the growth on the stability-instability transition at Si (111) during step bunching induced by electromigration, Surface Science, vol.440, pp.123-125, 1999.

T. Michely and J. Krug, Islands, mounds and atoms, vol.42, p.61, 2012.
DOI : 10.1007/978-3-642-18672-1

C. Misbah, O. Pierre-louis, and Y. Saito, Crystal surfaces in and out of equilibrium: A modern view, In: Reviews of Modern Physics, vol.82, p.61, 2010.

P. Muller, Elastic effects on surface physics, Surface Science Reports, vol.54, issue.5-8, p.74, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01967004

J. Myslive?ek, . Schelling, G. Schäffler, P. Springholz, . ?milauer et al., On the microscopic origin of the kinetic step bunching instability on vicinal Si(001), p.61, 2002.

A. Natori, Step Structure Transformation Induced by DC on Vicinal Si(111), In: Japanese Journal of Applied Physics 33.Part, vol.1, issue.6A, pp.3538-3544, 1994.
DOI : 10.1143/jjap.33.3538

J. H. Neave, P. J. Dobson, B. A. Joyce, and J. Zhang, Reflection highenergy electron diffraction oscillations from vicinal surfaces-a new approach to surface diffusion measurements, In: Applied Physics Letters, vol.47, p.157, 1985.

H. Omi, Y. Homma, V. Tonchev, and A. Pimpinelli, New Types of Unstable Step-Flow Growth onSi(111)-(7X7)during Molecular Beam Epitaxy: Scaling and Universality, In: Physical Review Letters, vol.156, 2005.

A. B. Pang, K. L. Man, M. S. Altman, T. J. Stasevich, F. Szalma et al., Step line tension and step morphological evolution on the Si(111)(1×1)surface, In: Physical Review B, vol.77, p.159, 2008.
DOI : 10.1103/physrevb.77.115424

URL : http://repository.ust.hk/ir/bitstream/1783.1-25246/1/PhysRevB.77.115424.pdf

R. Peyret, Spectral methods for incompressible viscous flow, vol.148, pp.104-107, 2002.

O. Pierre-louis, Phase field models for step flow, In: Physical Review E, vol.68, p.126, 2003.

O. Pierre-louis, Step bunching with general step kinetics: stability analysis and macroscopic models, Surface Science 529.1, vol.72, p.128, 2003.

O. Pierre-louis, Local Electromigration Model for Crystal Surfaces, In: Physical Review Letters, p.126, 2006.
DOI : 10.1103/physrevlett.96.135901

URL : http://arxiv.org/pdf/cond-mat/0511317

O. Pierre-louis and J. Métois, Kinetic Step Pairing, In: Physical Review Letters, vol.93, p.59, 2004.
DOI : 10.1103/physrevlett.93.165901

O. Pierre-louis and C. Misbah, Dynamics and fluctuations during MBE on vicinal surfaces. I. Formalism and results of linear theory, In: Physical Review B, vol.58, p.81, 1998.
DOI : 10.1103/physrevb.58.2276

A. Pimpinelli and A. Videcoq, Novel mechanism for the onset of morphological instabilities during chemical vapour epitaxial growth, Surface Science 445.1, p.118, 2000.

A. Pimpinelli, . Elkinani, . Karma, J. Misbah, and . Villain, Step motions on high-temperature vicinal surfaces, In: Journal of Physics: Condensed Matter, vol.6, p.81, 1994.
DOI : 10.1088/0953-8984/6/14/005

A. Pimpinelli, V. Tonchev, A. Videcoq, and M. Vladimirova, Scaling and Universality of Self-Organized Patterns on Unstable Vicinal Surfaces, In: Physical Review Letters, vol.88, p.134, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00272530

P. Politi and J. Krug, Crystal symmetry, step-edge diffusion, and unstable growth, Surface Science 446.1-2, p.118, 2000.
DOI : 10.1016/s0039-6028(99)01104-8

URL : http://arxiv.org/pdf/cond-mat/9908152

K. Pond, Step bunching and step equalization on vicinal GaAs(001) surfaces, In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.12, p.2689, 1994.
DOI : 10.1116/1.587232

B. Ranguelov and S. Stoyanov, Evaporation and growth of crystals: Propagation of step-density compression waves at vicinal surfaces, Physical Review B, vol.76, pp.84-86, 2007.

B. Ranguelov and S. Stoyanov, Instabilities at vicinal crystal surfaces: Competition between electromigration of adatoms and kinetic memory effect, In: Physical Review B, vol.77, p.85, 2008.

B. Ranguelov, P. Mãijller, J. Metois, and S. Stoyanov, Step density waves on growing vicinal crystal surfaces -Theory and experiment, In: Journal of Crystal Growth, vol.457, p.85, 2017.
DOI : 10.1016/j.jcrysgro.2016.06.041

URL : https://hal.archives-ouvertes.fr/hal-01720810

D. I. Rogilo, L. I. Fedina, S. S. Kosolobov, B. S. Ranguelov, and A. V. Latyshev, Critical Terrace Width for Two-Dimensional Nucleation during Si Growth on Si(111)-(7X7) Surface, In: Physical Review Letters, vol.111, 2013.

D. I. Rogilo, N. E. Rybin, L. I. Fedina, and A. V. Latyshev, Adatom concentration distribution on an extrawide Si(111) terrace during sublimation, In: Optoelectronics, Instrumentation and Data Processing, vol.52, pp.501-507, 2016.

. Ronda and . Berbezier, Self-patterned Si surfaces as templates for Ge islands ordering, In: Physica E: Low-dimensional Systems and Nanostructures, vol.23, p.61, 2004.

M. Salmi, . Alatalo, R. Ala-nissila, and . Nieminen, Energetics and diffusion paths of gallium and arsenic adatoms on flat and stepped GaAs(001) surfaces, pp.180-186, 1999.

M. Sato, M. Uwaha, and Y. Saito, Instabilities of steps induced by the drift of adatoms and effect of the step permeability, In: Physical Review B 62, vol.12, p.98, 2000.

R. L. Schwoebel, Step Motion on Crystal Surfaces. II, In: Journal of Applied Physics, vol.40, p.62, 1969.
DOI : 10.1016/0022-0248(68)90216-9

L. E. Shilkrot and D. J. Srolovitz, Elastic field of a surface step: Atomistic simulations and anisotropic elastic theory, In: Physical Review B, vol.53, p.72, 1996.

M. Shinohara and N. Inoue, Behavior and mechanism of step bunching during metalorganic vapor phase epitaxy of GaAs, In: Applied Physics Letters, vol.66, p.118, 1995.

F. Slanina, J. Krug, and M. Kotrla, Kinetics of step bunching during growth: A minimal model, p.118, 2005.

P. ?milauer and D. D. Vvedensky, Coarsening and slope evolution during unstable spitaxial growth, In: Physical Review B, vol.52, p.61, 1995.

J. Stewart, O. Pohland, and J. M. Gibson, Elastic-displacement field of an isolated surface step, Phys. Rev. B, vol.49, pp.73-75, 1994.

S. Stoyanov, Heating Current Induced Conversion between 2X1 and 1X2 Domains at Vicinal (001) Si Surfaces-Can it be Explained by Electromigration of Si Adatoms?, In: Japanese Journal of Applied Physics, vol.29, p.59, 1990.

S. Stoyanov, New type of step bunching instability at vicinal surfaces in crystal evaporation affected by electromigration, Surface Science 416.1-2, vol.125, p.59, 1998.

S. Stoyanov, J. Métois, and V. Tonchev, Current induced bunches of steps on the Si(111) surface -a key to measuring the temperature dependence of the step interaction coefficient, vol.160, p.125, 2000.

S. Stoyanov, Electromigration Induced Step Bunching on Si SurfacesHow Does it Depend on the Temperature and Heating Current Direction?, In: Japanese Journal of Applied Physics, vol.30, issue.1, p.125, 1991.

N. Suga, J. Kimpara, N. Wu, H. Yasunaga, and A. Natori, Novel Transition Mechanism of Surface Electromigration Induced Step Structure on Vicinal Si(111) Surfaces, In: Japanese Journal of Applied Physics, vol.39, issue.7B, p.125, 2000.

C. Teichert, J. Bean, and M. Lagally, Self-organized nanostructures in Si 1-x Ge x films on Si(001), In: Applied Physics A: Materials Science & Processing, vol.67, p.61, 1998.

P. Tejedor, F. Allegretti, P. ?milauer, and B. Joyce, Temperature-dependent unstable homoepitaxy on vicinal GaAs(110) surfaces, Surface Science, vol.407, issue.1-3, p.118, 1998.

J. Tersoff, Y. H. Phang, Z. Zhang, and M. G. Lagally, Step-Bunching Instability of Vicinal Surfaces under Stress, Phys. Rev. Lett, vol.75, issue.14, pp.2730-2733, 1995.

J. Tersoff, M. D. Johnson, and B. G. Orr, Adatom Densities on GaAs: Evidence for Near-Equilibrium Growth, Phys. Rev. Lett, vol.78, issue.2, p.156, 1997.

K. Thürmer, D. Liu, E. D. Williams, and J. D. Weeks, Onset of Step Antibanding Instability due to Surface Electromigration, In: Physical Review Letters, vol.83, p.59, 1999.

J. Van-hove and P. Cohen, Reflection high energy electron diffraction measurement of surface diffusion during the growth of gallium arsenide by MBE, In: Journal of Crystal Growth, vol.81, p.157, 1987.

M. Vladimirova, A. D. Vita, and A. Pimpinelli, Dimer diffusion as a driving mechanism of the step bunching instability during homoepitaxial growth, In: Physical Review B, vol.64, p.118, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00272531

B. Voigtlander, A. Zinner, T. Weber, and H. P. Bonzel, Modification of growth kinetics in surfactant-mediated epitaxy, In: Physical Review B 51, vol.12, p.118, 1995.

Y. Yang and E. D. Williams, High atom density in the 1X1 phase and origin of the metastable reconstructions on Si(111), Phys. Rev. Lett, vol.72, issue.12, p.156, 1994.

Y. Yang, E. S. Fu, and E. D. Williams, An STM study of currentinduced step bunching on Si(111), In: Surface Science, vol.356, pp.101-111, 1996.

T. Zhao and J. D. Weeks, A two-region diffusion model for currentinduced instabilities of step patterns on vicinal Si(111) surfaces, Surface Science, vol.580, issue.1-3, p.126, 2005.

T. Zhao, J. D. Weeks, and D. Kandel, Unified treatment of currentinduced instabilities onSisurfaces, In: Physical Review B, vol.70, p.126, 2004.

N. C. Admal and E. B. Tadmor, A unified interpretation of stress in molecular systems, In: Journal of Elasticity, vol.100, issue.2, p.172, 2010.

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature nanotechnology 5, vol.8, p.164, 2010.

G. I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Advances in applied mechanics 7.1, pp.70121-70123, 1962.

E. Bitzek, J. R. Kermode, and P. Gumbsch, Atomistic aspects of fracture, In: International Journal of Fracture, vol.191, issue.2, p.183, 2015.

D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni et al., A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, In: Journal of Physics: Condensed Matter, vol.14, p.173, 2002.

R. De-borst, Numerical aspects of cohesive-zone models, vol.14, p.186, 2003.

M. De-graef and M. E. Mchenry, Structure of materials: an introduction to crystallography, diffraction and symmetry, p.167, 2007.

D. Dugdale, Yielding of steel sheets containing slits, In: Journal of the Mechanics and Physics of Solids, vol.8, issue.60, pp.90013-90015, 1960.

L. B. Freund, Dynamic fracture mechanics, p.181, 1998.

K. Gall, M. Horstemeyer, M. Van-schilfgaarde, and M. Baskes, Atomistic simulations on the tensile debonding of an aluminum-silicon interface, In: Journal of the Mechanics and Physics of Solids, vol.48, pp.2183-2212, 2000.

P. H. Geubelle and J. S. Baylor, Impact-induced delamination of composites: a 2D simulation, In: Composites Part B: Engineering, vol.29, p.165, 1998.

R. Grantab, V. B. Shenoy, and R. S. Ruoff, Anomalous strength characteristics of tilt grain boundaries in graphene, vol.173, p.169, 2010.

A. A. Griffith, In: Philosophical transactions of the royal society of london. Series A, containing papers of 207 a mathematical or physical character, p.179, 1921.

A. Hillerborg, M. Modéer, and P. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, In: Cement and Concrete Research, vol.6, pp.773-781, 1976.

D. J. Holland and M. Marder, Cracks and atoms, p.183, 1999.
DOI : 10.1002/(sici)1521-4095(199907)11:10<793::aid-adma793>3.3.co;2-2

P. Y. Huang, C. S. Ruiz-vargas, A. M. Van-der-zande, W. S. Whitney, M. P. Levendorf et al., Grains and grain boundaries in single-layer graphene atomic patchwork quilts, pp.389-392, 2011.

R. Khare, S. L. Mielke, J. T. Paci, S. Zhang, R. Ballarini et al., Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets, In: Physical Review B, vol.75, p.173, 2007.

K. Kim, Z. Lee, W. Regan, M. Kisielowski, and . Crommie, Grain boundary mapping in polycrystalline graphene, ACS nano 5.3, p.168, 2011.
DOI : 10.1021/nn1033423

S. Y. Kim and H. S. Park, On the effective plate thickness of monolayer graphene from flexural wave propagation, In: Journal of Applied Physics, vol.110, p.175, 2011.

H. Krull and H. Yuan, Suggestions to the cohesive traction-separation law from atomistic simulations, In: Engineering Fracture Mechanics, vol.78, pp.525-533, 2011.
DOI : 10.1016/j.engfracmech.2009.12.014

B. R. Lawn, Fracture of brittle solids, p.179, 1993.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, vol.5887, p.164, 2008.

G. Lee, R. C. Cooper, S. J. An, S. Lee, A. Van-der-zande et al., Highstrength chemical-vapor-deposited graphene and grain boundaries, In: Science, vol.340, pp.1073-1076, 2013.
DOI : 10.1126/science.1235126

S. Malola, H. Häkkinen, and P. Koskinen, Structural, chemical, and dynamical trends in graphene grain boundaries, In: Physical Review B, vol.81, p.168, 2010.

J. J. Möller and E. Bitzek, Fracture toughness and bond trapping of grain boundary cracks, In: Acta Materialia, vol.73, p.183, 2014.

A. Needleman, A continuum model for void nucleation by inclusion debonding, In: Journal of applied mechanics, vol.54, p.165, 1987.

A. Needleman, An analysis of tensile decohesion along an interface, In: Journal of the Mechanics and Physics of Solids, vol.38, p.165, 1990.

K. S. Novoselov, A. K. Geim, S. Morozov, Y. Jiang, S. Zhang et al., Electric field effect in atomically thin carbon films, vol.5696, p.163, 2004.

E. Orowan, Fracture and strength of solids, In: Rep. Prog. Phys, vol.12, p.179, 1949.

K. Park, G. H. Paulino, and J. R. Roesler, A unified potential-based cohesive model of mixed-mode fracture, In: Journal of the Mechanics and Physics of Solids, vol.57, p.170, 2009.

L. Pastewka, P. Pou, R. Pérez, P. Gumbsch, and M. Moseler, Describing bond-breaking processes by reactive potentials: Importance of an environment-dependent interaction range, In: Physical Review B, vol.78, p.173, 2008.

R. Perriot, X. Gu, Y. Lin, V. V. Zhakhovsky, and I. I. Oleynik, Screened environment-dependent reactive empirical bond-order potential for atomistic simulations of carbon materials, In: Physical Review B, vol.88, p.173, 2013.

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, In: Journal of computational physics, vol.117, p.174, 1995.

H. I. Rasool, C. Ophus, W. S. Klug, J. K. Zettl, and . Gimzewski, Measurement of the intrinsic strength of crystalline and polycrystalline graphene, p.170, 2013.

H. I. Rasool, C. Ophus, Z. Zhang, M. F. Crommie, B. I. Yakobson et al., Conserved Atomic Bonding Sequences and Strain Organization of Graphene Grain Boundaries, Nano letters 14, vol.12, p.168, 2014.

J. J. Remmers, R. De, C. V. Borst, A. Verhoosel, and . Needleman, The cohesive band model: a cohesive surface formulation with stress triaxiality, Int J Fract, vol.181, p.170, 2013.

E. Saether, A Multiscale Method for Simulating Fracture in Polycrystalline Metals, p.187, 2008.

C. Shet and N. Chandra, Analysis of energy balance when using cohesive zone models to simulate fracture processes, In: Journal of engineering materials and technology, vol.124, p.179, 2002.

T. Siegmund and W. Brocks, Prediction of the work of separation and implications to modeling, In: International Journal of Fracture, vol.99, issue.2, p.170, 1999.

D. E. Spearot, K. I. Jacob, and D. L. Mcdowell, Non-local separation constitutive laws for interfaces and their relation to nanoscale simulations, In: Mechanics of Materials, vol.36, p.173, 2004.

S. J. Stuart, A. B. Tutein, and J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, In: The Journal of chemical physics, vol.112, p.173, 2000.

A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, In: Modelling and Simulation in Materials Science and Engineering, vol.18, p.176, 2010.

E. B. Tadmor and R. E. Miller, Modeling materials: continuum, atomistic and multiscale techniques, vol.177, 2011.

R. Thomson, V. Hsieh, and . Rana, Lattice trapping of fracture cracks, In: Journal of Applied Physics, vol.42, p.183, 1971.

A. Turon, C. G. Davila, P. P. Camanho, and J. Costa, An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models, In: Engineering fracture mechanics, vol.74, pp.185-188, 2007.

X. Wei and J. W. Kysar, Experimental validation of multiscale modeling of indentation of suspended circular graphene membranes, In: International Journal of Solids and Structures, vol.49, p.164, 2012.

X. Wei, B. Fragneaud, C. A. Marianetti, and J. W. Kysar, Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description, In: Physical Review B, vol.80, p.205407, 2009.

Y. Wei, J. Wu, H. Yin, X. Shi, R. Yang et al., The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene, Nature materials, vol.11, issue.9, p.169, 2012.

J. Wu and Y. Wei, Grain misorientation and grain-boundary rotation dependent mechanical properties in polycrystalline graphene, In: Journal of the Mechanics and Physics of Solids, vol.61, p.169, 2013.
DOI : 10.1016/j.jmps.2013.01.008

URL : http://dspace.imech.ac.cn/bitstream/311007/46986/2/IMCAS-J2013-125.pdf

V. Yamakov, D. Saether, E. Phillips, and . Glaessgen, Moleculardynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum, In: Journal of the Mechanics and Physics of Solids, vol.54, pp.1899-1928, 2006.

O. V. Yazyev and S. G. Louie, Electronic transport in polycrystalline graphene, Nature materials 9, vol.10, p.168, 2010.
DOI : 10.1038/nmat2830

O. V. Yazyev and S. G. Louie, Topological defects in graphene: Dislocations and grain boundaries, In: Physical Review B, vol.81, p.167, 2010.

J. Zhang, J. Zhao, and J. Lu, Intrinsic strength and failure behaviors of graphene grain boundaries, Acs Nano, vol.6, p.168, 2012.

P. Zhang, L. Ma, F. Fan, Z. Zeng, C. Peng et al., Fracture toughness of graphene, Nature communications, vol.5, 2014.

T. Zhang, X. Li, and H. Gao, Fracture of graphene: a review, In: International Journal of Fracture, p.170, 2015.

Z. Zhang, Y. Yang, F. Xu, L. Wang, and B. I. Yakobson, Unraveling the Sinuous Grain Boundaries in Graphene, In: Advanced Functional Materials, vol.25, p.168, 2015.

X. Zhou, J. Zimmerman, E. Reedy, and N. Moody, Molecular dynamics simulation based cohesive surface representation of mixed mode fracture, In: Mechanics of Materials, vol.40, pp.832-845, 2008.

J. A. Zimmerman, E. B. Webbiii, J. Hoyt, R. E. Jones, P. Klein et al., Calculation of stress in atomistic simulation, In: Modelling and Simulation in Materials Science and Engineering, vol.12, p.172, 2004.