B. Krajewska, Utilization of microbial induced calcite precipitation for sand consolidation and mortar crack remediation, HBRC Journal, vol.8, pp.185-192, 2009.

V. Achal and X. Pan, Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation, Current Microbiology, vol.62, pp.894-902, 2011.

C. Barabesi, A. Galizzi, G. Mastromei, M. Rossi, E. Tamburini et al., Bacillus subtilis gene cluster involved in calcium carbonate biomineralization, Journal of Bacteriology, vol.189, pp.228-235, 2007.

S. Benini, W. R. Rypniewski, K. S. Wilson, S. Miletti, S. Ciurli et al., A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels, Structure, vol.7, pp.205-216, 1999.

S. Castanier, G. Le-métayer-levrel, and J. Perthuisot, Ca-carbonates precipitation and limestone genesis -the microbiogeologist point of view, Sedimentary Geology, vol.126, pp.9-23, 1999.

W. De-muynck, N. De-belie, and W. Verstraete, Microbial carbonate precipitation in construction materials: A review, Special Issue: BioGeoCivil Engineering, vol.36, pp.118-136, 2010.

W. De-muynck, D. Debrouwer, N. De-belie, and W. Verstraete, Bacterial carbonate precipitation improves the durability of cementitious materials, Cement and concrete Research, vol.38, pp.1005-1014, 2008.

W. De-muynck, K. Verbeken, N. De-belie, and W. Verstraete, Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone, Special Issue: BioGeoCivil Engineering, vol.36, pp.99-111, 2010.

N. K. Dhami, M. S. Reddy, and A. Mukherjee, Biomineralization of calcium carbonates and their engineered applications: a review, Frontiers in microbiology, vol.4, pp.1-13, 2013.

J. Ducasse-lapeyrusse, Etude Du Potentiel D'autocicatrisation et de La Biocicatrisation de Matériaux Cimentaires Fissurés, 2014.

O. Girinsky, Pré-Industrialisation D'un Procédé de Consolidation de Sol Par BioCalcification in Situ, 2009.

N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2012.

S. E. Hussain and A. S. Al-gahtani, Chloride threshold for corrosion of reinforcement in concrete, ACI Materials Journal, vol.93, pp.534-538, 1996.

C. Jiménez-lópez, C. Rodriguez-navarro, G. Piñar, F. J. Carrillo-rosúa, M. Rodriguez-gallego et al., Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone, Chemosphere, vol.68, pp.1929-1936, 2007.

H. M. Jonkers, Self healing concrete: a biological approach, Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science, pp.195-204, 2007.

H. M. Jonkers, A. Thijssen, G. Muyzer, O. Copuroglu, and E. Schlangen, Application of bacteria as self-healing agent for the development of sustainable concrete, Special Issue: BioGeoCivil Engineering, vol.36, pp.230-235, 2010.

A. Kai, K. Fujikawa, and T. Miki, Vaterite stabilization in CaCO3 crystal growth by amino acid, Japanese Journal of Applied Physics, p.439, 2002.

B. Krajewska, Ureases I. Functional, catalytic and kinetic properties: A review, Journal of Molecular Catalysis B: Enzymatic, vol.59, pp.9-21, 2009.

S. Lindskog, Structure and mechanism of carbonic anhydrase, Pharmacology & Therapeutics, vol.74, pp.1-20, 1997.

J. Miot, Processus Microbiens de Biominéralisation et de Détoxification Des Métaux/Métalloïdes: Oxydation Du Fer Par Des Bactéries Anaérobies Neutrophiles et Résistance Au Fer et À L'arsenic Chez Des Eucaryotes Unicellulaires de Drainages Miniers Acides, 2008.

H. C. Monger, L. A. Daugherty, W. C. Lindemann, and C. M. Liddell, Microbial precipitation of pedogenic calcite, Geology, vol.19, pp.997-1000, 1991.

A. Neville, Chloride attack of reinforced concrete: an overview, Materials and Structures, vol.28, p.63, 1995.

G. D. Okwadha and J. Li, Optimum conditions for microbial carbonate precipitation, Chemosphere, vol.81, pp.1143-1148, 2010.

T. O. Okyay and D. F. Rodrigues, Optimized carbonate micro-particle production by Sporosarcina pasteurii using response surface methodology, Ecological Engineering, vol.62, pp.168-174, 2014.

S. Park, Y. Park, W. Chun, W. Kim, and S. Ghim, Calcite-forming bacteria for compressive strength improvement in mortar, Journal of Microbiology and Biotechnology, vol.20, pp.782-788, 2010.

C. Rodriguez-navarro, M. Rodriguez-gallego, K. Ben-chekroun, and M. T. Gonzalez-muñoz, Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization, Applied and Environmental Microbiology, vol.69, pp.2182-2193, 2003.

M. A. Shirakawa, M. A. Cincotto, D. Atencio, C. C. Gaylarde, and V. M. John, Effect of culture medium on biocalcification by Pseudomonas putida, Lysinibacillus sphaericus and Bacillus subtilis, Brazilian Journal of Microbiology, vol.42, pp.499-507, 2011.

S. Stocks-fischer, J. K. Galinat, and S. S. Bang, Microbiological precipitation of CaCO3, Soil Biology and Biochemistry, vol.31, pp.1563-1571, 1999.

, diminuer le taux d'absorption en eau des matériaux. Le manque d'efficacité du traitement peut être lié à un apport insuffisant de source de

, Dans l'expérience précédente, nous avons apporté par traitement 48,5g d'acétate de calcium ce qui permet de former une gangue théorique autour des GBR de 4,6µm. Nous avons décidé d'apporter plus d'acétate de calcium, nous passons donc de 48,5g à 85,6g d'acétate de calcium ce qui nous permet de former en théorie une couche homogène à la surface des GBR de 8,6 µm. De plus, En effet, si nous souhaitons former une gangue de CaCO3 de 5-10µm à la surface de 600g de GBR, il nous faut apporter un volume de 24mL

T. Le-même, Figure 4-17) que précédemment est réalisé mais sans prétraitement avec de l'acétate de calcium, c'est-à-dire que 600g de GBR sont directement immergés dans une solution de 250mL de milieu BN contenant 85

, L'essai est mené sur 6 semaines à 30°C, 98%HR pour limiter l

, Chaque jour (sauf le week-end), matin et soir, les traitements sont agités afin d

J. Chen, J. Tinjum, and T. Edil, Leaching of alkaline substances and heavy metals from recycled concrete aggregate used as unbound base course, Transportation Research Record: Journal of the Transportation Research Board, pp.81-90, 2013.

A. Coiffier, T. Coradin, C. Roux, O. M. Bouvet, and J. Livage, Sol-gel encapsulation of bacteria: a comparison between alkoxide and aqueous routes, Journal of Materials Chemistry, vol.11, pp.2039-2044, 2001.

P. D. Cotter and C. Hill, Surviving the acid test: responses of Gram-positive bacteria to Low pH, Microbiology and Molecular Biology Reviews, vol.67, pp.429-453, 2003.

W. De-muynck, D. Debrouwer, N. De-belie, and W. Verstraete, Bacterial carbonate precipitation improves the durability of cementitious materials, Cement and concrete Research, vol.38, pp.1005-1014, 2008.

W. Epstein, The roles and regulation of potassium in bacteria, Progress in Nucleic Acid Research and Molecular Biology, pp.293-320, 2003.

A. Esquirol, Contrôle de La Morphologie D'hydrogels Poreux À Partir de Structures Polymères, 2013.

R. M. Ford and R. W. Harvey, Role of chemotaxis in the transport of bacteria through saturated porous media. Biological processes in porous media: From the pore scale to the field, vol.30, pp.1608-1617, 2007.

N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2012.

T. Jouenne, O. Tresse, and G. Junter, Agar-entrapped bacteria as an in vitro model of biofilms and their susceptibility to antibiotics, FEMS microbiology letters, vol.119, pp.237-242, 1994.

N. Nassif, C. Roux, T. Coradin, M. Rager, O. M. Bouvet et al., A solgel matrix to preserve the viability of encapsulated bacteria, Journal of Materials Chemistry, vol.13, pp.203-208, 2003.

M. Perullini, M. Calcabrini, M. Jobbágy, and S. A. Bilmes, Alginate/porous silica matrices for the encapsulation of living organisms: tunable properties for biosensors, modular bioreactors, and bioremediation devices, Mesoporous Biomater, vol.2, pp.3-12, 2015.

C. Poon, X. C. Qiao, and D. Chan, The cause and influence of self-cementing properties of fine recycled concrete aggregates on the properties of unbound sub-base, Waste Management, vol.26, pp.1166-1172, 2006.

A. E. Richardson and R. J. Simpson, Soil microorganisms mediating phosphorus availability, Plant Physiology, vol.156, pp.989-996, 2011.
DOI : 10.1104/pp.111.175448

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135950

C. Rodriguez-navarro, C. Jimenez-lopez, A. Rodriguez-navarro, M. T. Gonzalez-muñoz, and M. Rodriguez-gallego, Bacterially mediated mineralization of vaterite, Geochimica et Cosmochimica Acta, vol.71, pp.1197-1213, 2007.

S. Senesi, F. Celandroni, S. Salvetti, D. J. Beecher, A. C. Wong et al., Swarming motility in Bacillus cereus and characterization of a fliY mutant impaired in swarm cell differentiation, Microbiology, vol.148, pp.1785-1794, 2002.

V. W. Tam, X. F. Gao, C. M. Tam, and K. M. Ng, Physio-chemical reactions in recycle aggregate concrete, Journal of Hazardous Materials, vol.163, pp.823-828, 2009.

J. Wang, B. Vandevyvere, S. Vanhessche, J. Schoon, N. Boon et al., Microbial carbonate precipitation for the improvement of quality of recycled aggregates, Journal of Cleaner Production, vol.156, pp.355-366, 2017.

A. Xie, Y. Shen, C. Zhang, Z. Yuan, X. Zhu et al., Crystal growth of calcium carbonate with various morphologies in different amino acid systems, Journal of Crystal Growth, vol.285, pp.436-443, 2005.

, Chapitre, vol.5

S. Bindschedler, G. Cailleau, and E. Verrecchia, Role of fungi in the biomineralization of calcite. Minerals, 6, p.41, 2016.

W. De-muynck, K. Cox, N. D. Belie, and W. Verstraete, Bacterial carbonate precipitation as an alternative surface treatment for concrete, Construction and Building Materials, vol.22, pp.875-885, 2008.

W. De-muynck, D. Debrouwer, N. De-belie, and W. Verstraete, Bacterial carbonate precipitation improves the durability of cementitious materials, vol.38, pp.1005-1014, 2008.

L. Josserand, Ressuage Des Bétons Hydrauliques, 2002.

J. Luo, X. Chen, J. Crump, D. G. Davies, G. Zhou et al., Screening of fungi for self-healing of concrete cracks, 2017.

H. C. Monger, L. A. Daugherty, W. C. Lindemann, and C. M. Liddell, Microbial precipitation of pedogenic calcite, Geology, vol.19, pp.997-1000, 1991.
DOI : 10.1130/0091-7613(1991)019<0997:mpopc>2.3.co;2

, Méthodes d'essais des ciments -Partie 1 : détermination des résistances, NF EN 196-1, 2016.

S. Park, J. Park, W. Kim, and S. Ghim, Application of Bacillus subtilis 168 as a multifunctional agent for improvement of the durability of cement mortar, Journal of Microbiology and Biotechnology, vol.22, pp.1568-1574, 2012.