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leading me through my first steps in doing all the necessary paperwork at Université Paris 7.

To Alexei Grinbaum I am very grateful for introducing me to the cultural life of Paris, for

sharing with me all the life hacks and subtleties of living in France, as well as for his support

and all the lunches, suppers and concerts we shared together during these three years.

I would like also to thank Ipsita Mandal, Julien Despres, Clément Dutreix, Silas Hoffman,

Joel Röntynen, Teemu Ojanen, Nicholas Sedlmayr, Pavel Aseev and Mircea Trif for fruitful

collaborations and discussions.

To amazing secretaries, Véronique Thieulart, Sylvie Zaffanella and Joëlle Täıeb, I am thankful
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Abstract

Titre : Polarisation en spin et propriétés topologiques des états de Yu-Shiba-Rusinov

Résumé : Dans ce manuscrit de thèse, nous revisitons d’abord la physique des états de Yu-

Shiba-Rusinov, en nous concentrant sur leur polarisation en spin. Nous commenons par montrer

théoriquement que nous pouvons extraire beaucoup d’informations sur le supraconducteur hôte,

en analysant la densité locale d’états électroniques liée à la présence d’impuretés magnétiques.

Tout d’abord, nous démontrons que le couplage spin-orbite peut être lu directement et sans

ambigüıté par la spectroscopie par effet tunnel résolu en spin dans les systèmes bidimensionnels

et unidimensionnels, quils soient supraconducteurs ou métalliques. Nous analysons les oscilla-

tions induites par les impuretés dans la densité d’états électroniques. En particulier, nous nous

concentrons sur la transformation de Fourier (TF) des oscillations de Friedel et nous notons

que les caractéristiques à haute intensité apparaissent pour un vecteur d’onde donné par deux

fois la longueur inverse du spin-orbite. Ensuite, nous montrons qu’il est possible de déterminer

le mécanisme dappariement dominant, quil soit en ondes s ou en ondes p, dans les supracon-

ducteurs non conventionnels en analysant la structure spectrale résolue en spin des états liés

de Yu-Shiba-Rusinov. De manière frappante, nous démontrons qu’une analyse minutieuse de

la densité d’états électroniques polarisée en spin ne permet pas seulement de caractériser sans

équivoque le degré dappariement de type triplet, mais également son orientation, a.k.a. le

vecteur d.

Enfin, nous proposons et discutons deux approches différentes d’ingénierie et de contrôle des

phases topologiques à laide dimpuretés scalaires et magnétiques. Nous commenons par fournir

une théorie microscopique des réseaux d’impuretés scalaires sur les supraconducteurs chiraux.

Nous montrons que pour un supraconducteur topologique de type chiral, les impuretés scalaires

donnent lieu à une hiérarchie complexe de phases non triviales distinctes avec des nombres de

Chern élevés. Deuxièmement, nous proposons et étudions théoriquement une nouvelle plate-

forme prometteuse que nous appelons la chane dynamique de Shiba, c’est-à-dire une chane

d’impuretés magnétiques classiques dans un supraconducteur en ondes s avec des spins qui

précessent. Nous montrons que cette approche peut être utilisée non seulement pour créer

une phase supraconductrice topologique, mais surtout pour contrôler les transitions de phase
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topologiques au moyen de la dynamique de la texture de la magnétisation.

Ce manuscrit est organisé comme suit. Dans la première partie, les informations d’introduction

essentielles sur la supraconductivité, les oscillations de Friedel et les états de Yu-Shiba-Rusinov

sont fournies. La deuxième partie est consacrée à la polarisation en spin des états Yu-Shiba-

Rusinov et aux propriétés qui pourraient être extraites au moyen de la microscopie par effet

tunnel résolu en spin. Dans la dernière partie, deux configurations proposées pour l’ingénierie

de phases topologiques, basées sur les états induits par les impuretés, sont présentées, suivies de

conclusions, dun bref résumé des réalisations de cette thèse et enfin dune discussion de possibles

directions futures.

Mots clefs : physique de la matière condensée, physique des solides, supraconductivité, im-

puretés, états liés
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Title: Spin polarisation and topological properties of Yu-Shiba-Rusinov states

Abstract: In this manuscript we first revisit the physics of Yu-Shiba-Rusinov subgap states,

focusing on their spin polarisation. We start by showing theoretically that we can extract a

considerable amount of information about the host superconductor, by analysing spin-polarised

local density of states related to the presence of magnetic impurities. First, we demonstrate that

the spin-orbit coupling in two-dimensional and one-dimensional systems, both superconducting

and metallic, can be read-off directly and unambiguously via spin-resolved STM. We analyse

the impurity-induced oscillations in the local density of states. In particular, we focus on the

Fourier transform (FT) of the Friedel oscillations and we note that high-intensity FT features

appear at a wave vector given by twice the inverse spin-orbit length. Second, in unconventional

superconductors with both s-wave and p-wave pairing, by analysing the spin-resolved spectral

structure of the Yu-Shiba-Rusinov states it is possible to determine the dominating pairing

mechanism. Most strikingly, we demonstrate that a careful analysis of spin-polarised density

of states allows not only to unambiguously characterise the degree of triplet pairing, but also

to define the orientation of the triplet pairing vector, also known as the d-vector.

Finally, we discuss two different ways of engineering and controlling topological phases with

both scalar and magnetic impurities. We start with providing a microscopic theory of scalar

impurity structures on chiral superconductors. We show that given a non-trivial chiral super-

conductor, the scalar impurities give rise to a complex hierarchy of distinct non-trivial phases

with high Chern numbers. Second, we propose and study theoretically a new promising plat-

form that we call ’dynamical Shiba chain’, i.e. a chain of classical magnetic impurities in an

s-wave superconductor with precessing spins. We have shown that it can be employed not

only for engineering a topological superconducting phase, but most remarkably for controlling

topological phase transitions by means of magnetisation texture dynamics.

This manuscript is organised as follows. In the first part, the essential introductory information

on superconductivity, Friedel oscillations and Yu-Shiba-Rusinov states is provided. The second

part is dedicated to spin polarisation of Yu-Shiba-Rusinov states and the properties that could

be extracted by means of spin-resolved STM measurements. In the last part, two setups pro-
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posed for topological phase engineering based on impurity-induced states are presented, followed

by conclusions with a brief summary of the thesis achievements and further directions to pursue.

Keywords: condensed matter physics, solid state physics, superconductivity, impurities, bound

states
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Introduction
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2

Ipse se nihil scire id unum sciat.

Socrates

New ideas and theories developing around the turn of the XX century shaped modern theoretical

physics. One of those theories – quantum mechanics – became thereupon an irreplaceable

milestone for various research fields such as e.g. high-energy and condensed matter physics.

Derived from Latin, the word ’quantum’ means ’how great’ or ’how many’. So how great

quantum mechanics really is? How many different phenomena can be accurately circumscribed

only within the scope of quantum theory?

Triumphant and irrefutable explanation of discrete atomic spectra by newborn quantum the-

ory was followed by development of band structure theory enabling us to describe solid state

physics. The latter led to remarkable technological advancements, allowing humanity to enter

a new, digital era, and significantly augmented the pace of progress. One of the most promising

applications of quantum mechanics nowadays are e.g. the rapidly developing fields of quantum

computation of quantum chemistry. Today, condensed matter physics and quantum chemistry

are becoming intertwined for two conspicuous reasons. First of all, all the devices in the ex-

periments are becoming more complicated, and thus require sophisticated chemical engineering

techniques. Second, it is important to be able to design new materials and structures with

predetermined physical properties.

Despite all the pre-eminent success of quantum mechanics, not all the quantum phenomena

were explained immediately after their discovery. Furthermore, certain theories, such as for

example general relativity, appeared to be incompatible with quantum mechanics, giving rise to

inevitable scepticism in the scientific community. Notably, it took decades to develop reasonable

theories circumscribing superconductivity and providing at least a basic notion of the subject,

by making very strong assumptions and leaving behind certain details and controversial issues.

In spite of the aforementioned difficulties, it is hard to deny that a vast variety of phenomena

is successfully described within the scope of the quantum mechanical approach.

In the chapters below I first give a very concise introduction into the phenomenon of supercon-

ductivity, providing the insight necessary to understand the rest of the manuscript. Second, a

brief description of Friedel oscillations is conveyed, as well as their possible applications and

the main motivations to study them. I finalise the introductory part by presenting the physics

of impurity-induced in-gap states in superconductors, also known as Yu-Shiba-Rusinov states.



Chapter 1

Superconductivity

1.1 Experimental discovery

Like many other physical phenomena, superconductivity was first observed experimentally and

then explained theoretically. The story of superconductivity began in 1911 when Dutch physi-

cist Kamerlingh Onnes discovered that the resistance of mercury cooled down to critical tem-

perature Tc = 4.2 K dropped abruptly to zero [1]. In subsequent years more and more super-

conducting materials were being discovered, with different structures and critical temperatures,

and more experiments were being carried out.

Two remarkable experimental discoveries played a key role in understanding the challenging

phenomenon of superconductivity. First, in 1933 Meissner and Ochsenfeld found out that su-

perconductors expelled applied magnetic fields [2], thus providing an oblique evidence of spin

of electrons being one of the essential ingredients to attain superconducting state. Second, in

1950 Maxwell and Reynolds et al., drawing upon experimentally measured critical tempera-

tures of different isotopes of mercury, noted a strong dependence on the isotropic mass of the

constituent element [3, 4]. Today, their data can be interpreted in the following way: first, not

only electrons are responsible for superconductivity. Second, since masses of ions are explicitly

affecting superconducting phase transition temperatures, we conclude that vibrations of crystal

lattices – phonons – should be taken into account to provide a consistent explanation.

3



4 Chapter 1. Superconductivity

1.2 Phenomenological and microscopic theories

Employing all the previously collected experimental data described above, two groundbreaking

fundamental theories of superconductivity were developed by Ginzburg and Landau in 1950 and

Bardeen, Cooper and Schrieffer in 1957. The former was initially formulated as a phenomeno-

logical theory [5], whereas the latter provided a complete microscopic description [6] sought

for decades after the discovery of superconductors in 1911. Both aforementioned works were

awarded with Nobel Prizes, due to their unquestionable significance and undeniable colossal

impact on the condensed matter community.

Despite its phenomenological formulation, Ginzburg-Landau theory was exploited to explain

and predict numerous macroscopic properties of superconductors. For instance, the type-I

and type-II classification, associated with the presence of Abrikosov vortices, can be described

within the scope of the aforementioned phenomenological approach. However, in 1959 Lev

Gor’kov demonstrated that Bardeen–Cooper–Schrieffer theory (hereinafter referred to as the

BCS theory) reduced to Ginzburg-Landau theory in the vicinity of the critical temperature [7].

Furthermore, it was proven that all the phenomenological parameters introduced by Ginzburg

and Landau could be expressed in terms of microscopic parameters of the BCS theory. For the

sake of simplicity, I restrict myself in what follows to speak only in terms of the latter.

1.3 Bardeen–Cooper–Schrieffer theory

One of the most important concepts lying at the core of superconductivity is electron-phonon

interaction. At the first glance it seems ridiculous – how can electrons interact with phonons?

Phonons do not carry any electric charge, therefore Coulomb interaction does not play a role.

What are we left with?

Before going into the details of the BCS theory, I would like to start with a simple experiment

that will elucidate the origins of electron-phonon interaction. Imagine a large square elastic

piece of fabric held by its corners as it is shown in Fig. 1.1 with a metallic ball lying on its

surface. It is clear without any calculations that the ball bends the surface creating a ’potential

well’ in the middle of the square. What will happen if one now adds another ball, exactly like

the first one? The answer is obvious even without carrying out the experiment – the second



1.3. Bardeen–Cooper–Schrieffer theory 5

Figure 1.1: Thought experiment providing an analogy for electrons (red balls) moving through
a crystal lattice (piece of elastic fabric). A single electron interacts with positively charged ions
of the lattice, deforming it. If the temperature of the system is low enough, this deformation
may result in an effective attractive interaction between electrons, enabling them to form pairs.
(Image by I. Tetin)

ball, wherever we put it on the surface, will tend to minimise its energy, and thus eventually will

stick to the first ball, as it is demonstrated in Fig. 1.1. Imagine now that those balls were both

carrying some negative charge, what would happen in that case? It is clear that a new energy

scale – Coulomb interaction – is thereby introduced into the system, and hence the resulting

state depends now on which energy scale dominates. Let us restrict ourselves to the situation

when the Coulomb energy is smaller than the potential energy acquired by the balls. In this

particular case we will end up having a situation similar to the first experiment, where the balls

did not care any electric charge. Therefore, effectively these balls will be again attracted to

each other – that is what an experimentalist will observe. And finally, one should say that if for

some reason the corners of the fabric are constantly shaken with sufficiently large amplitudes,

the picture with two balls sticking to each other will never occur.

The logic described above can be applied to electrons moving in the electric field of positive

ions constituting the crystal lattice of a given solid. The only difference is that in the thought

experiment in Fig. 1.1 the mass of the balls was the reason of surface bending, whereas here

it is the negative charge of electron responsible for it. Therefore, electrons moving through

a crystal lattice of positively charged ions can deform the lattice, and these deformations can

result in effective attraction of electrons, even though we know that Coulomb repulsion tends to

keep them apart. Hence it is energetically favourable for electrons to move closer to each other,

i.e. form pairs. The last remark about shaking the corners of the fabric is a direct analogue



6 Chapter 1. Superconductivity

of temperature. The higher the temperature, the more the lattice is shaken, and therefore

the effect described above is less pronounced or even absent. This is one of the reasons why

superconductivity mainly occurs at low temperatures.

These pairs of electrons are called Cooper pairs, one of the most salient building blocks of

the BCS theory of superconductivity. Of course, the explanation above is an explanation in a

nutshell, however it gives us the flavour of the phenomenon. As soon as the Cooper pairs are

formed, instead of a gas of fermions we are dealing with a gas of bosons. Which brings us to

the second milestone of the BCS theory, namely the fact that superconductivity within this

framework is a macroscopic effect of Bose condensation of Cooper pairs.

Despite the fact that numerous superconducting phenomena can be circumscribed in terms of

the aforementioned theories, for calculations carried out in this manuscript it is more practical

to use the Bogoliubov–de Gennes Hamiltonian derived within the scope of mean-field approach

to the BCS theory.

1.4 Bogoliubov–de Gennes Hamiltonian

We start by writing a Hamiltonian of a system of pairwise interacting fermions:

Ĥmicr =
∑
p,σ

(
p2

2m
− µ

)
ĉ†p,σ ĉp,σ +

1

2

∑
pi,σ,p′i,σ

′

〈p′1σp′2σ′ |U |p1σp2σ′〉ĉ†p′1,σ ĉ
†
p′2,σ

′ ĉp2,σ′ ĉp1,σ , (1.1)

where ĉ†p,σ (ĉp,σ) are creation (annihilation) fermionic operators of particles with momentum p

and spin σ. Electron-phonon interaction is denoted by U , µ is the chemical potential. In what

follows we apply all the possible simplifications to the equation above.

First of all, it is worth mentioning that in the second summation in Eq. (1.1) we must take into

account momentum conservation, i.e. p′1 + p′2 = p1 + p2. To simplify the following discussion,

we also assume that electron-phonon interaction is purely local, and thus the matrix element

of the second term can be replaced

〈p′1↑p′2↓|U |p1↑p2↓〉 → 〈0 0|U |0 0〉 ≡ U0/V.

Note also that the assumption of locality ensures that only fermions with opposite spins can be
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created or annihilated on the same site in accordance with the Pauli exclusion principle, and

therefore, only the matrix elements corresponding to interaction without subsequent spin flip

survive. After all these assumptions we get:

ˆ̃
Hmicr =

∑
p,σ

(
p2

2m
− µ

)
ĉ†p,σ ĉp,σ +

U0

2V

∑
pi,σ,p′i

ĉ†p′1,σ
ĉ†p′2,−σ

ĉp2,−σ ĉp1,σ. (1.2)

Further simplifications can be made if one counts the number of interacting pairs with resulting

momentum p = p1 +p2. We hence find out that the number of pairs with p = 0 is much larger

than the number of pairs with p 6= 0, and therefore the latter can be neglected. Finally we

have

ˆ̃
Hmicr ≈

∑
p,σ

(
p2

2m
− µ

)
ĉ†p,σ ĉp,σ +

U0

V

∑
p,p′

ĉ†p↑ĉ
†
−p↓ĉ−p′↓ĉp′↑. (1.3)

Diagonalising the Hamiltonian above is quite complex, and therefore we make one last simpli-

fying step using the mean-field approach. We denote

∆s = 〈ĉ−p↓ĉp↑〉 (1.4)

which is an anomalous non-zero average for a superconducting state (complex parameter in the

general case), and we rewrite Eq. (1.3) in the following form:

ˆ̃
H =

∑
p,σ

ξpĉ
†
p,σ ĉp,σ +

∑
p

[
∆∗s ĉ−p′↓ĉp′↑ + ∆sĉ

†
−p↓ĉ

†
p↑

]
+ const, (1.5)

where ξp ≡ p2/2m− µ. Finally, we introduce a basis consisting of both particle-hole and spin

degrees of freedom, the so-called Nambu basis Ψp ≡
{
cp↑, cp↓, c

†
−p↓,−c†−p↑

}T

, and Eq. (1.5)

thus reads

ˆ̃
H =

1

2

∑
p

Ψ†pHBdG(p)Ψp + const,

where the Bogoliubov–de Gennes Hamiltonian (hereinafter referred to as BdG) HBdG written

in the Nambu basis takes the form:

HBdG(p) =


ξp 0 ∆s 0

0 ξp 0 ∆s

∆s 0 −ξp 0

0 ∆s 0 −ξp

 ≡ ξpσ0 ⊗ τz + ∆sσ0 ⊗ τx. (1.6)
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Above we have used the tensor product ⊗, namely the matrix σ0 acting in spin subspace as

identity matrix and τz, τx acting in particle-hole subspace as the corresponding Pauli matrices.

Depending on the context, in what follows I will employ both tensor product notation and

four by four matrices. The foregoing discussion implies that we stay within the frame of the

mean-field approach, and parameter ∆s, which is nothing but the superconducting gap or,

equivalently, superconducting pairing, must be found self-consistently employing its definition

in terms of the anomalous average. I would like to mention also that the Hamiltonian defined

in Eq. (1.6) respects particle-hole symmetry (PHS), and the description I chose is ’particle-hole

redundant’. It implies that for any eigenstate corresponding to energy E there is always a

particle-hole partner with energy −E, embedded by construction. It it therefore important to

be careful while calculating observables in order to avoid counting the same thing twice.

Throughout the derivation of Eq. (1.6) we made several strong assumptions, some of them

being not necessary to attain a superconducting state. E.g. we have used the fact that the only

Cooper pairs forming are those of electrons of opposite spins, which is not necessarily the case.

Fortunately, there is a possibility to extend the BdG Hamiltonian to other types of pairing,

which brings us to the next section.

1.5 Cooper pairs beyond the BdG Hamiltonian

Even though the BdG Hamiltonian does not describe properly the whole range of observed

superconducting phenomena, its extensions were proven to be applicable. One of the possible

extensions is to consider pairing different from the conventional pairing described in the pre-

vious section. When two electrons form a Cooper pair, there are two degrees of freedom, or

equivalently, two quantum numbers to ’play with’: the spin quantum number and the orbital

quantum number. Depending on whether spins of electrons compensate each other or not, one

can have a singlet with S = 0 or a triplet with S = 1. Note that in the previous section we

considered only singlet pairing. The orbital quantum number can take all the non-negative

integer values, i.e. L = 0, 1, 2, etc. However, these numbers cannot be chosen independently

since the wave function of a fermionic system must be antisymmetric in accordance with the

Pauli exclusion principle. Spin and orbital degrees of freedom are not coupled, ergo the wave

function can be written as a product of orbital and spin parts. A product of two functions is an-
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tisymmetric if and only if one of the functions is symmetric and the other one is antisymmetric.

Therefore, we must choose S and L such that

(−1)L · (−1)S+1 = −1.

Hence there are two possibilities for the wave function of a Cooper pair: symmetric orbital part

(L ∈ 2Z+) and antisymmetric spin part (S = 0), or vice versa, i.e. antisymmetric orbital part

(L ∈ 1+2Z+) and symmetric spin part (S = 1). The former corresponds to an s-wave supercon-

ductor (L = 0, S = 0), a d-wave superconductor (L = 2, S = 0), etc., whereas the latter refers

to a p-wave superconductor (L = 1, S = 1), an f-wave superconductor (L = 3, S = 1) and so

forth. It is now clear that the BdG Hamiltonian given by Eq. (1.6) describes an s-wave super-

conductor, also known as a conventional superconductor. Any other type of superconductivity

distinct from conventional is usually referred to as unconventional superconductivity.

In my thesis I am going to use conventional superconductors, as well as one type of uncon-

ventional ones – p-wave superconductors, restricting myself to 2D or 1D cases. To extend the

description given by Eq. (1.6), henceforward I will employ the so-called d-vector notation de-

veloped by R. Balian and N.R. Werthamer in Ref. [8]. In the most general case one can write

the superconducting pairing function as a 2× 2 matrix in spin subspace:

∆(p) =

∆↑↓(p) −∆↑↑(p)

∆↓↓(p) −∆↓↑(p)


To connect this pairing function to that considered before, we must set −∆↑↑ = ∆↓↓ = 0, and

simultaneously ∆↑↓ = −∆↓↑ = ∆s = const. One can always rewrite any 2 × 2 matrix in the

basis of Pauli matrices σ0 (unity matrix) and σ = {σx, σy, σz}. Thus we decompose

∆(p) = d0(p)σ0 + d(p) · σ,

where we define

d0(p) ≡ ∆↑↓ −∆↓↑
2

, dx(p) ≡ ∆↓↓ −∆↑↑
2

, dy(p) ≡ ∆↓↓ + ∆↑↑
2i

, dz(p) ≡ ∆↑↓ + ∆↓↑
2

. (1.7)

To understand the connection of d0,d to pairing types introduced above, we first reconsider

the case of a purely singlet pairing. Due to the fact that the orbital part must be symmetric
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Figure 1.2: Left: helical p-wave with d‖(p) = (py,−px, 0); Right: chiral p-wave with d⊥(p) =
(0, 0, px + ipy). In the helical p-wave there are Cooper pairs with spins perpendicular to the
plane of the superconductor, either both up or both down, whereas in the chiral p-wave Cooper
pair condensate consists of pairs with opposite spins lying in the plane, as the direction of the
d-vector dictates. Note that despite the fact that the pair contains electrons with antiparallel
spins, the spin part of the wave function is symmetric, since the combination is even (unlike
the case of an s-wave).

we have d0(−p) = d0(p),d = 0, and in particular d0 = ∆s in case of an s-wave superconductor.

Second, we turn to the case of a purely triplet pairing. As argued above, the orbital part of

a triplet pairing function must be antisymmetric, therefore in order to achieve purely triplet

pairing we set d0 = 0, and we require d(−p) = −d(p).

It is also worth discussing the physical meaning of the d-vector. It points in a direction per-

pendicular to the plane in which the spins of Cooper pairs lie. Throughout this manuscript I

consider two types of p-wave superconductors, both being gapped for all the values of momen-

tum p. The first type respecting time-reversal symmetry (TRS) will be called in what follows

’helical p-wave’, whereas the second type breaking TRS will be referred to as ’chiral p-wave’.

The helical p-wave can be described by the following choice of the d-vector: d‖(p) = (py,−px, 0),

whereas the chiral p-wave is given by d⊥(p) = (0, 0, px + ipy). To show explicitly what types

of Cooper pairs we have in these cases, I refer the reader to Fig. 1.2.

Finally, to extend the BdG Hamiltonian to the cases of both s-wave and p-wave pairing, we

rewrite Eq. (1.6) utilising the d-vector notation developed above:

HBdG(p) =

 ξpσ0 ∆(p)

∆†(p) −ξpσ0

 , (1.8)
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where ∆(p) = d0(p)σ0 +d(p)·σ, and σ-matrices act in spin subspace. The Hamiltonian defined

by Eq. (1.8) will be used hereinafter to describe various superconductors with both s-wave and

p-wave pairing.



Chapter 2

Friedel oscillations

Unlike the phenomenon of superconductivity, Friedel oscillations were first predicted theoret-

ically by J. Friedel in 1958 [9], and thereafter observed experimentally. He considered the

problem of electrons in a metal scattered by a single localised scalar impurity and showed that

such scattering resulted in oscillations in local density of states of the underlying metal.

It was not until 1993 that these oscillations were observed utilising a recently developed powerful

experimental tool – scanning tunnelling microscopy (STM) [10,11]. The main idea behind this

method is to move a conducting tip applied over the surface of a studied material, and to

measure the tunnelling conductance that is proportional to the local density of states. In case

of Friedel oscillations the observed conductance has peaks and dips depending on the position of

the tip with respect to the position of the impurity. Hence the STM image resembles concentric

circular ripples created by a stone dropped into water (see Fig. 2.1).

The significance of this discovery is hard to overestimate since it became the second most

explicit way to show the quantum nature of microscopic objects (electrons in case of Friedel

oscillations), after the famous Young’s double-slit experiment in 1801.

2.1 Explanation in a nutshell

It appears that virtual bound states form due to interference of incident and outgoing electronic

waves, or in other words, quasiparticle states with finite lifetime. One of the reasons for that is

12
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Figure 2.1: STM images of Friedel oscillations taken at different tip voltages. Higher values of
the tip voltage correspond to higher energies of electrons. Image is taken from Ref. [12].

the fact that they are plunged into the continuum of bulk states, or mathematically speaking,

the quasiparticle Green’s function pole contains a non-zero imaginary component responsible

for the exchange with the bulk.

The first step to understand the phenomenon of Friedel oscillations is to use a well-known

one-dimensional example of a particle scattering on a wall, playing the role of an impurity.

An incident right-moving plane wave with momentum k0 is fully reflected by an infinite wall,

and thus becomes an outgoing left-moving wave with momentum −k0. The resulting picture

is shown in Fig. 2.2: incident and reflected waves interfere forming a standing wave with

wavelength λ = 2π/2k0 = π/k0. Despite being oversimplified, this analogy allows to taste the

flavour of this phenomenon.

In what follows I turn to a more complicated case of electrons with parabolic spectrum E(k) =

k2

2m
scattering on a localised impurity. At a given energy E0 electrons live on circular con-

tours defined by E0 = k2

2m
. Elastic scattering of these electrons by point-like impurities can

change their momenta between all the points on the circle. Therefore, the resulting state is a

superposition of all the stationary waves with all the possible momenta, the dominating ones

being those with wavelength λE = π/k(E). These waves correspond to scattering between two

diametrically opposite points on circular contours with momentum 2k(E). Hence the resulting

picture will contain standing concentric waves centred at the position of the impurity. Averaged

over all the energies, the local density of states of a 3D metal in the presence of a localised
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Figure 2.2: A schematic picture of standing waves with λ = π/k0 forming due to interference
of incident (red arrow) and outgoing (blue arrow) waves scattered by an infinite wall (green
vertical line).

impurity can be written as

δρ(r) ∼ cos 2kF r

r2
(2.1)

The power-law decay changes as a function of dimensionality of the problem, being 1/r in 2D

and absent in 1D, as well as a function of lattice symmetries. For instance, in graphene, Friedel

oscillations are expected to have the conventional 1/r behaviour characteristic for a 2D system,

however accidental cancellations due to additional symmetries of the honeycomb lattice lead to

a 1/r2 dependence of the local density of states (for details see Ref. [13]).

2.2 State of the art

Friedel oscillations were measured in various systems in 3D, as well as in low-dimensional

systems, both 2D and 1D, where longer coherence lengths of electrons in comparison with the

3D case facilitate experimental observation. Despite being discovered more than fifty years ago,

they still attract a lot of attention amongst condensed matter physicists [13–17].

One of the convenient experimental tools to study Friedel oscillations is to take the Fourier

transform of the ripples in real space, obtained with STM. The resulting picture in momentum

space contains sharp features corresponding to those wave vectors that are present in the
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oscillatory terms in real space. That enables one to extract the dominant scattering processes.

This experimental technique, also known as Fourier-transform scanning tunnelling microscopy

(FT-STM), is a well-developed and versatile tool widely used nowadays [18–20].

To give an illustration I use Eq. (2.1) and perform the Fourier transform

∫
dr

cos 2kF r

r2
e−ikr =

π2

k
[1 + sgn(k − 2kF )] , where k = |k|. (2.2)

It is clear that the Fourier-transformed Friedel oscillations have a discontinuity at k = 2kF ,

hence we expect to see a sharp feature appearing at that point.

One of the most fascinating things about Friedel oscillations is that we are capable of extracting

some information about the underlying material by analysing the effects of disorder. It is

somewhat counter-intuitive, since common knowledge dictates ’the purer the better’ and that

in the presence of impurities one is not able to study the desired properties of a sample.

Notably, the original STM experiments on Friedel oscillations gave access to measuring the

Fermi momentum by Fourier-transforming the real space data and looking at the k-space

features. Further examples provided in the next part of the manuscript are supporting this

claim.

So far we got acquainted with the phenomena of superconductivity and Friedel oscillations in

conducting systems. Having two physical phenomena of different nature at our disposal, it is

often compelling to consider their interplay. It brings me to the final chord of the introductory

part – are there any impurity-induced oscillations in superconductors?



Chapter 3

Yu-Shiba-Rusinov states

3.1 Theoretical prediction and discovery

It all started in 1959 when Anderson published his famous article about BCS superconductors

with scalar disorder [21]. He argued that ’the B.C.S. theory in its original form, assuming

a constant interaction, will be more nearly correct in the dirty superconductor region that

it will be for pure superconductors’. This statement is referred to as ’Anderson’s theorem’,

and it is worth noting that it holds only if, first of all, disorder is not breaking time-reversal

symmetry (TRS), and second, we are dealing with a conventional BCS superconductor. The

first condition breaks down e.g. for TRS-breaking magnetic disorder, which was proven to be

destructive for the phenomenon of superconductivity [22]. The second condition does not hold

for any unconventional superconductor.

Almost a decade later in three independent pioneering theoretical papers it was described

how the superconducting order was suppressed in the presence of a single localised magnetic

impurity [23–25]. It was found that a pair of bound states appeared in the superconducting

gap (see Fig. 3.1). These states are called ’Yu-Shiba-Rusinov states’, or simply ’Shiba bound

states’. I refer to them in plural, however it is important to point out that there are two of them

only due to the particle-hole redundancy of the Bogoliubov-de Gennes Hamiltonian. Therefore,

it would be more accurate to think of them as of a single bound state with electron and hole

parts.

16
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Figure 3.1: Left: Density of states of a conventional superconductor. All the states below the
gap (E < −∆) are filled (shown in turquoise) whereas there are no states in the gap (|E| < ∆)
and above the gap (E > ∆). Right: Density of states of a conventional superconductor in
the presence of a localised magnetic impurity. There is a pair of in-gap states (Shiba bound
states) appearing at opposite energies (shown as red arrows), the dashed arrow stands for the
negative-energy state.

It was not until the turn of the century when these states were observed experimentally with

STM [26] for a 3D superconductor. Later, in 2015 they were also detected in a 2D supercon-

ductor, where their coherence lengths were larger than in 3D [27].

3.2 Underlying mechanism and properties

In this section I provide only qualitative explanations and demonstrations, leaving all the

detailed derivations and formulae to the next part of my thesis.

Roughly speaking, Shiba bound states are an analogue of Friedel oscillations for superconduct-

ing systems, however there are important differences. To unveil the mechanism of formation

of Shiba bound states we should keep in mind that, first of all, since we are dealing with a

superconductor we should think in terms of Cooper pairs, not electrons. Second, a magnetic

impurity creates a local magnetic field acting on spins of electrons, whereas in case of Friedel

oscillations we were dealing with a localised scalar potential. In addition, we note that only

classical spins of impurities are considered, therefore there is no Kondo physics in the discussion

below.

In a nutshell, Cooper pairs are broken by a local classical magnetic field induced by an impurity

(see the left column of Fig. 3.2). Afterwards, one of the electrons forming the pair couples to
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Figure 3.2: Shiba states in 3D (first row) and 3D (second row) superconductors. Left column:
schematic pictures of superconductors with magnetic impurities (red spheres with arrows) and
Cooper pairs (two yellow encircled arrows). Middle: Density of states of a superconductor with
a localised magnetic impurity, measured with STM. Red and green peaks appearing at opposite
energies correspond to Shiba states. Right: Spatial dependence of Shiba states given by STM
measurements at energies of Shiba peaks in the middle column (cf. Fig. 2.1). Image is taken
from Ref. [27].

the impurity, whereas the other one forms a subgap bound state. Similar to the case of Friedel

oscillations, an STM measurement detects ripples of local density of states in real space (see

the right column of Fig. 3.2). The drastic difference is that Shiba states are well-defined bound

states forming at a specific energy value in the superconducting gap, whereas Friedel oscillations

are given by virtual bound states forming at all the possible energy values, as described in the

previous chapter. In other words, to detect Shiba states we must perform an STM measurement

at a fixed energy value of the bound state (see Fig. 3.2), contrary to Friedel oscillations.

Note that Shiba states have opposite spin polarisation, which is in agreement with the expla-

nation above. Indeed, one of the electrons of a Cooper pair couples to the impurity spin. In

order to minimise the energy this coupling polarises the corresponding pair. And hence the

outcome is a bound state polarised along the spin of the impurity.
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Figure 3.3: Energies of Shiba states as a function of the dimensionless impurity strength α =
πνJS, where ν is the normal-phase density of states, J denotes the exchange coupling constant,
and S is the spin of the impurity. Black dashed lines mark the superconducting gap, and blue
arrows depict the spin polarisation of a corresponding state. The crossing point at α = 1 is
associated with change of the ground state parity.

Let us now take a closer look at how the energies of Shiba states depend on the parameters of

the system. In Fig. 3.3 I plot the energies of Shiba states as a function of the dimensionless

impurity strength α = πνJS, expressed in terms of the normal-phase density of states ν, the

exchange coupling constant between magnetic impurity and electrons J , and the spin of the

impurity S. The corresponding formula

E1,1̄ = ±1− α2

1 + α2
∆ (3.1)

will be derived in the next part of my thesis, however, several comments should be made at

this point.

Notably, the formula given by Eq. (3.1) becomes invalid for α � 1 due to breakdown of the

mean-field theory approach. For large values of α, the impurity is strong enough to modify

crucially the superconducting order parameter, which hence cannot be set to a constant any

more and must be defined self-consistently (for further details consider e.g. Ref. [28]). In

this respect it is worth mentioning that in the majority of STM measurements Shiba states

form at points closer to α ∼ 1, which justifies the validity of the mean-field approach. A

qualitative criterion for the breakdown of the mean-field theory would be to have a renormalised

superconducting gap in a region comparable to the coherence length of the bound states – in
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that case the gap renormalisation cannot be ignored any longer.

Another ’dangerous’ limit of Eq. (3.1) is the weak impurity regime, i.e. α � 1. It is possible

to treat the impurity spin classically and hence to avoid Kondo physics whilst the Kondo

temperature TK ∼ exp [−1/νJS] is smaller than the superconducting gap. As long as that

condition holds Eq. (3.1) remains valid.

And finally, the peculiar crossing at α = 1 corresponds physically to the point where the

impurity effectively binds an electron, thereby changing the superconducting ground state parity

from even to odd.

Another point worth mentioning is that throughout this dissertation the spin of impurities is

always treated classically, assuming that S � ~, and therefore it does not make too much

sense to keep it in all the formulae below. Hence hereinafter I omit it in all the expressions by

including it into the exchange coupling constant. In other words, I replace everywhere JS → J

and keep that in mind.

Further details and properties of Shiba states, as well as their possible applications, will be

discussed in the next parts of this dissertation.

Hereinafter we set ~ = 1.



Part II

Spin polarisation of Yu-Shiba-Rusinov

states as a probe of the host

superconductors

21
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This isn’t right. This isn’t even wrong.

Wolfgang Pauli

In 1922 Otto Stern and Walther Gerlach conducted their famous experiment proving that

angular momentum was quantised [29–31]. Silver atoms travelling in a non-uniform magnetic

field were caught by a detector screen, which showed a discrete set of points, thus revealing the

quantum nature of spin or, in other words, the so-called intrinsic angular momentum. Spin-

related phenomena are widely used in everyday life. Nuclear magnetic resonance (NMR) and

electron spin resonance are employed for spectroscopy in physics and chemistry, as well as in

medicine.

Since the pioneering works of Yu, Shiba and Rusinov [23–25] it was known that magnetic

impurity bound states in conventional superconductors were spin-polarised (see Fig. 3.3). It

was not until 1997 when STM enabled to observe Yu-Shiba-Rusinov states [26], leaving behind,

however, their spin polarisation. In order to detect the latter it is necessary to utilise the

so-called spin-polarised STM. Created by Roland Wiesendanger in the early nineties [32], it is

currently a well-established experimental technique accessible in many different laboratories.

The main idea behind SP STM is to use a magnetised tip instead of an ordinary metallic one.

Such a tip favours only tunnelling of electrons with spins parallel to that of electrons in the tip,

thus allowing to study spin-related properties of electrons.

It is worth noting that spin-resolved spectra of Shiba states induced by Mn impurities in MnB2

were analysed theoretically in Ref. [33]. The authors paid particular attention to scattering

from non-local impurity potentials and related Shiba peaks, proposing to distinguish those from

the bulk states by employing SP STM spectroscopy.

Motivated by the aforementioned findings, in what follows below I focus on the spin polarisation

of Yu-Shiba-Rusinov states giving access to various properties of underlying superconductors,

both conventional and unconventional. This part is organised as follows: in the next chap-

ter I describe in detail the model and the methods we have used in our work. The next two

chapters are dedicated to determining the spin-orbit coupling constant and discriminating be-

tween s-wave and p-wave pairing by analysing the spin polarisation of Shiba states, as well as

determining the type of p-wave pairing.
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General model and methods

4.1 Generalised BdG Hamiltonian

We consider a low-dimensional superconductor (2D or 1D) within the scope of a generalised

Bogoliubov-de Gennes Hamiltonian. Written in the Nambu basis Ψp = (ψ↑p, ψ↓p, ψ
†
↓−p,−ψ†↑−p)T

it reads

H0 =

ξpσ0 + λ(pyσx − pxσy) ∆(p)

∆†(p) −ξpσ0 − λ(pyσx − pxσy)

 , (4.1)

where ∆(p) = ∆sσ0 + κ d(p) · σ is a mixed s-wave and p-wave pairing, and ξp = p2/2m− εF
is the spectrum of free electrons with Fermi energy εF . λ is the Rashba spin-orbit coupling

constant. To describe a 2D superconductor we set momentum p ≡ (px, py), whereas in the 1D

case we take p ≡ px and py → 0. Note that the concept of d-vector is not vernacular in 1D

systems, however we can still exploit it formally. The operator ψ†σp creates a particle of spin

σ =↑, ↓ and momentum p. The system is considered to lay in the (x, y) plane. Pauli matrices

σ = (σx, σy, σz) act in spin subspace.

4.2 T-matrix approach

In what follows in this part of the manuscript we study what happens when a point-like single

impurity is introduced into a system described by Eq. (4.1). We consider impurities that have

23
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both a scalar potential component U and a magnetic potential component J = (Jx, Jy, Jz), and

are described by the following Hamiltonian:

Himp = V δ(r) ≡

Uσ0 + J · σ 0

0 −Uσ0 + J · σ

 δ(r), (4.2)

where U and J are the scalar and magnetic strengths respectively. Hereafter we treat these

impurities perturbatively without taking into account the superconducting gap renormalisa-

tion [28] occurring at very small distances compared to the coherence length of both the super-

conductor and the bound states. It is also worth mentioning that we consider only scattering

in the s-channel, which is equivalent to taking a δ-like potential. A plausible justification for

such an approximation is provided e.g. in Appendix C.6.

We solve the problem of finding and studying the properties of subgap states induced by

impurities given by Eq. (4.2) in low-dimensional superconductors defined by Eq. (4.1). In

what follows we use two different approaches that eventually converge towards the same results

(qualitatively, not quantitatively). Our goal is to find the spin polarisation of impurity-induced

subgap states. First, we tackle the problem with the help of the so-called T-matrix that is

described e.g. in Ref. [34]. Second, we exploit an approach described in detail in Ref. [35],

allowing to find the wave functions of impurity-induced states. For the sake of brevity, I am

omitting the formulae for the 1D case, since they can be straightforwardly obtained from those

for the 2D case.

We start by defining the unperturbed (bare) retarded Green’s function in momentum space

G0(E,p) = [(E + i0) I4 −H0(p)]−1 (4.3)

and in real space as the Fourier transform of Eq. (4.3)

G0(E, r) =

∫
dp

(2π)2
G0(E,p)eipr. (4.4)

The small positive imaginary shift +i0 ensures that we consider the retarded Green’s function

and allows to avoid singularities while inverting the corresponding matrix. To find the perturbed

retarded Green’s function in the presence of a localised impurity we use the perturbation series

given by Eq. (3.15) from Ref. [34], where we replace the Fourier-transformed Ûkk′ by V defined



4.2. T-matrix approach 25

in Eq. (4.2):

G0(p,p′) = G0(p)+G0(p)V G0(p′)+G0(p)V
∑
p′′

G0(p′′)V G0(p′)+· · · ≡ G0(p)+G0(p)T (E)G0(p′),

where

T (E) ≡ V + V
∑
p′′

G0(p′′)V + · · · = V + V
∑
p′′

G0(p′′)T (E).

Thus, for a localised impurity potential the perturbed retarded Green’s function can be ex-

pressed in terms of a T-matrix that depends solely on energy, and can be found as follows

T (E) =

[
I4 − V

∑
p′′

G0(p′′)

]−1

V (4.5)

It is worth noting that the T-matrix contains all the information about the perturbed system.

Mathematically speaking, the poles of the T-matrix correspond to the energies of impurity-

induced states. The real-space perturbed Green’s function can be written in terms of bare

Green’s functions in real space and the T-matrix:

∆G(E, r) ≡ G0(E,−r)T (E)G0(E, r). (4.6)

Now we can express the non-polarised, δρ(r, E), and spin-polarised local density of states (SP

LDOS), Sn̂(r, E), with n̂ = x, y, z in terms of Eqs. (4.5,4.6)

Sx(r, E) = − 1
π

Im [∆G12(E, r) + ∆G21(E, r)] , (4.7)

Sy(r, E) = − 1
π

Re [∆G12(E, r)−∆G21(E, r)] , (4.8)

Sz(r, E) = − 1
π

Im [∆G11(E, r)−∆G22(E, r)] , (4.9)

δρ(r, E) = − 1
π

Im [∆G11(E, r) + ∆G22(E, r)] , (4.10)

where ∆Gij denotes the ij-th component of the matrix ∆G. The FT of the SP LDOS compo-

nents in momentum space, Sn̂(p, E) =
∫
dr Sn̂(r, E)e−ipr, with n̂ = x, y, z, as well as the FT
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of the non-polarised LDOS, δρ(p, E) =
∫
dr δρ(r, E)e−ipr are given by

Sx(p, E) =
i

2π

∫
dq

(2π)2
[g̃12(E, q,p) + g̃21(E, q,p)], (4.11)

Sy(p, E) =
1

2π

∫
dq

(2π)2
[g21(E, q,p)− g12(E, q,p)], (4.12)

Sz(p, E) =
i

2π

∫
dq

(2π)2
[g̃11(E, q,p)− g̃22(E, q,p)], (4.13)

δρ(p, E) =
i

2π

∫
dq

(2π)2
[g̃11(E, q,p) + g̃22(E, q,p)], (4.14)

where dq ≡ dqxdqy,

g(E, q,p) = G0(E, q)T (E)G0(E,p+ q) +G∗0(E,p+ q)T ∗(E)G∗0(E, q),

g̃(E, q,p) = G0(E, q)T (E)G0(E,p+ q)−G∗0(E,p+ q)T ∗(E)G∗0(E, q),

and gij, g̃ij denote the corresponding components of the matrices g and g̃.

Several remarks should be made about the method above. First of all, the above-mentioned

T-matrix method becomes very handy in numerical calculations. The integrals over momenta

in Eqs. (4.11-4.14) are performed over the first Brillouin zone. The energies E specified in

those equations are the energies of the impurity-induced states. In the approach described

above they can be found as poles of the T-matrix situated in the superconducting gap. Second,

to avoid singularities in the definition of the bare retarded Green’s function in Eq. (4.3) we

will replace it with a finite +iδ in all the numerical calculations, keeping in mind its physical

meaning – quasiparticle lifetime. In all the realistic systems it is finite since there is always

some temperature broadening, as well as coupling to an external bath (occurring e.g. in STM

measurements) or any other source of decoherence.

4.3 Analytical approach

An alternative approach to studying the problem allows to extract the wave functions of the

impurity-induced states and study their behaviour. Furthermore, having found the wave func-

tions we can find different observables, such as e.g. LDOS and SP LDOS. We start by writing
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the Schrödinger equation

[H0 +Himp] Φ(r) ≡ [H0 + V δ(r)] Φ(r) = EΦ(r),

where the Hamiltonians on the left side are defined in Eqs. (4.1,4.2). After the Fourier transform

we get in the momentum space

(E −H0)Φ(p) = V Φ(r = 0).

Employing the definition of the bare retarded Green’s function, we express the wave function

in momentum space in terms of its value at the origin r = 0:

Φ(p) = G0(E,p)V Φ(r = 0).

To return to the real space we perform the FT again:

Φ(r) = G0(E, r)V Φ(r = 0). (4.15)

Substituting r = 0, we first define self-consistently the wave function at the origin and the

corresponding energy value from

[I4 −G0(E, r = 0)V ] Φ(0) = 0 (4.16)

by utilising the non-triviality condition det [I4 −G0(E, r = 0)V ] = 0. Inserting the energies and

corresponding Nambu spinors Φ(0) back into Eq. (4.15) enables us to determine the spatial

dependence of the Shiba state wave function. Finally, we define the non-polarised and the SP

LDOS

ρ(E, r) = Φ†(r)

σ0 0

0 0

Φ(r), (4.17)

and

S(E, r) = Φ†(r)

σ 0

0 0

Φ(r), (4.18)

where we take into account only the electron components of the wave function, and not the hole

ones. This is because the physical observables are related to only one of the two components,
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for example in a STM measurement one injects an electron at a given energy and thus have

access to the allowed number of electronic states, not to both the electronic and hole states

simultaneously. The Bogoliubov-de Gennes Hamiltonian contains the so-called particle-hole

redundancy, and the electron and the hole components can be simply recovered from each

other by overall changes of sign, and/or changing the sign of the energy.

In the next section I demonstrate the power of the analytical approach above for a magnetic im-

purity in an s-wave superconductor. More complicated cases will be considered in the following

chapters.

4.4 Example of a 2D s-wave superconductor

I begin by considering the pure s-wave pairing case, i.e. κ = 0 and λ = 0 in Eq. (4.1), with

a single localised magnetic impurity, in other words U = 0 in Eq. (4.2). As mentioned above,

this situation has already been addressed in previous works such as Ref. [35]. However, I am

revisiting this limit here in order to compute the spin-polarised LDOS defined in the previous

section, as well as to derive Eq. (3.1) for the sake of completeness.

In order to obtain the real space form of the retarded Green’s functions we need to integrate

the bare momentum space Green’s function over all momenta. For this we need first to perform

the following two integrals:

X0(0) = −
∫

dp

(2π)2

1

ξ2
p + ω2

, X1(0) = − p.v.

∫
dp

(2π)2

ξp
ξ2
p + ω2

, (4.19)

where ω2 ≡ ∆2
s −E2. Using the principal value (abbreviated as p.v.) for the second integral is

fully equivalent to performing the calculation with a natural ultraviolet energy cut-off, such as

the Debye frequency ωD, and then taking the limit of ωD → ∞. We rewrite
∫

dp
(2π)2

= ν
∫
dξp,

where ν = m
2π

, and we find

X0(0) = −πν 1

ω
, X1(0) = 0. (4.20)
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Therefore, the bare Green’s function is given by

G0(E, r = 0) = −πν
ω
σ0 ⊗

E ∆s

∆s E

 . (4.21)

Using (4.16) it is easy to show that, consistent with the Anderson theorem, there are no subgap

states forming for a purely scalar impurity (J = 0) in Eq. (4.2); while in the case of a purely

magnetic impurity (U = 0) we obtain two energy levels independent of the direction of J :

E1,1̄ = ±1− α2

1 + α2
∆s, where α = πνJ. (4.22)

The presence of two symmetric energy levels is a direct consequence of the imposed particle-

hole symmetry of the Bogoliubov-de-Gennes Hamiltonian. The value α = 1 corresponds to a

change in the ground state parity.

The corresponding eigenvectors at the origin are given by

Φ1̄(0) =
(

1 0 −1 0
)T

, Φ1(0) =
(

0 1 0 1
)T

for an impurity along the z-axis and

Φ1̄(0) =
(

1 1 −1 −1
)T

, Φ1(0) =
(

1 −1 1 −1
)T

for an impurity along the x-axis. To find the coordinate dependence and the asymptotic

behaviour of the Shiba states we perform the Fourier transforms:

X0(r) = −
∫

dp

(2π)2

eipr

ξ2
p + ω2

, X1(r) = −
∫

dp

(2π)2

ξp e
ipr

ξ2
p + ω2

.

We detail this calculation in Appendix A and here we only give the final results:

X0(r) = −2ν · 1

ω
· Im K0 [−i(1 + iΩ)pF r] , X1(r) = −2ν · Re K0 [−i(1 + iΩ)pF r] , (4.23)

where Ω ≡ ω/vFpF and K0 denotes the modified Bessel function of the second kind. It is worth

noting that these functions diverge at r = 0, but this divergence can be disregarded as it occurs

only at the point where the impurity is localised and, therefore, the Schrödinger equation is not



30 Chapter 4. General model and methods

well-defined. However, this problem can be always avoided by introducing an infrared cut-off

if needed. Since these functions have spherical symmetry we can write down the unperturbed

Green’s function as

G0(E, r) = σ0 ⊗

[EX0(r) +X1(r)] ∆sX0(r)

∆sX0(r) [EX0(r)−X1(r)]

 ,

where r = |r|. Using Eq. (4.15) we find for an impurity along the z-axis:

Φ1̄(r) = +Jz


(E1̄ −∆s)X0(r) +X1(r)

0

−(E1̄ −∆s)X0(r) +X1(r)

0

 , Φ1(r) = −Jz


0

(E1 + ∆s)X0(r) +X1(r)

0

(E1 + ∆s)X0(r)−X1(r)

 .

The formation of Shiba states implies the breaking of Cooper pairs, and subsequently the

coupling of the electrons to the spin of the impurity. Therefore, there is no physical reason for

the Shiba states to be polarised in any other direction than the direction of the impurity spin.

Thus we expect intuitively that Sx1,1̄(r) = Sy
1,1̄

(r) = 0 for both Φ1,Φ1̄ and this is indeed the

case. Moreover, utilising Eqs. (4.17) and (4.18) we have

Sz1̄(r) = +ρ1̄(r) = +J2
z [(E1̄ −∆s)X0(r) +X1(r)]2 ,

Sz1(r) = −ρ1(r) = −J2
z [(E1 + ∆s)X0(r) +X1(r)]2 .

Similarly, for an impurity along the x-axis we have

Φ1̄(r) = +Jx


(E1̄ −∆s)X0(r) +X1(r)

(E1̄ −∆s)X0(r) +X1(r)

−(E1̄ −∆s)X0(r) +X1(r)

−(E1̄ −∆s)X0(r) +X1(r)

 , Φ1(r) = −Jx


(E1 + ∆s)X0(r) +X1(r)

−(E1 + ∆s)X0(r)−X1(r)

(E1 + ∆s)X0(r)−X1(r)

−(E1 + ∆s)X0(r) +X1(r)

 .

For the same reasons as before, we have Sy
1,1̄

(r) = Sz1,1̄(r) = 0, and

Sx1̄ (r) = +ρ1̄(r) = +2J2
x [(E1̄ −∆s)X0(r) +X1(r)]2 ,

Sx1 (r) = −ρ1(r) = −2J2
x [(E1 + ∆s)X0(r) +X1(r)]2 .
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Note that all the functions given above are not normalised. This choice is made for the sake of

simplicity; furthermore, since we are only interested in the form of the spatial dependence, the

overall normalisation constant is not relevant for our analysis.

The asymptotic forms of the functions X0 and X1 for r →∞ are derived in Appendix E, and

are given by

X0(r) ∼ −
√

2π ν · 1

ω

sin (pF r + π/4)√
pF r

e−pSr, X1(r) ∼ −
√

2π ν · cos (pF r + π/4)√
pF r

e−pSr,

where pS = ΩpF = ω/vF is the inverse superconducting decay length, and the impurity-induced

oscillations have a period corresponding to the Fermi momentum pF , as expected for Friedel

oscillations at Fermi energy.

In the rest of this part of the manuscript calculations are performed along similar lines.
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Extracting spin-orbit coupling

Spin-orbit (SO) interaction or spin-orbit coupling was known since the dawn of quantum me-

chanics. Näıvely, one can think of it as an interaction between the spin of a given particle and

the magnetic field induced by its motion. The most known manifestations of SO can be found

in atoms, notably the energy levels of electrons acquire finite shifts and splittings (cf. Zeeman

effect) due to the fact that electrons interact with the intrinsic magnetic field induced by its

orbital motion.

A rigorous derivation of spin-orbit interaction requires using the Dirac equation. However, to

understand the basics it is sufficient to deduce it semiclassically, considering an electron moving

with velocity v in a radial electric field E = −∇V (r) of an atom. In its rest frame the electron

is subject to a magnetic field B = −v × E/c, where c is the speed of light. We note that

we neglect the higher order terms in v/c. Having a non-zero magnetic moment, the electron

interacts with this magnetic field, and the corresponding energy is given by

EL
int = −µe ·B.

The magnetic moment µe is proportional to the spin of the electron and can be written as

µe = −gµB
2
σ, where g is the electron spin g-factor, µB is the Bohr magneton, and σ is a vector

consisting of the Pauli matrices σx, σy, σz. The resulting interaction energy up to a constant

can be expressed as

EL
int ∝ σ · p×∇V.

32
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The energy we have calculated above is called ’Larmor interaction energy’. The spin-orbit

interaction has, however, another contribution, originating from the Thomas precession. Luck-

ily, the Thomas interaction energy has exactly the same dependence on spin, momentum and

gradient of the potential V [36]. Therefore, the spin-orbit interaction is written as

ESO = EL
int + ET

int ∝ σ · p×∇V.

In solid state physics there are numerous phenomena related to SO coupling. In general it

can be taken into account by writing down complicated effective multiband Hamiltonians,

circumscribing realistic systems. However, for qualitative discussions it is sufficient to utilise a

simple model such as the Rashba SO interaction [37]. The following two-band Hamiltonian

H =

(
k2

2m
− εF

)
σ0 + λR(kyσx − kxσy)

describes a two-dimensional electron gas with the Rashba SO coupling constant λR and σ-

matrices acting in spin space. On the left panel in Fig. 5.1 it is shown how the Rashba term

affects the conventional spin-degenerate parabolic spectrum, lifting the spin degeneracy and

shifting the bands.

There are several conventional ways of measuring the SO coupling constant, principal ones

being ARPES (or spin-resolved ARPES) and magneto-transport measurements [38]. On the

right panel in Fig. 5.1 exemplary ARPES data are presented.

In what follows below, we study the spin-resolved spectral properties of the impurity states

associated to the presence of magnetic impurities in two-dimensional, as well as one-dimensional

systems with Rashba spin-orbit coupling. We focus on Shiba bound states in superconducting

materials, as well as on impurity states in metallic systems. Using a combination of a numerical

T-matrix approximation and a direct analytical calculation of the bound state wave function,

we compute the local density of states together with its Fourier transform. We find that the FT

of the spin-polarised LDOS, a quantity accessible via spin-polarised STM, allows to accurately

extract the strength of the spin-orbit coupling. Also we confirm that the presence of magnetic

impurities is strictly necessary for such measurement, and that non-spin-polarised experiments

cannot have access to the value of the spin-orbit coupling.



34 Chapter 5. Extracting spin-orbit coupling

Figure 5.1: Left: a parabolic band split by the Rashba spin-orbit coupling. The spin degeneracy
inherent for metallic spectra in the absence of SO is lifted. Right: ARPES image of a spin-split
parabolic dispersion (borrowed from Ref. [38]). The energy shift is denoted ER, whereas k0 is
the momentum offset due to spin-orbit interaction.

The electronic bands of materials that lack an inversion centre are split by the spin-orbit cou-

pling. A strong SO coupling implies that the spin of the electron is tied to the direction of its

momentum. Materials with strong SO coupling have been receiving a considerable attention in

the past decade partly because SO is playing an important role for the discovery of new topo-

logical classes of materials [39, 40]. Two-dimensional topological insulators, first predicted in

graphene [41], have been discovered in HgTe/CdTe heterostructures [42] following a theoretical

prediction by Bernevig et al. [43]. They are characterised by one-dimensional helical edge states

where the spin is locked to the direction of propagation due to the strong SO coupling. Sim-

ilar features occur for the surface states of 3D topological insulators which also have a strong

bulk SO coupling [39]. The spin-to-momentum locking was directly observed by angle-resolved

photoemission spectroscopy (ARPES) experiments [44,45].

Topological superconductors share many properties with topological insulators. They possess

exotic edge states called Majorana fermions, particles which are their own antiparticles [39].

Topological superconductivity can be either induced by the proximity with a standard s-wave

superconductor or be intrinsic. In the former case, Majorana states have thus been proposed

to form in one-dimensional [46,47] and two-dimensional semiconductors [48,49] with strong SO

coupling when proximitised with a s-wave superconductor, and in the presence of a Zeeman

field. Following this strategy, many experiments have reported signatures of Majorana fermions
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through transport spectroscopy in one dimensional topological wires [50–54]. However, there

are presently only a few material candidates such as strontium ruthenate [55], certain heavy

fermion superconductors [56], or some doped topological insulators such as CuxBi2Se3 [57], that

may host intrinsic topological superconductivity.

Although SO coupling has been playing an essential role in the discovery of new topological

materials, it is also of crucial importance in the physics of spin Hall effect [58], in spintronics [59]

and quantum (spin) computation since it allows to electrically detect and manipulate spin

currents in confined nanostructures (see Ref. [38] for a recent review).

Based on the prominent role played by SO in the past decades, it is thus of great interest to

be able to evaluate the SO coupling value in a given material accurately, though in general

this is a very difficult task. Inferences can be made from ARPES measurements [60–62]; in

particular spin-polarised ARPES measurements have been used to evaluate the SO coupling

in various materials [63–69]. Other possibilities involve magneto-transport measurements in

confined nanostructures: this technique has been used to measure the SO coupling in clean

carbon nanotubes [70] or in InAs nanowires [71].

Here we propose a method to measure the magnitude of the SO coupling directly using spin-

polarised scanning tunnelling microscopy (STM) [32], and the Fourier transform (FT) of the

local density of states (LDOS) near magnetic impurities (FT-STM). The FT-STM technique

has been used in the past in metals, where it helped in mapping the band structure and the

shape and the properties of the Fermi surface [10, 11, 18–20, 72–74], as well as in extracting

information about the spin properties of the quasiparticles [75]. More spectacularly, it was

used successfully in high-temperature SCs to map with high resolution the particular d-wave

structure of the Fermi surface, as well as to investigate the properties of the pseudogap [76–78].

In what follows, on one hand, we calculate the Fourier transform of the spin-polarised local

density of states (SP LDOS) of the so-called Shiba bound state [23–25, 34] associated with a

magnetic impurity in a superconductor. Shiba bound states have been measured experimentally

by STM [26,79,80] and it has actually been shown that the extent of the Shiba wave function

can reach tens of nanometres in 2D superconductors, which allows one to measure the spatial

dependence of the LDOS of such states with high resolution [27]. We consider both one-

dimensional and two-dimensional superconductors with SO coupling. While two-dimensional

systems such as e.g. Sr2RuO4, [55] or NbSe2 [27, 81] become superconducting when brought
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at low temperature, one-dimensional wires such as InAs and InSb are not superconducting at

low temperature. In order to see the formation of Shiba states one would need to proximitise

them by a SC substrate. The formation of Shiba states in such systems [82, 83], as well as

in p-wave superconductors [84, 85], has been recently touched upon, but the effect of the SO

coupling on the FT of the SP LDOS in the presence of magnetic impurities has not previously

been analysed.

On the other hand we focus on the effects of the spin-orbit coupling on the impurity states

of a classical magnetic impurity in one-dimensional and two-dimensional metallic systems such

as Pb [86] and Bi, as well as InAs and InSb semiconducting wires that can be also modelled

as metals in the energy range that we consider. We should note that for these systems no

bound state forms at a specific energy, but the impurity is affecting equally the entire energy

spectrum.

By studying the two classes of systems described above we show that the SO coupling can di-

rectly be read-off from the FT features of the SP LDOS in the vicinity of the magnetic impurity.

We note that such a signature appears only for magnetic impurities, and only when the system

is investigated using spin-polarised STM measurements, the non-spin-polarised measurements

do not provide information on the SO, as it has also been previously noted [87]. The main differ-

ence between the SC and metallic systems, beyond the existence of a bound state in the former

case, is that the spin-polarised Friedel oscillations around the impurity have additional features

in the SC phase, the most important one being the existence of oscillations with a wavelength

exactly equal to the SO coupling length scale; such oscillations are not present in the metallic

phase. Another difference is the broadening of the FT features in the superconducting phase

compared to the non-SC phase in which the sole broadening is due to the quasiparticle lifetime.

We focus on Rashba SO coupling as assumed to be the most relevant for the systems considered,

but we have checked that our conclusion holds for other types of SO. To obtain the SP LDOS

we use a T-matrix approximation [20, 88, 89], and we present both numerical and analytical

results which allow us to obtain a full understanding of the observed features, of the splittings

due to the SO, as well as of the spin-polarisation of the impurity states and of the symmetry

of the FT features.

Below we first present the model for two-dimensional and one-dimensional cases and the basics

of the techniques employed. In Section 5.2 we show our results for the spin-polarised LDOS,
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calculated both numerically and analytically, for 2D systems, both in the SC and metallic phase.

Section 5.3 is devoted to spin-polarised LDOS of impurity-induced states in one-dimensional

systems. Concluding remarks and discussion of the results can be found in the last section of

this chapter. We left the details of the analytical calculations to the corresponding Appendixes.

5.1 Model and techniques

The model we utilise in this chapter is a particular case of the general model given by Eq. (4.1),

where we set the triplet pairing constant κ = 0. Thus we consider an s-wave superconductor

with s-wave pairing ∆s, and Rashba SO coupling λ, for which the Hamiltonian, written in the

Nambu basis Ψp = (ψ↑p, ψ↓p, ψ
†
↓−p,−ψ†↑−p)T, is given by:

H0 = σ0 ⊗ (ξpτz + ∆sτx) +HSO. (5.1)

The energy spectrum is ξp ≡ p2

2m
− εF , where εF is the Fermi energy. The operator ψ†σp creates

a particle of spin σ =↑, ↓ of momentum p ≡ (px, py) in 2D and p ≡ px in 1D. The system

is considered to lay in the (x, y) plane in 2D case, whereas in 1D case we set py to zero in

the expressions above, and we consider a system lying along the x-axis. The metallic limit is

recovered by setting ∆s = 0. The Rashba Hamiltonian can be written as

HSO = λ (pyσx − pxσy)⊗ τz, (5.2)

in 2D and simply as HSO = λpxσy ⊗ τz in 1D. We have introduced σ = (σx, σy, σz) and τ =

(τx, τy, τz), the Pauli matrices acting respectively in the spin and the particle-hole subspaces.

In what follows we study what happens when a single localised impurity is introduced in this

system. We consider magnetic impurities of spin J = (Jx, Jy, Jz) described by the following

Hamiltonian:

Himp = J · σ ⊗ τ0 · δ(r) ≡ V · δ(r), (5.3)

where J is the magnetic strength. We only consider here classical impurities oriented either

along the z-axis, J = (0, 0, Jz), or along the x-axis, J = (Jx, 0, 0). This is justified provided

the Kondo temperature is much smaller than the superconducting gap [34].
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To find the impurity states in the model described above we use the T-matrix approximation

described in [34,88,89] and [20], and revised in Chapter 4. We also neglect the renormalisation

of the superconducting gap because it is mainly local [28, 34] and therefore only introduces

minor effects for our purposes. Since the impurity is localised, the T-matrix is simply given by

Eq. (4.5).

To find the real-space dependence of the non-polarised, δρ(r, E), and SP LDOS, Sn̂(r, E),

with n̂ = x, y, z, as well as their components in momentum space we utilise Eqs. (4.7-4.10)

and Eqs. (4.11-4.14) respectively. Note that while the non-polarised and the SP LDOS are of

course real functions when evaluated in position space, their Fourier transforms need not be.

Sometimes we get either or both real and imaginary components for the FT, depending on their

corresponding symmetries. In the figures we shall indicate each time if we plot the real or the

imaginary component of the FT.

To obtain the FT of the non-polarised and the SP LDOS, we first evaluate the momentum

integrals in Eqs. (4.5),(4.11-4.14) numerically. For this we use a square lattice version of the

Hamiltonians (5.1) and (5.2), where we replace the continuum spectrum ξp by the tight-binding

spectrum Ξp ≡ µ− 2t(cos px + cos py) with chemical potential µ and hopping parameter t. For

clarity we set the lattice constant to unity. It is also worth noting that all the numerical

integrations are performed over the first Brillouin zone and that we use dimensionless units by

setting t = 1.

Alternatively, as detailed in Chapter 4, we find the exact form for the non-polarised and SP

LDOS in the continuum limit by performing the integrals in the FT of the Green’s functions

analytically. Moreover, when considering the SC systems, the energies E of the Shiba states

together with the corresponding eigenstates for the Shiba wave functions Φ at the origin can be

obtained from Eqs. (4.16) and (4.15) correspondingly. The latter allow to find the non-polarised

and SP LDOS by means of Eqs. (4.17) and (4.18) respectively. To avoid overburdening this

discussion, we leave all the further details of the aforementioned calculations to Appendixes

A.1 and B.
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5.2 Results for two-dimensional systems

Real and momentum space dependence of the 2D Shiba bound states

For a 2D superconductor with SO coupling in the presence of a magnetic impurity one expects

the formation of a single pair of Shiba states [82,83]. The energies of the particle-hole symmetric

Shiba states1 are given by (independent of the direction of the impurity):

E1,1̄ = ±1− α2

1 + α2
∆s,

where α = πνJ is the dimensionless impurity strength and ν = m
2π

is the normal-phase density

of states. (See Appendix A for details of how the energies of the Shiba states are calculated.)

Up to the critical value αc = 1 these energies are ordered the following way: E1 > E1̄. As soon

as α > αc, energy levels E1 and E1̄ exchange places, making the order the following: E1̄ > E1.

When α = αc = 1 the impurity effectively binds an electron, and thus it corresponds to a

change of the ground state parity [34, 90, 91]. For α � 1 the subgap states approach the gap

edge and eventually merge with the continuum. For the type of impurities considered here,

there is no dependence of these energies on the SO coupling in the low-energy approximation,

though a weak dependence is introduced when one takes into account the non-linear form of the

spectrum. The dependence of energy of the Shiba states on the impurity strength J is depicted

in Fig. 5.2 where we plot the total spin of the impurity state S(p = 0) as a function of energy

and impurity strength. Note that the two opposite-energy Shiba states have opposite spins.

We are interested in studying the spatial structure of the Shiba states in the presence of magnetic

impurities oriented both perpendicular to the plane, and in the plane. This can be done

both in real space and momentum space by calculating the Fourier transform of the spin-

polarised LDOS using the T-matrix technique detailed in Chapter 4. We focus on the positive-

energy Shiba state, noting that its negative energy counterpart exhibits a qualitatively similar

behaviour. In Fig. 5.3 we show the real-space dependence of the non-polarised and SP LDOS.

Each of the panels corresponds to the interference patterns originating from different types of

scattering. Note that the spin-orbit value cannot be accurately extracted from these type of

1We often use the plural when referring to Shiba states in order to facilitate the discussion. However, it
should be kept in mind that for a given localised magnetic impurity, there is a single Shiba state with particle
and hole components whose real space wave function can actually behave differently.
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Figure 5.2: The averaged SP LDOS induced by an impurity as a function of the impurity
strength for an in-plane magnetic impurity. The dashed line shows the superconducting gap. A
similar result is obtained when the impurity spin is perpendicular to the plane. Note that the
two Shiba states with opposite energies have opposite spin. We set t = 1, µ = 3, δ = 0.01, λ =
0.5,∆s = 0.2.

measures, since the system contains oscillations with many different superposing wave vectors.

To overcome this problem we focus on the FT of these features, as it is often done in spatially

resolved STM experiments, which allow for a more accurate separation of the different wave

vectors [10, 11, 18–20, 72–74]. Thus in Fig. 5.4 we focus on the FT of the SP LDOS for two

types of impurities with spin oriented along z and x axes respectively.

Note that the SO introduces non-zero spin components in the directions different from that of

the impurity spin. These components exhibit either two-fold or four-fold symmetric patterns.

Also the SO is affecting strongly the spin component parallel to the impurity, in particular when

the impurity is in-plane, in which case the structure of the SP LDOS around the impurity is

no longer radially symmetric. However, as can be seen in the bottom panel of Fig. 5.4, the

non-spin-polarised LDOS is not affected by the presence of SO, preserving a radially symmetric

shape quasi-identical to that obtained in the absence of SO. Thus the SO coupling can be

measured only via the spin-polarised components of the LDOS, and not the non-polarised

LDOS.

These results, which are obtained using a numerical integration of the T-matrix equations, are

also supported by analytical calculations which help to understand the fine structure of the

FT of the SP LDOS (see Appendix A.1 for details). These calculations yield for the SP LDOS
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z-impurity x-impurity

Jz (Jx = Jy = 0) Jx (Jy = Jz = 0)

Figure 5.3: The real-space dependence of the non-polarised (bottom row) as well as of the SP
LDOS components (the first three rows) for the positive energy Shiba state, for a magnetic
impurity with Jz = 2 (left column), and Jx = 2 (right column). We take t = 1, µ = 3, δ =
0.01, λ = 0.5,∆s = 0.2.
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generated by a magnetic impurity perpendicular to the plane

Sx(r) = +J2
z

(
1 +

1

α2

)
e−2psr

r
cosφr ×

{∑
σ

σν2
σ

pσF
cos (2pσF r − θ) + γ sin pλr

}
,

Sy(r) = +J2
z

(
1 +

1

α2

)
e−2psr

r
sinφr ×

{∑
σ

σν2
σ

pσF
cos (2pσF r − θ) + γ sin pλr

}
,

Sz(r) = −J2
z

(
1 +

1

α2

)
e−2psr

r
×
{∑

σ

ν2
σ

pσF
sin (2pσF r − θ)− γ cos pλr

}
,

ρ(r) = +J2
z

(
1 +

1

α2

)
e−2psr

r
×
{

2
ν2

mv
+ γ sin (2mvr − θ)

}
,

with γ ≡ 2ν2 v2F
v2pF

and

θ =

arctg 2α
1−α2 , if α 6= 1

π
2
, if α = 1

.

We have introduced eiφr = x+iy
r

, and pσF = −σmλ + mv, pλ = 2mλ, ps =
√

∆2
s − E2

1/v, with

v =
√
v2
F + λ2, and vF =

√
2εF/m. Here pσF , pλ and ps are the different momenta which can

be read off from the SP LDOS. For an in-plane magnetic impurity we have

Ssx(r) = −J2
x

(
1 +

1

α2

){∑
σ

ν2
σ

pσF
[1 + sin(2pσF r − 2β)] + γ[cos pλr + sin (2mvr − 2β)]

}
e−2psr

r

Sax(r) = J2
x

(
1 +

1

α2

){∑
σ

ν2
σ

pσF
[1− sin (2pσF r − 2β)]− γ[cos pλr + sin (2mvr − 2β)]

}
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r
cos 2φr,

Sy(r) = J2
x

(
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1
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){∑
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σ

pσF
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Sz(r) = −J2
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(
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1
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){
2
∑
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pσF
cos (2pσF r − θ) + 2γ sin pλr
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ρ(r) = +J2
x

(
1 +

1

α2

){
4
ν2

mv
+ 2γ sin (2mvr − θ)

}
e−2psr

r
,

with tan β = α. The Sx component is the sum of symmetric part Ssx and an asymmetric part

Sax. Note that the features observed in the FT of the SP LDOS plots are well captured by

the analytical calculations. In particular we note that the oscillations in the SP LDOS are

dominated by the following four wave vectors:

2p±F , p+
F + p−F = 2mv, and p−F − p+

F = pλ ≡ 2mλ,
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which should give rise in the FT to high-intensity features at these wave vectors (the red arrows

in Fig. 5.4). Indeed, we note in the numerical results for the FT of the SP LDOS the existence

of four rings, corresponding to 2p±F , p+
F + p−F = 2mv and p−F − p+

F = pλ, having the proper

two-fold or four-fold symmetries, consistent with the cos / sinφr and cos / sin 2φr dependence

of the SP LDOS obtained analytically. For example, in the x component of the SP LDOS

induced by an x impurity, the 2p+
F , 2p−F and pλ rings have a maximum along x and a minimum

along y, while the 2mv ring has a symmetry corresponding to a rotation by 90 degrees. The y

component of the FT of the SP LDOS has a four-fold symmetry in which we can again identify

the same wave vectors, while the Sz component has a two-fold symmetry, and the 2mv vector is

absent. Similarly, for the Sx and the Sy components of the SP LDOS induced by a z impurity

(these components should be zero in the absence of the SO coupling) only the 2p±F and pλ wave

vectors are present, with similar symmetries, while the Sz component is symmetric. Note also

the central peak at px = py = 0 which is due to the terms independent of position in the SP

LDOS.

The most important observation is that all the components of the FT of the SP LDOS exhibit

a strong feature at wave vector pλ. Thus an experimental observation of this feature via spin-

polarised STM would allow one to read-off directly the value of the SO coupling. The spin orbit

can also be read-off from the distance between the 2p+ and 2p− peaks, though the intensity of

these features is not as strong. This appears clearly in Fig. 5.5, in which we plot a horizontal

cut through two of the FT – SP LDOS above as a function of the SO coupling λ.

Note that the only wave vector present in the non-polarised LDOS is 2mv, which has only

a very weak dependence on λ for not too large values of the SO with respect to the Fermi

velocity, thus it is quasi-impossible to determine the SO coupling from a measurement without

spin resolution. Note also the typical two-dimensional 1/r decay of the Friedel oscillations is

overlapping in this case with an exponential decay with wave vector ps.

Comparison to the metallic phase

A similar analysis can be performed for impurity states forming in the vicinity of a magnetic

impurity in a metallic system. Here the classical magnetic impurity does not lead to any

localised bound states at a specific energy (cf. Friedel oscillations), and the intensity of the
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z-impurity x-impurity

Jz (Jx = Jy = 0) Jx (Jy = Jz = 0)

Figure 5.4: The FT of the non-polarised (bottom row) as well as of the SP LDOS components
(the first three rows) for the positive energy Shiba state as a function of momentum, for a
magnetic impurity with Jz = 2 (left column), and Jx = 2 (right column). We take t = 1, µ =
3, δ = 0.01, λ = 0.5,∆s = 0.2. For a z-impurity we depict the real part of the FT for δρ
and for Sz, and the imaginary part for and Sx and Sy, whereas for an x-impurity we take the
imaginary part only for the Sz component. Black two-headed arrows correspond to the value
of 2pλ ≡ 4mλ (see the analytical results) and thus allow to extract the SO coupling constant
directly from these strong features in momentum space. The other arrows correspond to the
other important wave vectors that can be observed in these FTs, as identified with the help of
the analytical results.
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Figure 5.5: The FT of various SP LDOS component for a Shiba state as a function of the SO
coupling λ and of py (for px = 0 - vertical cut). We take t = 1, µ = 3, δ = 0.01,∆s = 0.2, Jz = 2.

impurity contribution is roughly independent of energy.

Thus in Fig. 5.6 we plot the FT of the impurity contribution to the LDOS and SP LDOS

at a fixed energy E = 0.1. We note that we have similar features to those observed in the

SC regime, with the main differences being that the long-wavelength central features are now

absent, and that the FT peaks are much sharper than in the SC regime. This behaviour can be

explained from the analytical expressions of the non-polarised and SP LDOS, whose derivation

is presented in Appendix B. The results are presented below for an out-of-plane spin impurity:

Sx(r) ∼ +
J

1 + α2

cosφr

r

∑
σ

σ
ν2
σ

pσ
sin 2pσr,

Sy(r) ∼ +
J

1 + α2

sinφr

r

∑
σ

σ
ν2
σ

pσ
sin 2pσr,

Sz(r) ∼ − J

1 + α2

2

r

∑
σ

ν2
σ

pσ
cos 2pσr,

ρ(r) ∼ − J

1 + α2
4αν2v

2
F

v2

1√
p2
F + 2mE + E2/v2

· sin pεr

r
,
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z-impurity x-impurity

Jz (Jx = Jy = 0) Jx (Jy = Jz = 0)

Figure 5.6: The FT of the impurity contributions to the non-polarised and SP LDOS for an
energy E = 0.1 and for a magnetic impurity with Jz = 2 (left column), and Jx = 2 (right
column). We take the inverse quasiparticle lifetime δ = 0.03 and we set t = 1, µ = 3, λ =
0.5,∆s = 0. For a z-impurity we depict the real part of the FT for δρ and for Sz, and the
imaginary part for Sx and Sy, whereas for an x-impurity we take the imaginary part only for
the Sz component. Unlike in the SC case, the strong peaks appearing in the centre and at pλ
are absent here. The arrows denote the wave vectors of the observed features as identified from
the analytical calculations.
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while for an x directed impurity (in-plane):

Sx(r) ∼ − J

1 + α2

{
2ν2v

2
F

v2

1− cos 2φr
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with pF = mvF , pσ = pσF + E/v 6= 0, pε ≡ p+ + p− = 2 (mv + E/v) and νσ = ν
[
1− σ λ

v

]
.

Note that these expressions are very similar to those obtained in the SC regime, except that

the wave vectors of the oscillations now do not include pλ. However, this could still be read-off

experimentally from the difference between p− and p+. Another important difference between

the SC and non-SC regimes is the presence of the exponentially decaying term in the expressions

describing the LDOS dependence for the Shiba states in the SC regime. The Shiba states have

an exponential decay for distances larger than the superconducting coherence length, while the

impurity states in the non-SC regime only decay algebraically as 1/r. In the Fourier space this

is translated into a much larger broadening of the features corresponding to the Shiba states in

the SC regime with respect to that of the features corresponding to the impurity contributions

in metals. The width of the peaks in the latter is solely controlled by the inverse quasiparticle

lifetime δ and is generally quite small.

Note also that in both regimes one needs to use the spin-polarised LDOS and magnetic im-

purities to be able to extract the value of the SO coupling, while the non-polarised LDOS is

not sensitive to this wave vector. Last but not least, the LDOS perturbations induced by a

non-magnetic impurity do not show any direct signature of the SO coupling (the only con-

tributing wave vector is 2mv in the metallic regime, while in the SC regime no Shiba state form

for a non-magnetic impurity), thus the only manner to have access to the SO coupling is via

spin-polarised STM in the presence of magnetic impurities.
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5.3 Results for one-dimensional systems

While in one-dimensional systems superconductivity is not intrinsic, a superconducting gap

can be opened via proximitising them with a superconducting substrate. For such systems it

is thus particularly interesting to study the FT of the SP LDOS for both the superconducting

and non-superconducting regimes, as both these regimes can be achieved experimentally at low

temperature for the same materials.

We consider the Hamiltonian given by Eqs. (5.1-5.3), where we set py → 0, and we perform a

T-matrix analysis similar to that described in the previous section for both the SC and non-SC

phases, for different directions of the magnetic impurity. The wire is considered to be oriented

along the x direction, and the SO coupling is oriented along y [46,47]. We thus expect a similar

and more exotic behaviour for impurities directed along x and z, and a more classical behaviour

for impurities with the spin parallel to the direction of the SO, thus oriented along y.

The energies and wave functions of the Shiba states can be found using the same procedure as

for the two-dimensional systems (see Appendix A). This yields for the energies of the states:

E1,1̄ = ±1− α2

1 + α2
∆s, where α = J/v.

The FT of the positive energy state as a function of momentum and the SO coupling is presented

in Fig. 5.7 for a SC (left column) and non-SC state (right column), for an impurity directed

along z. For this situation the spin of the Shiba state has two non-zero components, one parallel

to the wire, and one parallel to the impurity spin, and these two components are depicted in

Fig. 5.7. Note that, similar to the two-dimensional case, there is a split of the FT features

increasing linearly with the SO coupling strength. Also note that in the non-SC phase the

central feature, whose wave vector is given by pλ, is absent, and that the FT features are

broadened in the SC regime with respect to the non-SC one. Furthermore, same as in the

two-dimensional case, the SO affects the spin-polarised components but almost do not change

the non-polarised LDOS, as it can be seen in Fig. 5.7 where it appears that the non-polarised

LDOS FT features do not evolve with the SO coupling.

These results are confirmed by analytical calculations. Below we give the spin components and

the LDOS in the SC state for an impurity directed along z obtained analytically (see Appendix
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SC case Non-SC case

Figure 5.7: The FT of various SP LDOS component for a Shiba state (left column), and for an
impurity state at E = 0.1 (right column), as a function of the SO coupling λ and of momentum
p, for an impurity perpendicular to the wire and directed along z. We set t = 1, µ = 1. We
take ∆s = 0.2, Jz = 4, δ = 0.01 in the SC case and ∆s = 0, Jz = 2, δ = 0.05 in the non-SC case.
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A.1), for the positive energy Shiba state:

Sx(x) =
1 + α2

4
[2 sin pλx+ sin(2mv|x|+ pλx− 2θ)− sin(2mv|x| − pλx− 2θ)] · e−2ω|x|/v

Sy(x) = 0

Sz(x) = −1 + α2

4
[2 cos pλx+ cos(2mv|x|+ pλx− 2θ) + cos(2mv|x| − pλx− 2θ)] · e−2ω|x|/v

ρ(x) =
1 + α2

2
[1 + cos(2mv|x| − 2θ)] · e−2ω|x|/v

where tan θ = α. We also present the FT of the SP LDOS for the non-SC phase for the impurity

contribution corresponding to the energy E (see Appendix B):

Sx(x) = +
α

1 + α2
· 1

πv
[cos(pε|x| − pλx)− cos(pε|x|+ pλx)]

Sy(x) = 0

Sz(x) = +
α

1 + α2
· 1

πv
[sin(pε|x| − pλx) + sin(pε|x|+ pλx)]

ρ(x) = − 2α2

1 + α2
· 1

πv
cos pεx

As before, in the expressions above pε = 2(mv + E/v), pλ = 2mλ.

Indeed these calculations confirm our observations, in the SC state the dominant wave vectors

are 2p±F = 2mv ± pλ, 2mv and pλ, while in the non-SC phase only pε ± pλ, and 2mv.

Similar results are obtained if the impurity is oriented along x, with the only difference that

the x and z components will be interchanged, up to on overall sign change (see Appendixes A.1

and B). For impurities parallel to y, and thus to the SO vector, we expect the SP LDOS to be

less exotic, and indeed in this case the only non-zero component of the impurity SP LDOS is

Sy. In the SC regime we thus find

Sx(x) = 0

Sy(x) = −(1 + α2)[1 + cos(2mv|x| − 2θ)] · e−2ω|x|/v

Sz(x) = 0

ρ(x) = +(1 + α2)[1 + cos(2mv|x| − 2θ)] · e−2ω|x|/v
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while in the non-SC regime we have

Sx(x) = 0

Sy(x) = +
2α

1 + α2
· 1

πv
sin pε|x|

Sz(x) = 0

ρ(x) = − 2α2

1 + α2
· 1

πv
cos pεx

We see that Sy exhibits features only at the 2mv and correspondingly at the pε wave vectors,

same as the non-polarised LDOS, thus not allowing for the detection of the SO coupling.

For intermediate directions of the impurity spin, all three components will be present, with

the x and z exhibiting all the wave vectors, while the y component solely the 2mv, and with

relative intensities given by the relative components of the impurity spin.

Thus, we conclude that, same as in the 2D case, the SO can be measured using spin-polarised

STM and magnetic impurities; moreover, in the 1D case one needs to consider impurities that

have a non-zero component perpendicular to the direction of the SO.

5.4 Discussion

We have analysed the formation of Shiba states and impurity states in 1D and 2D supercon-

ducting and metallic systems with Rashba SO coupling. In particular we have studied the

Fourier transform of the local density of states of Shiba states in SCs and of the impurity

states in metals, both non-polarised and spin-polarised. We have shown that the spin-polarised

density of states contains information that allows one to extract experimentally the strength of

the SO coupling. In particular, the features observed in the FT of the SP LDOS split with a

magnitude proportional to the SO coupling strength. Moreover, the Friedel oscillations in the

SP LDOS in the SC regime show a combination of wavelengths, out of which the SO length can

be read off directly and non-ambiguously. We note that these signatures are only visible in the

spin-polarised quantities and in the presence of magnetic impurities. For non-spin-polarised

measurements, no such splitting is present and the wave vectors observed in the FT of the SP

LDOS basically do not depend on the SO coupling. When comparing the results for the SC



52 Chapter 5. Extracting spin-orbit coupling

Shiba states to the impurity contribution in the metallic state and we find a few interesting dif-

ferences, such as a broadening of the FT features corresponding to a spatial exponential decay

of the Shiba states compared to the non-SC case. Moreover, the FT of the SP LDOS in the SC

regime exhibits extra features with a wavelength equal to the SO length which are not present in

the non-SC phase. It would be interesting to generalise our results to more realistic calculations

which may include some specific lattice characteristics, more realistic material-dependent tight-

binding parameters for the band structure and the SO coupling values. However, we should

note that our results have a fully general characteristic, independent of the band structure or

other material characteristics, and that the features in the FT of the non-polarised LDOS will

correspond to split features in the spin-polarised LDOS, and thus the spin-orbit can be mea-

sured unequivocally from the split obtained from the comparison between the non-polarised

and spin-polarised measurements. We have checked that up to a rotation in the spin space our

results hold also for other types of SO coupling such as Dresselhaus [92].

According to our knowledge, the FT-STM is a well-established experimental technique which

does not deal with large systematic errors [10,11,18–20,72–74]. The experimental data presented

e.g. in Ref. [20] shows that the resolution in the Fourier space (momentum space) reaches

0.05 Å
−1

, whereas a typical value of spin-orbit coupling wave vector pλ ∼ 0.15 Å
−1

(see e.g.

Ref. [38]), and thus it is sufficient to resolve the features originating from the spin-orbit coupling.

Moreover, we would like to point that the exponent e−2psr defines in the real space how far the

impurity-induced states are extended, and it manifests in the momentum space as the widening

of the ring-like features appearing at particular momenta. The condition of resolving the spin-

orbit is thus 2ps < pλ, otherwise the widening is large enough to blur the spin-orbit feature.

This condition can be rewritten in a more explicit way, namely

1√
1 + (λ/vF )2

· α

1 + α2
· ∆s

εF
<

λ

vF

For any realistic parameters the first two factors on the left side are of the order of unity, and

∆s/εF ∼ 10−3 for superconductors. However, for realistic values of the spin-orbit coupling λ,

this inequality holds and therefore there should not be any technical problem with resolving

those features.

The results of this Chapter can be tested using for example materials such as Pb, Bi, NbSe2

or InAs and InSb wires, which are known to have a strong SO coupling, using spin-polarised
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STM which is nowadays becoming more and more available [32].



Chapter 6

Extracting triplet pairing type

In the early eighties it became clear that the theory of conventional superconductivity with

s-wave pairing was not sufficient to describe certain compounds. Notably, CeCu2Si2 reported

by Steglich et al. in 1979 was believed to be a singlet d-wave superconductor [93] until 2014,

when its superconducting properties were revisited by Kittaka et al. [94]. Later on, a plethora

of unconventional superconductors was discovered, including the best known examples of triplet

pairing – 3He superfluid reported by A. Leggett and J. Wheatley in 1975 [95,96], as well as the

first triplet organic superconductor (TMTSF)2PF6 [97]. The discovery of high-temperature SC

LaBaCuO4 by Bednorz and Müller in 1986 [98] was an important breakthrough that attracted

even more attention to the physics of unconventional SCs.

Typical ways to discriminate experimentally conventional SCs from unconventional ones are

to analyse either the power-law dependence of the nuclear magnetic resonance relaxation rate

and/or the specific heat capacity dependence on temperature. Despite significant progress in

material science, to date no solid state compound has been proven to be a p-wave supercon-

ductor. One of the most promising candidates is strontium ruthenate first described in the

group of Maeno in 1994 [99]. However, the subject remains controversial and to date there is

no agreement in the scientific community [100].

In what follows we study the magnetic properties of the impurity bound states in superconduc-

tors with p-wave pairing and find striking signatures in their spin polarisation which allow to

unambiguously discriminate a non-topological superconducting phase from a topological one.

Moreover, we show how these properties, which could be measured using spin-polarised scanning
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tunnelling microscopy (STM), also enable to determine the direction of the spin-triplet pairing

vector of the host material and thus to distinguish between different types of unconventional

pairing.

Ever since the discovery of strontium ruthenate as one the first unconventional superconductors

(SCs) more than thirty years ago [55], the search for the symmetry of Cooper pairs [101,

102] has been among the most important tasks to be addressed in order to characterise new

superconducting materials. In the past decade, many new SCs with broken inversion symmetry

have been discovered. These SCs are expected to display unconventional pairing due to the

strong spin-orbit coupling. Indeed, in these materials, the twofold spin degeneracy is lifted by

spin-orbit interaction, and the Cooper pairs exhibit a mixture of singlet and triplet pairing

[103, 104]. Examples of such systems can be found in non-centrosymmetric SCs [102, 105] and

doped topological insulators [57]. Other materials with unconventional pairing can also be

uncovered within two-dimensional (2D) or quasi-2D superconductors which necessarily break

the 3D inversion symmetry, such as the surface states of topological insulators in the proximity

of s-wave superconductors [106], 2D materials with strong spin-orbit coupling proximitised

by s-wave superconductivity [48, 49], monolayer or few-layer transition metal dichalcogenides

[107,108], etc.

The fact that the surface states of non-centrosymmetric SCs with mixed singlet and triplet

pairing are predicted to support spin-polarised currents [109, 110] suggests that such 2D un-

conventional superconductors may exhibit a non-trivial spin response to local magnetic fields

and magnetic impurities. In s-wave SCs, magnetic impurities lead to so-called intra-gap Shiba

bound states (SBSs) [23–25] (see [34] for a review) which have experimentally been probed

using STM [26,27,79,80].

While a point-like scalar impurity does not induce a SBS in s-wave SCs [34], it gives rise to one

SBS in p-wave dominant SCs [83,111–113]. More interestingly, a point-like magnetic impurity

leads to the formation of one SBS in the s-dominant regime and of two SBSs in the p-dominant

regime, although as we show here, not all of them are always subgap states. This may suggest

to use the number of SBSs as a natural criterion to discriminate between s-wave and p-wave

SCs. However, we note that this quantity depends on the number of impurity orbitals which

hybridise with the SC as well as the impurity shape. Recently it has also been shown that

Shiba states in p-wave SCs have a non-trivial spectral dependence with respect to the spin-
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orbit coupling (SOC) or with the direction of the magnetic moment [83], compared to the

s-wave SCs. However, the former parameter (SOC) is usually given while the latter is not so

easy to handle experimentally with magnetic fields.

In this Chapter, we propose to determine the degree of triplet pairing together with the ori-

entation with respect to the sample plane of the spin-triplet pairing vector (the so-called d-

vector [101,102]) using spin-polarised STM measurements of the integrated spin-polarised local

density of states (SP LDOS) of the SBSs, as well as its Fourier transform (FT), for the Shiba

states associated with magnetic impurities. We find that for an impurity with a spin orthogo-

nal to the d-vector, the particle and hole component of the SBSs closest to mid-gap have spins

of the same sign in the p-dominant regime, and of opposite sign in the s-dominant regime.

Furthermore, when both the d-vector and the impurity spin are in-plane, we find a spectacular

cancellation of half of the in-plane spin components of the SBSs which can be traced back to

the orbital pairing nature of the host SC. Therefore, the relative sign of the spin for these two

states can serve as a probe to test experimentally the degree of p-wave pairing via spin-polarised

STM measurements or using spin-polarised transport experiments. Moreover, by studying the

Fourier transform (FT) of the electronic SP LDOS of these states, we find distinct features,

the most striking being that the FT of the SP LDOS acquires a four-fold-symmetry, character-

istic for the orbital p-wave pairing, in the topological p-wave dominant regime when both the

d-vector and the impurity spin are in the plane.

6.1 Model and techniques

We consider a 2D SC with both s-wave SC pairing ∆s and p-wave SC pairing κ. The corre-

sponding Hamiltonian is that of Eq. (4.1), where we set the Rashba SO constant λ = 0. Thus

in the Nambu basis Ψp = (ψ↑p, ψ↓p, ψ
†
↓−p,−ψ†↑−p)T we have

H0 =

 ξpσ0 ∆(p)

∆†(p) −ξpσ0

 . (6.1)

where ∆(p) = ∆sσ0 + κ d(p) · σ is the mixed s-wave and p-wave pairing function. In order to

simplify the discussion, we assume in what follows that ∆s and κ are real and positive. The

symbol σ denotes the Pauli matrices acting in the spin subspace. The operator ψ†σp creates
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Figure 6.1: Sketch of an out-of-plane magnetic impurity in a p-wave TRS superconductor
with an in-plane d-vector. In this case, electrons forming Cooper pairs have always some
out-of-plane spin components (blue and red arrows) [55]. Furthermore, due to TRS, Cooper
pairs have either an angular momentum (green arrow) with Lz = +1 and are composed of
electrons with spins Sz = −1/2 or the opposite [55]. TRS is locally broken by a magnetic
impurity. For antiferromagnetic exchange interactions, Jz > 0, breaking Cooper pairs with
electron spins Sz = −1/2 (blue arrows) is energetically favoured compared to Cooper pairs
with spins Sz = 1/2 (red arrows), hence two non-degenerate in-gap bound states are expected.

a particle of spin σ =↑, ↓ of momentum p = (px, py). The system is considered to lay in

the (x, y) plane. The energy dispersion in the normal state is embodied by ξp. Since our

main message is barely modified by the presence of the spin-orbit coupling term, we leave

the discussion of its effect to Appendix A.2, whereas its effect on the spin polarisation of

SBSs in superconductors with purely singlet pairing is discussed in detail in Chapter 5, as

well as in Ref. [85]. The vector d(p) parametrises the odd-parity triplet pairing term. We

consider two cases: a TRS in-plane d-vector, d‖(p) = (py, −px, 0), and a TRS breaking out-

of-plane d-vector, d⊥(p) = (0, 0, px + ipy). The latter case has been introduced to describe the

superconducting phase of Sr2RuO4 [55]. We have studied other d-vectors giving rise to unitary

states and found out that these two choices are generic enough to describe 2D anomalous SCs.

For the d‖ case, we have checked that the total angular momentum operator M z
‖ = Lz + σz/2

commutes with the Hamiltonian H0 while for the d⊥ case, the operators M z
⊥ = Lz − τz/2 and

σz commutes with H0. Here, L = r × p denotes the orbital momentum operator and τz is the

Pauli matrix acting in particle-hole subspace.
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In what follows we study what happens when a point-like magnetic impurity is introduced in

the anomalous SC (see Fig. 6.1 for a sketch of a magnetic impurity immersed in a p-wave SC

with an in-plane d-vector). The impurities we consider have both a scalar component U and

a magnetic component J = (Jx, Jy, Jz), and are described by Eq. (4.2). We assume that the

s-channel is dominating over all the other scattering channels, since the impurity is described

by delta-potential. We only consider here classical impurities oriented either along the z-axis,

J = (0, 0, Jz), or along the x-axis, J = (Jx, 0, 0). These two directions are enough to make a

point in the case of a 2D superconductor.

In order to analyse the spin structure of these Shiba states, we resort to the general T-matrix

approximation scheme circumscribed in detail in Chapter 4 and in Ref. [34]. Even though for

some limiting cases the T-matrix can be obtained analytically, below we use a more general

numerical approach to find it and express the desired physical quantities.

6.2 Results

Before turning to the spin polarisation of SBS, it is worth making several remarks regarding

certain peculiarities of the band structure in case of mixed s-wave and p-wave pairings, as well

as the number and behaviour of the Yu-Shiba-Rusinov states.

Band structure

The energy spectrum of the Hamiltonian in Eq. (6.1) is given by |E| =
√
ξ2
p + (∆s ± κ|p|)2,

and the effective superconducting gap reads ∆eff = |∆s − κpF |/
√

1 + κ̃2 (see the derivation

e.g. in Appendix A.2). We plot in Fig. 6.2 the spin-resolved band structure (the spin-polarised

spectral function) as a function of energy and momentum for the model in Eq. (6.1) for an

in-plane d-vector, d = d‖. We note that the bands acquire opposite spin polarisations reflecting

the helical nature of the superconductor. Notably, the gaps in the two bands are different due

to the presence of both s-wave and p-wave couplings. If the s-wave and p-wave coupling become

equal, one of the gaps is closing, and the system becomes gapless [114, 115]: this point marks

the transition between an s-dominant and p-dominant regime, or in other words, between a

trivial and a topological superconductor.
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Figure 6.2: Spin-resolved band structure: We plot the x component of the spin-polarised
spectral function as a function of energy and kx. We consider a lattice model with dispersion
ξk = −2t cos kx − 2t cos ky − µ with t the hopping amplitude and µ the chemical potential. We
take t = 1, µ = −3, ∆s = 0.2, κ̃ = 0.5 and an inverse quasiparticle lifetime δ = 0.03.

Shiba bound states

Before we discuss the SBS in superconductors with p-wave pairing, we need to revisit the case

of pure s-wave pairing. In case of the latter we set λ = 0,κ = 0 in Eq. (4.1), and we notice

that

ΘHs−wave(p)Θ−1 = Hs−wave(−p),

where Θ = iσy⊗τ0 ·K, with K denoting the complex conjugation, is the time-reversal symmetry

operator. Thus, the Hamiltonian for an s-wave SC respects time-reversal symmetry, and a

localised impurity, which does not violate TRS, cannot affect the local density of states. The

last statement is a corollary fact of the Anderson theorem [21], that implies that neither the

critical temperature, Tc, nor the density of states are affected by the non-magnetic impurity

scattering. Consequently, there are no impurity-induced states forming around a localised

non-magnetic impurity in an s-wave SC.

The situation is drastically different when we turn to unconventional SCs, and p-wave SCs

in particular. The latter break inversion symmetry and/or TRS, and the Anderson theorem
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Figure 6.3: The energies of the Shiba states (in arbitrary units) for a s-wave SC (red lines)
and a p-wave SC (blue lines) as function of the dimensionless impurity strength α = πνJ (the
scalar potential is absent). The red and blue dashed lines denote the s-wave and p-wave SC
gaps correspondingly. We set kF = 1, ∆s = 0.3, κ̃ = 0.2.

becomes inapplicable. The spectrum of the Shiba states can be found analytically as detailed in

Appendix A.2. We generically found a pair of SBS for a point-like impurity. The SBS energies

for a localised impurity with both scalar and magnetic components U and J are given by:

|E±| =
−γβ2

± sgn β± +
√

1 + β2
±(1− γ2)

1 + β2
±

∆t, (6.2)

where β± = πν(U±|J |)√
1+κ̃2 is the dimensionless impurity strength, γ = κ√

1+κ̃2 , and ∆t = κkF√
1+κ̃2 is

the effective p-wave gap. For a non-magnetic impurity, the two SBS are degenerate while this

degeneracy is lifted for a magnetic impurity. Unlike s-wave SCs, non-magnetic disorder gives

rise to impurity-induced states, similarly to what happens in a d-wave SC. Nonetheless, the

important discrepancy is that in the latter Shiba states are not well-defined in the sense that

they acquire a finite lifetime. Mathematically speaking, the poles of the perturbed retarded

Green’s function attain a non-zero imaginary part [34]. Contrary to that, in fully gapped p-wave

SCs considered in this manuscript there is no broadening of the impurity bound states.

The behaviour of these energy levels is qualitatively different in s-wave SCs than in p-wave

SCs. First of all, when increasing the impurity strength, the Shiba states in an s-wave SC

approach the gap and eventually merge with the continuum, whereas in the p-wave case they
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remain in the gap and asymptotically approach ±γ∆t (see Fig. 6.3). Second, the crossing

point in the s-wave case is always at α = 1 independent of the singlet pairing ∆s, while for

p-wave SCs the crossing point appears at α = 1/γ � 1 and thus depends on the value of the

triplet pairing κ̃. Some realistic values of α can be extracted from experimental data given

e.g. in [27] for an s-wave SC: the superconducting gap is about 1 meV and the Shiba state

appears at 0.1 meV, therefore α ≈ 0.9 (close to the crossing point in Fig. 6.3). Since no p-wave

superconductor has been unambiguously discovered so far (there are only some candidates like

Sr2RuO4 [55]), there is no experimental data available. However, taking comparable impurity

strengths, we therefore expect the experiments to be in the regime much before the crossing

point (see Fig. 6.3). We believe that it is unlikely to observe that point experimentally, because

the dimensionless impurity strength must be too large (α ∼ 10 since γ � 1). Furthermore,

in this regime the gap is renormalised (or even utterly suppressed), and the problem requires

a self-consistent approach leading to a qualitatively different result, namely, the Shiba states

might transform into the Andreev bound states (see [28] for further details). Also note that the

physical meaning of the crossing point is the change in the ground state parity for both types

of pairing.

In what follows we show how the degeneracy is lifted in the case of an impurity with both

scalar and magnetic potentials. A scalar impurity in a pure p-wave SC has two degenerate

Shiba states. For the in-plane d-vector case which is TRS, the two SBS form Kramers pairs

with total angular momentum Mz = M z
‖ = ±1/2 (for an out-of-plane d-vector, the Shiba states

can be labelled with Sz = ±1/2). When a small growing magnetic moment is introduced in the

impurity potential, this degeneracy is lifted and the two levels split. For a magnetic impurity

along the z-axis, Mz = ±1/2 is conserved and the SBS with Mz = −1/2 has a lower energy due

to antiferromagnetic interactions (see Fig. 6.4 for a sketch of the energy levels of Shiba bound

states). Note that an in-gap quasi-particle excitation with Mz = −1/2 is a priori a coherent

superposition of states with (Lz = 0, Sz = −1/2) and (Lz = −1, Sz = 1/2), the former being

more electron-like, the latter being more hole-like. Since the impurity potential is point-like,

only the (Lz = 0, Sz = ±1/2) components are affected by the impurity which explains the

labelling used in Fig. 6.4. It is easy to compute this splitting using a series representation for
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Mz = +1 / 2

Mz = -1 / 2

Mz = +1 / 2

Mz = -1 / 2
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E

Figure 6.4: Left: Sketch of the energy levels obtained by perturbation theory in impurity
strength Jz. The colours stand for the angular momentum: red for +1/2 and blue for −1/2.
Right: Energy levels as a function of impurity strength Jz obtained analytically. We set κ̃ = 0.2
and used the same colour code.

η = Jz/U � 1. We find

δε = ε2̄ − ε1̄ ≈
2β2

(1 + β2)2

[
1 +

η√
1 + β2(1− η2)

]
η,

where β = πνU√
1+κ̃2 . We plot the energy levels using the analytical expressions in Eq. (6.2). The

evolution of the energy levels as a function of the dimensionless magnetic impurity strength is

plotted in Fig. 6.4.

Spin polarisation of Shiba states

We begin by plotting the spatially averaged LDOS and SP LDOS as functions of energy.

Note that when performing the T-matrix calculations we consider a discretised version of the

Hamiltonian in Eq. (6.1) and we perform all the momentum integrals over the first Brillouin zone

(see e.g. the caption in Fig. 6.2). The impurity states appear as resonances overlapping with a

background which corresponds to the DOS in the absence of impurities. Since the unperturbed

DOS is not spin-polarised, this background is non-zero only for the averaged LDOS, and the

SP DOS contains only impurity-induced contributions. The unperturbed retarded Green’s

function, the T-matrix and the FT of the SP LDOS components, Sn̂(p, E), with n̂ = x, y, z,

as well as the FT of the LDOS, δρ(p, E), are given by Eqs. (4.5) and (4.11-4.14). The average

DOS and SP DOS are given respectively by

ρ(E) = ρ0(E) +N δρ(p = 0, E)

Sn̂(E) = Sn̂(p = 0, E),
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Figure 6.5: Average LDOS (first row) and SP LDOS (second row) (in arbitrary units) as
functions of energy and the p-wave pairing, κ̃, for an in-plane d-vector. We consider a scalar
impurity with U = 6 in the upper right panel, and magnetic impurities with an impurity
strength of Jz = 2 (left column) and with Jx = 2 (lower right panel). We set ∆s = 0.2, and
δ = 0.03. The gap of the system is denoted by the dashed line.

for n̂ = x, y, z. Here N denotes the impurity concentration. The energy E corresponds to

energies of Shiba states. Hereafter, we consider the dilute impurity limit and thus we take in

what follows a concentration of impurities of N = 2%.

In Figs. 6.5, 6.6, 6.7 and 6.8 we focus on how the impurity states are affected by the value of

κ, the p-wave order parameter, as well as by the impurity strength J . Note that an impurity

with magnetic moment along a direction specified by a unit vector n̂, gives rise to a total

(averaged along the entire space) non-zero polarisation only along n̂, even if it would give rise

to a non-zero spatial spin structure in more than one spin components.
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Figure 6.6: Upper panel: Average LDOS (in arbitrary units) as functions of energy for an
in-plane d-vector for different values of the p-wave pairing, κ̃: blue stands for κ̃ = 0.1, orange
for κ̃ = 0.4 and red for κ̃ = 0.8. The dashed lines correspond to the averaged LDOS in the
absence of impurities while the plain lines show the LDOS in presence of impurities. We can thus
disentangle the spectral features due to the impurity bound states from the gap edges. Lower
panel: same as the upper panel but for the SP LDOS. The vertical dashed lines correspond
to the two gap edges denoted in the main text by ∆±eff . The subgap Shiba states peaks are
marked by filled squares. The other parameters are the same as in Fig. 6.5.

Number of Shiba bound states

The number of Shiba states depends on the type of impurity, as well as on the two competing SC

order parameters. Therefore, there is no in-gap SBS in the non-topological s-dominant regime

for a scalar impurity, and a double-degenerate SBS in the topological p-dominant regime [34,83]

(see also [116] and Appendix A.2). As shown in Figs. 6.5 and 6.6, these states tend to stay close

to the gap edge for not too large p-wave couplings. For a magnetic impurity, one SBS forms

in the s-dominant regime, and two in the p-dominant regime (see Figs. 6.5, 6.6 and 6.7). Out

of the two, in most cases one is a subgap state, while the other is dissolved in the continuum.

When the impurity strength increases this ’bulk’ SBS approaches the gap edge and becomes
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more visible (see Fig. 6.8 and also Appendix A.2). However, this is not a generic feature. All

impurity states can be in-gap states, as it does occur for a pure p-wave SC (see Fig. 6.8), as well

as for a small s-wave coupling (see Fig. A.3 in Appendix A.2). When increasing the impurity

strength the energy of the inner BS decreases to zero and there is a level crossing corresponding

to a change of the ground state parity [34, 90] (see Figs. 6.7 and 6.8). As can be seen from

these two figures the pure p-wave and the dominant p-wave regime are very similar, the main

difference being the position of the outer SBS with respect to the band edge.

Local density of states

In the upper panel of Fig. 6.5, we plot the average LDOS as a function of the triplet pairing

parameter κ and energy. This allows us to visualise the subgap states together with the edges

of the gap. In order to illustrate the spectral features of the averaged LDOS, we plot in the

upper panel of Fig. 6.6 vertical cuts of the density plots shown in Fig. 6.5. The dashed lines

mark the unperturbed averaged LDOS. In the presence of both s-wave and p-wave pairing,

there exist two effective values giving the gap edges (for derivation see Appendix A.2):

∆±eff =
|∆s ± κpF |√

1 + κ2
. (6.3)

It is clear that some of the noticeable out-of-the-gap features appearing in Fig. 6.5 can be

traced back to the gap edges (denoted by the dashed lines) slightly modified by the presence

of the impurity that affects all the energies in the continuum. Besides we can identify features

corresponding to the localised impurity, which we identify by filled squares. The subgap Shiba

states peaks are identified by filled triangles. Note that the asymmetry in the averaged LDOS

between positive and negative energy E, is a direct consequence of the fact that we plot only

the electronic parts of the Green’s function to circumvent the particle-hole redundancy of the

BdG description. Moreover, there is no contradiction with the particle-hole symmetry (PHS)

since the peaks appear at opposite energies as expected, whereas values of the spectral function

we plot might differ.
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Figure 6.7: Average SP LDOS as a function of energy and impurity strength for magnetic
impurities with spin along z (left column) and x (right column) for an in-plane d-vector. We
set δ = 0.01 and we focus on the dominant p-wave case (κ̃ = 0.5, ∆s = 0.2, first row), and the
dominant s-wave case (κ̃ = 0.1, ∆s = 0.2, second row). The gap is denoted by the dashed line.

Spin-polarised local density of states

As a first striking result, we find that for the ’orthogonal’ configurations (either an in-plane

d-vector and an out-of-plane impurity spin, or the reverse situation), both particle and hole

components of the SBSs closest to mid-gap have electronic spins with the same spin orientation

in the p-dominant regime, and of opposite orientation in the s-dominant regime. This is also

shown in the upper left panel of Figs. 6.7 and 6.8 for the former case (see also Fig. A.4

in Appendix A.2 for the latter case). This is a direct signature of the triplet nature of the

Cooper pair and of the d-vector orientation. Indeed, the spins of the paired electrons live

in the plane orthogonal to the d-vector (see Fig. 6.1). For an in-plane d-vector, the paired

electrons have, therefore, always a non-zero spin component along the z direction. Because of
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Figure 6.8: Average SP LDOS as a function of energy and impurity strength for magnetic
impurities with spin along z (second column) and along x (third column). The sketches on the
left and on the right are showing the relative position of the d-vector and impurity spin Jz,x.
We take δ = 0.01 and we focus on the pure p-wave κ̃ = 0.5, ∆s = 0 with in-plane d‖ (first row)
and out-of-plane d⊥ (second row). The gap is denoted by the dashed line.

the antiferromagnetic exchange coupling, it thus costs less energy to break Cooper pairs with

spins pointing in the direction opposite to the impurity spin. Note that in the latter case M z
‖

commutes with the full Hamiltonian H0 +Himp which allows to attribute a well defined angular

momentum M z
‖ = ±1/2 to the Shiba states. By analogy with the local susceptibility of triplet

SCs [102] this explains the spin sensitivity of the SBS to a local impurity spin pointing along

the z axis. On the other hand, when the d-vector and the impurity spin are both in-plane

(Fig. 6.5 lower right panel) or both out-of-plane (lower left panel of Fig. 6.8, and also Fig. A.4

in Appendix A.2), the opposite-energy SBS closest to mid-gap have spins of opposite sign for

both the s-wave and p-wave dominant regimes as expected from the previous argument based

on the spin orientation of the paired electrons.

Our second important result is that the magnitude of the average SP LDOS of the particle

and hole component of the SBSs are generically different. Most strikingly, when both the d-

vector and the impurity spin are in-plane (in this case M z
‖ is no longer a conserved quantity)

only two of the four states remain spin-polarised while the spin polarisation of the other two

goes to zero (see Fig. 6.8) in the extreme case of a pure p-wave SC. This cancellation can be



68 Chapter 6. Extracting triplet pairing type

z-impurity
pure s-wave pure p-wave

S
z

Figure 6.9: The real part of the FT of the Sz SP LDOS component for the hole component of
a Shiba BS as a function of momentum (px, py) for a magnetic impurity with Jz = 2 and an
in-plane d-vector. We take ∆s = 0.2, κ̃ = 0 for a pure s-wave SC, and ∆s = 0, κ̃ = 0.5 for a
pure p-wave SC.

directly traced back to the orbital nature of the p-wave order parameter which entails that

Sx(p = 0) = Sy(p = 0) = 0 for this particular SBS components (see the first row in Fig.

6.10 as well as Fig. 6.11). Results obtained with the analytical approach confirm the numerical

ones. For further details I refer the reader to Appendix A.2 as well as to Ref. [85]. Despite

the fact that this exact cancellation would disappear with the inclusion of the SOC, a strong

asymmetry between the SP DOS of the particle and hole components of the SBSs largely

survives (see Fig. A.7 in Appendix A.2).

We now focus on the FT of the SP LDOS associated with SBSs. As shown above, the most

dramatic situation corresponds to an in-plane d-vector. For a z-impurity, the SP LDOS of

the positive energy state (the electron component of the SBS) does not change sign when

undergoing the topological transition, while the spin polarisation of the negative energy state

(the hole component) does (see lower left panel of Fig. 6.5). We thus focus on the latter.

In Fig. 6.9 we plot the FT of Sz(p, E) (the only non-zero component of the SP LDOS) for the

pure s-wave (left panel) and pure p-wave (right panel) regimes. Although they have similar

shapes, as expected by rotational symmetry along the z-axis, they show qualitative different

behaviours: in the former case, one obtains a central peak and a ring with the same sign, while

for the latter case they have opposite signs, corresponding to a spin flip of the average spin
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Figure 6.10: The real part of the FT of the Sx and Sy components of SP LDOS in arbitrary
units for the hole component of a Shiba state as a function of momentum (px, py), for a magnetic
impurity with Jx = 2. We take κ̃ = 0.5 for the pure p-wave SC with d in plane (first row) and
d perpendicular to the plane (second row).

polarisation between the dominant s-wave and dominant p-wave regimes.

Finally, we focus on the FT of the SP LDOS for a state whose total spin polarisation goes to zero

in the pure p-wave case, as described in Fig. 6.8 for both in-plane d-vector and spin impurity

(Jx = 2). While for the pure s-wave case (not shown) the Sx observable would exhibit the same

qualitative features as those described in the left panel of Fig. 6.9, for the pure p-wave SC both

Sx and Sy are non-zero (first row of Fig. 6.10), and most strikingly exhibit characteristic four-

fold symmetries. For an in-plane d-vector, Himp no longer commutes with H0 and therefore

an in-plane impurity is sensitive to the orbital part of the triplet Cooper pairs. Due to this

four-fold symmetry we have also Sx/y(r = 0) = 0, in agreement with analytical solutions (see
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Figure 6.11: Left: the second column of Fig. 6.8. Middle: relative positions of the d-vector and
impurity spin. Right: the first column of Fig. 6.10. The red stars mark the values of energy
and impurity strength at which we computed the FT LDOS in the right column. Black dashed
lines show the Shiba states with zero spin polarisation along x direction. In the first row the
accidental spin cancellation occurs due to the four-fold symmetry of the p-wave, whereas in the
second row the spin polarisation of the Shiba state is negative, and can be traced back to the
value of the FT LDOS at p = 0.

Appendix A.2). Note that this is a very unique feature. For comparison we consider also a pure

p-wave state with a d⊥ vector perpendicular to the plane (second row of Fig. 6.10) and we find

that in this case only the Sx component of the SP LDOS is non-zero and moreover has a radial

structure as expected by rotational symmetry around the z axis. Therefore such characteristic

spin anisotropy, if detected in spin-polarised STM, can be used as a signature of the transition

into a topological p-dominant regime, as well as an indicator of the direction of the d-vector.

In order to show explicitly the difference between the d‖ and d⊥, we combine in Fig. 6.11 the

second column of Fig. 6.8. and the first column of Fig. 6.10. Since the latter shows the FT of

LDOS, we specify with a red star at which energy and impurity strength value we compute it.

We should note that the previous two results are qualitatively unchanged when comparing s-

wave and p-wave dominant SCs instead of pure s-wave and p-wave (see Appendix A.2) for a

detailed description of the mixed case), though small differences arise such as non-zero values
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for all the components of the FT of the SP LDOS. Moreover, the results presented above

qualitatively hold in the presence of Rashba SOC although the cancellation present in Fig. 6.8

becomes only partial (see Fig. A.8 in Appendix A.2).

Figure 6.12: Sx for x-impurity (in arbitrary units) in coordinate space, for an in-plane d-vector,
and for the negative inner energy. In the left two panels we show the numerical simulations on
a square lattice with spectrum Ξk = µ − 2t(cos kx + cos ky), where we take µ = 3, t = 1 and
the lattice constant is set to unity (for more details see Ref. [84]). In the right two panels we
plot analytical results derived in this manuscript. To match the spectrum on a lattice we take
ν = 1/4π, vF = 2, kF = 1. The triplet pairing κ̃ = 0.2 and the impurity strength Jx = 2 for
both panels. The two lower panels correspond to 1D cuts of the upper two panels at x = 0. It
is clear that both plots reflect the characteristic p-wave four-fold symmetry and qualitatively
agree except at very short distance as expected.

Note also that the results remain valid if the direction of the impurity spin is arbitrary. As

it has already been pointed out in the article, an impurity with magnetic moment along a

direction specified by a unit vector n̂, gives rise to a total (averaged along the entire space)

non-zero polarisation only along n̂, even if it would give rise to a non-zero spatial spin structure

in more than one spin components. Thus, instead of having one non-zero spin-polarised DOS
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component in a particular direction (x, y or z), one has all three of them if all three Jx, Jy and

Jz present. We have checked that the average spin structure along a given direction in this

case is exactly similar to that corresponding to the impurity spin pointing along this particular

direction. For the FT of the SPDOS a particular example is presented in the Appendix A.2.

Finally, in Fig. 6.12 we present a qualitative comparison of these analytical results with the

previously obtained numerical simulations on a square lattice by calculating Sx for a x-impurity

(in arbitrary units) in coordinate space. The two approaches agree very well except at small

distances from the impurity. This is expected since the analytical model is a low-energy ap-

proximation for the square-lattice model introduced in this part, and thus it is expected to give

accurate results at small energies and large distances. We also note that the wave functions

we calculated analytically are non-normalised ones. Therefore, the overall amplitude of the

results cannot be compared (and hence the different scales). Note there is a small discrepancy

between the periods of the oscillations obtained using analytical and numerical tools, which

can be traced back to the difference of the energies of the Shiba states between the two models.

Overall, the qualitative agreement between the numerical and analytical results is remarkably

good, especially at large distances, as expected.

6.3 Discussion

All the aforementioned numerical data are confirmed by analytical calculations of the spatial

structure and the asymptotic expansions of the wave functions for the SBS in 2D superconduc-

tors (see Appendix A.2). We believe that our results can be used for studying the topological

phases of matter that can be engineered with impurities in different types of p-wave super-

conductors, in particular the exact analytical form of the Shiba wave functions, are useful for

computing the Chern numbers in such emergent topological superconductors.

We have analysed the formation of Shiba states in 2D SCs with broken inversion symmetry

with an admixture of s-wave and p-wave superconductivity. We have found that the number,

the energy and especially the spin polarisation of the Shiba states depend strongly on the ratio

between the values of the s-wave and p-wave coupling. We propose to test experimentally the

presence of the p-wave coupling, as well as the direction of the d-vector with respect to the

sample plane by measuring the spin polarisation and energy of the Shiba bound states via spin-
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polarised STM or transport. We note that these signatures are only visible in the spin-polarised

quantities and in the presence of magnetic impurities.

Our results can be tested using quasi-2D SCs such as Sr2RuO4 described by realistic multiband

models that can be found e.g. in Refs. [117–120]. One of the possible extensions of these

findings could be to generalise these results for higher order triplet pairing SCs, such as an

f-wave SC.



Part III

Engineering topological

superconductors with impurities
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In allem Chaos ist Kosmos und in aller
Unordnung geheime Ordnung.

Carl Gustav Jung

Atoms are the building blocks of condensed matter physics. Each of them is a quantum mechan-

ical system with a discrete electronic spectrum. Solids consist of atoms organised into lattices,

and their electronic spectra disperse forming a ’solid state band structure’ schematically shown

in Fig. 6.13. Nature provided us with more than a hundred different atoms (not to count their

isotopes), and a huge variety of possible ways to combine and arrange them. Physical properties

of a given solid are inherited from the atoms constituting it, and can be sometimes traced back

to their energy spectra. Therefore, experimentalists were highly motivated to engineer solids

with desired properties utilising single atoms as ’LEGO’ pieces. It was not until 1989 when

Eigler and Schweizer made a revolutionary breakthrough – they managed to position individual

xenon atoms on a single-crystal nickel surface, and succeeded in arranging 35 atoms as letters

’I’, ’B’ and ’M’, standing for the IBM logo [121].

Figure 6.13: Left: atoms situated far away from each other have discrete spectra. Right:
organised in lattices atoms form solids, where due to wave function overlap discrete atomic
energy levels broaden into solid state bands.

Further development of the STM technique resulted in observation of impurity-induced in-gap

states in superconductors [26] predicted by Yu, Shiba and Rusinov in the sixties [23–25]. It took

more than two decades to realise that Yu-Shiba-Rusinov states could be used for engineering

topological phases of matter. The motivation for such an idea is the following: magnetic

impurities in superconductors, being far from each other, give rise to discrete impurity-induced

energy levels, as shown on the left panel of Fig. 6.14. Physically such a situation corresponds

to exponentially small overlaps between wave functions of Shiba states localised at different

impurities. In other words, the distance between impurities d is larger than the coherence

length ξ of the impurity-induced states. Notably, this picture changes drastically when d < ξ,

namely when the wave functions of in-gap states start to overlap, thus giving rise to dispersive

Shiba bands instead of discrete levels, which is schematically shown on the right panel of
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Figure 6.14: Left: impurities immersed into a superconductor are giving rise to discrete in-gap
energy levels due to the fact that the distance d between them is larger than the coherence
length ξ of the impurity-induced states. Right: wave functions of Shiba states have a substantial
overlap since d < ξ, and thus a Shiba band arises.

Fig. 6.14. Such a situation is somewhat analogous to discrete spectra of atoms broadening into

solid state bands, discussed above. The possible topological character of Shiba bands is the

main topic of the last two Chapters of this manuscript.

The first Shiba-based proposal to engineer a topological phase was made by Pientka et al. in

2013 [35]. The idea was to deposit a helical chain of magnetic impurities on top of an s-wave

superconductor (see Fig. 6.15) and study the topological properties of the arising Shiba band.

’Helicity’ in this context referred to the fact that the spins of those impurities were organised

in a helical pattern, namely their polar angle being constant and azimuthal angle changing in

equal steps while moving along the chain. By deriving an effective model for the Shiba band it

was shown that it could enter either a topological phase hosting Majorana bound states at the

edges of the chain, or a trivial phase, depending on the parameters of the system. This work was

followed by many other theoretical proposals, that will be mentioned below. Furthermore, in

2014 a chain of ferromagnetic atoms was deposited on top of a superconductor experimentally,

and the arising Shiba band was proven to be in a topological phase by showing zero-energy

peaks at the edges of the chain [122]. Further progress in this field will be discussed below for

more specific setups.

Inspired by the aforementioned ideas, in what follows below I focus on engineering topological
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Figure 6.15: A helical chain of magnetic impurities embedded on an s-wave superconductor.
The red arrows are showing the directions of spins of impurities, organised as a helix, namely as
we move from one impurity to its neighbour we change the azimuthal angle (phase), whereas the
polar angle stays constant. The phase differences as well as the impurity spacing are constant
as we move along the chain.

phases with different types of impurities in both conventional and unconventional supercon-

ductors. The remaining part of the manuscript is organised as follows. In the next Chapter

we consider the influence of scalar impurities deposited on top of two-dimensional chiral super-

conductors. As discovered recently, magnetic impurity lattices on an s-wave superconductor

may give rise to a rich topological phase diagram. We show that similar mechanism takes place

in chiral superconductors decorated by non-magnetic impurities, thus avoiding the delicate is-

sue of magnetic ordering of adatoms. We illustrate the method by presenting the theory of

scalar impurity lattices embedded on chiral p-wave superconductors. While a prerequisite for

the topological state engineering is a chiral superconductor, the proposed procedure results in

vistas of non-trivial descendant phases with different Chern numbers. And finally, in the last

Chapter we study theoretically a chain of classical magnetic impurities with precessing spins in

an s-wave superconductor. Utilising a rotating wave description, we derive an effective Hamilto-

nian that describes the emergent Shiba band. We find that this Hamiltonian shows non-trivial

topological properties, and we obtain the corresponding topological phase diagrams both nu-

merically and analytically. We show that changing the precession frequency offers control over

the topological phase transitions and the emergence of Majorana bound states.



Chapter 7

Chern mosaic in a p-wave

superconductor

Engineering novel quantum phases of matter with exotic properties is a rapidly growing trend in

contemporary physics. The main goal is to employ simpler and well-understood ingredients and

methods to create more complex structures with desirable properties. Recent promising efforts

to realise [50, 52, 54] topological superconductivity in nanowire systems [46, 47] demonstrate

the power of the approach. While it seems unlikely that Nature directly provides us with

Majorana quasiparticles that could be employed in quantum information applications [123], it

is increasingly probable that those can be achieved in laboratory. In the spirit of engineering

novel controllable states of matter, we show how to realise a complex hierarchy of topological

phases with scalar impurity superstructures adsorbed on chiral superconductors.

Magnetic atoms on s-wave superconductors give rise to Yu-Shiba-Rusinov subgap states [23–25,

34] which have been probed experimentally by scanning tunnelling microscopy (STM) [26,27,79,

80]. Superstructures fabricated from magnetic atoms are currently under active experimental

[122, 124, 125] and theoretical research [35, 82, 126–139]. Intriguing properties of these systems

include possibility for various one dimensional (1D) topological superconducting phases with

Majorana bound states and rich 2D topological phases [140–143]. Topologically non-trivial

phase is known to arise in 1D ferromagnetic arrays when the underlying superconductor has a

strong Rashba spin-orbit coupling or in arrays with helical magnetic textures. In 1D structures

there are theoretical arguments why magnetic self-tuning could result in a non-trivial ground

78
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Figure 7.1: (a) Schematic representation of the studied system, consisting of scalar scatterers
deposited on top of a chiral superconductor. The topological phase on the impurity lattice can
be be widely modified from that of the underlying compound. (b) In two-band models the
Chern number can be illustrated through the motion of the d̂(k) vector on the unit sphere. A
long-range hopping translates to high Chern numbers through rapid rotation of d̂(k).

state [128–130, 135, 138, 144], though in real systems there are number of complications. In

particular, in 2D structures the nature and tunability of magnetic textures is a delicate and

largely unsolved question.

Very recently it was proposed that scalar impurities could be utilised to realise interesting

topological states in 1D structures [145] and 2D toy models [146]. The procedure requires a non-

s-wave superconductor host material with chiral or helical pairing components but circumvents

the need for specific magnetic textures of adatoms. In the present work we provide a microscopic

theory of scalar impurity structures on chiral superconductors. We show that given a non-trivial

chiral superconductor, the scalar impurities give rise to a complex hierarchy of distinct non-

trivial phases. The Chern number of the phase can be structurally designed by employing

different impurities and varying the impurity lattice constant. We illustrate the procedure

with a chiral p-wave superconductor. However, our results are not restricted to chiral p-wave

systems and also apply to time-reversal breaking s+p-mixtures, higher chiral superconductors

and the artificial p-wave model realised in sandwich structures of a 2D semiconductor proximity

coupled to an s-wave superconductor and a ferromagnetic insulator.
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7.1 Chiral p-wave superconductors

Here we formulate the theory describing the system in Fig. 7.1 a). The bulk electrons in a 2D

spinless px + ipy superconductor are described by a Bogoliubov-de Gennes (BdG) Hamiltonian

Hbulk
p = ξpτz + κ (pxτx − pyτy) ,

expressed in the Nambu basis (ψp, ψ
†
−p)T. Here the single-particle energy is ξp = p2

2m
− εF with

the Fermi energy εF , and κ is the superconducting p-wave pairing amplitude which is taken as

real and positive. The Pauli matrices τi operate in the particle-hole space. The collection of

adatoms act as local potentials described by

H(imp)(r) = Uτz
∑
n

δ(r − rn),

where Rn are the positions of the atoms and U is the impurity strength. Our treatment is

also valid if we consider impurities of a finite size (see Appendix C.6 for details ). The total

Hamiltonian consists of the sum H = H(bulk) +H(imp).

Each scalar impurity atom binds a single physical subgap state [84], which in the BdG formalism

is represented by a pair of states at energies ε = ±γβ2−
√

1+β2(1−γ2)

1+β2 ∆t for repulsive potential

β > 0. For attractive potential β < 0 the solutions are otherwise the same with the exception

of a minus sign in front of the square root (see Appendix C.2). Here we have defined quantities

β = πνU , γ = κ̃√
1+κ̃2 , κ̃ = κ

vF
and ∆t = κkF√

1+κ̃2 , where vF is the Fermi velocity and ν the density

of states in the bulk 1.

The parameter ∆t represents the p-wave bulk gap determining the coherence length ξ−1 = ∆t

vF

and β is a dimensionless impurity strength. Strong impurities with β � 1 give rise to deep-

lying subgap states close to the Fermi level while weak impurity states reside near the gap

edge. Analogous to the Shiba states in 2D systems [27], the scalar impurity wave functions

have asymptotic form eikF r−r/ξE/
√
kF r away from the impurity where the decay length is given

by ξE = ξ/
√

1− (E/∆t)2 [85].

When impurity atoms are arranged into a regular array with a lattice constant a < ξ, the

impurity states bound to a particular atom are hybridised with several nearest neighbours.

1These results are derived by linearising the dispersion relation around the Fermi momentum (see [84]).
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This leads to the formation of subgap energy bands which support rich topological properties.

To study the topological properties of the subgap bands, we formulate effective low-energy

theory valid in the deep-dilute impurity regime β � 1,
√
kFa� 1 in the vicinity of the Fermi

level. However, as we discussed below, the effective theory yields an exact topological phase

diagram which is valid also outside the deep-dilute regime. As outlined in Appendix C.3, a

similar procedure that was applied in the Shiba systems [35,82,131,140] results in a description

of the impurity lattice in terms of the tight-binding Hamiltonian

Hmn =

hmn ∆mn

∆†mn −h∗mn

 . (7.1)

The effective Hamiltonian has an N × N BdG block structure, where N is the number of

impurity atoms. The BdG blocks are given by

hmn =

ε0, m = n

A(rmn), m 6= n

∆mn =

0, m = n

xmn+iymn
rmn

B(rmn), m 6= n

(7.2)

where the onsite term ε0 = ∆t(γ − β−1) arises from the decoupled impurity energy, rmn =

|Rm−Rn| is the distance between two impurity lattice sites and xmn = xm−xn, ymn = ym−yn.

The matrix elements depend on the functions

A(r) = −2∆t

π
Re
{
ηK0[−iηkF r]

}
, B(r) = −i2∆t

π
Re
{
ηK1[−iηkF r]

}
,

where Kj(x) stands for the modified Bessel function of the second kind with index j and

η = 1+iκ̃. The block matrices in Eq. (7.2) define a hopping model where the amplitudes satisfy

asymptotic behaviour ∆mn, hmn ∼ e−rmn/ξ√
rmn

at long distances. The model (7.1) with entries (7.2)

is a lattice discretised chiral superconductor with rich topological properties discussed below.
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7.2 Topological properties

The topological phase diagram of the effective model (7.2) is conveniently extracted in momen-

tum space. For any Bravais lattice we can define Fourier transforms

dx(k) = Re
∑
R

eik·R∆R, dy(k) = − Im
∑
R

eik·R∆R, dz(k) =
∑
R

eik·RhR,

where the sum is over all the lattice vectors R = (xmn, ymn). The Hamiltonian can then

be written in a simple form H(k) = d(k) · σ with energies E(k) = ±|d(k)|. The effective

Hamiltonian H(k) describes gapped two-band model satisfying the particle-hole symmetry

CH(k)∗C−1 = −H(−k), where C = σxK and K denotes complex conjugation. The studied

model belongs to the Altland-Zirnbauer class D, admitting a Z-valued classification by Chern

numbers [147,148]. For two-band models the Chern number is found by evaluating the expres-

sion

C =
1

4π

∫
BZ

d2k
d

|d|3 ·
(
∂d

∂kx
× ∂d

∂ky

)
, (7.3)

which yields integers. The integer value of the Chern number can be visualised through con-

struction depicted in Fig. 7.1 (b). The Hamiltonian defines a unit vector d(k) = d(k)/|d(k)|
which can be depicted as a point on the surface of a unit sphere. Absolute value of the Chern

number measures how many times d(k) covers the sphere when k = (kx, ky) covers the Brillouin

zone of the impurity lattice. The long-range hopping gives rise to rapidly rotating components

of d vector and thus may lead to chiral states with Chern numbers much larger than unity.

As pointed out in Appendix C.4, the effective description (7.1), derived under assumptions

of a deep and dilute impurity configuration β � 1,
√
kFa � 1, actually acts as a topological

Hamiltonian yielding the exact phase diagram which is also valid outside the deep-dilute regime.

This happens because at the topological phase transition, accompanied by the energy gap

closing, the effective model (7.1) becomes exact irrespectively of the values of β and kFa.

In Fig. 7.2 we have plotted the topological phase diagram and the energy gap diagram for square

lattices. It is clearly evident that the system possesses multiple phases which can be tuned by

the separation and strength of the impurities. For higher values of the hybridisation parameter

kFa the hopping is highly oscillatory, thus leading to more rapid alternation of Figs. 7.3 and

7.4. The generic features of the phase diagrams seem to be be in line with the Chern mosaic
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Figure 7.2: (a): Chern number (above) and energy gap (below) diagrams for a square lattice
of impurities with lattice constant a and coherence length ξ/a = 5. The quantity β−1 in
the vertical axis controls the strengths of the impurity. The β−1 = 0 line, corresponding to
infinite impurity potential |U | =∞, divides the repulsive and attractive impurity regions. The
horizontal axis kFa controls the hybridisation between the bound states centred at different
impurity sites. (b): Same as (a) but for coherence length ξ/a = 10.

Figure 7.3: The same quantities as in Fig. 7.2 but for larger values of the hybridisation param-
eter kFa.

behaviour discovered in magnetic lattices [140,141]. For robust states the energy gaps are of the

order of 0.1− 0.2∆t. Probably larger gaps can be obtained, but studying those would require

more elaborate theory as the employed approximations become unreliable. Scalar impurity

superstructures clearly allow remarkable possibilities for topological state engineering in the
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Figure 7.4: The same quantities as in Fig. 7.2 but for larger values of the hybridisation param-
eter kFa.

studied system without uncertainty associated to the magnetic textures.

We have also diagonalised the system on an infinite strip geometry, where the topological edge

modes show up as states traversing the bulk gap. These results are discussed in more detail in

Appendix C.7.

7.3 Physical realisations

In the above we have considered scalar impurities in spinless chiral p-wave superconductors.

Our theory can be straightforwardly generalised to the candidate state of Sr2RuO4 where the

opposite spins pair to form Lz = 1 Cooper pairs. Since scalar impurities do not mix spin, the

4 × 4 model with spin leads to two identical but decoupled 2 × 2 blocks of form Eq. (7.1) as

shown in Appendix C.5. The Chern number can be evaluated for each block separately, leading

to doubling of the Chern number and the edge modes compared to the spinless case.

However, there are various other candidates for the host materials. The requirements for

topological state engineering by scalar impurities are rather general and met in a variety of other

systems as well. The basic ingredient is that localised potentials must bind subgap bound states

in the host material. These bound states in chiral superconductors are generic since Anderson’s

theorem which guarantees the robustness of s-wave superconductors to scalar disorder [34] is
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not operational in time-reversal breaking systems. The second requirement is the phase winding

structure ∆0e
inφk , where tg φk = ky/kx, of the gap function of the unperturbed bulk. This will

translate to a type of (xij ± iyij)n/rij phase structure of the gap function ∆ij in the effective

low-energy BdG Hamiltonian (7.2), indicating topologically non-trivial superconductivity. In

addition, algebraically decaying hopping up to the coherence length is also a universal feature

of gapped states. Thus any 2D chiral (p-, d-, f ...-wave) superconductor satisfies the general

requirements and exhibits the characteristic features of the studied chiral p-wave model. We

note that different crystal structures of the bulk give rise to distinct lattice regulations of chiral

gap functions. Also, for a continuum expression ∆(k) ∼ (kx + iky)
n, corresponding to Chern

number n, there exists many different lattice versions. However, in the case where the impurity

lattice constant is much larger than that of the underlying superconductor, the continuum

approximation should prove sufficient.

Dominantly p-wave superconductors with s-wave pairing amplitude, having a gap structure

∆s + ∆pe
iφk , is also a sufficient starting point for topological state engineering when ∆p > ∆s.

In this case scalar-impurity-induced bound states exist [84] and phase winding is inherited

to the effective low-energy model. Such s+p-wave structure is satisfied in the artificial chiral

superconductor realised in 2D Rashba-coupled semiconductors sandwiched by an s-wave super-

conductor and a ferromagnetic insulator [48] at sufficiently strong magnetisation. Patterning

the semiconductor layer with scalar impurities or otherwise realising the scalar lattice by ap-

plying an external structured potential gate would enable fabrication of non-trivial topological

states far beyond Chern number |C| = 1.

Chiral and time-reversal breaking superconductors have also been predicted in various other

low-dimensional systems. While these have not been observed in experiments so far, it is

plausible that some will be realised in the future. At that point a large number of other

chiral states will immediately become accessible through topological state engineering by scalar

superstructures.

7.4 Discussion

The bulk topology in a topologically non-trivial state is reflected on its boundary properties.

This property could be employed in experimental identification of non-trivial bulk states. The
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subgap density of states in chiral superconductors arises due to the chiral edge modes as illus-

trated in Fig. 7.1 (a). Probing the local density of states by Scanning Tunnelling Microscopy

(STM) reveals that the subgap modes are localised on the boundary of the impurity lattice [140].

This method can be employed to show that the impurity lattice is in a different topological

phase than the underlying chiral superconductor. Experimental extraction of specific value

of the Chern number of a superconductor, while in principle possible, is an unsolved issue at

present. However, by fabricating interfaces between lattices of, say, different lattice constants

it is possible to compare whether the two adjacent structures belong to the same topological

phase. If the structures belong to different phases, there must exist pronounced subgap local

density of states at the boundary due to topological edge modes.

The circulating Majorana edge modes, depicted in Fig. 7.1 (a), carry heat in otherwise gapped

systems and could find applications in the future electronics as chiral heat guides. These waveg-

uides could be designed on top of the superconductor by employing different impurity lattice

structures. The Chern number of lattice yields the number of parallel thermal edge channels,

so high Chern number states are generally more effective thermal conductors compared to low

Chern number states. Also, Majorana bound states trapped in lattice defects could also be

interesting from quantum information point of view. While the applications of chiral supercon-

ductors are still emerging, our work points to a conceptually simple method to obtain them in

nanofabricated structures.

To conclude, in this work we proposed a method to engineer topological states by scalar im-

purities deposited on 2D chiral superconductors. In particular, we presented a microscopic

theory of chiral p-wave superconductors with impurity lattices. This allowed us to calculate

the topological phase diagram for general impurity strengths and hybridisation. Our results

have remarkable conceptual and practical consequences: given a 2D chiral superconductor, it

is possible to fabricate a large number of non-trivial descendant states by a straightforward

procedure. Because scalar-induced subgap states are generic in time-reversal breaking super-

conductors and superfluids, our results have universal appeal irrespective of the platform and

microscopic details of the chiral state.
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Dynamical Shiba chain

The search for topological phases of matter during the last decade has led to remarkable

advancements in engineering systems with preassigned exotic excitations such as the Dirac,

Weyl, or Majorana fermions. The latter have been pursued in numerous condensed matter

setups [149], as they have been suggested as promising candidates for fault-tolerant topological

quantum computing [150].

Ubiquitous and destructive by its nature for other phenomena, disorder has become one of the

most interesting and reliable tools to build the sought-for topological systems. Discovered more

than half a century ago [23–25,90] impurity-induced bound states in superconductors have been

recently brought to life in the experiments [26,27]. The latter, along with the rise of topological

phases of matter, initiated a series of works, both theoretical [35, 82, 126–132, 134, 137, 138,

140, 143–146, 151–155] and experimental [122, 124, 125, 156], proposing to use Shiba states as

promising building blocks for desired Majorana-supporting systems. The underlying mechanism

is reminiscent of that of electronic bands appearing in solids: being brought together discrete

Shiba levels originating from different impurities hybridise and form Shiba bands, with electrons

filling them according to the Pauli principle. The resulting band structure corresponds to that

of a p-wave, or topological superconductor, that can exhibit Majorana edge modes depending

on the parameters of the system under consideration. The drawback of such an implementation,

however, is that system parameters are typically fixed, and one cannot explore easily the full

phase diagram.

Despite significant progress in designing topological phases with impurity-induced states, there
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Figure 8.1: Sketch of the precessing spin helix in a two dimensional s-wave superconductor
(the blue plane). The classical spins (red arrows) are separated by a distance a and precess
around the z axis with a frequency ω0 at a polar angle θ. The precession azimuthal angle
φj(t) = ω0t + khja, with kh the step of the helix and j the position of the spin in the chain.
In green it is shown the local dynamical Shiba states wave-functions which overlap to give
eventually a dynamical Shiba band.

are few systems in which topological phase transitions are controlled by tunable parameters,

such as quantum spin Hall edges, channels on the surfaces of topological insulators, semicon-

ductor nanowires, in strong magnetic fields. It is thus of great importance to propose new

versatile methods of creating controllable topological phases of matter.

In this Chapter, motivated by the recent progress in the so called dynamical, or Floquet topo-

logical insulators [157,158], we present a new promising setup not only for engineering a topo-

logical superconducting phase, but most remarkably for controlling topological phase transition

by means of magnetisation texture dynamics. We consider theoretically a ’dynamical Shiba

chain’, that pertains to a set of classical magnetic impurities with precessing spins deposited on

top of a 2D s-wave superconductor (see Fig. 8.1). We find that such a dynamical magnetic tex-

ture can give rise to a non-trivial Shiba band which can be controlled by tuning the precession

frequency. Such features are different from previous time-dependent Floquet superconducting

systems see, for example, Refs. [159–166]], in that the band is not manipulated directly by ex-

ternal fields, but indirectly, by the dynamics of the magnetic texture that stirs the underneath

superconductor and cause the appearance of such a band. This is inherently a strong coupling

regime, as the magnetic texture is the reason for such band to occur in the first place.
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8.1 Model

The Hamiltonian describing our dynamical systems reads [127]:

Htot(t) = H0 +Himp(t) , (8.1)

where

H0 = ξkτz + ∆sτx , (8.2)

Himp(t) =
∑
j

Jj(t) · σ δ(r − rj) (8.3)

being the sum of the Bogoliubov-De Gennes Hamiltonian for the superconductor and its cou-

pling to the magnetic impurities, respectively. Here, H0 is written in the four-component

Nambu basis Ψp = (ψ↑p, ψ↓p, ψ
†
↓−p,−ψ†↑−p)T, with σ = (σx, σy, σz) and τ = (τx, τy, τz) ma-

trices acting in spin and particle-hole subspaces respectively. The superconducting order pa-

rameter is denoted by ∆s, the spectrum of free electrons is defined as ξk ≡ k2/2m − εF ,

where εF is the Fermi energy. For the periodically driven magnetic chain we assume that

the impurities are localised at positions rj, and have precessing spins that are defined as

Jj(t) ≡ J [sin θ cos(ω0t+ φj), sin θ sin(ω0t+ φj), cos θ] with precession frequency ω0, polar an-

gle θ as shown in Fig. 8.1, and equidistant individual phase shifts φj ≡ khaj, j ∈ Z. In the

latter a denotes the spacing between impurities, and kh is the so-called helix step.

The time-dependent Schrödinger equation reads i∂tΨ (r, t) = HtotΨ (r, t) . This Hamiltonian is

periodic, Htot(t + T ) = Htot(t), with T = 2π/ω0 and, moreover, the symmetry of the problem

allows us to perform a time-dependent unitary transformation that makes the problem fully

static. We can write Ψ (r, t) = U(t)Φ (r) e−iEt, with U(t) = e−iω0tσz/2 so that we obtain the

stationary Schrödinger equation:

[Htot(0)−Bσz] Φ (r) = EΦ (r) , (8.4)

where the fictitious magnetic field B ≡ ω0/2 is perpendicular to the plane of the superconductor,

which will be referred to as ’driving frequency’ hereinafter, and E is the quasi-energy defined

modulo ω0/2. Let us make now a more concise connection with the usual stroboscopic, or

Floquet description of periodically driven systems. The full evolution operator for the driven
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chain can be written as:

Utot(t) = e−iBσzte−iHF t , (8.5)

with HF ≡ Htot(0)−Bσz. After one period T , the evolution operator can be written Utot(T ) =

exp (−iHFT ) (up to a sign), with HF identifying as the Floquet Hamiltonian describing the

evolution of the system at t = nT , with n ∈ N (stroboscopically). The Hamiltonian HF gives

rise to a quasi-energy spectrum defined up to integer multiples of 2B and, as in the static case,

can result in non-trivial topological properties which in an open system are identified with the

appearance of edge states. However, it does not fully characterise the topological structure

and the entire spectrum of edge states of the driven system. Such a complete description was

developed recently in several works, where they showed that in order to fully describe that, one

needs the evolution operator at all times t, not only at t = T . However, for our situation of

circular spin texture precession, it turns out that HF describes fully the topological structure

of the driven system, and thus we focus on that aspect only in the following.

As discussed in Ref. [167] a single magnetic impurity with a periodically driven spin gives rise

to a pair of Shiba states residing in the effective gap ∆eff
s = ∆s − B, provided the driving

frequency B is smaller than the superconducting gap ∆s. This condition is essential to have a

gapful system and well-defined impurity-induced subgap states. The energies of these states in

the deep-dilute regime (α ∼ 1) are given by ±ε0(B), where

ε0(B) ≡
[(

1− 1

α

)
∆s −B cos θ

]
, (8.6)

and α ≡ πν0J is the dimensionless impurity strength parameter written in terms of normal-

phase density of states ν0. It has been shown in Refs. [35, 131] that a static helical chain

of magnetic impurities produces a 4 × 4 Shiba band structure with non-trivial topological

properties. Moreover, for α ≈ 1 one can project the resulting 4 × 4 Hamiltonian onto an

effective 2× 2 that fully characterise the low-energy spectrum (the energy separation between

the bands is of order ∆s).

Hereafter we use Eq. (8.4) and, following the procedure described in Ref. [35], we derive the

effective 2 × 2 Hamiltonian for the emerging Shiba band. The details of this derivation are

given in Appendix D.1.
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8.2 Effective band structure

The effective Hamiltonian describing the Shiba band in the rotating frame in both aforemen-

tioned cases can be written exploiting the d-vector notation as

HS(k) = d0(k) + d(k) ·Σ , (8.7)

with

d0(k) =
[
∆s cos θ −B(1− α sin2 θ)

]
F0(B, ka, kFa) ,

dx(k) = (∆s − αB cos θ)Fx(B, ka, kFa) sin θ ,

dz(k) = −ε0(B) + (∆s −B cos θ)Fz(B, ka, kFa) , (8.8)

and dy(k) ≡ 0. Eqs (8.8) represent one of our main results. Here Σ = (Σx,Σy,Σz) represents

a resulting Nambu space which, however, is a complicated admixture of σ and τ . The form of

the functions F0,x,z(B, ka, kFa) is in general too complicated to be displayed. However, there

are various limiting cases where analytical progress is possible. In what follows we focus on two

limiting cases that can be studied both analytically and numerically, i.e. the short and the long

coherence length, respectively. The first case corresponds to a chain with only nearest neighbour

hopping, in other words, the case of a small coherence length ξ � a, where ξ ≡ vF/
√

∆2
s −B2.

In this limit, we need to set in Eq. (8.8) the following functions:

F0,x(B, ka, kFa) ≡ X̃0,1(a) sin
kha

2
sin ka, Fz(B, ka, kFa) ≡ X̃0(a) cos

kha

2
cos ka, (8.9)

where

X̃0(a) ≡ − 2

π
Im K0

[
−i
(

1 + i
1

kF ξ

)
kFa

]
, X̃1(a) ≡ − 2

π
Re K0

[
−i
(

1 + i
1

kF ξ

)
kFa

]

with kF being the Fermi momentum and K0 denoting the zeroth modified Bessel function of

the second kind (for further details see Appendix D.1 as well as [85]). Note that the functions

X̃0,1 depend at least quadratically on the fictitious magnetic field B, and for B � ∆s we can

neglect such dependence in leading order .

The second limiting case describes a chain with very extended Shiba states, i.e. with large
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coherence length compared to the impurity spacing, ξ � a. Contrary to the small coherence

length regime, here all the higher order hopping processes become possible. In this regime we

obtain the following expressions for the functions F0,x,z in Eq. (8.7) F0,x ≡
[
F−0,1(k)− F+

0,1(k)
]
/2

and Fz ≡
[
F−0 (k) + F+

0 (k)
]
/2, where we defined

F s
0 (k) ≡

√
2

πkFa
Im fs(k), F s

1 (k) ≡
√

2

πkFa
Re fs(k)

with s = ± and

fs(k) = e−i
π
4

[
Li 1

2

(
ei(k+skh/2−kF )a

)
+ Li 1

2

(
e−i(k+skh/2+kF )a

)]
, (8.10)

expressed in terms of the polylogarithm function Li(x).

Note that dx(k) in the expressions given above plays the role of the gap parameter ∆k from

Ref. [35], which, in the limit of B � ∆s is only slightly reduced by the fictitious field. On the

other hand, dz(k) is strongly affected by the driving, as it results in a shift of the alignment of

the Shiba bands, and eventually their topology. While d0(k) does not change the topology of

the bands, it does affect their overlap (the absolute gap), and it can also depend strongly on

B for θ → π/2 (planar helix). In fact, in such a case, the entire dependence on the magnetic

field arises through this term in leading order which, however, is small for α ∼ 1.

8.3 Quasi-spectrum and topology

In what follows we study the topological properties of the Hamiltonian in Eq. (8.7) in the short

and long coherence length regimes introduced above. The spectrum can be found easily as

E(k) = d0(k) ±
√
d2
z(k) + d2

x(k) which, because of the periodic drive, is uniquely defined only

up to an integer multiple of B. Thus, we need to fold the resulting spectrum into the first

quasi-energy Brillouin zone, E(k) ∈ [−B,B]. The resulting one-dimensional Hamiltonian is

real, and thus it belongs to the BDI symmetry class [168]. In this case the number of Majorana

states emerging at one end in the case of open boundary conditions is given not by a Z2, but

by a Z invariant [169], which reads:

W =
1

2π

∫ π

−π
dϑ(k) , (8.11)
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Figure 8.2: The gap around quasienergy E = 0 and the winding number of the Shiba band
for the small and large coherence length regimes (first and second rows respectively), plotted
as functions of the driving frequency B and the Fermi momentum kF (precession angle θ) in
the left (right) column. The continuous black lines separate regions with different winding
numbersW which are well defined even for the gapless regions. The vertical red lines highlight
the existence of localised Majorana end states in an open system [see Fig. 8.3 for details]. We
set kh = π/4, vF = 0.2,∆s = 1, a = 1, α = 0.9999. The polar angle θ = π/3 and kF = 159 in
the left and right columns correspondingly.
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with ϑ(k) = Arg[dx(k)+ idz(k)]. This winding number characterises the number of edge states.

However, it does not indicate the presence of an absolute gap in the system, meaning that it

can be well defined even if the system is gapless. We depict such surprising features in Fig. 8.2,

where we plot the absolute gap between the Shiba bands, as well as the corresponding winding

number, as functions of the driving frequency B against the Fermi momentum kF (angle θ)

in the left (right) column. Both the driving frequency and the precession angles are tunable

parameters and, most strikingly, this shows that the system can undergo a topological phase

transition by changing the driving frequency.

We note that for the small coherence length regime (top row) the winding number can be

calculated analytically (see Appendix D.2), whereas for the large coherence length (bottom row)

we restrict ourselves to computing the integral in Eq. (8.11) only numerically 1. A few more

comments are in order. As expected for θ = 0 (corresponding to a ferromagnetic arrangement

of the impurity spins) the gap is absent and the system is in a gapless trivial phase with zero

winding number. Conversely, when θ = π/2 the spin helix is planar. This in turn means that

the fictitious magnetic field B appearing in the rotating frame (see Eq. (8.4)) does not couple to

the chain, which explains why no change of phase occurs while changing the driving frequency

for θ = π/2. Therefore, the system always enters a topological superconducting phase.

One of the most important signatures of topological systems are topological edge states. In

Fig. 8.3 we show the quasi-spectrum for a dynamical chain with open boundary conditions and

for the case of a short coherence length. We see that Majorana bound states (MBS) emerges

at zero energy (red line), and that their existence range is in perfect agreement with the bulk

winding number calculation. Moreover, we found that the MBS even exist in regions where the

system is gapless, albeit they are not protected any more by the gap and any impurities could

easily mix them with the bulk (extended) states. While for a region of the parameter space we

found gaps at both E = 0 and E = B (see Fig. 8.3), only the modes at the former are emerging

for the circular driving utilised in this setup. However, such a conclusion should not hold for

more general drivings of the magnetic texture.

Notably, there are two ways to approach the setup considered in this Chapter, and depending

on which one we choose, we should solve the problem differently. First, we could consider this

1It is worth mentioning that the topologically non-trivial regions in Fig. 8.2 can be also determined by
utilizing Pfaffian invariants reflecting parity of the winding number W, as well as by employing the so-called
’singular points technique’ developed in the Annex of this manuscript or, equivalently, in Ref. [170]
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Figure 8.3: The quasi-spectrum (normalised by the driving B) for an open Shiba chain, in the
regime of small coherence length as function of the driving frequency B. The horizontal red
line stands for the zero quasi-energy Majorana end mode, while W defines the bulk winding
number (see main text). A region with two gaps, at E = 0 and E = B exist, but the latter is
trivial as we find no Majoranas emerging. We set kF = 159, kh = π/4, vF = 0.2,∆s = 1, a =
1, θ = π/3, α = 0.9999.

setup to be completely isolated, and therefore in a rotating frame the problem would become

static, with no subsequent need to perform the Floquet spectrum folding. Second approach

would be to couple our driven chain to an external bath (a metallic lead, an STM tip etc.),

and thus lose the possibility to get rid of time dependence through RW transformation. In our

consideration we chose a third way, i.e. we consider the driven chain to be isolated, however

we fold the spectrum of the static problem given by Eq. (8.4). The motivation for it would be

the fact that the system in fact is not utterly isolated, and in any realistic experimental setup

we would like to probe it.

8.4 Detection and physical implementations

The dynamically generated MBS described above could be detected in transport measurements

by nearby voltage biased STM tip [171]. Alternatively, one could utilise a recent scheme that

relies on the pumped charge by the precessing texture into the STM tip at different position in

the chain in the absence of any applied voltage [167,172]. In order to generate the dynamics, we

envision several implementations, depending on the way the magnetic texture emerges in the
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first place. In the case of a pre-formed helix, either due to the the RKKY interaction mediated

by electrons in the superconductor [128–130], or due to the SOI in the substrate [173], the

precession of the helix corresponds simply to global rotations. The traditional way to excite

such a mode is by driving the helix with microwaves that excite the ferromagnetic resonance

associated with such a rotation mode. However, in recent years there have been tremendous

progress in exciting magnetic devices in transport setup by means of the spin Hall effect [174].

Such a setup would allow for an all-electrical implementation of a dynamical magnetic texture

– superconductor hybrid, with a controllable frequency (see Appendix D.5 for details on the

implementation). Both these methods can give rise to rotations of the helix, but do not result in

changes of the pitch. However, when the impurities form a planar ferromagnet (with exchange

interaction keeping the spins in a plane), it becomes possible to control the pitch kh, the

frequency ω, and the cone angle θ by means of spin biases, as showed recently in several

works [175–177]. This goes by the name of spin superfluidity, as there is a direct mapping

between a superfluid flow (such as in He4) and the magnetisation flow in such a planar spin

configuration. As detailed in Appendix D.5, such manipulations are possible simply by changing

the spin biases induced by the spin Hall effect applied over the planar spin configuration, with

a pitch in one-to-one correspondence with the spin super-current flowing through the magnetic

system, and an adjustable frequency depending on the relative biases [176,177].

8.5 Discussion

The setup proposed in this work can be generalised to a chain of precessing magnetic im-

purities deposited on top of a 3D superconductor. Despite a modification in the Shiba wave

function coherence length, we expect no qualitative difference in our main argument concerning

a controlled topological phase transition. Moreover, a 3D superconductor is expected to reflect

the short coherence length regime, whereas a 2D one – the long coherence length regime. As

a future extension of this work we propose to consider more complicated networks of driven

magnetic impurities, e.g. a 2D array. Also, generalisations to more complicated textures and

precessions is in order, as our perfect rotation wave description would break down, and a fully

Floquet approach would be required. The same arguments should apply when the substrate

(superconductor) posses spin-orbit interaction.
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It is worth mentioning that, as expected, all these results are in a perfect qualitative agree-

ment with those presented in Ref. [35], for driving frequency B = 0. We do not expect any

quantitative agreement since we consider a 2D underlying superconductor.

In conclusion, in this Chapter we proposed a way to engineer a controllable topological phase

transition by means of magnetisation texture dynamics. We have shown that a chain of pre-

cessing classical spins deposited on top of an s-wave superconductor gives rise to a topologically

non-trivial Shiba band, and we have demonstrated that topological phase transitions in such

a band can be controlled by changing the driving frequency, a tunable parameter in the spin

transport experiments.
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Summary of Thesis Achievements

In Chapter 5 we have analysed the formation of Yu-Shiba-Rusinov states and impurity states

in 1D and 2D superconducting and metallic systems with Rashba spin-orbit coupling. In

particular, we have studied the Fourier transform of the local density of states of Shiba states

in SCs and of the impurity states in metals, both non-polarised and spin-polarised. We have

shown that the spin-polarised density of states contains information that allows one to extract

experimentally the strength of the SO coupling. Notably, the features observed in the FT of

the SP LDOS split with a magnitude proportional to the SO coupling strength. Moreover,

the Friedel oscillations in the SP LDOS in the SC regime show a combination of wavelengths,

out of which the SO length can be read-off directly and non-ambiguously. We note that these

signatures are only visible in the spin-polarised quantities and in the presence of magnetic

impurities. For non-spin-polarised measurements, no such splitting is present and the wave

vectors observed in the FT of the SP LDOS basically do not depend on the SO coupling.

When comparing the results for the SC Shiba states to the impurity contribution in the metal-

lic state and we find a few interesting differences, such as a broadening of the FT features

corresponding to a spatial exponential decay of the Shiba states compared to the non-SC case.

Moreover, the FT of the SP LDOS in the SC regime exhibits extra features with a wavelength

equal to the SO length which are not present in the non-SC phase. We have checked that up

to a rotation in the spin space our results hold also for other types of SO coupling such as e.g.

Dresselhaus.

Chapter 6 has been dedicated to studying the formation of Shiba states in 2D superconductors

with breaking inversion symmetry admixture of s-wave and p-wave order parameters. We have

found that the number, the energy and especially the spin polarisation of the Shiba states

depend strongly on the ratio between the values of the s-wave and p-wave coupling. We have
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proposed to test experimentally the presence of the p-wave coupling, as well as the direction of

the d-vector with respect to the sample plane by measuring the spin polarisation and energy

of the Shiba bound states via spin-polarised STM or transport. We note that these signatures

are only visible in the spin-polarised quantities and in the presence of magnetic impurities. All

the results are obtained both numerically and analytically, with full qualitative correspondence

between them.

We believe that these results can be used for studying the topological phases of matter that can

be engineered with impurities in different types of p-wave superconductors, in particular the

exact analytical form of the Shiba wave functions, are useful for computing the Chern numbers

in such emergent topological superconductors.

Summarising the results of Chapter 7, we have proposed a method to engineer topological

states by scalar impurities deposited on 2D chiral superconductors. In particular, we have pre-

sented a microscopic theory of chiral p-wave superconductors with impurity lattices, allowing

us to calculate the topological phase diagram for general impurity strengths and hybridisa-

tion. Our results have remarkable conceptual and practical consequences: given a 2D chiral

superconductor, it is possible to fabricate a large number of non-trivial descendant states by

a straightforward procedure. Because scalar-induced subgap states are generic in time-reversal

breaking superconductors and superfluids, our results have universal appeal irrespective of the

platform and microscopic details of the chiral state.

Experimental extraction of specific value of the Chern number of a superconductor is an un-

solved issue at present. However, by fabricating interfaces between lattices of different lattice

constants it is possible to compare whether the two adjacent structures belong to the same

topological phase. If the structures belong to different phases, there must exist pronounced

subgap local density of states at the boundary due to topological edge modes.

And finally, in Chapter 8 we have put forward a way to engineer a controllable topological phase

transition by means of magnetisation texture dynamics. We have shown that a chain of pre-

cessing classical spins deposited on top of an s-wave superconductor gives rise to a topologically

non-trivial Shiba band, and we have demonstrated that topological phase transitions in such

a band can be controlled by changing the driving frequency, a tunable parameter in the spin

transport experiments. The winding number of the arising Shiba band has been obtained both

numerically and analytically, and its value has been shown to be consistent with the number
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of Majorana bound states emerging in the topological phase.



Perspectives

Several possible extensions of this work could be potentially interesting. First of all, it would be

beguiling to generalise the results of Chapters 5 and 6 to more realistic calculations which may

include some specific lattice characteristics, more realistic material-dependent tight-binding

parameters for the band structure and the SO coupling values. Moreover, since the principal

testing method proposed in our work is spin-polarised STM, it could be useful to recompute

everything, taking into account the tunnelling processes into an STM tip by employing the

tunnelling Hamiltonian approach.

In particular, the findings of Chapter 5 could be tested using for example materials such as

Pb, Bi, NbSe2 or InAs and InSb wires, which are known to have a strong SO coupling, using

spin-polarised STM which is nowadays becoming more and more available.

Concerning the theoretical predictions of Chapter 6 about superconductors showing a mixed

singlet and triplet order parameters, or purely triplet, it would be interesting to recalculate all

the studied spin-polarised quantities for the quasi-2D superconductor Sr2RuO4 described by

realistic multiband models, as well as for any other candidate for p-wave pairing. Furthermore,

it could be compelling to generalise these results for higher order triplet pairing superconductors,

such as for example f-wave.

The setup we have proposed in Chapter 8 could be extended to a chain of precessing magnetic

moments deposited on top of a 3D superconductor. Despite a modification in the Shiba wave

function coherence length, we expect no qualitative difference in our main argument concerning

a controlled topological phase transition. Moreover, a 3D superconductor is expected to reflect

the short coherence length regime, whereas a 2D one – the long coherence length regime.

Another future extension of this work would be to consider more complicated networks of driven
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magnetic impurities, e.g. 2D arrays and lattices, or taking into account spin-orbit coupling in

the superconducting substrate. Moreover, it would be enthralling to check that the main

conclusions of that Chapter remain the same in the presence of an STM tip, probing the driven

chain. Most of the aforementioned generalisations might lead to breakdown of the rotating

wave transformation into a static system, thus requiring a full Floquet description.
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Appendix A

Analytical calculation of the Shiba

states wave functions

We can calculate analytically the non-polarised and the SP LDOS for the Shiba states exploiting

the model described by the Hamiltonians in Eqs. (5.1-5.3). All the integrations below are

performed using a linearisation around the Fermi energy. The energies of the Shiba states can

be found by solving the corresponding eigenvalue equation (see Ref. [35])

[I4 −G0(E, r = 0)V ] Φ(0) = 0 (A.1)

where G0(E, r) is the retarded Green’s function in real space obtained by a Fourier transform

from the retarded Green’s function in momentum space G0(E,p) = [(E + iδ)I4 −H0(p)]−1,

where δ is the inverse quasiparticle lifetime. In all the calculations below we take the limit of

δ → +0, and we specify +i0 only in the cases when it affects the results. The wave functions

of the Shiba states at r = 0 are given by the eigenfunctions obtained from the equation above.

Their spatial dependence is determined using

Φ(r) = G0(E, r)V Φ(0) (A.2)

Consequently, the non-polarised and the SP LDOS are given by Eq. (4.17) and (4.18). Thus,

in order to find the energies and the wave functions corresponding to the Shiba states we need

to find the real-space Green’s function. This is obtained simply by a Fourier transform of the
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unperturbed Green’s function in momentum space, G0(E,p).

A.1 s-wave superconductors with Rashba SOC

2D case

We start by writing down the unperturbed Green’s function in momentum space, which is given

by G0(E,p) = 1
2

∑
σ=±

Gσ
0 (E,p), where

Gσ
0 (E,p) = − 1

ξ2
σ + ω2

 1 iσe−iφp

−iσeiφp 1

⊗
E + ξσ ∆s

∆s E − ξσ

 , (A.3)

where ω =
√

∆2
s − E2, ξσ = ξp+σλp. To obtain its real-space dependence one needs to perform

the Fourier transform (see Eq. (4.4)). We will thus have four types of integrals:

Xσ
0 (r) = −

∫
dp

(2π)2

eipr

ξ2
σ + ω2

(A.4)

Xσ
1 (r) = −

∫
dp

(2π)2

ξσ e
ipr

ξ2
σ + ω2

(A.5)

Xσ
2 (s, r) = −

∫
dp

(2π)2

−isσeisφp eipr
ξ2
σ + ω2

(A.6)

Xσ
3 (s, r) = −

∫
dp

(2π)2

−isσeisφp ξσ eipr
ξ2
σ + ω2

(A.7)

Since the spectrum is split by SO coupling, there will be two Fermi momenta which can be

found the following way:

p2

2m
+ σλp− εF = 0, pσF =

−σλ+
√
λ2 + 2εF/m

1/m

For p > 0 we linearise the spectrum around the Fermi momenta, thus:

ξσ ≈
(
pσF
m

+ σλ

)
(p− pσF ) =

√
λ2 + 2εF/m (p− pσF ) ≡ v(p− pσF ),
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therefore p = pF + ξσ/v, where v =
√
v2
F + λ2. We rewrite:

dp

(2π)2
=
m

2π

[
1− σλ

v

]
dξσ

dφ

2π
= νσdξσ

dφ

2π
,

where νσ = ν
[
1− σ λ

v

]
, with ν = m/2π. Due to the symmetry all the integrals are zero at

r = 0 except for the first one, namely,

Xσ
0 (0) = −νσ

π

ω
. (A.8)

All the coordinate dependences can be calculated using the formalism introduced in Ref. [85].

Finally we get:

Xσ
0 (r) = −2νσ ·

1

ω
· Im K0 [−i(1 + iΩσ)pσF r] (A.9)

Xσ
1 (r) = −2νσ · Re K0 [−i(1 + iΩσ)pσF r] (A.10)

Xσ
2 (s, r) = 2sσνσ ·

1

ω
· eisφr · Re K1 [−i(1 + iΩσ)pσF r] (A.11)

Xσ
3 (s, r) = −2sσνσ · eisφr · Im K1 [−i(1 + iΩσ)pσF r] , (A.12)

where Ωσ = ω/pσFv defines the inverse superconducting decay length, and pS = ω/v. Therefore,

the Green’s function can be written as

Gσ
0 (E, r) =


EXσ

0 +Xσ
1 EXσ

2 (−) +Xσ
3 (−) ∆sX

σ
0 ∆sX

σ
2 (−)

EXσ
2 (+) +Xσ

3 (+) EXσ
0 +Xσ

1 ∆sX
σ
2 (+) ∆sX

σ
0

∆sX
σ
0 ∆sX

σ
2 (−) EXσ

0 −Xσ
1 EXσ

2 (−)−Xσ
3 (−)

∆sX
σ
2 (+) ∆sX

σ
0 EXσ

2 (+)−Xσ
3 (+) EXσ

0 −Xσ
1

 ,

where we omitted all the coordinate dependence. Thus at the origin we have:

G0(E, r = 0) = − πν√
∆2
s − E2

σ0 ⊗

E ∆s

∆s E

 .

Using the expression above along with Eq. (4.16) we find the eigenvalues of the problem, i.e.

the energies of the Shiba states:

E1,1̄ = ±1− α2

1 + α2
∆s.



108 Appendix A. Analytical calculation of the Shiba states wave functions

In the subsections below we use these energies and Eq. (4.15) to find the wave functions of the

Shiba states. This algorithm will be applied in all the cases discussed below.

z-impurity

The coordinate dependence of the eigenfunctions is given by

Φ1̄(r) = +
Jz
2

∑
σ=±


(E1̄ −∆s)X

σ
0 +Xσ

1

(E1̄ −∆s)X
σ
2 (+) +Xσ

3 (+)

−(E1̄ −∆s)X
σ
0 +Xσ

1

−(E1̄ −∆s)X
σ
2 (+) +Xσ

3 (+)

 , Φ1(r) = −Jz
2

∑
σ=±


(E1 + ∆s)X

σ
2 (−) +Xσ

3 (−)

(E1 + ∆s)X
σ
0 +Xσ

1

(E1 + ∆s)X
σ
2 (−)−Xσ

3 (−)

(E1 + ∆s)X
σ
0 −Xσ

1

 ,

where we omit the arguments r and r in the functions given by Eq. (A.9-A.12). Using these

expressions we can compute the asymptotic behaviour of the non-polarised and SP LDOS in

coordinate space for the state with positive energy (thus we omit index 1 below):

Sx(r) = +J2
z

(
1 +

1

α2

){∑
σ

σν2
σ

cos (2pσF r − θ)
pσF

+ 2ν2v
2
F

v2
· sin pλr

pF

}
· e
−2psr

r
cosφr

Sy(r) = +J2
z

(
1 +

1

α2

){∑
σ

σν2
σ

cos (2pσF r − θ)
pσF

+ 2ν2v
2
F

v2
· sin pλr

pF

}
· e
−2psr

r
sinφr

Sz(r) = −J2
z

(
1 +

1

α2

){∑
σ

ν2
σ

sin (2pσF r − θ)
pσF

− 2ν2v
2
F

v2
· cos pλr

pF

}
· e
−2psr

r

ρ(r) = +J2
z

(
1 +

1

α2

){
2
ν2

mv
+ 2ν2v

2
F

v2
· sin (2mvr − θ)

pF

}
· e
−2psr

r
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with θ =

arctg 2α
1−α2 , if α 6= 1

π
2
, if α = 1

and pλ = 2mλ. To perform the Fourier transforms in 2D we

use the following equations:

F [f(r)] = 2π

+∞∫
0

rJ0 (pr) f(r)dr

F [cosφrf(r)] = 2πi cosφp ·
+∞∫
0

rJ1 (pr) f(r)dr,

F [sinφrf(r)] = 2πi sinφp ·
+∞∫
0

rJ1 (pr) f(r)dr

F [cos 2φrf(r)] = −2π cos 2φp

+∞∫
0

rJ2 (pr) f(r)dr,

F [sin 2φrf(r)] = −2π sin 2φp

+∞∫
0

rJ2 (pr) f(r)dr,

where f(r) is a function that is independent of the angle φr. Thus we can obtain some infor-

mation about the main features and symmetries that we observe in momentum space:

Sx(p) = +2πiJ2
z

(
1 +

1

α2

)
cosφp

+∞∫
0

drJ1 (pr)

{∑
σ

σν2
σ

cos (2pσF r − θ)
pσF

+ 2ν2v
2
F

v2
· sin pλr

pF

}
· e−2psr

Sy(p) = +2πiJ2
z

(
1 +

1

α2

)
sinφp

+∞∫
0

drJ1 (pr)

{∑
σ

σν2
σ

cos (2pσF r − θ)
pσF

+ 2ν2v
2
F

v2
· sin pλr

pF

}
· e−2psr

Sz(p) = −2πJ2
z

(
1 +

1

α2

) +∞∫
0

drJ0 (pr)

{∑
σ

ν2
σ

sin (2pσF r − θ)
pσF

− 2ν2v
2
F

v2
· cos pλr

pF

}
· e−2psr

ρ(p) = +2πJ2
z

(
1 +

1

α2

) +∞∫
0

drJ0 (pr)

{
2
ν2

mv
+ 2ν2v

2
F

v2
· sin (2mvr − θ)

pF

}
· e−2psr
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x-impurity

The coordinate dependence of the eigenfunctions is given by

Φ1̄(r) = +
Jx
2

∑
σ=±


+(E1̄ −∆s) [Xσ

0 (r) +Xσ
2 (−, r)] +Xσ

1 (r) +Xσ
3 (−, r)

+(E1̄ −∆s) [Xσ
0 (r) +Xσ

2 (+, r)] +Xσ
1 (r) +Xσ

3 (+, r)

−(E1̄ −∆s) [Xσ
0 (r) +Xσ

2 (−, r)] +Xσ
1 (r) +Xσ

3 (−, r)

−(E1̄ −∆s) [Xσ
0 (r) +Xσ

2 (+, r)] +Xσ
1 (r) +Xσ

3 (+, r)

 ,

Φ1(r) = −Jx
2

∑
σ=±


+(E1 + ∆s) [Xσ

0 (r)−Xσ
2 (−, r)] +Xσ

1 (r)−Xσ
3 (−, r)

−(E1 + ∆s) [Xσ
0 (r)−Xσ

2 (+, r)]−Xσ
1 (r) +Xσ

3 (+, r)

+(E1 + ∆s) [Xσ
0 (r)−Xσ

2 (−, r)]−Xσ
1 (r) +Xσ

3 (−, r)

−(E1 + ∆s) [Xσ
0 (r)−Xσ

2 (+, r)] +Xσ
1 (r)−Xσ

3 (+, r)

 .

For the positive energy state we compute the asymptotic behaviour of the non-polarised and

SP LDOS in coordinate space. We write Sx(r) = Ssx(r) + Sax(r):

Ssx(r) = −J2
x

(
1 +

1

α2

){∑
σ

ν2
σ

1 + sin (2pσF r − 2β)

pσF
+ γ (cos pλr + sin (2mvr − 2β))

}
e−2psr

r

Sax(r) = J2
x

(
1 +

1

α2

){∑
σ

ν2
σ

1− sin (2pσF r − 2β)

pσF
− γ (cos pλr + sin (2mvr − 2β))

}
e−2psr

r
cos 2φr

Sy(r) = J2
x

(
1 +

1

α2

){∑
σ

ν2
σ

1− sin (2pσF r − 2β)

pσF
− γ (cos pλr − sin (2mvr − θ))

}
e−2psr

r
sin 2φr

Sz(r) = −J2
x

(
1 +

1

α2

){
2
∑
σ

σν2
σ

cos (2pσF r − θ)
pσF

+ 2γ sin pλr

}
e−2psr

r
cosφr

ρ(r) = J2
x

(
1 +

1

α2

){
4
ν2

mv
+ 2γ sin (2mvr − θ)

}
e−2psr

r

with tan β = α and γ ≡ 2ν2 v2F
v2pF

. Same as before, performing the Fourier transforms of these

expressions allows us to obtain information about the most important features and symmetries
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we observe in momentum space:

Ssx(p) = −2πJ2
x

(
1 +

1

α2

) +∞∫
0

drJ0 (pr)

{∑
σ

ν2
σ

1 + sin (2pσF r − 2β)

pσF
+

+2ν2v
2
F

v2
· cos pλr + sin (2mvr − 2β)

pF

}
· e−2psr

Sax(p) = −2πJ2
x

(
1 +

1

α2

)
cos 2φp

+∞∫
0

drJ2 (pr)

{∑
σ

ν2
σ

1− sin (2pσF r − 2β)

pσF
−

−2ν2v
2
F

v2
· cos pλr + sin (2mvr − 2β)

pF

}
· e−2psr

Sy(p) = −2πJ2
x

(
1 +

1

α2

)
sin 2φp

+∞∫
0

drJ2 (pr)

{∑
σ

ν2
σ

1− sin (2pσF r − 2β)

pσF
−

−2ν2v
2
F

v2
· cos pλr − sin (2mvr − θ)

pF

}
· e−2psr

Sz(p) = −2πiJ2
x

(
1 +

1

α2

)
cosφp

+∞∫
0

drJ1 (pr)

{
2
∑
σ

σν2
σ

cos (2pσF r − θ)
pσF

+ 4ν2v
2
F

v2
· sin pλr

pF

}
·e−2psr

ρ(p) = +2πJ2
x

(
1 +

1

α2

) +∞∫
0

drJ0 (pr)

{
4
ν2

mv
+ 4ν2v

2
F

v2
· sin (2mvr − θ)

pF

}
· e−2psr

1D case

The unperturbed Green’s function in momentum space is G0(E, p) = 1
2

∑
σ=±

Gσ
0 (E, p), where

Gσ
0 (E, p) = − 1

ξ2
σ + ∆2

s − E2

 1 iσ

−iσ 1

⊗
E + ξσ ∆s

∆s E − ξσ

 , (A.13)

where ξσ = ξp + σλp. To get the coordinate value one needs to perform the Fourier transform:

Gσ
0 (E, x) =

∫
dp
2π
Gσ

0 (E, p)eipx. We will therefore have two types of integrals:

Xσ
0 (x) = −

∫
dp

2π

eipx

ξ2
σ + ω2

, (A.14)

Xσ
1 (x) = −

∫
dp

2π

ξσe
ipx

ξ2
σ + ω2

, (A.15)
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where ω2 ≡ ∆2
s − E2. Since the spectrum is split by SO coupling, there will be two Fermi

momenta which can be found the following way:

p2

2m
+ σλp− εF = 0, pσF =

−σλ+
√
λ2 + 2εF/m

1/m
≡ m [−σλ+ v]

For p > 0 we linearise the spectrum around Fermi momenta, thus:

ξσ ≈
(
pσF
m

+ σλ

)
(p− pσF ) =

√
λ2 + 2εF/m (p− pσF ) ≡ v(p− pσF ),

therefore p = pσF + ξσ/v and we get:

Xσ
0 (x) = −

∫
dp

2π

eipx

ξ2
σ + ω2

= −

 +∞∫
0

dp

2π

eipx

ξ2
σ + ω2

+

+∞∫
0

dp

2π

e−ipx

ξ2
−σ + ω2

 = ♣

+∞∫
0

dp

2π

eipx

ξ2
σ + ω2

≈ 1

2πv
eip

σ
F x

∫
dξσ

eiξσx/v

ξ2
σ + ω2

=
1

2vω
eip

σ
F xe−ω|x|/v

+∞∫
0

dp

2π

e−ipx

ξ2
−σ + ω2

≈ 1

2πv
e−ip

−σ
F x

∫
dξ−σ

e−iξ−σx/v

ξ2
−σ + ω2

=
1

2vω
e−ip

−σ
F xe−ω|x|/v

♣ = − 1

2vω

[
eim[−σλ+v]x + e−im[σλ+v]x

]
e−ω|x|/v = −1

v
· 1

ω
cosmvx e−iσmλx e−ω|x|/v

Xσ
1 (x) = −

∫
dp

2π

ξσ e
ipx

ξ2
σ + ω2

= −

 +∞∫
0

dp

2π

ξσ e
ipx

ξ2
σ + ω2

+

+∞∫
0

dp

2π

ξ−σ e
−ipx

ξ2
−σ + ω2

 = ♠

+∞∫
0

dp

2π

ξσ e
ipx

ξ2
σ + ω2

≈ 1

2πv
eip

σ
F x

∫
dξσ

ξσ e
iξσx/v

ξ2
σ + ω2

=
i

2v
sgnx eip

σ
F xe−ω|x|/v

+∞∫
0

dp

2π

ξ−σ e
−ipx

ξ2
−σ + ω2

≈ 1

2πv
e−ip

−σ
F x

∫
dξ−σ

ξ−σ e
−iξ−σx/v

ξ2
−σ + ω2

= − i

2v
sgnx e−ip

−σ
F xe−ω|x|/v



A.1. s-wave superconductors with Rashba SOC 113

♠ = − i

2v
sgnx

[
eim[−σλ+v]x − e−im[σλ+v]x

]
e−ω|x|/v =

1

v
· sinmv |x| e−iσmλx e−ω|x|/v

Finally,

Xσ
0 (x) = −1

v
· 1

ω
cosmvx e−iσmλx e−ω|x|/v (A.16)

Xσ
1 (x) = +

1

v
· sinmv |x| e−iσmλx e−ω|x|/v (A.17)

and

G0(E, x) =
1

2

∑
σ=±

 1 iσ

−iσ 1

⊗
EXσ

0 (x) +Xσ
1 (x) ∆sX

σ
0 (x)

∆sX
σ
0 (x) EXσ

0 (x)−Xσ
1 (x)

 , (A.18)

where

G0(ε, x = 0) = −1

v

1√
1− ε2

σ0 ⊗

ε 1

1 ε

 , where ε ≡ E/∆s. (A.19)

The eigenvalues and eigenfunctions at r = 0 can be obtained using Eqs. (4.16) and (4.15)

correspondingly. The energy levels are

E1,1̄ = ±1− α2

1 + α2
∆s, where α = J/v. (A.20)

In case of an impurity along the z-axis the corresponding eigenvectors at the origin are

Φ1̄(0) =
(

1 0 −1 0
)T

, Φ1(0) =
(

0 1 0 1
)T

(A.21)

and in case of an impurity along the x-axis:

Φ1̄(0) =
(

1 1 −1 −1
)T

, Φ1(0) =
(

1 −1 1 −1
)T

. (A.22)
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z-impurity

Φ1̄(x) = +
Jz
2

∑
σ


+ (E1̄ −∆s)X

σ
0 +Xσ

1

−iσ [(E1̄ −∆s)X
σ
0 +Xσ

1 ]

− (E1̄ −∆s)X
σ
0 +Xσ

1

+iσ [(E1̄ −∆s)X
σ
0 −Xσ

1 ]

 , Φ1(x) = −Jz
2

∑
σ


+iσ [(E1 + ∆s)X

σ
0 +Xσ

1 ]

(E1 + ∆s)X
σ
0 +Xσ

1

+iσ [(E1 + ∆s)X
σ
0 −Xσ

1 ]

(E1 + ∆s)X
σ
0 −Xσ

1

 .

Using these expressions we can compute the non-polarised and SP LDOS in both coordinate

and momentum space for the positive energy state (omitting the index 1):

Sx(x) =
1 + α2

4
[2 sin pλx+ sin(2mv|x|+ pλx− 2θ)− sin(2mv|x| − pλx− 2θ)] · e−2ω|x|/v

Sy(x) = 0

Sz(x) = −1 + α2

4
[2 cos pλx+ cos(2mv|x|+ pλx− 2θ) + cos(2mv|x| − pλx− 2θ)] · e−2ω|x|/v

ρ(x) =
1 + α2

2
[1 + cos(2mv|x| − 2θ)] · e−2ω|x|/v

where tan θ = α. We perform the Fourier transform to get the momentum space behaviour,

exploiting the following ’standard’ integrals:

∫
e−2ω|x|/ve−ipxdx = 2

2ω/v

p2 + (2ω/v)2∫
cos pλx · e−2ω|x|/ve−ipxdx =

2ω

v

[
1

(p+ pλ)2 + (2ω/v)2
+

1

(p− pλ)2 + (2ω/v)2

]
∫

sin pλx · e−2ω|x|/ve−ipxdx = i
2ω

v

[
1

(p+ pλ)2 + (2ω/v)2
− 1

(p− pλ)2 + (2ω/v)2

]
∫

sin 2mv|x| · e−2ω|x|/ve−ipxdx =
p+ 2mv

(p+ 2mv)2 + (2ω/v)2
− p− 2mv

(p− 2mv)2 + (2ω/v)2

We rewrite these expressions using p±F , thus we get:

∫
cos pλx · e−2ω|x|/ve−ipxdx =

2ω

v

{
1[

p+ (p−F − p+
F )
]2

+ (2ω/v)2
+

1

(
[
p− (p−F − p+

F )
]2

+ (2ω/v)2

}
∫

sin pλx · e−2ω|x|/ve−ipxdx = i
2ω

v

{
1[

p+ (p−F − p+
F )
]2

+ (2ω/v)2
− 1[

p− (p−F − p+
F )
]2

+ (2ω/v)2

}
∫

sin 2mv|x| · e−2ω|x|/ve−ipxdx =
p+ (p−F + p+

F )[
p+ (p−F + p+

F )
]2

+ (2ω/v)2
− p− (p−F + p+

F )[
p− (p−F + p+

F )
]2

+ (2ω/v)2
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For the last two integrals we introduce symbols
∑
p′

and
∑̃
p′

(wide tilde signify that we take the

difference, not sum), where p′ ∈ {p− pλ, p+ pλ}. Thus we have

∫
cos(2mv|x| − 2θ) cos pλx · e−2ω|x|/ve−ipxdx =

=
1

2

∑
p′

{
1− α2

1 + α2
· 2ω

v

[
1

(p′ + 2mv)2 + (2ω/v)2
+

1

(p′ − 2mv)2 + (2ω/v)2

]
+

+
2α

1 + α2
·
[

p′ + 2mv

(p′ + 2mv)2 + (2ω/v)2
+

p′ − 2mv

(p′ − 2mv)2 + (2ω/v)2

]}

∫
cos(2mv|x| − 2θ) sin pλx · e−2ω|x|/ve−ipxdx =

=
1

2i

∑̃
p′

{
1− α2

1 + α2
· 2ω

v

[
1

(p′ + 2mv)2 + (2ω/v)2
+

1

(p′ − 2mv)2 + (2ω/v)2

]
+

+
2α

1 + α2
·
[

p′ + 2mv

(p′ + 2mv)2 + (2ω/v)2
+

p′ − 2mv

(p′ − 2mv)2 + (2ω/v)2

]}

We rewrite these expressions using p±F , thus we get:

∫
cos(2mv|x| − 2θ) cos pλx · e−2ω|x|/ve−ipxdx =

=
1− α2

1 + α2
· ω
v

[
1

(p+ 2p+
F )2 + (2ω/v)2

+
1

(p− 2p−F )2 + (2ω/v)2

]
+

+
α

1 + α2
·
[

p+ 2p+
F

(p+ 2p+
F )2 + (2ω/v)2

+
p− 2p−F

(p− 2p−F )2 + (2ω/v)2

]
+

+
1− α2

1 + α2
· ω
v

[
1

(p+ 2p−F )2 + (2ω/v)2
+

1

(p− 2p+
F )2 + (2ω/v)2

]
+

+
α

1 + α2
·
[

p+ 2p−F
(p+ 2p−F )2 + (2ω/v)2

+
p− 2p+

F

(p− 2p+
F )2 + (2ω/v)2

]

∫
cos(2mv|x| − 2θ) sin pλx · e−2ω|x|/ve−ipxdx =

=
1

i

{
1− α2

1 + α2
· ω
v

[
1

(p+ 2p+
F )2 + (2ω/v)2

+
1

(p− 2p−F )2 + (2ω/v)2

]
+

+
α

1 + α2
·
[

p+ 2p+
F

(p+ 2p+
F )2 + (2ω/v)2

+
p− 2p−F

(p− 2p−F )2 + (2ω/v)2

]}
−

−1

i

{
1− α2

1 + α2
· ω
v

[
1

(p+ 2p−F )2 + (2ω/v)2
+

1

(p− 2p+
F )2 + (2ω/v)2

]
+

+
α

1 + α2
·
[

p+ 2p−F
(p+ 2p−F )2 + (2ω/v)2

+
p− 2p+

F

(p− 2p+
F )2 + (2ω/v)2

]}
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Using the formula cos2 γ = (1 + cos 2γ)/2 we can write the momentum space expressions for

the non-polarised and SP LDOS components:

Sx(p) = i(1 + α2)
ω

v

{
1[

p+ (p−F − p+
F )
]2

+ (2ω/v)2
− 1[

p− (p−F − p+
F )
]2

+ (2ω/v)2

}
+

+
1

i

{
1− α2

2
· ω
v

[
1

(p+ 2p+
F )2 + (2ω/v)2

+
1

(p− 2p−F )2 + (2ω/v)2

]
+

+
α

2
·
[

p+ 2p+
F

(p+ 2p+
F )2 + (2ω/v)2

+
p− 2p−F

(p− 2p−F )2 + (2ω/v)2

]}
−

−1

i

{
1− α2

2
· ω
v

[
1

(p+ 2p−F )2 + (2ω/v)2
+

1

(p− 2p+
F )2 + (2ω/v)2

]
+

+
α

2
·
[

p+ 2p−F
(p+ 2p−F )2 + (2ω/v)2

+
p− 2p+

F

(p− 2p+
F )2 + (2ω/v)2

]}

Sz(p) = −(1 + α2)
ω

v

{
1[

p+ (p−F − p+
F )
]2

+ (2ω/v)2
+

1[
p− (p−F − p+

F )
]2

+ (2ω/v)2

}
−

−1− α2

2
· ω
v

[
1

(p+ 2p+
F )2 + (2ω/v)2

+
1

(p− 2p−F )2 + (2ω/v)2

]
−

−α
2
·
[

p+ 2p+
F

(p+ 2p+
F )2 + (2ω/v)2

− p− 2p−F
(p− 2p−F )2 + (2ω/v)2

]
−

−1− α2

2
· ω
v

[
1

(p+ 2p−F )2 + (2ω/v)2
+

1

(p− 2p+
F )2 + (2ω/v)2

]
−

−α
2
·
[

p+ 2p−F
(p+ 2p−F )2 + (2ω/v)2

+
p− 2p+

F

(p− 2p+
F )2 + (2ω/v)2

]

ρ(p) = (1 + α2)

{
2ω/v

p2 + (2ω/v)2
+

[
ω/v[

p+ (p−F + p+
F )
]2

+ (2ω/v)2
+

ω/v

(
[
p− (p−F + p+

F )
]2

+ (2ω/v)2

]}
+

+α

{
p+ (p−F + p+

F )[
p+ (p−F + p+

F )
]2

+ (2ω/v)2
− p− (p−F + p+

F )[
p− (p−F + p+

F )
]2

+ (2ω/v)2

}
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x-impurity

Φ1̄(x) = +
Jx
2

∑
σ


(1 + iσ) [(E1̄ −∆s)X

σ
0 +Xσ

1 ]

(1− iσ) [(E1̄ −∆s)X
σ
0 +Xσ

1 ]

−(1 + iσ) [(E1̄ −∆s)X
σ
0 −Xσ

1 ]

−(1− iσ) [(E1̄ −∆s)X
σ
0 −Xσ

1 ]

 ,

Φ1(x) = +
Jx
2

∑
σ


−(1− iσ) [(E1 + ∆s)X

σ
0 +Xσ

1 ]

(1 + iσ) [(E1 + ∆s)X
σ
0 +Xσ

1 ]

−(1− iσ) [(E1 + ∆s)X
σ
0 −Xσ

1 ]

(1 + iσ) [(E1 + ∆s)X
σ
0 −Xσ

1 ]

 .

Using these expressions we can compute the non-polarised and SP LDOS in both coordinate

and momentum space. We perform the calculation for the positive-energy state, and we find,

omitting index 1:

Sx(x) = −1 + α2

2
[2 cos pλx+ cos(2mv|x|+ pλx− 2θ) + cos(2mv|x| − pλx− 2θ)] · e−2ω|x|/v

Sy(x) = 0

Sz(x) = −1 + α2

2
[2 sin pλx+ sin(2mv|x|+ pλx− 2θ)− sin(2mv|x| − pλx− 2θ)] · e−2ω|x|/v

ρ(x) = (1 + α2)[1 + cos(2mv|x| − 2θ)] · e−2ω|x|/v

where tan θ = α. Momentum space dependence can be derived from the z-impurity expressions

since everything coincides up to coefficients.

y-impurity

Φ1̄(x) = +Jy


+
[
(E1̄ −∆s)X

−
0 +X−1

]
i
[
(E1̄ −∆s)X

−
0 +X−1

]
−
[
(E1̄ −∆s)X

−
0 −X−1

]
−i
[
(E1̄ −∆s)X

−
0 −X−1

]

 ,Φ1(x) = +Jy


−
[
(E1 + ∆s)X

+
0 +X+

1

]
i
[
(E1 + ∆s)X

+
0 +X+

1

]
−
[
(E1 + ∆s)X

+
0 −X+

1

]
i
[
(E1 + ∆s)X

+
0 −X+

1

]

 .
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Using these expressions we can compute the non-polarised and SP LDOS in coordinate space

Sx(x) = 0,

Sy(x) = −(1 + α2)[1 + cos(2mv|x| − 2θ)] · e−2ω|x|/v,

Sz(x) = 0,

ρ(x) = +(1 + α2)[1 + cos(2mv|x| − 2θ)] · e−2ω|x|/v.

A.2 p-wave superconductors

Derivation of the energies and coordinate dependence of the Shiba

states

We now exploit the model introduced in Chapter 4 to study a pure p-wave SC for which we

take ∆s = 0. We only consider triplet superconductors which are gapped. Similar to our

previous numerical analysis [84], we study here different d vectors describing the triplet p-wave

SCs [105]. We focus on two different types of d vectors which are generic enough to describe all

2D unconventional triplet gaped superconductors: an in-plane d vector, d‖(k) = (ky, −kx, 0),

which corresponds to an unconventional time-reversal-invariant SC; and an out-of plane d

vector, d⊥(k) = (0, 0, kx + iky) which corresponds to a time-reversal symmetry-breaking SC.

The latter model has been used to describe the properties of Sr2RuO4 [55].

Note that for these two d vectors, the system is characterised by two conserved quantities which

can be written as M z
‖ = Lz +σz/2 for d‖, and M z

⊥ = Lz − τz/2 for d⊥ correspondingly. Here τz

is the Pauli matrix acting in the particle-hole subspace and L = r×p is the orbital momentum

operator.

The eigenvalues corresponding to the energies of the Shiba states, as well as the Shiba wave

functions at r = 0 are independent of the d vector choice, and can be found using the method

introduced in [35], summarised in Eq. (4.16). Therefore, the first step is to calculate analytically

G0(E, r = 0). For this we note that the spectrum of H0(k) is given by E(k) = ±
√
ξ2
k + κ2k2,

with a triplet gap parameter ∆t ≡ κkF√
1+κ̃2 , where κ̃ ≡ κ/vF . We need to perform the following
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integrals:

X0(0) = −
∫

dk

(2π2

1

ξ2
k + κ2k2 − E2

,

X1(0) = − p.v.

∫
dk

(2π)2

ξk
ξ2
k + κ2k2 − E2

,

X±2 (0) = ±
∫

dk

(2π)2

iκk±
ξ2
k + κ2k2 − E2

,

where k± = kx± iky and the symbol ’p.v.’ corresponds to the principal value. The last integral

is zero due to the angular part. The second integral has a UV divergence thus we need to use a

natural cut-off which, in this particular case, is equivalent to computing the principal value of

the integral. We linearise ξp around the Fermi level, and using the spherical symmetry of the

integrals we change variables ξk ≈ vF (k − kF ),
∫

dk
(2π)2

= ν
∫
dξk, where ν = m

2π
, and finally we

obtain:

X0(0) = − πν√
1 + κ̃2

1√
∆2
t − E2

,

X1(0) =
πν√

1 + κ̃2

∆t√
∆2
t − E2

κ̃√
1 + κ̃2

,

X±2 (0) = 0.

The Green’s function for r = 0 then takes the form:

G0(E, r = 0) = − πν√
1 + κ̃2

× 1√
∆2
t − E2

(E − γ∆t)σ0 0

0 (E + γ∆t)σ0

 ,

where γ ≡ κ̃√
1+κ̃2 . Using this form for the Green’s function and Eq. (4.16) we compute below

the eigenvalues and eigenfunctions for r = 0 for different types of impurities, as in the sections

above.
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Scalar impurity

Unlike for pure s-wave SCs, in p-wave SCs a purely scalar impurity (J = 0) creates two pairs

of degenerate Shiba states with energies

E1̄,2̄ = −−γβ
2 +

√
1 + β2(1− γ2)

1 + β2
∆t, E1,2 = +

−γβ2 +
√

1 + β2(1− γ2)

1 + β2
∆t,

where β = πνU√
1+κ̃2 , and eigenfunctions at the origin

Φ1̄(0) =
(

0 1 0 0
)ᵀ
, Φ2̄(0) =

(
1 0 0 0

)ᵀ
,

Φ2(0) =
(

0 0 0 1
)ᵀ
, Φ1(0) =

(
0 0 1 0

)ᵀ
.

A possible explanation of the existence of these states is that a p-wave SC contains Cooper

pairs with non-zero angular momentum due to the triplet pairing, and thus there are intrinsic

magnetic fields impossible to observe unless one introduces a defect into the system, e.g. an

impurity of any type. While in the case of a p-wave SC with a non-magnetic impurity we

seem to have two pairs of degenerate states, we can think about this situation as having only

two Shiba bound states within the gap mixing particle and hole degrees of freedom. Because

the particle and hole components are the parts of the same state, they appear symmetrically

in energy relative to the chemical potential, the positive and negative energy counterparts

corresponding to the particle and hole component of the same bound state wave function

respectively [34,90,91,178].

Magnetic impurity

Since in the case of a purely magnetic impurity (U = 0) two types of coupling between the

Cooper pairs and the impurity are possible, there are four Shiba states with energies indepen-

dent of the impurity spin direction:

E1,1̄ = ±γα
2 +

√
1 + α2(1− γ2)

1 + α2
∆t, E2,2̄ = ±−γα

2 +
√

1 + α2(1− γ2)

1 + α2
∆t,

where α = πνJ√
1+κ̃2 . For weak impurities these levels are ordered as follows E1̄ < E2̄ < E2 < E1,

while for a stronger impurities the middle levels exchange places, changing the order to E1̄ <
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E2 < E2̄ < E1.

For an impurity with spin along z-axis we have:

Φ1̄(0) =
(

0 0 1 0
)ᵀ
, Φ2̄(0) =

(
1 0 0 0

)ᵀ
,

Φ2(0) =
(

0 0 0 1
)ᵀ
, Φ1(0) =

(
0 1 0 0

)ᵀ
.

For an impurity with spin along x-axis, we have:

Φ1̄(0) =
(

0 0 1 1
)ᵀ
, Φ2̄(0) =

(
1 1 0 0

)ᵀ
,

Φ2(0) =
(

0 0 1 −1
)ᵀ
, Φ1(0) =

(
1 −1 0 0

)ᵀ
.

Coordinate dependence of the Shiba wave functions in the 2D case

To find the spatial dependence of the Shiba states wave functions we use Eq. (4.15). While

G0(E, r = 0) is independent of the choice of d, G0(E, r 6= 0), and thus the spatial dependence

of the eigenfunctions, as well as the spatial dependence of the LDOS and SP LDOS change

drastically with the choice of d. In what follows for every choice of the d vector we construct the

retarded Green’s function and the corresponding eigenfunctions for different types of impurities,

for which we also compute all the polarised and non-polarised components of LDOS. However,

we note first that for both choices of d vector we need to perform the following integrations:

X0(r) = −
∫

dk

(2π)2

eikr

ξ2
k + κ2k2 − E2

,

X1(r) = −
∫

dk

(2π)2

ξk e
ikr

ξ2
k + κ2k2 − E2

,

X±2 (r) = ±
∫

dk

(2π)2

iκk± eikr

ξ2
k + κ2k2 − E2

,

We linearise the spectrum ξk = vF (k − kF ), denoting

κ̃ =
κ
vF
, γ =

κ̃√
1 + κ̃2

, ∆t =
κkF√
1 + κ̃2

, ω2 =
∆2
t − E2

1 + κ̃2
, Ω =

ω

vFkF
,
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and proceed with the calculation in the following way:

X0(r) = − ν

1 + κ̃2

∫
dξk

∫
dϕk

2π

e
i(kF+

ξk
vF

)r cos(ϕk−ϕr)

(ξk + γ∆t)2 + ω2
= − ν

1 + κ̃2

∫
dξk

J0

[(
1 + ξk

vF kF

)
kF r
]

(ξk + γ∆t)2 + ω2
=

= − ν

1 + κ̃2

1

vFkF

∫
dW

J0 (WkF r)

(W + γ2 − 1)2 + Ω2
=

= − ν

1 + κ̃2

1

vFkF

2

π

+∞∫
1

dU√
U2 − 1

∫
dW

sin (kF rUW )

(W + γ2 − 1)2 + Ω2
=

= − ν

1 + κ̃2

1

vFkF

2

π
Im

+∞∫
1

dU√
U2 − 1

∫
dW

eikF rUW

(W + γ2 − 1)2 + Ω2
=

= − 2ν

1 + κ̃2

1

ω
Im

+∞∫
1

dU√
U2 − 1

eikF r(1−γ2+iΩ)U =

= − 2ν

1 + κ̃2
· 1

ω
· ImK0

[
−i(1− γ2 + iΩ)kF r

]
,

X1(r) = − ν

1 + κ̃2

∫
dξk

∫
dϕk

2π

ξk e
i(kF+

ξk
vF

)r cos(ϕk−ϕr)

(ξk + γ∆t)2 + ω2
= − ν

1 + κ̃2

∫
dξk

ξk J0

[(
1 + ξk

vF kF

)
kF r
]

(ξk + γ∆t)2 + ω2
=

= − ν

1 + κ̃2

∫
dW

(W − 1) J0 (WkF r)

(W + γ2 − 1)2 + Ω2
=

= − ν

1 + κ̃2

2

π
Im

+∞∫
1

dU√
U2 − 1

∫
dW

(W − 1) eikF rUW

(W + γ2 − 1)2 + Ω2
=

= − 2ν

1 + κ̃2
Im

+∞∫
1

dU√
U2 − 1

(
i− γ2

Ω

)
eikF r(1−γ2+iΩ)U =

= − 2ν

1 + κ̃2
· Im

{(
i− γ2

Ω

)
K0

[
−i(1− γ2 + iΩ)kF r

]}
,

X±2 (r) = ± iκν
1 + κ̃2

∫
kdξk

∫
dϕk

2π

e±iϕke
i(kF+

ξk
vF

)r cos(ϕk−ϕr)

(ξk + γ∆t)2 + ω2
=

= ∓κkF · ν
1 + κ̃2

· e±iϕr

∫
dξk

(
1 + ξk

vF kF

)
J1

[(
1 + ξk

vF kF

)
kF r
]

(ξk + γ∆t)2 + ω2
=

= ±κkF · ν
1 + κ̃2

· e±iϕr · ∂

∂ (kF r)

∫
dξk

J0

[(
1 + ξk

vF kF

)
kF r
]

(ξk + γ∆t)2 + ω2
=

= ± 2ν

1 + κ̃2
· κkF
ω

e±iϕr × Re
{(

1− γ2 + iΩ
)
K1

[
−i(1− γ2 + iΩ)kF r

]}
,

where

e±iϕr =
x± iy√
x2 + y2

=
x± iy
r

.
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Note that the integrals calculated for the pure p-wave case must coincide with the ones for

s-wave provided ∆t → ∆s and κ = 0 (and thus γ = 0). As expected this substitution shows

that the results of the integrations are consistent.

Below we summarise the results of the calculations above:

X0(r) = − 2ν

1 + κ̃2
· 1

ω
· ImK0

[
−i(1− γ2 + iΩ)kF r

]
X1(r) = − 2ν

1 + κ̃2
· Im

{(
i− γ2

Ω

)
K0

[
−i(1− γ2 + iΩ)kF r

]}
X±2 (r) = ± 2ν

1 + κ̃2
· κkF
ω
· e±iϕr Re

{(
1− γ2 + iΩ

)
K1

[
−i(1− γ2 + iΩ)kF r

]}
,

where we denote Ω ≡ ω
vF kF

= 1
vF kF

√
∆2
t−E2

√
1+κ̃2 , and e±iϕr ≡ x±iy√

x2+y2
= x±iy

r
reflects all the char-

acteristic asymmetry originating from the p-wave pairing orbital nature. We use the fact that

Ω � 1, which holds for all subgap energies. We give also the asymptotic behaviour of these

integrals (see Appendix E for a full derivation):

X0(r) ∼ −
√

2π ν√
1 + κ̃2

· 1√
∆2
t − E2

sin (k′F r + π/4)√
k′F r

e−kSr, (A.23)

X1(r) ∼ +

√
2π ν

1 + κ̃2
· κ̃ ∆t√

∆2
t − E2

· sin (k′F r + π/4)√
k′F r

e−kSr, (A.24)

X±2 (r) ∼ ±
√

2π ν

1 + κ̃2
· ∆t√

∆2
t − E2

· e±iϕr · cos (k′F r + π/4)√
k′F r

e−kSr, (A.25)

where kS = ΩkF =

√
∆2
t−E2

vF
√

1+κ̃2 is the inverse superconducting decay length scale, and k′F = kF
1+κ̃2 .

In-plane d‖

The retarded Green’s function in this case can be written using the integrals given above:

G0(E, r) =

[EX0(r) +X1(r)]σ0 D‖(r)

D‖(r) [EX0(r)−X1(r)]σ0

 ,

where we denote:

D‖(r) ≡

 0 X−2 (r)

X+
2 (r) 0

 .
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The wave functions for the SBS arising for different types of impurities can be calculated

subsequently using Eq. (4.15).

Scalar impurity. In this case we find

Φ1̄(r) = +U


0

E1̄,2̄X0(r) +X1(r)

X−2 (r)

0

 , Φ2̄(r) = +U


E1̄,2̄X0(r) +X1(r)

0

0

X+
2 (r)

 ,

Φ2(r) = −U


X−2 (r)

0

0

E1,2X0(r)−X1(r)

 Φ1(r) = −U


0

X+
2 (r)

E1,2X0(r)−X1(r)

0

 .

It is worth noting that the Hamiltonian in Eq. (4.1) with a scalar impurity described by Eq. (4.2)

with J = 0 still commutes with M z
‖ and therefore the states described above are also the

eigenstates of this operator, namely: M z
‖Φ1,1̄ = +1

2
Φ1,1̄ and M z

‖Φ2,2̄ = −1
2
Φ2,2̄. Therefore, we

expect no explicit symmetry breaking nor any explicit p-wave orbital features to be observed

in the full LDOS or in the SP LDOS. Indeed, we find that for all the states we have Sx(r) =

Sy(r) = 0. Also, we note that the z-component of the SP LDOS and the LDOS are radially

symmetric:

Sz1̄(r) = +ρ1̄(r) = −U2X−2 (r)X+
2 (r) > 0,

Sz2̄(r) = −ρ2̄(r) = +U2X−2 (r)X+
2 (r) 6 0,

Sz2(r) = −ρ2(r) = −U2 [E1,2X0(r)−X1(r)]2 6 0,

Sz1(r) = +ρ1(r) = +U2 [E1,2X0(r)−X1(r)]2 > 0.

We can see that the degenerate states have exactly opposite spin, and thus the total SP LDOS

corresponding to the SBS energies, which is obtained by summing up over the two states with

the same energy, is exactly zero, consistent also with the numerical simulations.

Moreover, when comparing the asymptotic behaviour for the SP LDOS, as derived from the

asymptotic expressions in Eqs. (A.23,A.24,A.25), with the one obtained for the pure s-wave

SC, we see that we have an additional factor k′F = kF
1+κ̃2 depending on the p-wave parameter
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κ that renormalises the Fermi momentum and also changes the decay length scale. Such

renormalisation, if detected, may serve to measure the triplet pairing parameter by analysing

the spatial structure of the SBS using STM.

Magnetic impurity with spin ‖ z. For this type of impurity we find

Φ1̄(r) = +Jz


0

X+
2 (r)

E1̄X0(r)−X1(r)

0

 , Φ2̄(r) = +Jz


E2̄X0(r) +X1(r)

0

0

X+
2 (r)

 ,

Φ2(r) = −Jz


X−2 (r)

0

0

E2X0(r)−X1(r)

 , Φ1(r) = −Jz


0

E1X0(r) +X1(r)

X−2 (r)

0

 .

Like in the case of a scalar impurity, we note that the Hamiltonian still commutes with M z
‖ , and

therefore the states found above are also the eigenstates of M z
‖ , such that M z

‖Φ1̄,2̄ = +1
2
Φ1̄,2̄,

and M z
‖Φ1,2 = −1

2
Φ1,2. For all the states Sx(r) = Sy(r) = 0. Below we give the expressions for

the z-component of the SP LDOS, and for the non-polarised LDOS, which are fully radially

symmetric, same as for a scalar impurity:

Sz1̄(r) = +ρ1̄(r) = +J2
z (E1̄X0(r)−X1(r))2 > 0,

Sz2̄(r) = −ρ2̄(r) = +J2
zX
−
2 (r)X+

2 (r) 6 0,

Sz2(r) = −ρ2(r) = −J2
z (E2X0(r) +X1(r))2 6 0,

Sz1(r) = +ρ1(r) = −J2
zX
−
2 (r)X+

2 (r) > 0.

We can see from this expressions that the average SPDOS, obtained by integrating these ex-

pressions over all space, is positive for the first and fourth states, and negative for the second

and third. Thus, the analytical results are perfectly consistent with the numerical simulations

given in [84].

Magnetic impurity with spin ‖ x. Unlike the cases of a scalar impurity and of a magnetic

impurity along z, the Hamiltonian describing a magnetic impurity with the spin along x no

longer commutes with M z
‖ and therefore the SBS are not the eigenstates of this operator, and
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are thus expected to break the rotational symmetry that we have observed in the previous

limits. Indeed we obtain:

Φ1̄(r) = Jx


X−2 (r)

X+
2 (r)

+E1̄X0(r)−X1(r)

+E1̄X0(r)−X1(r)

 , Φ2̄(r) = Jx


+E2̄X0(r) +X1(r)

+E2̄X0(r) +X1(r)

X−2 (r)

X+
2 (r)

 ,

Φ2(r) = Jx


X−2 (r)

−X+
2 (r)

−E2X0(r) +X1(r)

+E2X0(r)−X1(r)

 , Φ1(r) = Jx


−E1X0(r)−X1(r)

+E1X0(r) +X1(r)

X−2 (r)

−X+
2 (r)

 .

We exploit once more (4.17-4.18) to compute the LDOS and the SP LDOS and we find:

Sx1̄ (r) = +ρ1̄(r) = +2J2
x (E1̄X0(r)−X1(r))2 > 0,

Sy
1̄
(r) = Sz1̄(r) = 0,

Sx2̄ (r) = −J2
x

{[
X+

2 (r)
]2

+
[
X−2 (r)

]2}
,

Sy
2̄
(r) = +iJ2

x

{[
X+

2 (r)
]2 − [X−2 (r)

]2}
,

Sz2̄(r) = 0,

ρ2̄(r) = −2J2
xX
−
2 (r)X+

2 (r),

Sx2 (r) = −ρ2(r) = −2J2
x (E2X0(r)−X1(r))2 6 0,

Sy2 (r) = Sz2(r) = 0,

Sx1 (r) = +J2
x

{[
X+

2 (r)
]2

+
[
X−2 (r)

]2}
,

Sy1 (r) = −iJ2
x

{[
X+

2 (r)
]2 − [X−2 (r)

]2}
,

Sz1(r) = 0,

ρ1(r) = −2J2
xX
−
2 (r)X+

2 (r).

Indeed, we see that the x-components of the spin of the states 1̄ and 2 are opposite in sign,

while the rotational symmetry for these states is preserved. However the states 2̄ and 1 show

peculiar orbital features characteristic for the p-wave, that we show in figure A.1 by plotting

the corresponding SP LDOS. The rings of high intensity appearing in these figures correspond
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Figure A.1: SP LDOS (in arbitrary units) in coordinate space, for an in-plane d vector, and for
an energy E = E2̄. We consider a magnetic impurity with spin along z (upper panel) and along
y (lower panel), with impurity strengths of Jz = 2 and Jx = 2 respectively. The SP LDOS in the
upper panel is radially symmetric, whereas in the lower one it reflects the characteristic p-wave
four-fold symmetry. We set ∆s = 0, κ = 0.2 and an inverse quasiparticle lifetime δ = 0.01.

to Friedel oscillations with the wave vector 2k′F defined above. The strong radially asymmetric

behaviour of the Sx component for an x-impurity is consistent with the cos 2φr dependence

arising in the asymptotic expansion of
[
X+

2 (r)
]2

+
[
X−2 (r)

]2
.

Let us focus on the states 2̄ and 1 and particularly on their average spin. Noticing that

X±2 (r) = ±e±iϕrF (r),

where F (r) has no angular dependence, we thus find

∫
dr
[
X±2 (r)

]2
=

+∞∫
0

rF 2(r)dr

2π∫
0

e±2iϕrdϕr = 0

due to the angular part. Therefore, we find that the average spin for the states 2̄ and 1 is exactly

zero which is consistent with previous numerical analysis [84]. This result can be directly traced

back to the p-wave nature of the host superconductor which manifests in some of the Shiba

states.
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Out-of-plane d⊥

Among the unconventional SCs, Sr2RuO4 is believed to be a p-wave superconductor with an

out-of-plane d vector [55]. Contrary to the in-plane d vector, such p-wave SC breaks time

reversal symmetry. It is therefore interesting to analyse and compare it with the case of d‖.

The retarded Green’s function can be written as:

G0(E, r) =

[EX0(r) +X1(r)]σ0 D⊥(r)

−D∗⊥(r) [EX0(r)−X1(r)]σ0

 ,

where we used

D⊥(r) ≡

iX+
2 (r) 0

0 −iX+
2 (r)

 .

We proceed following the same scheme as for d‖.

Scalar impurity. For this type of impurity we find

Φ1̄(r) = +U


0

E1̄X0(r) +X1(r)

0

iX−2 (r)

 , Φ2̄(r) = +U


E2̄X0(r) +X1(r)

0

−iX−2 (r)

0

 ,

Φ2(r) = −U


0

−iX+
2 (r)

0

E2X0(r)−X1(r)

 , Φ1(r) = −U


iX+

2 (r)

0

E1X0(r)−X1(r)

0

 .

We note that, similar to the case of d‖, the Hamiltonian for a scalar impurity commutes with

M z
⊥ and therefore the states found above are also eigenstates of M z

⊥ , namely: M z
⊥Φ1̄,2̄ = −1

2
Φ1̄,2̄
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and M z
⊥Φ1,2 = +1

2
Φ1,2. We thus have Sx(r) = Sy(r) = 0, and:

Sz1̄(r) = −ρ1̄(r) = +U2X−2 (r)X+
2 (r) 6 0,

Sz2̄(r) = +ρ2̄(r) = −U2X−2 (r)X+
2 (r) > 0,

Sz2(r) = −ρ2(r) = −U2 (E1,2X0(r)−X1(r))2 6 0,

Sz1(r) = +ρ1(r) = +U2 (E1,2X0(r)−X1(r))2 > 0,

once more radially symmetric. Obviously, the total SP LDOS vanishes, as it adds up exactly

to zero for both pairs of degenerate states.

Magnetic impurity with spin ‖z. We find for the SBS eigenstates

Φ1̄(r) = +Jz


iX+

2 (r)

0

E1̄X0(r)−X1(r)

0

 , Φ2̄(r) = +Jz


E2̄X0(r) +X1(r)

0

−iX−2 (r)

0

 ,

Φ2(r) = −Jz


0

−iX+
2 (r)

0

E2X0(r)−X1(r)

 , Φ1(r) = −Jz


0

E1X0(r) +X1(r)

0

iX−2 (r)

 .

Same as before M z
⊥Φ1̄,2 = +1

2
Φ1̄,2 and M z

⊥Φ1,2̄ = −1
2
Φ1,2̄. Thus Sx(r) = Sy(r) = 0, and

Sz1̄(r) = +ρ1̄(r) = +J2
z (E1̄X0(r)−X1(r))2 > 0,

Sz2̄(r) = +ρ2̄(r) = −J2
zX
−
2 (r)X+

2 (r) > 0,

Sz2(r) = −ρ2(r) = −J2
z (E2X0(r)−X1(r))2 6 0,

Sz1(r) = −ρ1(r) = +J2
zX
−
2 (r)X+

2 (r) 6 0.

It is easy to see using the definitions of X±2 (r) that all the functions above have no angular

dependence, and moreover do not change sign when varying r. Thus we infer that the spatially-

averaged spin is positive for the states 1̄, 2̄ and negative for the states 1, 2 and thus the inner

states have spins of the same sign for d⊥, different from what we obtain for d‖, for which the

inner states have opposite signs. This may be used experimentally as one of the distinguishing
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features between these two choices of d vectors.

Magnetic impurity with spin ‖x. Unlike for d‖, for d⊥ the Hamiltonian of a magnetic impurity

with spin along x commutes with M z
⊥ and, therefore, the SBS are also eigenstates of M z

⊥:

M z
⊥Φ1̄,2 = +1

2
Φ1̄,2 and M z

⊥Φ1,2̄ = −1
2
Φ1,2̄. That is why we expect that the SBS preserve the

rotational symmetry in this limit, and that no peculiar feature due to the p-wave four-fold

symmetry can be observed. Indeed

Φ1̄(r) = +Jx


iX+

2 (r)

−iX+
2 (r)

E1̄X0(r)−X1(r)

E1̄X0(r)−X1(r)

 , Φ2̄(r) = +Jx


E2̄X0(r) +X1(r)

E2̄X0(r) +X1(r)

−iX−2 (r)

iX−2 (r)

 ,

Φ2(r) = −Jx


iX+

2 (r)

iX+
2 (r)

E2X0(r)−X1(r)

− (E2X0(r)−X1(r))

 , Φ1(r) = −Jx


E1X0(r) +X1(r)

− (E1X0(r) +X1(r))

−iX−2 (r)

−iX−2 (r)

 ,

and for all the states Sy(r) = Sz(r) = 0. The other components are given by

Sx1̄ (r) = ρ1̄(r) = +2J2
z (E1̄X0(r)−X1(r))2 > 0,

Sx2̄ (r) = −ρ2̄(r) = +2J2
zX
−
2 (r)X+

2 (r) 6 0,

Sx2 (r) = −ρ2(r) = −2J2
z (E2X0(r)−X1(r))2 6 0,

Sx1 (r) = +ρ1(r) = −2J2
zX
−
2 (r)X+

2 (r) > 0.

It is easy to see that all the functions above have rotational symmetry and give the same sign

for the spatially-averaged spin for the inner states.

Derivation of the effective gaps for a SC with mixed singlet and triplet

pairing

Below we consider a SC with mixed singlet and triplet pairing, defined by an in-plane d vector

d = d‖. Note that in all the further calculations we linearise the dispersion relation around the

Fermi energy. All the integrations are performed using this approximation. The unperturbed
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Green’s function in momentum space can be written as:

G0(E,k) =
1

2

∑
σ=±

Gσ
0 (E,k),

where

Gσ
0 (E,k) = − 1

ξ2
k + (∆s + σκk)2 − E2

 1 iσe−iϕ

−iσeiϕ 1

⊗
 E + ξk ∆s + σκk

∆s + σκk E − ξk

 ,

To get the zero coordinate value we linearise ξk around Fermi level and calculate the following

integrals:

Gσ
0 (E, r = 0) = −

∫
dk

(2π)2

1

ξ2
k + (∆s + σκk)2 − E2

1 0

0 1

⊗
 E + ξk ∆s + σκk

∆s + σκk E − ξk

 ,

We need to calculate integrals of the form

In = −
∫

dk

(2π)2

An
ξ2
k + (∆s + σκk)2 − E2

,

where n = 1, 2, 3 and A1 = E, A2 = ξk, and A3 = ∆s + σκk. Using k = kF + ξk/vF we get:

−
∫

dk

(2π)2

An
ξ2
k + (∆s + σκk)2 − E2

= − ν

1 + κ2

∫
dξk

An(
ξk + σγ∆σ

eff

)2
+ ω2

σ

,

where ν ≡ m
2π
, γ ≡ κ̃√

1+κ̃2 , ω
2
σ ≡

(∆σ
eff)

2
−E2

1+κ2 , ∆σ
eff ≡ ∆s+σκkF√

1+κ̃2 . Performing the integrations we

get:

I1 = − πν√
1 + κ̃2

E√(
∆σ
eff

)2 − E2

I2 = +
πν√

1 + κ̃2

∆σ
eff√(

∆σ
eff

)2 − E2

σγ

I3 = − πν√
1 + κ̃2

∆σ
eff√(

∆σ
eff

)2 − E2

1√
1 + κ̃2
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The integrals of all off-diagonal components are zeros due to the angular part. Thus we get:

Gσ
0 (E,0) = − πν√

1 + κ̃2

1√(
∆σ
eff

)2 − E2


E − σγ∆σ

eff 0
∆σ
eff√

1+κ̃2 0

0 E − σγ∆σ
eff 0

∆σ
eff√

1+κ̃2

∆σ
eff√

1+κ̃2 0 E + σγ∆σ
eff 0

0
∆σ
eff√

1+κ̃2 0 E + σγ∆σ
eff

 .

It is clear that all the features arising from the bulk of a SC with mixed s-wave and p-wave

types of pairing are originating from the expressions for the effective gaps, namely:

∆±eff =
|∆s ± κkF |√

1 + κ̃2
,

the smallest of the two being the superconducting gap.

Variation of the DOS for a mixed impurity in pure p-wave supercon-

ductor.

We consider a pure p-wave SC with d = d‖. We plot the energy levels using the numerical

calculations performed within the T-matrix approximation and a discretised (tight-binding)

Hamiltonian. We plot in Fig. A.2, the density of states (DOS) as a function of energy and Jz.

Singlet pairing ∆s variation for mixed impurity

In Fig. A.3 we compute numerically the density of states for a mixture of triplet and singlet

pairing in the presence of 2% of impurities with both scalar and magnetic components. We

consider a discretised (tight-binding model) and we use the T-matrix approximation. We fix

the triplet pairing and we vary the singlet pairing such that we move from a p-wave-dominant

regime to an s-wave-dominant regime when the two pairing components are equal.

Spin dependence of the DOS with respect to κ for Jz,x=6

We plot in Fig. A.4 the SPDOS as a function of κ for both the in-plane d vector (first row)

and the perpendicular to the plane d vector (second row) for an impurity spin pointing along
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Figure A.2: DOS as a function of energy and Jz as calculated using the T-matrix approximation
and a discretised tight-binding Hamiltonian (see main text). We set t = 1, µ = −3,κ = 0.5, U =
3. For small values of Jz there is also a linear splitting of the bound states levels.

Figure A.3: DOS as a function of energy and the s-wave order parameter. We set t = 1, µ =
−3,κ = 0.4, U = 1, Jz = 4. For small values of ∆s there are actually two distinct subgap Shiba
states, whereas for larger values one of the two states is pushed into the bulk.

the z or x axis.
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Figure A.4: SPDOS as a function of energy and the p-wave order parameter κ. The d vector
is in-plane in the first row and perpendicular to the plane in the second row. We consider
magnetic impurities with an impurity strength of Jz = 6 (left column), and with Jx = 6 (right
column). We set ∆s = 0.2, and an inverse quasiparticle lifetime of δ = 0.03.

FT of the LDOS and of the SP LDOS for the Shiba states in a SC

with mixed s-wave and p-wave pairing

We consider an in-plane d vector and both in-plane (Jx = 2) and perpendicular to the plane

(Jz = 2) impurities. We plot in Fig. A.5 and in A.6 the FT of the LDOS as well as of the

SP LDOS components for the first positive-energy (respectively negative-energy) Shiba state.

Note that for a mixed type of pairing all the spin components are non-zero, while for a pure

s-wave or pure p-wave only the component parallel to the impurity spin is non zero. Note also

that the spin components non-parallel to the impurity have a characteristic structure breaking
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the radial symmetry.

Figure A.5: The FT of the LDOS as well as of the SP LDOS components for the first positive-
energy Shiba state as a function of momentum (px, py) for a magnetic impurity with Jz = 2
(first two rows) and Jx = 2 (last two rows). We take ∆s = 0.2, κ = 0.1 for the s-dominant
regime (rows 1 and 3), and ∆s = 0.2, κ = 0.5 for the p-dominant regime (rows 2 and 4).

Rashba spin-orbit coupling effect

To consider the effect of Rashba spin-orbit (SO) coupling on the results obtained in the main

text, we add an additional term to the Hamiltonian:

HSO =

+λd‖ · σ 0

0 −λd‖ · σ


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Figure A.6: The FT of the LDOS as well as of the SP LDOS components for the first negative-
energy Shiba state as a function of momentum (px, py) for a magnetic impurity with Jz = 2
(first two rows) and Jx = 2 (last two rows). We take ∆s = 0.2, κ = 0.1 for the s-dominant
regime (rows 1 and 3), and ∆s = 0.2, κ = 0.5 for the p-dominant regime (rows 2 and 4).

First of all, we plot the integrated SP LDOS as a function of energy and impurity strength for

magnetic impurities with spin along z (left column) and along x (right column). As we can

see, introducing the SO coupling does not change drastically the results concerning the spin

texture of the Shiba states, except for the fact that the accidental cancellation we saw for the

upper right panel of the Fig. A.7 is becoming partial, i.e. we can see the other two states as

well. This can be explained by plotting the FT of SP LDOS in momentum space for d = d‖

presented in Fig. A.8. Indeed, the orbital symmetry that we have for the case of pure p-wave

in Fig. 6 in the main text is violated in the presence of SO, and thus Sx(p = 0) 6= 0 any more.
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Figure A.7: Average SP LDOS as a function of energy and impurity strength for magnetic
impurities with spin along z (left column) and along x (right column). We take δ = 0.01 and
we focus on the p-wave κ = 0.5, ∆s = 0 with spin-orbit coupling λ = 0.2 and in-plane d‖ (first
row) and out-of-plane d⊥ (second row).

Randomly directed impurity

Below we consider a purely p-wave SC with an in-plane d vector and in Fig. A.9 we plot

the Fourier transform of the non-polarised and SP LDOS for the Shiba states induced by an

impurity with J = (
√

6
2
,
√

6
2
, 1) (these values are chosen to have |J | = 2). As pointed out in the

main text, this kind of impurity gives rise to all non-zero components of the SP LDOS. The

in-plane spin component of the impurity creates four-fold symmetric features similar to those

shown in Fig. 8 in the main text, but with an additional rotation in the momentum space,

whereas the out-of-plane component induces a feature identical to that on the right panel in

Fig. 7 in the main text, thus proving that considering an in-plane and out-of-plane impurities
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x-impurity

Figure A.8: The real part of the FT of the Sx and Sy SP LDOS components in arbitrary units
for the hole component of a Shiba state as a function of momentum (px, py), for a magnetic
impurity with Jx = 2. We take p-wave κ = 0.5, ∆s = 0 with spin-orbit coupling λ = 0.2 and
in-plane d‖.

separately is sufficient to capture all the properties of the system.
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Figure A.9: The FT of the non-polarised LDOS as well as of the SP LDOS components for the
first negative-energy Shiba state as a function of momentum (px, py) for a magnetic impurity

with Jx = Jy =
√

6
2

and Jz = 1 in a pure p-wave with κ = 0.5.



Appendix B

Metallic systems with Rashba SOC in

the presence of magnetic impurities

2D metallic system

The low-energy Hamiltonian can be written as

H0 = ξpσ0 + λ(pyσx − pxσy) =

 ξp iλp−

−iλp+ ξp

 , (B.1)

where ξp = p2

2m
−εF . The corresponding spectrum is given by E = ξp±λp. The retarded Green’s

function reads

G0(E,p) =
1

(E − ξp + i0)2 − λ2p2

E − ξp + i0 iλp−

−iλp+ E − ξp + i0

 (B.2)

To compute the eigenvalues for a single localised impurity we calculate

G0(E, r = 0) =

∫
dp

(2π)2

E − ξp + i0

(E − ξp + i0)2 − λ2p2

1 0

0 1

 =
1

2

∑
σ

∫
dp

(2π)2

1

E − ξσ + i0

1 0

0 1

 ,

(B.3)
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where ξσ = ξp + σλp. For p > 0 we linearise the spectrum around Fermi momenta, thus:

ξσ ≈
(
pσF
m

+ σλ

)
(p− pσF ) =

√
λ2 + 2εF/m (p− pσF ) ≡ v(p− pσF ),

with pσF = m [−σλ+ v], and thus we rewrite:

dp

(2π)2
=
m

2π

[
1− σλ

v

]
dξσ

dφ

2π
= νσdξσ

dφ

2π
,

where νσ = ν
[
1− σ λ

v

]
, with ν = m/2π. Thus we get:

∫
dp

(2π)2

1

E − ξσ + i0
= νσ

∫
dξσ

1

E − ξσ + i0
= −iπνσ,

and therefore:

G0(E, r = 0) =
1

2

∑
σ

(−iπνσ)

1 0

0 1

 = −iπν

1 0

0 1

 (B.4)

Since there is no energy dependence, there will be no impurity-induced states. To find the

coordinate dependence of the Green’s function we calculate:

Xσ
0 (r) =

∫
dp

(2π)2

eipr

E − ξσ + i0
(B.5)

Xσ
1 (s, r) =

∫
dp

(2π)2

−iseisφp eipr
E − ξσ + i0

(B.6)

Below we use the Sokhotsky formula:

1

x+ i0
= P 1

x
− iπδ(x)

Xσ
0 (r) =

∫
dp

(2π)2

eipr

E − ξσ + i0
= νσ

∫
dξσ

∫
dφp

2π

eipr cos(φp−φr)

E − ξσ + i0
= νσ

∫
dξσ

J0 [(pσF + ξσ/v) r]

E − ξσ + i0
=

= νσ

{
P
∫
dξσ

J0 [(pσF + ξσ/v) r]

E − ξσ
− iπ

∫
dξσ δ (E − ξσ) J0 [(pσF + ξσ/v) r]

}
= ♠
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We calculate separately the first integral:

P
∫
dξσ

J0 [(pσF + ξσ/v) r]

E − ξσ
=

2

π

+∞∫
1

du√
u2 − 1

P
∫
dξσ

sin [(pσF + ξσ/v) r]

E − ξσ
=

=
2

π
Im

+∞∫
1

du√
u2 − 1

P
∫
dξσ

ei(p
σ
F+ξσ/v)r

E − ξσ
=

2

π
Im

+∞∫
1

du√
u2 − 1

eipσru · P
∫
dx
e−i

r
v
x

x
= ♣

P
∫
dx
e−i

r
v
x

x
= P

∫
cos r

v
x

x
dx− iP

∫
sin r

v
x

x
dx = 0− iπ = −iπ

Therefore:

♣ = −2 Im

+∞∫
1

ieipσru√
u2 − 1

du = −2

+∞∫
1

cos pσru√
u2 − 1

du = πY0 (pσr) , pσ 6= 0

♠ = πνσ [Y0 (pσr)− iJ0 (pσr)] .

The second integral is

Xσ
1 (s, r) =

∫
dp

(2π)2

−iseisφp eipr
E − ξσ + i0

= νσ

∫
dξσ

∫
dφp

2π

−iseisφp eipr cos(φp−φr)

E − ξσ + i0
=

= seisφr νσ

∫
dξσ

J1 [(pσF + ξσ/v) r]

E − ξσ + i0
=

= seisφr · νσ
{
P
∫
dξσ

J1 [(pσF + ξσ/v) r]

E − ξσ
− iπ

∫
dξσ δ (E − ξσ) J1 [(pσF + ξσ/v) r]

}
= ♥
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We calculate separately the first integral:

P
∫
dξσ

J1 [(pσF + ξσ/v) r]

E − ξσ
= P

∫
dx
J1 [(pσ − x/v) r]

x
= − ∂

∂r
P
∫
dx
J0 [(pσ − x/v) r]

x (pσ − x/v)
=

= − ∂

∂r
P
∫
dy
J0 [(pσ − y) r]

y (pσ − y)
= − ∂

∂(pσr)

[
P
∫
dy
J0 [(pσ − y) r]

y
+ P

∫
dy
J0 [(pσ − y) r]

pσ − y

]
=

= − ∂

∂(pσr)

2

π
Im

+∞∫
1

du√
u2 − 1

[
P
∫
ei(pσ−y)ru

y
dy + P

∫
ei(pσ−y)ru

pσ − y
dy

]
=

= −2
∂

∂(pσr)
Im

+∞∫
1

idu√
u2 − 1

[
1− eipσru

]
= −2

+∞∫
1

u sin pσru√
u2 − 1

du = 2
∂

∂(pσr)

+∞∫
1

cos pσru√
u2 − 1

du =

= −π ∂

∂(pσr)
Y0 (pσr) = πY1 (pσr) , pσ 6= 0

Therefore:

♥ = πνσ [Y1 (pσr)− iJ1 (pσr)] .

Finally:

Xσ
0 (r) = πνσ [Y0 (pσr)− iJ0 (pσr)] (B.7)

Xσ
1 (s, r) = seisφr

{
πνσ [Y1 (pσr)− iJ1 (pσr)]

}
≡ seisφrX̃σ

1 (r), (B.8)

where pσ = pσF + E/v 6= 0. Thus the Green’s function for r 6= 0 can be written as:

G0(E, r) =
1

2

∑
σ

 Xσ
0 (r) −σe−iφrX̃σ

1 (r)

σeiφrX̃σ
1 (r) Xσ

0 (r)

 (B.9)

Below we compute the T-matrix for different types of impurities. Impurity potentials take the

following forms:

Vz = Jz

1 0

0 −1

 , Vx = Jx

0 1

1 0





144 Appendix B. Metallic systems with Rashba SOC in the presence of magnetic impurities

The corresponding T-matrices read

Tz =

 J
1+iπνJ

0

0 − J
1−iπνJ

 , Tx =
J

1 + π2ν2J2

−iπνJ 1

1 −iπνJ

 .

For each type of impurity we can compute the SP and non-polarised LDOS using Eqs. (4.7-4.10).

z-impurity

We denote α = πνJ and write the asymptotic expansions of the non-polarised and SP LDOS

components in coordinate space (for details see Appendix E):

Sx(r) ∼ +
J

1 + α2

cosφr

r

∑
σ

σ
ν2
σ

pσ
sin 2pσr

Sy(r) ∼ +
J

1 + α2

sinφr

r

∑
σ

σ
ν2
σ

pσ
sin 2pσr

Sz(r) ∼ −
J

1 + α2

2

r

∑
σ

ν2
σ

pσ
cos 2pσr

ρ(r) ∼ − J

1 + α2
4αν2v

2
F

v2

1√
p2
F + 2mE + E2/v2

· sin pεr

r
,

where pε = 2 (mv + E/v), and we get for pσ > 0:

Sx(p) ∼ +
J

1 + α2
· 2πi cosφp

+∞∫
0

drJ1 (pr)
∑
σ

σ
ν2
σ

pσ
sin 2pσr

Sy(p) ∼ +
J

1 + α2
· 2πi sinφp

+∞∫
0

drJ1 (pr)
∑
σ

σ
ν2
σ

pσ
sin 2pσr

Sz(p) ∼ −
J

1 + α2
· 4π

+∞∫
0

drJ0 (pr)
∑
σ

ν2
σ

pσ
cos 2pσr

ρ(p) ∼ − J

1 + α2
· 8παν2v

2
F

v2

1√
p2
F + 2mE + E2/v2

+∞∫
0

drJ0 (pr) sin pεr
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x-impurity

Sx(r) ∼ − J

1 + α2

1

r

{
2ν2v

2
F

v2

cos pεr√
p2
F + 2mE + E2/v2

+
∑
σ

ν2
σ

pσ
cos 2pσr +

+ cos 2φr

[
−2ν2v

2
F

v2

cos pεr√
p2
F + 2mE + E2/v2

+
∑
σ

ν2
σ

pσ
cos 2pσr

]}

Sy(r) ∼ − J

1 + α2

sin 2φr

r

[
−2ν2v

2
F

v2

cos pεr√
p2
F + 2mE + E2/v2

+
∑
σ

ν2
σ

pσ
cos 2pσr

]

Sz(r) ∼ − J

1 + α2

cosφr

r

∑
σ

σ
ν2
σ

pσ
sin 2pσr

ρ(r) ∼ − J

1 + α2
· α
r
· 4ν2v

2
F

v2

sin pεr√
p2
F + 2mE + E2/v2

With the corresponding Fourier transforms:

Sx(p) = Ssymx (p) + Sasymx (p) ∼

∼ − J

1 + α2
· 2π

+∞∫
0

drJ0 (pr)

[
2ν2v

2
F

v2

cos pεr√
p2
F + 2mE + E2/v2

+
∑
σ

ν2
σ

pσ
cos 2pσr

]
−

− J

1 + α2
· 2π cos 2φp

+∞∫
0

drJ2 (pr)

[
2ν2v

2
F

v2

cos pεr√
p2
F + 2mE + E2/v2

−
∑
σ

ν2
σ

pσ
cos 2pσr

]

Sy(p) ∼ − J

1 + α2
· 2π sin 2φp

+∞∫
0

drJ2 (pr)

[
2ν2v

2
F

v2

cos pεr√
p2
F + 2mE + E2/v2

−
∑
σ

ν2
σ

pσ
cos 2pσr

]

Sz(p) ∼ − J

1 + α2
· 2πi cosφp

+∞∫
0

drJ1 (pr)
∑
σ

σ
ν2
σ

pσ
sin 2pσr

ρ(p) ∼ − J

1 + α2
· 8παν2v

2
F

v2

1√
p2
F + 2mE + E2/v2

+∞∫
0

drJ0 (pr) sin pεr

As a final remark of this section we point out that while finalising this work we became aware

of a recent work [179] focusing on the real space Friedel oscillations in the metallic regime.
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1D metallic system

The low-energy Hamiltonian in the non-SC regime can be written as

H0 = ξpσ0 + λ(pyσx − pxσy) =

 ξp iλp

−iλp ξp

 (B.10)

where ξp = p2

2m
− εF . The corresponding spectrum is given by E = ξp ± λp and the retarded

Green’s function reads

G0(E,p) =
1

(E − ξp + i0)2 − λ2p2

E − ξp + i0 iλp

−iλp E − ξp + i0

 . (B.11)

To compute the eigenvalues for a single localised impurity we calculate

G0(E, x = 0) =

∫
dp

2π

E − ξp + i0

(E − ξp + i0)2 − λ2p2

1 0

0 1

 =
1

2

∑
σ

∫
dp

2π

1

E − ξσ + i0

1 0

0 1

 ,

(B.12)

where ξσ = ξp + σλp. For p > 0 we linearise the spectrum around the Fermi momenta, thus:

ξσ ≈
(
pσF
m

+ σλ

)
(p− pσF ) =

√
λ2 + 2εF/m (p− pσF ) ≡ v(p− pσF ),

where pσF = m [−σλ+ v], and thus we get:

∫
dp

2π

1

E − ξσ + i0
≈ 1

2πv

[∫
dξσ

E − ξσ + i0
+

∫
dξ−σ

E − ξ−σ + i0

]
= − i

v

This leads to:

G0(E, x = 0) =
1

2

∑
σ

(
− i
v

)1 0

0 1

 = − i
v

1 0

0 1

 (B.13)
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Since there is no energy dependence, there will be no impurity-induced states. The Green’s

function coordinate dependence is given by the following expression:

G0(E, x) =
1

2

∑
σ

∫
dp

2π

eipx

E − ξσ + i0

 1 iσ

−iσ 1

 (B.14)

To find the coordinate dependence of the Green’s function we calculate:

Xσ
0 (x) =

∫
dp

2π

eipx

E − ξσ + i0
(B.15)

To compute this integral below we employ the Sokhotsky formula 1
x+i0

= P 1
x
− iπδ(x):

Xσ
0 (x) =

∫
dp

2π

eipx

E − ξσ + i0
=

1

2πv

[
eip

σ
F x

∫
dξσ

eiξσx/v

E − ξσ + i0
+ e−ip

−σ
F x

∫
dξ−σ

e−iξ−σx/v

E − ξ−σ + i0

]

We compute explicitly only one of the integrals in the brackets since the other one can be

computed the same way:

∫
dξσ

eiξσx/v

E − ξσ + i0
= P

∫
dξσ

eiξσx/v

E − ξσ
− iπ

∫
dξσδ(E − ξσ)eiξσx/v = −iπ (1 + sgn x) eiEx/v

Finally we have:

Xσ
0 (x) = − i

v
exp

[
i

(
mv +

E

v

)
|x|
]
e−iσmλx, (B.16)

and the Green’s function can be written as:

G0(E, x) =
1

2

∑
σ

 1 iσ

−iσ 1

Xσ
0 (x). (B.17)

Below we compute the T-matrix for different types of impurities. Impurity potentials take the

following forms:

Vz = J

1 0

0 −1

 , Vx = J

0 1

1 0

 , Vy = J

0 −i
i 0

 .
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The corresponding T-matrices are computed using

Tz =

 J
1+iJ/v

0

0 − J
1−iJ/v

 , Tx =
J

1 + J2/v2

−iJ/v 1

1 −iJ/v

 , Ty =
J

1 + J2/v2

−iJ/v −i
i −iJ/v

 .

For each type of impurity we can compute the non-polarised and SP LDOS using Eqs. (4.7-

4.10) where we replace r by x. By taking the Fourier transforms of the expressions above we

get the the momentum space dependence. Below we denote α = J/v.

z-impurity

Sx(x) = +
α

1 + α2
· 1

πv
[cos(pε|x| − pλx)− cos(pε|x|+ pλx)]

Sy(x) = 0

Sz(x) = +
α

1 + α2
· 1

πv
[sin(pε|x| − pλx) + sin(pε|x|+ pλx)]

ρ(x) = − 2α2

1 + α2
· 1

πv
cos pεx

where we denote pε = 2 (mv + E/v) , pλ = 2mλ. After taking the Fourier transform we get:

Sx(p) = +
α

1 + α2
· i
πv

[
1

p+ pε + pλ
− 1

p+ pε − pλ
− 1

p− pε + pλ
+

1

p− pε − pλ

]
Sy(p) = 0

Sz(p) = +
α

1 + α2
· 1

πv

[
1

p+ pε + pλ
+

1

p+ pε − pλ
− 1

p− pε + pλ
− 1

p− pε − pλ

]
ρ(p) = − 2α2

1 + α2
· 1

v
[δ(p− pε) + δ(p+ pε)]
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x-impurity

Sx(x) = +
α

1 + α2
· 1

πv
[sin(pε|x| − pλx) + sin(pε|x|+ pλx)]

Sy(x) = 0

Sz(x) = − α

1 + α2
· 1

πv
[cos(pε|x| − pλx)− cos(pε|x|+ pλx)]

ρ(x) = − 2α2

1 + α2
· 1

πv
cos pεx

We do not give the Fourier transform for these expressions since they coincide with the ones

for a z-impurity if we exchange Sz and Sx and change the overall sign.

y-impurity

Sx(x) = Sz(x) = 0

Sy(x) = +
2α

1 + α2
· 1

πv
sin pε|x|

ρ(x) = − 2α2

1 + α2
· 1

πv
cos pεx

The corresponding Fourier transform is:

Sy(p) =
2α

1 + α2
· 1

πv

[
1

p+ pε
− 1

p− pε

]



Appendix C

Engineering with scalar impurities in a

p-wave SC

C.1 Spinless p-wave case

The Bogoliubov-de Gennes Hamiltonian can be separated into a bulk and an impurity term,

H = H(bulk) +H(imp), where the bulk Hamiltonian,

H(bulk)
p = ξpτz + κ (pxτx − pyτy) ,

in the Nambu basis (ψp, ψ
†
−p)T. Here ξp = p2

2m
− εF with the Fermi energy εF , and κ is the

superconducting p-wave pairing amplitude. The Pauli matrices τi operate in the particle-hole

space. The impurity Hamiltonian,

H(imp)(r) = Uτz
∑
n

δ(r − rn)

describes an scalar impurity of strength U located at position rj.

The BdG equation H(r)Ψ(r) = EΨ(r) yields

[
E −H(bulk)(r)

]
Ψ(r) = Uτz

∑
n

δ(r − rn)Ψ(r).
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We change to momentum space using the Fourier transform Ψ(r) =
∫

dp
(2π)2

eip·rΨp and thus

obtain [
E −H(bulk)

p

]
Ψp = Uτz

∑
j

e−ip·rjΨ(rj).

Solving for Ψp and going back to real space, we thus find

Ψ(r) = U
∑
j

G0(E, r − rj) τz Ψ(rj), (C.1)

where G0(E, r) =
∫

dp
(2π)2

eip·r
[
E −H(bulk)

p

]−1
is the bulk Green function.

C.2 Single scalar impurity bound states

Let us first consider a single impurity at the origin. We can set r = 0 in Eq. (C.1) and obtain

the following eigenvalue equation for the impurity energies:

[
I− UG0(E,0) τz

]
Ψ(0) = 0.

As we are considering only subgap energies, we can evaluate G0(E,0) assuming |E| < ∆t,

yielding G0(E,0) = − πν√
1+κ̃2

∆t√
∆2
t−E2

[
EI − γτz

]
. Here we have defined quantities γ = κ̃√

1+κ̃2 ,

κ̃ = κ
vF

and ∆t = κkF√
1+κ̃2 where vF is the Fermi velocity and ν the density of states in the bulk.

Inserting this result into the single-impurity eigenvalue equation yields

[
I +

β√
∆2
t − E2

(Eτz − γ∆tI)
]
Ψ(0) = 0, (C.2)

where β = πνU is the dimensionless impurity strength determining the bound state energy.

Eq. (C.2) has two solutions for both repulsive β > 0 and attractive β < 0 impurities. For β > 0

the solutions have energies E = ε± = ±γβ2−
√

1+β2(1−γ2)

1+β2 ∆t with eigenstates Ψ+(0) = (1, 0)T

and Ψ−(0) = (0, 1)T. For β < 0 the energies are E = ε′± = ±γβ2+
√

1−β2(1−γ2)

1+β2 ∆t.
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C.3 Lattice of scalar impurities

In case of multiple impurities at positions ri, Eq. (C.1) becomes

[
I− UG0(E,0) τz

]
Ψ(ri) = U

∑
j 6=i

G0(E, ri − rj) τzΨ(rj). (C.3)

To proceed, we need to evaluate G0(E, r) for |r| > 0. Employing methods outlined in Ref. [85]

we obtain

G0(E, r) =

EX0(r) +X1(r) iX+
2 (r)

−iX−2 (r) EX0(r)−X1(r)

 ,

where

X0(r) = −
∫

dp

(2π)2

eip·r

ξ2
p + κ2p2 − E2

= − 2ν

∆t

√
1− (E/∆t)2

Im
{
K0[−i(1 + iκ̃)kF r]

}
,

X1(r) = −
∫

dp

(2π)2

ξpe
ip·r

ξ2
p + κ2p2 − E2

= −2ν Im
{(

1 + i
κ̃√

1− (E/∆t)2

)
K0[−i(1 + iκ̃)kF r]

}
,

X±2 (r) = ±
∫

dp

(2π)2

iκp±eip·r

ξ2
p + κ2p2 − E2

=

= − 2ν√
1− (E/∆t)2

x± iy
r

Re
{(

1 + iκ̃
√

1− (E/∆t)2
)
K1[−i(1 + iκ̃)kF r]

}
.

In the above expressions the functions Ki(x) stand for modified Bessel functions of the second

kind. These expressions have been obtained by linearising the bulk dispersion and are valid

to the order O(κ̃2). For large arguments the functions satisfy X0/1(r), X±2 (r) ∼ eikF r√
kF r

e−r/ξE

which means that hybridisation of adjacent impurity states at mid-gap energies decay slowly

for short distances and exponentially at distances longer than the coherence length ξ−1
E =

∆t

√
1− (E/∆2

t )
2/vF . The spatial structure of the bound state wave functions imply that

energy scale controlling the hybridisation between two impurity states at distance a apart is

∆t/
√
kFa.

For each impurity site ri, the relation in Eq. (C.3) is satisfied. Therefore, for N impurities,

these equations form a closed set of equations for 2N subgap eigenvalues E and eigenvectors

Ψ(ri) =
(
u(ri) v(ri)

)T

at the impurity sites. Instead of seeking an exact solution for the full

range of parameters, we consider the eigenvalue equation for deep-lying eigenstates |E| � ∆t.

As discussed below, this approach will reproduce the exact topological phase diagram since the

gap-closing transitions take place at E = 0. In addition, we obtain the spectrum of the system
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in the deep-dilute impurity regime β � 1,
√
kFa � 1 where the spectrum is confined to the

mid gap region. Following Ref. [35], we can linearise the LHS of Eq. (C.3) with respect to E

and evaluate the coupling term on the RHS for E = 0:

[
I + β

( E
∆t

τz − γI
)]

Ψ(ri) = U
∑
j 6=i

lim
E→0

G0(E, ri − rj) τz Ψ(rj). (C.4)

Multiplying both sides by τzβ
−1∆t leads to∆t(β

−1 − γ) + E 0

0 −∆t(β
−1 − γ) + E

Ψ(ri) =
∆t

πν

∑
j 6=i

lim
E→0

 X1(rij) −iX+
2 (rij)

iX−2 (rij) −X1(rij)

Ψ(rj).

This equation can be written compactly as
∑

j HijΨj = EΨi, where Ψi ≡ Ψ(ri) and

Hmn =

 hmn ∆mn

(∆mn)† −h∗mn

 ,

with

hmn =

∆t(γ − β−1) m = n

∆t

πν
X1(rmn)|E=0 m 6= n

∆mn =

0 m = n

−i∆t

πν
X+

2 (rmn)|E=0 m 6= n.

(C.5)

This is equivalent to Eq. (7.2) in the main text.

C.4 H as a topological Hamiltonian

The effective Hamiltonian (C.5) is obtained through the steps outlined in Pientka et al. in the

pioneering work [35]. For deep impurities β � 1 that are weakly coupled
√
kFa� 1 the bands

are lying near the gap centre and the spectrum can be calculated by this approach. However, in

the present case the effective Hamiltonian (C.5) has more general utility beyond the low-energy

theory. The expression (C.5) can be regarded as a topological Hamiltonian, providing access

to the exact phase diagram of the full model (C.3) beyond the deep-dilute impurity limit.

The role of the expression (C.5) as topological Hamiltonian can be understood by the following

arguments. The E = 0 eigenstates of the exact problem (C.3) and effective problem HΨ = EΨ
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coincide exactly. This simply follows from the fact that the only approximation in the derivation

of (C.5) from Eq. (C.3) involves setting a number of energy arguments to zero, a difference

that does not affect the E = 0 solutions in any way. Since the topological phase transitions

take place precisely when E = 0 solutions exist, indicating the closing of the energy gap, the

phase boundaries of the effective model and the full model necessarily coincide. In addition,

in the vicinity of the phase boundaries the energy gap is small and the low-lying solutions of

Eq. (C.3) differ very little from the effective model and can be adiabatically deformed to each

other effective. Therefore the Chern numbers calculated from the effective model (C.5) match

the Chern numbers of the full model, even in the regime where deep-dilute approximation is

not applicable.

Obtaining reliable energy eigenvalues is a different matter- those can be calculated from the

model (C.5) only for small energies E/∆t � 1 and with the accuracy that depends on the valid-

ity of the deep-dilute assumption. The corrections to the spectrum obtained from the effective

Hamiltonian will be of the order of O( β−1
√
kF a

) which is second order in the small parameters in

the deep-dilute regime.

C.5 Including spin

Here we discuss how our results of topological state engineering apply to the spinful chiral

p-wave state with the d-vector of the triplet parametrisation perpendicular to the plane. This

has been the main candidate to describe superconductivity in strontium ruthenate. In addition

to the Nambu matrices we introduce another set of Pauli matrices σi and define σ0 = I2×2. In

absence of scalar impurities, the bulk is described by the 4× 4 Hamiltonian

H(bulk)
p = ξpτz ⊗ σ0 + κ (pxτx − pyτy)⊗ σz,

which is expressed in the basis (Ψ̂p↑, Ψ̂p↓, Ψ̂
†
−p↓,−Ψ̂†−p↑)

T. This state describes pairing of opposite

spins in the orbital Lz = 1 channel. The scalar impurity termH(imp)(r) = Uτz⊗σ0

∑
n δ(r−rn)

also has a diagonal spin structure. Thus by defining two spinors Ψ1 = (Ψ̂p↑, Ψ̂
†
−p↓)

T, Ψ2 =

(Ψ̂p↓, Ψ̂
†
−p↑)

T, the full 4×4 BdG Hamiltonian can be transformed to two decoupled 2×2 blocks

identical to the spinless model studied above. The impurity problem and topology can be
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studied separately for the blocks exactly as for spinless fermions.

C.6 Effect of a non-localised potential

Below we introduce a non-localised scalar potential to study the effect of other scattering

channels than the s one. We make use of the formalism introduced in Ref. [83].

We consider a non-localised single scalar impurity described by Himp = U(r) · τz. For that

we decompose in momentum space U(p) =
∑
l

Ul(p)e
ilθ. The unperturbed Green’s function in

momentum space reads:

G(E,p) = − 1

ξ2
p + κ2p2 − E2

E + ξp iκp+

−iκp− E − ξp

 ,

Note that we omit the ”0” index for the Green’s function to stay consistent with Ref. [83].

Rewriting the function above using the harmonic decomposition G(E,p) =
∑
n

Gn(E, p)einθ,

where p = |p| we get:

G0(E, p) = − 1

ξ2
p + κ2p2 − E2

E + ξp 0

0 E − ξp

 ,

G−1(E, p) = − 1

ξ2
p + κ2p2 − E2

 0 0

−iκp 0

 ,

G1(E, p) = − 1

ξ2
p + κ2p2 − E2

0 iκp

0 0

 .

All the higher harmonics corresponding to |n| > 1 are absent in the bare Green’s function. For

further calculations we need to compute the averaged values of these functions over momenta,
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namely Gn(E) =
+∞∫
0

pdp
2π
Gn(E, p):

G0(E) =

EX0 +X1 0

0 EX0 −X1

 ,

G−1(E) =

 0 0

−i(κpFX0 + κ̃X1) 0

 ,

G1(E) =

0 i(κpFX0 + κ̃X1)

0 0

 ,

with

X0 = − πν√
1 + κ̃2

1√
∆2
t − E2

, X1 =
πν√

1 + κ̃2

γ∆t√
∆2
t − E2

, γ =
κ̃√

1 + κ̃2
, ∆t =

κpF√
1 + κ̃2

,

which have been calculated explicitly in Ref. [85]. For a bound state solution to exist, the

following condition must be satisfied (Eq. (S25) from Ref. [83]):

det


G0(E)U−1τz − τ0 G−1(E)U0τz 0

G1(E)U−1τz G0(E)U0τz − τ0 G−1(E)U1τz

0 G1(E)U0τz G0(E)U1τz − τ0

 = 0.

The equation above yields the energy levels. We next consider only the harmonics l = ±1 and

l = 0 for the scattering potential. This is enough for our purpose to demonstrate that they

lead to Shiba states with energy near the gap edges. Note that the symmetry of the problem

requires U−1 = U1, and thus we get

β1(ε− γ)√
1− ε2

= −1,
(β0 − β1)ε− γ(β0 + β1)√

1− ε2
= −(1 + β0β1)

where we denote β0,1 ≡ πνU0,1√
1+κ̃2 , ε ≡ E

∆t
. Note that each of these equations is giving a positive-

energy solution, which always has a particle-hole symmetric negative-energy partner as required

by particle-hole symmetry. We solve these equations considering β0 > β1. This is a valid

approximation since we expect the scatterings in the other channels than s to be weaker.
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Therefore, we obtain:

E±1 = ±γβ
2
1 −

√
1 + β2

1(1− γ2)

1 + β2
1

∆t,

E±2 = ±γ(β2
0 − β2

1)− (1 + β0β1)
√

1 + β2
0 + β2

1 + β2
0β

2
1 − γ2(β0 + β1)2

1 + β2
0 + β2

1 + β2
0β

2
1

∆t.

For β1 → 0 we expect these solutions to coincide with the ones we had before for a delta-like

potential (in other words, when we take into account only the s-scattering channel). Indeed,

lim
β1→0

E±1 = lim
β1→0

[
∓γβ

2
1 −

√
1 + β2

1(1− γ2)

1 + β2
1

∆t

]
= ±∆t,

and therefore two subgap states merge with the quasiparticle continuum. The other two

lim
β1→0

E±2 = lim
β1→0

[
∓γ(β2

0 − β2
1)− (1 + β0β1)

√
1 + β2

0 + β2
1 + β2

0β
2
1 − γ2(β0 + β1)2

1 + β2
0 + β2

1 + β2
0β

2
1

∆t

]
=

= ∓γβ
2
0 −

√
1 + β2

0(1− γ2)

1 + β2
0

∆t

coincide with the ones we obtained previously for a fully localised impurity.

The calculations above show that the states appearing due to other scattering channels are

situated very close to the superconducting gap and, therefore, can be disregarded. Therefore

in the s-dominated scattering channel, we can prove that the low-energy Shiba states (which

are the ones we keep as a low-energy basis) come from the delta-like potential approximation.

C.7 Spectrum of an infinite strip

Here we illustrate topological properties of a system with finite width but infinite length. As

depicted in Fig. C.1, the chiral edge states are localised near the sample edge. We assume

a square lattice geometry with lattice constant a and Fourier transform the Hamiltonian in

x direction. In Fig. C.2 we have plotted four sample spectra as a function of momentum kx

corresponding to different Chern numbers. The edge state manifest as states traversing the

bulk gap. Both edges support |C| chiral edge states. Since the edge states plotted in Fig. C.2

have monotonic dispersions, each horizontal line in the bulk gap crosses |C| states with positive
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slope and negative slope in the full Brillouin zone. These states are localised at the opposite

edges.

Figure C.1: (a): In the strip geometry the boundaries support chiral edge modes that propagate
in the opposite directions. (b): The phase diagram of the infinite square lattice with a lattice
constant a and coherence length ξ/a = 5. The four points mark the parameter values employed
in the Fig. C.2.

Figure C.2: Spectrum of a strip as a function of momentum in the translation invariant direction
in the positive half of the Brillouin zone. The spectra are reflection symmetric kx → −kx in the
negative half. The different figures correspond to parameters indicated in the Fig. C.1. The
horizontal dashed line indicate the position of the bulk gap edge.



Appendix D

Dynamical Shiba chain

D.1 Derivation of the effective two-band model

In this section we show how to derive the effective two-band Hamiltonian given by Eq. (8.7)

from the main text. We start by writing the Bogoliubov-de Gennes Hamiltonian for a 2D s-wave

superconductor in the Nambu basis Ψp = (ψ↑pppot, ψ↓p, ψ
†
↓−p,−ψ†↑−p)T

H0 = ξkτz + ∆sτx,

with τ = (τx, τy, τz) matrices acting in particle-hole subspace. The superconducting order

parameter is denoted by ∆s, the spectrum of free electrons is defined as ξk ≡ k2

2m
− εF , where

εF is the Fermi energy. A chain of magnetic impurities with precessing spins deposited on top

of the superconductor is given by

Himp(t) =
∑
j

Jj(t) · σ δ(r − rj),

where σ = (σx, σy, σz) matrices acting in spin subspace. We assume that the impurities are

localised at positions rj, and have precessing spins that are defined as

Jj(t) ≡ J [sin θ cos(ω0t+ φj), sin θ sin(ω0t+ φj), cos θ] ,

159
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with precession frequency ω0, polar angle θ as shown in Fig. 8.1 in the main text, and equidistant

individual phase shifts φj ≡ khaj, j ∈ Z. In the latter a denotes the spacing between impurities,

and kh is the so-called helix step. Thus the full time-dependent Schrödinger equation of the

problem reads:

i∂tΨ (r, t) = HtotΨ (r, t) , (D.1)

where Htot(t) ≡ H0 + Himp(t). Since the Hamiltonian is periodic, Htot(t + T ) = Htot(t), with

T = 2π/ω0 we can make use of the Floquet theorem in order to find the resulting (time-

dependent) eigenstates and quasi-energy spectrum. However, below we follow a more elegant

path employing a rotating wave transformation.

1. Rotating wave transformation

The symmetry of the problem allows us to perform a time-dependent unitary transformation

that makes the problem fully static. We can write Ψ (r, t) = U(t)Φ (r) e−iEt, with U(t) =

e−iω0tσz/2 so that we obtain the stationary Schrödinger equation

[Htot(0)−Bσz] Φ (r) = EΦ (r) , (D.2)

where the fictitious magnetic field B ≡ ω0/2 is perpendicular to the plane of the superconductor,

which will be referred to as ’driving frequency’ hereinafter, and E is the quasi-energy defined

modulo ω0. Below we rewrite Eq. (D.2) as

Φ(r) =
∑
j

Geff
0 (E, r − rj)V eff

j Φ(rj), (D.3)

where

V eff
j ≡ J

 cos θ sin θe−iϕj

sin θeiϕj − cos θ

⊗ τ0
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and Geff
0 ≡

[
E −Heff

0

]−1

with Heff
0 ≡ H0 − Bσz ⊗ τ0. We write the coordinate dependence

of the Green’s in the following form:

Geff
0 (E, r) =


(E +B)X+

0 +X+
1 0 ∆sX

+
0 0

0 (E −B)X−0 +X−1 0 ∆sX
−
0

∆sX
+
0 0 (E +B)X+

0 −X+
1 0

0 ∆sX
−
0 0 (E −B)X−0 −X−1

 .

Depending on whether r 6= 0 or r = 0 we give the expressions for X±0 below:

X±0 (r) = −2ν · 1

ω±
ImK0 [−i (1 + iΩ±) pF r] , X±0 (0) = −πν 1

ω±
,

X±1 (r) = −2ν · ReK0 [−i (1 + iΩ±) pF r] , X±1 (0) = 0,

where ω± = Ω±vFpF ≡
√

∆2
s − (E ±B)2.

It is worth noting that the system has two different regimes of driving: gapful when B < ∆s

and gapless when B > ∆s. Below we consider the case of a gapful system, and moreover we

discuss the case of weak driving B � ∆s.

2. Effective Hamiltonian for the chain in momentum space

We follow the procedure described in the article by Pientka, Glazman and von Oppen [35]

and we start with rewriting Eq. (D.3) for r = ri, i.e. for the points where the impurities are

localised:

[
I−Geff

0 (E,0)V eff
i

]
Φ(ri) =

∑
j 6=i

Geff
0 (E, ri − rj)V eff

j Φ(rj). (D.4)

We consider the so-called deep-dilute regime in which the energies of the impurity-induced

states are very close to zero. Therefore, we use an approximation for both left and right side of

the equation above, leaving in the left side the diagonal term, linear in E. The equation takes

form: [
I− G̃eff

0 (E,0)V eff
i

]
Φ(ri) ≈

∑
j 6=i

Geff
0 (0, ri − rj)V eff

j Φ(rj), (D.5)



162 Appendix D. Dynamical Shiba chain

where on the left side we make a Taylor expansion up to terms linear in E:

G̃eff
0 (E,0) = −πν

ω




B 0 ∆s 0

0 −B 0 ∆s

∆s 0 B 0

0 ∆s 0 −B

+
∆2
s

ω2


E 0 B

∆s
E 0

0 E 0 B
∆s
E

B
∆s
E 0 E 0

0 B
∆s
E 0 E



 (D.6)

with ω ≡
√

∆2
s −B2. Below we will keep only the diagonal terms of the second matrix in

Eq. (D.6), since B � ∆s. On the right side of Eq. (D.5) we have

Geff
0 (0, rij) =

πν

ω


BX̃0 + ωX̃1 0 ∆sX̃0 0

0 −BX̃0 + ωX̃1 0 ∆sX̃0

∆sX̃0 0 BX̃0 − ωX̃1 0

0 ∆sX̃0 0 −BX̃0 − ωX̃1

 ,

where

X̃0(rij) = − 2

π
Im K0

[
−i
(

1 + i
ω

vFpF

)
pF rij

]
, (D.7)

X̃1(rij) = − 2

π
Re K0

[
−i
(

1 + i
ω

vFpF

)
pF rij

]
, (D.8)

and rij ≡ |ri−rj| = |i−j|a. Our goal is to write Eq. (D.5) as a Shrödinger equation, to achieve

that we use the following unitary transformation:

Ui = diag
{
eiϕi/2, e−iϕi/2, eiϕi/2, e−iϕi/2

}
, Φ̃(ri) = UiΦ(ri).

Thus we get

[
I− G̃eff

0 (E,0) · V
]

Φ̃(ri) =
∑
j 6=i

Geff
0 (0, rij) ·

ei(ϕi−ϕj)/2 0

0 e−i(ϕi−ϕj)/2

⊗ τ0 · V · Φ̃(rj)

(D.9)

with

V ≡ UiV
eff
i U †i = JR(θ), where R(θ) =

cos θ sin θ

sin θ − cos θ

⊗ τ0
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Eq. (D.9) then takes form:

∑
j

HijΦ̃(rj) = EΦ̃(ri), i, j ∈ 1, N, with Hij =

h0, j = i

hij, j 6= i

, (D.10)

where

h0 = − ω
2

∆2
s

[ω
α
R(θ) +BR(2θ) + ∆sσ0τx

]
hij =

ω2

∆2
s

R(θ) ·
{

[Bσzτ0 + ∆sσ0τx] X̃0(rij) + ωσ0τzX̃1(rij)
}
·

ei∆ϕij/2 0

0 e−i∆ϕij/2

⊗ τ0 ·R(θ),

with ∆ϕij ≡ ϕi−ϕj, and the phases can be expressed in terms of the helix step kh and spacing

a, ϕj = khxj = kha · j. The system described by Eq. (D.10) is translational-invariant and

therefore we can perform a FT to obtain the Hamiltonian in the momentum space, namely:

H(k) =
∑
j

Hije
ikrij = h0 +

∑
j 6=i

hije
ikrij (D.11)

The 4× 4 form of the Hamiltonian (D.11) is not convenient for studying the Shiba band since

it takes into account the bands that are very close to the edge of the superconducting gap.

Therefore, we perform a unitary transformation

U ≡ exp

{
i
θ + α B

∆s
sin θ

2
σy

}
⊗ exp

{
i
π

4
τy

}
, (D.12)

that in the leading order in B diagonalises h0, namely:

[
Uh0U †

]
11

= −
[(

1 +
1

α

)
∆s +B cos θ

]
[
Uh0U †

]
22

= −
[(

1− 1

α

)
∆s −B cos θ

]
[
Uh0U †

]
33

= +

[(
1− 1

α

)
∆s −B cos θ

]
[
Uh0U †

]
44

= +

[(
1 +

1

α

)
∆s +B cos θ

]

The 22 and 33 elements correspond to the sought-for Shiba band, therefore, we can perform
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the same transformation for the hij and extract only the terms 22, 23, 32, 33, in other words,

project our Hamiltonian. Thus below we deal with effective 2× 2 Hamiltonians.

Two limiting cases are important for understanding: coherence length ξ ≡ vF/ω must be

compared to the impurity spacing a. The case of ξ � a takes into account only the nearest

neighbour hopping, therefore in Eq. (D.11) we consider only |j − i| 6 1, whereas in the case of

ξ � a we should take into account all the possible hoppings. In both regimes the Hamiltonian

is written in the following form

H(k) = d0(k) + d(k) ·Σ,

where Σ = (Σx,Σy,Σz) are Pauli matrices acting in a mixed space defined by the unitary

transformation of the initial Nambu basis (see Eq. (D.12)). The components of the d-vector

are defined below.

Short coherence length, ξ� a

In this regime we keep only the terms responsible for the nearest neighbour hopping, and we

get:

d0(k) ≡ X̃0(a)
[
∆s cos θ −B(1− α sin2 θ)

]
sin

kha

2
sin ka

dx(k) ≡ X̃1(a) (∆s − αB cos θ) sin θ sin
kha

2
sin ka

dy(k) ≡ 0

dz(k) ≡ −
[(

1− 1

α

)
∆s −B cos θ

]
+ X̃0(a) (∆s −B cos θ) cos

kha

2
cos ka

Long coherence length, ξ� a

In this case one needs to take into account all the possible hopping terms, therefore we perform

the summation in Eq. (D.11) up to infinity:

F0,1(k, s) ≡ 2
∞∑
m=1

cos

[
(k + s

kh
2

)a ·m
]
X̃0,1(a ·m) (D.13)
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Since it is known that kFa � 1, we can use the asymptotic form of the modified Bessel

function of the second kind and perform the summations to obtain a closed analytical form for

the momentum-space Hamiltonian. It is known that

X̃0(a ·m) ∼ −
√

2

π
· sin(kFa ·m+ π/4)√

kFa ·m
e−kSa·m

X̃1(a ·m) ∼ −
√

2

π
· cos(kFa ·m+ π/4)√

kFa ·m
e−kSa·m,

where kS ≡ ω/vF . We perform the summations in Eq. (D.13) using the asymptotic forms above

and we get:

F0(k, s) = +

√
2

πkFa
Im f(k, s), F1(k, s) = −

√
2

πkFa
Re f(k, s),

with

f(k, s) = e−i
π
4

[
Li 1

2

(
e−kSa+i(k+skh/2−kF )a

)
+ Li 1

2

(
e−kSa−i(k+skh/2+kF )a

)]
,

where we define the polylogarithm function in a standard way: Lin(z) =
∞∑
m=1

zm/mn. Finally,

the Hamiltonian in the long coherence length regime is defined by:

d0(k) ≡
[
∆s cos θ −B(1− α sin2 θ)

] F0(k,−)− F0(k,+)

2

dx(k) ≡ (∆s − αB cos θ) sin θ
F1(k,−)− F1(k,+)

2

dy(k) ≡ 0

dz(k) ≡ −
[(

1− 1

α

)
∆s −B cos θ

]
+ (∆s −B cos θ)

F0(k,−) + F0(k,+)

2

Note that the coefficients before the combinations of polylogarithm functions are the same as

for the short coherence length regime. It is also worth mentioning that in the functions F0,1(k, s)

we can set the factor e−kSa to unity since ξ � a.
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D.2 Winding number calculation

The d0 component of the Hamiltonian does not affect its topological properties. The winding

number can be computed analytically employing a standard formula

W =
1

2π

π∫
−π

dk
dx(k)d′z(k)− d′x(k)dz(k)

d2
x(k) + d2

z(k)
.

We do not provide any analytical expressions since the parameter space is very large, and

demonstrating all the cases is too cumbersome even for an Appendix. Instead, we plot the

results in Figure D.1 for short and long coherence length regimes as functions of driving B

versus either Fermi momentum kF and polar angle θ. The black lines defining where the

winding number changes were utilised in Fig. 8.2 in the main text to facilitate distinguishing

between different phases.

D.3 Frequency domain description of the Shiba bands

In this section we describe the dynamical situation in the frequency domain, and the resulting

Floquet band structure. Given a periodic Hamilton H(t + T ) = H(t), with some period

T = 2π/ω0, one can write the time dependent Schroedinger equation:

i
∂ψ(t)

∂t
= H(t)ψ(t), (D.14)

and one can utilise the Floquet theorem to subsequently write:

ψ(t) = e−iEt
∞∑

m=−∞

φme
imω0t, (D.15)

with φm depending on various system parameters, but not t. These coefficients (or wave

functions) satisfy the following time-independent eigenvalue equation:

∑
m′

Hmm′φm′ = Eφm, (D.16)
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Figure D.1: The winding number of the Shiba band for the small and long coherence length
regimes (upper and lower rows correspondingly), plotted as functions of the driving frequency
B (vertical axis) versus the Fermi momentum kF (left column, θ = π/3) and polar angle θ
(right column, kF = 159). We set kh = π/4, vF = 0.2,∆s = 1, a = 1, α = 0.9999.
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Figure D.2: We plot Shiba bands as functions of energy on the left panel and quasi-energy on
the right, versus quasi-momentum in the first Brillouin zone. We set θ = π/3, kh = π/4, kF =
159.3, vF = 0.2,∆s = 1, a = 1, α = 0.9999 for both panels. On the left B = 0, whereas on the
right B = −0.15 · 10−3.

where

Hmm′ = ω0δmm′ +
1

T

∫ T

0

dtei(m−m
′)ω0tH(t). (D.17)

We see that the above equation has solutions has solutions for −∞ < E < ∞. However,

if E is an eigenvalue of (D.17) corresponding to the eigenstate m with amplitudes φm, then

Ẽ = E + sω0, where s is any integer, is also an eigenvalue corresponding to an φ̃m+s eigenstate

with amplitudes given by φ̃m+s = φm. This means that all of these solutions correspond to

the same time-dependent solution of the Schrödinger equation. Therefore, the Floquet states

are uniquely and completely parametrised by quasi-energies in the ”first quasi-energy Brillouin

zone”, −π/T < E < π/T . Eq. (D.17) is the temporal analogue of a ”repeated zone” scheme

for conventional band structure calculations. Let us consider our model of a driven spin helix

coupled to a superconductor. To ease the discussion, it is instructive to write this Hamiltonian

as follows:

Htot(t) = H0 +
N∑
j=1

[
Jzj σz + J+

j σ−e
−iω0t + J−j σ+e

iω0t
]
δ(r − rj) , (D.18)

where Jzj = J0 cos θ, and J±j = J0 sin θe±iφj , and H0 is the superconducting Hamiltonian that

was defined before. Note that [H0, σz] = 0, and that we can identify the J
+(−)
j processes

with emission (absorption of a photon, or any bosonic quanta). Note also that the functions

φm depend, among other things, on the spin degree of freedom. With that identification, we

immediately can establish that the resulting Hamiltonian in Eq. (D.17) can be decomposed in
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blocks of 2 × 2 in the spin⊗photon space, or {φm↓, φm+1↑} constitute a closed basis (does not

couple to other bands). More specifically, we obtain the following matrix:

Hmm−1 =

 H0 +mω0 −
∑

j J
z
j δ(r − rj)

∑
j J

+
j δ(r − rj)∑

j J
−
j δ(r − rj) H0 + (m− 1)ω0 +

∑
j J

z
j δ(r − rj)

 , (D.19)

which can be cast in terms of a ”pseudospin” σ̃ as follows:

Hm−1,↑
m,↓ = (m+ 1/2)ω0 +H0 − (ω0/2)σ̃z +

∑
j

Jj · σ̃ δ(r − rj) . (D.20)

Note that from the perspective of the superconductor, σ and σ̃ act exactly in the same fashion.

We can now easily interpret our results: in the extended zone scheme, the initial bands only

couple the same m′s in the absence of driving. However, once the driving is tuned on, the bands

with adjacent m’s and opposite spins get mixed. Moreover, each pair of such bands are shifted

in energy by ω0(m+1/2). To highlight this behaviour, it worth doing the following comparison:

the static spectrum, in the absence of driving, but presented in the extended zone scheme for

a given frequency ω0 (copies of the spectrum shifted by ω0(m+ 1/2), but not interacting with

each other for different m’s), and the Floquet spectrum for the driven system, presented again

in the extended zone scheme. We see that indeed, in the driven case, there is level crossing

between adjacent m’s, with a splitting that can be evaluated from solving Eq. (D.19). Since

the spectrum is composed of separated blocks that emulate the static Hamiltonian, indifferent

of the periodic or open boundary conditions, the entire edge structure and topology is given by

these (shifted, but equivalent) blocks.

On the left panel in Figure D.2 we plot the Shiba band energies versus quasi-momentum in

the absence of driving, showing also the Floquet-like band structure (bands are replicated

artificially, using the value of driving for the right panel, since there is no driving on the

left one). When we turn on the driving we see that the crossings of the left panel become

the anticrossings on the right panel, where we plot quasi-energies (Floquet bands) of Shiba

band versus quasi-momentum. This qualitative analysis is analogous to that carried out by

M. Rudner et al. (see Fig. 5 of PRX 3, 031005), and allows to see how the topological phase

transition occurs in this system subject to periodic driving.
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Figure D.3: The gap around quasi-energy E = B of the Shiba band for the small and large
coherence length regimes (first and second rows respectively), plotted as functions of the driving
frequency B and the Fermi momentum kF (precession angle θ) in the left (right) column. We
set kh = π/4, vF = 0.2,∆s = 1, a = 1, α = 0.9999. The Fermi momentum kF = 159 in the left
column and the polar angle θ = π/3 in the right column.

D.4 Shiba band gap at E=B

In Fig.8.2 in the main text we presented only the gap value of the Shiba band taken at quasi-

energy E = 0. For completeness we present also in Figure D.3 the gap at quasi-energy E = B.

As discussed in the main text, no Majorana fermions emerge at the latter quasi-energy value.



D.5. Circuit implementation of a precessing helical texture 171

D.5 Circuit implementation of a precessing helical tex-

ture

In this section we present a simplified version of the implementation of a controlled dynamical

helical texture in a circuit model. In Fig. D.4 we present a sketch of our proposal: a chain

of magnetic impurities on top of an s-wave superconductor forming spin helix (texture) of

pitch kh and an angle θ is being sandwiched between to metallic leads with strong spin-orbit

interaction. Passing a charge current JLc through the left metal gives rise to a spin accumulation

µLs = ezµ
L
s at the edge via the spin Hall effect [174]. This spin bias, being non-collinear with

the local magnetisation on the left, gives rise to a local torque that brings the texture into

precession. Below we describe a simplified version of the model that describes quantitatively

the induced precession of the texture, assuming the texture is rigid and that the entire spin is

carried by the texture only. Moreover, for simplicity, we assume no bulk Gilbert damping of

the (precessing) magnetic texture, although such a component is easily accommodated in our

theory. Our theoretical modelling follows closely the ideas developed in Ref. [177] for describing

superfluid spin flow in planar ferromagnets. Following Ref. [180], the spin current exchanged

with the lead r = L,R by the helix can be expressed as:

J rs =
1

4π

[
Rgr↑↓m×+Igr↑↓

]
(µ̃rs ×m) , (D.21)

where gr↑↓ ≡ Rgr↑↓+iIgr↑↓ is the so called spin mixing conductance, which quantifies the interface

r = L,R and which can be in general complex [181], and m ≡ S/S0. Also, µ̃rs ≡ µrs−~m×ṁ,

namely in the dynamical case the applied spin bias (or spin torque) is reduced effectively by the

spin pumping contribution [180]. Next we note that the spin texture posses U(1) symmetry,

namely it is invariant with respect to rotations around the z axis. That implies that the spin

current along this direction is conserved, and thus we focus on the z component only. Also, we

assume that for a rigid texture (helix) the spin precession satisfies:

m ≡m(t) = [cos (ω0t+ φ) sin θ, sin (ω0t+ φ) sin θ, cos θ] , (D.22)
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Figure D.4: Normal-metal—Magnetic Texture—normal-metal heterostructure that can be used
to excite in a controlled fashion the precession of the chain of magnetic impurities inserted in
an s-wave superconductor. A charge current JLc in the left lead (red) gives rise to a spin
accumulation ~µLs ≡ ~ezµLs at the interface via the spin Hall effect, and the spin current pumped

into the right reservoir, ~JRS , generates a transverse charge current JRc through the inverse spin

Hall effect. The spin current from the left ( ~JLs ) to the right lead ( ~JRs ) is established dynamically
via the precession of the magnetic (helical) texture.

with φ arbitrary. With this, the spin currents along z at each end (lead) is found as follows:

JL,Rs,z = ±
RgL,R↑↓

4π
(µL,Rs − ω0) sin2 θ , (D.23)

where we used the − sign for the right spin current to emphasise that this is the current injected

into the lead and not the flow into the texture (which is just the opposite). Since we assume

no dissipation mechanisms in the bulk we have that JLs,z = JRs,z, which gives for the precession

frequency the following expression:

ω0 =
RgL↑↓µLs +RgR↑↓µRs
RgL↑↓ +RgR↑↓

. (D.24)

We thus see that by controlling the spin biases on the two ends, via the spin Hall, effect the

precession frequency can be tuned at will. Moreover, by tuning the biases such that RgL↑↓µLs =

−RgR↑↓µRs , the precession frequency vanishes. More complicated models (including, for example,

dissipation, change in the cone angle, electrons, magnons, etc.) will alter this conclusion, but

the general picture should still hold true. For completeness, we also provide with the resulting

expression for the spin current at either of the ends:

JLs,z =
1

4π

RgL↑↓RgR↑↓(µLs − µRs )

RgL↑↓ +RgR↑↓
sin2 θ , (D.25)
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which vanishes any time one of the leads is disconnected. However, it does not necessary

vanish in the case when ω0 vanishes (see condition above). We note in passing that relaxing the

condition of a rigid texture should allow, as stressed in the main text, to control non only the

frequency, but also the pitch kh. For example, if the initial impurity spins are lying in-plane,

but forming no helix in the absence of the leads, once subjected to spin biases will give rise to

a dynamical texture such that the spin current is transported from the left to right lead. In a

long wavelength description, the Hamiltonian describing such a setup reads [176,177]:

HF =

∫
dx[A(∇m(x))2 +Km2

z]/2 , (D.26)

where A and K stand for the exchange stiffness and the anisotropy, respectively, where m =

(
√

1−m2
z cosφ,

√
1−m2

z sinφ,mz). For mz � 1, it was shown that the spin current (along z)

at some position x in the chain between the two leads reads:

Js,z(x) = −A∇φ(x) , (D.27)

which, in the absence of dissipation, should coincide with the spin currents at the left lead JLs,z.

In such a case, we can readily see that φ(x, t) = φ(0, t) − (JLs,z/A)x, with φ(0, t) = ω0t. The

resulting pitch of the texture (assuming, in the lattice model a = 1) can be read as

kh = 2πA/JLs,z . (D.28)

By inspecting the above conditions for the precession frequency and for the spin current, we

see that by tuning the spin biases we can tune independently the frequency ω0 and the pitch kh

(we can even reduce the chain to the static case). Thus, such an implementation is extremely

versatile for implementing our proposed dynamical model.



Appendix E

Asymptotic expansions

Since the integrals are expressed in terms of Neumann function and Bessel function of the first

kind, we give their asymptotic behaviour for x→ +∞:

Bessel functions of the first kind

J0 (x) ∼ +

√
2

πx
cos
(
x− π

4

)
, J1 (x) ∼ −

√
2

πx
cos
(
x+

π

4

)

Bessel functions of the second kind

In this appendix we give the asymptotic expansions for the modified Bessel functions of the

second kind K0 and K1. It is known that:

Kν(z) ∼
√
π

2

e−z√
z

[
1 + O

(
1

z

)]
for |z| → ∞

174
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Since the asymptotic form is independent of ν, we will omit it below. For the case of pure

s-wave:

K[−i(1 + iΩ)kF r]∼
ei(1+iΩ)kF r√
−i(1 + iΩ)kF r

=
eikF r√
Ω− i

e−ksr√
kF r

= ∗

We rewrite
√

Ω− i = (1 + Ω2)
1/4
e−iθ/2, where θ = arctan 1

Ω
and we get

∗ =
1

(1 + Ω2)1/4

ei(kF r+θ/2)

√
kF r

e−kSr ≈ ei(kF r+π/4)

√
kF r

e−ksr,

where kS = ω/vF . The approximation is valid since for all subgap energies since Ω� 1. Thus

ReK[−i(1 + iΩ)kF r] ∼
cos (kF r + π/4)√

kF r
e−ksr, ImK[−i(1 + iΩ)kF r] ∼

sin (kF r + π/4)√
kF r

e−ksr.

Similarly, for the case of pure p-wave we get:

ReK
[
−i(1− γ2 + iΩ)kF r

]
∼ cos (k′F r + π/4)√

k′F r
e−ksr,

ImK
[
−i(1− γ2 + iΩ)kF r

]
∼ sin (k′F r + π/4)√

k′F r
e−ksr,

where k′F = kF (1− γ2) = kF
1+κ̃2 and ks = ω/vF .

Neumann functions

Y0 (x) ∼ −
√

2

πx
cos
(
x+

π

4

)
, Y1 (x) ∼ −

√
2

πx
cos
(
x− π

4

)
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Majorana fermions in finite-size strips

with in-plane magnetic fields

In what follows we study the Majorana bound states arising in finite-size strips with Rashba

spin-orbit coupling in the presence of an in-plane Zeeman magnetic field. Using two different

methods, first, the numerical diagonalisation of the tight-binding Hamiltonian, and second,

finding the singular points of the Hamiltonian (see Refs. [182–185]), we obtain the topological

phase diagram for these systems as a function of the chemical potential and the magnetic field,

and we demonstrate the consistency of these two methods. We note that the ’singular points

technique’ can also be used e.g. to recover the phase diagrams in Chapter 8. By introducing

disorder into these systems we confirm that the states with even number of Majorana pairs are

not topologically protected. Finally, we show that a calculation of the Z2 topological invariants

recovers correctly the parity of the number of Majorana bound states pairs, and it is thus fully

consistent with the phase diagrams of the disordered systems.

ℵ.1 Introduction

There has been a lot of progress recently in realising Majorana bound states (MBS) in various

low-dimensional systems both theoretically [35, 40, 46, 47, 106, 114, 116, 127, 129, 132, 186–198]

and experimentally [50–52, 122, 199]. The key ingredients are a strong Rashba spin-orbit cou-

pling and Zeeman magnetic fields. However, the inevitable orbital effects of the magnetic field

drastically modify the topological phase diagram, eventually destroying the MBS [200–203].

One possible way to avoid orbital effects is to use in-plane magnetic fields [204–207].

In Refs. [208–211] various low-dimensional systems, such as infinite ribbons and finite-size strips,

177
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have been studied. These systems respect particle-hole symmetry (PHS), but violate time-

reversal symmetry (TRS) due to the presence of a magnetic field. Therefore, the corresponding

topological phase diagrams have been obtained by computing the Z2 topological invariant (in

accordance with the well-known tenfold topological classification [212]), as well as numerical

methods. However, only the case of magnetic fields perpendicular to the plane of the system

has been considered.

Below we consider the formation of MBS in infinite ribbons and finite-size strips, while focusing

on in-plane magnetic fields. We thus show that infinite ribbons can host one or two pairs of

chiral Majorana modes in the presence of an in-plane magnetic field perpendicular to the edges,

and we calculate the corresponding topological phase diagram. For finite-size strips we first use

a numerical diagonalisation of the tight-binding Hamiltonian [213] which allows us to evaluate

the Majorana polarisation (MP) [208, 210, 211]. We show that one or multiple MBS pairs can

form along the short edges of the system for an in-plane magnetic field parallel to the longer

dimension of the finite-size strips, and we calculate the topological phase diagrams of these

systems. Second we use the singular points (SP) technique introduced in Refs. [182–185],

based on the momentum values where the determinant of the Hamiltonian vanishes, and we

show that it yields results consistent with the numerical ones.

We study the stability of the resulting topological states with respect to disorder [209], and we

confirm that the states with even numbers of Majorana fermions are not protected, whereas

those with odd numbers are. We also perform a calculation of the Z2 invariant which should

give one access to the parity of the number of Majorana modes. Indeed we find that this

calculation predicts correctly a topologically non-trivial character for the phase-space regions

shown numerically to have an odd number of MBS pairs and to survive the effects of disorder.

The rest of this Annex is organised as follows: in Section II we introduce the general model

and give a concise description of the tight-binding and singular points techniques, as well as

of the Majorana polarisation definition. In Section III we present the results for 1D wires and

infinite ribbons. In Section IV we present the phase diagrams for finite-size strips of different

widths, using the numerical diagonalisation and singular points methods. In Section V we

present the effects of disorder and we compare the disordered results with those obtained using

a topological-invariant calculation. In Section VI we consider finite-size square systems. Finally,

we conclude in Section VII leaving the technical details of topological invariant calculations for
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the Supplementary Information.

ℵ.2 Model and methods

We introduce a model that can describe different 1D and 2D systems with an intrinsic (or

proximity-induced) s-wave superconducting pairing ∆, longitudinal and transversal Rashba

spin-orbit couplings λx,y, and a Zeeman magnetic field B = (Bx, By, Bz). We write the Hamil-

tonian in the Nambu basis Ψr =
{
c†r↑, c

†
r↓, cr↓, −cr↑

}
, where crσ (c†rσ) annihilates (creates) a

particle of spin σ at site r = (i, j) in a square lattice:

H =
∑
r

[
Ψ†r (−µτz + ∆τx +B · σ) Ψr + (ℵ.1)

+Ψ†r (−tx − iλxσy) τzΨr+x + H.c.+

+ Ψ†r (−ty + iλyσx) τzΨr+y + H.c.
]
,

where t is the hopping amplitude, µ denotes the chemical potential, x,y are unit vectors for

the x and y directions correspondingly, and the lattice spacing is set to unity.

ℵ.2.1 Numerical tight-binding techniques and the Majorana polar-

isation

The eigenstates of the tight-binding Hamiltonian described above can be obtained using a

numerical diagonalisation (here performed using the MatQ code [213]). In the Nambu basis,

an eigenstate j of the tight binding Hamiltonian can be written as ψjᵀr =
{
ujr↑, u

j
r↓, v

j
r↓, −vjr↑

}
,

where u and v denote the electron and hole components respectively. The vector of the local

Majorana polarisation [208,210,211] on each site r = (x, y), for the eigenstate j is given by:

P j(r) ≡

P j
x(r)

P j
y (r)

 ≡
−2 Re

[
ujr↑v

j
r↑ + ujr↓v

j
r↓
]

−2 Im
[
ujr↑v

j
r↑ + ujr↓v

j
r↓
]
 (ℵ.2)

This quantity allows to discriminate locally pure electron (hole) states from Majorana-like

states. It is easy to see that for pure electron (vr↑ = vr↓ = 0) and pure hole states (ur↑ = ur↓ =

0) the local Majorana polarisation equals to zero. For our purposes it is more practical to use
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the integral of the MP vector over a spatial region R defined as:

Cj =

∣∣∣∣∣∑
r∈R

[
P j
x(r) + iP j

y (r)
]∣∣∣∣∣

2

(ℵ.3)

Note that in Eqs. (ℵ.2,ℵ.3) we assume that the wave function is normalised.

To obtain the topological phase diagram we first find the lowest energy states of the given

system. If these states have energies close to zero they may be MBS. We divide our system into

two halves (along the shorter length), and we compute the integral of the MP vector in each

of these halves defined by r ∈ R for each ’zero’-energy state. The states that have C = 1 are

MBS, and those with C = 0 are regular electron or hole states. Note that we may have only a

pair of state with C = 1, or multiple degenerate zero-energy MBS states with C = 1. In the

results that we present here we sum the MP over all the lowest energy states. Note however

that the states with even C (even number of MBS pairs) are not topologically protected, and

thus any small disorder introduced into the system destroys such Majorana states.

ℵ.2.2 Singular points of the Hamiltonian

To find a MBS in a system described by a PHS Hamiltonian H(k), we seek for localised zero-

energy solutions of the Schrödinger equation: H(k)Φ = 0. In the most general case these

solutions are of the form eikr that can be rewritten as eik‖r‖ · e−zr⊥ , where k‖ denotes the ’good’

quantum number and z is defined below. We analytically continue k to the complex plane and

we consider the solutions of the following equation

detH(k) = 0, (ℵ.4)

defining the so-called singular points ki ≡ k‖+iz in the complex plane at which the determinant

of the Hamiltonian vanishes. By definition z is given by the imaginary part of the singular point

ki. The practical use of these complex momentum values is the following: by continuously

changing the parameters of our Hamiltonian, we continuously change the corresponding ki’s. If

we are in a topological phase, z must be positive (in other words the solution is localised). As

soon as z crosses zero and becomes negative, the solution becomes delocalised, and therefore

we enter a non-topological phase. Further details can be found in Refs. [182–184].
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We propose the following way of constructing a phase diagram. The parameter space is given

by the chemical potential µ and the magnetic field B = |B|. Firstly, we find all the ki’s as a

function of the parameters in the Hamiltonian, such that ki = ki(µ,B), i ∈ 1, 2N , where 2N is

the total number of ki solutions. We then sort them at each point in the parameter space with

respect to their imaginary parts as follows: Im ki < Im ki+1, i ∈ 1, 2N − 1. Sorting is one way

to construct continuous functions Im ki(µ,B) in the parameter space. Although it is possible

to deal with discontinuities analytically [184], in numerical simulations the continuity of Im ki’s

becomes crucial since it is hard to discriminate the zeros of Im ki(µ,B) from its discontinuities.

Subsequently we look for the functions ki(µ,B) whose imaginary part crosses zero. This can be

done by plotting their imaginary part as a function of the system parameters. Since Eq. (ℵ.4)

yields pairs of solutions with opposite imaginary parts, and since these pairs have been sorted

according to their imaginary parts, it is therefore sufficient to plot the imaginary part of either

the smallest positive root (i = N + 1) or of the largest negative root (i = N). The set of points

(µ0, B0) where Im kN(µ0, B0) = 0 (or equivalently Im kN+1(µ0, B0) = 0) yield thus the phase

transition lines between the topological and non-topological regions in the phase diagram.

Note that this technique can in principle used also to count the number of MBS present in a

given phase. The corresponding counting formula is extremely simplified when ’Exceptional

points’ are present [182, 183] for a system with unbroken chiral symmetry. In such a case, the

Hamiltonian can be brought to a block off-diagonal form, however, when the chiral symmetry is

broken, this block-off diagonal form cannot be achieved in any basis and it becomes cumbersome

to isolate two sets of N continuous solutions ki (with opposite imaginary parts) and plug them

into the counting formula to get the total number of MBS. Thus we will use the singular points

method only to find the phase-transition lines. In order to find the number of MBS pairs in a

given phase we will rely on the numerical tight-binding calculations.

ℵ.3 1D wires and infinite ribbons

ℵ.3.1 1D wire

We start by describing the well-known phase diagram of a 1D SC wire which we take to

be lying along the x-axis (Ny = 1 and Nx � 1). In the presence of a magnetic field the

time-reversal symmetry (TRS) is broken, and only the particle-hole symmetry (PHS) holds,
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therefore the system is in the topological class D described by a Z2 invariant [212]. If the

applied magnetic field is perpendicular to the spin-orbit direction, i.e. either B = (0, 0, Bz)

or B = (Bx, 0, 0), the SC wire enters a gapful topological phase as soon as Bx or Bz become

larger than
√

(µ− 2tx)2 + ∆2. The corresponding phase diagram is shown in Fig. ℵ.1. Further

details of the Z2 invariant calculation can be found in the first subsection of the Supplementary

Information.

topological trivial

Figure ℵ.1: The phase diagram of a 1D superconducting nanowire obtained with topological
invariant calculation as a function of the chemical potential µ and the magnetic field along the
wire B = Bx (the phase diagram remains the same in the case of a magnetic field perpendicular
to the wire B = Bz). We set ∆ = 0.2t, λx = 0.5t.
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ℵ.3.2 Infinite ribbon

In this subsection we study a 2D ribbon with a finite but large number of sites in the y-direction

(Ny � 1), and infinite in the x-direction Nx → ∞ (see Fig. ℵ.2). We set λx = λy = λ and

tx = ty = 1. We are interested in the zero-energy solutions localised at the edges of the ribbon.

In Fig. ℵ.3 we plot the band structure of this system for an in-plane magnetic field By parallel

Figure ℵ.2: A sketch of a 2D ribbon along x-axis with a magnetic field B = By perpendicular
to its edges. The black sites denote the edges of the ribbon where the chiral Majorana modes
are localised.

to the y-axis (perpendicular to the ribbon edges), as well as the topological phase diagram of

such a ribbon obtained using the tight-binding numerical diagonalisation and the evaluation of

the MP as described in Section ℵ.2. First of all, we note that the spectrum is PHS even though

the band structure is not. Second, as we can see from the band structure, the system may

become gapless, i.e. there are region in the momentum space in which the gap in the spectrum

is closing. However, despite the fact that there is no overall gap, chiral MBS do form, and they

correspond to values of momenta in which the bulk spectrum remains gapped (e.g. kxa = 0 and

kxa = π). Such states are localised and propagate along the edges of the ribbon. We should

note that similar situations in which the closing the gap can occur for certain regions in the

parameter space have been previously studied, and it has been shown that, despite the absence

of an overall gap, the system can still be topological, and support MBS [214–218]. The number

of MBS pairs varies from 0 to 2, depending on the parameters of the system (see Fig. ℵ.3).

However, the case of two Majorana fermions propagating at the same boundary is not stable,

and in the absence of protection by TRS, for example in the presence of small disorder, such
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states would combine to form a conventional fermionic state. Thus the system is topologically

non-trivial only when the number of MBS pairs is equal to 1. It is also worth mentioning

0

1

2

Figure ℵ.3: Band structure of a 2D ribbon with a magnetic field B = By perpendicular to the
edges for µ = 4t, By = 0.3t (upper left panel) and µ = 0t, By = 0.3t (upper right panel). Note
that the system may host either one or two pairs of chiral Majorana modes. The corresponding
topological phase diagram (lower panel) depicts the number of Majorana modes (as evaluated
from the total MP) as a function of µ andB. In all the examples we set ∆ = 0.2t, λx = λy = 0.5t.

that the number of sites in the y direction must be large enough so that the overlap of the
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wave functions of the two Majorana states localised on the two opposite edges of the ribbon is

exponentially small, and that these states cannot hybridise and acquire a finite energy.

Note that if the magnetic field is applied along the x-axis the system is also gapless, however,

in this case no Majorana modes form, for any region in the parameter space, and the system is

fully trivial.

ℵ.4 Finite-size strips

In what follows we focus on quasi-1D systems, i.e. systems made-up of Ny > 1 coupled wires

each with a finite but large number of sites Nx � 1 and Nx � Ny. We consider an in-plane

magnetic field Bx parallel to the long edge of the system (see Fig. ℵ.4). Note that for a magnetic

Figure ℵ.4: A sketch of a quasi-1D wire with a magnetic field B = Bx along the x-axis. The
black sites denote the short edges of the system where the Majorana modes would be localised.
The quasi-1D system can be thought of as a set of 1D wires coupled in y-direction.

field parallel to the y-axis, no Majorana states can form, since the magnetic field would in this

case be parallel to the direction of the spin-orbit coupling in the wires. A similar system was

considered in Ref. [211], but only for magnetic fields perpendicular to the plane of the system.

As described in Section ℵ.2, we will use two main tools to obtain the phase diagram for these

systems. The first is to numerically diagonalise the tight-binding Hamiltonian and employ the

integrated MP by plotting its value as a function of the chemical potential and the magnetic

field. The second is to assume that the momentum kx along x is a ’good’ quantum number,

and exploit the SP technique. In Fig. ℵ.5 we show numerically that the results of the first

two methods are fully consistent. Each phase transition boundary defined as a change in the

number of MBS pairs obtained via the MP technique corresponds to a line of zeroes in the SP

plot. The only apparent exception is the special case of the white lines in the Ny = 4 close to
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Majorana polarisation Singular points
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Figure ℵ.5: Topological phase diagrams in the (µ,Bx) plane. In the left column we plot the
total MP summed over all the low-energy states with a MP larger than a given cut-off, here
taken to be 0.8. The colour scheme indicates the number of MBS pairs. In the right column
we plot the results of the SP calculation; the phase transition lines are given by the zeroes of
the plot. We consider systems with 2, 3 and 4 coupled wires. The results of these two methods
are consistent, and the phase transition lines coincide. We set ∆ = 0.2t, λx = λy = 0.5t.
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µ = t and µ = 2.2t and B = 0.5t. They seem to correspond to the special case of a zero-size

non-topological line-like region between two topological regions with one pair of MBS. Such

situations. i.e. topological regions divided by a line of non-topological points, can arise, and

are well captured here by the SP method. The numerical method is a bit less precise for such

situations, and the non-topological line acquires a finite width, mostly because of the finite

length of the considered systems (in the infinite-length limit the width of these regions should

go to zero).

Note that the integrated MP allows not only to show the phase transition boundaries, but also

to give access to the number of emerging MBS. Since the chiral symmetry (a combination of the

PHS and the TRS) is absent due to the magnetic field which breaks the TRS, we cannot easily

use the counting formula introduced in Ref. [184] to obtain the number of Majorana modes

using this method. The counting formula is in principle also applicable in the absence of the

chiral symmetry, but the broken TRS case is very cumbersome and much harder to implement

numerically. Therefore, we use here the SP technique only to obtain the phase transition lines;

the actual number of the MBS pairs and the topological character of a given phase space region

are obtained numerically via the calculation of the total MP. We should point out that some

segments of the phase transition lines in the right column of Fig. ℵ.5 are almost non-visible.

This is not due to the failure of the method, but to the numerical grid: the regions in which

the zeroes of the determinant occur are very thin and the number of points required in the grid

would be too large to capture them entirely. We did check though that the phase transition

lines are present everywhere as expected, even if not fully shown in Fig. ℵ.5.

Note also that by increasing the number of wires we can increase the number of MBS. However,

as we will show in the next section only the states with an odd number of MBS pairs are

topologically protected.

ℵ.5 Effects of disorder and topological invariant calcula-

tions

In what follows we show that a small amount of disorder makes the Majorana modes re-combine

and form regular electronic states in all the regions in the parameter space with an even number
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of Majorana modes; thus these regions are not topologically protected. However, in all the

regions with odd numbers of Majorana modes one MBS pair survives the effects of disorder.

In the left column of Fig. ℵ.7 we show the phase diagrams for finite-size strips in the presence

MP with disorder TI without disorder

0

1

0

1

Figure ℵ.6: Topological phase diagrams in the (µ,Bx) plane for 2 and 4 coupled wires. In
the left column we depict the MP of the lowest-energy mode for a disordered system. We
impose a MP cutoff of 0.95 (the states with MP smaller than 1 cannot be considered actual
Majoranas and usually correspond to non-zero energies, even if they remain Majorana-like).
In the right column we depict the phase diagram as obtained using the topological invariant
calculation (without disorder) (the topological regions are shown in violet). Note that, up to
some special-points lines, the TI results are fully consistent with the those for the MP in the
disordered system, which is expected since the TI gives access to the parity of the number of
the MBS. In all the panels ∆ = 0.2t, λx = λy = 0.5t.
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of disorder. The disorder considered here is a random variation of the value of the Zeeman

magnetic field with an intensity of 5% around its average value. [209] Indeed, we see that in

the even-parity regions of the phase space the Majorana modes are destroyed, confirming their

non-topological character.

We also present the corresponding phase diagrams computed using the topological invariant

(TI) (for the details of the derivations see the Supplementary Information, as well as Ref. [211]].

In Fig. ℵ.7 we compare the phase diagrams showing the topological regions surviving the effects

of disorder (left column) and those obtained using the topological invariant (right column).

Indeed, up to some sets of lines of special points, the topological regions, as predicted by the

topological invariant, coincide with the regions in the phase diagram shown numerically to

exhibit an odd-parity of MBS pairs and to survive the presence of disorder.

It is also worth discussing how the value of the topological gap protecting the zero-energy states

changes in the presence of disorder. In Fig. ℵ.8 we plot the energy spectra of a 4-wire finite-size

strip for a fixed value of the chemical potential as a function of an in-plane magnetic field Bx,

both in the absence and in the presence of disorder. This corresponds to taking vertical cuts of

the lower left panels of Figs. ℵ.5 and ℵ.7. Without disorder, in full accordance with Fig. ℵ.5,

we have MBS for magnetic fields Bx from ∼ 0.45t to ∼ 0.73t and ∼ 0.92t to ∼ 1.25t. It is worth

mentioning that certain regions contain more than one pair of MBS. The number of pairs is

shown above the corresponding Majorana zero energy lines, highlighted in red. First, we note

that, consistent with the phase diagrams presented in Figs. ℵ.5 and ℵ.7, all the regions with

odd numbers of MBS are protected against disorder, exhibiting one stable zero-energy mode

(cf. regions from ∼ 0.55t to ∼ 0.64t and ∼ 0.92t to ∼ 1.25t respectively), whereas in the regions

with even numbers these states acquire a finite energy in the presence of disorder, confirming

that these regions in the phase diagram are not topologically protected. Moreover we see that

the gap protecting these zero-energy states is affected slightly by disorder, more significantly for

the states with even numbers of Majoranas, consistent with the lack of topological protection

for these states.

ℵ.6 Finite-size squares

If both Nx,y � 1 and are comparable in size then we are dealing with an open 2D system. In
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MP with disorder TI without disorder
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Figure ℵ.7: Topological phase diagrams in the (µ,Bx) plane for 2 and 4 coupled wires. In
the left column we depict the MP of the lowest-energy mode for a disordered system. We
impose a MP cutoff of 0.95 (the states with MP smaller than 1 cannot be considered actual
Majoranas and usually correspond to non-zero energies, even if they remain Majorana-like).
In the right column we depict the phase diagram as obtained using the topological invariant
calculation (without disorder) (the topological regions are shown in violet). Note that, up to
some special-points lines, the TI results are fully consistent with the those for the MP in the
disordered system, which is expected since the TI gives access to the parity of the number of
the MBS. In all the panels ∆ = 0.2t, λx = λy = 0.5t.

Ref. [211] it has been shown that for perpendicular Zeeman magnetic fields finite-energy quasi-

Majorana-like states (C =
√

2/2) may form, localised mostly in the corners of these square

flakes, for a set of parameters inside the 2D bulk topological phase. However, for in-plane
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2 3 2 1 

1 1 

Figure ℵ.8: Energy spectra for 4-wires finite-size strips with and without disorder (lower and
upper panel respectively) as a function of an in-plane magnetic field Bx, varying from 0.25t
to 1.25t. We restrict ourselves to plotting only the lowest 60 energy levels and we set ∆ =
0.2t, λx = λy = 0.5t, and µ = 0.69t. These panels correspond to vertical cuts of lower left
panels in Fig. ℵ.5 and ℵ.7 respectively. The number of pairs is shown above the corresponding
Majorana zero energy lines, highlighted in red.

magnetic fields (e.g. along x-axis) the situation is very different since the rotation symmetry

is broken and we always have an in-plane special direction, and we can no longer expect quasi-

Majorana states with rotationally symmetric MP.
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Figure ℵ.9: The MP vector for a square system consisting of 100× 100 sites in a magnetic field
along the x-axis. We choose a set of parameters µ = 4t, Bx = 0.28t,∆ = 0.2t, λx = λy = 0.5t.

By analysing the MP of these systems we note that the generic situation that emerges is

that depicted in Fig. ℵ.9: quasi-disordered edge states localised on the edges of the system

perpendicular to the magnetic field. Such states have also a quasi-disordered MP, and the

integral of the MP over one of these edges states is finite (for the case in Fig. ℵ.9 this is of the

order of 0.9).

This tendency to form a Majorana state is larger for values of the magnetic field close to the

transition, and for systems with a very large Nx we can actually recover actual Majorana states

in these systems on the edges perpendicular to the magnetic field. The systems required to

recover a full Majorana are too large for our numerical abilities, but even for smaller systems

we have managed to tune up the parameters to get a MP up to 0.9, and increasing the size

will improve this value. This is important from an experimental perspective, since it indicates

that for in-plane fields actual Majorana states can form even in wide square systems, while for

perpendicular fields this can never be the case unless one dimension is much larger than the
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other one.

ℵ.7 Conclusions

We have studied the formation of Majorana bound states in infinite ribbons, finite-size strips

and squares with Rashba spin-orbit coupling and an in-plane magnetic field. We have shown

that in infinite ribbons chiral Majorana fermions may form when the magnetic field is perpen-

dicular to the edges of the ribbon. Furthermore, we have studied finite-size strips exploiting

a numerical diagonalisation technique and the Majorana polarisation, as well as the singular

points technique, and we have proven the qualitative equivalence of these two methods in con-

structing the phase diagrams of these systems. We have also evaluated the topological invariant

for the quasi-1D systems and we have shown that its usage allows one to obtain the correct

phase diagrams for the parity of the number of MBS pairs. Moreover, we have confirmed

numerically that the phases with even number of MBS pairs are not stable in the presence

of disorder, and are thus topologically trivial, while the phases with an odd number of MBS

preserve their topological character.

ℵ.8 Supplementary Information: TI calculation

In what follows we compute topological invariants for several systems discussed above. We write

the Bogoliubov-de Gennes Hamiltonian on a square lattice in the Nambu basis
{
ψ↑, ψ↓, ψ

†
↓,−ψ†↑

}
as:

H(k) =


f(k) L(k) ∆ 0

L∗(k) f(k) 0 ∆

∆ 0 −f(k) L∗(−k)

0 ∆ L(−k) −f(k)

+


Bz B− 0 0

B+ −Bz 0 0

0 0 Bz B−

0 0 B+ −Bz

 (ℵ.5)

where B = (Bx, By, Bz) is the magnetic field, B± ≡ Bx± iBy, f(k) is the dimension-dependent

dispersion for electrons on the lattice with a chemical potential µ and a hopping parameter t,

while L(k) is the Rashba spin-orbit coupling term, which also depends on the dimensionality

of the lattice. We disregard the orbital effects of the magnetic field. The Hamiltonian given by
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Eq. (ℵ.5) is particle-hole symmetric, i.e.

ΞH(k)Ξ−1 = −H(−k), Ξ ≡ σy ⊗ τy K, (ℵ.6)

where K is the complex conjugate operator, and we set Λ ≡ σy ⊗ τy.

ℵ.8.1 1D wires

We consider a 1D superconducting nanowire with Rashba spin-orbit coupling and with an

arbitrary direction of the magnetic field. We thus have f(k) ≡ −2t cos k−µ and L(k) ≡ iλ sin k.

As long as the magnetic field is not collinear with the spin-orbit coupling (Bz or Bx, but not

topological trivial topological trivial

Figure ℵ.10: The phase diagram of a 1D nanowire (left panel) and of a 2D ribbon (right
panel) as a function of the chemical potential µ and the magnetic field B, obtained using a
topological invariant calculation. In the case of a wire the magnetic field is either along the
wire B = Bx or perpendicular to the wire B = Bz, whereas in the case of a 2D ribbon it is
perpendicular to the edge of the ribbon, i.e. B = By. The black lines correspond to the values
for which the topological invariant δ = 0. The topological regions are coloured in violet. We
set ∆ = 0.2t, λx = 0.5t, λy = 0t for the left panel and ∆ = 0.2t, λx = λy = 0.5t for the right
one.

By), the system stays gapful and thus topological invariants are well-defined. Time-reversal
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symmetry is broken in the presence of a magnetic field, therefore we expect to have a Z2

topological invariant in accordance with the classification in Ref. [212]. On the contrary, if we

consider the case of a non-zero By along the y-axis, we end up having a gapless trivial phase.

Thus, below we set By = 0.

To compute the topological invariant we seek the Gamma-points of the Hamiltonian (ℵ.5), i.e.

the points for which L(k) = 0. It is easy to see that within the first Brillouin zone we have two

such points: Γ1 = 0, Γ2 = π. At each of these points one can define a skew-symmetric matrix

W (k = Γi) = H(k = Γi)Λ with an associated Pfaffian. The topological invariant is given by

δ =
∏
k=Γi

√
det [W (k)]

Pf [W (k)]
. (ℵ.7)

This expression can be simplified using the identity (Pf A)2 = detA, thus yielding:

δ =
∏
k=Γi

sgn Pf [W (k)] = sgn Pf [W (0)] sgn Pf [W (π)] . (ℵ.8)

We compute the corresponding Pfaffians

Pf [W (0)] = B2 −∆2 − (µ+ 2t)2, Pf [W (π)] = B2 −∆2 − (µ− 2t)2,

where B2 ≡ |B|2 = B2
x +B2

z . Therefore, the topological invariant is given by:

δ = sgn
[
(B2 −∆2 − (µ+ 2t)2)(B2 −∆2 − (µ− 2t)2)

]
. (ℵ.9)

The corresponding phase diagram is given in Fig. ℵ.1 as well as on the left panel of Fig. ℵ.10.

ℵ.8.2 2D systems

For this system f(k) ≡ −2t(cos kx + cos ky)− µ and L(k) ≡ iλ(sin kx − i sin ky) is the Rashba

spin-orbit coupling term. Despite the fact that in parallel magnetic fields the system can become

gapless for certain regions in the parameter space, below we compute formally a Z2 topological

invariant. This invariant should indicate the parity of the number of Majorana modes arising

at the edges introduced into the system. To compute the topological invariant we find the

Gamma-points of the Hamiltonian (ℵ.5), i.e. the points where L(k) = 0. Within the first
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Brillouin zone there are four such points: Γ1 = (0, 0), Γ2 = (π, 0), Γ3 = (0, π), Γ4 = (π, π). At

each of these points one can define a skew-symmetric matrix W (k = Γi) = H(k = Γi)Λ with

an associated Pfaffian. Exactly as in the previous subsection the topological invariant is given

by

δ =
∏
k=Γi

sgn Pf [W (k)] . (ℵ.10)

Computing the corresponding Pfaffians we get:

Pf [W (Γ1)] = B2 −∆2
s − (µ+ 4t)2, Pf [W (Γ4)] = B2 −∆2 − (µ− 4t)2,

Pf [W (Γ2)] = Pf [W (Γ3)] = B2 −∆2 − µ2,

where B2 ≡ |B|2 = B2
x +B2

y +B2
z . Therefore, the topological invariant is given by:

δ = (B2 −∆2 − µ2)2 sgn
[
(B2 −∆2 − (µ+ 4t)2)(B2 −∆2 − (µ− 4t)2)

]
. (ℵ.11)

A corresponding phase diagram is given in the right panel of the Fig. ℵ.10. It is clear that

there is no difference between the cases of a magnetic field perpendicular to the plane and an

in-plane magnetic field perpendicular to the edges of the ribbon (note however that an in-plane

magnetic field parallel to the edges of the ribbon does not give rise to a topological phase for

any region in the parameter space). Despite the closing of the gap, this calculation yields the

correct result for the parity of the number of Majorana modes (compare with the results of the

numerical simulations presented in Fig. ℵ.3).

ℵ.8.3 Infinite ribbons and finite-size strips

We follow the section about finite-size strips in Ref. [211], but instead of considering a magnetic

field perpendicular to the plane of the system, we consider also non-zero in-plane components

of the magnetic field, Bx and By. The Fourier-transformed Hamiltonian of this system in the

case of Ny coupled wires can be written in the Nambu basis
{
ψ↑, ψ↓, ψ

†
↓,−ψ†↑

}T

in the following
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manner:

H(k) =

=


f(k)INy − tM1Ny L(k)INy + iλM2Ny ∆INy 0̂[
−L(k)INy − iλM2Ny

]T
f(k)INy − tM1Ny 0̂ ∆INy

∆INy 0̂ −f(k)INy + tM1Ny

[
L(−k)INy + iλM2Ny

]T
0̂ ∆INy −L(−k)INy − iλM2Ny −f(k)INy + tM1Ny



+


BzINy (Bx − iBy)INy 0̂ 0̂

(Bx + iBy)INy −BzINy 0̂ 0̂

0̂ 0̂ BzINy (Bx − iBy)INy
0̂ 0̂ (Bx + iBy)INy −BzINy

 , (ℵ.12)

where the Ny ×Ny square matrices INy ,M1Ny ,M2Ny act in the sublattice space and are defined

as follows:

[
INy
]
ij

= δij,
[
M1Ny

]
ij

= δi,j−1 + δi−1,j,
[
M2Ny

]
ij

= −δi,j−1 + δi−1,j, ∀i, j ∈ 1, Ny,

with δ denoting the Kronecker delta. We define also the spectrum of the free electrons f(k) =

−2t cos k − µ, and the spin-orbit coupling term L(k) = −2iλ sin k. In this system the PHS

operator can be written as follows:

Ξ ≡ ΛK ≡


0̂ 0̂ 0̂ −INy
0̂ 0̂ INy 0̂

0̂ INy 0̂ 0̂

−INy 0̂ 0̂ 0̂

 K, (ℵ.13)

where K is the complex conjugation operator. We take the same path as in the previous

subsections: firstly, we find the Gamma-points of the Hamiltonian (ℵ.12), i.e. the points where

L(k) = 0. We find only two such points in the first Brillouin zone: Γ1 = 0, Γ2 = π. A skew-

symmetric matrix W (k = Γi) ≡ H(k = Γi)Λ is defined at each of those points along with an
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associated Pfaffian. Exactly as before, the topological invariant is given by

δ = sgn Pf [W (0)] sgn Pf [W (π)] (ℵ.14)

We do not give here the analytical expressions for δ since they are quite cumbersome. To obtain

the topological phase diagram we plot in the right column of Fig. ℵ.7 the topological invariant

as given by Eq. (ℵ.14), as a function of an in-plane magnetic field Bx and the chemical potential

µ.
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[33] C. Moca, E. Demler, B. Jankó, and G. Zaránd, “Spin-resolved spectra of Shiba multiplets

from Mn impurities in MgB2,” Phys. Rev. B, vol. 77, 2008.

[34] A. V. Balatsky, I. Vekhter, and J.-X. Zhu, “Impurity-induced states in conventional and

unconventional superconductors,” Rev. Mod. Phys., vol. 78, 2006.



202 BIBLIOGRAPHY

[35] F. Pientka, L. I. Glazman, and F. von Oppen, “Topological superconducting phase in

helical Shiba chains,” Phys. Rev. B, vol. 88, 2013.

[36] L. H. Thomas, “The motion of the spinning electron,” Nature (London), vol. 117, p. 514,

1926.

[37] Y. A. Bychkov and E. I. Rasbha, “Properties of a 2D electron gas with lifted spectral

degeneracy,” JETP Letters, vol. 39, 1984.

[38] A. Manchon, A. H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, “New perspectives

for Rashba spin-orbit coupling,” Nature Materials, vol. 14, 2015.

[39] M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys.,

vol. 82, 2010.

[40] X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys.,

vol. 83, 2011.

[41] C. L. Kane and E. J. Mele, “Quantum spin Hall effect in graphene,” Phys. Rev. Lett.,

vol. 95, 2005.
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[163] A. Gómez-León and G. Platero, “Floquet-Bloch theory and topology in periodically

driven lattices,” Phys. Rev. Lett., vol. 110, 2013.

[164] D. E. Liu, A. Levchenko, and H. U. Baranger, “Floquet Majorana fermions for topological

qubits in superconducting devices and cold-atom systems,” Phys. Rev. Lett., vol. 111,

2013.

[165] A. Poudel, G. Ortiz, and L. Viola, “Dynamical generation of Floquet Majorana flat bands

in s-wave superconductors,” EPL, vol. 110, no. 1, 2015.

[166] J. Klinovaja, P. Stano, and D. Loss, “Topological Floquet phases in driven coupled Rashba

nanowires,” Phys. Rev. Lett., vol. 116, 2016.

[167] V. Kaladzhyan, S. Hoffman, and M. Trif, “Dynamical Shiba states from precessing mag-

netic moments in an s-wave superconductor,” Phys. Rev. B, vol. 95, 2017.



214 BIBLIOGRAPHY

[168] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, “Classification of topological

insulators and superconductors in three spatial dimensions,” Phys. Rev. B, vol. 78, 2008.

[169] S. Tewari and J. D. Sau, “Topological invariants for spin-orbit coupled superconductor

nanowires,” Phys. Rev. Lett., vol. 109, 2012.

[170] V. Kaladzhyan, J. Despres, I. Mandal, and C. Bena, “Majorana fermions in finite-size

strips with in-plane magnetic fields,” 2016.

[171] A. Kundu and B. Seradjeh, “Transport signatures of Floquet Majorana fermions in driven

topological superconductors,” Phys. Rev. Lett., vol. 111, 2013.

[172] M. Trif, V. Kaladzhyan, and P. Simon, “Charge pumping into an STM tip by a precessing

texture in an s-wave superconductor,” (unpublished).

[173] J. Li, T. Neupert, B. A. Bernevig, and A. Yazdani, “Manipulating Majorana zero modes

on atomic rings with an external magnetic field,” Nature Communications, vol. 7, 2016.

[174] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, “Spin Hall

effects,” Rev. Mod. Phys., vol. 87, 2015.

[175] J. König, M. C. Bønsager, and A. H. MacDonald, “Dissipationless spin transport in thin

film ferromagnets,” Phys. Rev. Lett., vol. 87, 2001.

[176] E. Sonin, “Spin currents and spin superfluidity,” Advances in Physics, vol. 59, no. 3, 2010.

[177] S. Takei and Y. Tserkovnyak, “Superfluid spin transport through easy-plane ferromag-

netic insulators,” Phys. Rev. Lett., vol. 112, 2014.
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