. International-energy-agency, Global energy and CO2 status report, 2017.

. International-energy-agency, CO2 emissions from fuel combustion: Overview, IEA Stat, 2017.

, Le secteur de l'énergie au Liban, Poste de Beyrouth-Brussels Invest, 2013.

/. Moe and . Gef, Lebanon's second biennial update report to the UNFCCC, 2017.

, Ministère de la Transition écologique et solidaire, p.25, 2018.

N. Unies, Protocole de Kyoto à la convention-cadre des nations unies sur les changements climatiques, 1998.

. Citepa, La France face à ses objectifs

. Disponible, , p.25, 2018.

. One, Les 12 engagements internationaux, p.25, 2018.

D. Jansen, M. Gazzani, G. Manzolini, E. Van-dijk, and M. Carbo, Pre-combustion CO2 capture, Int. J. Greenh. Gas Control, vol.40, pp.167-187, 2015.

S. Zhou, X. Chen, T. Nguyen, A. K. Voice, and G. T. Rochelle, Aqueous ethylenediamine for CO2 capture, ChemSusChem, vol.3, issue.8, pp.913-918, 2010.

A. Lawal, M. Wang, P. Stephenson, and H. Yeung, Dynamic modelling of CO2 absorption for post combustion capture in coal-fired power plants, Fuel, vol.88, issue.12, pp.2455-2462, 2009.

R. Stanger, T. Wall, R. Sporl, M. Paneru, S. Grathwohl et al., Oxyfuel combustion for CO2 capture in power plants, Int. J. Greenh. Gas Control, vol.40, pp.55-125, 2015.

B. G. Miller, Carbon dioxide emissions reduction and storage, Clean Coal Engineering Technology, pp.609-668, 2017.

A. R. Kovscek and M. D. Cakici, Geologic storage of carbon dioxide and enhanced oil recovery. II. Cooptimization of storage and recovery, Energy Convers. Manag, vol.46, issue.11-12, pp.1941-1956, 2005.

M. Mazzotti, R. Pini, and G. Storti, Enhanced coalbed methane recovery, J. Supercrit. Fluids, vol.47, issue.3, pp.619-627, 2009.

G. Centi and S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catal. Today, vol.148, issue.3-4, pp.191-205, 2009.

C. Song, Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing, Catal. Today, vol.115, issue.1-4, pp.2-32, 2006.

, Les filières de valorisation du CO2 -Etat de l'art et avis d'experts, RECORD, 2014.

M. Aresta, A. Dibenedetto, and A. Angelini, The changing paradigm in CO2 utilizatiom, J. CO2 Util, vol.3, issue.4, pp.65-73, 2013.

I. Omae, Recent developments in carbon dioxide utilization for the production of organic chemicals, Coord. Chem. Rev, vol.256, pp.1384-1405, 2012.

M. Aresta, Carbon dioxide as a chemical feedstock, 2010.

E. Alper and O. Orhan, CO2 utilization: Developments in conversion processes, vol.3, pp.109-126, 2017.

M. Taherimehr and P. P. Pescarmona, Green polycarbonates prepared by the copolymerization of CO2 with epoxides, J. Appl. Polym. Sci, vol.131, issue.21, pp.1-17, 2014.

H. Er-rbib, C. Bouallou, and F. Werkoff, Production of synthetic gasoline and diesel fuel from dry reforming of methane, Energy Procedia, vol.29, pp.156-165, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01463435

J. Toyir, R. Miloua, N. E. Elkadri, M. Nawdali, H. Toufik et al., Sustainable process for the production of methanol from CO2 and H2 using Cu/ZnO-based multicomponent catalyst, Phys. Procedia, vol.2, issue.3, pp.1075-1079, 2009.

E. Fujita, J. T. Muckerman, and Y. Himeda, Interconversion of CO2 and formic acid by bioinspired Ir complexes with pendent bases, Biochim. Biophys. Acta -Bioenerg, vol.1827, issue.8-9, pp.1031-1038, 2013.

Y. A. Daza and J. N. Kuhn, CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels, RSC Adv, vol.6, issue.55, pp.49675-49691, 2016.

, Perspectives d'avenir pour les énergies renouvelables en Union européenne, 2018.

,. E&e and S. Hespul, Etude portant sur l'hydrogène et la méthanation comme procédé de valorisation de l'électricité excédentaire, 2014.

, European Power to Gas

. Disponible, , p.20, 2018.

S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz et al., Review on methanation -From fundamentals to current projects, Fuel, vol.166, pp.276-296, 2016.

G. Weatherbee, Hydrogenation of CO2 on group VIII metals I. Specific activity of Ni/SiO2, J. Catal, vol.68, pp.67-76, 1981.

A. , Power-to-gas plant

. Disponible, , p.9, 2018.

. Helmeth, Methanation process

. Disponible, , 2018.

. Jupiter, Le projet JUPITER 1000, 2018.

. Disponible, , 2018.

J. Gao, Q. Liu, F. Gu, B. Liu, Z. Zhong et al., Recent advances in methanation catalysts for the production of synthetic natural gas, RSC Adv, vol.5, issue.29, pp.22759-22776, 2015.

J. Gao, Q. Liu, F. Gu, B. Liu, Z. Zhong et al., A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas, RSC Adv, vol.2, issue.6, p.2358, 2012.

J. Ducamp, A. Bengaouer, P. Baurens, I. Fechete, P. Turek et al., Statu quo on CO2 methanation: A review, Comptes Rendus Chim, vol.21, issue.3-4, pp.427-469, 2018.

I. Fechete and J. C. Vedrine, Nanoporous materials as new engineered catalysts for the synthesis of green fuels, Molecules, vol.20, issue.4, pp.5638-5666, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01226491

S. Eckle, H. G. Anfang, and R. J. Behm, Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2 -rich reformate Gases, J. Phys. Chem. C, vol.115, issue.4, pp.1361-1367, 2011.

A. Beuls, C. Swalus, M. Jacquemin, G. Heyen, A. Karelovic et al., Methanation of CO2: Further insight into the mechanism over Rh/?-Al2O3 catalyst, Appl. Catal. B Environ, pp.2-10, 2012.

M. Jacquemin, A. Beuls, and P. Ruiz, Catalytic production of methane from CO2 and H2 at low temperature: Insight on the reaction mechanism, Catal. Today, vol.157, issue.1-4, pp.462-466, 2010.

G. Zhou, H. Liu, K. Cui, A. Jia, G. Hu et al., Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation, Appl. Surf. Sci, vol.383, pp.248-252, 2016.

M. Marwood, R. Doepper, and A. Renken, In-situ surface and gas phase analysis for kinetic studies under transient conditions -The catalytic hydrogenation of CO2, Appl. Catal. A Gen, vol.151, issue.1, pp.223-246, 1997.

J. C. Sang, J. K. Hae, S. J. Kim, S. B. Park, H. P. Dong et al., Adsorbed carbon formation and carbon hydrogenation for CO2 methanation on the Ni(111) surface: ASED-MO study, Bull. Korean Chem. Soc, vol.26, issue.11, pp.1682-1688, 2005.

D. E. Peebles, D. W. Goodman, and J. M. White, Methanation of carbon dioxide on nickel (100) and the effects of surface modifiers, J. Phys. Chem, vol.87, issue.22, pp.4378-4387, 1983.

P. Panagiotopoulou, D. I. Kondarides, and X. E. Verykios, Mechanistic aspects of the selective methanation of CO over Ru/TiO2 catalyst, Catal. Today, vol.181, issue.1, pp.138-147, 2012.

J. Ashok, M. L. Ang, and S. Kawi, Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods, Catal. Today, vol.281, pp.304-311, 2017.

M. V. Konishcheva, D. I. Potemkin, S. D. Badmaev, and P. Snytnikov, On the mechanism of CO and CO2 methanation over Ni/CeO2 catalysts, Top. Catal, vol.59, pp.1424-1430, 2016.

P. A. Aldana, F. Ocampo, K. Kobl, B. Louis, F. Thibault-starzyk et al., Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy, Catal. Today, vol.215, pp.201-207, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01831356

S. Sharma, Z. Hu, P. Zhang, E. W. Mcfarland, and H. Metiu, CO2 methanation on Ru-doped ceria, J. Catal, vol.278, issue.2, pp.297-309, 2011.

F. Wang, S. He, H. Chen, B. Wang, L. Zheng et al., Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation, J. Am. Chem. Soc, vol.138, issue.19, pp.6298-6305, 2016.

I. Kuznecova and J. Gusca, Property based ranking of CO and CO2 methanation catalysts, Energy Procedia, vol.128, pp.255-260, 2017.

X. Su, J. Xu, B. Liang, H. Duan, B. Hou et al., Catalytic carbon dioxide hydrogenation to methane: A review of recent studies, J. Energy Chem, vol.25, issue.4, pp.553-565, 2016.

P. Panagiotopoulou, Hydrogenation of CO2 over supported noble metal catalysts, Appl. Catal. A Gen, vol.542, pp.63-70, 2017.

A. Karelovic and P. Ruiz, CO2 hydrogenation at low temperature over Rh/?-Al2O3 catalysts: Effect of the metal particle size on catalytic performances and reaction mechanism, Appl. Catal. B Environ, pp.237-249, 2012.

N. M. Martin, F. Hemmingsson, X. Wang, L. R. Merte, U. Hejral et al., Structurefunction relationship during CO2 methanation over Rh/Al2O3 and Rh/SiO2 catalysts under atmospheric pressure conditions, Catal. Sci. Technol, vol.8, pp.2686-2696, 2018.

N. M. Martin, P. Velin, M. Skoglundh, M. Bauer, and P. Carlsson, Catalytic hydrogenation of CO2 to methane over supported Pd, Rh and Ni catalysts, Catal. Sci. Technol, vol.7, issue.5, pp.1086-1094, 2017.

T. Abe, M. Tanizawa, K. Watanabe, and A. Taguchi, CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method, Energy Environ. Sci, vol.2, issue.3, p.315, 2009.

G. Garbarino, D. Bellotti, E. Finocchio, L. Magistri, and G. Busca, Methanation of carbon dioxide on Ru/Al2O3: Catalytic activity and infrared study, Catal. Today, vol.277, pp.21-28, 2016.

G. D. Weatherbee and C. H. Bartholomew, Hydrogenation of CO2 on group VIII metals: IV. Specific activities and selectivities of silica-supported Co, Fe, and Ru, J. Catal, vol.87, issue.2, pp.352-362, 1984.

M. A. Aziz, A. A. Jalil, S. Triwahyono, and A. Ahmad, CO2 methanation over heterogeneous catalysts: recent progress and future prospects, Green Chem, vol.17, issue.5, pp.2647-2663, 2015.

M. Guo and G. Lu, The effect of impregnation strategy on structural characters and CO2 methanation properties over MgO modified Ni/SiO2 catalysts, Catal. Commun, vol.54, pp.55-60, 2014.

G. Li, L. Hu, and J. M. Hill, Comparison of reducibility and stability of alumina-supported Ni catalysts prepared by impregnation and co-precipitation, Appl. Catal. A Gen, vol.301, issue.1, pp.16-24, 2006.

Y. Zhan, Y. Wang, D. Gu, C. Chen, L. Jiang et al., Ni/Al2O3-ZrO2 catalyst for CO2 methanation: The role of ?-(Al, Zr)2O3 Formation, Appl. Surf. Sci, vol.459, pp.74-79, 2018.

L. Bian, L. Zhang, R. Xia, and Z. Li, Enhanced low-temperature CO2 methanation activity on plasma-prepared Ni-based catalyst, J. Nat. Gas Sci. Eng, vol.27, pp.1189-1194, 2015.

J. Liu, C. Li, F. Wang, S. He, H. Chen et al., Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst, Catal. Sci. Technol, vol.3, pp.2627-2633, 2013.

M. C. Bacariza, I. Graça, A. Westermann, M. F. Ribeiro, J. M. Lopes et al., CO2 hydrogenation over Ni-based zeolites: Effect of catalysts preparation and pre-reduction conditions on methanation performance, Top. Catal, vol.59, issue.2-4, pp.314-325, 2016.

M. Aghayan, D. I. Potemkin, F. Rubio-marcos, S. I. Uskov, P. V. Snytnikov et al., Template-assisted wet-combustion synthesis of fibrous nickel-based catalyst for carbon dioxide methanation and methane steam reforming, ACS Appl. Mater. Interfaces, vol.9, issue.50, pp.43553-43562, 2017.

W. Yang, W. Feng, and Y. Chu, Promotion effect of CaO modification on mesoporous Al2O3-supported Ni catalysts for CO2 methanation, Int. J. Chem. Eng, vol.2016, pp.1-7, 2016.

X. Wang, L. Zhu, Y. Liu, and S. Wang, CO2 methanation on the catalyst of Ni/MCM-41 promoted with CeO2, Sci. Total Environ, vol.625, pp.686-695, 2018.

H. Liu, X. Zou, X. Wang, X. Lu, and W. Ding, Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen, J. Nat. Gas Chem, vol.21, issue.6, pp.703-707, 2012.

M. Cai, J. Wen, W. Chu, X. Cheng, and Z. Li, Methanation of carbon dioxide on Ni/ZrO2-Al2O3 catalysts: Effects of ZrO2 promoter and preparation method of novel ZrO2-Al2O3 carrier, J. Nat. Gas Chem, vol.20, issue.3, pp.318-324, 2011.

J. Ren, X. Qin, J. Z. Yang, Z. F. Qin, H. L. Guo et al., Cu) catalysts: Effect of addition of a second metal, Methanation of carbon dioxide over Ni-M/ZrO2 (M = Fe, vol.137, pp.204-211, 2015.

F. Ocampo, B. Louis, L. Kiwi-minsker, and A. C. Roger, Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1-xO2 catalysts for carbon dioxide methanation, Appl. Catal. A Gen, vol.392, pp.36-44, 2011.

K. Stangeland, D. Kalai, H. Li, and Z. Yu, The effect of temperature and initial methane concentration on carbon dioxide methanation on Ni based catalysts, Energy Procedia, vol.105, issue.1876, pp.2016-2021, 2017.

S. V. Moghaddam, M. Rezaei, F. Meshkani, and R. Daroughegi, and Cu) catalysts synthesized using the one-pot solgel synthesis method, Carbon dioxide methanation over Ni-M/Al2O3 (M: Fe, vol.43, pp.16522-16533, 2018.

S. Rahmani, M. Rezaei, and F. Meshkani, Preparation of highly active nickel catalysts supported on mesoporous nanocrystalline ?-Al2O3 for CO2 methanation, J. Ind. Eng. Chem, vol.20, issue.4, pp.1346-1352, 2014.

R. Daroughegi, F. Meshkani, and M. Rezaei, Enhanced activity of CO2 methanation over mesoporous nanocrystalline Ni-Al2O3 catalysts prepared by ultrasound-assisted coprecipitation method, Int. J. Hydrogen Energy, vol.42, issue.22, pp.15115-15125, 2017.

G. Garbarino, P. Riani, L. Magistri, and G. Busca, A study of the methanation of carbon dioxide on Ni/Al2O3 catalysts at atmospheric pressure, Int. J. Hydrogen Energy, vol.39, issue.22, pp.11557-11565, 2014.

L. Xu, F. Wang, M. Chen, J. Zhang, K. Yuan et al., CO2 methanation over a Ni based ordered mesoporous catalyst for the production of synthetic natural gas, RSC Adv, vol.6, issue.43, pp.28489-28499, 2016.

K. Zhao, W. Wang, and Z. Li, Highly efficient Ni/ZrO2 catalysts prepared via combustion method for CO2 methanation, J. CO2 Util, vol.16, pp.236-244, 2016.

N. Perkas, G. Amirian, Z. Zhong, J. Teo, Y. Gofer et al., Methanation of carbon dioxide on Ni catalysts on mesoporous ZrO2 doped with rare earth oxides, Catal. Letters, vol.130, issue.3-4, pp.455-462, 2009.

R. Zhou, N. Rui, Z. Fan, and C. Liu, Effect of the structure of Ni/TiO2 catalyst on CO2 methanation, Int. J. Hydrogen Energy, vol.41, issue.47, pp.22017-22025, 2016.

G. Zhou, H. Liu, K. Cui, and X. Zheng, Methanation of carbon dioxide over Ni/CeO2 catalysts: Effects of support CeO2 structure, Int. J. Hydrogen Energy, vol.42, issue.25, pp.16108-16117, 2017.

F. Ocampo, B. Louis, A. Kiennemann, and A. C. Roger, CO2 methanation over Ni-CeriaZirconia catalysts: Effect of preparation and operating conditions, IOP Conf. Ser. Mater. Sci. Eng, vol.19, issue.1, 2011.

D. Pandey and G. Deo, Effect of support on the catalytic activity of supported Ni-Fe catalysts for the CO2 methanation reaction, J. Ind. Eng. Chem, vol.33, pp.99-107, 2016.

T. A. Le, M. S. Kim, S. H. Lee, T. W. Kim, and E. D. Park, CO and CO2 methanation over supported Ni catalysts, Catal. Today, vol.293, pp.89-96, 2017.

S. Tada, T. Shimizu, H. Kameyama, T. Haneda, and R. Kikuchi, Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures, Int. J. Hydrogen Energy, vol.37, issue.7, pp.5527-5531, 2012.

H. Muroyama, Y. Tsuda, T. Asakochi, H. Masitah, T. Okanishi et al., Carbon dioxide methanation over Ni catalysts supported on various metal oxides, J. Catal, vol.343, pp.178-184, 2016.

J. Barrientos, M. Lualdi, M. Boutonnet, and S. Järås, Deactivation of supported nickel catalysts during CO methanation, Appl. Catal. A Gen, vol.486, pp.143-149, 2014.

M. Argyle and C. Bartholomew, Heterogeneous catalyst deactivation and regeneration: A Review, Catalysts, vol.5, issue.1, pp.145-269, 2015.

J. Sehested, J. A. Gelten, and S. Helveg, Sintering of nickel catalysts: Effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants, Appl. Catal. A Gen, vol.309, issue.2, pp.237-246, 2006.

P. Riani, G. Garbarino, M. A. Lucchini, F. Canepa, and G. Busca, Unsupported versus aluminasupported Ni nanoparticles as catalysts for steam/ethanol conversion and CO2 methanation, J. Mol. Catal. A Chem, pp.10-16, 2014.

H. Ay and D. Üner, Dry reforming of methane over CeO2 supported Ni, Co and Ni-Co catalysts, Appl. Catal. B Environ, vol.179, pp.128-138, 2015.

J. Gao, C. Jia, J. Li, M. Zhang, F. Gu et al., Ni/Al2O3 catalysts for CO methanation: Effect of Al2O3 supports calcined at different temperatures, J. Energy Chem, vol.22, pp.919-927, 2013.

A. Alihosseinzadeh, B. Nematollahi, M. Rezaei, and E. N. Lay, CO methanation over Ni catalysts supported on high surface area mesoporous nanocrystalline ?-Al2O3 for CO removal in H2-rich stream, Int. J. Hydrogen Energy, vol.40, pp.1809-1819, 2015.

S. Aouad, E. Saab, E. Abi-aad, and A. Aboukaïs, Reactivity of Ru-based catalysts in the oxidation of propene and carbon black, Catal. Today, vol.119, issue.1-4, pp.273-277, 2007.

M. Skaf, Comparaison physico-chimique et des activités catalytiques dans les réactions d'oxydation entre deux séries de catalyseurs Ag/CeO préparés par imprégnation et dépôt-précipitation, 2014.

G. Lee, C. Chen, S. T. Yang, and W. S. Ahn, Enhanced adsorptive removal of fluoride using mesoporous alumina, Microporous Mesoporous Mater, vol.127, issue.1-2, pp.152-156, 2010.

C. Perego and P. Villa, Catalyst preparation methods, Catal. Today, vol.34, issue.3-4, pp.281-305, 1997.

H. Schaper, E. B. Doesburg, J. M. Quartel, and L. L. Van-reijen, Synthesis of methanation catalysts by deposition-precipitation, Stud. Surf. Sci. Catal, vol.16, pp.301-309, 1983.

S. Qiu, X. Zhang, Q. Liu, T. Wang, Q. Zhang et al., A simple method to prepare highly active and dispersed Ni/MCM-41 catalysts by co-impregnation, Catal. Commun, vol.42, pp.73-78, 2013.

Y. J. Huang and J. A. Schwarz, The effect of catalyst preparation on catalytic activity: I. The catalytic activity of Ni/Al2O3 catalysts prepared by wet impregnation, Appl. Catal, vol.30, issue.2, pp.239-253, 1987.

M. Guo and G. Lu, The effect of impregnation strategy on structural characters and CO2 methanation properties over MgO modified Ni/SiO2 catalysts, Catal. Commun, vol.54, pp.55-60, 2014.

T. Zhu and M. Flytzani-stephanopoulos, Catalytic partial oxidation of methane to synthesis gas over Ni-CeO2, Appl. Catal. A Gen, vol.208, issue.1-2, pp.403-417, 2001.

S. and R. Gomes, Production d'hydrogène par reformage dans la boucle EGR, 2010.

B. Tapin, F. Epron, C. Especel, B. K. Ly, C. Pinel et al., Study of monometallic Pd/TiO2 catalysts for the hydrogenation of succinic acid in aqueous phase, ACS Catal, vol.3, issue.10, pp.2327-2335, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02109790

G. Bergeret and P. Gallezot, Handbook of Heterogeneous Catalysis, In G. Ertl, vol.2, 1997.

L. M. Anovitz and D. R. Cole, Characterization and analysis of porosity and pore structures, Rev. Mineral. Geochemistry, vol.80, issue.1, pp.61-164, 2015.

J. Barrientos, N. González, M. Lualdi, M. Boutonnet, and S. Järås, The effect of catalyst pellet size on nickel carbonyl-induced particle sintering under low temperature CO methanation, Appl. Catal. A Gen, vol.514, pp.91-102, 2016.

J. Estephane, S. Aouad, S. Hany, B. E. Khoury, C. Gennequin et al., CO2 reforming of methane over Ni-Co/ZSM5 catalysts, Int. J. Hydrogen Energy, vol.40, pp.9201-9208, 2015.

R. Zhang, G. Xia, M. Li, Y. Wu, H. Nie et al., Effect of support on the performance of Ni-based catalyst in methane dry reforming, J. Fuel Chem. Technol, vol.43, pp.1359-1365, 2015.

Y. Yan, Y. Dai, Y. Yang, and A. A. Lapkin, Improved stability of Y2O3 supported Ni catalysts for CO2 methanation by precursor-determined metal-support interaction, Appl. Catal. B Environ, vol.237, pp.504-512, 2018.

K. Okura, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, Ammonia decomposition over nickel catalysts dupported on rare-earth oxides for the on-site generation of hydrogen, ChemCatChem, vol.8, issue.18, pp.2988-2995, 2016.

G. B. Sun, K. Hidajat, X. S. Wu, and S. Kawi, A crucial role of surface oxygen mobility on nanocrystalline Y2O3 support for oxidative steam reforming of ethanol to hydrogen over Ni/Y2O3 catalysts, Appl. Catal. B Environ, vol.81, issue.3-4, pp.303-312, 2008.

L. Li, L. Zhang, Y. Zhang, and J. Li, Effect of Ni loadings on the catalytic properties of Ni/MgO(111) catalyst for the reforming of methane with carbon dioxide, J. Fuel Chem. Technol, vol.43, issue.3, pp.315-322, 2015.

Z. Gao, L. Cui, and H. Ma, Selective methanation of CO over Ni/Al2O3 catalyst: Effects of preparation method and Ru addition, Int. J. Hydrogen Energy, vol.41, issue.12, pp.5484-5493, 2016.

E. Ki?, R. Marinkovi?-nedu?in, G. Lomi?, G. Bo?kovi?, D. Z. Obadovi? et al., Structural and textural properties of the NiO/Al2O3 catalyst, Polyhedron, vol.17, issue.1, pp.27-34, 1998.

S. Sengupta, K. Ray, and G. Deo, Effects of modifying Ni/Al2O3 catalyst with cobalt on the reforming of CH4 with CO2 and cracking of CH4 reactions, Int. J. Hydrogen Energy, vol.39, issue.22, pp.11462-11472, 2014.

M. K. Younes, A. Ghorbel, A. Rives, and R. Hubaut, Comparative study of the acidity of sulphated zirconia supported on alumina prepared by sol-gel and impregnation methods, J. Sol-Gel Sci. Technol, vol.26, issue.1-3, pp.677-680, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01869691

X. Guo, A. Traitangwong, M. Hu, C. Zuo, V. Meeyoo et al., Carbon dioxide methanation over nickel-based catalysts supported on various mesoporous material, Energy & Fuels, vol.32, pp.3681-3689, 2018.
DOI : 10.1021/acs.energyfuels.7b03826

H. D. Setiabudi, K. H. Lim, N. Ainirazali, and S. Y. Chin, CO2 reforming of CH4 over Ni/SBA-15 : Influence of Ni loading on the metal-support interaction and catalytic activity, J. Mater. Environ. Sci, vol.8, issue.2, pp.573-581, 2017.

M. Skaf, S. Aouad, S. Hany, R. Cousin, E. Abi-aad et al., Physicochemical characterization and catalytic performance of 10% Ag/CeO2 catalysts prepared by impregnation and deposition-precipitation, J. Catal, vol.320, issue.1, pp.137-146, 2014.

E. S-aouad, A. Abi-aad, and . Aboukaïs, Simultaneous oxidation of carbon black and volatile organic compounds over Ru/CeO2 catalysts, Appl. Catal. B Environ, vol.88, issue.3-4, pp.249-256, 2009.

R. K. Singha, A. Shukla, A. Yadav, L. N. Sivakumar-konathala, and R. Bal, Effect of metalsupport interaction on activity and stability of Ni-CeO2 catalyst for partial oxidation of methane, Appl. Catal. B Environ, vol.202, pp.473-488, 2017.

W. Kang and A. Varma, Hydrogen generation from hydrous hydrazine over Ni/CeO2 catalysts prepared by solution combustion synthesis, Appl. Catal. B Environ, vol.220, pp.409-416, 2018.

X. Liao, Y. Zhang, M. Hill, X. Xia, Y. Zhao et al., Highly efficient Ni/CeO2 catalyst for the liquid phase hydrogenation of maleic anhydride, Appl. Catal. A Gen, vol.488, pp.256-264, 2014.

P. V. Rao, V. P. Kumar, G. S. Rao, and K. V. Chary, Vapor phase selective hydrogenation of acetone to methyl isobutyl ketone (MIBK) over Ni/CeO2 catalysts, Catal. Sci. Technol, vol.2, pp.1665-1673, 2012.

G. Pei, X. Liu, M. Chai, A. Wang, and T. Zhang, Isolation of Pd atoms by Cu for semihydrogenation of acetylene: Effects of Cu loading, Chinese J. Catal, vol.38, issue.9, pp.1540-1548, 2017.

E. C. Lovell, J. Scott, and R. , Ni-SiO2 catalysts for the carbon dioxide reforming of methane: varying support properties by flame spray pyrolysis, Molecules, vol.20, pp.4594-4609, 2015.

Y. Liu, W. Sheng, and Y. Zhang, Homogeneous and highly dispersed Ni-Ru on a silica support as an effective CO methanation, RSC Adv, vol.8, pp.2123-2131, 2018.

H. Liu and D. He, Properties of Ni/Y2O3 and its catalytic performance in methane conversion to syngas, Int. J. Hydrogen Energy, vol.36, issue.22, pp.14447-14454, 2011.

L. Bednarczuk, P. De-la-piscina, and N. Homs, H2-production from CO2-assisted ethanol steam reforming: The regeneration of Ni-based catalysts, Int. J. Hydrogen Energy, vol.40, pp.5256-5263, 2015.

S. A. Carabineiro, N. Bogdanchikova, A. Pestryakov, P. B. Tavares, and L. S. Fernandes, Gold nanoparticles supported on magnesium oxide for CO oxidation, Nanoscale Res. Lett, vol.6, p.435, 2011.

M. Khajenoori, M. Rezaei, and F. Meshkani, Dry reforming over CeO2-promoted Ni/MgO nano-catalyst: Effect of Ni loading and CH4/CO2 molar ratio, J. Ind. Eng. Chem, vol.21, pp.717-722, 2015.

W. Dong, H. Roh, Z. Liu, K. Jun, and S. Park, Hydrogen production from methane reforming reactions over Ni/MgO Catalyst, Bull. Korean Chem. Soc, vol.22, issue.12, pp.1323-1327, 2001.

A. A. Awadallah, M. S. Abdel-mottaleb, A. A. Aboul-enein, M. M. Yonis, and A. K. Aboulghei, Catalytic decomposition of natural gas to CO/CO2-free hydrogen production catalytic decomposition of natural gas to CO/CO2 -free hydrogen production and carbon nanomaterials using MgO-supported monometallic iron family catalysts, Chem. Eng. Commun, vol.202, issue.2, pp.163-174, 2015.

M. Zangouei, A. Z. Moghaddam, and M. Arasteh, The influence of nickel loading on reducibility of NiO/Al2O3 catalysts synthesized by sol-gel method, Chem. Eng. Res. Bull, vol.14, issue.2, pp.97-102, 2010.

R. L. Manfro, N. F. Ribeiro, and M. M. Souza, Production of hydrogen from steam reforming of glycerol using nickel catalysts supported on Al2O3, CeO2 and ZrO2, Catal. Sustain. Energy, vol.1, pp.60-70, 2013.

M. A. Naeem, A. S. Al-fatesh, A. E. Abasaeed, and A. H. Fakeeha, Activities of Ni-based nano catalysts for CO2-CH4 reforming prepared by polyol process, Fuel Process. Technol, vol.122, pp.141-152, 2014.

K. Zhao, Z. Li, and L. Bian, CO2 methanation and co-methanation of CO and CO2 over Mnpromoted Ni/Al2O3 catalysts, Front. Chem. Sci. Eng, vol.10, issue.2, pp.273-280, 2016.

G. T. Wurzler, T. Gleicielle, R. C. Rableto-ney, L. V. Mattos, M. A. Fraga et al., Steam reforming of ethanol for hydrogen production over MgO-supported Ni-based catalysts, Appl. Catal. A Gen, vol.518, pp.115-128, 2016.

F. Ocampo, B. Louis, and A. C. Roger, Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol-gel method, Appl. Catal. A Gen, vol.369, issue.1-2, pp.90-96, 2009.

M. A. Aziz, A. A. Jalil, S. Triwahyono, R. R. Mukti, Y. H. Taufiq-yap et al., Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation, Appl. Catal. B Environ, vol.147, pp.359-368, 2014.

M. Nizio, A. Albarazi, S. Cavadias, J. Amouroux, M. E. Galvez et al., Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts, Int. J. Hydrogen Energy, vol.41, issue.27, pp.11584-11592, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01289154

D. C. Da-silva, S. Letichevsky, L. E. Borges, and L. G. Appel, The Ni/ZrO2 catalyst and the methanation of CO and CO2, Int. J. Hydrogen Energy, vol.37, pp.8923-8928, 2012.

B. Nematollahi, M. Rezaei, and E. N. Lay, Selective methanation of carbon monoxide in hydrogen rich stream over Ni/CeO2 nanocatalysts, J. Rare Earths, vol.33, issue.6, pp.619-628, 2015.

L. Bobrova, D. V. Andreev, E. A. Ivanov, N. V. Mezentseva, M. Simonov et al., Water-Gas Shift Reaction over Ni/CeO2 Catalysts, Catalysts, vol.7, issue.10, p.310, 2017.

M. M. Zyryanova, P. V. Snytnikov, R. V. Gulyaev, Y. I. Amosov, A. I. Boronin et al., Performance of Ni/CeO2 catalysts for selective CO methanation in hydrogenrich gas, Chem. Eng. J, vol.238, pp.189-197, 2014.

H. R. Gurav, S. Dama, V. Samuel, and S. Chilukuri, Influence of preparation method on activity and stability of Ni catalysts supported on Gd doped ceria in dry reforming of methane, J. CO2 Util, vol.20, pp.357-367, 2017.

W. Shan, M. Luo, P. Ying, W. Shen, and C. Li, Reduction property and catalytic activity of Ce1?xNixO2 mixed oxide catalysts for CH4 oxidation, Appl. Catal. A Gen, vol.246, issue.1, pp.1-9, 2003.

A. Vita, C. Italiano, L. Pino, P. Frontera, M. Ferraro et al., Activity and stability of powder and monolith-coated Ni/GDC catalysts for CO2 methanation, Appl. Catal. B Environ, vol.226, pp.384-395, 2018.

I. Graça, L. V. González, C. Bacariza, A. Fernandes, C. Henriques et al., CO2 hydrogenation into CH4 on NiHNaUSY zeolites, Appl. Catal. B Environ, vol.147, pp.101-110, 2014.

F. Basile, P. Benito, G. Fornasari, D. Gazzoli, I. Pettiti et al., Ni-catalysts obtained from silicate intercalated HTlcs active in the catalytic partial oxidation of methane: Influence of the silicate content, Catal. Today, vol.142, issue.1-2, pp.78-84, 2009.

M. Li, H. Amari, and A. C. Van-veen, Metal-oxide interaction enhanced CO2 activation in methanation over ceria supported nickel nanocrystallites, Appl. Catal. B Environ, vol.239, pp.27-35, 2018.

A. R. González, Y. J. Asencios, E. M. Assaf, and J. M. Assaf, Dry reforming of methane on Ni-Mg-Al nano-spheroid oxide catalysts prepared by the sol-gel method from hydrotalcitelike precursors, Appl. Surf. Sci, vol.280, pp.876-887, 2013.

F. Ocampo, Développement de catalyseurs pour la réaction de méthanation du dioxyde de carbone, 2011.

C. Fukuhara, K. Hayakawa, Y. Suzuki, W. Kawasaki, and R. Watanabe, A novel nickel-based structured catalyst for CO2 methanation: A honeycomb-type Ni/CeO2 catalyst to transform greenhouse gas into useful resources, Appl. Catal. A Gen, vol.532, pp.12-18, 2017.

S. Tada, R. Kikucji, K. Wada, K. Osada, K. Akiyama et al., Longterm durability of Ni/TiO2 and Ru-Ni/TiO2 catalysts for selective CO methanation, J. Power Sources, vol.264, pp.59-66, 2014.

M. B. Choudhury, S. Ahmed, M. A. Shalabi, and T. Inui, Preferential methanation of CO in a syngas involving CO2 at lower temperature range, Appl. Catal. A Gen, vol.314, issue.1, pp.47-53, 2006.

T. S. Moraes, R. C. Neto, M. C. Ribiero, L. V. Mattos, M. Kourtelesis et al., Ethanol conversion at low temperature over CeO2 supported Nibased catalysts. Effect of Pt addition to Ni catalyst, Appl. Catal. B Environ, vol.181, pp.754-768, 2016.

L. J. Li, W. J. Yi, T. W. Liu, C. Huang, and Z. S. Chao, Hydrogenation of 3-hydroxypropanal into 1,3-propanediol over bimetallic Ru-Ni catalyst, RSC Adv, vol.7, issue.51, pp.32027-32037, 2017.

J. C. Wu and H. C. Chou, Bimetallic Rh-Ni/BN catalyst for methane reforming with CO2, Chem. Eng. J, vol.148, issue.2-3, pp.539-545, 2009.

C. Crisafulli, S. G. Scir, S. , R. Maggiore, and S. Minico, CO2 reforming of methane over NiRu and Ni -Pd bimetallic catalysts, Catal. Letters, vol.59, pp.21-26, 2000.

W. Zhen, B. Li, G. Lu, and J. Ma, Enhancing catalytic activity and stability for CO2 methanation on Ni-Ru/?-Al2O3 via modulating impregnation sequence and controlling surface active species, RSC Adv, vol.4, pp.16472-16479, 2014.